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Generalized Gorenstein Arf rings

Ela Celikbas, Olgur Celikbas, Shiro Goto and Naoki Taniguchi

Abstract. In this paper we study generalized Gorenstein Arf rings; a class of one-
dimensional Cohen-Macaulay local Arf rings that is strictly contained in the class of Gorenstein
rings. We obtain new characterizations and examples of Arf rings, and give applications of our
argument to numerical semigroup rings and certain idealizations. In particular, we generalize a
beautiful result of Barucci and Fröberg concerning Arf numerical semigroup rings.

1. Introduction

In 1971 Lipman [30] proved that, if (R,m) is a complete, one-dimensional local
domain with an algebraically closed field of characteristic zero, and R is saturated
(as defined by Zariski in [40]), then R has minimal multiplicity, i.e., the embedding
dimension of R equals the multiplicity of R. Lipman’s proof based on the fact that
such a ring R is an Arf ring, i.e., R satisfies a certain condition that was studied
by Arf [2] in 1949 pertaining to a certain classification of curve singularities; see,
for example, the survey papers [32], [33] and also Du Val’s work [8] for details. As
Lipman [30] pointed out, the defining condition of an Arf ring is technical, but it
is convenient to work with, as well as, easy to state: if R is as above, then R is
Arf provided that, yz/x∈R whenever 0 �=x∈m and y/x, z/x∈Frac(R) (the field of
fractions of R) are integral elements over R.

Examples of Arf rings are abundant. For example, R is Arf if the multiplicty
of R is at most two. As Arf property is preserved by standard procedures in ring
theory, such as completion, it is not difficult to construct examples of Arf rings; see,
for example, [30, 2.5 and 2.7].
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rings.

2010 Mathematics Subject Classification: 13H10, 13H15, 13A15.



36 Ela Celikbas, Olgur Celikbas, Shiro Goto and Naoki Taniguchi

Arf property for numerical semigroup rings, as well as algorithms to compute
the Arf ring closure of various rings, such as the coordinate rings of curves, were
already studied in the literature; see, for example, [3], [5], [36]. However, to our
best knowledge, a homological characterization of Arf rings in local algebra – besides
Lipman’s beautiful work – is yet to be given. The main purpose of this paper, rather
than seeking fast algorithms to compute the Arf closure, is to initiate a homological
investigation, and to attempt to motivate the interested reader to study further in
this direction. Although it has seemingly a non-homological definition, Arf rings
enjoy important homological properties: if R is Arf, then it has minimal multiplicity
so that it is Golod, a class of (local) rings which is of active research interest; see,
for example, [4, 5.2.8]. This particular property of Arf rings naturally raises the
following question: if R has minimal multiplicity, then, under what conditions, R
is an Arf ring? In this paper we are able to give an answer to this question and
obtain new characterizations of a class of Arf rings. Our main result is:

Theorem 1.1. Let R be a one-dimensional generalized Gorenstein local ring

with a canonical ideal I which contains the parameter ideal (a) as a reduction. Set

S=
{

x
a

∣∣ x∈I}⊆Q(R), where Q(R) is the total quotient ring of R. Then R is Arf

if and only if R has minimal multiplicity and the multiplicity of SM is at most two

for each maximal ideal M of S.

The notion of generalized Gorenstein ring introduced by [12] is one of the gen-
eralizations of that of Gorenstein ring, defined by a certain embedding of the ring
into its canonical module; see 2.2 for a precise definition. Originally, the series of
researches [7], [9], [12]–[14], [16]–[19], [22], [24], [25], [27], [37] aim, in order to strat-
ify Cohen-Macaulay rings, to find new classes of them, measuring the distance or
difference from Gorenstein rings as a barometer. The notion of generalized Goren-
stein ring is one of the attempts, which beautifully extends the notion of almost
Gorenstein ring, initially defined by Barucci and Fröberg [5] for one-dimensional
analytically unramified local rings, and thereafter generalized by Goto, Matsuoka,
and Phuong [14] for arbitrary Cohen-Macaulay local rings of dimension one.

