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Abstract

In this paper we generalize a new type of compact Hermite weighted essentially non-

oscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) method,

which was recently developed in [38] for structured meshes, to two dimensional unstructured

meshes. The main idea of this HWENO limiter is to reconstruct the new polynomial by

the usage of the entire polynomials of the DG solution from the target cell and its neigh-

boring cells in a least squares fashion [11] while maintaining the conservative property, then

use the classical WENO methodology to form a convex combination of these reconstructed

polynomials based on the smoothness indicators and associated nonlinear weights. The main

advantage of this new HWENO limiter is the robustness for very strong shocks and simplicity

in implementation especially for the unstructured meshes considered in this paper, since only

information from the target cell and its immediate neighbors is needed. Numerical results

for both scalar and system equations are provided to test and verify the good performance

of this new limiter.
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1 Introduction

In this paper we consider solving the two dimensional conservation law, given by

{

ut + f(u)x + g(u)y = 0,
u(x, y, 0) = u0(x, y),

(1.1)

using the Runge-Kutta discontinuous Galerkin (RKDG) method [6, 7, 8, 9] on unstructured

triangular meshes. RKDG methods use explicit, nonlinearly stable high order Runge-Kutta

methods [33] to discretize the temporal variable and the DG methods to discretize the spatial

variables, with exact or approximate Riemann solvers as interface fluxes. For a detailed

discussion on DG methods for solving conservation laws, we refer the readers to the review

paper [10] and the books and lecture notes [5, 15, 21, 32].

DG methods can compute the numerical solution to (1.1) without further modification

provided the solution either is smooth or contains weak discontinuities. However, for prob-

lems containing strong shocks or contact discontinuities, there are spurious oscillations in

the numerical solution near these discontinuities, which may cause nonlinear instability.

One common strategy to control these oscillations is to apply nonlinear limiters to RKDG

methods. Many limiters have been studied in the literature for RKDG methods, such as the

minmod type total variation bounded (TVB) limiter [6, 7, 8, 9], the moment based limiter [3]

and an improved moment limiter [4] and so on. These limiters belong to the slope type lim-

iters and they do control oscillations very well at the price of possibly degrading the accuracy

of the numerical solution at smooth extrema. Another type of limiters is the WENO type

limiters, which are based on the weighted essentially non-oscillatory (WENO) methodology

[14, 16, 17, 23] and can achieve both high-order accuracy and non-oscillatory property near

discontinuities. This type of limiters includes the WENO limiter [27, 36] and the HWENO

limiter [24, 26, 29], which use the classical WENO finite volume methodology for reconstruc-

tion and thus require a wide stencil, especially for higher order methods. Therefore, it is

difficult to implement these limiters for multi-dimensional problems, especially on unstruc-

tured meshes. Moreover, these limiters may have the issue of negative linear weights. An
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alternative family of DG limiters which serves at the same time as a new PDE-based limiter,

as well as a troubled cells indicator, was introduced by Dumbser et al. [13].

More recently, a particularly simple and compact WENO limiter was developed by Zhong

and Shu [35] for RKDG schemes, and then was generalized to the unstructured mesh in [37].

This simple WENO limiter utilizes fully the advantage of DG schemes in that a complete

polynomial is available in each cell without the need of reconstruction. The major advantages

of this simple WENO limiter include the compactness of its stencil, the simplicity in its

implementation, and the freedom in choosing linear weights, which can be set arbitrarily so

long as their summation is one and each of them is nonnegative. However, it was observed in

[35] that the limiter might not be robust enough for problems containing very strong shocks

or low pressure problem, especially for higher order polynomials, for example the blast

wave problems [30, 34] and the double rarefaction wave problem [22]. In order to overcome

this difficulty, without compromising the advantages of compact stencil and simplicity of

linear weights, we present a modification of the limiter in the step of preprocessing the

polynomials in the immediate neighboring cells before applying the WENO reconstruction

procedure. This preprocessing is necessary to maintain strict conservation, and is designed

in [35] to be a simple addition of a constant to make the cell average of the preprocessed

neighboring cell polynomial in the target cell matching the original cell average. In this

paper, a more involved least square process [11] is used in this step. The objective is to

achieve strict conservation while maintaining more information of the original neighboring

cell polynomial before applying the WENO procedure. Numerical experiments indicate that

this modification does improve the robustness of the limiter.

This paper is organized as follows: in Section 2, we briefly review the RKDG methods for

solving (1.1) on triangular meshes and present the details of the new HWENO procedure for

two dimensional scalar and system problems on unstructured meshes. Numerical examples

are provided in Section 3 to verify the compactness, accuracy and stability of this new

approach. Concluding remarks are given in Section 4.
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2 New HWENO limiter to RKDG method on unstruc-

tured mesh

In this section, we describe the details of using the new HWENO reconstruction procedure

as a limiter for the RKDG methods. It is a generalization to unstructured meshes of the

procedure in [38] for structured meshes. The general framework of the HWENO limiting

procedure consists of the following two steps.

