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Abstract 

 

 Finite difference WENO schemes have established themselves as very worthy 

performers for entire classes of applications that involve hyperbolic conservation laws. In 

this paper we report on two major advances that make finite difference WENO schemes 

more efficient.  

 

 The first advance consists of realizing that WENO schemes require us to carry out 

stencil operations very efficiently. In this paper we show that the reconstructed 

polynomials for any one-dimensional stencil can be expressed most efficiently and 

economically in Legendre polynomials. By using Legendre basis, we show that the 

reconstruction polynomials and their corresponding smoothness indicators can be written 

very compactly. The smoothness indicators are written as a sum of perfect squares. Since 

this is a computationally expensive step, the efficiency of finite difference WENO 

schemes is enhanced by the innovation which is reported here.  

 

 The second advance consists of realizing that one can make a non-linear 

hybridization between a large, centered, very high accuracy stencil and a lower order 

WENO scheme that is nevertheless very stable and capable of capturing physically 

meaningful extrema. This yields a class of adaptive order WENO schemes, which we call 

WENO-AO (for adaptive order). Thus we arrive at a WENO-AO(5,3) scheme that is at 

best fifth order accurate by virtue of its centered stencil with five zones and at worst third 

order accurate by virtue of being non-linearly hybridized with an r=3 CWENO scheme. 

The process can be extended to arrive at a WENO-AO(7,3) scheme that is at best seventh 

order accurate by virtue of its centered stencil with seven zones and at worst third order 
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accurate. We then recursively combine the above two schemes to arrive at a WENO-

AO(7,5,3) scheme which can achieve seventh order accuracy when that is possible; 

graciously drop down to fifth order accuracy when that is the best one can do; and also 

operate stably with an r=3 CWENO scheme when that is the only thing that one can do. 

Schemes with ninth order of accuracy are also presented. 

 

 Several accuracy tests and several stringent test problems are presented to 

demonstrate that the method works very well. 

 

 

I) Introduction 

 

 Ever since the early papers by Harten et al. [14] and Shu & Osher [29], [30] there 

has been a great deal of interest in Essentially Non-Oscillatory (ENO) schemes that can 

obtain the solution to hyperbolic conservation laws with better than second order 

accuracy in the vicinity of smooth flows. ENO schemes come in two flavors. The original 

ENO schemes by Harten et al. [14] were based on finite volume discretizations, where 

the conserved variable is reconstructed using the smoothest stencil possible. A more 

efficient variant of ENO schemes by Shu & Osher [29], [30] relies on finite difference 

discretizations, where upwinding is applied directly to the fluxes on a dimension-by-

dimension basis. When the physical problem develops discontinuities, the ENO schemes 

rely on non-linear hybridization and upwinding to stabilize the solution. The early ENO 

schemes suffered from their own pathologies. As a result, weighted ENO (WENO) 

schemes were invented to overcome those deficiencies (Liu, Osher & Chan [23], Jiang & 

Shu [19]). The methods were extended to eleventh order by Balsara & Shu [1] and more 

recently to seventeenth order by Gerolymos, Sénéchal & Vallet [13]. A formulation of 

WENO that preserves accuracy at critical points was presented in Henrick, Aslam & 

Powers [15], Borges et al. [3] and Castro et al. [4]. For a comprehensive review of 

WENO schemes, see Shu [31]. In this paper we focus on finite difference WENO 

schemes.  
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 WENO methods achieve their high order by analyzing all the stencils, including 

the highly one-sided ones, that enable one to reconstruct the solution within a zone with 

rth order polynomials. It was realized that when the flow is smooth, all possible stencils 

provide an equally good reconstruction. Thus in smooth regions of flow, a convex 

combination of all possible stencils may be taken to yield (2r−1)th order of accuracy. The 

linear weights that are ascribed to all the different stencils are then called optimal linear 

weights because they help optimize the accuracy of the scheme. The one-sided stencils 

can potentially provide upwinding and stability in the vicinity of shocks, with the result 

that the reconstruction strategy should emphasize the stencil/s that yield the smoothest 

interpolation in such regions.  

 

 It is easiest to understand how WENO schemes achieve stability at discontinuities 

if one briefly considers total variation diminishing (TVD) schemes. In TVD methods 

stability is achieved in the vicinity of discontinuities by picking a one-sided slope with 

the help of a solution-dependent, non-linear limiter. Picking a left-biased slope and a 

right-biased slope is equivalent to picking a left- and right-biased stencils, each of which 

has two zones. The limiter provides non-linear hybridization by examining the one-sided 

slopes/stencils and picking out the slope with the smaller absolute value. In WENO 

schemes one first identifies all the possible stencils that cover a zone of interest with a 

suitably high order reconstruction polynomial. The stencils can be one-sided or centered. 

When the flow is smooth, we wish to pick out the centered stencil or a linear combination 

of all the stencils so as to optimize order of accuracy. When the flow has discontinuities, 

we wish to pick out the stencil with the smoothest possible solution. The choice of stencil 

is, therefore, made solution-dependent leading to a non-linearly hybridized scheme even 

when the governing equation may perhaps be linear. The non-linear stabilization is 

achieved by assigning a solution-dependent smoothness indicator to each of the stencils. 

At a technical level, the smoothness indicator for a given stencil is the sum of the squares 

of all the derivatives that are present in the reconstruction polynomial associated with that 

stencil. The weights assigned to the different stencils are such that if all stencils have the 

same smoothness indicators (i.e. the stencils are equally good interpolants in the vicinity 

of smooth flow) then the weights tend to the optimal linear weights. It is by this device 
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that the accuracy of conventional WENO schemes is improved. However, when one or a 

few stencils have substantially smaller smoothness indicators than the rest (i.e., a sub-set 

of stencils are much better interpolants in the vicinity of shocks) then the smoothest 

stencils carry the highest weight with the non-smooth stencils carrying a vanishingly 

small weight. It is by this device that the WENO schemes achieve their non-linear 

hybridization. Recently, Zhu and Qiu [37] have non-linearly hybridized a fifth order 

reconstruction polynomial with a Van Albada-like limiter to arrive at a scheme that is 

fifth order for smooth flow and second order TVD at discontinuities. In situations where 

the Van Albada limiter is invoked even a little, extrema will be clipped. It is, therefore, 

desirable to do better. 

 

 The finite difference WENO schemes described above have shown themselves to 

be versatile performers. Numerical studies of turbulence require careful attention to 

accuracy and phase errors, as shown in the compact schemes of Lele [21]; see also Tam 

and Webb [35]. Compact-WENO schemes have, therefore, been designed to handle 

shocks and simultaneously increase the phase accuracy by Pirozzoli [27], Shen and Yang 

[32], Deng and Zhang [7]. See also Hu et al. [18], Martin et al. [25] and Johnsen et al. 

[20] for further information on low dispersion schemes for turbulence. The finite 

difference WENO methods have also been adapted to handle complex geometry by Hu 

and Shu [16] and Liu and Zhang [24]. We see, therefore, that it is very desirable to 

improve the efficiency and accuracy of this class of schemes. This is done in the next two 

paragraphs. 

 

 It is easy to see that rather large stencils need to be analyzed in the course of 

carrying out WENO reconstruction. Because of the size of the stencils being analyzed, it 

helps to have the most efficient strategies for evaluating the reconstructed polynomials as 

well as the smoothness indicators. The expressions provided in Jiang & Shu [19], Balsara 

& Shu [1] and Gerolymos, Sénéchal & Vallet [13] are not the most compact ones that can 

be obtained. In particular, Balsara et al. [2] realized that analyzing the problem in a basis 

set formed by Legendre polynomials yields a mathematically equivalent formulation that 

is computationally more efficient. While the expressions from Balsara et al. [2] were 
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shown to be useful for finite volume WENO schemes up to fourth order, an extension of 

the same expressions for finite difference WENO schemes with increasingly high order 

of accuracy is extremely valuable. The first goal of this paper is to provide such a 

formulation up to r=9. The resulting expressions for the reconstructing polynomials are 

very compact and suitable for implementation in numerical codes that use up to 

seventeenth order accurate finite difference WENO. The expressions for the smoothness 

indicators have a very compact form but they also have the added advantage that they can 

be written as a sum of perfect squares, thus making their positive nature evident. 

 

 While the classical finite difference WENO schemes emphasize high accuracy, 

there are other WENO-type schemes which emphasize stability. The central WENO 

(CWENO) schemes (Levy, Puppo & Russo [22], Cravero & Semplice [6], Semplice, 

Coco & Russo [28]), which have also been extended to unstructured meshes by 

Friedrichs [12], Käser and Iske [17] and Dumbser and Käser [10], fall in this category of 

WENO schemes. Such schemes emphasize the central, and most stable, stencil over and 

above all the other stencils. Thus for smooth flow, the method always tends to the most 

stable central stencil. For non-smooth flow, the smoothness indicators permit the 

reconstruction to pick out the smoothest one-sided stencil. Experience has shown that the 

r=3 CWENO is extremely stable, rivaling the stability of TVD schemes. All the CWENO 

schemes also preserve physical extrema if such extrema exist in the flow. This enables us 

to realize the limitation of the WENO-ZQ scheme of Zhu and Qiu [37] which non-

linearly hybridized a central stencil with an extrema-clipping Van Albada limiter. We 

avoid the clipping of extrema in this paper by achieving a non-linear hybridization 

between a central fifth order reconstruction polynomial along with the r=3 CWENO 

reconstruction. We call such finite difference schemes WENO-AO for adaptive order. 

The resulting adaptive order WENO-AO scheme, which we denote as WENO-AO(5,3), 

is fifth order accurate where it is possible and at least third order accurate in situations 

where the fifth order accuracy might produce unphysical extrema. Because of the non-

linear hybridization with the r=3 CWENO reconstruction, it will also be stable while 

simultaneously avoiding the clipping of physical extrema. Accuracy testing shows that 

our WENO-AO(5,3) scheme can be almost half an order of magnitude more accurate 
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than the WENO-ZQ scheme for certain test problems. We also demonstrate a suitable 

non-linear hybridization between a central seventh order stencil and the three CWENO 

stencils with r=3. This yields a WENO-AO(7,3) reconstruction strategy with an adaptive 

order that can range between 7th order (at best) and 3rd order (at worst). We then realize 

that we can recursively make a suitable non-linear hybridization between the WENO-

AO(7,3) reconstruction strategy and the WENO-AO(5,3) reconstruction strategy. The 

resulting WENO-AO(7,5,3) reconstruction gives us a 100% stable strategy of switching 

from a seventh order scheme to a fifth order scheme and further switching from fifth 

order to third order. We also show that WENO-AO(9,3) and WENO-AO(9,5,3) schemes 

can be constructed. The second goal of this paper is to catalogue the finite difference 

WENO-AO schemes of different orders. Please note that the nomenclature emphasizes 

the spatial accuracy of the finite difference WENO schemes since all such schemes 

achieve their temporal accuracy via Runge-Kutta time update methods. 

 

 Section II presents the formulation of WENO reconstruction in a space of 

Legendre basis functions. Section III catalogues efficient WENO-AO schemes with 

adaptive order. Section IV presents some accuracy results. Section V applies the schemes 

to several stringent test problems. Section VI presents conclusions. 

 

II) Formulation of WENO Reconstruction in Legendre Basis 

 

 The Legendre polynomials, suitably modified for the domain [ 1/ 2,1/ 2]− , are 

given by: 
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x x

x x x xx

+ −

− + − +

  (2.1) 

 

In the remaining Sub-sections we catalogue the WENO reconstruction in the basis space 

provided by these Legendre polynomials for r=3 to r=9. In this paper we are only 

interested in addressing finite difference WENO, so we restrict our attention to one-

dimensional stencils. The r=3 to 5 cases have been catalogued in Balsara et al. [2] and are 

repeated here because we wish to show that the emerging pattern in the smoothness 

indicators is very general and can be used for designing WENO schemes with even larger 

values of “r”. The r=6 to 9 cases are new.  

 

 Potentially, the r=9 case can lead to the design of classical finite difference 

WENO schemes with 17th order spatial accuracy, i.e. an accuracy that is comparable to 

the most accurate finite difference WENO schemes in Gerolymos et al. [13]. The design 

of such very high order WENO schemes will be greatly helped by the fact that our 

expressions for the smoothness indicators in this paper are extremely compact. It is not 

our intention to design 17th order WENO schemes in this paper. However, it is our 

intention to show that a very general procedure has been found for designing WENO 

schemes with adaptive order. In other words, the WENO-AO (for adaptive order) 

schemes can automatically pick out stencils of suitably high order. The goal of the 

present section is to catalogue the compact expressions for the reconstruction and the 

smoothness indicators. The detailed description of WENO-AO will be provided in the 

next section. 

 

II.1) r=3 WENO Reconstruction 
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 We focus on the reconstruction problem in a zone labeled by a subscript “0”. 

