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ABSTRACT

We use a suite of cosmological hydrodynamic simulations, run by two fixed

grid codes, to investigate the properties of solenoidal and dilatational motions

of the intergalactic medium (IGM), and the impact of numerical viscosity on

turbulence in a LCDM universe. The codes differ only in the spatial difference

discretization. We find that (1) The vortical motion grows rapidly since z = 2,

and reaches ∼ 10km/s − 90km/s at z = 0. Meanwhile, the small-scale com-

pressive ratio rCS drops from 0.84 to 0.47, indicating comparable vortical and

compressive motions at present. (2) Power spectra of the solenoidal velocity pos-

sess two regimes, ∝ k−0.89 and ∝ k−2.02, while the total and dilatational velocity

follow the scaling k−1.88 and k−2.20 respectively in the turbulent range. The IGM

turbulence may contain two distinct phases, the supersonic and post-supersonic

phases. (3) The non-thermal pressure support, measured by the vortical kinetic

energy, is comparable with the thermal pressure for ρb ≃ 10−100, or T < 105.5K

at z = 0.0. The deviation of the baryon fraction from the cosmic mean shows

a preliminary positive correlation with the turbulence pressure support. (4) A

relatively higher numerical viscosity would dissipate both the compressive and

vortical motions of the IGM into thermal energy more effectively, resulting in

less developed vorticity, remarkably shortened inertial range, and leading to non-

negligible uncertainty in the thermal history of gas accretion . Shocks in regions
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outside of clusters are significantly suppressed by numerical viscosity since z = 2,

which may directly cause the different levels of turbulence between two codes.

Subject headings: cosmology: theory - intergalactic medium - large-scale struc-

ture of the universe - methods: numerical

1. Introduction

The intergalactic medium (IGM) feeds the growth of galaxies and receives feedback from

star formation and even more violent activity like AGN in galaxies. The dynamical and ther-

mal states of the intergalactic medium reflect this mutual process and are important factors

to interpret many observations, such as the lymann alpha forest and the metal absorption

lines in the spectra of high redshift objects, which could in turn support the structure for-

mation theory. Moreover, more information on the state of the IGM would shed light on

the so-called missing baryon problem at low redshift. The observed baryons in galaxies only

account for one-tenth of the cosmic baryon content that given by the high redshift Lyα lines

and the cosmic microwave background (CMB) studies (Fukugita, Hogan, & Peebles et al.

1998; Bregman 2007 and references therein).

The thermal state of the IGM has been thoroughly studied by cosmological hydrody-

namical simulations since the late 1990s. Most of those works predicted that the majority

of baryons rest in the warm (104 < T < 105), and the warm-hot (105 < T < 107) IGM,

i.e., WHIM (e,g., Cen & Qstriker 1999; Dave et al. 1999; Dave et al. 2001; Cen & Ostriker

2006). Many efforts have been made by observers to detect the WHIM in the low density

regions (Bregman 2007). The dynamical state of the IGM, however, has not gained much

attention. Adhesion models have been applied to describe the evolution of the distribution

of baryonic gas in the mildly non-linear regimes in analytic works(Jones 1999; Matarrese

& Mohayaee 2002), which, however, may only work for baryon density contrast < 5 ∼ 10

and can not capture the complex pattern of baryonic flow in the highly non-linear regimes.

As an emerging subject, the turbulence in the IGM has invoked growing interest in recent

years. Observationally, Zheng et al. (2004) fitted the H I and He II absorption lines in the

high quality spectra of quasar HE 2347-4342 and found comparable velocities of hydrogen

and He ions, suggesting a turbulence dominated velocity field in the IGM between z = 2.0

and 2.9. Estimation of the turbulent velocity in galaxy groups and clusters are available in

recent years via direct and indirect observational means, giving weakly constrained upper

limits of hundreds km s−1(Churazov et al. 2004; Sanders et al. 2010, 2011,2013;Bulbul et

al. 2012) .
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He et al. (2006) studied the intermittency of the velocity field of cosmic baryons in

cosmological simulation, indicating that the motion of baryons might be turbulent on large

scales. Ryu et al. (2008) found that vorticity could induce turbulent-flow motions in the IGM

and amplify the intergalactic magnetic fields. Oppenheimer & Dave (2009) used cosmological

simulations to model the O VI absorbers at z < 0.5 and required a density-dependent sub-

resolution turbulent motion in the IGM to match the observation results. Tepper-Garcia

et al. (2011) also found the necessity of turbulence in the IGM that was not captured in

their simulation to mimic the OVI absorbers at low redshift. In a previous paper Zhu, Feng,

& Fang (2010) (hereafter ZFF2010), we studied the evolution of vorticity and its power

spectrum in the IGM, and showed that the IGM is highly turbulent in the range from a

couple of Mpc down to hundreds of kpc at low redshifts.

An elementary understanding about the turbulence injection in the IGM has been es-

tablished, although many details remain unknown. Cosmological hydrodynamic simulations

show that supersonic gas motions will develop during the hierarchical structure formation

(Ryu et al. 2003; Pfrommer et al. 2006; Skillman et al. 2008;Vazza et al. 2009). Those

supersonic flow motions, driven by the baryon gas accreting to sheets and filaments, and

gaseous haloes merging with each other, could efficiently induce vorticity in the intergalactic

velocity field and then trigger turbulence (Ryu et al. 2008; ZFF2010). In addition to the

cosmological shocks and vorticity, the shear flows produced by the ram pressure stripping

of protogalactic and collapsed objects moving in the IGM will bring turbulent motions too.

Also, galactic outflows driven by starburst and AGN might inject turbulent kinetic energy

into cluster outskirts (Evoli & Ferrara 2011). Iapichinio et al. (2011) used sub-grid scale

model to include the unresolved small scale turbulence in their analysis of turbulent kinetic

energy evolution as a function of redshifts, and speculated that shock interactions and merger

induced shear flows should be the main source for the production of turbulence in the WHIM

and ICM, respectively.

Meanwhile, properties of compressible and supersonic isotropic turbulence in the con-

text of fluid dynamics and interstellar medium study have been investigated in more details

in the past two decades (e.g., Kida & Orszag 1990, 1992; Porter et al. 1992, 1994, 1998;

Kritsuk et al. 2007; Federrath et al. 2010). Statistics of velocity and its two components,

including power spectra and structure functions, show that both decaying and forced su-

personic turbulence behave differently from incompressible Kolmogorov-type turbulence. As

the turbulence in the IGM is likely mainly produced by cosmic shocks, its scaling law may

also deviate from the classical Kolmogorov’s. Actually, the power spectra of the velocity

(Ryu et al. 2008, He et al. 2006) and kinetic energy (ZFF2010) of the IGM have already

exhibited non-Kolmogorov features.
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Moreover, the velocity field of the IGM would be dilatationally dominated at high

redshifts, because the driving force, gravity, is curl-free. As vortices emerge at low redshifts,

the velocity field would transfer into solenoidal domination within the turbulence inertial

range, driven by dilatational forcing. The evolution of vorticity and divergence, and their

corresponding velocity components, solenoidal and dilatational velocity, would be an essential

probe to the transfer process. More solid results concerning those fundamental characteristics

can enrich and verify our knowledge of turbulence in the IGM.

