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Abstract. In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously
developed on rectangular meshes [18] to triangular meshes. The DG schemes in [18] are both
optimally convergent and energy conserving. However, as we shall see in the numerical results
section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove
the energy conservation and an error estimate for the semi-discrete schemes. The stability of the
fully discrete scheme is proved and its error estimate is stated. We present extensive numerical
results with convergence consistent of our error estimate, and simulations of wave propagation in
Drude metamaterials to demonstrate the flexibility of triangular meshes.

1 Introduction

Since the first successful construction of metamaterials with double negative permittivity and per-
meability in 2000 by Smith et al. [23], they have attracted a great interest. Metameterial has
applications in many areas such as invisibility cloak design (e.g. [25, 29]), velocity-selective particle
detections by the reversed Cherenkov radiation (e.g. [5, 14]) and sub-wavelength imaging (e.g. [1]).
Numerical simulation of electromagnetic wave propagation in metamaterials plays a very impor-
tant role in these investigations, and requires solving a system of more complicated time domain
Maxwell’s equations than the standard Maxwell’s equations in free space. Though there are many
excellent papers for solving Maxwell’s equations in free space (see [3, 7, 13, 15, 17, 20, 21, 30] and
references therein), published works on efficient and rigorous numerical methods for metamaterial
Maxwell’s equations are still quite limited [2, 4, 6, 19, 24, 28].

The discontinuous Galerkin (DG) method was initially introduced in 1973 by Reed and Hill [22]
for solving a neutron transport equation. The work of Cockburn and Shu [9, 10] on Runge-Kutta
DG (RKDG) methods for solving linear and nonlinear time dependent hyperbolic partial differen-
tial equations (PDEs), in which space is discretizatized by DG methods and time by Runge-Kutta
methods (other time discretization methods are of course also possible, such as the leap frog method
adopted in this paper), has facilitated the rapid advance and application of DG methods. Over
the past four decades, various DG methods have been proposed for solving different PDEs. The
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popularity of DG methods is due to their nice features such as local solvability, flexibility in h-p
adaptivity, and efficiency in parallel implementation. Also relevant to our schemes studied in this
paper, especially the choice of the alternating fluxes, we should mention the so-called local dis-
continuous Galerkin (LDG) method, which was introduced by Cockburn and Shu [11] for solving
time-dependent convection-diffusion systems and was used in [26] for solving second-order hyper-
bolic equations. For more details on the algorithm design, analysis, implementation and application
of DG and LDG schemes for solving time-dependent PDEs, readers can consult the review articles
[12, 27] and the references therein.

Li and Hesthaven [16] developed a DG scheme with central flux for Maxwell’s equations in Drude
metamaterials, and the scheme is energy conserving but converges suboptimally. In our previous
work [18], we developed a energy conserving and optimal DG scheme by using alternating flux on
rectangular meshes. As a follow-up work of [18], here we develop a DG scheme with alternating
flux on triangular meshes. This DG scheme conserves the energy but has a suboptimal convergence
rate. The major advantage of developing a DG scheme on triangular meshes is that we can use it
to simulate the backward wave propagation phenomena in complex domains.

The rest of the paper is organized as follows. In Sect. 2, we first present the governing equations
for wave propagation in Drude metamaterials. In Sect. 3, we present the semi-discrete DG method,
and prove its stability along with a suboptimal error estimate in the L2 norm. Then in Sect. 4,
we propose a fully discrete DG method with leap-frog time discretization. Stability analysis of the
scheme is carried out. The convergence result is stated, but the lengthy technical proof is skipped
as it mostly follows the line of the proof of the semi-discrete case. Sect. 5 includes numerical
experiments demonstrating the suboptimal convergence rates of the proposed DG method. Wave
propagation simulation in complex regions mixed with Drude metamaterials is also included in this
section. Finally, we conclude the paper in Sect. 6.

2 The governing equations

As in [18], we only consider the transverse-electric mode with respect to z in two dimensions (2-D),
i.e., the so-called TEz mode, which involves only the electric field E = (Ex, Ey), the magnetic field
H = Hz, the induced electric current J = (Jx, Jy), and the induced magnetic current K = Kz.
Here the subindices x, y and z denote the components in the x, y and z directions, respectively.
More specifically, the governing equations of the TEz Drude model can be written as:

ε0
∂Ex

∂t
=
∂Hz

∂y
− Jx, (1)

ε0
∂Ey

∂t
= −∂Hz

∂x
− Jy, (2)

µ0
∂Hz

∂t
= −∂Ey

∂x
+
∂Ex

∂y
−Kz, (3)

1
ε0ω2

pe

∂Jx

∂t
+

Γe

ε0ω2
pe

Jx = Ex, (4)

1
ε0ω2

pe

∂Jy

∂t
+

Γe

ε0ω2
pe

Jy = Ey, (5)

1
µ0ω2

pm

∂Kz

∂t
+

Γm

µ0ω2
pm

Kz = Hz, (6)
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where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, ωpe > 0 and ωpm > 0 are
the electric and magnetic plasma frequencies respectively, and Γe ≥ 0 and Γm ≥ 0 are the electric
and magnetic damping frequencies respectively. To make the model problem (1)-(6) well-posed, we
assume that the problem (1)-(6) satisfies the following initial conditions

E(x, 0) = E0(x), H(x, 0) = H0(x), J(x, 0) = J0(x), K(x, 0) = K0(x), (7)

and the perfect conduct (PEC) boundary condition

Ex(x, y, t)|y=c,d = 0, Ey(x, y, t)|x=a,b = 0. (8)

For simplicity, we consider solving (1)-(6) on a rectangular type physical domain Ω = [a, b] ×
[c, d], which is discretized by a triangular mesh, Ω = ∪e∈Th

e. Th represents a triangulation on Ω with
mesh size h defined as the largest diameter of all triangles. The time domain [0, T ] is discretized
into Nt + 1 uniform intervals by discrete times 0 = t0 < t1 < · · · < tNt+1 = T, where tn = n · τ, and
the time step size τ = T

