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The variation of the maximal function of a
radial function

Hannes Luiro

Abstract. It is shown for the non-centered Hardy-Littlewood maximal operator M that
‖DMf‖1≤Cn ‖Df‖1 for all radial functions in W 1,1(Rn) .

1. Introduction

The non-centered Hardy-Littlewood maximal operator M is defined by setting
for f∈L1

loc(Rn) that

(1.1) Mf(x)= sup
B(z,r)�x

1
|B(z, r)|

∫
B(z,r)

|f(y)| dy =: sup
B(z,r)�x

∫
B(z,r)

|f(y)| dy

for every x∈Rn . The centered version of M , denoted by Mc, is defined by taking the
supremum over all balls centered at x. The classical theorem of Hardy, Littlewood
and Wiener asserts that M (and Mc) is bounded on Lp(Rn) for 1<p≤∞ . This
result is one of the cornerstones of the harmonic analysis. While the absolute
size of a maximal function is usually the principal interest, the applications in
Sobolev-spaces and in the potential theory have motivated the active research of
the regularity properties of maximal functions. The first observation was made
by Kinnunen who verified [Ki] that Mc is bounded in Sobolev-space W 1,p(Rn) if
1<p≤∞ , and inequality

(1.2) |DMcf(x)| ≤Mc(|Df |)(x)

holds for all x∈Rn. The proof is relatively simple and inequality (1.2) (and the
boundedness) holds also for M and many other variants.
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The most challenging open problem in this field is so called ‘W 1,1-problem’:
Does it hold for all f∈W 1,1(Rn) , that DMf∈L1(Rn) and

‖DMf‖1 ≤Cn ‖Df‖1 ?

This problem has been discussed (and studied) for example in [AlPe], [CaHu],
[CaMa], [HO], [HM], [Ku] and [Ta]. The fundamental obstacle is that M is not
bounded in L1 and therefore inequality (1.2) is not enough to solve the problem.
In the case n=1 the answer is known to be positive, as was proved by Tanaka [Ta].
For Mc the problem turns out to be very complicated also when n=1; however,
Kurka [Ku] managed to show that the answer is positive also in this case.

The goal of this paper is to develop technology for W 1,1-problem in higher
dimensions, where the problem is still completely open. The known proofs in the
one-dimensional case are strongly based on the simplicity of the topology: the
crucial trick (in the non-centered case) is that Mf does not have a strong local
maximum (Definition 3.7) outside the set {Mf(x)=f(x)}. This fact is a strong
tool when n=1 but is far from sufficient for higher dimensions.

The formula for the derivative of the maximal function (see Lemma 2.2 or [L])
has an important role in the paper. It says that if Mf(x)=

∫
B
|f |, |f(x)|<Mf(x)<

∞, and Mf is differentiable at x, then

(1.3) DMf(x)=
∫
B

Df(y) dy .

From this formula one can see immediately the validity of the estimate (1.2) for M ;
however, since B is exactly the ball which gives the maximal average (for |f |), it
is expected that one can derive from (1.3) much more sophisticated estimates than
(1.2). In Section 2 (Lemma 2.2), we perform basic analysis related to this issue.
The key observation we make is that if B is as above, then

(1.4)
∫
B

Df(y)·(y−x) dy = 0 .

In the backround of this equality stands a more general principle, concerning other
maximal operators as well: if the value of the maximal function is attained to ball
(or other permissible object) B, then the weighted integral of |Df | over B is zero for
a set of weights depending on the maximal operator. We believe that the utilization
of this principle is a key for a possible solution of W 1,1-problem.

