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Abstract

An important property for finite difference schemes designed on curvilinear meshes

is the exact preservation of free-stream solutions. This property is difficult to fulfill for

high order conservative essentially non-oscillatory (WENO) finite difference schemes. In

this paper we explore an alternative flux formulation for such finite difference schemes

[5] which can preserve free-stream solutions, based on the numerical technique for the

metric terms [13], which can be applied to this alternative flux formulation but is diffi-

cult to be applied to the standard finite difference formulation. Free-stream and vortex

preservation properties are investigated, and comparison with standard finite difference

WENO schemes is made. Theoretical derivation and numerical results show that the

finite difference WENO schemes based on the alternative flux formulation can preserve

free-stream and vortex solutions on both stationary and dynamically generalized coordi-

nate systems, hence giving much better performance than the standard finite difference

WENO schemes for such problems.
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1 Introduction

In this paper, we are interested in high order accurate conservative finite difference

weighted essentially non-oscillatory (WENO) schemes on curvilinear meshes. Conser-

vative finite difference schemes share many advantages of finite volume schemes, such

as conservation and high order accuracy, yet they are much less expensive than finite

volume schemes in multi-dimensions. The first WENO scheme was a third order finite

volume scheme designed in [6]. Standard finite difference WENO schemes [4, 1, 9] use the

idea of reconstruction, which is the main relevant WENO procedure for designing both

conservative finite volume and conservative finite difference schemes to solve hyperbolic

conservation laws. In these standard finite difference WENO schemes, the derivative

f(u)x is approximated by a numerical flux difference, and the numerical flux is based

on the reconstruction of the physical flux f(u) rather than on the solution u as in finite

volume methods.

When finite difference schemes are applied to curvilinear meshes (also referred to

as generalized coordinate systems), free-stream preservation is an important property

because errors from nonpreserved free-stream hide small physical oscillations, such as

turbulent flow structures or aero-acoustic waves. Research [13, 7] shows that if the free-

stream preservation condition is not satisfied, it will cause large errors and even lead to

numerical instabilities for high-order schemes.

For the numerical fluxes in standard finite difference WENO schemes, since the re-

construction is performed directly on the flux values {f(ui)} (or {f+(ui)} and {f−(ui)}

with a flux splitting f(u) = f+(u) + f−(u)), not on the point values of the solution

{ui}, it is difficult to maintain free-stream solutions exactly in curvilinear meshes for

multi-dimensional flow computation. This is because the fluxes in curvilinear coordi-

nates involve metric derivatives, resulting in non-exact cancellations when nonlinear

reconstructions are performed for different fluxes.

Visbal and Gaitonde [13] carefully studied the metric evaluation errors for high-order
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central type compact schemes and found that for the three-dimensional generalized co-

ordinate systems, the schemes can preserve the free-stream condition if they use the

same formulas for the evaluation of both the metric and convection terms by adopting

a conservative form of those metric terms, originally proposed by Thomas and Lombard

[11]. However, it is difficult to apply the technique in [11, 13] to the standard conserva-

tive finite difference WENO schemes which are highly nonlinear. In [7], the free-stream

and vortex preservation properties of the standard finite difference WENO schemes on

stationary curvilinear grids have been investigated. It was found that standard finite

difference WENO schemes could preserve the free-stream condition in the Cartesian co-

ordinate system, but not in the generalized coordinate system. In addition, the schemes

in generalized grids have a rather large error arising from the metric terms on random-

ized grids and three-dimensional wavy grids. In [2], Cai and Ladeinder also mentioned

the difficulty of maintaining free-stream conditions in generalized curvilinear coordinate

systems for high order finite difference WENO schemes.

Recently, an alternative flux formulation for the conservative finite difference WENO

scheme, originally proposed in [10], was systematically studied in [5]. In this method, the

high order WENO interpolation procedure is applied to the solution {ui} itself rather

than to the flux functions {f(ui)}. In [5], several advantages of this alternative flux

formulation, including the increased flexibility to use arbitrary monotone fluxes in the

scalar case and arbitrary approximate Riemann solvers in the system case, as well as

a narrower effective stencil when applying the Lax-Wendroff time discretization, were

found. Another major advantage of this alternative flux formulation is that it allows us

to apply the technique in [11, 13] to obtain the free-stream preserving property for high

order conservative finite difference schemes. This advantage will be fully investigated in

this paper.

The organization of the remaining sections is as follows. In Section 2, we review

the alternative flux formulation for finite difference WENO schemes introduced in [5],
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using the one-dimensional Euler system as an example. The numerical methods for

the three-dimensional Euler equations on generalized meshes and the analysis of the

free-stream preserving condition will be discussed in Section 3. In Section 4, extensive

numerical examples are provided to demonstrate the free-stream and vortex preservation

performance of the new method in comparison with the standard finite difference WENO

schemes. Concluding remarks are given in Section 5.

2 Alternative flux formulation in one-dimension

The following one-dimensional Euler equations with uniform grids are used for the dis-

cussion of the scheme.