On the other hand, the numerical viscosity in cosmological hydrodynamic simulation

codes may have a significant impact on the development of turbulence in the IGM. Because

of the relatively low density in comparison with the Earth’s gas, the IGM is estimated to

have very high Reynolds number( e.g. 1013 in Gregori et al. 2012). For the hot intra-cluster

medium, however, the physical viscosity may be non-negligible. Fabian et al. (2003a,b) gave

an estimated Reynolds number of ∼ 1000 in the central region of the Persues cluster, and

suggested that the viscosity dissipation would be important in the inner tens of kpc. The

physical viscosity of the ICM have been considered and implemented into cluster formation

simulations(e.g., Sijacki& Springel 2006; Dong&Stone et al. 2009; Suzuki et al. 2013). Oth-

erwise, the cosmic gas component is usually assumed to be non-viscous and governed by the

cosmological version of the Euler equation. Despite that many efforts have been made to

reduce it, numerical viscosity remains non-negligible in almost all of the codes and bring

additional numerical dissipation with respect to the physical dissipating mechanisms includ-

ing Jeans dissipation and shock heating. Numerical viscosity will damp the flow instabilities

and shock waves, and smearing out substructure in cosmological hydrodynamic simulations,

which has been confirmed by many code comparison works (e.g., Agertz et al. 2007; Vazza et

al. 2011; Bauer & Springel, 2012). Dolag et al. 2005 found that the numerical viscosity in the

smoothed particle hydrodynamics (SPH) method can artificially suppress the turbulent mo-

tions in the intra-cluster medium. Nelson et al. (2013) proposed that the turbulent motions

on large scales could be spuriously dissipated into thermal energy by numerical viscosity,

which would keep the baryonic gas locked in the diffuse, hot and low density halos of central

galaxies, and consequently slow down the hot gas accretion by an order of magnitude. Hence,

the various levels of numerical viscosity in different codes are expected to lead to different

intensity of turbulence in the IGM. To obtain a more concrete understanding of turbulence

in the IGM, the impact of numerical viscosity needs to be investigated comprehensively.

Using two kinds of fixed mesh methods with different levels of numerical viscosity, we

performed a suite of high resolution cosmological hydrodynamical simulations to investigate

the properties of solenoidal and dilatational velocity fields, and made comparison between

two codes regarding turbulence and shocks development in the IGM. Differences between

samples run by these two codes allowed us to assess the impact of numerical viscosity, and
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in turn provided more details on the production and evolution of turbulence, which would

help to build a more reliable history of gas accreting onto virialized structures.

This paper is organized as following. In §2, we give a short introduction to the numerical

methods used in this work and then present some simulation details. §3 investigates the

properties of vorticity and divergence in the IGM in our simulation samples. Statistics of

solenoidal and dilatational velocity, and non-thermal pressure provided by the solenoidal

motion are studied in §4. Then we analyze the distribution of cosmic shocks in simulations

run by these two different schemes with the same resolution in §5. Discussion and concluding

remarks are summarized in §6. The numerical tests for code comparison and resolution

convergence are presented in the Appendix.

2. Numerical Methods

2.1. TVD scheme

In the literature, many modern difference schemes are referred as total variation di-

minishing (TVD) method, as long as they fulfill the TVD nonlinear stability condition for

scalar model problems and linear systems, which was first suggested by Harten (1983). In

this work, we will use Harten’s original, explicit, second-order TVD scheme, and expand it

to three dimension by dimension splitting(Strang 1968). This scheme will be implemented

into the cosmological context in almost the same way as in Ryu et al. (1993), except for

the treatment of internal energy in order to improve its performance in high Mach number

regions. Usually, non-negligible errors may appear in hypersonic regions if the thermal en-

ergy is calculated by subtracting the kinetic energy from the total energy, and sometimes

this leads to negative density and pressure. In Ryu et al. (1993), a modified entropy method

was used to solve the thermal energy accurately. In this work, we employ the entropy based

dual energy method in Feng et al. (2004) to track the thermal energy for the TVD scheme.

2.2. Positive-Preserving WENO Scheme

The weighted essentially non-oscillatory (WENO) scheme is a high-order finite difference

scheme first developed by Jiang & Shu (1996). The WENO scheme can simultaneously

achieve high order accuracy in smooth region, and sharp transition at shock or contact

discontinuity surface (Shu 1998, 1999). Feng et al. (2004) implemented the fifth order finite

difference WENO scheme into the context of cosmological application and demonstrated its

capacity of capturing strong shocks and complex flow pattern emerging in cosmic structure
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formation.

Very recently, Zhang & Shu (2012) designed a positivity-preserving strategy combining

with high order finite difference WENO scheme, which could successfully keep the positivity

of density and pressure during simulation without losing conservation and high order accu-

racy, and highly improved the performance of the WENO scheme in solving hypersonic flows.

Details about the positive-preserving WENO scheme can be found in the Appendix. The

global Lax-Friedrichs flux splitting method is used in this work, which is more robust and

compatible with the positivity-preserving method than the local Lax-Friedrichs flux split-

ting used in ZFF2010. This change results in a looser restriction on the cfl number and less

dispersion over spherical shock front, shown by the Sod shock tube, and Sedov blast wave

tests presented in the Appendix, where the performance of the WENO and TVD schemes

are given.

2.3. Cosmological Simulation Set Up

We use the WENO and TVD schemes for ideal fluid dynamics, coupled with the stan-

dard particle-mesh method for gravity calculation. In particular, the early WENO scheme

employed in Feng et al.(2004) is updated with the positivity-preserving version, which main-

tains the positivity of physical quantities. Except for the spatial difference discretizations,

all the other modules are the same in both codes, including the gravity solver, time difference

scheme, cooling and heating processes. The time integrations are performed using the third

order low storage Runge-Kutta method.

All the cosmological simulations are performed in a periodic cubic box of size 25 h−1

Mpc in a LCDM universe. The cosmological parameters are set to the WMAP5 result

(Komatsu et al. 2009), i.e., (Ωm,ΩΛ, h, σ8,Ωb, ns) = (0.274, 0.726, 0.705, 0.812, 0.0456, 0.96).

We run simulations with equal number of grid cells and dark matter particles, one set with

5123 evolved by the WENO and TVD schemes respectively, and another with 10243 evolved

by the WENO scheme only. The 5123 runs have a grid resolution of 47.7 h−1 kpc, and a

mass resolution of 1.04 × 107 M⊙ for the dark matter particle. The effect of re-ionization

is included by adding a uniform UV background that is switched on at z = 11.0, and the

radiative cooling and heating processes are modeled in the same way as Theuns et al. (1998),

with a primordial composition (X = 0.76, y = 0.24). Star formation and its feedback are

not taken into account. All the simulations start at redshift 99 and end at 0, We will refer a

specific simulation run in the form of, e.g., ’WENO-512’, where the terms before and after

the dash stand for the hydro scheme and one-dimensional scale, respectively.
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3. Vorticity and Compressibility in the IGM

In Ryu et al. (2008) and ZFF2010, the vorticity of the IGM velocity field and its power

spectra have been demonstrated to be good indicators of turbulence. This section is to

investigate the behavior of these indicators in our simulation samples. As a useful probe

to the growth history of solenoidal motions with respect to dilatational motions under a

curl-free forcing, the relative importance of vorticity to divergence will also be addressed by

the small scale compressive ratio.

3.1. Vorticity Distribution

The vorticity of the IGM velocity field is defined as ~ω = ∇×v. The dynamical equation

of the modules of vorticity vector, ω ≡ |~ω|, in the IGM reads as (ZFF2010)

Dω

Dt
≡ ∂tω +

1

a
v · ∇ω =

1

a

[

αω − dω +
1

ρ2
~ξ · (∇ρ×∇p)− ȧω

]

, (1)

where ~ξ = ~ω/ω, α = ~ξ · (~ξ · ∇)v, and d = ∂ivi is the divergence of the velocity field.

According to eqn.(1), the generation of vorticity in the IGM can be attributed to the

baroclinity term, (1/ρ2)∇ρ × ∇p. A non-zero baroclinity means the gradient of pressure

and density are not parallel to each other, which occurs in curved shocks and complex flow

structures. Stretched by the first term on the right hand side (RHS) of Eq(1), the vorticity

structures will expand or contract along the local baryon gas flow. Meanwhile, the vorticity

in the IGM will be attenuated by the cosmic expansion. Normalized by the cosmic time

t, the vortical motion of fluid is usually measured by the dimensionless quantity ωt, which

actually characterizes the number of turn-overs that vortices can make within the cosmic

time.