As the main result of this paper, we employ equality (1.4) to show that in
the case of radial functions the answer to W 1,1-problem is positive (Theorem 3.12).
Even in this case, the problem is evidently non-trivial and truly differs from the one-
dimensional case. To become convinced about this, consider the important special
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case where f is radially decreasing (f(x)=g(|x|), where g :[0,∞)→R is decreasing).
In this case, Mf is radially decreasing as well and Mf(0)=f(0). If n=1, these
facts immediately imply that ‖DMf‖1=‖Df‖1, but if n≥2 this is definitely not
the case: the additional estimates are necessary. This type of estimate for radially
decreasing functions can be derived from (1.3) and (1.4), saying that

(1.5) |DMf(x)| ≤ Cn

|x|

∫
B(0,|x|)

|Df(y)||y| dy .

By using this inequality, the positive answer to W 1,1-problem for radially decreasing
functions follows straightforwardly by Fubini Theorem (Theorem 3.4).

For general radial functions, inequality (1.5) turns out to hold only if the max-
imal average is achieved in a ball with radius comparable to |x|. To overcome this
problem, we study the auxiliary maximal function M I , defined for f∈L1

loc(Rn) by

M If(x)= sup
x∈B(z,r),r≤|z|/4

∫
B(z,r)

|f(y)| dy ,

and prove (Lemma 3.5) that for all radial f∈W 1,1(Rn) it holds that

(1.6)
∥∥DM If

∥∥
1 ≤Cn ‖Df‖1 .

The proof of this auxiliary result resembles the proof of W 1,1-problem (for M) in
the case n=1. Recall again that in the case n=1 the key is that Mf does not have
a strong local maximum in {Mf(x)>|f(x)|}. As a multidimensional counterpart
for radial functions, we show that M If does not have a strong local maximum in
{M If(x)>|f(x)|} and for every k∈Z it holds that∫

{2k≤|y|≤2k+1}
|DM If(y)| dy ≤ Cn

∫
{2k−1≤|y|≤2k+2}

|D|f |(y)| dy .

Estimate (1.6) can be easily derived from this fact. The main result follows by
combining (1.6) and exploiting the estimate (1.5) in {Mf(x)>M If(x)}.

Question

The analysis presented in this paper raises the interest towards the study of
the integrability properties of some conditional maximal operators. As an example,
(1.3) and (1.4) yield that |DMf(x)|≤M̃(D|f |)(x), where M̃ is defined for all locally
integrable gradient fields F :Rn→R

n by

M̃F (x)= sup
{ ∣∣∣∣

∫
B(z,r)

F

∣∣∣∣ : x∈B(z, r) ,
∫
B(z,r)

F (y)·(y−x) dy =0
}
.
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It is clear that M̃F is bounded by M(|F |), but does it hold that M̃ has even better
integrability properties than M? What about the boundedness in the Hardy-space
H1 or even in L1? Notice that the boundedness of M̃ in L1 would imply the solution
to W 1,1-problem. This problem is almost completely open, even in the case n=1.
Counterexamples would be highly interesting as well.

Acknowledgements. The author would like to thank Antti Vähäkangas for in-
spiring discussions and encouragement, and the anonymous referee for many valu-
able comments on the manuscript.

2. Preliminaries and general results

Let us introduce some notation. The boundary of the n-dimensional unit ball
is denoted by Sn−1. The s-dimensional Hausdorff measure is denoted by Hs. The
volume of the n-dimensional unit ball is denoted by ωn and the Hn−1-measure of
Sn−1 by σn. The weak derivative of f (if exists) is denoted by Df . Df(x) may also
denote the classical derivative of f at x, in the case it is known to exist. If v∈Sn−1,
then

Dvf(x) := lim
h→0

1
h

(f(x+hv)−f(x)) ,

in the case the limit exists.

Definition 2.1. For f∈L1
loc(Rn) let

Bx :={B(z, r) : x∈¸B(z, r), r > 0,
∫
B

|f |=Mf(x)} .

It is easy to see that if f∈L1(Rn), x is a Lebesgue point for f , and |f(x)|<
Mf(x)<∞, then Bx �=∅ .

The following lemma is the main result of this section. We point out that below
(6) is especially useful in the case of radial functions.