Consider the neighboring zone-averaged variables { }2 1 0 1 2u , u , u , u , u− −  . A third order 

reconstruction over the zone labeled “0” can be carried out by using the left-biased stencil 
3

1Sr  , the centered stencil 3
2Sr  and the right-biased stencil 3

3Sr  that rely on the variables 

{ }2 1 0u , u , u− −  , { }1 0 1u , u , u−  and { }0 1 2u , u , u  respectively. In this paper we label our 

stencils with a superscript that denotes the rth order of the polynomial and a subscript that 

denotes the stencil for that r-value. Specification of these two numbers always allows us 

to specify a precise reconstruction polynomial with a specified smoothness indicator. The 

ith reconstructed polynomial corresponding to stencil 3Sr
i  is then expressed as 

 
3

0 1 2 2P ( ) = u  + u  L ( ) + u  L ( ) r
i x xx x x        (2.2) 

 

The stencil 3
1Sr  gives 

 

( )1 2 0 2 2 1 0u 2 u  u 2 3 u 2    , u u 2 u  u 2x x− − − −= − + + = − +     (2.3) 

 

The stencil 3
2Sr  gives 

 

( ) ( )1 1 2 1 0 1u u  u 2    , u u 2 u  u 2x x− −= − = − +      (2.4) 

 

The stencil 3
3Sr  gives 

 

( )0 1 2 2 0 1 2u 3 u 2 2 u  u 2    , u u 2 u  u 2x x= − + − = − +     (2.5) 

 

The smoothness indicator for each of the three stencils can then be written in a very 

compact form which is a sum of two squares as 
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( ) ( )2 23
2

13 = u  u
3

r
x xβ +         (2.6) 

For each stencil 3Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.6) 

to denote that it corresponds to a specific stencil. 

 

II.2) r=4 WENO Reconstruction 

 

In considering the r=4 WENO reconstruction problem in a zone labeled by a 

subscript “0”, we focus on the neighboring zone-averaged variables 

{ }3 2 1 0 1 2 3u , u , u , u , u , u , u− − −  . The fourth order reconstruction can be carried out by using 

four stencils 4
1Sr  , 4

2Sr  , 4
3Sr  and 4

4Sr  that rely on the variables { }3 2 1 0u , u , u , u− − −  , 

{ }2 1 0 1u , u , u , u− −  { }1 0 1 2u , u , u , u−  and { }0 1 2 3u , u , u , u  respectively. The ith reconstructed 

polynomial corresponding to stencil 4Sr
i  is then expressed as 

 
4

0 1 2 2 3 3P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( )r
i x x xx x x x      (2.7) 

 

The stencil 4
1Sr  gives 

 

1 2 3 0

2 1 2 3 0

3 1 2 3 0

u ( 177 u + 87 u 19 u +109 u ) 60,
u 5u 2 2u u 2 u ,
u ( 3u 3u u u ) 6

x

x

x

− − −

− − −

− − −

= − −
= − + − +
= − + − +

               (2.8) 

 

The stencil 4
2Sr  gives 

 

1 2 0 1

2 1 0 1

3 1 2 0 1

u ( 63u + 11u +33 u 19u ) 60,
u u 2 u u 2 ,
u ( 3u u 3u u ) 6

x

x

x

− −

−

− −

= − +
= − +
= − − +

      (2.9) 

 

The stencil 4
3Sr  gives 



 10 

 

1 0 1 2

2 1 0 1

3 1 0 1 2

u ( 19u 33 u 63u 11u ) 60,
u u 2 u u 2 ,
u ( u 3u 3u u ) 6

x

x

x

−

−

−

= − − + −
= − +
= − + − +

      (2.10) 

 

The stencil 4
4Sr  gives 

 

0 1 2 3

2 0 1 2 3

3 0 1 2 3

u ( 109 u 177 u 87 u 19 u ) 60,
u  u 5u 2 2u u 2 ,
u ( u 3u 3u u ) 6

x

x

x

= − + − +
= − + −
= − + − +

      (2.11) 

 

Because of the formulation in Legendre basis, the smoothness indicator for each of the 

four stencils has the same expression. Unlike the expressions given in Balsara & Shu [1], 

it can be written as a sum of perfect squares as shown below 

 

( ) ( )2 24 2
3 2 3

13 781 = ( u u 10)   u  u
3 20

r
x x x xβ + + +      (2.12) 

 

For each stencil 4Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.12) 

to denote that it corresponds to a specific stencil. Notice that the above expression is 

considerably more compact that the corresponding expression in Balsara & Shu [1], 

though the expressions are mathematically equivalent. 

 

II.3) r=5 WENO Reconstruction 

 

When considering the r=5 WENO reconstruction problem in zone “0”, we focus 

on the neighboring zone-averaged values { }4 3 2 1 0 1 2 3 4u , u , u , u , u , u , u ,u ,u− − − −  . A fifth 

order reconstruction for the zone labeled “0” can be carried out by using five stencils 5
1Sr  , 

5
2Sr  , 5

3Sr  , 5
4Sr and 5

5Sr that rely on the variables { }4 3 2 1 0u , u , u , u , u− − − −  , 

{ }3 2 1 0 1u , u , u , u , u− − −  { }2 1 0 1 2u , u , u , u , u− − , { }1 0 1 2 3u , u , u , u , u−  and { }0 1 2 3 4u , u , u , u , u  
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respectively. The ith reconstructed polynomial corresponding to stencil 5Sr
i  is then 

expressed as 

 
5

0 1 2 2 3 3 4 4P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )r
i x x x xx x x x x    (2.13) 

 

The stencil 5
1Sr  gives 

 

1 2 3 4 0

2 1 2 3 4 0

3 1 2 3 4 0

4 1 2 3 4 0

u ( 462u + 336u 146 u 27 u 245 u ) 120,
u ( 240u 262u 128u 25u 81u ) 56,
u ( 18u 24u 14u 3u 5u ) 12,
u ( 4u 6u 4u u u ) 24

x

x

x

x

− − − −

− − − −

− − − −

− − − −

= − − + +
= − + − + +

= − + − + +
= − + − + +

    (2.14) 

 

The stencil 5
2Sr  gives 

 

1 2 3 0 1

2 1 2 3 0 1

3 1 2 3 0 1

4 1 2 3 0 1

u ( 192u + 66u 11u +110 u 27 u ) 120,
u (10u 12u 3u 44u 25u ) 56,
u ( 12u 6u u 10u 3u ) 12,
u ( 6u 4u u 4u u ) 24

x

x

x

x

− − −

− − −

− − −

− − −

= − − +
= + − − +
= − + − +
= − + − +

    (2.15) 

 

The stencil 5
3Sr  gives 

 

1 2 1 2

2 1 2 0 1 2

3 1 2 1 2

4 1 2 0 1 2

u ( 82u 11u 82u 11u ) 120,
u ( 40u 3u 74u 40u 3u ) 56,
u ( 2u u 2u u ) 12,
u ( 4u u 6u 4u u ) 24

x

x

x

x

− −

− −

− −

− −

= − + + −
= − − + −
= − − +
= − + + − +

     (2.16) 

 

The stencil 5
4Sr  gives 
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1 0 1 2 3

2 1 0 1 2 3

3 1 0 1 2 3

4 1 0 1 2 3

u ( 27 u 110 u 192u 66u 11 u ) 120,
u ( 25u 44 u 10u 12u 3 u ) 56,
u ( 3u 10u 12u 6u u ) 12,
u ( u 4u 6u 4u u ) 24

x

x

x

x

−

−

−

−

= − − + − +
= − + + −
= − + − + −
= − + − +

    (2.17) 

 

The stencil 5
5Sr  gives 

 

0 1 2 3 4

2 0 1 2 3 4

3 0 1 2 3 4

4 0 1 2 3 4

u ( 245 u 462u 336u 146 u 27 u ) 120,
u ( 81 u 240u 262u 128 u 25 u ) 56,
u ( 5u 18u 24u 14u 3u ) 12,
u ( u 4u 6u 4u u ) 24

x

x

x

x

= − + − + −
= − + − +
= − + − + −
= − + − +

    (2.18) 

 

The smoothness indicator for each of the five stencils has the same expression and can be 

written as 

 

( ) ( )
2

2 25 2
3 2 4 3 4

13 123 781 1421461 = ( u u 10) u  u u u
3 455 20 2275

r
x x x x x xβ  + + + + + 

 
  (2.19) 

 

For each stencil 5Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.19) 

to denote that it corresponds to a specific stencil. Notice that eqn. (2.19) is also a sum of 

perfect squares. Furthermore, compare eqn. (2.19) to eqn. (2.12) to observe that all the 

moments up to 3xu  carry the same coefficients in the two equations. The two equations 

only differ by terms involving the moment 4xu  in such a way that all the lower moments, 

i.e. u x , 2u x  and 3u x , have the same coefficients. This illustrates the general pattern that 

emerges when constructing smoothness indicators in Legendre basis. The smoothness 

indicator for each new value of “r” differs from the smoothness indicator for “r−1” by 

terms that only involve the newest moment that is added. We will see this pattern borne 

out in the next Sub-section. 
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 It is also worth pointing out that the central stencil 5
3Sr  contains all the zones that 

would be used for the composite stencil of the r=3 WENO. This property will be utilized 

later to design WENO schemes with adaptive order. In other words, a suitable non-linear 

hybridization between the stencil 5
3Sr  and the three CWENO stencils with r=3 will give 

us a WENO-AO(5,3) reconstruction strategy with an adaptive order that can range 

between 5th order (at best) and 3rd order (at worst). When a 5th order reconstruction using 

the stencil 5
3Sr  is likely to become excessively oscillatory, the non-linear hybridization 

will enable the scheme to switch away to a third order CWENO scheme which is known 

to have excellent stability properties as well as an ability to preserve extrema. 

 

II.4) r=6 WENO Reconstruction 

 

When considering the r=6 WENO reconstruction problem in zone “0”, we focus 

on the neighboring zone-averaged values { }5 4 3 2 1 0 1 2 3 4 5u , u , u , u , u , u , u ,u ,u ,u ,u− − − − −  . A 

sixth order reconstruction for the zone labeled “0” can be carried out by using five 

stencils 6
1Sr  , 6

2Sr  , 6
3Sr  , 6

4Sr  , 6
5Sr  and 6

6Sr  that rely on the variables 

{ }5 4 3 2 1 0u , u , u , u , u , u− − − − −  , { }4 3 2 1 0 1u , u , u , u , u , u− − − −  { }3 2 1 0 1 2u , u , u , u , u , u− − − , 

{ }2 1 0 1 2 3u , u , u , u , u , u− − , { }1 0 1 2 3 4u , u , u , u , u , u−  and { }0 1 2 3 4 5u , u , u , u , u , u  respectively. 

The ith reconstructed polynomial corresponding to stencil 6Sr
i  is then expressed as 

 
6

0 1 2 2 3 3 4 4 5 5P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )+ u  L ( )r
i x x x x xx x x x x x   (2.20) 

 

The stencil 6
1Sr  gives 
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( )
( )
( )

1 2 3 4 5 0

2 1 2 3 4 5 0

3 1 2 3 4 5 0

4

u 23719 u  22742 u  14762 u   5449 u   863 u   11153 u 5040,

u 350 u  482 u  348 u  135 u  22 u   103 u 56,

u 317 u  526 u  436 u  182 u  31 u   76 u 108,

u 14 u

x

x

x

x

− − − − −

− − − − −

− − − − −

−

= − + − + − +

= − + − + − +

= − + − + − +

= −( )
( )

1 2 3 4 5 0

5 1 2 3 4 5 0

 26 u  24 u  11 u  2 u   3 u 24,

u 5 u  10 u 10 u  5 u  u  u 120x

− − − −

− − − − −

+ − + − +

= − + − + − +

 

          (2.21) 

The stencil 6
2Sr  gives 

 

( )
( )
( )

1 2 3 4 0 1

2 1 2 3 4 0 1

3 1 2 3 4 0 1

4 1 2 3

u 10774 u  5482 u  1817 u  271 u   5975 u  863 u 5040,

u 20 u  42 u  18 u  3 u  29 u   22 u 56,

u 148 u  94 u  29 u  4 u  110 u   31 u 108,

u 16 u  14 u   6 u   

x

x

x

x

− − − −

− − − −

− − − −

− − −

= − + − + + +

= − + − + − +

= − + − − +

= − + −( )
( )

4 0 1

5 1 2 3 4 0 1

u   9 u   2 u 24,

u 10 u  10 u  5 u  u   5 u  u  120x

−

− − − −

− +

= − + − − +

  

          (2.22) 

The stencil 6
3Sr  gives 

 

( )
( )
( )
( )

1 2 3 0 1 2

2 1 2 0 1 2

3 1 2 3 0 1 2

4 1 2 0 1 2

5 1

u 5354 u  1417 u  191 u  1910 u   2489 u  271 u 5040,

u  40 u  3 u   74 u  40 u  3 u 56,

u 68 u  34 u  5 u  50 u  7 u  4 u 108,

u 4 u  u  6 u  4 u  u 24,

u 10 u  

x

x

x

x

x

− − −

− −

− − −

− −

−

= − + − + + −

= − − + −

= − + − + +

= − + + − +

= − +( )2 3 0 1 25 u  u   10 u  5 u  u  /  120− −− + − +

  