The first step is to identify the troubled cells, namely those cells which may need the

HWENO limiting procedure. This step is an important issue for limiters. If too many cells

are identified as troubled cells, then the computational cost associated with the second step

will increase. If too few cells are identified as troubled cells, then the oscillations may not be

avoided. We remark here that the main focus of this paper is the development of a compact,

simple HWENO limiter on unstructured meshes. We refer the reads to [28] for a comparison

between different trouble cell indicators. The KXRCF shock detection technique in [20] is

used in our numerical tests to detect troubled cells. As discussed in [20], let J denote the

normalization of the jump in the numerical solution component (both the density ρ and the

total energy E are used in our numerical tests) across the inflow edges (faces) of the target

cell, to an “average” convergence rate. J → 0 as the mesh size h → 0 in smooth solution

regions, whereas J → ∞ near a discontinuity. Thus the KXRCF discontinuity detection

scheme is: if J > Ck, the indicated solution component is discontinuous; if J ≤ Ck, the

indicated solution component is continuous, where Ck is a constant and we set Ck = 1 unless

otherwise specified in our numerical tests.

The second step is to reconstruct a new polynomial using the HWENO limiting procedure

in order to replace the solution polynomial on the troubled cell. The new polynomial should

maintain the cell average and high order accuracy of the original DG solution polynomial,

but should be less oscillatory.

We will first briefly review the RKDG method for solving two dimensional problems on

unstructured meshes in Section 2.1. Then the details of this second step will be discussed
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for the scalar case in Section 2.2 and for the system case in Section 2.3.

2.1 Review of the RKDG method on unstructured mesh

This section provides a review of the RKDG methods for solving two dimensional con-

servation laws (1.1) on the triangular meshes.

We first use DG methods to discretize the spatial variables. Given a triangulation of the

computational domain consisting of cells △j, the DG method has its solution as well as the

test function space given by V k
h = {v(x, y) : v(x, y)|△j

∈ Pk(△j)}, where Pk(△j) denotes

the set of polynomials of degree at most k defined on △j. The semi-discrete DG method for

solving (1.1) is defined as follows: find the unique function uh ∈ V k
h , such that

∫

△0

(uh)tv dx dy =

∫

△0

(f(uh)vx + g(uh)vy) dx dy −

∫

∂△0

̂(f(uh), g(uh))T · n v ds (2.1)

holds for all the test functions v ∈ V k
h . Here n = (nx, ny)

T is the outward unit normal of the

triangle boundary ∂△0, and ̂(f(uh), g(uh))T · n is a monotone numerical flux for the scalar

case and an exact or approximate Riemann solver for the system case. The Lax-Friedrichs

flux is used in all our numerical tests.

For time discretization, we can use, for example, the third order strong stability preserving

(SSP) Runge-Kutta methods [33]:

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)), (2.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

Other SSP time discretization method can also be used here.

2.2 New HWENO limiting procedure: scalar case

In this subsection, the details of the HWENO limiting procedure are presented for the

scalar case. The idea of this new and simple HWENO limiter is that the reconstructed

polynomial on the troubled cell is a convex combination of the DG solution polynomial on
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the target cell and the “modified” DG solution polynomials on its neighboring cells. The

modification procedure is in a least squares fashion [11]. The construction of the nonlinear

weights in the convex combination coefficients follows the classical WENO procedure.

Now assume△0 is identified as a troubled cell by our trouble cell indicator. The procedure

to reconstruct a new polynomial on the troubled cell△0 by using the HWENO reconstruction

procedure is summarized as follows:

1

3

2

0

Figure 2.1: The stencil S = {△0,△1,△2,△3}

Step 1.1. Denote the reconstruction stencil as S = {△0,△1,△2,△3} shown in Figure

2.1, and denote the DG solutions on these four cells as pℓ(x, y), ℓ = 0, 1, 2, 3, respectively.

We need to modify the DG solutions on the neighboring cells first and denote the modified

version of pℓ(x, y), ℓ = 1, 2, 3 as p̃ℓ(x, y), ℓ = 1, 2, 3. The modification procedure is defined

as follows: p̃1(x, y) is the solution to the constrained minimization problem:

min
∀φ(x,y)∈Pk(∆1)

{

(
∫

∆1

(φ(x, y)− p1(x, y))
2dxdy

)

+
∑

ℓ∈L1

(
∫

∆ℓ

(φ(x, y)− pℓ(x, y))dxdy

)2
}

,

subject to ¯̄φ = ¯̄p0, where

¯̄φ =
1

|∆0|

∫

∆0

φ(x, y) dxdy, ¯̄p0 =
1

|∆0|

∫

∆0

p0(x, y) dxdy

and

L1 = {2, 3} ∩ {ℓ : |p̄ℓ − p̄0| < max (|p̄2 − p̄0| , |p̄3 − p̄0|)} .
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Here and below ¯̄⋆ denotes the cell average of the function ⋆ on the target cell while ⋆̄ denotes

the cell average of the function ⋆ on its own associated cell.

The modified polynomial p̃1(x, y) has the same cell average as the polynomial on the

troubled cell, p̄0, and it optimizes the distance to p1(x; y) and to the cell averages of those

“useful” polynomial(s) on the other neighboring cells. The “useful” polynomial is chosen by

comparing the distance between the cell averages of the polynomials on the other neighboring

cells and the cell average of p0 on the target cell. If one is not the farthest, then this

polynomial is considered “useful”.

Similarly, p̃2(x, y) is the solution to the constrained minimization problem:

min
∀φ(x,y)∈Pk(∆2)

{

(
∫

∆2

(φ(x, y)− p2(x, y))
2dxdy

)

+
∑

ℓ∈L2

(
∫

∆ℓ

(φ(x, y)− pℓ(x, y))dxdy

)2
}

,

subject to ¯̄φ = ¯̄p0, where

L2 = {1, 3} ∩ {ℓ : |p̄ℓ − p̄0| < max (|p̄1 − p̄0| , |p̄3 − p̄0|)} .

p̃3(x, y) is the solution to the constrained minimization problem:

min
∀φ(x,y)∈Pk(∆3)

{

(
∫

∆3

(φ(x, y)− p3(x, y))
2dxdy

)

+
∑

ℓ∈L3

(
∫

∆ℓ

(φ(x, y)− pℓ(x, y))dxdy

)2
}

,

subject to ¯̄φ = ¯̄p0, where

L3 = {1, 2} ∩ {ℓ : |p̄ℓ − p̄0| < max (|p̄1 − p̄0| , |p̄2 − p̄0|)} .