Lemma 2.2. If f∈W 1,1(Rn), Mf(x)>|f(x)| and Mf is differentiable at x,

then

(1) For all v∈Sn−1 and B∈Bx , it holds that

DMf(x)=
∫
B

D|f |(y) dy and DvMf(x)=
∫
B

Dv|f |(y) dy .

(2) If x∈B for some B∈Bx, then DMf(x)=0 .
(3) If x∈∂B, B=B(z, r)∈Bx and DMf(x) �=0, then

DMf(x)
|DMf(x)| = z−x

|z−x| .
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1. If B∈Bx, then

(2.7)
∫
B

D|f |(y)·(y−x) dy = 0 .

(4) If x∈∂B, B=B(z, r)∈Bx, then

|DMf(x)|= 1
r

∫
B

D|f |(y)·(z−y) dy .

(5) If B∈Bx, then

(2.8) DMf(x)· x|x| = 1
|x|

∫
B

D|f |(y)·y dy .

The proof of Lemma 2.2 is essentially based on the following auxiliary propo-
sitions.

Proposition 2.3. Suppose that f∈W 1,1(Rn), B is a ball, hi∈R such that

hi→0 as i→∞, and Bi=Li(B), where Li are affine mappings and

lim
i→∞

Li(y)−y

hi
= g(y) .

Then

(2.9) lim
i→∞

1
hi

( ∫
Bi

f(y) dy −
∫
B

f(y) dy
)

=
∫
B

Df(y)·g(y) dy .

Proof. The proof is a simple calculation:

1
hi

( ∫
Bi

f(y) dy −
∫
B

f(y) dy
)

= 1
hi

( ∫
Li(B)

f(y) dy −
∫
B

f(y) dy
)

= 1
hi

( ∫
B

f(Li(y))−f(y) dy
)

=
∫
B

f(y+(Li(y)−y))−f(y)
hi

dy

≈
∫
B

Df(y)·(Li(y)−y)
hi

dy −→
∫
B

Df(y)·g(y) dy ,

if i→∞ . �

Lemma 2.4. Let f∈W 1,1(Rn), x∈Rn, B∈Bx, δ>0, and let Lh, h∈[−δ, δ], be
affine mappings such that x∈Lh(¸B) and

(2.10) lim
h→0

Lh(y)−y

h
= g(y) .

Then

(2.11)
∫
B

D|f |(y)·g(y) dy =0 .
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Proof. Let us denote Bh :=Lh(B). By Proposition 2.3 it holds that
∫
B

D|f |(y)·g(y) dy = lim
h→0

1
h

( ∫
Bh

|f |(y)−
∫
B

|f |(y)
)
.

Since B∈Bx and x∈¸Bh, the sign of the quantity inside the large parentheses is
non-positive for all h∈[−δ, δ]; however, the sign of 1/h depends on the sign of h.
The conclusion is that the above equality is possible only if (2.11) is valid. �

Proof of Lemma 2.2

(1) The claim is counterpart for the formula for DMcf , which was first time
proved in [L]. Suppose that B=B(z, r)∈Bx and let Bh :=B(z+hv, r). Then it holds
that

DvMf(x) = lim
h→0

1
h

(Mf(x+hv)−Mf(x))

≥ lim
h→0

1
h

( ∫
Bh

|f(y)| dy −
∫
B

|f(y)| dy
)

= lim
h→0

1
h

( ∫
B

|f(y+hv)|−|f(y)| dy
)

=
∫
B

Dv|f |(y) dy .

On the other hand, if Bh :=B(z−hv, r), then

DvMf(x) = lim
h→0

1
h

(Mf(x)−Mf(x−hv))

≤ lim
h→0

1
h

( ∫
B

|f(y)| dy −
∫
Bh

|f(y)| dy
)

= lim
h→0

1
h

( ∫
B

|f(y)|−|f(y+hv)| dy
)

=
∫
B

Dv|f |(y) dy .