∂Q

∂t
+

∂F

∂x
= 0, (1)

where

Q = (ρ, ρu, e)T ,

F = (ρu, ρu2 + p, u(e + p))T . (2)

On a uniform mesh xi = i∆x, we would like to find a consistent numerical flux function

F̂i+ 1

2

= F̂ (Qi−r, . . . , Qi+s), (3)

such that the flux difference approximates the derivative F (Q(x))x to k-th order accuracy

1

∆x
(F̂i+ 1

2

− F̂i− 1

2

) = F (Q(x))x|xi
+ O(∆xk). (4)

The alternative flux formulation, first developed in [10] and extensively explored in

[5] in the context of WENO interpolation, is given as follows

F̂i+ 1

2

= Fi+ 1

2

+

[(r−1)/2]
∑

ℓ=1

a2ℓ∆x2ℓ

(

∂2ℓ

∂x2ℓ
F

)

i+ 1

2

+ O(∆xr+1), (5)

which guarantees k = r-th order accuracy in (4). The coefficients a2ℓ in (5) can be

obtained through Taylor expansion and the accuracy constraint (4). To get an approxi-

mation with fifth order accuracy (k = 5 in (4), thus r = 4 in (5)), we have

F̂i+ 1

2

= Fi+ 1

2

−
1

24
∆x2 ∂2F

∂x2
|i+ 1

2

+
7

5760
∆x4 ∂4F

∂x4
|i+ 1

2

. (6)
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The first term of the numerical flux in (6) is approximated by

Fi+ 1

2

= h(Q−

i+ 1

2

, Q+
i+ 1

2

) (7)

with the values Q±

i+ 1

2

obtained by a WENO interpolation based on neighboring point

values Qj using the local characteristic variables [8, 3, 9]. The two-argument numerical

function h is based on an exact or approximate Riemann solver. For example, we can

use the Godunov flux, the Lax-Friedrichs flux, the HLLC flux, etc. The exact Riemann

solver is given by the exact solution of the conservation laws (1) with the following step

function as the initial condition

Q(x, 0) =

{

Q−

i+1/2 x ≤ 0;

Q+
i+1/2 x ≥ 0,

evaluated at the center x = 0 for t > 0 (this value is independent of t). The Godunov

flux is then given as h(Q−

i+ 1

2

, Q+
i+ 1

2

) = F (Q(0, t)). The detailed formulation of the other

numerical fluxes can be found in, e.g. [12].

The remaining terms of the numerical flux in (6) or (5) have at least ∆x2 in their

coefficients, hence they only need lower order approximations and they are expected

to contribute much less to spurious oscillations. It is the conclusion of [5] that these

remaining terms can be approximated by simple central approximation or one-point

upwind-biased approximation with suitable orders of accuracy, without using the more

expensive WENO procedure. Also, since we use Runge-Kutta time stepping in this

paper, rather than the Lax-Wendroff time discretization technique as in [5], we do not

expand ∂ℓF/∂xℓ as functions of Q and its spatial derivatives. We simply use fixed-stencil

interpolation on F directly. The details will be shown in the next section.

3 Finite difference WENO scheme on curvilinear meshes

3.1 Three-dimensional Euler equations

In Cartesian coordinates (x, y, z), the three-dimensional Euler equations are

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0, (8)
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where

Q = (ρ, ρu, ρv, ρw, e)T ,

E = (ρu, ρu2 + p, ρuv, ρuw, u(e + p))T ,

F = (ρv, ρuv, ρv2 + p, ρvw, v(e + p))T ,

G = (ρw, ρuw, ρvw, ρw2 + p, w(e + p))T .

The governing equation (8) can be transformed in curvilinear coordinates (ξ, η, ζ, τ)

∂Q̃

∂τ
+

∂Ẽ

∂ξ
+

∂F̃

∂η
+

∂G̃

∂ζ
= 0, (9)

where

Q̃ = Q/J,

Ẽ = ξ̃tQ + ξ̃xE + ξ̃yF + ξ̃zG,

F̃ = η̃tQ + η̃xE + η̃yF + η̃zG,

G̃ = ζ̃tQ + ζ̃xE + ζ̃yF + ζ̃zG.

Here, we choose τ = t. The inverse Jacobian J−1 and the standard metrics are

J−1 =
∣

∣

∣

∂(x,y,z,t)
∂(ξ,η,ζ,τ)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∣

xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

, (10)







ξ̃x = ξx/J = yηzζ − yζzη, ξ̃y = ξy/J = zηxζ − zζxη, ξ̃z = ξz/J = xηyζ − xζyη,
η̃x = ηx/J = yζzξ − yξzζ , η̃y = ηy/J = zζxξ − zξxζ , η̃z = ηz/J = xζyξ − xξyζ ,

ζ̃x = ζx/J = yξzη − yηzξ, ζ̃y = ζy/J = zξxη − zηxξ, ζ̃z = ζz/J = xξyη − xηyξ,

(11)







ξ̃t = ξt/J = −[xτ ξ̃x + yτ ξ̃y + zτ ξ̃z],
η̃t = ηt/J = −[xτ η̃x + yτ η̃y + zτ η̃z],

ζ̃t = ζt/J = −[xτ ζ̃x + yτ ζ̃y + zτ ζ̃z].

(12)

The time-derivative term in equation (9) is split as follows:

(Q/J)τ = (1/J)Qτ + Q(1/J)τ .
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Thus, the governing equation (9) can be written as

∂Q

∂τ
= −J

[

∂Ẽ

∂ξ
+

∂F̃

∂η
+

∂G̃

∂ζ
+ Q(1/J)τ

]

. (13)

In the uniform flow (free-stream flow) regions, i.e. when Q, E, F and G are constants,

equation (13) is simplified as

∂Q

∂τ
= −J [ItQ + IxE + IyF + IzG], (14)

where















Ix = (ξ̃x)ξ + (η̃x)η + (ζ̃x)ζ ,

Iy = (ξ̃y)ξ + (η̃y)η + (ζ̃y)ζ ,

Iz = (ξ̃z)ξ + (η̃z)η + (ζ̃z)ζ ,

It = (ξ̃t)ξ + (η̃t)η + (ζ̃t)ζ + (1/J)τ .