          (2.23) 

The stencil 6
4Sr  gives 

 

( )
( )
( )
( )

1 2 0 1 2 3

2 1 2 0 1 2

3 1 2 0 1 2 3

4 1 2 0 1 2

5 1

u 2489 u  271 u  1910 u  5354 u  1  417 u  191 u 5040,

u 40 u  3 u  74 u  40 u  3 u 56,

u  7 u  4 u  50 u  68 u  34 u   5 u 108,

u  4 u  u   6 u  4 u  u 24,

u  5 u  

x

x

x

x

x

− −

− −

− −

− −

−

= − + − + − +

= − − + −

= − − + − + −

= − + + − +

= −( )2 0 1 2 3u  10 u  10 u  5 u  u  /  120− − + − +

  

          (2.24) 
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The stencil 6
5Sr  gives 

 

( )
( )
( )

1 0 1 2 3 4

2 1 0 1 2 3 4

3 1 0 1 2 3 4

4 1 0 1 2 3

u 863 u  5975 u  10774 u  5482 u  1  817 u  271 u 5040,

u 22 u  29 u  20 u  42 u  18 u   3 u 56,

u  31 u  110 u  148 u  94 u   29 u  4 u 108,

u  2 u  9 u  16 u  14 u  6 u

x

x

x

x

−

−

−

−

= − − + − + −

= − − + − +

= − + − + − +

= − + − + −( )
( )

4

5 1 0 1 2 3 4

 u 24,

u u  5 u  10 u  10 u  5 u  u 120x −= − + − + − +

  

          (2.25) 

The stencil 6
6Sr  gives 

 

( )
( )
( )

0 1 2 3 4 5

2 0 1 2 3 4 5

3 0 1 2 3 4 5

4 0 1 2

u 11153 u  23719 u  22742 u  14762 u   5449 u  863 u 5040,

u 103 u  350 u  482 u  348 u  135 u   22 u 56,

u 76 u  317 u  526 u  436 u  1  82 u  31 u 108,

u  3 u  14 u  26 u  24 

x

x

x

x

= − + − + − +

= − + − + −

= − + − + − +

= − + −( )
( )

3 4 5

5 0 1 2 3 4 5

u  11 u  2 u 24,

u  u  5 u  10 u  10 u  5 u  u 120x

+ −

= − + − + − +

  

          (2.26) 

 

The smoothness indicator for each of the six stencils has the same expression and can be 

written as 

 

( ) ( )

2 2
6 2

3 5 2 4 3 5

2 2
4 5

13 123 781 26045 = ( u u 10  u 126)  u  u  u  + u
3 455 20 49203

1421461 21520059541      u   u
2275 1377684

r
x x x x x x x

x x

β    + + + + +   
   

+ +

 

          (2.27) 

 

For each stencil 6Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.27) 

to denote that it corresponds to a specific stencil. As before, the smoothness indicator can 

be written as a sum of perfect squares. Furthermore, on comparing eqns. (2.19) and (2.27) 
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we see that the additional terms in eqn. (2.27) simply involve 5u x , with the lower 

moments retaining the same coefficients. 

 

II.5) r=7 WENO Reconstruction 

 

When considering the r=7 WENO reconstruction problem in zone “0”, we focus 

on the neighboring zone-averaged values 

{ }6 5 4 3 2 1 0 1 2 3 4 5 6u , u , u , u , u , u , u ,u ,u , u , u , u , u− − − − − −  . A seventh order reconstruction for the 

zone labeled “0” can be carried out by using seven stencils 7
1Sr  to 7

7Sr .  Since the logic for 

constructing these stencils is now transparent, we will not explicitly catalogue them. Only 

the central stencil 7
4Sr  , which relies on the variables{ }3 2 1 0 1 2 3u , u , u , u , u , u ,u− − − , is useful 

in our further discussions. The ith reconstructed polynomial corresponding to stencil 7Sr
i  

is then expressed as 

 
7

0 1 2 2 3 3 4 4 5 5

6 6

P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )
           +  u  L ( )

r
i x x x x x

x

x x x x x x
x

 (2.28) 

 

The central stencil 7
4Sr  gives 

 

( )
( )
( )

1 2 3 1 2 3

2 1 2 3 0 1 2 3

3 1 2 3 1 2 3

4

u 7843 u  1688 u  191 u   7843 u   1688 u  1  91 u 10080,

u 8385 u  1014 u  79 u  14900 u  8385 u   1014 u   79 u 10080,

u 61 u   38 u   5 u  61 u   38 u   5 u 216,

u  45

x

x

x

x

− − −

− − −

− − −

= − + − + − +

= − + − + − +

= − + − + −

= −( )
( )
( )

1 2 3 0 1 2 3

5 1 2 3 1 2 3

6 1 2 3 0 1 2 3

9 u  144 u  13 u  656 u    459 u   144 u  1  3 u 1584,

u  5 u  4 u  u  5 u   4 u   u 240

u 15 u  6 u  u  20 u   15 u   6 u   u 720
x

x

− − −

− − −

− − −

+ − + − + −

= − + − + − +

= − + − + − +

 

                    (2.29) 

The analogous expressions for the other six stencils for the r=7 polynomials can be 

obtained by following a reconstruction via primitive function approach on a computer 

algebra system. We restrict ourselves to explicitly cataloguing 7
4Sr  because it is the only 
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stencil that contributes to WENO-AO(7,3). The smoothness indicator for each of the 

seven stencils has the same expression and can be written as 

 

( )

2
7 2

3 5 2 4 6

2 2

3 5 4 6

2
5

13 123 85 = ( u u 10  u 126)  u  u  u
3 455 2002

781 26045 1421461        u  + u   u  u  
20 49203

81596225
93816426

155103
2275

21520059541         u  
137768

8494258 1
4

092
2

r
x x x x x x

x x x x

x

β  + + + + + 
 

   + + +   
   

+ + ( )2
675820292

 u
44 x

  (2.30) 

 

For each stencil 7Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.30) 

to denote that it corresponds to a specific stencil. As before, the smoothness indicator can 

be written as a sum of perfect squares. Furthermore, on comparing eqns. (2.27) and (2.30) 

we see that the additional terms in eqn. (2.30) simply involve 6u x , with the lower 

moments retaining the same coefficients. 

 

 It is also worth pointing out that the central stencil 7
4Sr  contains all the zones that 

would be used for the composite stencil of the r=4 WENO. This property will be utilized 

later to design WENO schemes with adaptive order. In other words, a suitable non-linear 

hybridization between the stencil 7
4Sr  and the three CWENO stencils with r=3 will give 

us a WENO-AO(7,3) reconstruction strategy with an adaptive order that can range 

between 7th order (at best) and 3rd order (at worst). When a 7th order reconstruction using 

the stencil 7
4Sr  is likely to become excessively oscillatory, the non-linear hybridization 

will enable the scheme to switch away to a third order CWENO which is known to have 

excellent stability properties as well as an ability to preserve extrema. 

 

 Having read the previous paragraph it is also possible to realize that one can 

recursively make a suitable non-linear hybridization between the non-linearly stabilized 

WENO-AO(7,3) reconstruction strategy and its smaller cousin, the non-linearly stabilized 

WENO-AO(5,3) reconstruction strategy. This gives us a 100% stable strategy of 
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switching from a seventh order scheme to a fifth order scheme and further switching from 

fifth order to third order.  

 

II.6) r=8 WENO Reconstruction 

 

When considering the r=8 WENO reconstruction problem in zone “0”, we focus 

on the neighboring zone-averaged values 

{ }7 6 5 4 3 2 1 0 1 2 3 4 5 6 7u , u , u , u , u , u , u ,u ,u ,u ,u ,u ,u ,u ,u− − − − − − −  . An eighth order reconstruction 

for the zone labeled “0” can be carried out by using eight stencils. Since the logic for 

constructing these stencils is now transparent, we will not explicitly catalogue them. The 

further reason for not explicitly cataloguing them is, of course, that the stencils for r=8 

WENO do not have a central stencil. As a result, we cannot use the central stencil to 

construct a WENO-AO(8,3) scheme. For that reason, we content ourselves with 

documenting the ith reconstructed polynomial corresponding to stencil 8Sr
i  which is 

expressed as 

 
8

0 1 2 2 3 3 4 4 5 5

6 6 7 7

P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )
          + u  L ( ) + u  L ( )

r
i x x x x x

x x

x x x x x x
x x

  (2.31) 

 

The corresponding smoothness indicator for each of the eight stencils has the same 

expression and can be written as 
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8 2
3 5 7

2

2 4 6

2

3 5 7

2

4 6

 = ( u u 10  u 126  u 1716)

13 123 85       u  u  u
3 455 2002

781 26045 8395     u  + u + u
20 49203

1421461      u

60918

81596225
93816

 u  
2275

21520059541     
137

26

76

4

r
x x x x

x x x

x x x

x x

β + + +

 + + + 
 

 +  
 

 + + 
 

+

( ) ( )

2

5 7

2 2
6 7

722379670131
559521548066

15510384942580921 12210527897

 u u
84

     u   166191835083
27582029

u
244 443141066068272

x x

x x

 + 
 

+ +

  (2.32) 

 

For each stencil 8Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.32) 

to denote that it corresponds to a specific stencil. As before, the smoothness measure can 

be written as a sum of perfect squares. Furthermore, on comparing eqns. (2.30) and (2.32) 

we see that the additional terms in eqn. (2.32) simply involve 7u x , with the lower 

moments retaining the same coefficients. 

 

II.7) r=9 WENO Reconstruction 

 

When considering the r=9 WENO reconstruction problem in zone “0”, we focus 

on the neighboring zone-averaged values 

{ }8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8u , u , u , u , u , u , u , u , u ,u ,u ,u ,u ,u ,u ,u ,u− − − − − − − −  . A ninth order 

reconstruction for the zone labeled “0” can be carried out by using nine stencils 9
1Sr  to 

9
9Sr . Since the logic for constructing these stencils is now transparent, we will not 

explicitly catalogue them. Only the central stencil 9
5Sr  , which relies on the variables  

{ }4 3 2 1 0 1 2 3 4u , u , u , u , u , u , u ,u ,u− − − −  , is useful to our further discussions. The ith 

reconstructed polynomial corresponding to stencil 9Sr
i  is then expressed as 
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9
0 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8

P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )
          + u  L ( ) + u  L ( ) + u  L ( )

r
i x x x x x

x x x

x x x x x x
x x x

  (2.33) 

 

The central stencil 9
5Sr  gives 

 

1 2 3 4 1

2 3 4

1 2 3 4 0
2

1 2 3

505538 136238 26442 505538
604800

136238 26442

1205324 183100 24500

 u   u  u  2497 u     u
u ,

   u     u  2497 u

 u   u   1759 208993u   u   u0
1205324 183100 2

u
  u    u     0 u450  

x

x

− − − −

− − − −

− + − + + 
=  − + − 

− + − −
=

+ − + − 4

1 2 3 4 1
3

2 3 4

1 2 3 4 0
4

1 2

,
  u

u    u   u  541 u   u
u ,

    u   5446 u   54

1330560
1759

34414 24294 5446 34414
95040

24294

186496

1 u

  u   u   u  77366572 10240 258782
186496 66572

 u   u
u

   u   u   

x

x

− − − −

− − − −

 
 
 

− + − − 
=  + − + 

− + − + +
=

− + − 3 4

1 2 3 4 1
5

2 3 4

1 2 3 4 0
6

1 2 3 4

,
 u  773 u

 526 u  474 u  166 u  19 u  526 u
u 12480

  474 u  1  66 u 1  9 u

1852 u  836 u  196 u  17 u  2390 u
u 4

 1852 u   836 u 1  96 u   17 u

494208
10240

x

x

− − − −

− − − −

 
 + 
− + − + + 

=  − + − 
− + − − 

=  + − + − 

1 2 3 4 1
7

2 3 4

1 2 3 4 0
8

1 2 3 4

3200

14 u  14 u  6 u  u  14 u
u 10080

 14 u   6 u   u

 56 u  28 u  8 u  u  70 u
u 40320

 56 u  28 u   8 u   u

x

x

− − − −

− − − −

− + − − 
=  + − + 

− + − + + 
=  − + − + 

         

                                                                                                                                  (2.34) 

 

The smoothness indicator for each of the nine stencils has the same expression and can be 

written as 
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9 2
3 5 7

2

2 4 6 8

2

3 5 7

4 6

 = ( u u 10  u 126  u 1716)

13 123 85 29     u  u  u  u
3 455 2002 5577

781 26045 8395     u  + u + u
20 49203

1421461      u  u   
22

60918

8159622
75

5 618438835
93816426 182942030

r
x x x x

x x x x

x x x

x x

β + + +

 + + + + 
 

 +  
 

+ + +
2

8

2

5 7

2

6 8

7

722379670131
559521548066

15510384942580921 5423630339859998294
27582029244 3024525063803

u

21520059541  u u
1377684

     u  
279595

12210527897166191835083
443141066068

u

     
27

x

x x

x x

 
 
 

 + + 
 

 + + 
 

+ ( ) ( )2 2
7 8

75509368098103789336083731407561
2 4281820132826302922641

 u   
5

ux x+

               

                                                                                                                                     (2.35) 

 

For each stencil 9Sr
i , we can add a subscript “i” to the smoothness indicator in eqn. (2.35) 

to denote that it corresponds to a specific stencil. As before, the smoothness indicator can 

be written as a sum of perfect squares. Furthermore, on comparing eqns. (2.32) and (2.35) 

we see that the additional terms in eqn. (2.35) simply involve 8u x , with the lower 

moments retaining the same coefficients. 