These inequalities imply the claim.
(2) If B∈Bx and x∈B, then y∈B if |y−x| is small enough, and thus Mf(y)≥

Mf(x).
(3) Let B=B(z, r)∈Bx, v∈Sn−1 such that v ·(z−x)=0, and let us denote for

all h∈(0,∞) that xh :=x+hv, rh :=|z−xh|, and Bh :=B(z, rh). These definitions
guarantee that xh∈¸Bh\B for all h, and B⊂Bh. Moreover, since v ·(z−x)=0, it is
elementary fact that

rh = |z−x−hv| ≤ |z−x|+ h2

2r .
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Therefore, r/rh≥1−(hr )2 , and

Mf(xh)≥
∫
Bh

|f(z)| dz ≥ |B|
|Bh|

∫
B

|f(z)| dz =
(

r

rh

)n ∫
B

|f(z)| dz

≥
(

1− h2

r2

)n
Mf(x) .

This implies that DvMf(x)≥0 for all v∈Sn−1 such that v ·(z−x)=0 . Since we
assumed that Mf is differentiable at x, it follows that

DvMf(x)= 0 if v ∈Sn−1, v ·(z−x)= 0 .

In particular, it follows that DMf(x) is parallel to z−x or x−z. The final claim
follows easily by the fact that Mf(x+h(z−x))≥Mf(x) if 0≤h≤2.

(4) Let B∈Bx and Lh(y):=y+h(y−x) , h∈R. Then it holds that Lh is affine
mapping, Lh(x)=x, and so x∈Lh(B)=:Bh, and (Lh(y)−y)/h=y−x for all h∈R .
Therefore, Lemma 2.4 implies that∫

B

D|f |(y)·(y−x) dy =0 .

(5) By combining (1), (3) and (4) the claim follows by

|DMf(x)|=DMf(x)·
(

z−x

|z−x|

)
=

∫
B

D|f |(y)·
(

z−x

|z−x|

)
dy

=
∫
B

D|f |(y)·
(

z−y

|z−x|

)
dy .

(6) The claim follows from (1) and (4). �

3. W 1,1-problem for radial functions

Radial functions and notation

In what follows, we will interpret a radial function on R
n as a function on

(0,∞) in a natural way. To be more precise, if f∈W 1,1
loc (Rn) is radial, it is well

known fact that there exists continuous function f̃ :(0,∞)→R such that f̃ is weakly
differentiable, ∫ ∞

0
|f̃ ′(t)|tn−1 dt <∞ ,

and (by a possible redefinition of f in a set of measure zero) for all t∈(0,∞) it holds
that f(x)=f̃(t) and Dx/|x|f(x)=f̃ ′(t) if |x|=t. In what follows, we will simplify the



154 Hannes Luiro

notation and use f to denote f̃ as well. To avoid the possibility of misunderstanding,
we usually use variable t and notation f ′ (instead of Df) when we are actually
working with f̃ . We also say that f is radially decreasing if f is radial and f(t1)<
f(t2) if t1>t2. Notice also that if f is radial then Mf is also radial.

We begin with establishing couple of auxiliary lemmas. The following auxiliary
result is repeatedly utilized in the proof. The proof is well known, see for example
[HKM, Theorem 1.20].

Lemma 3.1. Suppose that Ω⊂R
n, f∈W 1,1(Ω) is continuous, g :Ω→R is con-

tinuous and weakly differentiable in E :={x∈Ω:g(x)>f(x)}, and
∫
E
|Dg|<∞ . Then

max{f, g} is weakly differentiable in Ω and

D(max{f, g})=χEDg+χΩ∩EcDf .

Let us define an auxiliary maximal operator Mλ for λ>0 by

Mλf(x)= sup
x∈B(z,r), λ≤r

∫
B(z,r)

|f(y)| dy .

Proposition 3.2. If f∈L1(Rn), then Mλ is Lipschitz.