(15)

As discussed in [14], Ix = Iy = Iz = 0 constitutes a differential statement of surface

conservation, often termed the surface conservation law (SCL). It = 0 is the volume

conservation law (VCL). By substituting (10)-(12) into (15), we can see























Ix = (yηzζ − yζzη)ξ + (yζzξ − yξzζ)η + (yξzη − yηzξ)ζ = 0,
Iy = (zηxζ − zζxη)ξ + (zζxξ − zξxζ)η + (zξxη − zηxξ)ζ = 0,
Iz = (xηyζ − xζyη)ξ + (xζyξ − xξyζ)η + (xξyη − xηyξ)ζ = 0,

It = −(xτ ξ̃x + yτ ξ̃y + zτ ξ̃z)ξ − (xτ η̃x + yτ η̃y + zτ η̃z)η − (xτ ζ̃x + yτ ζ̃y + zτ ζ̃z)ζ

+[xξ(yηzξ − yξzη) − xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)]τ = 0.

(16)

Then

∂Q

∂τ
= 0, (17)

that is, the uniform flow conditions are held. In a finite difference discretization, all four

of the identities It to Iz in equation (16) must hold numerically to achieve the free-stream

preserving condition. For stationary meshes, only the first three identities for Ix, Iy and

Iz are required.
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3.2 The numerical scheme

We will construct numerical fluxes Êi+1/2,j,k, F̂i,j+1/2,k and Ĝi,j,k+1/2 such that

Êi+1/2,j,k − Êi−1/2,j,k

∆ξ
= (Ẽ)ξ|(ξi,ηj ,ζk) + O(∆ξk),

F̂i,j+1/2,k − F̂i,j−1/2,k

∆η
= (F̃ )η|(ξi,ηj ,ζk) + O(∆ηk),

Ĝi,j,k+1/2 − Ĝi,j,k−1/2

∆ζ
= (G̃)ζ |(ξi,ηj ,ζk) + O(∆ζk).

The numerical flux Êi+1/2,j,k is obtained by the one dimensional WENO approxima-

tion procedure described in Section 2, with Q(ξ) = Q(ξ, ηj, ζk) and with j, k fixed. We

summarize the procedure in the following:

1. Get Q±

i+1/2,j,k through WENO interpolation on Q in curvilinear coordinates (ξ, η, ζ, τ)

in the ξ-direction for fixed j and k. Here the superscripts ± refer to one-point

left/right biased stencils.

2. Construct the first term h(Q−

i+1/2,j,k, Q
+
i+1/2,j,k). For the metrics ξ̃x, ξ̃y, ξ̃z and ξ̃t

at the half point (ξi+1/2, ηj, ζk), we obtain them using fixed-stencil interpolation

approximation

ξ̃γ|i+1/2,j,k =

q1
∑

l=−p1

alξ̃γ|(i+l,j,k) + O(∆ξp1+q1+1), (18)

where p1 + q1 = k, γ stands for x, y, z, or t and al are constants not dependent on

∆ξ. For instance, when k = 5, we use central approximation and have

ξ̃γ|i+1/2,j,k ≈
1

256
(3ξ̃γ|i−2,j,k − 25ξ̃γ|i−1,j,k + 150ξ̃γ|i,j,k + 150ξ̃γ|i+1,j,k

− 25ξ̃γ|i+2,j,k + 3ξ̃γ|i+3,j,k).

3. For the term ∂2Ẽ/∂ξ2, since there is an extra ∆ξ2 as a coefficient, interpolate only

with (k − 2)-th order accuracy

∆ξ2∂2Ẽ

∂ξ2
|i+1/2,j,k =

q1
∑

l=−p1

blẼ|(i+l,j,k) + O(∆ξp1+q1+1), (19)
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where p1 + q1 = k and bl are constants independent of ∆ξ. When k = 5, the

following central approximation can be used

∆ξ2∂2Ẽ

∂ξ2
|i+1/2,j,k ≈

1

48
(−5Ẽ|i−2,j,k + 39Ẽ|i−1,j,k − 34Ẽ|i,j,k − 34Ẽ|i+1,j,k

+ 39Ẽ|i+2,j,k − 5Ẽ|i+3,j,k).

4. Approximate the remaining terms similarly as in step 3. For example,

∆ξ4 ∂4Ẽ

∂ξ4
|i+1/2,j,k =

q1
∑

l=−p1

clẼ|(i+l,j,k) + O(∆ξp1+q1+1), (20)

where p1 + q1 = k and cl are constants independent of ∆ξ. When k = 5, the

following central approximation can be used

∆ξ4∂4Ẽ

∂ξ4
|i+1/2,j,k ≈

1

2
(Ẽ|i−2,j,k − 3Ẽ|i−1,j,k + 2Ẽ|i,j,k + 2Ẽ|i+1,j,k

− 3Ẽ|i+2,j,k + Ẽ|i+3,j,k).

5. Form the numerical flux as the sum of all the terms above

Êi+1/2,j,k =h(Q−

i+1/2,j,k, Q
+
i+1/2,j,k) −

1

24
∆ξ2∂2Ẽ

∂ξ2
|i+1/2,j,k

+
7

5760
∆ξ4∂4Ẽ

∂ξ4
|i+1/2,j,k + . . . (21)

Likewise, the numerical fluxes F̂i,j+1/2,k and Ĝi,j,k+1/2 are obtained by the one dimen-

sional WENO approximation procedure, with Q(η) = Q(ξi, η, ζk) and with i, k fixed, or

with Q(ζ) = Q(ξi, ηj, ζ) and with i, j fixed.