We also define p̃0(x, y) = p0(x, y) to keep notation consistency.

Step 1.2. Choose the linear weights denoted by γ0, ..., γ3. Notice that, since p̃i(x, y),

for i = 0, 1, 2, 3, are all (k + 1)-th order approximations to the exact solution in smooth

regions, there is no requirement on the values of these linear weights for accuracy besides

γ0 + γ1 + γ2 + γ3 = 1. The choice of these linear weights is then solely based on the

consideration of a balance between accuracy and ability to achieve essentially nonoscillatory

shock transition. In all of our numerical tests, following the practice in [12, 35], we take

γ0 = 0.997 and γ1 = γ2 = γ3 = 0.001.
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Step 1.3. Compute the smoothness indicators, denoted by βi, i = 0, . . . , 3, which measure

how smooth the functions p̃i(x, y), for i = 0, . . . , 3, are on the target cell △0. The smaller

these smoothness indicators, the smoother the functions are on the target cell. We use the

similar recipe for the smoothness indicators as in [1, 17, 31]:

βi =
k

∑

|ℓ|=1

|△0|
|ℓ|−1

∫

△0

(

1

|ℓ|!

∂|ℓ|

∂xℓ1∂yℓ2
p̃i(x, y)

)2

dxdy, (2.3)

where ℓ = (ℓ1, ℓ2) and |ℓ| = ℓ1 + ℓ2.

Step 1.4. Compute the nonlinear weights based on the smoothness indicators:

ωi =
ω̃i

∑3
ℓ=0 ω̃ℓ

, ω̃ℓ =
γℓ

(ε+ βℓ)2
. (2.4)

Here ε is a small positive number to avoid the denominator becoming zero. We take ε = 10−6

in our computation.

Step 1.5. The final nonlinear HWENO reconstruction polynomial pnew0 (x, y) is defined

by a convex combination of the four (modified) polynomials in the stencil:

pnew0 (x, y) = ω0p̃0(x, y) + ω1p̃1(x, y) + ω2p̃2(x, y) + ω3p̃3(x, y). (2.5)

It is easy to verify that pnew0 (x, y) has the same cell average and order of accuracy as the

original one p0(x, y) on the condition that
∑3

i=0 ωi = 1.

2.3 HWENO limiting procedure: system case

In this subsection, the details of the HWENO limiting procedure are presented for the

systems case.

Consider equation (1.1) where u, f(u) and g(u) are vectors with m components. In order

to achieve better nonoscillatory property, the HWENO reconstruction limiter is used with a

local characteristic decomposition, see [31] for a discussion on the rationale in adopting such

a decomposition. In this paper, we only consider the following Euler systems and set m = 4.

ut + f(u)x + g(u)y =
∂

∂t









ρ
ρµ
ρν
E









+
∂

∂x









ρµ
ρµ2 + p
ρµν

µ(E + p)









+
∂

∂y









ρν
ρµν

ρν2 + p
ν(E + p)









= 0, (2.6)
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with u(x, y, 0) = u0(x, y), where ρ is the density, µ is the x-direction velocity, ν is the y-

direction velocity, E is the total energy, p = E
γ−1

− 1
2
ρ(µ2+ ν2) is the pressure and γ = 1.4 in

our test cases. We denote the Jacobian matrices as (f ′(u), g′(u)) ·ni and ni = (nix,niy)
T, i =

1, 2, 3, are the outward unit normals to different edges of the target cell. We then give the

left and right eigenvectors of such Jacobian matrices as:

Li =



















B2 + (µnix + νniy)/c

2
−
B1µ+ nix/c

2
−
B1ν + niy/c

2

B1

2
niyµ− nixν −niy nix 0

1−B2 B1µ B1ν −B1

B2 − (µnix + νniy)/c

2
−
B1µ− nix/c

2
−
B1ν − niy/c

2

B1

2



















, (2.7)

and

Ri =









1 0 1 1
µ− cnix −niy µ µ+ cnix

ν − cniy nix ν ν + cniy

H − c(µnix + νniy) −niyµ+ nixν
µ2+ν2

2
H + c(µnix + νniy)









, i = 1, 2, 3,

(2.8)

where c =
√

γp/ρ, B1 = (γ − 1)/c2, B2 = B1(µ
2 + ν2)/2 and H = (E + p)/ρ.

Assuming △0 is the troubled cell detected by the KXRCF technique [20],we denote the

four polynomial vectors on the troubled cell and its three neighboring cells as p0, p1, p2,

p3. Note that each of them has four components. We then perform the HWENO limiting

procedure as follows:

Step 2.1. In each ni-direction among three normal directions of ∂△0, we reconstruct new

polynomial vectors (p0)
new
i , i = 1, 2, 3, by using the characteristic-wise HWENO limiting

procedure with the associated Jacobian f ′(u)nix + g′(u)niy, i = 1, 2, 3:

– Step 2.1.1. Project the polynomial vectors p0, p1, p2 and p3 into the characteristic fields

˜̃pil = Li · pl, i = 1, 2, 3, l = 0, 1, 2, 3. ˜̃pil a 4-component vector with each component being a

polynomial of degree up to k.