Proof. The result is well known, but we give a proof for readers convenience.
Suppose that x, y∈Rn such that Mλf(x)>Mλf(y). Clearly there exists r≥λ and
x0∈Rn such that x∈¸B(x0, r) and Mλf(x)=

∫
B(x0,r) |f | . The claim follows by

Mλf(x)−Mλf(y)≤
∫
B(x0,r)

|f(z)| dz −
∫
B(x0,r+|x−y|)

|f(z)| dz

≤ 1
ωn

(
1
rn

− 1
(r+|x−y|)n

) ∫
B(x0,r)

|f(z)|dz ≤C(n, λ)|x−y| ‖f‖1 . �

The following result is especially related to the assumption ‘Mf(x) is differen-
tiable at x’ in Lemma 2.2.

Proposition 3.3. Suppose that f∈W 1,1(Rn) is radial and

E := {x∈R
n\{0} : Mf(x)> |f(x)|}.

Then E is open, DMf exists in E and Mf is differentiable almost everywhere in E.

Proof. The first claim (E is open) follows by the fact that f is continuous
outside the origin. The claims concerning the differentiability (weak and classical)
follow if we can show that Mf is locally Lipschitz in E. But this follows rather
easily from Proposition 3.2 and the fact that f is continuous in R

n\{0} . �
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The following result is a straightforward consequence of Lemma 2.2 and the
above auxiliary results.

Theorem 3.4. If f∈W 1,1(Rn) is radially decreasing, then DMf∈W 1,1(Rn)
and ‖DMf‖1≤Cn ‖Df‖1 .

Proof. Since f is radially decreasing, it follows that Mf(x)>|f(x)| for all x �=0.
Especially, this guarantees the existence of a weak derivative in R

n\{0}, and the
classical differentiability almost everywhere (by the above auxiliary results).

If B∈Bx, x �=0, it is easy to show (the proof is left to the reader) that ¸B⊂
¸B(0, |x|). It also follows that 0∈¸B. To see this, observe (e.g.) that whenever 0 �∈¸B,
B⊂B(0, |x|), then B is of type B=B(cx, |c−1||x|), where 1

2<c<1. By choosing

L(y)=x+2(1−c)(y−x) and B∗ :=B(1
2x,

1
2 |x|) ,

it is easy to check that L(B∗)=B and, especially, |L(y)|>|y| for all y∈B∗. There-
fore, ∫

B

|f(z)| dz =
∫
L(B∗)

|f(z)| dz =
∫
B∗

|f(L(z))| dz <

∫
B∗

|f(z)| dz .

This proves that 0∈¸B(x), whenever B∈Bx, x �=0 . Especially, we get by Lemma 2.2,
(6) that

(3.12) |DMf(x)| ≤ Cn

|x|

∫
B(0,|x|)

|Df(y)||y| dy for a.e. x .

Then the claim follows by Fubini theorem:∫
Rn

(
1
|x|

∫
B(0,|x|)

|Df(y)||y| dy
)
dx

=
∫
Rn

|Df(y)||y|
( ∫

Rn

χB(0,|x|)(y)
ωn|x|n+1 dx

)
dy

=
∫
Rn

|Df(y)||y|
( ∫

{x:|x|≥|y|}

1
ωn|x|n+1 dx

)
dy

=
∫
Rn

|Df(y)||y|
( ∫

Sn−1

∫ ∞

|y|

1
ωntn+1 t

n−1 dt dHn−1
)
dy

=n

∫
Rn

|Df(y)||y|
( ∫ ∞

|y|

1
t2

dt

)
dy

=n

∫
Rn

|Df(y)| dy . �
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In the case of general radial functions, (1.5) is in general valid (and useful) only
for those x for which the radius of B∈Bx is comparable to |x|. As it was explained
in the introduction, the main auxiliary tool in the case of general radial functions
is the following result (recall the definition of M I in the introduction):

Lemma 3.5. If f∈W 1,1(Rn) is radial, then M If∈W 1,1(Rn) and
∥∥DM If

∥∥
1≤

Cn ‖Df‖1 .

Before the actual proof of this result, we prove several auxiliary results. The
first of them is well known.