Notice that Q±

i+1/2,j,k = Qℓ,j,k = Q if Q has the same value at all grid points. Thus

we have

h(Q−

i+1/2,j,k, Q
+
i+1/2,j,k) = h(Q, Q) = Ẽ(Q)|i+1/2,j,k

= (ξ̃tQ + ξ̃xE(Q) + ξ̃yF (Q) + ξ̃zG(Q))|i+1/2,j,k.
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Since E = E(Q), F = F (Q) and G = G(Q) are also constants, we have

h(Q̃−

i+1/2,j,k, Q̃
+
i+1/2,j,k) =

q1
∑

l=−p1

al(ξ̃tQ + ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k,

∆ξ2 ∂2Ẽ

∂ξ2
|i+1/2,j,k =

q1
∑

l=−p1

blẼ|(i+l,j,k)

=

q1
∑

l=−p1

bl(ξ̃tQ + ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k,

∆ξ4 ∂4Ẽ

∂ξ4
|i+1/2,j,k =

q1
∑

l=−p1

clẼ|(i+l,j,k)

=

q1
∑

l=−p1

cl(ξ̃tQ + ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k.

Thus, Êi+1/2,j,k has the form

Êi+1/2,j,k = Q

q1
∑

l=−p1

dlξ̃t|i+l,j,k + E

q1
∑

l=−p1

dlξ̃x|i+l,j,k

+ F

q1
∑

l=−p1

dlξ̃y|i+l,j,k + G

q1
∑

l=−p1

dlξ̃z|i+l,j,k, (22)

where dl are constants independent of ∆ξ. We therefore have the flux difference

Êi+1/2,j,k − Êi−1/2,j,k

∆ξ
= Q

1

∆ξ

q1
∑

l=−p1−1

elξ̃t|i+l,j,k + E
1

∆ξ

q1
∑

l=−p1−1

elξ̃x|i+l,j,k

+ F
1

∆ξ

q1
∑

l=−p1−1

elξ̃y|i+l,j,k + G
1

∆ξ

q1
∑

l=−p1−1

elξ̃z|i+l,j,k, (23)

where the el are constants not dependent on ∆ξ. We can see that, when Q are constants,

our scheme degenerates to a linear scheme. Since (Ẽ)ξ = Q(ξ̃t)ξ+E(ξ̃x)ξ+F (ξ̃y)ξ+G(ξ̃z)ξ,

we can get the approximation

(ξ̃γ)ξ =
1

∆ξ

q1
∑

l=−p1−1

elξ̃γ|i+l,j,k,

where γ stands for x, y, z or t.
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Similarity, in the η- and ζ-directions, we also have

F̂i,j+1/2,k − F̂i,j−1/2,k

∆η
= Q

1

∆η

q2
∑

m=−p2−1

fmη̃t|i,j+m,k + E
1

∆η

q2
∑

m=−p2−1

fmη̃x|i,j+m,k

+ F
1

∆η

q2
∑

m=−p2−1

fmη̃y|i,j+m,k + G
1

∆η

q2
∑

m=−p2−1

fmη̃z|i,j+m,k (24)

Ĝi,j,k+1/2 − Ĝi,j,k−1/2

∆ζ
= Q

1

∆ζ

q3
∑

n=−p3−1

gnζ̃t|i,j,k+n + E
1

∆ζ

q3
∑

n=−p3−1

gnζ̃x|i,j,k+n

+ F
1

∆ζ

q3
∑

n=−p3−1

gnζ̃y|i,j,k+n + G
1

∆ζ

q3
∑

n=−p3−1

gnζ̃z|i,j,k+n (25)

where fm and gn are all constants.

In the first step, Q̃, instead of Q, could also be used as the interpolation quantity

for achieving the formal order of accuracy. However, since Q̃ includes the Jacobian, the

weights evaluated in the weighted averaging procedure will be adversely affected, even

under the free-stream condition. For this reason, Q̃ values are not used for the WENO

interpolation procedure in our algorithm formulation. The validity of using Q in our

procedure is shown later.

3.3 SCL and VCL

For finite difference numerical methods, Thomas and Lombard [11] gave the following

“conservation” metric expressions instead of equation (11)







ξ̃x = (yηz)ζ − (yζz)η, ξ̃y = (zηx)ζ − (zζx)η, ξ̃z = (xηy)ζ − (xζy)η,
η̃x = (yζz)ξ − (yξz)ζ , η̃y = (zζx)ξ − (zξx)ζ , η̃z = (xζy)ξ − (xξy)ζ,

ζ̃x = (yξz)η − (yηz)ξ, ζ̃y = (zξx)η − (zηx)ξ, ζ̃z = (xξy)η − (xηy)ξ.

(26)

Equations (11) and (26) are equivalent mathematically but not necessarily numerically.

Visbal and Gaitonde [13] reported that a compact difference scheme, which is applied to

the generalized coordinate system, can preserve the free-stream condition if the conser-

vation form (26) of the metric terms is evaluated using the same formulas as those used

in the evaluation of the conservation terms, at least for free-stream solutions. Here we
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use the same idea in our method. For example,

ξ̃x|i,j,k =
1

∆ζ

q3
∑

n=−p3−1

gn(yηz)|i,j,k+n −
1

∆η

q2
∑

m=−p2−1

fm(yζz)|i,j+m,k

=
1

∆ζ∆η

q3
∑

n=−p3−1

gnz|i,j,k+n

q2
∑

m=−p2−1

fmy|i,j+m,k+n

−
1

∆η∆ζ

q2
∑

m=−p2−1

fmz|i,j+m,k

q3
∑

n=−p3−1

gny|i,j+m,k+n. (27)