Figure 1 presents a straightforward view of the distribution of dark and baryonic matter,

and vorticity in a slice of depth 250h−1 kpc, which are extracted from the WENO-512 and

TVD-512 simulation samples respectively. The dark matter density field is constructed by

partitioning the particle masses onto the grid cells using the Triangular Shaped Cloud (TSC)

mass assignment scheme. The vorticity field is obtained by the fourth order finite difference

of ~ω = ∇× v at grid cells in a post simulation procedure.

We first take a look at the density field. While a subtle difference can be found in the

dark matter distribution between two codes, the difference in the baryonic gas distribution

is significant. The gaseous structures in the WENO sample are more well developed than

their counterpart in the TVD sample. Since the WENO code attains high order accuracy,
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Fig. 1.— Dark and baryonic matter density, in unit of the cosmic mean, and vorticity

normalized by cosmic time in a slice of 25× 25× 0.25 h−3 Mpc3 in the 5123 simulations at

z = 0 . The top (middle) row gives dark (baryonic) matter density, and the bottom row is

vorticity. The left (right) column is extracted from the WENO-512 (TVD-512) simulation.
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it resolves more sub-structures within the high-density regions. For example, we call the

reader’s attention to the gaseous halo located at ∼ (0.7, 0.2), where two gaseous density

peaks are sharply resolved in the WENO sample, however, only a single clumpy core can be

found in the TVD sample.

Fig. 2.—Mass distribution as function of gas density and temperature in the 5123 simulations

run by the WENO and TVD codes at z = 0.0. Left: WENO-512. Right: TVD-512.

This trend is shown more clearly by the gas mass fraction distribution in the density-

temperature space, as displayed in Fig. 2. Once the normalized over-density exceeds 10,

gaseous structures in the WENO-512 run would go through a relatively more rapid growth

in density, and slower growth in temperature than the TVD-512 run. This difference may

partly result from the different levels of numerical viscosity. The relatively higher numerical

viscosity in the TVD scheme could artificially dissipate the kinetic energy associated with

both compressible and incompressible motions into thermal energy more effectively, and

hence smear out gaseous density transition in the process of structure formation. Despite

the different resolution and scope, this is in analogous to the mechanism that Nelson et

al. (2013) described, by which the turbulent motions on large scales in the SPH-based

Gadget simulation are spuriously dissipated into thermal energy, rather than realistically

dissipated by cascading to smaller scales in the AREPO. Consequently, part of the baryonic

gas component is locked in the diffuse, hot halos of central galaxies in the SPH code, instead

of accreting, cooling and entering into more over-dense central region.

Fig. 1 demonstrates that highly developed vortices also shows filamentary and knotted

structures. ωt can be as high as ∼ 100, i.e., the turn-over time is about 1Gyr at z = 0.

The difference in the vorticity field between two samples shows a similar trend as in the

baryonic matter. Vorticity in the WENO-512 simulation has a higher magnitude and more

concentrated configuration. Both the vorticity and baryonic density fluctuation variations



– 10 –

in the TVD-512 sample lag than those in the WENO-512 sample.

Fig. 3.— Probability distribution function of the normalized vorticity ωt in the 5123 and

10243 simulations run by the WENO and TVD codes at z = 2.0, 0.0.

The probability distribution functions of vorticity in the 5123 and 10243 simulations are

given in Fig. 3. Long, extended tails are present in the WENO-1024 since z = 2, confirming

the results in ZFF2010. The discrepancy between the WENO and TVD schemes is found to

appear earlier than z = 2 and is much more evident at z = 0. We note that the vorticity in

the WENO-512 simulation is under-developed compared to that in ZFF2010, especially for

ωt > 20, even though the resolution is the same. The difference should be mainly introduced

by the different flux splitting methods. The local Lax-Friedrichs method in ZFF2010 bears

more dispersion and slightly less dissipation.

3.2. Vorticity Power Spectrum and Turbulence-Developed Range

The power spectra of vorticity can be further used to estimate the ranges of spatial scale

within which turbulence have been fully developed in the IGM. According to the condition

suggested by Batchelor (1959), fully developed turbulence within a given scale range should

satisfy the equality in wavenumber space,

Pω(k) ≈ k2Pv(k), (2)

where k is the wavelength, Pω(k) and Pv(k) are the Fourier power spectra of vorticity and

velocity, respectively. Namely, in the regions that turbulence is highly developed, the fluc-

tuating velocity should be dominated by the curl component. In practice, we label the scale

range where the margin is less than ∼ 0.3 dex as the turbulent scale range.
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Fig. 4.— Left: Power spectra of vorticity at z = 2.0, 1.0, 0.5, 0.0, arranged in bottom-up

order. Solid, dashed and long dashed lines represent the WENO-1024, WENO-512 and

TVD-512 results. Right: Power spectra of velocity and vorticity in the 5123 and 10243

samples at z = 0. The lines of the 5123 samples have been shifted down by an order of

magnitude for the sake of clarity.

The evolution of vorticity power spectra since z = 2 is given in Fig. 4, which suggests

that most of the power is gained between z = 2.0 and z = 0.5, the same epoch in which

the cosmic structure formation activity is the most violent. Both the differences between

samples produced by different schemes with the same resolution, and by different resolution

with the WENO scheme are very significant under ∼ 1.0 h−1 Mpc, and can date back to

z = 2.0. The former could only result from the effect of dissipation by numerical viscosity,

and the latter would be caused by the gravity force resolution additionally. The margins

keep growing as the scale decreases down to ∼ 200 h−1 kpc, and reach about an order of

magnitude. Difference can barely be found at scales larger than ∼ 2 h−1 Mpc.

In Fig. 4, we also compare the power spectra of velocity and vorticity at z = 0.0.

The turbulence scale range inferred from Eq.(2) are around 300 h−1kpc − 2 h−1 Mpc and

600 h−1 kpc − 2 h−1 Mpc in the WENO-512 and TVD-512 samples, respectively. The

turbulent range in the WENO-1024 run is about ∼ 200 h−1 kpc−2 h−1 Mpc at z = 0, which

is basically consistent with the result in ZFF2010, although the higher dispersion introduced

by the local flux splitting likely have artificially expanded the turbulence range there. Both

the total velocity and its curl part in the IGM would be effectively damped if a considerable

numerical viscosity exists. Actually, the damping effect of numerical diffusion on the velocity

fluctuation has been observed in hydro-only, supersonic turbulence. While the upper end

lu of the IGM turbulent range is robust, higher numerical viscosity would lead to a larger

dissipation scale, ld, and hence a shorter turbulent range. Results of the positivity-preserving
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WENO schemes in this paper show a much weaker so called bottleneck effect (Kritsuk et al.

2007) near the dissipation scale than in ZFF2010.

3.3. Compressive Ratio

Fig. 5.— Left: Small-scale compressive ratio in the WENO-1024 (triangle), WENO-512

(square) and TVD-512 (cross) simulations since z = 2. Right: Small-scale compressive ratio

in different baryonic density bins in the WENO-1024 simulation.

During the hierarchical structure formation, the motions of the IGM are driven by the

curl-free gravity field, and hence are dominated by the compressive mode initially in both the

linear and the quasi-linear regimes. The vortical motion, mostly produced by the baroclinity

in the post regions of curved shocks, develops rapidly since z ∼ 2 and can overwhelm

the compressive motion within the turbulence range. To characterize this transition, we

investigate the relative importance of the vortical over the compressible motions by the so

called small-scale compressive ratio (Kida & Orszag 1992)

rCS =
< |∇ · v|2 >

< |∇ · v|2 > + < |∇ × v|2 >
=

< d2 >

< d2 > + < ω2 >
(3)

Fig. 5 gives the small-scale compressive ratio rCS in the 5123 and 10243 simulations.