– Step 2.1.2. For each component of ˜̃pil, perform Step 1.1 to Step 1.5 of the HWENO

limiting procedure that has been specified for the scalar case, to obtain a new 4-component

vector on the troubled cell △0 as ˜̃pnewi,0 .
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– Step 2.1.3. Project ˜̃pnewi,0 into the physical space pnew0,i = Ri · ˜̃p
new
i,0 , i = 1, 2, 3.

Step 2.2. The final new 4-component vector on the troubled cell △0 is defined as

pnew0 =

∑3
i=1 p

new
i,0 |△i|

∑3
i=1 |△i|

.

3 Numerical results

In this section, we provide numerical results to demonstrate the performance of the

HWENO limiters for the RKDG methods on unstructured meshes described in Section 2.

For all of our accuracy tests, the refinement is performed by a structured refinement (each

triangle is divided into four similar smaller triangles for every level of the refinement). We

perform the HWENO limiting procedure on every cell of the computational domain for the

accuracy tests, in order to fully testify the influence of the limiter upon accuracy. The CFL

number is set to be 0.3 for the second order (k = 1), 0.18 for the third order (k = 2) and 0.1

for the fourth order (k = 3) RKDG methods with and without the HWENO limiters.

Example 3.1.We solve the following scalar Burgers equation in two dimensions:

ut +

(

u2

2

)

x

+

(

u2

2

)

y

= 0, (x, y) ∈ [−2, 2]× [−2, 2], (3.1)

with the initial condition u(x, y, 0) = 0.5+sin(π(x+y)/2) and periodic boundary conditions

in both directions. The final computing time is t = 0.5/π, when the solution is still smooth.

For this test case, the sample mesh is shown in Figure 3.1. In order to fully test the effect

of the HWENO limiter on accuracy, we perform the HWENO limiting procedure on every

cell of the computational domain. The L1, L2, L∞ errors and numerical orders of accuracy

for the RKDG methods with the HWENO limiters comparing with the original RKDG

methods without limiters are shown in Table 3.1. It is observed that the new HWENO

limiters maintain the designed order of accuracy.

Example 3.2. We solve the Euler equations (2.6). The computational field is [0,2] × [0,2].

The initial conditions are: ρ(x, y, 0) = 1+ 0.2 sin(π(x+ y)), µ(x, y, 0) = 0.7, ν(x, y, 0) = 0.3,
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Figure 3.1: Burgers equation. Sample mesh.

Table 3.1: ut +
(

u2

2

)

x
+

(

u2

2

)

y
= 0. u(x, y, 0) = 0.5 + sin(π(x + y)/2). Periodic boundary

conditions in both directions. T = 0.5/π. L1, L∞ and L2 errors.

RKDG with HWENO limiter RKDG without limiter
cell L1 error order L∞ error order L2 error order L1 error order L∞ error order L2 error order
232 3.25E-2 2.57E-1 4.52E-2 1.43E-2 1.06E-1 2.07E-2
928 9.40E-3 1.79 7.71E-2 1.74 1.43E-2 1.66 3.54E-3 2.01 2.92E-2 1.86 5.38E-3 1.94

P 1 3712 2.11E-3 2.15 1.84E-2 2.06 3.58E-3 2.00 8.68E-4 2.02 7.79E-3 1.91 1.36E-3 1.98
14848 3.72E-4 2.50 4.40E-3 2.07 6.85E-4 2.39 2.15E-4 2.01 2.13E-3 1.87 3.45E-4 1.98
59392 5.85E-5 2.66 6.85E-4 2.68 9.91E-5 2.79 5.36E-5 2.00 5.58E-4 1.93 8.70E-5 1.99
232 2.12E-3 6.59E-2 3.83E-3 1.92E-3 2.27E-2 3.16E-3
928 3.12E-4 2.77 1.19E-2 2.47 5.97E-4 2.68 2.98E-4 2.69 4.33E-3 2.39 5.16E-4 2.61

P 2 3712 4.30E-5 2.86 2.03E-3 2.55 8.86E-5 2.75 4.23E-5 2.81 7.58E-4 2.52 7.96E-5 2.70
14848 5.65E-6 2.93 3.32E-4 2.61 1.22E-5 2.86 5.70E-6 2.89 1.18E-4 2.68 1.15E-5 2.79
59392 7.39E-7 2.93 4.87E-5 2.77 1.66E-6 2.88 7.67E-7 2.89 1.77E-5 2.73 1.63E-6 2.82
232 3.24E-4 1.81E-2 7.68E-4 3.07E-4 5.40E-3 7.04E-4
928 2.42E-5 3.74 1.81E-3 3.33 6.51E-5 3.56 2.20E-5 3.80 5.46E-4 3.31 5.88E-5 3.58

P 3 3712 1.54E-6 3.97 1.24E-4 3.86 4.33E-6 3.91 1.28E-6 4.10 3.91E-5 3.80 3.64E-6 4.01
14848 1.03E-7 3.89 7.77E-6 4.00 2.97E-7 3.86 8.01E-8 4.00 2.59E-6 3.91 2.28E-7 4.00
59392 7.26E-9 3.84 4.84E-7 4.00 2.17E-8 3.77 5.14E-9 3.96 1.73E-7 3.90 1.46E-8 3.96
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p(x, y, 0) = 1. Periodic boundary conditions are applied in both directions. The exact

solution is ρ(x, y, t) = 1 + 0.2 sin(π(x + y − t)). The final computing time is t = 2. For

this test case the sample mesh is shown in Figure 3.2. Similar to the previous example,

we define all cells in the computational field as troubled cells and perform the HWENO

limiting procedure on every cell. The L1, L2, L∞ errors and numerical orders of accuracy of

the density for the RKDG methods with the HWENO limiters comparing with the original

RKDG methods without limiters are shown in Table 3.2. Similar to the previous example,

the new HWENO limiting procedure can maintain the desired order of accuracy even though

the cells in smooth regions are all “intentionally” identified as troubled cells.