Thus

Ix = (ξ̃x)ξ + (η̃x)η + (ζ̃x)ζ

=
1

∆ξ

q1
∑

l=−p1−1

elξ̃x|i+l,j,k +
1

∆η

q2
∑

m=−p2−1

fmη̃x|i,j+m,k +
1

∆ζ

q3
∑

n=−p3−1

gnζ̃x|i,j,k+n

=
1

∆ξ∆ζ∆η

q1
∑

l=−p1−1

el

q3
∑

n=−p3−1

gnz|i+l,j,k+n

q2
∑

m=−p2−1

fmy|i+l,j+m,k+n

−
1

∆ξ∆η∆ζ

q1
∑

l=−p1−1

el

q2
∑

m=−p2−1

fmz|i+l,j+m,k

q3
∑

n=−p3−1

gny|i+l,j+m,k+n

+
1

∆η∆ξ∆ζ

q2
∑

m=−p2−1

fm

q1
∑

l=−p1−1

elz|i+l,j+m,k

q3
∑

n=−p3−1

gny|i+l,j+m,k+n

−
1

∆η∆ζ∆ξ

q2
∑

m=−p2−1

fm

q3
∑

n=−p3−1

gnz|i,j+m,k+n

q1
∑

l=−p1−1

ely|i+l,j+m,k+n

+
1

∆ζ∆η∆ξ

q3
∑

n=−p3−1

gn

q2
∑

m=−p2−1

fmz|i,j+m,k+n

q1
∑

l=−p1−1

ely|i+l,j+m,k+n

−
1

∆ζ∆ξ∆η

q3
∑

n=−p3−1

gn

q1
∑

l=−p1−1

elz|i+l,j,k+n

q2
∑

m=−p2−1

fmy|i+l,j+m,k+n

= 0. (28)

Similarly, we also have

Iy = 0, Iz = 0.

Thus, we can get the SCL.

For moving meshes, the VCL identity It = 0 must also be satisfied. We simply invoke

the VCL identity to evaluate (1/J)τ , i.e.

(1/J)τ = −[(ξ̃t)ξ + (η̃t)η + (ζ̃t)ζ ] (29)
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For the standard conservative finite difference WENO methods [4] in the generalized

coordinates, the idea of Visbal and Gaitonde [13] cannot be applied, since it requires the

same scheme for the evaluation of the metric and the convection terms. The Jacobian

and metrics cannot be evaluated by the upwinding procedure of WENO because they

cannot be split to the nonlinear upwind components. Thus, compact difference formulas

are used to evaluate the metric terms in [7].

4 Numerical results

In this section, we will discuss the results of both stationary and dynamical meshes.

We denote S-LF and S-R as the standard finite difference WENO scheme of Jiang and

Shu [4] with the Lax-Friedrichs flux splitting and the Roe splitting respectively. A-LF

and A-HLLC are used to denote the methods under consideration with the alternative

flux formulation and with the Lax-Friedrichs flux and the HLLC flux respectively. The

third-order TVD Runge-Kutta scheme is used for time integration

u(1) = un + ∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

The specific heat ratio of the fluid in the test cases is set as γ = 1.4. Compact difference

formulas, as described in [7], are used to evaluate the metric terms for the standard finite

difference WENO scheme.

4.1 Free-stream preserving properties

The fluid in the test cases is nondimensionalized by the density and the speed of sound

for the free-stream condition. In this test, an x-direction free-stream of Mach number 0.5

is imposed. Thus the y-direction velocity v and the z-direction velocity w are expected

to remain machine zero.
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Example 1. Firstly , we will test the free-stream preservation property on a stationary

wavy grid, which is expressed as following:

xi,j,k = xmin + ∆x0

[

(i − 1) + Ax sin
nxyπ(j − 1)∆y0

Ly
sin

nxzπ(k − 1)∆z0

Lz

]

,

yi,j,k = ymin + ∆y0

[

(j − 1) + Ay sin
nyzπ(k − 1)∆z0

Lz

sin
nyxπ(i − 1)∆x0

Lx

]

,

zi,j,k = zmin + ∆z0

[

(k − 1) + Az sin
nzxπ(i − 1)∆x0

Lx
sin

nzyπ(j − 1)∆y0

Ly

]

, (30)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax, k = 1, 2, · · · , Kmax,

∆x0 = Lx

Imax−1
, ∆y0 = Ly

Jmax−1
, ∆z0 = Lz

Kmax−1
,

xmin = −Lx

2
, ymin = −Ly

2
, zmin = −Lz

2
.

The wavy grid parameters used in this test are Imax = Jmax = Kmax = 21, Lx = Ly =

Lz = 4, Ax = Ay = Az = 1, and nxy = nxz = . . . = 4, and the grid is shown in Fig. 1.

Time step is taken as ∆t = 0.05, and flow fields at t = 10 are examined. We list the

L2 errors of v and w in Table 1. We can see that A-LF and A-HLLC have errors less

than 10−14, which are close to the machine zero. However, the S-LF and S-R schemes

have large errors on the level of 10−3. These demonstrate that our schemes with the

alternative flux formulation are appropriate for free-stream preservation, while neither

S-LF nor S-R could preserve free-stream solutions.

Table 1: L2 errors of v and w components in the free-stream preservation test on a wavy
grid.

v-component w-component

S-LF 9.33E-03 9.32E-03
S-R 9.34E-03 9.18E-03

A-LF 2.03E-15 1.54E-15
A-HLLC 4.05E-15 2.67E-15

Example 2. Next, we will test the free-stream preservation on a randomized grid.

Uniform grids constructed for the mesh ∆x = ∆y = ∆z = 0.2 with 21 × 21 × 21 grid

points are randomized with 20% magnitude grid spacing in a random direction, and the

14



Figure 1: A stationary wavy grid for the free-stream preserving test.

mesh is shown in Fig. 2. The same time step ∆t = 0.05 is used. We also test our

results at t = 10. Results for L2 errors of v and w are shown in Table 2. Similar to

our observations in Example 1, the S-LF and S-R schemes both have large errors, while

A-LF and A-HLLC have errors close to machine zero. So, on a randomized grid, A-LF

and A-HLLC can also preserve free-stream solutions.