Proposition 3.6. Suppose that E⊂R is open. Then there exist disjoint inter-

vals (ai, bi) such that E=∪∞
i=1(ai, bi) and ai, bi∈∂E∪{−∞,∞} for all i∈N .

Definition 3.7. Let f :Ω→R, where Ω⊂R is open. We say that x is a
strong local maximum of f in (a, b)⊂Ω, −∞≤a<b≤∞, if there exist a′, b′∈(a, b)
such that a′<x<b′, f(t)≤f(x) if t∈(a′, b′), and max{f(a′), f(b′)}<f(x).

Proposition 3.8. Suppose that f :[a, b]→R is continuous and c∈(a, b) such

that f(c)>max{f(a), f(b)}. Then f has a strong local maximum on (a, c).

Proof. It is easy to see that now any maximum point c (f(c)=max f), which
is known to exist, is also a strong local maximum of f . �

Proposition 3.9. Suppose that f :[a, b]→R is continuous and does not have

a strong local maximum on (a, b). Then there exists c∈[a, b] such that f is non-

increasing on [a, c] and non-decreasing on [c, b].

Proof. Since f is continuous, we can choose c∈[a, b] such that f(c)=min f .
To show that f is non-decreasing on [c, b], let c<y1<y2<b and assume, on the
contrary, that f(y2)<f(y1). This implies that f(y1)>max{f(c), f(y2)}, and thus
f has a strong local maximum on (c, y2) by Proposition 3.8. This is the desired
contradiction. The first claim, f is non-increasing on [a, c], follows by a similar
argument. �

Let us define for 0<a≤b<∞ the annular domains

An(a, b) :=A(a, b) := {x∈R
n : a< |x|<b} and

An[a, b] :=A[a, b] := {x∈R
n : a≤ |x| ≤ b} .

Lemma 3.10. If f∈W 1,1(Rn) is radial, then M If does not have a strong local

maximum in {t∈(0,∞): M If(t)>|f(t)|} .
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Proof. Suppose, on the contrary, that t0∈(0,∞) is a strong local maximum of
M If and M If(t0)>|f(t0)|. Let us choose

t− := sup{t< t0 : M If(t)<M If(t0)} and
t+ := inf{t> t0 : M If(t)<M If(t0)} .

By the definition of the strong local maximum, it follows that t0∈[t−, t+] and

(3.13) M If(t)=M If(t0) for all t∈ [t−, t+] .

Suppose that |x|=t0. Since M If(t0)>|f(t0)|, it follows that there exists a ball
B=B(z, r) such that x∈¸B, r≤|z|/4, and M If(t0)=

∫
B
|f |. Suppose first that B �⊂

A[t−, t+]. In this case, there exists ε>0 such that [t−−ε, t−]⊂{|y|:y∈¸B} or [t+, t++
ε]⊂{|y|:y∈¸B}. Especially, it follows by the definition of M I that M If(t)≥

∫
B
|f |=

M If(t0) if t∈[t−−ε, t−] or t∈[t+, t++ε], respectively. Obviously, this contradicts
with the choice of t− and t+. This verifies that B⊂A[t−, t+]. Therefore, it holds
by (3.13) that

(3.14) M If(y)=M If(t0) for all y ∈B .

However, |f(t0)|<M If(t0) also implies that there exists a ball B′ with positive
radius such that B′⊂B and |f |<M If(t0) in B′. Combining this with (3.14) yields
the desired contradiction by

M If(t0) =
∫
B

|f | ≤ 1
|B|

(∫
B\B′

|f |+
∫
B′

|f |
)

<
1
|B|

( ∫
B\B′

M If+
∫
B′

M If(t0)
)

=M If(t0) . �

The following estimate is well known.

Proposition 3.11. If f∈W 1,1(Rn) is radial and 0<a<b<∞, then

σna
n−1

∫ b

a

|f ′(t)| dt ≤
∫
A(a,b)

|Df(y)| dy ≤σnb
n−1

∫ b

a

|f ′(t)| dt .