 

III) WENO Schemes with Adaptive Order (WENO-AO) 

 

 In this section we first describe some stage-setting associated with finite 

difference WENO schemes. Section III.1 then describes the fifth order accurate WENO-

AO(5,3) reconstruction. Section III.2 then describes the seventh order accurate WENO-

AO(7,3) reconstruction. Section III.3 then describes the formally ninth order accurate 

WENO-AO(9,3) reconstruction. Section III.4 then describes a hierarchical hybridization 

between the fifth order accurate WENO-AO(5,3) reconstruction and the seventh order 

WENO-AO(7,3) reconstruction; we call it WENO-AO(7,5,3). The point of Section III.4 
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is to show that the reconstruction improvement described here can be applied 

hierarchically and recursively. 

 

 It is easiest to briefly motivate finite difference WENO schemes in the following 

way. Consider the N-component hyperbolic conservation law 

 

 

0
t x

∂ ∂
+ =

∂ ∂
U F            (3.1) 

 

For simplicity of presentation we focus on the one-dimensional case. For finite difference 

WENO formulations, treating multiple dimensions is easy because the same prescription 

for obtaining the numerical fluxes is applied to each of the dimensions and the gradients 

of the fluxes from each dimension are added together to form a cumulative time rate of 

change. Eqn. (3.1) is then written as 

 

( )
t x

∂ ∂
= ≡ −

∂ ∂
U FUL           (3.2) 

 

A method of lines approach is then taken to integrate the system forward in time. 

Typically, SSP-RK methods of a suitable order from Shu and Osher [29] or Spiteri & 

Ruuth [33], [34] are used for the time integration. For simplicity, the domain in the x-

direction is covered with uniform zones, where the jth zone spans the interval 

1/2 1/2,j j jI x x− + =    with zone center ( )1/2 1/2 2j j jx x x− += +  and zone size 

( )1/2 1/2j jx x x+ −∆ = −  . The update term in eqn. (3.2) can then be written as  

 

( )( ) ( )1/2 1/2
1 ˆ ˆ

j j jt
x + −≡ − −

∆
U F FL         (3.3) 
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where 1/2
ˆ

j+F  is a suitably high order, properly upwinded, numerical flux defined at the 

zone boundary 1/ 2j +  . 

 

 Construction of properly upwinded numerical fluxes for finite difference WENO 

schemes is described in several sources including, in great detail, in section II of Balsara 

and Shu [1]. As a result, we only touch on it with the utmost brevity, describing the 

simplest case which is the construction of the LF flux. The numerical flux at a zone 

boundary, 1/ 2j +  , can, therefore, be split into a purely right-going flux and a purely 

left-going flux as follows 

 

( ) ( )1/2
1 1ˆ   
2 2

LF
j L L R Rλ λ+ = + + −F F U F U        (3.4) 

 

Here λ  is at least slightly larger than the absolute value of the fastest speed going in 

either direction along the x-axis. The above equation is slightly impressioninstic and is 

intended to show the right-going part of the flux ( )1/2
ˆ  2j L Lλ+

+ ≡ +F F U  , and the left-

going part of the flux, ( )1/2
ˆ  2j R Rλ−

+ ≡ −F F U  . In practice, 1/2
ˆ

j
+
+F  is obtained via a high 

order WENO reconstruction procedure that is applied to a set of stencils, all of which 

include the zone “j”. For example, a fifth order WENO reconstruction would involve the 

zones { }2, 1, , 1, 2j j j j j− − + +  . In classical fifth order finite difference WENO, this is 

obtained by using the r=3 WENO reconstruction described in Sub-section II.1. Also, in 

practice, 1/2
ˆ

j
−
+F   is obtained via a high order WENO reconstruction procedure that is 

applied to a set of stencils, all of which include the zone “j+1”. For example, a fifth order 

WENO reconstruction would involve the zones { }1, , 1, 2, 3j j j j j− + + +  . 

 

III.1) Fifth Order WENO Scheme with Adaptive Order – WENO-AO(5,3) 

 

 It is now possible to illustrate the differences between classical finite difference 

WENO and finite difference WENO-AO of the same order. Interestingly, this also 
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enables us to better understand the adaptive order WENO-AO schemes. We focus on the 

fifth order WENO-AO schemes in this sub-section. They are denoted by WENO-AO(5,3). 

In classical fifth order finite difference WENO, the reconstruction of 1/2
ˆ

j
+
+F  uses r=3 

WENO reconstruction from Section II.1 applied to the zones { }2, 1, , 1, 2j j j j j− − + +  . 

In the adaptive order WENO-AO(5,3) reconstruction, we work with the same set of zones 

to obtain 1/2
ˆ

j
+
+F  . However, this is obtained by a non-linear hybridization between the 

centered stencil 5
3Sr  which is centered at zone “j” along with the three r=3 CWENO 

stencils 3
1Sr  , 3

2Sr  and 3
3Sr  that are also include zone “j”. Notice that classical WENO will 

achieve fifth order accuracy only if the large stencil carries a smooth solution. Otherwise, 

the solution will graciously reduce in order to third order because the smoothness 

measures permit us to pick out the smoothest stencil amongst the stencils 3
1Sr  , 3

2Sr  and 

3
3Sr  . Now realize that WENO-AO(5,3) should do something that is quite analogous. This 

is because it is non-linearly hybridized between the fifth order central stencil 5
3Sr  and the 

three third order r=3 CWENO stencils 3
1Sr  , 3

2Sr  and 3
3Sr . As a result, WENO-AO(5,3) 

will also have an order of accuracy that is at best fifth order but can drop to third order if 

the larger stencil is non-smooth. Also realize that prior pactitioners have found that the 

r=3 CWENO reconstruction is extraordinarily stable with the result that the WENO-

AO(5,3) is guaranteed to be at least stable at third order along with having an ability to 

pick out extrema. 

 

 The details of this non-linear hybridization for WENO-AO(5,3) will be described 

in the next paragraph. However, it is very important to mention that the intuitive 

underpinnings of this method derive from the very recent, and very nice, paper by Zhu 

and Qiu [37], who hybridized the fifth order central stencil 5
3Sr  and a Van Albada-type of 

limiter. The Van Albada limiter is a TVD-class limiter which can clip extrema. For that 

reason, it is more advisable to nonlinearly hybridize the scheme with a suitable r=3 

CWENO scheme as is done here. Of course, when the non-linear hybridization does not 

invoke the lower order scheme, both the finite difference WENO-AO(5,3) scheme 



 25 

described here and the WENO-ZQ scheme described in Zhu and Qiu [37] achieve fifth 

order accuracy. 

 

 Now let us focus on a detailed description of WENO-AO(5,3). This description is 

important because we will later on show that it will also open the door to other families 

of WENO-AO schemes. The method is described by two parameters, Hiγ  and Loγ  , both 

of which are always less than unity. The linear weights for the stencils 5
3Sr  and the 

stencils 3
1Sr  , 3

2Sr  and 3
3Sr  are given by 

 

( )( ) ( ) ( )( )5 3 3 3
3 1 2 3    ;    1 1 / 2    ;     1     ;    1 1 / 2r r r r

Hi Hi Lo Hi Lo Hi Loγ γ γ γ γ γ γ γ γ γ γ= = − − = − = − −
            (3.5) 

 

Notice that 3
2Sr  is the central stencil of the r=3 CWENO reconstruction, so it should carry 

a higher linear weight than the other two stencils of the r=3 CWENO reconstruction; this 

helps to make the CWENO centrally biased. Also notice that 3 3 3
1 2 3 1r r r

Hiγ γ γ γ+ + = −  . 

Typically, we set [ ]0.85,0.95Hiγ ∈   and [ ]0.85,0.95Loγ ∈  . These numbers themselves 

give us a glimpse of what is afoot. When a suitable comparison of the smoothness 

indicators shows that the large central stencil 5
3Sr  is smooth we want most (or all) of our 

reconstruction to come from the large central stencil. However, when a suitable 

comparison of the smoothness indicators shows that the large central stencil is non-

smooth, we want most (or all) of our reconstruction to be weighted towards our very 

stable, third order accurate, extrema-preserving r=3 CWENO reconstruction. In the next 

paragraph we describe the construction of the non-linear weights. In the paragraph after 

that, we describe the assembly of the non-linearly hybridized higher order reconstruction. 

 

 We now describe the process of obtaining the non-linear weights for WENO-

AO(5,3) reconstruction. To avoid loss of order at inflection points we use the smoothness 

indicators to define 
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( )5 3 5 3 5 3
3 1 3 2 3 3

1
3

r r r r r rτ β β β β β β= − + − + −       (3.6) 

 

Using the smoothness indicators again, and following Borges et al. [3], we can obtain the 

un-normalized weights as 

 

( )( ) ( )( )
( )( ) ( )( )

2 25 5 2 5 3 3 2 3
3 3 3 1 1 1

2 23 3 2 3 3 3 2 3
2 2 2 3 3 3

1     ;    1    ;

1    ;    1

r r r r r r

r r r r r r

w w

w w

γ τ β ε γ τ β ε

γ τ β ε γ τ β ε

= + + = + +

= + + = + +
    (3.7a) 

 

If the solution is not dominated by inflection points, it may even be acceptable to use the 

original WENO strategy for obtaining the un-normalized weights given by 

 

( ) ( )
( ) ( )

2 25 5 5 3 3 3
3 3 3 1 1 1

2 23 3 3 3 3 3
2 2 2 3 3 3

  ;    ;  

  ;  

r r r r r r

r r r r r r

w w

w w

γ β ε γ β ε

γ β ε γ β ε

= + = +

= + = +
      (3.7b) 

 

Here ε  is a very tiny number, typically 1210ε −
  . We have found eqn. (3.7b) to be a 

more stable option while eqn. (3.7a) is a more accurate option. In practice, we have used 

eqn. (3.7a) in this paper. The normalized weights are given by 

 

( ) ( )
( ) ( )

5 5 5 3 3 3 3 3 5 3 3 3
3 3 3 1 2 3 1 1 3 1 2 3

3 3 5 3 3 3 3 3 5 3 3 3
2 2 3 1 2 3 3 3 3 1 2 3

    ;        ;

    ;    

r r r r r r r r r r r r

r r r r r r r r r r r r

w w w w w w w w w w w w

w w w w w w w w w w w w

= + + + = + + +

= + + + = + + +
  (3.8) 

 

This completes the description of the normalized, non-linear weights for WENO-AO(5,3). 

 

 Say we denote the reconstructed polynomial from WENO-AO(5,3) as ( )AO(5,3)P x  .  

Our task in this paragraph is to describe the construction of the order-preserving, non-

linearly hybridized, fifth order polynomial ( )AO(5,3)P x  . The non-linear weights should be 

combined in such a way that when all the smoothness indicators seem to have almost 
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similar values then only the higher order scheme is obtained. Such a combination strategy 

was demonstrated in Zhu and Qiu [37] for non-linearly hybridizing a fifth order 

polynomial with the two linear polynomials that make up the Van Albada limiter. A 

similar idea can be used to make a non-linear hybridization between the fifth order 

polynomial associated with the central 5
3Sr  stencil and the three third order polynomials 

for the stencils ,  3
1Sr  , 3

2Sr  and 3
3Sr  . The latter three stencils are associated with the r=3 

CWENO reconstruction. Realize, therefore, that when the four smoothness measures 

associated with these four stencils have closely similar values, we have 5 5
3 3
r rw γ→  , 

3 3
1 1
r rw γ→  , 3 3

2 2
r rw γ→   and 3 3

3 3
r rw γ→  . We then require that when the limits specified 

by the previous sentence are attained, we have ( ) ( )AO(5,3) 5
3P Prx x→  . This is achieved by 

the following definition 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

5
AO(5,3) 5 3 3 3 3 3 33

3 1 1 2 2 3 35
3

3 3 3 3 3 3
1 1 2 2 3 3

P = P    P    P    P

                 P    P    P

r
r r r r r r r

r

r r r r r r

wx x x x x

w x w x w x

γ γ γ
γ

− − −

+ + +

   (3.9) 

 

Notice that in the limit where the smoothness indicators for the 5
3Sr ,  3

1Sr  , 3
2Sr  and 

3
3Sr stencils all have closely similar values, we do have ( ) ( )AO(5,3) 5

3P Prx x→  . In the limit 

where the larger stencil has a very non-smooth solution, we have 5 3
3 1
r rw w  or 

5 3
3 2
r rw w  or 5 3

3 3
r rw w  . This ensures that the smoothest of the r=3 CWENO stencils 

will be sought out by the reconstruction polynomial. Notice that the non-linear 

hybridization that we sought at the beginning of this paragraph has been found via eqn. 