Table 2: L2 errors of v and w components in the free-stream preservation test on a
randomized grid.

v-component w-component

S-LF 7.70E-02 7.53E-02
S-R 1.21E-01 1.18E-01

A-LF 1.76E-15 1.61E-15
A-HLLC 3.16E-15 2.92E-15

Example 3. In this example, we consider the free-stream condition on the spherical

grid shown in Fig. 3. The computational domain is chosen as [2, 4] × [0, 2] × [−2, 0] on

15



Figure 2: A stationary randomized grid for the free-stream preserving test.

the r-θ-φ coordinate systems:

x = r cos(πθ/6) cos(πφ/6),

y = r sin(πθ/6) cos(πφ/6),

z = r sin(πφ/6). (31)

A uniform mesh with 21×21×21 grid points is used on the computational domain. The

time step was taken to be ∆t = 0.02, and the results were again tested at the final time

of t = 10. L2 errors of v and w are shown in Table 3. We can see that the numerical

results for our schemes with the alternative formulation can reach machine zero, and the

free-stream condition is preserved. On the other hand, both S-LF and S-R schemes have

large errors, and fail to preserve the free-stream condition.
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Figure 3: A stationary spherical grid for the free-stream preserving test.

Table 3: L2 errors of v and w components in the free-stream preservation test on a
spherical grid.

v-component w-component

S-LF 2.80E-07 2.67E-07
S-R 1.34E-06 6.79E-07

A-LF 5.92E-16 5.42E-16
A-HLLC 1.11E-15 1.09E-15

Example 4. Finally, we will test the free-stream preservation on a moving wavy mesh:

xi,j,k(τ) = xmin + ∆x0

[

(i − 1) + Ax sin(2πωτ) sin
nxyπ(j − 1)∆y0

Ly
sin

nxzπ(k − 1)∆z0

Lz

]

,

yi,j,k(τ) = ymin + ∆y0

[

(j − 1) + Ay sin(2πωτ) sin
nyzπ(k − 1)∆z0

Lz
sin

nyxπ(i − 1)∆x0

Lx

]

,

zi,j,k(τ) = zmin + ∆z0

[

(k − 1) + Az sin(2πωτ) sin
nzxπ(i − 1)∆x0

Lx
sin

nzyπ(j − 1)∆y0

Ly

]

,

(32)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax, k = 1, 2, · · · , Kmax,

∆x0 = Lx

Imax−1
, ∆y0 = Ly

Jmax−1
, ∆z0 = Lz

Kmax−1
,

xmin = −Lx

2
, ymin = −Ly

2
, zmin = −Lz

2
,

with the specified parameters Imax = Jmax = Kmax = 31, Lx = Ly = Lz = 12, Ax =

Ay = Az = 1.5, and nxy = nxz = . . . = 4, and the frequency of oscillation ω = 1.0. We
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choose the time step ∆t = 0.001, and the flow fields at t = 0.25 are examined. Fig. 4

shows the mesh at the final time, and numerical results are listed in Table 4. Similar to

the stationary meshes, A-LF and A-HLLC can preserve the free-stream condition, while

S-LF and S-R cannot.

Figure 4: A moving wavy grid for the free-stream preserving test at t = 0.25.

Table 4: L2 errors of v and w components in the free-stream preservation test on a
moving wavy grid.

v-component w-component

S-LF 4.45E-02 4.45E-02
S-R 4.46E-02 4.46E-02

A-LF 6.91E-16 6.98E-16
A-HLLC 3.71E-16 3.72E-16

4.2 Vortex preservation properties

Here, two-dimensional moving vortex problems are used to examine vortex preservation

properties. The fluid is nondimensionalized by the density and the speed of the sound for

the free-stream condition, as in the free-stream preservation test. An isentropic vortex

whose center is located at (xc, yc) = (0, 0) is set on the free-stream of Mach number 0.5
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as the initial condition, where the velocity, temperature, and entropy fluctuations of an

isentropic vortex are expressed as follows:

(δu, δv) = ελeα(1−λ2)(sin θ,− cos θ),

δT = −
(γ − 1)ε2

4αγ
e2α(1−λ2),

δS = 0, (33)

where λ = r/rc and r = [(x − xc)
2 + (y − yc)

2]1/2. Here, rc = 1.0 denotes the vortex

core length, α = 0.204 denotes the parameter of the length scale of the vortex decay,

and ε = 0.3 denotes the vortex strength. T = p/ρ is the temperature, and S = p/ργ

is the entropy. The boundary conditions for ξ- and η-directions are set to be periodic.

Numerical results are tested at t = 32, at which time the vortex moves back to the

same position as the initial condition in the grid system defined in each of the following

examples.

Example 5. First, vortex preserving properties on uniform grids are examined. Three

different computational grids are constructed for the region −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8,

with 41 × 41, 81 × 81 and 161 × 161 grid points. Time steps ∆t are set to 0.05, 0.0125,

and 0.003125 for the 41×41, 81×81 and 161×161 grids, respectively. These small time

steps are used to minimize the temporal error from the third-order time integration. The

L2 errors and orders of accuracy for the swirl velocity are presented in Table 5, showing

that all these schemes can achieve close to the designed fifth order accuracy on uniform

meshes. Fig. 5 shows the most coarse computational grid and the vorticity magnitude

distributions for the initial conditions and the four schemes at t = 32. Fig. 6 shows the

swirl velocity on the η-constant line passing through the vortex center. These figures

demonstrate that the vortex of all these four implementations can preserve the vortex

strength and swirl velocity qualitatively compared with the exact solutions.

Example 6. Next, we will test the vortex preserving property on wavy grids. A two-
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Table 5: L2 errors in the swirl velocity of the two-dimensional moving vortex problem
on the uniform grid.