0 0.5 1 1.5 2
X

0

0.5

1

1.5

2

Y

Figure 3.2: 2D-Euler equations. Sample mesh.

Example 3.3. We solve the nonlinear Burgers equation (3.1) with the same computational

field [−2, 2]× [−2, 2] and the same initial condition u(x, y, 0) = 0.5+ sin(π(x+ y)/2), except

that we plot the results at t = 1.5/π when a shock has already appeared in the solution. The

solutions with the constant Ck=0.001 in the troubled cell indicator, and when all cells are

defined as troubled cells in the computational field, are shown in Figure 3.3 for comparisons.

We can see the schemes could give non-oscillatory shock transitions for this problem in either

case.

Example 3.4. We solve the subsonic flow past a circular cylinder [24] with Mach number

M∞ = 0.38. This test is chosen to verify the ability of the HWENO limiter in maintaining the

order of accuracy of the DG methods for problems with curved boundaries. Four successively
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Table 3.2: 2D-Euler equations: initial data ρ(x, y, 0) = 1+0.2 sin(π(x+ y)), u(x, y, 0) = 0.7,
v(x, y, 0) = 0.3, and p(x, y, 0) = 1. Periodic boundary conditions in both directions. T = 2.0.
L1, L∞ and L2 errors.

RKDG with HWENO limiter RKDG without limiter
cell L1 error order L∞ error order L2 error order L1 error order L∞ error order L2 error order
232 5.21E-2 1.14E-1 6.13E-2 3.62E-3 1.60E-2 4.59E-3
928 1.74E-2 1.58 4.13E-2 1.47 1.99E-2 1.62 6.51E-4 2.48 3.46E-3 2.22 8.68E-4 2.40

P 1 3712 4.11E-3 2.08 1.47E-2 1.49 5.58E-3 1.83 1.45E-4 2.17 8.68E-4 1.99 1.98E-4 2.13
14848 6.93E-4 2.56 4.59E-3 1.68 1.24E-3 2.17 3.47E-5 2.06 2.21E-4 1.97 4.77E-5 2.05
59392 1.37E-4 2.33 1.19E-3 1.94 2.17E-4 2.51 8.53E-6 2.03 5.61E-5 1.98 1.17E-5 2.02
232 3.74E-4 2.03E-3 4.80E-4 3.36E-4 2.35E-3 4.44E-4
928 7.80E-5 2.26 3.72E-4 2.45 9.27E-5 2.37 4.32E-5 2.96 3.38E-4 2.80 5.74E-5 2.95

P 2 3712 1.24E-5 2.65 4.93E-5 2.92 1.44E-5 2.69 5.10E-6 3.08 3.63E-5 3.22 6.70E-6 3.09
14848 1.69E-6 2.87 7.42E-6 2.73 1.96E-6 2.88 5.96E-7 3.09 4.56E-6 2.99 7.89E-7 3.08
59392 2.19E-7 2.94 1.13E-6 2.70 2.54E-7 2.94 7.16E-8 3.06 5.63E-7 3.02 9.58E-8 3.04
232 2.41E-5 2.58E-4 3.16E-5 1.07E-5 8.42E-5 1.51E-5
928 1.53E-6 3.98 3.09E-5 3.06 2.24E-6 3.82 5.79E-7 4.22 5.89E-6 3.84 8.47E-7 4.16

P 3 3712 9.57E-8 4.00 2.06E-6 3.91 1.57E-7 3.83 3.41E-8 4.08 3.93E-7 3.91 5.14E-8 4.04
14848 6.12E-9 3.96 1.31E-7 3.97 1.06E-8 3.89 2.06E-9 4.05 2.20E-8 4.15 3.15E-9 4.03
59392 4.05E-10 3.91 8.48E-9 3.96 7.20E-10 3.88 1.27E-10 4.02 1.51E-9 3.86 1.95E-10 4.01
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Y
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X

Figure 3.3: Burgers equation. T = 1.5/π. The surface of the solution. RKDG with HWENO
limiter. Top: Ck=0.001; bottom: all cells are defined as troubled cells. Left: second order
(k = 1); middle: third order (k = 2); right: fourth order (k = 3).
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refined triangular meshes are used in the computation, which consist of 16 × 11 (320 cells),

32 × 21 (1280 cells), 64 × 41 (5120 cells), and 128 × 81 (20480 cells) points, respectively.

The first number refers to the number of points in the circular direction, and the second

designates the number of concentric circles in the mesh. The sample mesh and its zoomed-

in mesh are shown in Figure 3.4. The radius of the cylinder is 0.5 and the computational

domain is set as {(x, y) : 0.5 ≤
√

x2 + y2 ≤ 20}. Mach number contours are shown in Figure

3.5 and Figure 3.6. Following [24], we measure the entropy production given by

S0 − S∞

S∞

=

p0
ρ
γ
0

p∞
ρ
γ
∞

− 1, (3.2)

as the error measurement, where S0 is the local entropy and S∞ is the far field entropy. The

L2 errors and numerical orders of accuracy for the entropy for the RKDG methods with the

HWENO limiters on every cell are shown in Table 3.3. We can see that the new HWENO

limiter can maintain the designed high order accuracy of the RKDG method even in the

extreme situation that HWENO limiter is applied on every cell.
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Figure 3.4: Subsonic cylinder test case. Sample mesh and zoomed-in mesh.