The vortical motion undergoes a dramatic growth at z < 2, and is comparable to the

compressive motion in the 10243 simulation at z = 0.0, Consequently rCS drops from 0.84 to

0.47 during this period. The magnitude of rCS at z = 0 is close to the compressively driven

isothermal turbulence with root mean square Mach number ≃ 2.5 in Schmidt et al(2009),

and higher than the time-averaged value, 0.28, for the isothermal turbulence with Mach
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number M ≃ 6.0 in Kritsuk et al (2007). Lower resolution and relatively higher numerical

viscosity attenuate this transition and result in relatively higher compressive ratio. rCS is

about 0.66 at z = 0. in the TVD-512 sample, suggesting the motion of the IGM is still

dominated by the compressive mode.

We calculate rCS in different gas density bins in the 10243 simulation, which is also

presented in Fig. 5. In regions with baryonic density ρb . 103, the vortical motion grows

rapidly since z = 2.0. For ρb . 102, the curl velocity can overwhelm the compressive part

as early as z = 1.0. Moreover, rCS can be as low as 0.2 for ρb ≃ 100 at z = 0.0. Comparing

with the compressive motions, the vortical motion grows more rapidly before entering into

outskirts of clusters, i.e, ρb ∼ 100, In the clusters and their outskirts, the vortical motion

may dissipate faster than the compressive motions. The magnitude of rcs here is volume

weighted, which would be significantly higher than the corresponding mass-weighted. The

discrepancy in Schmidt et al.(2009) is around 0.2 ∼ 0.3 dex, comparable with the difference

between our results and the mass weighted value in Iapichino et al.(2011).

4. Properties of Curl and Compressive Velocity

In this section, we focus on the two components of the velocity field of the IGM, ~V ,

which can be separated by the Helmholtz-Hodge decomposition (Ryu et al. 2008; Sagaut &

Cambon et al. 2008).
~V = ~Vcurl + ~Vdiv + ~Vunif (4)

where, ~Vcurl is the divergence-free curl velocity associated with the vorticity, ∇ · ~Vcurl = 0

and ∇× ~Vcurl = ∇× ~V ; ~Vdiv is the curl-free component, ∇× ~Vdiv = 0 and ∇ · ~Vdiv = ∇ · ~V .

The curl-free component ~Vdiv represents the compressive velocity. The remaining component
~Vunif is both curl-free and divergence-free, which is actually negligible in the simulation.

4.1. Curl Velocity Distribution

As an example, Fig. 6 shows the velocity field and its curl component projected over

the gas density in the WENO-512 sample in the same slice as Fig.1. The curl velocity is

basically associated with the high vorticity region, consistent with the definition above. The

maximum curl velocity in the slice is 150km/s, relative to 200km/s for the total velocity.

The mean curl velocity as function of gas density, V̄curl(ρb), and temperature, V̄curl(T )

from z = 2.0 to z = 0.0 are presented in Fig. 7. We focus on the region with ρb > 1.0,

where the vorticity and curl velocity are well developed. Correspondingly, the temperature is
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Fig. 6.— Velocity field and its curl component of the IGM projected over gas density in

the same slice as in Fig.1 at z=0, extracted from the WENO-512 sample. The maximum

velocity and curl velocity are around 200km/s and 150km/s in this slice.

generally higher than 104K, as shown in Fig. 2. Both the magnitude and trends are almost

the same in all the simulations. A discrepancy of a few km/s exists all through the range. As

a very small fraction of cells has gas density ρb > 3 × 103 in the TVD samples, comparison

is not available there. Starting at a level of 10km/s at low density or temperature, the

magnitude of ~Vcurl grows rapidly till ρb ∼ 30, or T ∼ 106k, reaches ≃ 90km/s and flattens

out henceforth at z = 0.0. Fig. 7a, also shows our approximation at z=0 as the black solid

line, given

Vcurl(ρb) = 10.0× exp{−[lg(ρb/100.0)]
2}+ 85.0× exp{−[lg(ρb/ρc)/2]

2} km/s, (5)

where, ρc = 200.0/Ωm.

The magnitude in highly over-dense clusters in our simulation is below the weak con-

straints placed by direct or indirect observation methods, i.e, ≃ 200 ∼ 1000km/s(Sanders

et al. 2010, 2011,2013). The absence of recipes dealing with star formation, magnetic fields

and AGN in our simulation may underestimate the turbulent motion in clusters. The level of

10 ∼ 20km/s at z = 2.0 is also lower than the turbulent line broadening in Zheng et al.(2004)

at z ≃ 2.7 by a factor of ≃ 2. In Oppenheimer & Dave (2009), the density-dependent

sub-resolution turbulent velocity added by hand are bturb = 13, 22, 40 and 51 kms−1 for

ρb = 20, 32, 100 and 320 at z = 0.25, in order to match the O VI absorbers in simulation

with observation. The assumed relation between turbulence velocity and density is supposed

to follow the fitting formula vturb = 13.93log(nH)+101.8kms−1, for nH = 10−4.5−10−3.0cm−3.

Their magnitude is lower than our results in the 10243 simulation by ∼ 15 kms−1.

The observed tendency of curl velocity in all the samples would have been affected by the
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Fig. 7.— The curl velocity as function of gas density (left), and temperature (right). Lines

of z = 2.0, 1.0, 0.5, 0.0 are in bottom-up order. The black solid line in the left panel indicates

the approximation at z=0. Asterisks indicate the un-resolved sub-grid turbulent velocity

added by hand in OD09 at z = 0.25.

UV background, structure formation history and dissipation simultaneously. Re-ionization

by the UV background will enhance the thermal energies in our simulations and heat the

gas in the low density regions and damp the pressure fluctuations. Once entering into the

nonlinear regimes, the violent accretion of gas onto sheets and filaments will effectively

produce shocks and vorticity, and hence the curl velocity. Viral relaxation will make the

vorticity decay in the highly nonlinear regimes and flatten the curl velocity function.

As has been shown in Fig.2, there is a notably larger fraction of gases located in the high

density regions in the WENO-512 samples. Difference in the total kinetic turbulent energy

between two codes is considerable, as V̄curl(ρb) is about the same. Rather than cascading

into small scales, a substantial part of the kinetic turbulent energy in the TVD-512 samples

may have been dissipated into thermal energy by numerical viscosity during cosmic structure

formation.

4.2. Curl and Compressive Velocity Power Spectra

For the fully developed turbulence in incompressible fluids, the velocity power spectra

follow the well known Kolmogorov law as Pv(k) ∼ k−5/3 in the inertial range. Since the early

1990s, two- and three-dimensional high resolution simulations of both forced and decaying

supersonic turbulence in the fields of hydrodynamic and interstellar medium, however, show

that the power index of the velocity power spectra deviates from −5/3. A k−2 power law
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is obtained in both mildly and highly compressible turbulence (Porter et al. 1992, 1998;

Kritsuk et al. 2007, Federrath et al. 2010), and is close to the Burgers scaling.

Fig. 8.— Compensated power spectra of velocity (top left), and its compressible (top right)

and curl (bottom left) components in the WENO-1024 simulation at z = 2.0, 1.0, 0.5, 0.0,

arranged in bottom-up order in each panel. Lines of z = 0.5, 1.0, 2.0 have been shifted

down by 0.5, 1.0, 1.5 dex respectively for the sake of clarity. Bottom right: Results of the

WENO-512 and TVD-512 samples at z = 0. Dashed straight lines are the fitted power law.

Fig.8 displays the compensated power spectra of flow velocity, k2Pv(k)(upper left), and

the curl, k2Pv,curl(k) (lower left) as well as the compressive components k2Pv,div(k) (upper

right) measured in our highest resolution run, WENO-1024. Clearly, k2Pv,curl(k) overwhelms

k2Pv,div(k) in the inertial range of fully developed turbulence identified by Eqn.(2). At z = 0,

the velocity power spectra is found to be well fitted by k−1.88 within the turbulence range.