Nt+1 .
The finite element space V k

h is chosen as piecewise polynomials of degree at most k on every
element e, i.e.,

V k
h = {v : v|e ∈ Pk(e), ∀ e ∈ Th} , (9)

where Pk is the space of polynomial of degree up to k. To get the error estimate, we need some
regularity conditions on the triangulation similar to those in chapter 3 of [8]:

1 There exists a constant θ0 ≥ 0, such that all angles in the triangles are larger than θ0.

2 There exists a constant C, such that: (he denotes the diameter of triangle e)

max
e∈Th

he < C min
e∈Th

he

For the corresponding variable u we denote its numerical solution uh, which belongs to the finite
element space V k

h . Note that functions in V k
h are allowed to have discontinuities across element

interfaces. In the line integral over the boundary of a cell, we denote u(in)
h as the value of uh taken

from inside of that cell, and u
(out)
h from the neighboring cell sharing that boundary. We denote by

|| · || the L2 norm over the domain Ω.

3 The semi-discrete DG method

The DG method for (1)-(6) can be formulated as follows: Find Exh, Eyh, Hzh, Jxh, Jyh,Kzh ∈
C1([0, T ];V k

h ) such that

ε0

∫
e

∂Exh
∂t

φx +
∫
e
Hzh

∂φx
∂y
−
∫
∂e
Ĥzhφ

(in)
x n(in)

y +
∫
e
Jxhφx = 0, (10)

ε0

∫
e

∂Eyh
∂t

φy −
∫
e
Hzh

∂φy
∂x

+
∫
∂e
Ĥzhφ

(in)
y n(in)

x +
∫
e
Jyhφy = 0, (11)

µ0

∫
e

∂Hzh

∂t
ψ −

∫
e
Eyh

∂ψ

∂x
+
∫
e
Exh

∂ψ

∂y
+
∫
∂e

(Êyhn(in)
x − Êxhn(in)

y )ψ(in) +
∫
e
Kzhψ = 0, (12)
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1
ε0ω2

pe

∫
e

∂Jxh
∂t

u1 +
Γe
ε0ω2

pe

∫
e
Jxhu1 −

∫
e
Exhu1 = 0, (13)

1
ε0ω2

pe

∫
e

∂Jyh
∂t

u2 +
Γe
ε0ω2

pe

∫
e
Jyhu2 −

∫
e
Eyhu2 = 0, (14)

1
µ0ω2

pm

∫
e

∂Kzh

∂t
v +

Γm
µ0ω2

pm

∫
e
Kzhv −

∫
e
Hzhv = 0, (15)

for all test functions φx, φy, ψ, u1, u2, v ∈ V k
h and all triangle cells e ∈ Th. Ĥzh, Êyh, Êxh are the cell

boundary terms obtained from integration by parts, and they are the so-called numerical fluxes.
In the line integration over ∂e, n(in) = (n(in)

x , n
(in)
y ) is the unit normal vector pointing towards the

outside of the element e.
We choose the alternating flux as in [18]. To define alternating flux in a triangulation, we need

to first choose a fix direction βββ that is not parallel with any triangle boundary edge. On each
edge, we can define the “right” and “left” side with respect to βββ. On each side there is an outward
normal direction, n, orthogonal to the edge. We define a side is the “right” side if n · βββ < 0. The
alternating flux is defined as always choosing Exh and Eyh on the “right” side and Hzh on the “left”
side:

Êxh = ERxh, (16)

Êyh = ERyh, (17)

Ĥzh = HL
zh. (18)

A more detailed explanation of alternating flux for triangulation can be found in [27]. It is easy
to check that the definition of the alternating flux in [18] is a special case of the one here with
βββ = (1, 1). If we adopt a periodic boundary condition, the above definition of alternating flux is
enough. However, to satisfy the PEC boundary condition in (8), we take

Êxh = 0, on y = c, d, (19)

Êyh = 0, on x = a, b, (20)

Ĥzh = H
(in)
zh , on ∂Ω. (21)

3.1 The stability analysis

In this subsection, we present the stability analysis for our scheme.
First, let us look at the stability for the governing equations. Multiplying the governing equa-

tions (1)–(6) by Ex, Ey, Hz, Jx, Jy,Kz, respectively, then integrating over the space and time domain
Ω× [0, t], summing up the resultants, and using the 2D PEC boundary condition (8), we can easily
obtain the energy identity:

[
ε0(||Ex||2 + ||Ey||2) + µ0||Hz||2 +

1
ε0ω2

pe

(||Jx||2 + ||Jy||2) +
1

µ0ω2
pm

||Kz||2
]

(t)

+
∫ t

0

[
2Γe
ε0ω2

pe

(||Jx||2 + ||Jy||2) +
2Γm
µ0ω2

pm

||Kz||2
]

(s)ds
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=
[
ε0(||Ex||2 + ||Ey||2) + µ0||Hz||2 +

1
ε0ω2

pe

(||Jx||2 + ||Jy||2) +
1

µ0ω2
pm

||Kz||2
]

(0). (22)

Below we will show that the solution of our proposed semi-discrete DG method satisfies a similar
energy identity as in the continuous level (22).

Theorem 3.1. The semi-discrete DG method (10)-(15) with alternating fluxes (16)-(21) satisfies
the following energy identity: For any t ≥ 0:

[
ε0(||Exh||2 + ||Eyh||2) + µ0||Hzh||2 +

1
ε0ω2

pe

(||Jxh||2 + ||Jyh||2) +
1

µ0ω2
pm

||Kzh||2
]

(t)

+
∫ t

0

[
2Γe
ε0ω2

pe

(||Jxh||2 + ||Jyh||2) +
2Γm
µ0ω2

pm

||Kzh||2
]

(s)ds

=
[
ε0(||Exh||2 + ||Eyh||2) + µ0||Hzh||2 +

1
ε0ω2

pe

(||Jxh||2 + ||Jyh||2) +
1

µ0ω2
pm

||Kzh||2
]

(0).