Example 3.5. Double Mach reflection problem. This model problem is originally from [34].

We solve the Euler equations (2.6) in a computational domain of [0, 4]× [0, 1]. The reflection
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Figure 3.5: Subsonic cylinder test case. RKDG with HWENO limiter on every cell. Zoomed-
in pictures around the cylinder. 30 equally spaced Mach number contours from 0.04 to 0.94.
Left: second order (k = 1); middle: third order (k = 2); right: fourth order (k = 3). From
top to bottom: the numbers of points on the inner and outer boundaries are the same as 16
and 32.

Table 3.3: Subsonic cylinder test case. L2 entropy errors and orders of convergence. RKDG
with HWENO limiter on every cell.

RKDG with HWENO limiter on every cell
P 1 P 2 P 3

cell L2 error order L2 error order L2 error order
320 8.73E-3 3.11E-3 9.72E-4
1280 1.42E-3 2.62 3.88E-4 3.00 6.68E-5 3.86
5120 2.88E-4 2.30 3.65E-5 3.41 3.87E-6 4.10
20480 5.97E-5 2.27 4.31E-6 3.08 2.69E-7 3.85
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Figure 3.6: Subsonic cylinder test case. RKDG with HWENO limiter on every cell. Zoomed-
in pictures around the cylinder. 30 equally spaced Mach number contours from 0.04 to 0.94.
Left: second order (k = 1); middle: third order (k = 2); right: fourth order (k = 3). From
top to bottom: the numbers of points on the inner and outer boundaries are the same as 64
and 128.
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boundary condition is used at the wall, while for the rest of the bottom boundary (the part

from x = 0 to x = 1
6
), the exact post-shock condition is imposed. At the top boundary is the

exact motion of the Mach 10 shock. The results shown are at t = 0.2. Three different orders

of accuracy for the RKDG methods with the HWENO limiters, k=1, k=2 and k=3 (second

order, third order and fourth order), are used in this numerical experiment. A sample mesh

is shown in Figure 3.7. In Table 3.4 we give the percentage of cells declared to be troubled

cells for different RKDG methods with the HWENO limiters. The simulation results are

shown in Figure 3.8. The “zoomed-in” pictures around the double Mach stem to show more

details are given in Figure 3.9. The troubled cells identified at the last time step are shown

in Figure 3.10. Clearly, the resolution improves with an increasing k on the same mesh

although the percentage of troubled cells is simultaneously increasing.

0 1 2 3 4
X

0

0.5

1

Y

Figure 3.7: Double Mach reflection problem. Sample mesh.

Table 3.4: Double Mach reflection problem. The maximum and average percentages of
troubled cells subject to the HWENO limiting.

Percentage of the troubled cells
cell length h 1/200 cell length h 1/200 cell length h 1/200

P 1 maximum percent 3.50 P 2 maximum percent 8.50 P 3 maximum percent 15.3
average percent 1.53 average percent 5.12 average percent 9.41

Example 3.6. A Mach 3 wind tunnel with a step. This model problem is also originally

from [34]. The setup of the problem is as follows. The wind tunnel is 1 length unit wide and

3 length units long. The step is 0.2 length units high and is located 0.6 length units from

the left-hand end of the tunnel. The problem is initialized by a right-going Mach 3 flow.
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Figure 3.8: Double Mach reflection problem. RKDG with HWENO limiter. Top: second
order (k = 1); middle: third order (k = 2); bottom: fourth order (k = 3). 30 equally
spaced density contours from 1.5 to 21.5. The mesh points on the boundary are uniformly
distributed with cell length h = 1/200.
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Figure 3.9: Double Mach reflection problem. RKDG with HWENO limiter. Left: second
order (k = 1); right: third order (k = 2); bottom: fourth order (k = 3). Zoomed-in pictures
around the Mach stem. 30 equally spaced density contours from 1.5 to 21.5. The mesh
points on the boundary are uniformly distributed with cell length h = 1/200.
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Figure 3.10: Double Mach reflection problem. RKDG with HWENO limiter. Top: second
order (k = 1); middle: third order (k = 2); bottom: fourth order (k = 3). Troubled cells.
Circles denote triangles which are identified as troubled cells subject to the HWENO limiting
at the last time step. The mesh points on the boundary are uniformly distributed with cell
length h = 1/200.
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Reflective boundary conditions are applied along the wall of the tunnel and inflow/outflow

boundary conditions are applied at the entrance/exit. The results are shown at t = 4. We

present a sample triangulation of the whole region [0, 3]× [0, 1] in Figure 3.11. In Table 3.5

we give the percentage of cells declared to be troubled cells for different RKDG methods with

the HWENO limiters. In Figure 3.12, we show 30 equally spaced density contours from 0.32

to 6.15 computed by the second order, third order and fourth order RKDG methods with the

HWENO limiters, respectively. The troubled cells identified at the last time step are shown

in Figure 3.13. We can clearly observe that the fourth order scheme gives better resolution

than the former two schemes, especially for the resolution of the physical instability and

roll-up of the contact line.
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Figure 3.11: Forward step problem. Sample mesh.