The next two corollaries of Theorem 1.1 yield generalizations of a characteri-
zation of Barucci and Fröberg [5, 13] concerning Arf numerical semigroup rings; see
Theorem 4.4, Corollary 4.5, and Proposition 4.6. We set B=m:Q(R)m, the endo-
morphism algebra of m, where Q(R) is the total quotient ring of R. Note that, if R
is not Gorenstein but almost Gorenstein, then B=S; see [14, 3.16].

Corollary 1.2. Let (R,m) be a one-dimensional Cohen–Macaulay local ring

with canonical module. Then the following conditions are equivalent.

(i) R is an almost Gorenstein Arf ring.

(ii) e(BM)≤2 for each maximal ideal M of B.
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Given a generalized Gorenstein numerical semigroup ring, our next result may
be used to check whether it is Arf; see Proposition 4.6. We set c=R:Q(R)S.

Corollary 1.3. Let �>0 be an integer and let 0<a1<a2<...<a� be integers

with gcd(a1, a2, ..., a�)=1. Assume k is a field, R=k[[ta1 , ta2 , ..., ta� ]] is the numerical

semigroup ring over k, and H=〈a1, a2, ..., a�〉 is the corresponding semigroup. For

a generalized Gorenstein ring R, the following are equivalent.

(i) R is an Arf ring.

(ii) R has minimal multiplicity, 2+�R(R/c)·a1∈H, and 2+ai∈H for each i=
2, ..., �.

In Section 4 we consider idealizations of the form A=R�c, where R is an one-
dimensional Cohen-Macaulay local ring. We obtain a new criterion for A to be a
generalized Gorenstein Arf ring in terms of the integral closure R of R. A special
case of our result is as follows; see Theorem 4.10.

Corollary 1.4. Let R be a one-dimensional Cohen-Macaulay local ring R with

a canonical module. If R is a generalized Gorenstein ring that has minimal multi-

plicity, and S=R, then both R and A are generalized Gorenstein Arf rings.

2. Preliminaries

This section is devoted to the definitions and some basic properties of Arf
rings and generalized Gorenstein rings. Throughout the section, R denotes a
d-dimensional Cohen–Macaulay local ring with unique maximal ideal m, residue
field k and canonical module KR.

We start by recalling the definition of an Ulrich module.

Definition 2.1. ([12]) Let M be a finitely generated R-module of dimension
s≥0, and let a be an m-primary ideal of R. Then M is said to be an Ulrich R-module
with respect to a provided the following conditions hold:

(a) M is a Cohen–Macaulay R-module.
(b) e0

a(M)=�R(M/aM).
(c) M/aM is a free R/a-module.

Here �R(M) and e0
a(M) denote the length of M as an R-module and the multiplicity

of M with respect to a, respectively.

Ulrich modules, with respect to the unique maximal ideal, were originally de-
fined in [6] as maximally generated maximal Cohen–Macaulay modules. This defi-
nition was then generalized in the article [20] of the third author, Ozeki, Takahashi,
Watanabe, and Yoshida. If R is a non-regular and has minimal multiplicity, then
it follows from the definition that m is an Ulrich ideal. Recall that R is said to
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have minimal multiplicity if e(R)=embdim(R)−dimA+1, where embdim(R) de-
notes the embedding dimension of R. Moreover higher syzygies of Ulrich ideals are
Ulrich modules; see [20, 3.2]. We refer the reader to [12], [20], [21], [24] for further
information on Ulrich modules.

Definition 2.2. ([12]) R is said to be a generalized Gorenstein ring, if either
R is Gorenstein, or R is not Gorenstein, but there exists an m-primary ideal a of R
and an exact sequence of R-modules

0−→R
ϕ−−→KR −→C −→ 0,

where C is an Ulrich R-module with respect to a, and the induced homomorphism

R/a⊗Rϕ :R/a−→KR/aKR

is injective. If the latter case occurs, then R is called a generalized Gorenstein ring
with respect to a.

Definition 2.3. ([24]) R is said to be an almost Gorenstein ring if it is Goren-
stein, or not Gorenstein but is a generalized Gorenstein ring with respect to m.