(23)

Proof. Taking φx = Exh, φy = Eyh, ψ = Hzh, u1 = Jxh, u2 = Jyh, v = Kzh in (10)-(15), respectively,
adding the resultants together over all cells, we have

1
2
d

dt

∫
Ω

[
ε0(|Exh|2 + |Eyh|2) + µ0|Hzh|2 +

1
ε0ω2

pe

(|Jxh|2 + |Jyh|2) +
1

µ0ω2
pm

|Kzh|2
]

+
∫

Ω

[
Γe
ε0ω2

pe

(|Jxh|2 + |Jyh|2) +
Γm

µ0ω2
pm

|Kzh|2
]

+
∑
e∈Th

∫
∂e

(
−ĤzhE

(in)
xh n(in)

y + ĤzhE
(in)
yh n(in)

x +H
(in)
zh Êyhn

(in)
x −H(in)

zh Êxhn
(in)
y

)
+
∑
e∈Th

∫
e

(
Hzh

∂Exh
∂y

−Hzh
∂Eyh
∂x

− Eyh
∂Hzh

∂x
+ Exh

∂Hzh

∂y

)
= 0.

(24)

Using integration by parts, the terms in the last two lines of (24) become Fx − Fy, where

Fx =
∑
e∈Th

∫
∂e

(
H

(in)
zh E

(in)
xh n(in)

y − ĤzhE
(in)
xh n(in)

y −H(in)
zh Êxhn

(in)
y

)
, (25)

Fy =
∑
e∈Th

∫
∂e

(
H

(in)
zh E

(in)
yh n(in)

x − ĤzhE
(in)
yh n(in)

x −H(in)
zh Êyhn

(in)
x

)
. (26)

By grouping terms by sides of triangles instead of triangles, we have:

Fx =
∑
s∈SI

nRy

∫
s

(
HR
zhE

R
xh −HL

zhE
L
xh −HL

zhE
R
xh +HL

zhE
L
xh −HR

zhE
R
xh +HL

zhE
R
xh

)
+
∑
s∈SL

nRy

∫
s

(
HR
zhE

R
xh −HR

zhE
R
xh

)
+
∑
s∈SR

nLy

∫
s

(
HL
zhE

L
xh −HL

zhE
L
xh

)
= 0,

(27)

where SI denotes the set of all non-boundary sides, SL represents the set of sides on x = a, and SR
on x = b. We can similarly deduce Fy = 0. We conclude the proof by integrate (24) over [0, t].
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Remark 3.1. The semi-discrete scheme satisfies the same energy conserving equality (23) as that of
the model equation (22). We claim our method is energy conserving in this sense. The DG schemes
with central flux also have this property [16]. Note that the famous upwind flux is dissipative and
DG schemes equipped with it are not energy conserving.

3.2 The error analysis

We denote the errors between the exact solutions (Ex, Ey, Hz, Jx, Jy,Kz) of (1)-(6) and the cor-
responding numerical solutions (Exh, Eyh, Hzh, Jxh, Jyh,Kzh) of the semi-discrete scheme (10)-(15)
by

Ex = Ex−Exh, Ey = Ey−Eyh,Hz = Hz−Hzh,Jx = Jx−Jxh,Jy = Jy−Jyh,Kz = Kz−Kzh. (28)

Subtracting (10)-(15) from the weak formulation of (1)-(6) and assuming that the exact solutions
are continuous in the domain Ω, we can obtain the error equations:

ε0

∫
e

∂Ex
∂t

φx +
∫
e
Hz

∂φx
∂y
−
∫
∂e
Ĥzφ(in)

x n(in)
y +

∫
e
Jxφx = 0, (29)

ε0

∫
e

∂Ey
∂t

φy −
∫
e
Hz

∂φy
∂x

+
∫
∂e
Ĥzφ(in)

y n(in)
x +

∫
e
Jyφy = 0, (30)

µ0

∫
e

∂Hz
∂t

ψ −
∫
e
Ey
∂ψ

∂x
+
∫
e
Ex
∂ψ

∂y
+
∫
∂e

(Êyn(in)
x − Êxn(in)

y )ψ(in) +
∫
e
Kzψ = 0, (31)

1
ε0ω2

pe

∫
e

∂Jx
∂t

u1 +
Γe
ε0ω2

pe

∫
e
Jxu1 −

∫
e
Exu1 = 0, (32)

1
ε0ω2

pe

∫
e

∂Jy
∂t

u2 +
Γe
ε0ω2

pe

∫
e
Jyu2 −

∫
e
Eyu2 = 0, (33)

1
µ0ω2

pm

∫
e

∂Kz
∂t

v +
Γm

µ0ω2
pm

∫
e
Kzv −

∫
e
Hzv = 0. (34)

Theorem 3.2. Let (Ex, Ey, Hz, Jx, Jy,Kz) and (Exh, Eyh, Hzh, Jxh, Jyh,Kzh) be the solutions of
(1)-(6) and (10)-(15), respectively. The following error estimate holds true:

max
0≤t≤T

[
ε0(||Ex − Exh||2 + ||Ey − Eyh||2) + µ0||Hz −Hzh||2

+
1

ε0ω2
pe

(||Jx − Jxh||2 + ||Jy − Jyh||2) +
1

µ0ω2
pm

||Kz −Kzh||2
]

(t)

≤ CTh2k + C
(
ε0(||Ex − Exh||2 + ||Ey − Eyh||2) + µ0||Hz −Hzh||2

)
(0)

+C
(

1
ε0ω2

pe

(||Jx − Jxh||2 + ||Jy − Jyh||2) +
1

µ0ω2
pm

||Kz −Kzh||2
)

(0),

where the constant C > 0 is independent of h, and k ≥ 1 is the order of the basis function in V k
h .