Table 3.5: Forward step problem. The maximum and average percentages of troubled cells
subject to the HWENO limiting.

Percentage of the troubled cells
cell length h 1/100 cell length h 1/100 cell length h 1/100

P 1 maximum percent 5.94 P 2 maximum percent 9.25 P 3 maximum percent 14.5
average percent 4.02 average percent 6.21 average percent 9.59

Example 3.7. We consider inviscid Euler transonic flow past a single NACA0012 airfoil

configuration with Mach number M∞ = 0.8, angle of attack α = 1.25◦ and with M∞ = 0.85,

angle of attack α = 1◦. The computational domain is [−15, 15]× [−15, 15]. The mesh used

in the computation is shown in Figure 3.14, consisting of 9340 elements with the maximum
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Figure 3.12: Forward step problem. RKDG with HWENO limiter. Top: second order
(k = 1); middle: third order (k = 2); bottom: fourth order (k = 3). 30 equally spaced density
contours from 0.32 to 6.15. The mesh points on the boundary are uniformly distributed with
cell length h = 1/100.
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Figure 3.13: Forward step problem. RKDG with HWENO limiter. Top: second order
(k = 1); middle: third order (k = 2); bottom: fourth order (k = 3). Troubled cells. Circles
denote triangles which are identified as troubled cell subject to the HWENO limiting at the
last time step. The mesh points on the boundary are uniformly distributed with cell length
h = 1/100.
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diameter of the circumcircle being 1.4188 and the minimum diameter being 0.0031 near the

airfoil. The mesh uses curved cells near the airfoil. The second order, third order and fourth

order RKDG methods with the HWENO limiters are used in the numerical experiment. In

Table 3.6, we document the percentage of cells declared to be troubled cells for different

orders of RKDG methods with the HWENO limiters. Mach number distributions are shown

in Figure 3.15. Figure 3.16 shows the entropy (3.2) distributions plotted with a two-point line,

a three-point line and a four-point line on each cell-face for solutions obtained by second-

order, third-order and fourth order RKDG methods with HWENO limiters, respectively.

Figure 3.17 shows the pressure (Cp) distributions plotted with a two-point line, a three-

point line and a four-point line on each cell-face for solutions obtained by second-order,

third-order and fourth-order RKDG methods with HWENO limiters, respectively. We can

see that the third order and fourth order schemes have better resolutions than the second

order scheme. The troubled cells identified at the last time step are shown in Figure 3.18

and very few cells are identified as troubled cells.
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Figure 3.14: NACA0012 airfoil mesh. Zoomed-in mesh.

Example 3.8. The two dimensional Sedov problem [18, 30]. The initial conditions are:

ρ=1, µ=0, ν=0, E=10−12 everywhere except that the energy in the lower left corner cell is

the constant 0.244816
∆x∆y

and γ = 1.4. Symmetry boundary conditions are applied at the left and
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Figure 3.15: NACA0012 airfoil. RKDG with HWENO limiter. Top: second order (k = 1);
middle: third order (k = 2); bottom: fourth order (k = 3). Mach number. Left: M∞ = 0.8,
angle of attack α = 1.25◦, 30 equally spaced Mach number contours from 0.172 to 1.325;
right: M∞ = 0.85, angle of attack α = 1◦, 30 equally spaced Mach number contours from
0.158 to 1.357.
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Figure 3.16: NACA0012 airfoil. RKDG with HWENO limiter. Top: second order (k = 1),
a two-point line on each cell-face; middle: third order (k = 2), a three-point line on each
cell-face; bottom: fourth order (k = 3), a four-point line on each cell-face. Entropy. Left:
M∞ = 0.8, angle of attack α = 1.25◦; right: M∞ = 0.85, angle of attack α = 1◦.
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Figure 3.17: NACA0012 airfoil. RKDG with HWENO limiter. Top: second order (k = 1), a
two-point line on each cell-face; middle: third order (k = 2), a three-point line on each cell-
face; bottom: fourth order (k = 3), a four-point line on each cell-face. Pressure distribution.
Left: M∞ = 0.8, angle of attack α = 1.25◦; right: M∞ = 0.85, angle of attack α = 1◦.
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Figure 3.18: NACA0012 airfoil. RKDG with HWENO limiter. Top: second order (k = 1);
middle: third order (k = 2); bottom: fourth order (k = 3). Troubled cells. Circles denote
triangles which are identified as troubled cells subject to the HWENO limiting at the last
time step. Left: M∞ = 0.8, angle of attack α = 1.25◦; right: M∞ = 0.85, angle of attack
α = 1◦.
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Table 3.6: NACA0012 airfoil problem. The maximum and average percentages of troubled
cells subject to the HWENO limiting.

M∞ = 0.8, angle of attack α = 1.25◦ M∞ = 0.85, angle of attack α = 1◦

P 1 maximum percentage 15.2 maximum percentage 15.9
average percentage 8.79 average percentage 9.22

P 2 maximum percentage 21.2 maximum percentage 22.5
average percentage 12.2 average percentage 14.1

P 3 maximum percentage 28.6 maximum percentage 29.3
average percentage 15.1 average percentage 17.3

bottom boundaries, thus making it possible to compute only the upper-right quarter of the

whole problem. The final computing time is t=1. We present a sample triangulation of the

whole region [0, 1.1] × [0, 1.1] in Figure 3.19. In Table 3.7, we document the percentage of

cells declared to be troubled cells for different orders of RKDG methods with the HWENO

limiters. The results of the second, third and fourth order RKDG methods with the HWENO

limiters are shown in Figure 3.20. This is a rather extreme test case, many limiters may fail

to control the appearance of negative pressure, causing instability, including the one in [37].