(3.9). 

 

 Some implementation details are given here to make it easy for implementers to 

implement the WENO-AO(5,3) reconstruction scheme that we have described here. 

Recall that we always work in terms of the coefficients of the Legendre basis. In this 

paragraph we make explicit the process of obtaining ( )AO(5,3)P x  for the “0” zone, since 
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Section II was defined entirely in terms of that zone. Of course, the zones can be shifted 

so that the reconstruction can be obtained in any zone. The implementation is described 

via the following steps:- 

Step 1) Let 3;1u r
x  and 3;1

2u r
x  be the coefficients of ( )3

1Pr x  ; they are obtained using eqn. 

(2.3). Let 3;2u r
x  and 3;2

2u r
x  be the coefficients of ( )3

2Pr x  ; they are obtained using eqn. (2.4). 

Let 3;3u r
x  and 3;3

2u r
x  be the coefficients of ( )3

3Pr x  ; they are obtained using eqn. (2.5). The 

smoothness indicators for these three r=3 polynomials can be obtained using eqn. (2.6).  

Step 2) Let 5;3u r
x , 5;3

2u r
x  , 5;3

3u r
x   and 5;3

4u r
x  be the coefficients of the central, fifth order 

polynomial ( )5
3Pr x  ; they are obtained using eqn. (2.16). The smoothess indicator for this 

fifth order polynomial can be obtained using eqn. (2.19). 

Step 3) Eqns. (3.6), (3.7) and (3.8) are evaluated in sequence and they give us the 

normalized non-linear weights 5
3
rw  , 3

1
rw  , 3

2
rw  and 3

3
rw  . 

Step 4) The coefficients of the polynomial described in eqn. (3.9) can now be explicitly 

written as 

 

( )

( )

5
AO(5,3) 5;3 3 3;1 3 3;2 3 3;3 3 3;1 3 3;2 3 3;33

1 2 3 1 2 35
3

5
AO(5,3) 5;3 3 3;1 3 3;2 3 3;3 3 3;13

2 2 1 2 2 2 3 2 1 2 25
3

u u    u    u    u   u    u    u   ;

u u    u    u    u   u   

r
r r r r r r r r r r r r r

x x x x x x x xr

r
r r r r r r r r r

x x x x x xr

w w w w

w w w

γ γ γ
γ

γ γ γ
γ

= − − − + + +

= − − − + + 3 3;2 3 3;3
2 3 2

5 5
AO(5,3) 5;3 AO(5,3) 5;33 3

3 3 4 45 5
3 3

 u    u   ;

u  u   ;  u  u

r r r r
x x

r r
r r

x x x xr r

w

w w
γ γ

+

= =

           (3.10) 

 

Step 5) The final WENO-AO(5,3) reconstructed polynomial is obtained by using eqn. 

(2.13) and is explicitly written as 

 

 AO(5,3) AO(5,3) AO(5,3) AO(5,3) AO(5,3)
0 1 2 2 3 3 4 4P ( ) = u  + u  L ( ) + u  L ( ) + u  L ( ) + u  L ( )x x x xx x x x x   (3.11) 

 

Eqns. (3.10) and (3.11), along with the narrative in this paragraph show us that WENO-

AO(5,3) schemes are very easy to implement. This same ease of implementation extends 
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to the other WENO-AO reconstruction schemes described in subsequent sub-sections. All 

the steps can be concatenated into the body a single loop that loops over the different 

zones. This makes the implementation very cache-friendly since most of the variables in 

the loop can reside in the cache of the processor. Similarly, the algorithm is very friendly 

to implementation on GPUs. 

 

 Let us try to understand eqns. (3.10) and (3.11) at an intuitive level. Eqn. (3.10) 

shows us that when 5 5
3 3
r rw γ→  we have AO(5,3) 5;3u u r

x x→  , AO(5,3) 5;3
2 2u u r

x x→  , AO(5,3) 5;3
3 3u u r

x x→  

and  AO(5,3) 5;3
4 4u u r

x x→  ; so that ( ) ( )AO(5,3) 5
3P Prx x→  . However, when 5 5

3 3
r rw γ  , we see 

that AO(5,3)u x  and AO(5,3)
2u x tend towards their smoothest values from the r=3 CWENO 

reconstruction. Furthermore, we see that when 5 5
3 3
r rw γ  we have AO(5,3)

3u 0x →  and  

AO(5,3)
4u 0x → . We see, therefore, that when the large central stencil 5

3Sr  carries a non-

smooth solution, the cubic and quartic terms are very strongly suppressed by WENO-

AO(5,3). These cubic and quartic terms are most likely to need a monotonicity preserving 

treatment if they are not effectively suppressed when the solution is non-smooth. Since 

WENO-AO(5,3) suppresses these terms very effectively, it does not need the additional 

stabilization from a monotonicity preserving formulation. This same advantage extends 

to the higher order WENO-AO schemes described in subsequent sub-sections. 

 

III.2) Seventh Order WENO Scheme with Adaptive Order – WENO-AO(7,3) 

 

 We focus on the seventh order WENO-AO scheme in this sub-section. It is 

denoted by WENO-AO(7,3). It is obtained by a non-linear hybridization between the 

centered stencil 7
4Sr  which is centered at zone “j” along with the three r=3 CWENO 

stencils 3
1Sr  , 3

2Sr  and 3
3Sr  that are also include zone “j”. In other words, the WENO-

AO(7,3) reconstruction is hybridized between the seventh order central stencil 7
4Sr  and 

the three third order r=3 CWENO stencils 3
1Sr  , 3

2Sr  and 3
3Sr . As a result, WENO-AO(7,3) 

will also have an order of accuracy that is at best seventh order but can drop to third order 
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if the larger stencil is non-smooth. We denote the reconstructed polynomial from WENO-

AO(7,3) as ( )AO(7,3)P x  .  

 

 The purpose of this brief section is to highlight the analogies between the WENO-

AO(7,3) reconstruction and the WENO-AO(5,3) reconstruction from the previous sub-

section. The method is still described by two parameters, Hiγ  and Loγ  , both of which are 

always less than unity. The linear weights are determined by expressions that are entirely 

analogous to eqn. (3.5). The linear weights for the stencils 7
4Sr  and the stencils 3

1Sr  , 3
2Sr  

and 3
3Sr  are given by 

 

( )( ) ( ) ( )( )7 3 3 3
4 1 2 3    ;    1 1 / 2    ;     1     ;    1 1 / 2r r r r

Hi Hi Lo Hi Lo Hi Loγ γ γ γ γ γ γ γ γ γ γ= = − − = − = − −
            (3.12) 

The analogue of eqn. (3.6) becomes 

 

( )7 3 7 3 7 3
4 1 4 2 4 3

1
3

r r r r r rτ β β β β β β= − + − + −        (3.13) 

 

Using the smoothness indicators, the analogue of eqn. (3.7a) for the un-normalized 

weights becomes 

 

( )( ) ( )( )
( )( ) ( )( )

2 27 7 2 7 3 3 2 3
4 4 4 1 1 1

2 23 3 2 3 3 3 2 3
2 2 2 3 3 3

1     ;    1    ;

1    ;    1

r r r r r r

r r r r r r

w w

w w

γ τ β ε γ τ β ε

γ τ β ε γ τ β ε

= + + = + +

= + + = + +
    (3.14a) 

 

The analogue of eqn. (3.7b) for the un-normalized weights becomes 

 

( ) ( )
( ) ( )

2 27 7 7 3 3 3
4 4 4 1 1 1

2 23 3 3 3 3 3
2 2 2 3 3 3

  ;    ;  

  ;  

r r r r r r

r r r r r r

w w

w w

γ β ε γ β ε

γ β ε γ β ε

= + = +

= + = +
      (3.14b) 
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In practice, we have used eqn. (3.14a) in this paper. An equation that is closely analogous 

to eqn. (3.8) then gives the normalized, non-linear weights as 

 

( ) ( )
( ) ( )

7 7 7 3 3 3 3 3 7 3 3 3
4 4 4 1 2 3 1 1 4 1 2 3

3 3 7 3 3 3 3 3 7 3 3 3
2 2 4 1 2 3 3 3 4 1 2 3

    ;        ;

    ;    

r r r r r r r r r r r r

r r r r r r r r r r r r

w w w w w w w w w w w w

w w w w w w w w w w w w

= + + + = + + +

= + + + = + + +
  (3.15) 

 

The reconstructed polynomial ( )AO(7,3)P x  is then given by an expression that is very 

analogous to eqn. (3.9) and is given by 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

7
AO(7,3) 7 3 3 3 3 3 34

4 1 1 2 2 3 37
4

3 3 3 3 3 3
1 1 2 2 3 3

P = P    P    P    P

                 P    P    P

r
r r r r r r r

r

r r r r r r

wx x x x x

w x w x w x

γ γ γ
γ

− − −

+ + +

   (3.16) 

 

This completes our description of WENO-AO(7,3). We have implemented such a scheme 

and for idealized test problems and it does indeed achieve seventh order of accuracy. As 

in the previous section, the scheme does not need any monotonicity preserving fix. 

 

III.3) Formally Ninth Order WENO Schemes with Adaptive Order – WENO-AO(9,3) 

 

 It may always be conjectured that the game-plan from the previous two sections 

can be extended to obtain a formally ninth order WENO-AO scheme. Indeed, as a matter 

of formal definition, this can be done. The scheme is denoted by WENO-AO(9,3). It is 

obtained by a non-linear hybridization between the centered stencil 9
5Sr  which is centered 

at zone “j” along with the three r=3 CWENO stencils 3
1Sr  , 3

2Sr  and 3
3Sr  that are also 

include zone “j”. Having seen the development in the previous section, it is easy to see 

that any entity “A” that has the formal structure 7
4Ar  should now be replaced by 9

5Ar  . In 

other words, making the replacement from the previous sentence in sub-Section III.2 will 

give us a WENO-AO(9,3) reconstruction strategy. We have constructed such a scheme 

and it does achieve ninth order of accuracy on certain idealized problems.  
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III.4) A Recursively Defined Seventh Order WENO Scheme with Adaptive Order – 

WENO-AO(7,5,3) 

 

 Our experience shows that WENO-AO(7,3) is a useful and well-behaved scheme. 

However, a purist might still detect a deficiency in it. Notice that when the central stencil 
7

4Sr  has a non-smooth solution, the WENO-AO(7,3) will graciously degenerate to a third 

order scheme. However, it is always possible that the stencil 5
3Sr  has a smooth solution 

even when the solution on the stencil 7
4Sr  is non-smooth. It is, therefore, possible to 

recursively hybridize between the potentially seventh order accurate polynomial 

( )AO(7,3)P x  and the potentially fifth order accurate polynomial ( )AO(5,3)P x  . As one might 

expect, this is done by examining the smoothness indicator 7
4
rβ  corresponding to the 

stencil 7
4Sr  and the smoothness indicator 5

3
rβ  corresponding to the stencil 5

3Sr . We define 

the two un-normalized weights given by 

 

( )( ) ( ) ( )( )AO(7,3) 7 AO(5,3) 5
4 3

7 5
4 3

1    ;    1 1

with 

r r
Hi Hi

r r

v vγ σ β ε γ σ β ε

σ β β

= + + = − + +

≡ −
   (3.17) 

 

The normalized, non-linear weights are given by 

 

( ) ( )AO(7,3) AO(7,3) AO(7,3) AO(5,3) AO(5,3) AO(5,3) AO(7,3) AO(5,3)    ;    v v v v v v v v= + = +    (3.18) 

 

The recursively hybridized WENO-AO(7,5,3) scheme will have a reconstructed 

polynomial which we denote by ( )AO(7,5,3)P x  . The polynomial ( )AO(7,5,3)P x  is given by 

 

( ) ( ) ( ) ( )( ) ( )
AO(7,3)

AO(7,5,3) AO(7,3) AO(5,3) AO(5,3) AO(5,3)P P 1 P  +  PHi
Hi

vx x x v xγ
γ

= − −   (3.19) 
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This completes our description of the recursive process for obtaining ( )AO(7,5,3)P x  . 