Proof. Using the defined projections, we can decompose the errors given in (28) as follows:

Ex = Ex − Exh = (ΠEx − Exh)− (ΠEx − Ex) := Exξ − Exη,
Ey = Ey − Eyh = (ΠEy − Eyh)− (ΠEy − Ey) := Eyξ − Eyη,
Hz = Hz −Hzh = (ΠHz −Hzh)− (ΠHz −Hz) := Hzξ −Hzη,
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Jx = Jx − Jxh = (ΠJx − Jxh)− (ΠJx − Jx) := Jxξ − Jxη,
Jy = Jy − Jyh = (ΠJy − Jyh)− (ΠJy − Jy) := Jyξ − Jyη,
Kz = Kz −Kzh = (ΠKz −Kzh)− (ΠKz −Kz) := Kzξ −Kzη

where Π is the usual L2 projection onto V k
h .

We denote the summation of (29)− (34) as:

B(Ex, Ey,Hz,Jx,Jy,Kz;φx, φy, ψ, u1, u2, v) = 0. (35)

Substituting the error decomposition into (35), and choosing the test functions φx = Exξ, φy =
Eyξ, ψ = Hzξ, u1 = Jxξ, u2 = Jyξ, v = Kzξ, we obtain:

B(Exξ, Eyξ, Hzξ, Jxξ, Jyξ,Kzξ;Exξ, Eyξ, Hzξ, Jxξ, Jyξ,Kzξ)
=B(Exη, Eyη, Hzη, Jxη, Jyη,Kzη;Exξ, Eyξ, Hzξ, Jxξ, Jyξ,Kzξ).

(36)

If we sum (36) over all triangles and look at the left hand side (LHS), we could observe that it
is exactly the same thing as in the stability proof. Hence we have:

LHS =
1
2
d

dt

(
ε0(||Exξ||2 + ||Eyξ||2) + µ0||Hzξ||2 +

1
ε0ω2

pe

(||Jxξ||2 + ||Jyξ||2) +
1

µ0ω2
pm

||Kzξ||2
)

+
2Γe
ε0ω2

pe

(||Jxξ||2 + ||Jyξ||2) +
2Γm
µ0ω2

pm

||Kzξ||2.
(37)

Now consider the terms on the right hand side (RHS). By the property of the projection Πut =
(Πu)t, and the fact that Exξ, Eyξ, Hzξ, Jxξ, Jyξ,Kzξ|e ∈ Pk(e), we can have

RHS =
∑
e∈Th

∫
∂e

(
−ĤzηE

(in)
xξ n(in)

y + ĤzηE
(in)
yξ n(in)

x + ÊyηH
(in)
zξ n(in)

x − ÊxηH(in)
zξ n(in)

y

)
. (38)

Let us focus on the first term:∑
e∈Th

∫
∂e
ĤzηE

(in)
xξ n(in)

y ≤
∑
e∈Th

1
δh

∫
∂e

∣∣∣Ĥzη

∣∣∣2 + δh

∫
∂e

∣∣∣E(in)
xξ

∣∣∣2
≤C

∑
e∈Th

(
1
δ
‖Hzη‖2L∞(e) + δh2‖Exξ‖2L∞(e)

)
≤C
δ
h2k‖Hz‖2Hk+1(Ω) + Cδ ‖Exξ‖2L2(Ω),

(39)

holds for any δ > 0. The estimation of the first term is due to the approximating property of
polynomial preserving operators (see Theorem 3.1.4 in [8]), and that of the second term can be
justified by the standard inverse inequality [8]. Note that the constants are not necessarily the
same, but are all written as C for brevity. The constants are all of course independent of the mesh
sizes.
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Treating the remaining terms in (38) similarly, we can get the following inequality:

1
2
d

dt

(
ε0(||Exξ||2 + ||Eyξ||2) + µ0||Hzξ||2 +

1
ε0ω2

pe

(||Jxξ||2 + ||Jyξ||2) +
1

µ0ω2
pm

||Kzξ||2
)

≤C
δ
h2k

(
‖Ex‖2Hk+1(Ω) + ‖Ey‖2Hk+1(Ω) + ‖Hz‖2Hk+1(Ω)

)
+ Cδ

(
‖Exξ‖2 + ‖Eyξ‖2 + ‖Hzξ‖2

)
.

(40)

Integrating (40) from t = 0 to any t ≤ T , we have(
ε0(||Exξ||2 + ||Eyξ||2) + µ0||Hzξ||2 +

1
ε0ω2

pe

(||Jxξ||2 + ||Jyξ||2) +
1

µ0ω2
pm

||Kzξ||2
)

(t)

−
(
ε0(||Exξ||2 + ||Eyξ||2) + µ0||Hzξ||2 +

1
ε0ω2

pe

(||Jxξ||2 + ||Jyξ||2) +
1

µ0ω2
pm

||Kzξ||2
)

(0)

≤C
δ
h2k

∫ t

0

(
‖Ex‖2Hk+1(Ω) + ‖Ey‖2Hk+1(Ω) + ‖Hz‖2Hk+1(Ω)

)
(s) ds

+ CTδ max
0≤t≤T

(
‖Exξ‖2 + ‖Eyξ‖2 + ‖Hzξ‖2

)
(t).

(41)

Taking maximum of (41) with respect to time t, choosing δ = o( 1
T ) small enough so that the

last term on the right hand side can be controlled by the LHS, and using the triangle inequality
and the error estimate of L2 projections, we conclude the proof.

