We show that there are 2^{2^{ℵ_0}} different closed ideals in the Banach algebra L(L_p(0,1)),1<p≠2<∞. This solves a problem in A. Pietsch’s 1978 book “Operator Ideals”. The proof is quite different from other methods of producing closed ideals in the space of bounded operators on a Banach space; in particular, the ideals are not contained in the strictly singular operators and yet do not contain projections onto subspaces that are non-Hilbertian. We give a criterion for a space with an unconditional basis to have 2^{2^{ℵ_0}} closed ideals in terms of the existence of a single operator on the space with some special asymptotic properties. We then show that for 1<q<2 the space Xq of Rosenthal, which is isomorphic to a complemented subspace of L_q(0,1), admits such an operator.