Actually, this scaling behavior was established as early as z = 1.0. Similarily, the power

spectra of the compressible velocity follows a scaling law of k−2.20 in the same range. While

for the curl velocity, the scaling behavior shows a transition from k−0.89 to k−2.02. The
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transition scale lt grows along with the development of turbulence, namely, grows with the

cosmic time as the upper-end scale, lu, does. For instance, for the WENO-1024 simulation,

lt is about 0.32h−1Mpc at z = 2. and goes up to 0.68h−1Mpc at z = 0. Meanwhile, the

range for the fully developed turbulence is enlarged from 0.2 ∼ 0.6h−1Mpc at z = 2 to

0.2 ∼ 2.0h−1Mpc at z = 0. The same scaling law is also justified in the 5123 samples , but

the disspation scale, ld, is found to be a little bit larger than the WENO-1024 samples due

to the numerical viscosity. For the WENO-512, it is about 0.3h−1Mpc. The 5123 samples

follow the same scaling law in their shortened turbulence inertial range, with lt is enlarged

as ld does due to numerical viscosity.

The scaling law of the velocity power spectrum in our samples indicates that the tur-

bulence in the IGM is more likely following the Burgers turbulence scaling between lt and

ld, consistent with results in previous works of supersonic isotropic turbulence (Porter et al.

1992, 1998; Kritsuk et al. 2007, Federrath et al. 2010). This range would correspond to

the supersonic phase, as proposed by Porter et al. (1992, 1994), where both the curl and

compressive velocity power spectra follow ∼ k−2. During this phase, the vorticity can be

effectively produced by the baroclinity term, as shocks form and interact with each other.

The error introduced by the bottleneck effect, of which more details can be found in Kritsuk

et al. 2007, is about 0.05 in the power index of the total velocity spectrum.

On the other hand, the velocity field in the turbulence range between the transition

scale, lt, and the upper-end scale, lu, exhibits a similar scaling as the post-supersonic phase

in Porter et al. (1992, 1994), where the compressive velocity component still follows a ∼ k−2

law while the curl velocity follows a ∼ k−1 law. The vorticity evolution in this phase is

subject to subsonic vorticity dynamics, dominated by vortex interaction and decay, although

shocks are still active. In summary, turbulence in the IGM may possess two different phases

simultaneously.

4.3. Turbulent Pressure Support and Baryon Fraction

The vortical motions would provide a non-thermal turbulent pressure during gravita-

tional collapse (Chandrasekhar 1951a, 1951b). Ryu et al. (2008) used the kinetic energy

associated with vortices, ρV 2
curl/2, to estimate the kinetic turbulent energy in the IGM. The

turbulence pressure support is then measured by the ratio of εtur ∼ ρV 2
curl/2 to the internal

thermal energy, εint. Fig. 9 shows the mass weighted mean non-thermal support ratio as

function of gas density, < εtur/εint(ρb) >, and temperature, < εtur/εint(T ) > at different

redshifts in our simulations. The trends with increasing temperature and density, and the

evolution with decreasing redshift are almost the same in different samples.
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Fig. 9.— The ratio of kinetic turbulent energy to thermal energy as function of gas density

(left) and temperature (right). Lines of z = 2.0, 1.0, 0.5, 0.0 are in bottom-up order.

For the same resolution, the ratio in the WENO-512 sample is significantly higher than

the TVD-512 sample, and is close to 1.0 for ρb ≃ 10, or T ≃ 105T at z = 0. This result is

actually in agreement with the curl velocity distribution V̄curl(ρb) and V̄curl(T ). As shown in

Fig.2, the baryonic mass fraction in the ρb−T phase diagram varies much between the WENO

and TVD simulations. For overdense regions ρb > 1.0, the mass weighted mean temperature,

T̄ (ρb) in the WENO-512 sample is lower, namely, the thermal energy density εint ∼ ρT̄ (ρb)

is also lower. Since εtur ∼ ρbV̄
2
curl(ρb) are comparable in two codes, consequently, the ratio of

εint/εtur in the WENO-512 sample is getting higher.

The mean ratio as a function of temperature is more complicated. In the range of 104−

105K, the mass distribution at a given temperature, f(ρb, T ), does not vary much between

two codes. Higher < εtur/εint(T ) > in the WENO-512 results from higher < εtur/εint(ρb) >

for ρb = 1.0 − 104. For T > 105K, the mean density, ρ̄b(T ), in the WENO-512 is shifted to

higher density region comparing to the TVD-512, and is generally larger than tens of the

cosmic mean. On the other hand, εtur/εint decreases as the gas density increases for ρb > 10

in both codes. Consequently, the margins in < εtur/εint(T ) > between the WENO-512 and

TVD-512 simulations peak at around 105k, depending on the redshift, and would decrease

toward higher temperature.

In the reference run WENO-1024, the non-thermal pressure support is substantially

stronger than the WENO-512 sample, and is comparable to the thermal pressure for ρb ≃

10 ∼ 100, or T < 105.5K at z = 0.0. The kinetic turbulent energy ratios as a function

of temperature obtained here are different from Ryu et al. (2008) at T < 104.5K. More

specifically, the ratio grows rapidly as the temperature decrease at T < 104.5K in Ryu et

al.(2008). Meanwhile,the magnitude there is larger than ours by about 0.2 dex. These
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differences should mainly result from the UV background, which is not included in Ryu et

al. (2008). The UV background would enhance the temperature of gas and might smear out

pressure fluctuations and hence the baroclinity outside of clusters. In addition, the magnetic

field included in Ryu et al.(2008) might amplify the turbulent motion in the IGM.

Fig. 10.— Left (right) panel shows contours of cell-counting in the phase space of baryonic

(dark) matter density and normalized baryon fraction in the WENO-1024 sample at z = 0.0.

Short dashed lines are the averaged baryon fraction f̄b(ρb)(f̄b(ρcdm)) in different density bins.

Long dashed lines in the left panel indicate a constant dark matter density of 100.0.

Turbulence pressure of the IGM may cause both the density and velocity fields of bary-

onic gas to be different from those of underlying collisionless dark matter, result in the baryon

fraction deviating from the cosmic mean F cosmic
b (Zhu, Feng, Fang 2011). Fig.10 shows the

contours of cell numbers in the space of normalized baryon fraction fb and gas density drawn

from the 10243 simulation at z = 0.0. Both the gas and dark matter density at grid cells are

smoothed with a radius of one grid cell, and then used to calculate the baryon fraction. A

considerable volume of the cells does deviate from the cosmic mean, and shows significant

scatter.

The baryon fraction in different gas density bins, shown as the short dash line in the

left panel of Fig.10, suggests that the maximum deviation lies in ρb ∼ 100, coincidentally

overlapping with the range that the maximum turbulence pressure support and lowest com-

pressive ratio takes place. Contours in the dark matter density space are also presented in

Fig. 10. The deviation is much more significant and no longer follow a simple linear function

of fb(ρb), which can be illustrated by the long dashed line that represents a constant dark

matter density 100 in the left panel. In the outskirts of clusters, and halos with size close

to one grid cell, the baryon fraction is around 0.4− 0.55. However, in the central regions of

clusters with smoothed density > 103, the baryon fraction is larger than the cosmic mean,
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Fig. 11.— Averaged baryon fraction f̄b(ρb) as a function of baryonic matter density in the

10243 and 5123 simulations. The cell2 represents averaged baryon fraction in cubic boxes of

side length of two grid cells.

suggesting feedback from star formation may be needed. For halos whose sizes are larger

than a couple of grid cells, the total baryon fraction would be some value between those in

the central and outer regions.

Fig.11 gives the evolution of the baryon fraction in different gas density bins since z = 2.