 

 Notice that when the solution is smooth on the stencils 7
4Sr and 5

3Sr  we hope to 

obtain AO(7,3)
Hiv γ→  and ( )AO(5,3) 1 Hiv γ→ −  . In that limit, it is easy to show that 

( ) ( ) ( )AO(7,5,3) AO(7,3) 7
4P P Prx x x→ →  . However, please also notice that each of the 

polynomials ( )AO(7,3)P x  and ( )AO(5,3)P x  are individually designed so that they are non-

linearly stable. Eqn. (3.17) should be compared to eqns. (3.7a) and (3.14a). The square in 

eqns. (3.7a) and (3.14a) ensures that we switch quite readily to the stabler and lower 

order stencil. The absence of a square in eqn. (3.17) ensures that we do not switch very 

readily from ( )AO(7,3)P x  to ( )AO(5,3)P x  . This is a good choice because both ( )AO(7,3)P x  

and ( )AO(5,3)P x  are individually designed to be stable. We can always encounter the very 

unlikely circumstance where the smoothness indicators 7
4
rβ  and 5

3
rβ  have comparable 

values even though the stencils 7
4Sr and 5

3Sr  both carry a non-smooth solution. In such a 

circumstance, ( )AO(7,5,3)P x  will still be a non-linearly stable polynomial that is made of a 

convex combination of two non-linearly stable polynomials, i.e., ( )AO(7,3)P x  and 

( )AO(5,3)P x . This convexity property obtains as long as ( )AO(5,3) AO(7,3)1Hi Hiv vγ γ≥ −  . In 

most normal circumstances, we expect this property to be respected because it says that 

the ratio of the non-linear weight to the linear weight of the lower order stencil, i.e. 

( )AO(5,3) 1 Hiv γ−  , is greater than the corresponding ratio for the higher order stencil, i.e. 

AO(7,3)
Hiv γ  . When the convexity property is violated, it is best to reset 

( ) ( )AO(7,5,3) AO(7,3)P Px x→  . Realistically speaking, we almost always expect 7 5
4 3
r rβ β>  , 

so that we expect that the convexity property will almost never be violated. This 

completes our description of WENO-AO(7,5,3) reconstruction which yields the 

polynomial ( )AO(7,5,3)P x  .  

 

 Please note that the computer implementation of WENO-AO(7,5,3) 

reconstruction is only slightly more expensive than the computer implementation of 
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WENO-AO(7,3). This is because one only has to pay an additional cost for the 

construction of the smoothness indicator 5
3
rβ  and the coefficients of the polynomial 

( )5
3Pr x   that go towards its evaluation. We hope that the WENO-AO(7,5,3) plays an 

important role in turbulence simulations of compressible flow where it is important to 

have a stencil that is as close to a central stencil as possible. In such turbulence 

simulations it is very important to preserve phase accuracy of flow features as much as 

possible. The WENO-AO(7,5,3) scheme fulfils on that goal because it graciously 

transitions from a seventh order centered stencil to a fifth order centered stencil to a 

super-stable third order CWENO formulation that can robustly capture shocks as well as 

physical extrema. 

 

 It is possible to carry this recursive process further. Thus, non-linear hybridization 

between ( )AO(9,3)P x  and ( )AO(7,5,3)P x  would yield a WENO-AO(9,7,5,3) scheme. While 

this might seem like overkill, we have indeed implemented a scheme that consists of a 

non-linear hybridization between ( )AO(9,3)P x  and ( )AO(5,3)P x  resulting in a WENO-

AO(9,5,3) scheme and we have found it to work well. 

 

 We also note that there is a modest analogy between MOOD (Multidimensional 

Optimal Order Detection) schemes (Clain, Diot and Loubère [5], Diot, Clain and Loubère 

[8], Diot, Loubère and Clain [9], Dumbser et al. [11]) which can have arbitrary order of 

accuracy between some designed maximum and some designed minimum and the 

WENO-AO(7,5,3) reconstruction defined here. Both methods try to retain higher order 

accuracy while being willing to relinquish high order accuracy when that is required for 

the sake of stability. The difference is that MOOD schemes attempt to do a posteriori 

limiting, which can sometimes cause them to evaluate the update of a zone multiple times 

in the course of a timestep. By contrast, the WENO-AO schemes rely on an a priori 

limiter, which makes the limiting much simpler – there is only one update per zone. 

Although this paper is focused on finite difference WENO-AO schemes, it is also 

possible to develop finite volume and Discontinuous Galerkin limiters that are based on 

the same adaptive order philosophy. We will do that in later publications. 
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IV) Accuracy Analysis 

 

 Several one-dimensional and multidimensional tests are presented in this section 

to demonstrate the accuracy of our WENO-AO methods. All the WENO-AO schemes in 

this section and the next were run with 0.85Hiγ =  and 0.85Loγ =  . In order to have a fair 

comparison, the WENO-ZQ scheme by Zhu and Qiu [37] was always run with the large 

central stencil having a weight of 0.98; this is the authors’ suggested value. We always 

used the LLF formulation for the fluxes in this paper, since it is not the goal of this paper 

to explore different basal Riemann solvers. We did not use any steepener algorithm for 

the simulations shown here; nor did we use any monotonicity preserving method. As a 

result, we are showing the native accuracy of the finite difference WENO-AO schemes. 

 

 The dispersion and dissipation accuracy of a higher order method is also of 

interest to people who simulate turbulence. While this is not traditionally viewed as 

accuracy analysis of a higher order scheme, it gives a measure of the phase accuracy of 

the method. For that reason, we provide a brief sub-section on dispersion and dissipation 

accuracy of WENO-AO schemes at the end of this Section. 

 

IV.a) Linear Advection of Sinusoidal Profiles 

 

 We solve the scalar advection equation u u 0t x+ =  on the one-dimensional 

periodic domain [ ]1,1x∈ −  with initial condition ( ) ( )0u sinx xπ=  . The problem was run 

to a final time of unity with a fourth order accurate Runge-Kutta timestepping scheme. 

The problem was run on the coarsest mesh with a CFL of 0.6. If Ω  is the optimal spatial 

accuracy of the scheme, the CFL on finer meshes was scaled as ( )( )  4x Ω∆  so that the true 

spatial accuracy of the method can be demonstrated. Realize, therefore, that the problem 

will be run on finer meshes with a CFL that is much smaller than 0.6, thus raising the 

possibility of excessive error build-up on the finer meshes. Our experience shows, 



 36 

however, that this does not occur till rather fine meshes are reached, thereby enabling us 

to demonstrate the spatial order of accuracy of the scheme.  

 

 Table I shows the accuracy as a function of increasing number of zones for the 

WENO-ZQ scheme, the WENO-AO(5,3) scheme, the WENO-AO(7,5,3) scheme and the 

WENO-AO(9,5,3) scheme. For this very smooth problem, the WENO-AO(7,3) scheme 

has an accuracy that is effectively identical to the WENO-AO(7,5,3) scheme; therefore, 

we do not show it here. Likewise, the WENO-AO(9,3) scheme has an accuracy that is 

effectively identical to the WENO-AO(9,5,3) scheme; which is why we do not show it 

here. We see that all the methods that are shown in Table I reach their design accuracies. 

We also see that the accuracy of our WENO-AO(5,3) scheme is more than half an order 

of magnitude better than the accuracy of the WENO-ZQ scheme on all the meshes. This 

demonstrates that the non-linear hybridization with r=3 CWENO, while adding almost 

negligibly to the cost of the method, has resulted in a substantial improvement in the 

quality of the solution. 

 

 The accuracy of the WENO-ZQ scheme has been improved somewhat because 

the large central stencil was given a linear weight of 0.98. Even then, the accuracy of the 

WENO-ZQ scheme remains inferior to the accuracy of our WENO-AO(5,3) scheme. Our 

WENO-AO class of schemes are relatively unaffected by the value of Hiγ  and Loγ . The 

accuracy of a robust scheme should be relatively independent of input parameters, so we 

view that as a strength of our WENO-AO schemes.  

 

Table I shows the accuracy of the sine wave advection test with WENO-ZQ, WENO-

AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes 

 

Method # of Zones L1 Error L1 Accuracy L∞ Error L∞ Accuracy 

WENO-ZQ      

 10 1.3473E-02  2.9631E-02  
 20 6.9263E-04 4.28 2.5886E-03 3.52 
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 40 5.0068E-05 3.79 2.5319E-04 3.35 
 80 9.9071E-07 5.66 7.4381E-06 5.09 
WENO-

AO(5,3) 

     

 10 3.6382E-03  5.5511E-03  
 20 1.1024E-04 5.04 1.7339E-04 5.00 
 40 3.4890E-06 4.98 5.4838E-06 4.98 
 80 1.0944E-07 4.99 1.7193E-07 5.00 
WENO-

AO(7,5,3) 

     

 10 7.7366E-04  1.1084E-03  
 20 2.6284E-06 8.20 3.7126E-06 8.22 
 40 1.8914E-08 7.12 2.9030E-08 7.00 
 80 1.4562E-10 7.02 2.2752E-10 7.00 
WENO-

AO(9,5,3) 

     

 10 5.4788E-04  8.9372E-04  
 20 3.5088E-07 10.61 6.0682E-07 10.52 
 40 6.0744E-10 9.17 1.0090E-09 9.23 
 80 1.4070E-12 8.75 2.4215E-12 8.70 
 

 

IV.b) Non-linear Burgers Equation in One Dimension 

 

 We solve the non-linear Burgers equation 2u (u / 2) 0t x+ =  on the one-

dimensional periodic domain [ ]1,1x∈ −  with initial condition ( ) ( )0u 0.25 0.5sinx xπ= +  . 

The problem was run to a final time of 1/π  ; which corresponds to a time that is before 

the formation of the shock. We used a fourth order accurate Runge-Kutta timestepping 

scheme. The problem was run on the coarsest mesh with a CFL of 0.6 and the CFL 

number was scaled down on finer meshes, as previously described. The same four 
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schemes as before were run and the results are shown in Table II. We see that all the 

methods that are shown in Table II reach their design accuracies. We also see that the 

accuracy of our WENO-AO(5,3) scheme is somewhat better than the accuracy of the 

WENO-ZQ scheme on all the meshes. 

 

Table II shows the accuracy of the Burgers equation test with WENO-ZQ, WENO-

AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes 

 

Method # of Zones L1 Error L1 Accuracy L∞ Error L∞ Accuracy 

WENO-ZQ      

 10 5.8154E-03  1.9515E-02  
 20 7.4220E-04 2.97 9.0760E-04 4.43 
 40 3.6775E-05 4.34 3.5689E-04 1.35 
 80 8.9123E-07 5.37 1.2158E-05 4.88 
WENO-

AO(5,3) 

     

 10 4.9421E-03  1.7277E-02  
 20 6.9353E-04 2.83 4.8916E-03 1.82 
 40 2.9831E-05 4.54 3.5742E-04 3.77 
 80 8.5024E-07 5.13 1.2158E-05 4.88 
WENO-

AO(7,5,3) 

     

 10 5.1209E-03  1.9869E-02  
 20 4.3334E-04 3.56 3.1234E-03 2.67 
 40 1.1647E-05 5.22 1.2882E-04 4.60 
 80 1.1629E-07 6.65 1.7216E-06 6.23 
 160 7.3990E-10 7.30 1.3675E-08 6.98 
WENO-

AO(9,5,3) 

     

 10 5.5365E-03  2.0517E-02  
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 20 5.7010E-04 3.28 4.5932E-03 2.16 
 40 7.0119E-06 6.35 6.7292E-05 6.09 
 80 2.9824E-08 7.88 4.6522E-07 7.18 
 160 6.3850E-11 8.87 1.2238E-09 8.57 
 

 

IV.c) Euler Equations in Two Dimensions 

 

 We solve the two-dimensional Euler equations on the two-dimensional periodic 

domain ( ) [ ] [ ], 0, 2 0,2x y π π∈ ×  . The pressure, x-velocity and y-velocity were all set to 

unity. The ratio of specific heats was set to 1.4. The initial density was given by 

( ) ( )0 , 1 0.2sinx y x yρ = + +  and the problem was run to a final time of 2 units with a 

fourth order accurate Runge-Kutta timestepping scheme. The problem was run on the 

coarsest mesh with a CFL of 0.3 and the CFL number was scaled down on finer meshes, 

as previously described. The same four schemes as before were run and the results are 

shown in Table III. We see that all the methods that are shown in Table III reach their 

design accuracies. (Since we used 1210ε −=  , the accuracy of the ninth order scheme 

tapers off on the finest mesh.) We also see that the accuracy of our WENO-AO(5,3) 

scheme is much better than the accuracy of the WENO-ZQ scheme on all the meshes. 