Remark 3.2. The suboptimal k-th order convergence rate in Theorem 3.2 is confirmed by the
numerical results given in Table 1 below. The DG schemes with alternating flux and solution
space Qk in rectangular meshes [18] have optimal (k + 1)-th order rate convergence. Note that
Qk =

{
xiyj , i, j ∈ [0, k]

}
and Pk =

{
xiyj , i+ j ∈ [0, k]

}
and Qk has almost twice as many degrees

of freedom as Pk for large k. We implemented DG schemes with alternating flux and solution space
Pk in rectangular meshes and they show suboptimal convergence rate too. The proof of optimal
convergence rate in [18] heavily relies on the structure of Qk and our numerical results show that
it is indeed critical for optimality.

Remark 3.3. As we will see in Table 1, all variables except for Hz and Kz show the suboptimal
convergence rate as in Theorem 3.2. Hz and Kz still has optimal convergence rates which is not
fully reflected in Theorem 3.2.

4 The fully-discrete DG method

We consider the following leap-frog LDG scheme: For any n ≥ 0, find En+1
xh , En+1

yh , H
n+ 3

2
zh , J

n+ 3
2

xh , J
n+ 3

2
yh ,Kn+2

zh ∈
V k
h such that

ε0

∫
e

En+1
xh − E

n
xh

τ
φx −

∫
∂e
Ĥ
n+ 1

2
zh φ(in)

x n(in)
y +

∫
e
H
n+ 1

2
zh

∂φx
∂y

+
∫
e
J
n+ 1

2
xh φx = 0, (42)

ε0

∫
e

En+1
yh − Enyh

τ
φy +

∫
∂e
Ĥ
n+ 1

2
zh φ(in)

y n(in)
x −

∫
e
H
n+ 1

2
zh

∂φy
∂x

+
∫
e
J
n+ 1

2
yh φy = 0, (43)
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µ0

∫
e

H
n+ 3

2
zh −Hn+ 1

2
zh

τ
ψ +

∫
∂e
Ên+1
yh ψ(in)n(in)

x −
∫
e
En+1
yh

∂ψ

∂x

−
∫
∂e
Ên+1
xh ψ(in)n(in)

y +
∫
e
En+1
xh

∂ψ

∂y
+
∫
e
Kn+1
zh ψ = 0,

(44)

1
ε0ω2

pe

∫
e

J
n+ 3

2
xh − Jn+ 1

2
xh

τ
u1 +

Γe
ε0ω2

pe

∫
e

J
n+ 3

2
xh + J

n+ 1
2

xh

2
u1 −

∫
e
En+1
xh u1 = 0, (45)

1
ε0ω2

pe

∫
e

J
n+ 3

2
yh − Jn+ 1

2
yh

τ
u2 +

Γe
ε0ω2

pe

∫
e

J
n+ 3

2
yh + J

n+ 1
2

yh

2
u2 −

∫
e
En+1
yh u2 = 0, (46)

1
µ0ω2

pm

∫
e

Kn+2
zh −Kn+1

zh

τ
v +

Γm
µ0ω2

pm

∫
e

Kn+2
zh +Kn+1

zh

2
v −

∫
e
H
n+ 3

2
zh v = 0, (47)

for all test functions φx, φy, ψ, u1, u2, v ∈ V k
h , with the following fluxes consistent with (16)-(21):

Ênxh = En,Rxh (48)

Ênyh = En,Ryh (49)

Ĥ
n+ 1

2
zh = H

n+ 1
2
,L

zh (50)

Ênxh = 0, on y = c, d (51)

Ênyh = 0, on x = a, b (52)

Ĥ
n+ 1

2
zh = H

n+ 1
2
,(in)

zh , on ∂Ω. (53)

With the above preparation, we can now prove the following stability. To shorten the notation,
we introduce the vector L2 norm ||Eh||2 = ||Exh||2 + ||Eyh||2 for vector Eh = (Exh, Eyh). Similar
notation will be used for ||Jh||2 and Jh. Any variable in the integration over the boundary of
elements are by default the value taken from inside of the elements if not specified otherwise.

Theorem 4.1. Denote Cv = 1√
ε0µ0

for the speed of light, and Cinv for the positive constant in

the standard inverse estimate ||∂uh
∂i || ≤ Cinvh

−1||uh|| for any uh ∈ V k
h and i = x, y. Under the

assumption

τ ≤ min(
1

2ωpe
,

1
2ωpm

,
h

2CinvCv
), (54)

for any m ≥ 1 we have

ε0||Em+1
h ||2 + µ0||H

m+ 3
2

zh ||2 +
1

ε0ω2
pe

||Jm+ 3
2

h ||2 +
1

µ0ω2
pm

||Km+2
zh ||2

≤ C

(
ε0||E0

h||2 + µ0||H
1
2
zh||

2 +
1

ε0ω2
pe

||J
1
2
h ||

2 +
1

µ0ω2
pm

||K1
zh||2

)
, (55)

where the constant C > 1 is independent of the mesh size h and the time step size τ.

Proof. Choosing φx = τ(En+1
xh +Enxh), φy = τ(En+1

yh +Enyh), ψ = τ(H
n+ 3

2
zh +H

n+ 1
2

zh ), u1 = τ(J
n+ 3

2
xh +

J
n+ 1

2
xh ), u2 = τ(J

n+ 3
2

yh + J
n+ 1

2
yh ), v = τ(Kn+2

zh + Kn+1
zh ) in (42)-(47), summing them up over elements
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e ∈ Th, and time levels 0 ≤ n ≤ m for any m ≥ 1 we have:

ε0(||Em+1
h ||2 − ||E0

h||2) + µ0(||Hm+ 3
2

zh ||2 − ||H
1
2
zh||

2)

+
1

ε0ω2
pe

(||Jm+ 3
2

h ||2 − ||J
1
2
h ||

2) +
1

µ0ω2
pm

(||Km+2
zh ||2 − ||K1

zh||2)

≤τ
∫

Ω

(
Em+1
h · Jm+ 3

2
h −E0

h · J
1
2
h −H

m+ 3
2

zh Km+2
zh +H

1
2
zhK

1
zh

)
+ F0 + Fm + Fx1 + Fx2 − Fy1 − Fy2,

(56)

where the terms on the right hand side are:

Fm = τ
∑
e∈Th

∫
e

−Em+1
xh

∂H
m+ 3

2
zh

∂y
+ Em+1

yh

∂H
m+ 3

2
zh

∂x

+
∫
∂e

(
Êm+1
xh H

m+ 3
2

zh ny − Êm+1
yh Ĥ

m+ 3
2

zh nx

)
,

F0 = τ
∑
e∈Th

∫
e

(
−H

1
2
zh

∂E0
xh

∂y
+H

1
2
zh

∂E0
yh

∂x

)
+
∫
∂e

(
Ĥ

1
2
zhE

0
xhny − Ĥ

1
2
zhE

0
yhnx

)
,

Fx1 = τ

m∑
n=0

∑
e∈Th

∫
∂e

(
Ĥ
n+ 1

2
zh En+1

xh ny + Ên+1
xh H

n+ 1
2

zh ny

)
+
∫
e

−Hn+ 1
2

zh

∂En+1
xh

∂y
− En+1

xh

∂H
n+ 1

2
zh

∂y

 ,

Fx2 = τ
m∑
n=1

∑
e∈Th

∫
∂e

(
Ĥ
n+ 1

2
zh Enxhny + ÊnxhH

n+ 1
2

zh ny

)
+
∫
e

−Hn+ 1
2

zh

∂Enxh
∂y

− Enxh
∂H

n+ 1
2

zh

∂y

 ,

Fy1 = τ
m∑
n=0

∑
e∈Th

∫
∂e

(
Ĥ
n+ 1

2
zh En+1

yh nx + Ên+1
yh H

n+ 1
2

zh nx

)
+
∫
e

−Hn+ 1
2

zh

∂En+1
yh

∂x
− En+1

yh

∂H
n+ 1

2
zh

∂x

 ,

Fy2 = τ
m∑
n=1

∑
e∈Th

∫
∂e

(
Ĥ
n+ 1

2
zh Enyhnx + ÊnyhH

n+ 1
2

zh nx

)
+
∫
e

−Hn+ 1
2

zh

∂Enyh
∂x

− Enyh
∂H

n+ 1
2

zh

∂x

 .

We cancel the flux terms similarly to (27) in the proof of Theorem 3.1 and get:

Fx1 = 0, Fx2 = 0, Fy1 = 0, Fy2 = 0. (57)

By using the Cauchy-Schwartz inequality, we have:

τ

∫
Ω

(
Em+1
h · Jm+ 3

2
h −E0

h · J
1
2
h −H

m+ 3
2

zh Km+2
zh +H

1
2
zhK

1
zh

)
≤τωpe

2
(

1
ε0ω2

pe

||J
1
2
h ||

2 + ε0||E0
h||2) +

τωpe
2

(
1

ε0ω2
pe

||Jm+ 3
2

h ||2 + ε0||Em+1
h ||2)

+
τωpm

2
(

1
µ0ω2

pm

||K1
zh||2 + µ0||H

1
2
zh||

2) +
τωpm

2
(

1
µ0ω2

pm

||Km+2
zh ||2 + µ0||H

m+ 3
2

zh ||2).

(58)

We utilize the inverse inequality along with Cauchy-Schwarz inequality to estimate Fm + F0:
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(similar to the proof of Theorem 3.2.6 in [8])

F0 + Fm ≤τ ·
CinvCv

2h

(
ε0||Em+1

xh ||
2 + µ0||H

m+ 3
2

zh ||2 + ε0||E0
xh||2 + µ0||H

1
2
zh||

2

)
+ τ · CinvCv

2h

(
ε0||Em+1

yh ||
2 + µ0||H

m+ 3
2

zh ||2 + ε0||E0
yh||2 + µ0||H

1
2
zh||

2

)
.

(59)

The proof is concluded by substituting (57)–(59) into (56) and applying assumption (54) in the
above inequality.

Remark 4.1. Under the same assumption as Theorem 4.1 coupled with the assumptions on the
initial value:

ε0||E0 −E0
h||2 + µ0||H

1
2
z −H

1
2
zh||

2 +
1

ε0ω2
pe

||J
1
2 − J

1
2
h ||

2 +
1

µ0ω2
pm

||K1
z −K1

zh||2 ≤ Ch2k,

we can prove the following error estimate: for any m ≥ 1

ε0||Em+1 −Em+1
h ||2 + µ0||H

m+ 3
2

z −Hm+ 3
2

zh ||2

+
1

ε0ω2
pe

||Jm+ 3
2 − J

m+ 3
2

h ||2 +
1

µ0ω2
pm

||Km+2
z −Km+2

zh ||2 ≤ C
(
hk + τ2

)2
.

The proof can be carried out by following the similar idea to the proofs of Theorems 3.2 and 4.1
coupled with time discretization estimates (cf. [17, Ch.3]).

5 Numerical results

In this section we present the error tables, and two interesting simulations showing the backward
wave propagation across the interface of vacuum and metamaterial. For the error tables, we con-
struct exact solutions for the following system of equations with added source terms and ω being
2.