While the deviation in the range of 10 < ρb < 103 is amplified with time, the discrepancy

in the central region is gradually reconciled. The deviation in the 10243 sample, calculated

in cubic boxes of side length of two grid cells, i.e., equal to the size of one grid cell in the

5123 samples, overwhelms results in the 5123 simulation at z = 0, except for the cluster

region in the TVD run. A possible explanation is that the compressive motions in the TVD

simulation have been effectively dissipated by the numerical viscosity, rather than cascading

into small scales and accreting on to higher density structures.

In summary, the baryon fraction in the IGM significantly deviates from the cosmic mean

in our simulations. The deviation shows a preliminary positive correlation with the turbu-

lence pressure support. The case in virialized halos is much more complicated, and demands
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more careful investigation. However, small halos are more likely to suffer from baryon deficit.

Its link with the baryon missing in dwarf galaxies may require more extensive investigation,

especially need to consider the impact of radiative, thermal and kinetic feedback.

5. Properties of Shocks

The shocks formed during the hierarchical structure formation can effectively produce

vorticity via the baroclinity term (Kida & Orzsag 1990; Ryu et al. 2008; ZFF2010), and

hence play an important role in injecting turbulence into the IGM. Relatively higher numer-

ical viscosity would smear out shocks more significantly, and consequently may result in less

intensive turbulence. In this section, we investigate the properties of shocks in our simula-

tion samples of 5123 produced by the WENO and TVD schemes. Results from the 10243

simulation are not included as we intend to study the isolated effect of numerical viscosity.

The impact of grid cell size and force resolution on the shocks can be found in Vazza et al.

(2009, 2011).

We detect shocks in our samples in a post-simulation way based on the conventional

method in Miniati et al. (2000) and Ryu et al. (2003), in which three requirements should

be fulfilled to tag a grid cell as shocked region,

(1) ∇P · ∇S > 0

(2) ∇ · V < 0

(3) |∆log(T )| > 0.11

A shock is typically resolved by two or three grid cells and its center is defined as the

cell that has the minimum ∇ · V . The mach number of a shock M is obtained according to

ρ2
ρ1

=
4M2

M2 + 3
(6)

T2

T1

=
(5M2 − 1)(M2 + 3)

16M2
(7)

for gas with γ = 5/3, and the subscripts 1 and 2 denote for the pre-shock and post-shock

regions, respectively (Landau & Lifshitz 1959).

The third condition in shock detection, |∆log(T )| > 0.11, corresponds to a Mach number

of 1.3. We add one more condition, the density jump over a shock with Mach number 1.3,

i.e., ρ2/ρ1 > 1.4, to prevent overestimating the number of low Mach number shocks by the

temperature conditions (Vazza et al. 2009), and exclude pressure jumps that might be caused

by errors in calculating internal energy. The shock detection procedure is performed in a one-

dimensional way according to the above criterion along three different Cartesian axes. As
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Skillman et al. (2008) had shown that, this one-dimensional shock-finding algorithm would

over-estimate the number of shocks weaker than M ∼ 10 by a factor of ∼ 3. The number

of low Mach number shocks found in the two samples, WENO-512 and TVD-512, will both

suffer from this limitation, while the discrepancies between the samples are expected to be

systematic. Fig. 12 illustrates the shock fronts identified in the same slice shown in Fig. 1.

The skeleton of distributions is almost the same in two samples, but the WENO-512 run

produces more shocks surrounding the sheets, filaments and compact gas halos. We also

present the baroclinity term within this slice. The spacial pattern of the baroclinity term is

well confined by shocks and resembles the vorticity shown in Fig.1.

Fig. 12.— Top (bottom) row: Baroclinity (shocks) in the same slice as in Fig. 1. Left (right)

column: WENO-512 (TVD-512).

Cosmic shocks are driven by the accretion of gas into sheets, filaments and clusters, and

merging between gaseous haloes. As shocks are the sources of vorticity and turbulent velocity,

the distribution of shocks in different structure patterns may give us more information about

how the vorticity and turbulent motion are damped by numerical viscosity. We report the
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details of shock distribution in the following subsections.

5.1. External and Internal Shocks

Depending on whether the pre-shock gas is previously shocked or not, shocks in the

simulations can be divided into two categories, the external and internal shocks. In practice,

shocks with T1 < 104K are called the external shocks and vice versa (Miniati et al. 2001;

Ryu et al. 2003; Kang et al. 2007). External shocks are formed when unshocked, low-

density gas accretes onto nonlinear structures, such as sheets, filaments and knots. Internal

shocks are distributed within the regions bounded by external shocks. The internal shocks

are produced by: (1) gas infalling from sheets to filaments and knots, and from filaments to

knots, (2) gaseous halos merging with each other.

Fig. 13.— Surface area of external and internal shocks in 5123 simulations. Blue lines:

WENO-512. Red lines: TVD-512. Solid (dash, dash-dotted, dash-triple-dotted) lines are

the results at different redshifts z = 0, 0.5, 1.0, 2.0.

Fig.13 compares the frequency of external and internal shocks between two codes, mea-

sured by the surface area of shocks in logarithmic Mach number bin, dS(M, z)/dlogM which

was firstly proposed in Miniati et al. (2000) and indicates the inverse of distance between

shocks. The most striking feature in Fig. 13, is the significant difference in the frequency

of external shocks between two codes. Many more external shocks are developed in the

WENO-512 simulation from z = 2 to z = 0, while moderately more internal shocks are

formed only at z = 2. Numerical viscosity has smeared out many shocks in the low density

regions in the TVD codes.

Comparing with the result in Ryu et al. (2003), the distribution of external shocks
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here have shallower tails over M > 10, while the distribution of internal shocks is more

extended. The former should be mainly due to the UV background and the latter results

from the improvement of simulation resolution, 47.7h−1kpc here versus 97.7h−1kpc in Ryu

et al.(2003). The number of external and internal shocks weaker than M ∼ 10 in our TVD-

512 run are consistent with Ryu et al.(2003), which should be significantly over-predicted

in comparison with results by the coordinate unsplit algorithm proposed in Skillman et

al.(2008)(see their Fig. 4).

5.2. Shocks in Various Cosmic Structures

The shock distribution in various cosmic environments can be addressed more explicitly

according to either the gas or the total matter density at shock centers. Skillman et al.(2008)

and Vazza et al.(2009) studied the shock distributions for varying pre-shock gas density or

total matter density, and their redshift evolution. Here, similar to Vazza et al. (2009), we

divide the structures that shocks are embedded into four categories according to the total

density,

(1) ρt = ρb + ρcdm < 6ρcrit: voids and under-dense region

(2) 6 < ρt/ρcrit < 36: sheets and filaments

(3) 36 < ρt/ρcrit < 200: outskirts of clusters

(4) ρt/ρcrit > 200: virialized clusters

where, ρt, ρcdm, and ρcrit are the total, dark matter and critical density respectively. The

boundaries, 6, 36, 200, are slightly different from those in Vazza et al. (2009), and are identical

to the mean density of sheets, filaments and halos predicted in Shen et al. (2006).

Fig.14 plots the distribution of shocks in the four types of cosmic structures from z = 2.0

to z = 0.0. The general trends with decreasing redshifts are identical in two codes: more

shocks keep appearing in the under-dense region where the gas keeps accreting to nonlinear

structures; more high Mach number and less low Mach number shocks are being developed

within the sheets and filaments; the frequency of shocks in clusters and their outskirts,

however, is not changed much.

On the other hand, the difference between the WENO-512 and TVD-512 simulations

takes place in different structures at different redshifts. At the redshift z = 2, the shocks

in the under-dense region are less developed due to the damping of velocity and density

fluctuations by the higher numerical viscosity in the TVD code. Notable difference remains

in the under-dense region at z = 1. Moderate discrepancies exist in all the structures at

z = 0.5. More shocks are formed within the sheets, filaments and outskirts of clusters in the
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Fig. 14.— Surface area of shocks in various structures in the simulated samples at z =

2.0, 1.0, 0.5, 0.0 (Arranged in clockwise direction). Solid (dotted) lines indicate the WENO-

512 (TVD-512) result. Pairs of lines indicate shocks in voids, filaments, outskirts of clusters

and clusters from top to bottom.