 

Table III shows the accuracy of the two-dimensional Euler equation test with 

WENO-ZQ, WENO-AO(5,3), WENO-AO(7,5,3) and WENO-AO(9,5,3) schemes 

 

Method # of Zones L1 Error L1 Accuracy L∞ Error L∞ Accuracy 

WENO-ZQ      

 10×10 1.1627E-03  3.1556E-03  
 20×20 4.5302E-05 4.68 2.0978E-04 3.91 
 40×40 3.6967E-06 3.62 2.1586E-05 3.28 
 80×80 6.5304E-08 5.82 8.2153E-07 4.72 
WENO-      
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AO(5,3) 

 10×10 8.9540E-04  1.3543E-03  
 20×20 2.8275E-05 4.98 4.4273E-05 4.93 
 40×40 8.8957E-07 4.99 1.3981E-06 4.98 
 80×80 2.7885E-08 5.00 4.3779E-08 5.00 
WENO-

AO(7,5,3) 

     

 10×10 1.1253E-04  1.6059E-04  
 20×20 6.6656E-07 7.40 9.4772E-07 7.40 
 40×40 4.8194E-09 7.11 7.3960E-09 7.00 
 80×80 3.7075E-11 7.02 5.8410E-11 6.98 
WENO-

AO(9,5,3) 

     

 10×10 4.7889E-05  1.0610E-04  
 20×20 8.7199E-08 9.10 1.4662E-07 9.50 
 40×40 1.5470E-10 9.14 2.5558E-10 9.16 
 80×80 1.3857E-12 6.80 1.9387E-12 7.04 
 

IV.d) Dispersion and Dissipation Accuracy of WENO Schemes 

 

 WENO schemes are increasingly used for turbulence studies. In such studies, 

practitioners are very interested in knowing the dispersion error and dissipation 

characteristics of their numerical methods. The modified wavenumber approach, 

popularized by Lele [21], gives us a measure of the dispersion error as well as the 

dissipation inherent in the scheme when a first derivative is taken. Since hyperbolic PDEs 

are based on taking a first derivative of the flux, this is a useful diagnostic. The real part 

of the modified wave number for the first derivative gives us a good measure of the 

dispersion error of the scheme. Since all our WENO schemes are upwind schemes, they 

will indeed have some dissipation. However, one would like this dissipation to be as 

small as possible over a large range of intermediate wave numbers in a higher order 

scheme. 
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 The previous Sub-sections have shown that for smooth enough flow the WENO-

AO schemes achieve their design accuracies. Consequently, we use the highest order 

stencil in the dispersion and dissipation analysis that is described in the next four 

paragraphs. 

 

 Fig. 1a shows the real part of the modified wave number for the first derivative as 

a function of wave number. The solid straight line shows the modified wave number for 

the first derivative under exact differentiation. No stable scheme will ever produce that 

result. The solid curve in Fig. 1a shows the real part of the modified wave number for the 

fourth order Padé scheme. This Padé scheme requires the solution of a tri-diagonal 

system along each row of the computation, which impedes massively parallel 

computation. We see that the fourth order Padé scheme approximates the solid straight 

line for a large range of wave numbers. This is inevitable, considering that the Padé 

scheme is designed to minimize the dispersion error. The curve with short dashes in Fig. 

1a shows the real part of the modified wave number for the fourth order central finite 

difference scheme; we note that its dispersion error is indeed quite significant. The 

WENO-AO(5,3) has a maximum fifth order of accuracy and the real part of its modified 

wave number is shown in Fig. 1a by the long dashed curve. We see that its dispersion 

properties compare favorably to the fourth order Padé scheme. Besides, WENO-AO(5,3) 

is an explicit scheme and does not require the solution of a tridiagonal system; this is a 

significant advantage for parallel computations. The solid curve in Fig. 2 shows the 

imaginary part of the modified wave number for the first derivative as a function of wave 

number. This is a measure of the dissipation of the upwind scheme. We see that WENO-

AO(5,3) results in some dissipation over a substantial range of intermediate wave 

numbers. 

 

 Fig. 1b shows similar information for the WENO-AO(7,5,3) scheme, which is up 

to seventh order accurate. The description of the solid curve and the short dashed curve is 

unchanged from Fig. 1a. The long dashed curve shows the real part of the modified wave 

number for the WENO-AO(7,5,3) scheme. We now see that the WENO-AO(7,5,3) 



 42 

scheme has dispersion error that compares very favorably with the fourth order Padé 

scheme and is very superior compared to the fourth order central finite difference scheme. 

The short dashed curve in Fig. 2 shows the imaginary part of the modified wave number 

for the first derivative as a function of wave number for the WENO-AO(7,5,3) scheme. 

We see that it provides almost dissipation free propagation of waves over a substantial 

range of intermediate wave numbers. 

 

 Fig. 1c shows the analogous information for the WENO-AO(9,5,3) scheme, 

which is up to ninth order accurate. The solid curve shows the real part of the modified 

wave number for the sixth order compact scheme from Lele [21]. Lele’s sixth order 

compact scheme requires the inversion of a pentadiagonal matrix for each row of the 

computation, which impedes massively parallel computation. The short dashed curve 

shows the real part of the modified wave number for a sixth order central finite difference 

scheme. The long dashed curve shows the real part of the modified wave number for the 

WENO-AO(9,5,3) scheme. We see that the dispersion error of the WENO scheme 

compares quite favorably with the sixth order compact scheme and is superior to the sixth 

order central finite difference scheme. The long dashed curve in Fig. 2 shows the 

imaginary part of the modified wave number for the first derivative as a function of wave 

number for the WENO-AO(9,5,3) scheme. We see that it provides almost dissipation free 

propagation of waves over a large range of intermediate wave numbers. 

 

 For the applications that we are interested in, it is not useful to design an eleventh 

order accurate WENO-AO scheme. While we haven’t implemented a WENO-AO(11,5,3) 

scheme, it is possible to show the reader some of its dispersion and dissipation properties. 

Fig. 1d shows the dispersion properties of the WENO-AO(11,5,3) scheme. The 

description of the solid curve and the short dashed curve is unchanged from Fig. 1c. The 

long dashed curve shows the real part of the modified wave number for the WENO-

AO(11,5,3) scheme. We see that it compares very favorably with a sixth order accurate 

compact scheme. The dotted curve in Fig. 2 shows the imaginary part of the modified 

wave number for the first derivative as a function of wave number for the WENO-
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AO(11,5,3) scheme. We see that it provides truly dissipation-free propagation of waves 

over a very large range of intermediate wave numbers. 

 

 

V) Test Problems 

 

 Here we present several stringent test problems that are drawn from the literature. 

The first four test problems are one-dimensional and are run with a CFL 0f 0.6; the next 

three test problems are two-dimensional and are run with a CFL of 0.3. The third order 

accurate SSP-RK3 timestepping scheme from Shu and Osher [29] was used for all these 

tests. For all the problems where a hyperbolic system is solved, local characteristic 

limiting was used with an LLF-based Riemann solver to avoid spurious oscillations. For 

multidimensional test problems, the reconstruction was carried out in a dimension-by-

dimension fashion. The schemes were all run without any steepening process so that the 

native capability of the schemes is shown. Furthermore, we did not use any monotonicity 

preservation methods because all the schemes are eventually stabilized by their non-

linear hybridization with the r=3 CWENO scheme. 

 

V.a) The Scalar Advection Test Problem 

 

 In various fields, such as astrophysics and space physics, complicated waveforms 

have to be advected on the mesh without any distortion. Lower order schemes are prone 

to excessive dispersion and dissipation and also to the formation of top hat profiles, when 

they propagate flow features over large distances. Higher order schemes are very 

valuable because they can propagate waveforms over large distances on a computational 

mesh with minimal distortion. This test problem, originally designed by Jiang and Shu 

[19], is designed to show the capability of higher order schemes. The problem has several 

shapes that are difficult to advect with fidelity. The shapes consist of : 1) a combination 

of Gaussians, 2) a square wave, 3) a sharply peaked triangle and 4) a half ellipse arranged 

initially from left to right. It is a stringent test problem because it has a combination of 

functions that are not smooth and functions that are smooth but sharply peaked. The 
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Gaussians differ from the triangle in that the Gaussians’ profile actually has an inflection 

in the second derivative. A good numerical method that can advect information with a 

high level of fidelity must be able to preserve the specific features of the problem that we 

have catalogued above. For a full and detailed description of this well-known problem, 

we refer the reader back to Jiang and Shu [19] or Balsara and Shu [1]. 

 

 The problem was initialized on a mesh of 400 zones. It was run for a simulation 

time of 20 which corresponds to ten traversals around the mesh. In doing so, the flow 

features were advected over 4000 mesh points. The RF-Riemann solver was used in order 

to produce a crisper solution. Figs. 3a, 3b and 3c show the results of the advection test 

problem for the WENO-ZQ, WENO-AO(5,3) and WENO-AO(7,5,3) schemes 

respectively. We see that schemes with increasing order of accuracy show an 

improvement in their advection properties. The schemes were all run without any 

steepening process so that the native capability of the schemes is shown. We also ran the 

WENO-AO(9,5,3) scheme for this test problem. However, for a 400 zone treatment of 

this problem, the result from the WENO-AO(9,5,3) scheme shows no improvement over 

the WENO-AO(7,5,3) scheme, consequently, the result from the WENO-AO(9,5,3) 

scheme is not shown. 

 

 The WENO-ZQ result in Fig. 3a deserves special attention. When we ran it using 

eqns. (2.19) and (2.20) of the paper by Zhu and Qiu [37], along with their suggested 

value of 1 0.98γ = , we saw overshoots and undershoots. We then realized that the 

presence of the square in their eqn. (2.19) made their evaluation of the non-linear weights 

solution-dependent. Fig. 3a was obtained after we removed the square in their eqn. (2.19). 

The resulting Fig. 3a shows rather excessive flattening in the combination of Gaussians 

and the sharply peaked triangle. It also shows some slight flattening in the profile for the 

half ellipse. This is inevitable considering that the Van Albada limiter is non-linearly 

hybridized in the WENO-ZQ scheme. We should also mention that removing the square 

in eqn. (2.19) of Zhu and Qiu [37] had a significantly negative effect on the accuracy. As 

a result, Tables I, II and III show the results from WENO-ZQ without any modification 

by us. We made this choice so that WENO-ZQ may be portrayed in the best light. 
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V.b) The Lax Test Problem 

 

 The Lax shock tube test problem is very well known in fluid dynamics, so we do 

not repeat its description here. The problem is initialized on a 200 zone domain 

[ ]0.5,0.5x∈ −  and is run to a time of 0.16 by which time a right-going shock, a left-going 

rarefaction fan and an intermediate contact discontinuity establish themselves. Figs. 4a 

and 4b show the density profile from the Lax test problem for the WENO-AO(5,3) and 

WENO-AO(9,5,3) schemes respectively. The solid line in those figures shows the 

analytical solution to the Lax Riemann problem. The contact discontinuity is very well-

preserved and there are no overshoots or undershoots. 

 

V.c) The Interacting Blast Wave Test Problem 

 

 We have run the interacting blast wave problem from Woodward and Colella [36] 

using exactly the same parameters used by those authors. Figs. 5 shows the density 

profile from a 400 zone simulation of the interacting blast problem with open circles for 

the WENO-AO(5,3) scheme. The solid line shows the converged density obtained from a 

1000 zone simulation. We see that all the density features are captured very well and the 

400 zone simulation is very close to the converged density profile from the 1000 zone 

simulation. 

 

V.d) The Shock-Density Wave Interaction Test Problem 

 

 Higher order schemes should show their advantages when the solution contains an 

interaction between shocks and complex smooth flow features. Shu and Osher [30] 

presented a problem where a Mach 3 shock wave interacts with a density disturbance and 

generates a flow field that has a combination of smooth structures and discontinuities. It 

is a good model for the kinds of interactions that occur in simulations of compressible 

turbulence. It represents the amplification of entropy fluctuations as they pass through a 

strong shock. We use the exact same parameters as Shu and Osher [30] and we run the 
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problem to a final time of 1.8 units. A reference solution was generated on a 2000 zone 

mesh with a fifth order WENO scheme. Fig. 6 shows the final density for the shock-

density wave interaction on a 400 zone mesh shown as circles, with the reference solution 

from the 2000 zone mesh shown as a solid line. Fig. 6a shows the full solution from a 

WENO-AO(5,3) scheme while Fig. 6b shows a zoom-in of the interaction region 

spanning [-0.25,3.0]. Figs. 6c and 6d show similar zoom-ins from simulations with 

WENO-ZQ and WENO-AO(9,5,3) schemes. We see that the higher order schemes do a 

slightly better job of coming closer to the converged solution. For the WENO-ZQ scheme 

we used the settings from eqns. (2.19) and (2.20) of the original paper. 

 

V.e) The Double Mach Reflection Test Problem 

 

 This problem was originally suggested by Woodward and Colella [36] and we 

fully implement their set up. The problem consists of a strong Mach 10 shock that is 

initially incident on a reflecting wedge that makes an angle of 60o with the plane of the 

shock. The problem was run on a 1600×400 zone mesh to a final time of 0.2 units. A 

contact discontinuity emanated from the roll up of the stronger of the two Mach stems. 

This discontinuity is known to go Kelvin-Helmholtz unstable when sufficient resolution 

is provided to the simulation. The Kelvin-Helmholtz develops rapidly only if the 

simulation code is sufficiently non-dissipative. Fig. 7 shows the final density for the 

double Mach reflection problem. Fig. 7a shows the full domain from a simulation using 

the WENO-AO(7,5,3) scheme. Fig. 7b shows a zoom-in of the Mach stem roll-up when 

the WENO-AO(7,5,3) scheme is used. We see that we obtain a very well-resolved roll-up 

of the Mach stem. 