∂Ex
∂t

=
∂Hz

∂y
− Jx + fx, (60)

∂Ey
∂t

= −∂Hz

∂x
− Jy + fy, (61)

∂Hz

∂t
= −∂Ey

∂x
+
∂Ex
∂y
−Kz + g, (62)

1
ω2π2

∂Jx
∂t

= − 2
ωπ

Jx + Ex, (63)

1
ω2π2

∂Jy
∂t

= − 2
ωπ

Jy + Ey, (64)

1
ω2π2

∂Kz

∂t
= − 2

ωπ
Kz +Hz, (65)

and the exact solutions are:

Ex(x, y, t) = cos(ωπx) sin(ωπy)e−ωπt, (66)
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Ey(x, y, t) = − sin(ωπx) cos(ωπy)e−ωπt, (67)
Hz(x, y, t) = cos(ωπx) cos(ωπy)e−ωπt, (68)
Jx(x, y, t) = ωπEx, Jy = ωπEy, Kz = ωπHz (69)

with corresponding source terms:

fx = Jx, fy = Jy, g = −2ωπHz. (70)

5.1 Error table with leap-frog time stepping

We implement the leap-frog scheme (42)-(47) with alternating flux (48)–(53) and polynomial space
of degree 2. The L2 error and error rate for each variable is shown in Table 1. The error is evaluated
at T = 0.1. For the purpose of showing the suboptimal convergence rate, we choose ∆t = 0.05h

3
2

so that the error from time stepping would be O(h3). In Table 1, we can see that the space error
of E and J is of second order and dominates the time error. To compare our results with existing
work using the central flux [16]:

Êxh =
1
2
(
ERxh + ELxh

)
, Êyh =

1
2
(
ERyh + ELyh

)
, Ĥzh =

1
2
(
HR
zh +HL

zh

)
instead of our alternating flux (16)–(18), we implement the same scheme with the flux replaced by
the central flux and get similar results shown in Table 2.

As discussed in Remark 3.2, the alternating flux is optimal for DG schemes with Qk solu-
tion spaces on rectangular meshes while the central flux is suboptimal. It appears that, for DG
schemes on triangular meshes with Pk solution spaces, these two fluxes are rather similar in terms
of convergence rates.

Table 1: Leap-frog, alternating flux, P2 basis function, T = 0.1, ∆t = 0.05h
3
2

Level of Error of Ex Error of Ey Error of Hz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 8.42e-03 -inf 9.91e-03 -inf 6.37e-03 -inf
2 1.68e-03 2.33 2.45e-03 2.01 8.72e-04 2.87
3 3.65e-04 2.20 5.93e-04 2.05 1.01e-04 3.10
4 8.57e-05 2.09 1.46e-04 2.02 1.36e-05 2.90
5 2.08e-05 2.04 3.65e-05 2.00 1.85e-06 2.88

Level of Error of Jx Error of Jy Error of Kz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 1.92e-02 -inf 2.09e-02 -inf 1.63e-02 -inf
2 3.00e-03 2.68 4.09e-03 2.35 2.31e-03 2.82
3 5.90e-04 2.35 9.19e-04 2.15 2.79e-04 3.05
4 1.32e-04 2.16 2.22e-04 2.05 3.49e-05 3.00
5 3.15e-05 2.06 5.49e-05 2.02 4.38e-06 2.99

12



Table 2: Leap-frog, central flux, P2 basis function, T = 0.1, ∆t = 0.05h
3
2

Level of Error of Ex Error of Ey Error of Hz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 8.36e-03 -inf 8.36e-03 -inf 7.84e-03 -inf
2 1.44e-03 2.54 1.44e-03 2.54 7.63e-04 3.36
3 3.01e-04 2.26 3.01e-04 2.26 9.61e-05 2.99
4 7.17e-05 2.07 7.17e-05 2.07 1.05e-05 3.19
5 1.76e-05 2.02 1.76e-05 2.02 1.27e-06 3.04

Level of Error of Jx Error of Jy Error of Kz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 2.05e-02 -inf 2.05e-02 -inf 1.73e-02 -inf
2 2.83e-03 2.86 2.83e-03 2.86 2.06e-03 3.07
3 5.10e-04 2.47 5.10e-04 2.47 2.61e-04 2.98
4 1.11e-04 2.20 1.11e-04 2.20 3.23e-05 3.01
5 2.67e-05 2.06 2.67e-05 2.06 4.03e-06 3.00

5.2 Error table with Runge-Kutta time stepping

In this section we implement one more flux, the upwind flux, and further compare the convergence
rate between fluxes. For the ease of implementation, we used the Runge-Kutta time stepping, see
e.g. [10]. As shown in Table 3, the upwind flux produces optimal convergence rate. DG schemes
with alternating and central fluxes still show suboptimal convergence rates in Tables 4 and 5.

Table 3: Runge-Kutta, upwind flux, P2 basis function, T = 0.1, ∆t = 0.05h
Level of Error of Ex Error of Ey Error of Hz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 4.83e-03 – 4.83e-03 – 3.67e-03 –
2 5.03e-04 3.27 5.03e-04 3.27 4.33e-04 3.08
3 5.85e-05 3.10 5.85e-05 3.10 5.14e-05 3.07
4 7.07e-06 3.05 7.07e-06 3.05 6.28e-06 3.03
5 8.69e-07 3.02 8.69e-07 3.02 7.80e-07 3.01

Level of Error of Jx Error of Jy Error of Kz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 1.71e-02 – 1.71e-02 – 1.63e-02 –
2 2.11e-03 3.02 2.11e-03 3.02 2.01e-03 3.02
3 2.65e-04 2.99 2.65e-04 2.99 2.50e-04 3.00
4 3.30e-05 3.01 3.30e-05 3.01 3.11e-05 3.01
5 4.11e-06 3.00 4.11e-06 3.00 3.87e-06 3.00
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Table 4: Runge-Kutta, alternating flux, P2 basis function, T = 0.1, ∆t = 0.05h
Level of Error of Ex Error of Ey Error of Hz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 8.17e-03 – 9.85e-03 – 5.76e-03 –
2 1.65e-03 2.31 2.43e-03 2.02 7.95e-04 2.86
3 3.61e-04 2.19 5.92e-04 2.04 9.19e-05 3.11
4 8.58e-05 2.08 1.46e-04 2.02 1.14e-05 3.01
5 2.08e-05 2.04 3.65e-05 2.00 1.48e-06 2.94