WENO-512 run at z = 0.

The majority of shocks in our samples are hosted in low-density regions including voids

and filaments, which is in general agreement with Skillman et al.(2008) and Vazza et al(2009).

Again, the frequencies of low Mach number shocks are much higher than Skillman et al(2008),

by a factor of 3 ∼ 10, in all kinds of structures, which may mainly result from the different

shock detecting methods. The number distribution of shocks as a function of Mach number

became shallower when moving towards dense environment for M > 3 in our simulations,

which is contradict with Vazza et al.(2009). The evolution in Skillman et al.(2008), however,

is much more complicated. To answer weather this discrepancy is merely brought by the

selection of shock finding algorithm or is a complicate process involving both the physical

modules and the numerical algorithm in different work, much more carefully investigation is

needed, which however, is out the scope of this work.

Combining with the result in the last subsection, our simulations suggest that the nu-
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merical viscosity smears out the shocks more seriously in regions outside of clusters than

within clusters. As shocks are the sources of vorticity, numerical viscosity will significantly

damp the vortices in regions outside of clusters, which may, to a great extent, be responsible

for the differences regarding turbulence development in the IGM between two codes.

6. Discussions and Concluding Remarks

The evolution and properties of curl and compressive velocities, corresponding to the

vorticity and divergence respectively, reveal the development history of turbulence in the

IGM, and reflect the dynamical state of gas accreting onto different structures. The numerical

viscosity embedded in numerical schemes may have significant impact on the vorticity and

turbulent motions in the IGM in simulations. In this paper, we have addressed these two

issues using a suite of simulations performed by two fixed mesh based codes that differ only

in the spatial difference discretization, the second-order TVD scheme and the fifth-order

positivity-preserving WENO scheme.

The development of turbulence in the IGM may undergo two phases. During the first

supersonic phase, vortical motion is triggered by the baroclinity over strong curved external

shocks. The scaling law in this phase follows Burgers’s k−2 law, which actually characterize

turbulence consisting of strong shocks. In the second post-supersonic phase, vortices interact

with each other and decay, although shocks are still formed. The governing dynamics for

the vortices is subsonic. In the context of hierarchical structure formation history, the first

phase may correspond to the stage that low density gas accretes onto sheets, filaments and

clusters, while the second phase represents the interaction between gaseous protogalactic

structures, e.g. merging processes. The growing history of the transit scale lt and the upper

end of the turbulence scale lu as visualized in our simulation since z = 2 may be a natural

consequence of cosmic structure formation.

The turbulence development in the IGM may be affected by the numerical viscosity in

two ways. Large scale velocity and density fluctuations in the baryonic matter would be

damped, and hence the production of shocks and vortices in regions outside of clusters is

suppressed. Namely, the turbulence injection rate is reduced by numerical viscosity. The

kinetic turbulent energy transfer rate will also be reduced. On the other hand, the kinetic

energy of large size vortices would be dissipated into thermal energy much more rapidly due to

numerical viscosity, rather than cascading into small size eddies. In other words, the decaying

rate is enhanced. The simulated dissipation scale, ∼ 600h−1kpc, in the TVD-512 run is

significantly larger than ∼ 300h−1kpc in the WENO-512 run, indicating that the numerical

dissipation might be comparable to the physical dissipation effects like shock heating and
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Jeans dissipation under corresponding scale in the TVD-512 code. As a byproduct, the

thermal and density evolution of gas accreting onto highly over-dense structures would also

be changed by the numerical viscosity (e.g. Nelson et al. 2013).

The non-thermal pressure support, provided by the turbulent motions in the IGM, might

slow down the accretion of baryon into dark matter structures during structure formation.

Consequently, the baryon fraction in the highly turbulent regions would deviate from the

cosmic mean. However, the situation would become more complicate in the presence of high

level numerical viscosity. Both the compressible and vortical components of gas motions

would be dissipated into thermal energy more rapidly. The lag in gas density fluctuation

development with respect to dark matter may be caused by the non-thermal pressure support

and the damping of compressible motions simultaneously.

The properties of turbulence in the IGM may be changed by many ingredients that are

not considered in our simulations. The most important one may be the physical viscosity of

the IGM. The baryonic gas is assumed to be non-viscous in our simulations, which also holds

for almost all of the cosmological hydrodynamics simulations in the literature. The physical

viscosity of the IGM is poorly known so far, although it is generally believed that the IGM

should have very high Reynolds number(e.g. Gregori et al. 2012). However, the properties

of turbulence in the IGM may change a lot from the simulation if the physical viscosity is

non-negligible in the inertial range of this work, i.e. ∼ 2h−1Mpc − 200h−1kpc. Simulation

works shows that including the physical viscosity of the ICM would modify the pattern of

gas flow and the evolution of gaseous sub-structures in the simulated clusters (Sijacki &

Springel 2006; Dong & Stone et al. 2009; Suzuki et al. 2013). Tentative study suggests

that the physical viscosity might be important on scales around tens of kpc (Brunetti &

Lazarian 2007). Analysis of the morphology of filaments and bubbles in the Perseus cluster

revealed by deep Chandra X-ray observation in Fabian et al.(2003a, 2003b) indicated that

the hot ICM may have non-negligible viscosity and affects the cooling within the inner 50

kpc of the cluster. The expected dissipation scale due to physical viscosity is likely about

tens of kpc and below the simulated dissipation scale ∼ 200h−1kpc in the WENO-1024

simulation. Future cosmological hydrodynamic simulations that implemented the physical

viscosity properly would reveal more solid results on the development of turbulence in the

IGM. In addition, including feedback from star formation, magnetic fields and AGN activity

in the galaxies may trigger more intense turbulence below the dissipation scale. On the other

hand, more precise constraints on the viscous properties and the turbulent motion in the

IGM and ICM from observation are needed to verify the simulated results.

Finally, we summarize our results as follows,

(1) The small-scale compressive ratio rCS drops dramatically, from 0.84 at z = 2.0 to
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0.47 at z = 0.0, as the vorticity is effectively produced since z = 2, and can be comparable

to the divergence at low redshifts. The curl velocity associated with the vorticity increases

from ∼ 10 km/s at ρb ∼ 1 to ∼ 90 km/s at ρb ∼ 100 and is saturated henceforth for more

dense region at z = 0.0, which is ∼ 15 km/s higher than the value that Oppenheimer &

Dave (2009) used as the sub-resolution turbulence term to match the observation, and lower

than observational upper limits by a factor of 2 ∼ 3. The estimated turbulence scale is 2Mpc

down to 200kpc, which is consistent with ZFF2010.

(2) The power spectrum of the velocity field of the IGM shows two different phases within

the turbulence scale range simultaneously, i.e., the supersonic phase and the post-supersonic

phase. In the former regime, corresponding to ∼ 0.2 − 0.68 h−1 Mpc at z = 0, the scaling

law follows k−1.88, k−2.20, k−2.02 for the total, compressive and curl velocity respectively, and

is close to a Burgers turbulence. In the latter regime, i.e., ∼ 0.68− 2.0 h−1 Mpc, the power

spectrum of the curl velocity transits to k−0.89, while the other two are unchanged. The

transition scale grows from ∼ 0.32 h−1 Mpc at z = 2.0 to ∼ 0.68 h−1Mpc at z = 0.0.

(3) The non-thermal pressure support, measured by the ratio of kinetic turbulent energy

to internal energy, is comparable to the thermal pressure for ρb ≃ 10−100, or T < 105.5K at

z = 0.0. The mean baryon fraction in different density bins of the IGM significantly deviates

from the cosmic mean, and can be as low as 0.4 in regions that have the highest turbulent

pressure support and the lowest compressive ratio.