S-LF S-R A-LF A-HLLC

Nx × Ny L2 errors order L2 error order L2 errors order L2 error order

41 × 41 3.54E-03 – 2.92E-03 – 4.64E-03 – 1.81E-03 –
81 × 81 1.88E-04 4.23 1.42E-04 4.36 2.50E-04 4.21 9.21E-05 4.30

161 × 161 7.51E-06 4.65 6.14E-06 4.53 1.05E-05 4.58 3.93E-06 4.55

dimensional wavy grid is formulated as follows:

xi,j = xmin + ∆x0

[

(i − 1) + Ax sin
nxyπ(j − 1)∆y0

Ly

]

,

yi,j = ymin + ∆y0

[

(j − 1) + Ay sin
nyxπ(i − 1)∆x0

Lx

]

, (34)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax,

∆x0 = Lx

Imax−1
, ∆y0 = Ly

Jmax−1
,

xmin = −Lx

2
, ymin = −Ly

2
.

The parameters for the wavy grid are Lx = Ly = 16, Ax∆x0 = 0.4, Ay∆y0 = 0.8, and

nxy = nyx = 6. Similar to the uniform grids, three different grids, with 41 × 41, 81 × 81

and 161×161 grid points, are used. ∆t is set to be 1/30, 1/120 and 1/480 for the 41×41,

81 × 81 and 161 × 161 grids respectively. The L2 errors and orders of accuracy in the

swirl velocity are presented in Table 6. These numerical results show that all the four

schemes can again achieve close to the designed fifth order accuracy. Fig. 7 shows the

computational grid and the vorticity magnitude distributions for the initial conditions

and the four schemes at t = 32 on the most coarse gird. In Fig. 8, the swirl velocity

on the η-constant line passing through the vortex center are plotted. These figures

demonstrate that S-R, A-LF and A-HLLC can preserve the vortex strength and swirl

velocity qualitatively compared with the exact solutions, while S-LF has significantly

worse performance. This may be caused by the high diffusive nature of the Lax-Friedrichs

flux splitting in which the wavy grid participates.

Example 7. Now, the vortex preserving property on the randomized grids is examined.

Uniform grids constructed for the region −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8 with 41× 41 grid
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Table 6: L2 errors in the swirl velocity of the two-dimensional moving vortex problem
on the wavy grid.

S-LF S-R A-LF A-HLLC

Nx × Ny L2 errors order L2 error order L2 errors order L2 error order

41 × 41 6.12E-02 – 2.83E-02 – 3.58E-02 – 2.11E-02 –
81 × 81 5.72E-03 3.42 2.28E-03 3.63 2.79E-03 3.69 1.36E-03 3.96

161 × 161 2.29E-04 4.64 1.26E-04 4.17 1.23E-04 4.50 6.47E-05 4.39

points are randomized with 20% magnitude grid spacing in a random direction. Time

step ∆t = 0.01 and numerical solutions are shown at the final time t = 32, at which point

the vortex moves back to the same position as the initial condition. Fig. 9 shows the

computational grid and vorticity magnitude distribution for the initial condition and the

solutions at t = 32. Fig. 10 shows the swirl velocity on the η-constant line approximately

passing through the vortex center. Results for S-LF and S-R show large numerical errors

owing to the grid distortions. This indicates that metric canceling has a strong effect on

the randomized grid. The result for the S-R scheme is different from that of the strongly

wavy grid. This should be due to the discontinuity in the derivatives of the randomized

grid points, whereas the strongly wavy grid does not have such a discontinuity, at least

analytically. We emphasize that conservative finite difference schemes are not designed

for grids with discontinuous derivatives [4]. However, in practice low quality grids may

appear and we would still like to reduce numerical artifacts when finite difference schemes

are used on such grids.

Example 8. Next, we conduct vortex preserving test on a grid with an abrupt change

in grid spacing. The computational grid is −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8. Abrupt changes

are imposed in the streamwise spatial distribution at x = −4(S1) and x = 4(S2). At

the location S1, the mesh spacing is suddenly halved from ∆x2 = 0.4 to ∆x1 = 0.2.

Conversely, at S2, the mesh is abruptly coarsened back to ∆x2. Periodic boundary

conditions are applied in both coordinate directions. The grid is uniform in the y-

direction with ∆y = ∆x1. ∆t = 0.01, and the computation is then carried out until

21



t = 32. From Fig. 11 and Fig. 12, we can see that S-R, A-LF and A-HLLC can preserve

the vortex, while S-LF has a large error, which may again be caused by the high diffusive

nature of the Lax-Friedrichs flux splitting in which the abrupt-changing grid participates.

Example 9. In this example, we test our problems on the mesh which exhibits a

localized abrupt change in the slope of 45◦ at x = 0. ∆x = 0.4 and ∆y = 0.4. Numerical

solutions are shown at t = 32 in Fig. 13 and Fig. 14, and ∆t = 0.01. We can see that

all the four schemes can preserve the vortex for the mesh with localized abrupt change.

Example 10. Finally, we test the two-dimensional moving vortex problems on a dy-

namical wavy grid formulated as follows:

xi,j(τ) = xmin + ∆x0

[

(i − 1) + Ax sin(2πωτ) sin
nxyπ(j − 1)∆y0

Ly

]

,

yi,j(τ) = ymin + ∆y0

[

(j − 1) + Ay sin(2πωτ) sin
nyxπ(i − 1)∆x0

Lx

]

, (35)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax,

∆x0 = Lx

Imax−1
, ∆y0 = Ly

Jmax−1
,

xmin = −Lx

2
, ymin = −Ly

2
.