 

V.f) The Forward Facing Step Test Problem 

 

 This test problem was also proposed by Woodward and Colella [36] and consists 

of a Mach 3 wind tunnel with a forward-facing step. As the bow shock reflects off the 

step and then the top wall of the wind tunnel, it establishes a triple-point structure. A 

vortex sheet emanates from the triple point. We have fully implemented the set-up from 
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Woodward and Colella [36]. While the problem was run to a final time of 4 units on a 

600×200 zone mesh, a very interesting vortex sheet roll-up manifests itself at a time of 3 

units. The results of the flow density are, therefore, shown at a time of 3 units. Fig. 8a 

shows the density from the forward facing step simulation at a time of 3 units when the 

WENO-AO(7,5,3) scheme was used. Fig. 8b shows the same for the WENO-ZQ scheme. 

The vortex sheet roll-up is captured very crisply by this higher order scheme. At this 

resolution all the WENO-AO schemes do a very good job of capturing the vortex sheet 

roll-up, so we only show one of them. 

 

V.g) The Shock-Vortex Interaction Test Problem 

 

 This test problem studies the interaction of a vortex with a shock and was first 

suggested by Pao and Salas [26]. We use the problem specification from Balsara and Shu 

[1] which displays the situation where the vortex flows towards the right-upper corner of 

the mesh and the shock normal makes an angle of 45o with respect to the x-axis. Since the 

problem is described in great detail in Balsara and Shu [1], we do not repeat the 

description here. The problem was run on a 150×150 zone mesh on a domain spanning 

[ ] [ ]0,1.5 0,1.5×  . The problem was run to a final simulation time of 0.8, by which time 

the vortex has passed through the shock. Figs. 9a and 9b show the density at a final time 

of 0.8 for the shock-vortex interaction problem for the WENO-AO(5,3) and WENO-

AO(9,5,3) schemes. Both simulations yield good results, showing that the recursive 

formulation presented here extends stably to higher orders. We see that the higher order 

scheme has retained a little more post-shock structure in the vortex. 

 

V.h) Timing Tests for Multidimensional Problems 

 

 The WENO-AO algorithms make a small reduction in the number of stencil 

evaluations. However, there is also one rather very large stencil to account for. It is, 

therefore, interesting to ask how the time to solution for the WENO-AO algorithms 

compares with the time to solution of the WENO-JS algorithm at fifth order and the 

MPWENO algorithms at seventh and ninth order. Most readers would be interested in the 
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performance for a range of multidimensional test problems, which is why we focus on the 

Double Mach Reflection (DMR) test problem, the Forward Facing Step (FFStep) test 

problem and the Shock-Vortex Interaction (SVI) test problem from the previous three 

Sub-sections. The problems were run at their stated resolutions. We also use the same 

SSP-RK3 timestepping strategy for all these test problems. To ensure a fair comparison, 

the smoothness indicators from this paper were used for all the WENO variants.  

 

 The results for the time to solution are shown in Table IV. In all instances, we 

have normalized the time to solution for the fifth order WENO-JS algorithm to unity. 

Therefore, a number that is less than unity indicates a relative speed-up compared to 

WENO-JS. A number that is larger than unity indicates a slower speed than WENO-JS. 

As expected, the algorithms with seventh and ninth order accuracy cost more than 

WENO-JS. It is interesting to note though that WENO-AO(5,3) costs less than fifth order 

WENO-JS. Likewise, WENO-AO(7,3) costs less than MPWENO at seventh order; in fact, 

it costs almost the same as fifth order WENO-JS! Similarly, WENO-AO(9,3) costs less 

than MPWENO at ninth order; in fact it costs only ~20% more than the fifth order 

WENO-JS! Please also note that the test problems in Table IV have been run on different 

sized meshes and the numbers from larger meshes (like the mesh from the double Mach 

reflection problem) are more reliable. 

 

 There is one very startling result in Table IV. It is that the seventh and ninth order 

WENO variants do not cost much more than their fifth order counterparts! This very 

desirable result is certainly a consequence of the very concise smoothness indicators that 

were invented in this paper. If we had used the smoothness indicators from Balsara & 

Shu [1] the time to solution for the seventh and ninth order MPWENO schemes would 

certainly have been greater. The results show that the concise evaluation of the 

smoothness indicators makes the code so cache friendly that the additional cost of 

carrying out extra floating point operations at higher orders is very modest. This is the 

most important insight that we gain from Table IV.  
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Table IV shows the relative time to solution for the last three multidimensional test 

problems with various higher order finite difference WENO algorithms 

 

 WENO-JS 

(5th order) 

WENO-

AO(5,3) 

MPWENO 

(7th order) 

WENO-

AO(7,3) 

MPWENO 

(9th order) 

WENO-

AO(9,3) 

DMR 1.0 0.87 1.23 1.06 1.48 1.22 

FFStep 1.0 0.95 1.26 1.16 1.54 1.35 

SVI 1.0 0.95 1.25 1.15 1.55 1.35 

 

 

VI) Conclusions 

 

 Finite difference WENO schemes have been used extensively in the research 

literature. They offer high formal accuracy, high phase accuracy and low dissipation. 

With increasing order of accuracy, these trends are known to improve. In this paper we 

have presented two major advances in finite difference WENO schemes that are 

recapitulated in the subsequent paragraphs. 

 

 First, we present a one-dimensional reconstruction strategy that uses Legendre 

polynomials as basis functions. We show that in this formulation the smoothness 

indicators can be written very compactly as the sum of perfect squares. Since the 

evaluation of smoothness indicators is a computationally expensive step, finding compact 

expressions dramatically reduces the cost of the overall scheme. These reductions in 

computational costs have also been documented. The methods we present should be 

useful for classical finite difference WENO schemes that can go as high as seventeenth 

order. The more compact expressions for the smoothness measures also make the code 

more cache-friendly, and the improvements are quite significant. 

 

 Second, we present a new class of finite difference WENO schemes, which we 

call WENO-AO. The “AO” stands for adaptive order. This adaptive order property is 

obtained by non-linear hybridization between a higher order centered stencil and a rock-
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stable r=3 CWENO scheme. Despite its very good stability properties, the CWENO 

scheme does not clip physical extrema. Several very successful WENO-AO schemes are 

presented. Thus we arrive at a WENO-AO(5,3) scheme that is at best fifth order accurate 

by virtue of its centered stencil with five zones and at worst third order accurate by virtue 

of being non-linearly hybridized with an r=3 CWENO scheme. The process can be 

extended to arrive at a WENO-AO(7,3) scheme that is at best seventh order accurate by 

virtue of its centered stencil with seven zones and at worst third order accurate. We then 

recursively combine the above two schemes to arrive at a WENO-AO(7,5,3) scheme 

which can achieve seventh order accuracy when that is possible; graciously drop down to 

fifth order accuracy when that is the best one can do; and also operate stably with an r=3 

CWENO scheme when that is the only thing that one can do. Schemes with ninth order of 

accuracy are also presented. The resulting schemes do not seem to need any monotonicity 

preserving step. They also seem to capture discontinuities very crisply without needing 

any steepening step.  

 

 Accuracy analysis is presented to show that the methods meet their design 

accuracies. The dispersion and dissipation properties of these schemes is also 

documented using a modified wave number approach. It is shown that WENO-AO 

schemes with increasing order show progressively decreasing dispersion and dissipation, 

making them very attractive performers for fluid dynamical turbulence studies. Several 

stringent test problems are also presented to show that the methods work very well. 
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Figure Captions 

 

Figs. 1a, 1b, 1c and 1d show the real part of the modified wavenumbers for the 5th, 7th, 9th 

and 11th order WENO schemes respectively. Curves with big dashes show  WENO-AO 

schemes. Figs. 1a and 1b also show the standard fourth order Padé scheme (solid curve) 

and the fourth order central finite difference scheme (small dashed curve). Figs. 1c and 

1d also show the show the sixth order compact scheme (solid curve) and the sixth order 

central finite difference scheme (small dashed curve). The solid straight line shows exact 

differentiation. 

 

Fig. 2 shows the imaginary part of the modified wave number as a function of wave 

number. This provides a measure of the dissipation for the WENO-AO schemes. Solid, 

small dash, large dash and dotted curves show the results for 5th, 7th, 9th and 11th order 

WENO-AO schemes respectively.  

 

Figs. 3a, 3b and 3c show the results of the advection test problem for the WENO-ZQ, 

WENO-AO(5,3) and WENO-AO(7,5,3) schemes respectively. The advected shapes consist 
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of : 1) a combination of Gaussians, 2) a square wave, 3) a sharply peaked triangle and 4) 

a half ellipse arranged initially from left to right. The flow features were advected over 

4000 mesh points. 

 

Figs. 4a and 4b show the density profile from the Lax test problem for the WENO-

AO(5,3), and WENO-AO(9,5,3) schemes respectively. 

 

Figs. 5 show the density profile from a 400 zone simulation of the interacting blast 

problem with open circles for the WENO-AO(5,3) scheme. The solid line shows the 

converged density obtained from a 1000 zone simulation.  

 

Fig. 6 shows the final density for the shock-density wave interaction on a 400 zone mesh 

shown as circles, with the reference solution from the 2000 zone mesh shown as a solid 

line. Fig. 6a shows the full solution from a WENO-AO(5,3) scheme while Fig. 6b shows a 

zoom-in of the interaction region spanning [-0.25,3.0]. Figs. 6c and 6d show similar 

zoom-ins from simulations with WENO-ZQ and WENO-AO(9,5,3) schemes.  

 

Fig. 7a shows the full domain from a simulation using the WENO-AO(7,5,3) scheme. Fig. 

7b shows a zoom-in of the Mach stem roll-up when the WENO-AO(7,5,3) scheme is used. 

We see that we obtain a very well-resolved roll-up of the Mach stem. 

 

Fig. 8a shows the density from the forward facing step simulation at a time of 3 units 

when the WENO-AO(7,5,3) scheme was used. Fig. 8b shows the same for the WENO-ZQ 

scheme. The vortex sheet roll-up is captured very crisply by this higher order scheme. 

 

Figs. 9a and 9b show the density at a final time of 0.8 for the shock-vortex interaction 

problem for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes. Both simulations yield 

good results, showing that the recursive formulation presented here extends stably to 

higher orders.  
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Fig. 2 shows the imaginary part of the 
modified wave number as a function of wave 
number. This provides a measure of the 
dissipation for the WENO-AO schemes. Solid, 
small dash, large dash and dotted curves 
show the results for 5th, 7th, 9th and 11th order 
WENO-AO schemes respectively. 



Figs. 3a, 3b and 3c show the results of the advection test problem for the WENO-ZQ, WENO-
AO(5,3) and WENO-AO(7,5,3) schemes respectively. The advected shapes consist of : 1) a 
combination of Gaussians, 2) a square wave, 3) a sharply peaked triangle and 4) a half ellipse 
arranged initially from left to right. The flow features were advected over 4000 mesh points.

a) b)

c)



Figs. 4a and 4b show the density profile from the Lax test problem for the WENO-AO(5,3), and 
WENO-AO(9,5,3) schemes respectively.

a) b)



Figs. 5 show the density profile from a 400 zone simulation of the interacting blast problem with 
open circles for the WENO-AO(5,3) scheme. The solid line shows the converged density obtained 
from a 1000 zone simulation. 



Fig. 6 shows the final density for the shock-density wave interaction on a 400 zone mesh shown 
as circles, with the reference solution from the 2000 zone mesh shown as a solid line. Fig. 6a 
shows the full solution from a WENO-AO(5,3) scheme while Fig. 6b shows a zoom-in of the 
interaction region spanning [-0.25,3.0]. Figs. 6c and 6d show similar zoom-ins from simulations 
with WENO-ZQ and WENO-AO(9,5,3) schemes. 

a) b)

c)
d)



Fig. 7a shows the full domain from a simulation using the WENO-AO(7,5,3) scheme. Fig. 7b 
shows a zoom-in of the Mach stem roll-up when the WENO-AO(7,5,3) scheme is used. We see 
that we obtain a very well-resolved roll-up of the Mach stem.

a)

b)



Fig. 8a shows the density from the forward facing step simulation at a time of 3 units when the 
WENO-AO(7,5,3) scheme was used. Fig. 8b shows the same for the WENO-ZQ scheme. The 
vortex sheet roll-up is captured very crisply by this higher order scheme.

a)

b)



Figs. 9a and 9b show the density at a final time of 0.8 for the shock-vortex interaction problem 
for the WENO-AO(5,3) and WENO-AO(9,5,3) schemes. Both simulations yield good results, 
showing that the recursive formulation presented here extends stably to higher orders. 

a) b)


	WENO_AdaptiveOrder.pdf
	All_Figs_WENO_AdaptiveOrder.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9


