A classification of $\SLn$ contravariant, continuous function-valued valuations on convex bodies is established.
Such valuations are natural extensions of $\SLn$ contravariant $L_p$ Minkowski valuations, the classification of which characterized $L_p$ projection bodies, which are fundamental in the $L_p$ Brunn-Minkowski theory, for $p \geq 1$.
Hence our result will help to better understand extensions of the $L_p$ Brunn-Minkowski theory.
In fact, our results characterize general projection functions which extend $L_p$ projection functions ($p$-th powers of the support functions of $L_p$ projection bodies) to projection functions in the $L_p$ Brunn-Minkowski theory for $0< p < 1$ and in the Orlicz Brunn-Minkowski theory.