The parameters for the wavy grid are Lx = Ly = 16, Ax∆x0 = Ay∆y0 = 0.6, and

nxy = nyx = 6. Similar to the uniform grids, three different grids with 41 × 41, 81 × 81

and 161 × 161 grid points are used. ∆t is set to 1/50, 1/200 and 1/800 for the 41 × 41,

81 × 81 and 161 × 161 grids respectively. L2 errors in the swirl velocity are listed in

Table 7, and vorticity magnitude distributions and swirl velocity distributions on the

line approximately passing through the vortex center at the final time t = 32 are shown

in Fig. 15 and Fig. 16. Compared with S-LF and S-R, A-LF and A-HLLC have better

performance, which shows that metric canceling has a strong effect on the dynamically

changing grids. Similar to the stationary wavy grids, the large error and distortion

of the vortex for the S-LF scheme may be caused by the high diffusive nature of the

Lax-Friedrichs flux splitting in which the changing wavy grid participates.
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Table 7: L2 errors in the swirl velocity of the two-dimensional moving vortex problem
on the dynamically changing wavy grid.

S-LF S-R A-LF A-HLLC

Nx × Ny L2 errors order L2 error order L2 errors order L2 error order

41 × 41 6.16E-02 – 4.04E-02 – 3.08E-02 – 1.66E-02 –
81 × 81 5.77E-03 3.42 3.70E-03 3.45 1.91E-03 4.01 9.45E-04 4.13

161 × 161 3.15E-04 4.19 2.40E-04 3.95 7.93E-05 4.59 4.12E-05 4.52

4.3 Flow past a cylinder

Example 11. In this test, we use the schemes to simulate the supersonic flow past a

cylinder. In the physical space, a cylinder of unit radius is positioned at the origin on

the x-y plane. The computational domain is chosen to be [0, 1]× [0, 1] on the ξ-η plane.

The mapping between the computational domain and the physical domain is

x = (Rx − (Rx − 1)ξ) cos(θ(2η − 1)),

y = (Ry − (Ry − 1)ξ) sin(θ(2η − 1)).

Here we take Rx = 3, Ry = 6, and θ = 5π/12. A uniform mesh of 60 × 80 in the

computational domain is used. An illustration of the mesh in the physical space is shown

in Fig. 17(a), which draws every other grid line. The problem is initialized by a Mach

3 shock moving toward the cylinder from the left. The reflective boundary condition

is imposed at the surface of the cylinder, i.e., ξ = 1, the inflow boundary condition is

applied at ξ = 0, and the outflow boundary condition is applied η = 0, 1. From Fig.

17, we can see that all the four schemes can simulate the supersonic flow past a cylinder

well.

5 Concluding remarks

In this paper, we have discussed the performance of conservative finite difference WENO

schemes based on an alternative flux formulation [10, 5] on generalized meshes, and

compared their performance preserving free-stream and vortex solution with those of
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the standard finite difference WENO schemes. In our scheme with the alternative flux

formulation, the WENO interpolation of the solution and its derivatives are used to

directly construct the numerical flux, instead of the usual practice of reconstructing the

flux functions. Thus, the numerical technique of Visbal and Gaitonde [13] for free-stream

preservation is applicable to the scheme with the alternative flux formulation but not

to the standard finite difference WENO schemes based on the reconstruction of the flux

functions.

The free-stream and vortex preservation properties for the new schemes have been

investigated both theoretically and numerically. Regarding the free-stream preserving

tests, it has been found that the scheme with the alternative flux formulation can preserve

the free-stream condition on both stationary and dynamically changing meshes, while the

standard WENO schemes cannot. Through the vortex preservation tests, we have found

that the standard finite difference WENO schemes have a rather large error arising from

the metric terms on randomized and moving grids, while the finite difference WENO

schemes with the alternative flux formulation based both on the Lax-Friedrichs flux

and on the HLLC flux can simulate the vortex well for all grids. For the problem of

flow passing a cylinder, both the scheme with the alternative flux formulation and the

standard WENO schemes can simulate the solution well.
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Figure 5: Vorticity magnitude distribution of the results of two-dimensional moving
vortex problem on the coarsest uniform grid. Here, 21 contours from 0.0 to 6.0 are
shown.
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Figure 6: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on the coarsest uniform
grid.
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Figure 7: Vorticity magnitude distribution of the results of two-dimensional moving
vortex problem on the coarsest wavy grid. Here, 21 contours from 0.0 to 6.0 are shown.
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Figure 8: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on the coarsest wavy grid.
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Figure 9: Vorticity magnitude distribution of the results of two-dimensional moving
vortex problem on the random grid. Here, 21 contours from 0.0 to 6.0 are shown.
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Figure 10: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on the random grid.
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Figure 11: Vorticity magnitude distribution of the results of two-dimensional moving
vortex problem on a mesh with sudden jumps in grid spacing. Here, 21 contours from
0.0 to 6.0 are shown.
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Figure 12: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on a mesh with sudden
jumps in grid spacing.
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Figure 13: Vorticity magnitude distribution of the results of two-dimensional moving
vortex problem on a mesh with localized abrupt change. Here, 21 contours from 0.0 to
6.0 are shown.
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Figure 14: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on a mesh with localized
abrupt change.
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Figure 15: Vorticity magnitude distribution of the results of the two-dimensional moving
vortex problem on the coarsest dynamically changing grid. Here, 21 contours from 0.0
to 6.0 are shown.
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Figure 16: Swirl velocity distributions on the line approximately passing through the
vortex center of the two-dimensional moving vortex problem on the coarsest dynamically
changing grid.
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(a) physical grid 30 × 40
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Figure 17: Flow past a cylinder. (a) an illustration of the physical grid (drawing every
other grid line); (b)-(e) pressure on the mesh 60 × 80.
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