We can see from Figure 3.20 that our new limiter works well for this test case.
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Figure 3.19: 2D Sedov problem. Sample mesh.
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Table 3.7: 2D Sedov problem. The maximum and average percentages of troubled cells
subject to the HWENO limiting.

Percentage of the troubled cells
cell length h 1.1/80 cell length h 1.1/80 cell length h 1.1/80

P 1 maximum percent 11.2 P 2 maximum percent 15.9 P 3 maximum percent 27.2
average percent 7.46 average percent 10.4 average percent 17.9
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Figure 3.20: 2D Sedov problem. RKDG with HWENO limiter. Top: second order (k = 1);
middle: third order (k = 2); bottom: fourth order (k = 3). From left to right: 30 equally
spaced density contours from 0.95 to 5; density is projected to the radical coordinates; circles
denote triangles which are identified as troubled cells subject to the HWENO limiting at
the last time step. Solid line: the exact solution; squares: the numerical results. The mesh
points on the boundary are uniformly distributed with cell length h = 1.1/80.
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4 Concluding remarks

We have generalized the Runge-Kutta discontinuous Galerkin (RKDG) methods with a

new type of simple Hermite weighted essentially non-oscillatory (HWENO) limiters for solv-

ing hyperbolic conservation laws on two dimensional unstructured meshes. The procedure of

the new HWENO limiters for the RKDG methods is specified as follows: the KXRCF tech-

nique [20] is used to detect the troubled cells which need further HWENO reconstruction,

then the new polynomials are reconstructed using the available DG solution polynomials on

the troubled cell and its three adjacent neighbors with suitable modification for sustaining

the conservative property. The modification procedure is performed in a least squares fashion

[11]. Several numerical benchmark tests of scalar equation and compressible inviscid Euler

equations are given to demonstrate the good performance in comparison with those specified

in earlier literature which use wider stencils and more sophisticated WENO or HWENO

limiters. In future work, we would like to extend such simple HWENO limiting procedure

to three dimensional tetrahedral meshes.
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[12] M. Dumbser and M. Käser, Arbitrary high order non-oscillatory finite volume schemes

on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics,

221 (2007), 693-723.

[13] M. Dumbser, O. Zanotti, R. Loubère and S. Diot, A posteriori subcell limiting of the

discontinuous Galerkin finite element method for hyperbolic conservation laws, Journal

of Computational Physics, 278 (2014), 47-75.

[14] O. Friedrichs, Weighted essentially non-oscillatory schemes for the interpolation of mean

values on unstructured grids, Journal of Computational Physics, 144 (1998), 194-212.

[15] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods, Springer, New

York, 2008.

[16] C. Hu and C.-W. Shu, Weighted essentially non-oscillatory schemes on triangular

meshes, Journal of Computational Physics, 150 (1999), 97-127.

[17] G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal

of Computational Physics, 126 (1996), 202-228.

[18] V.P. Korobeinikov, Problems of Point-Blast Theory, American Institute of Physics,

1991.

[19] L. Krivodonova and M. Berger, High-order implementation of solid wall boundary con-

ditions in curved geometries, Journal of Computational Physics, 211 (2006), 492-512.

[20] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon and J.E. Flaherty, Shock detec-

tion and limiting with discontinuous Galerkin methods for hyperbolic conservation laws,

Applied Numerical Mathematics, 48 (2004), 323-338.

[21] B. Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer, Birkhauser,

Basel, 2006.

33



[22] T. Linde and P.L. Roe, Robust Euler codes, in: 13th Computational Fluid Dynamics

Conference, AIAA Paper-97-2098.

[23] X. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes, Journal of

Computational Physics, 115 (1994), 200-212.

[24] H. Luo, J.D. Baum and R. Lohner, A Hermite WENO-based limiter for discontinuous

Galerkin method on unstructured grids, Journal of Computational Physics, 225 (2007),

686-713.

[25] H. Luo, J.D. Baum and R. Lohner, On the computation of steady-state compressible flows

using a discontinuous Galerkin method, International Journal for Numerical Methods

in Engineering, 73 (2008), 597-623.

[26] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for

Runge-Kutta discontinuous Galerkin method: one dimensional case, Journal of Compu-

tational Physics, 193 (2003), 115-135.

[27] J. Qiu and C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO lim-

iters, SIAM Journal on Scientific Computing, 26 (2005), 907-929.

[28] J. Qiu and C.-W. Shu, A comparison of troubled-cell indicators for Runge-Kutta dis-

continuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM

Journal on Scientific Computing, 27 (2005), 995-1013.

[29] J. Qiu and C.-W. Shu, Hermite WENO schemes and their application as limiters for

Runge-Kutta discontinuous Galerkin method II: two dimensional case, Computers and

Fluids, 34 (2005), 642-663.

[30] L.I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, New

York, 1959.

34



[31] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes

for hyperbolic conservation laws, In Advanced Numerical Approximation of Nonlinear

Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor:

A. Quarteroni), Lecture Notes in Mathematics, volume 1697, Springer, 1998, 325-432.

[32] C.-W. Shu, Discontinuous Galerkin methods: general approach and stability, in Nu-

merical Solutions of Partial Differential Equations, S. Bertoluzza, S. Falletta, G. Russo

and C.-W. Shu, Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, Basel,
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