Level of Error of Jx Error of Jy Error of Kz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 1.93e-02 – 2.08e-02 – 1.66e-02 –
2 2.99e-03 2.69 4.05e-03 2.36 2.32e-03 2.84
3 5.87e-04 2.35 9.15e-04 2.15 2.80e-04 3.05
4 1.31e-04 2.16 2.22e-04 2.05 3.50e-05 3.00
5 3.15e-05 2.06 5.49e-05 2.01 4.38e-06 3.00

Table 5: Runge-Kutta, central flux, P2 basis function, T = 0.1, ∆t = 0.05h
Level of Error of Ex Error of Ey Error of Hz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 8.20e-03 – 8.20e-03 – 7.85e-03 –
2 1.44e-03 2.51 1.44e-03 2.51 7.50e-04 3.39
3 3.00e-04 2.26 3.00e-04 2.26 9.14e-05 3.04
4 7.15e-05 2.07 7.15e-05 2.07 9.55e-06 3.26
5 1.76e-05 2.02 1.76e-05 2.02 1.08e-06 3.15

Level of Error of Jx Error of Jy Error of Kz

Refinement L2 Error Order L2 Error Order L2 Error Order
1 2.06e-02 – 2.06e-02 – 1.75e-02 –
2 2.82e-03 2.87 2.82e-03 2.87 2.08e-03 3.07
3 5.08e-04 2.47 5.08e-04 2.47 2.61e-04 2.99
4 1.11e-04 2.19 1.11e-04 2.19 3.23e-05 3.02
5 2.67e-05 2.06 2.67e-05 2.06 4.03e-06 3.00

5.3 Wave propagation in a rectangular metamaterial slab

One of the advantage of triangular meshes over the rectangular meshes is the flexibility in the
shape of physical domains they can model. In this section we consider a rectangular region with a
triangular metamaterial slab located inside a vacuum as in [16]. To absorb the outgoing waves, we
wrap the whole region by a perfectly matched layer (PML).

In the mesh visualization (Figure 1) the blue triangle, with vertices (0.024,0.002), (0.054,0.002),
and (0.024,0.062), consists of the metamaterial. The red area, a rectangle [0, 0.07] × [0, 0.064],
represents the vacuum. The green band with thickness dd = 2.4 × 10−3 on the boundary is the
PML.
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The equation in the metamaterial is the Drude model (1)–(6), with Γe = Γm = 1 × 108, µ0 =
4π × 10−7, cv = 3 × 108, ε0 = 1/(c2

vµ0), wpe = wpm = 2
√

2π. Those in the vacuum are the usual
Maxwell’s equations. The PML equations we used are the following [16]:

ε0
∂Ex
∂t

= ε0(σx − σy)Ex +
∂Hz

∂y
− Jx, (71)

ε0
∂Ey
∂t

= ε0(σy − σx)Ey −
∂Hz

∂x
− Jy, (72)

µ0
∂Hz

∂t
= −µ0(σx + σy)Hz +

∂Ex
∂y
− ∂Ey

∂x
−Kz, (73)

∂Jx
∂t

= −σxJx + ε0(σx − σy)σxEx, (74)

∂Jy
∂t

= −σyJy + ε0(σy − σx)σyEy, (75)

∂Kz

∂t
= µ0σxσyHz, (76)

where

σx(x, y) =


σm
(
x−0.07
dd

)4
, x ≥ 0.07,

σm (x/dd)4 , x ≤ 0,
0, otherwise,

(77)

with σm = −log(err) ∗ 5 ∗ 0.07 ∗ cv/(2 ∗ dd) and err = 10−7. σy has the same form with x replaced
by y. The initial condition is zero in the whole region, and the wave is incited by a source wave

e−10000(y−0.03)2f(t)

imposed on the line of x = 0.004 and y ∈ [0.025, 0.035] to the Hz field. Here f is defined as

f(t) =



0, t < 0
g1(t) sin(ω0t), 0 < t < mTp

sin(ω0t), mTp < t < (m+ k)Tp
g2(t) sin(ω0t), (m+ k)Tp < t < (2m+ k)Tp
0, t > (2m+ k)Tp,

where ω0 = 2πf0, Tp = 1/f0, f0 = 3× 108,m = 2, k = 100, and

g1(t) = 10x3
1 − 15x4

1 + 6x5
1, with x1 = t/mTp,

g2(t) = 1− 10x3
2 − 15x4

2 + 6x5
2, with x2 = t− (m+ k)Tp/mTp.

We use a time step τ = 0.1 ps and plot the Hz field at 1000, 2000, 3000, 4000, and 5000 time
steps in Figures 2–6, showing results consistent with the simulation in [16].

15



Figure 1: Mesh of triangular slab in vacuum Figure 2: Hz value at 1000 time step

Figure 3: Hz value at 2000 time step Figure 4: Hz value at 3000 time step

Figure 5: Hz value at 4000 time step Figure 6: Hz value at 5000 time step

5.4 Wave propagation in a rectangular metamaterial slab

We replace the triangular stab of metamaterial in the previous section by a rectangular one
[0.024, 0.054]× [0.002, 0.062], and obtain snapshots of Hz shown in Figures 7–12. Again, our results
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are consistent with the simulation obtained in [16].

Figure 7: Mesh of triangular slab in vacuum Figure 8: Hz value at 1000 time step

Figure 9: Hz value at 2000 time step Figure 10: Hz value at 3000 time step

Figure 11: Hz value at 4000 time step Figure 12: Hz value at 5000 time step
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6 Conclusion

We present the DG methods with alternating fluxes on triangular meshes which only have subop-
timal convergence rates. We postulate that the suboptimality is inherent in the Pk solution space.
We prove the energy conservation and an error estimate for the semi-discrete schemes. The stability
of the fully discrete scheme is proved and its error estimate is stated. We present convergence rate
tables which are consistent with our theoretical error estimate, and simulation of backward wave
propagation in Drude metamaterials to demonstrate the flexibility of triangular meshes.
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