The proof of Lemma 3.5

Let

E := {x∈R
n\{0} : M If(x)> |f(x)|} and Ek :=E∩A[2−k, 2−k+1] , k∈N.

Then E is open, since M If and f are continuous in R
n\{0} . A standard argument

(see the proof of Proposition 3.2) shows that mapping M If is locally Lipschitz in
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E and, especially, D(M If) exists in E. By Lemma 3.1, it suffices to show that∫
E
|DM If |≤Cn ‖Df‖1 .

First, observe that since |f | is radial, it follows that M If is radial as well. In
particular, if

ER

k := {|x| : x∈Ek} ,

then x∈Ek if and only if |x|∈ER

k . Since ER

k is open in [2−k, 2−k+1], we can write

ER

k =∪∞
i=1(ai, bi) ,

such that ai<bi, (ai, bi) are pairwise disjoint and ai, bi∈∂ER

k . In the other words,

Ek =
∞⋃
i=1

A(ai, bi) ,

and (by the definition of Ek) for all i∈N it holds that
(3.15)

M If(x)= |f(x)| if |x|= ai > 2−k and M If(x)= |f(x)| if |x|= bi < 2−k+1 .

Moreover, since M If>|f | in Ek, Lemma 3.10 says that M If does not have a strong
local maximum in ER

k . In particular, by Proposition 3.9 there exist ci∈(ai, bi) such
that∫

A(ai,bi)
|DM If(y)| dy ≤ σnb

n−1
i

∫ bi

ai

|(M If)′(t)| dt

= σnb
n−1
i (M If(ai)−M If(ci)+M If(bi)−M If(ci))

≤ σnb
n−1
i (M If(ai)−|f |(ci)+M If(bi)−|f |(ci)) .

Combining this with (3.15) implies that if 2−k<ai<bi<2−k+1, then∫
A(ai,bi)

|DM If(y)| dy ≤σnb
n−1
i (|f |(ai)−|f |(ci)+|f |(bi)−|f |(ci))

≤σnb
n−1
i

∫ bi

ai

|f ′(t)| dt ≤
(
bi
ai

)n−1 ∫
A(ai,bi)

|Df(y)| dy

≤ 2n−1
∫
A(ai,bi)

|Df(y)| dy .

For the case ai=2−k or bi=2−k+1, we employ the fact

M If(2−k),M If(2−k+1)≤ sup
y∈A(2−k−1,2−k+2)

|f(y)|
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to obtain the estimates (ai=2−k or bi=2−k+1)∫
A(ai,bi)

|DM If(y)| dy ≤σnb
n−1
i (M If(ai)−|f |(ci)+M If(bi)−|f |(ci))

≤σnb
n−1
i

∫ 2−k+2

2−k−1
|f ′(t)| dt

≤ 23(n−1)
∫
A(2−k−1,2−k+2)

|Df(y)| dy .

Combining these estimates implies that∫
Ek

|DM If(y)| dy =
∞∑
i=1

∫
A(ai,bi)

|DM If(y)| dy

≤ 2n−1
∞∑
i=1

[ ∫
A(ai,bi)

|Df(y)| dy
]

+2(23(n−1))
∫
A(2−k−1,2−k+2)

|Df(y)| dy

≤ 23n
∫
A(2−k−1,2−k+2)

|Df(y)| dy .

Therefore,∫
E

|DM If(y)| dy ≤
∑
k∈Z

∫
Ek

|DM If(y)| dy

≤ 23n
∑
k∈Z

∫
A(2−k−1,2−k+2)

|Df(y)| dy

= 3(23n)
∑
k∈Z

∫
A(2−k,2−k+1)

|Df(y)| dy = 3(23n) ‖Df‖1 .

This completes the proof. �
Then we are ready to prove our main theorem.

Theorem 3.12. If f∈W 1,1(Rn) is radial, then Mf∈W 1,1(Rn) and

‖DMf‖1≤Cn ‖Df‖1 .