(4) Relatively higher numerical viscosity would artificially dissipate both the compressive

and vortical motions in the IGM more strongly. Consequently, the density fluctuation and

vorticity are significantly damped in the TVD samples. The turbulence dissipation scale is

remarkably shifted toward larger scale by a factor of 2, and hence shortens the turbulent

inertial range. Numerical viscosity could lead to non-negligible uncertainty in the simulated

thermal history of gas accretion during structure formation.

(5) The shocks in the regions outside clusters are significantly suppressed by relatively

higher numerical viscosity since z = 2 in the TVD samples. As cosmic shocks are the sources

of vorticity, the different levels of turbulence in the IGM between two codes may be directly

caused by the un-resolved shocks in the regions outside clusters in the TVD code.
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A. Grid Difference Schemes

We first give a brief description of the positivity-preserving finite difference WENO

scheme and then show its performance on two classical numerical tests, the shock-tube test

and the Sedov blast wave test, comparing to the TVD scheme. We refer the interested reader

to the references in this subsection for more details about the schemes.

A.1. Positivity-Preserving WENO Scheme

In Zhang & Shu (2012), a simple limiting strategy is designed for high order finite

difference WENO schemes, which can guarantee the positivity of density and pressure if they

are positive initially, while also maintain the original high order accuracy of the scheme. The

procedure is a generalization of an earlier strategy in Zhang & Shu (2010) for finite volume

WENO schemes and discontinuous Galerkin methods. We will only give a brief description

of this positivity-preserving procedure in this section, and refer the readers to Zhang & Shu

(2012) for more details.

We first look at the one-dimensional Euler equation

wt + f(w)x = 0

with w = (ρ, ρv, E)T and f(w) = (ρv, ρv2+ p, v(E+ p), where ρ is density, v is velocity, E is

total energy, and p is pressure, which satisfies p = (γ − 1)(E − 1

2
ρv2) for a gamma-law gas.

For a finite difference scheme, given the point values wn
i at time level n, we let Ai+ 1

2

denote

the Roe average matrix of the two states wn
i and wn

i+1, and let Li+ 1

2

and Ri+ 1

2

denote the left

and right eigenvector matrices of Ai+ 1

2

respectively, i.e., A = RΛL where Λ is the diagonal

matrix with eigenvalues of A on its diagonal. Let α = max(|v| + c) where c is the sound

speed, where the maximum is taken either globally for wn
j over all j or locally for j over the

the WENO reconstruction stencil. We use the Lax-Friedrichs flux splitting, namely

w± =
1

2

(

w ±
f(w)

α

)

. (A1)

At each fixed xi+ 1

2

, the algorithm proceeds as follows, where we omit the subscripts i+ 1

2
for

notational simplicity:

1. Let w±(x) = 1

∆x

∫ x+∆x/2

x−∆x/2
h±(ξ)dξ, then we are given the cell averages of h±(x) by

(h̄±)nj = (w±)nj .



– 30 –

2. Transform all the cell averages (h̄±)nj for j in a neighborhood of i within the WENO

reconstruction stencil to the local characteristic fields by setting (ū±)nj = L(h̄±)nj .

3. Perform the WENO reconstruction for each component of (ū±)nj to obtain approxima-

tions of the point values of the functions u± = Lh± at the point xi+ 1

2

. Notice that the

stencil used for the WENO reconstruction for ū+ is {i − 2, i − 1, i, i + 1, i + 2}, and

the one used for the WENO reconstruction for ū− is {i− 1, i, i+1, i+2, i+3}, due to

upwind-bias for stability.

4. Transform back into physical space by h±

i+ 1

2

= Ru±. A simple scaling limiter is then

applied to h+

i− 1

2

, h−

i+ 1

2

and an intermediate quantity to ensure positivity of density and

pressure, see Zhang & Shu (2012) for the details. Then we form the numerical flux by

f̂i+ 1

2

= α(h+

i+ 1

2

+ h−

i+ 1

2

). The final scheme is

wn+1
i = wn

i − λ
(

f̂i+ 1

2

− f̂i− 1

2

)

. (A2)

Combined with the third order TVD Runge-Kutta method, the scheme is guaranteed to

maintain positivity of density and pressure. Generalization to multi-dimensions is straight-

forward in a dimension-by-dimension fashion.

A.2. Test Examples

(1) Shock tube test

Fig. A1.— One dimensional shock tube test of the TVD and WENO schemes with resolution

128.
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We present the results of the TVD and WENO schemes in solving the one-dimensional

Sod shock tube problem with resolution 128 in Fig. A1. The initial state of the left and

right region are given as (ρL = 1.5, v1 = 0, pL = 1.0) and (ρR = 1.0, v2 = 0, pR = 0.2)

respectively. The polytropic index is 1.4. The CFL number is set to the same value 0.32.

Both schemes can well capture the shock, although the TVD scheme shows more damping

over the shock and the discontinuity surfaces. This result is not out of expectation, as the

accuracy of the TVD scheme will degenerate over shocks more seriously than the WENO.

The L1 errors for a smooth solution indicate that the TVD scheme achieve the order of 2.0

and the WENO-POS is 5.1. Also shown is the result run by the original fifth WENO scheme

with the local Lax-Friedrichs flux splitting (WENO-LLF), which was used in ZFF2010 to

study the turbulence in the IGM. The WENO-LLF code uses a CFL number 0.2 in order to

keep it stable. Slightly improved performance is achieved by the WENO-LLF scheme at the

cost of around 50% more cpu hours.

(2) Sedov blast wave test

Fig. A2.— Density distribution of 20000 randomly selected grids in the three-dimensional

Sedov blast-wave test with resolution 2563. Top left: TVD. Top right: WENO-POS-5.

Bottom left: WENO-LLF-5. The bottom right panel shows the mean density as a function

of radius in the three runs with respect to the analytical result (solid line).
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Fig. A2. displays the density of randomly selected 20000 grid cells in three-dimensional

Sedov blast-wave test with resolution 2563. The mean density as a function of radius is also

shown in Fig. A2. The explosion front are captured by all the three schemes. However,

it can be seen clearly that the fifth order WENO schemes resolve the explosion front more

sharply, although moderate scattering appears at the central low density region. The density

peaks in all the three codes are under-developed with respect to the analytic result, but the

WENO schemes have smaller errors. The local flux splitting in WENO-LLF-5 shows more

dispersion near the peak of the wave than the positive-preserving version.

B. Resolution Convergence

We check the resolution convergence by comparing results in 2563 and 5123 samples.

Only a few selected quantities are presented here for the sake of brevity. Fig. A3 shows

the power spectra of vorticity and velocity. The pattern and difference between the WENO

and TVD schemes are not changed by different resolution. The dissipation scale has been

significantly extended by improved resolution.

Fig. A3.— Power spectra of vorticity and velocity in 2563 and 5123 samples. The results of

2563 samples have been shifted down by one dex for the sake of clarity.

Fig. A4 reports the kinetic turbulent energy ratio in the 2563 run. The general trends

are similar to results in 5123. The magnitude of the ratio is systematically lower than the
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5123 result, which results from a higher numerical viscosity for a lower resolution. Meanwhile,

the kinetic turbulent energy ratio in the WENO-256 run is comparable to the TVD-512 run.

Fig. A4.— The ratio of kinetic turbulent energy to thermal energy as function of gas density

(left) and temperature (right). Solid (dash) lines are the result in WENO-256 (TVD-256).

Fig. A5.— Surface area of external and internal shocks in the 2563 simulations. Blue lines:

WENO-256. Red lines: TVD-256. Solid (dash, dash-dotted, dash-triple-dotted) lines are

the results at z = 0, 0.5, 1.0, 2.0.

Fig. A5 shows the distribution of external and internal shocks in the 2563 samples.

The difference is very similar to the 5123 simulations, suggesting that the different levels of

vorticity and turbulence between two codes at a given resolution may be mainly caused by

the shocks outside of clusters.
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