Proof. Let

E := {x∈R
n : Mf(x)>M If(x) , DMf(x) �=0 }.

It is well known that Mf is locally Lipschitz in {Mf(x)>|f(x)|} (combine e.g.
Proposition 3.2 and the fact that f is continuous in R

n\{0}), implying the ex-
istence of DMf in {Mf(x)>|f(x)|}. Since Mf≥M I , it holds that Mf(x)=
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max{Mf(x),M If(x)}. Therefore, the theorem follows by Lemmas 3.1 and 3.5,
if we can show that

(3.16)
∫
E

|DMf(y)| dy ≤Cn ‖Df‖1 .

To show this, observe first that for all x∈E there exist zx∈Rn and rx>
|zx|
4 such

that x∈¸B(zx, rx)∈Bx. Moreover, since DMf(x) �=0, Lemma 2.2 ((2) and (3)) says
that x∈∂B(zx, rx) and DMf(x)/|DMf(x)|=(zx−x)/|zx−x|. On the other hand,
Mf is radial and so DMf(x)/|DMf(x)|=±x/|x|. We conclude that

Bx =B(cxx, |cxx−x|) for some cx ∈R .

Firstly, it holds that cx≥0 for all x∈E. To see this, observe that if cx<0, then −x∈
Bx and, since Mf is radial, Bx∈B−x, implying by Lemma 2.2 that 0=DMf(−x)=
DMf(x), which contradicts with the assumption x∈E. Moreover, rx=|cxx−x|=
|cx−1||x|>|cxx|/4 by the assumption, implying that cx< 4

5 or cx> 4
3 . Summing up,

we can write E=E+∪E−, where

E+ = {x∈E : cx > 4/3 } and E− = {x∈E : 0≤ cx < 4/5 } .

We are going to use different estimates for DMf(x) in E+ and E− . Since
|DMf(x)|=|DMf(x)· x

|x| |, it follows from Lemma 2.2 (2.8) that

|DMf(x)| ≤ 1
|x|

∫
Bx

|D|f |(y)||y| dy .

This estimate will be used in E−, while in E+ we will use (easier) estimate
|DMf(x)|≤

∫
Bx

|D|f || (Lemma 2.2, (1)). We get that∫
E

|DMf(x)| dx ≤
∫
E

χE+(x)|DMf(x)|+χE−(x)|DMf(x)| dx

≤
∫
E

χE+(x)
( ∫

Bx

|D|f |(y)|dy
)

+χE−(x)
( ∫

Bx

|D|f |(y)| |y||x| dy
)
dx

=
∫
E

∫
Rn

χE+(x)χBx(y)|D|f |(y)|
|Bx|

+
χE−(x)χBx(y)|D|f |(y)||y|

|Bx||x|
dy dx

=
∫
Rn

|D|f |(y)|
(∫

E+

χBx(y)
|Bx|

dx +
∫
E−

χBx(y)|y|
|Bx||x|

dx

)
dy.

If y∈Bx and x∈E+, it follows from the definition of E+ that |x|≤|y|. Moreover,
y∈Bx and x∈E imply also that rx≥max{ |y−x|

2 , |x|
3 }≥ |y|

5 . This implies the estimate∫
E+

χBx(y)
|Bx|

dx ≤
∫
B(0,|y|)

dx

ωn(|y|/5)n ≤Cn , for all y ∈R
n .
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On the other hand, if x∈E−, then 0≤cx<4/5 especially implies that Bx⊂B(0, |x|).
Therefore, if x∈E− and y∈Bx, then y∈B(0, |x|), and thus |x|≥|y| . Recall also that
rx≥ |x|

5 . Combining these yields that∫
E−

χBx(y)|y|
|Bx||x|

dx ≤ |y|
∫
Rn\B(0,|y|)

dx

ωn(|x|/5)n+1 =C ′
n|y|

∫ ∞

|y|

dt

t2
=C ′

n ,

for all y∈Rn . This completes the proof. �
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