Next we record some preliminary results pertaining to Arf rings.

On Arf rings

For this subsection on Arf rings, A denotes a commutative Noetherian semi-
local ring satisfying the following condition:
(�) AM is a one-dimensional Cohen-Macaulay ring for each maximal ideal M of A.

Let FA be the set of ideals of A that contain a non-zerodivisor on A. Then,
for each I∈FA, there is a filtration of endomorphism algebras as follows:

A⊆ I :Q(A) I ⊆ I2 :Q(A) I
2 ⊆ ...⊆ In :Q(A) I

n ⊆ ...⊆A.

Here A and Q(A) denote the integral closure and the total quotient ring of A,
respectively. We set

AI =
⋃
n≥1

[In :Q(A) I
n].

The ring AI , a module-finite extension over A, is called the blowup of A at I. Notice,
if a∈I is a reduction of I, then one has:

AI =A

[
I

a

]
, where I

a
=
{x

a

∣∣∣ x∈ I
}
⊆Q(A).

Definition 2.4. An ideal I∈FA is called a stable ideal provided AI=I :Q(A)I.
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Note that, for each I∈FA, In is stable for some n≥1. Moreover, an ideal I is
stable if and only if I2=xI for some x∈I; see [30] for details.

Definition 2.5. ([2], [30]) A is called an Arf ring provided every integrally
closed ideal I∈FA is stable.

Notation 2.6. For each nonnegative integer n, we set:

An =
{
A if n=0,
A

J(An−1)
n−1 if n≥1,

where J(An−1) stands for the Jacobson radical of the ring An−1.

Notice A1=AJ(A) is a one-dimensional Noetherian semi-local ring which is a
module-finite extension over A. Moreover, A1 satisfies the condition (�), namely
the localization (A1)N is a Cohen–Macaulay local ring of dimension one for each
N∈Max(A1), i.e., for each maximal ideal N of A1.

The following characterization of Arf rings plays an important role for our
argument; see, for example, the proof of Proposition 2.8 and that of Theorem 1.1.
One can deduce it from the results of Lipman [30], but we include here a short and
a different proof for the sake of completeness.

Proposition 2.7. (see [30, 2.2]) The following conditions are equivalent.

(i) A is an Arf ring.

(ii) embdim((An)M)=e((An)M) for each n≥0 and maximal ideal M of An.

Proof. (i)⇒(ii): Let B=AJ be the blowup of A at its Jacobson radical J=
J(A). By the induction argument, it suffices to prove B is Arf and embdim(AM)=
e(AM) for each M∈Max(A). Since M∈FA is integrally closed and A is Arf, M
is stable, i.e., there exists an element f∈M satisfying M2=fM, which yields
embdim(AM)=e(AM). Let us make sure of the Arf property for B. Note that
the Jacobson radical J=J(A) is an integrally closed open ideal of A. Thus we
choose x∈J with J2=xJ . Therefore we have

B =AJ =A

[
J

x

]
= J

x
.

Let L∈FB be an integrally closed ideal of B and we will show that L is stable. By
setting I=xL, we get

I ⊆J ⊆A

so that I is an open ideal of A, i.e., I∈FA. It is straightforward to show that I is
integrally closed, whence I2=ξI for some ξ∈I. Hence

L2 = ξ

x
L and ξ

x
∈L
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which imply that B is Arf, as desired.
(ii)⇒(i) Let I∈FA be an integrally closed ideal of A. We may assume that I

is a proper ideal of A. Localizing A at its maximal ideal, we may also assume A is
a local ring with maximal ideal m. Since A has minimal multiplicity, there exists
x∈m such that m2=xm. Let

B :=Am =A
[
m

x

]
= m

x

be the blowup of A at m. As I⊆m, we see that L:= I
x⊆B is an ideal of B. One can

show that L is integrally closed. We now assume that L is not stable in B. Then
L�B and, for each N∈Max(B), one has:

�BN (BN /LBN )≤ �B(B/L)≤ �A(B/L)<�A(A/I).

Repeating the same process for BN recursively contradicts the fact that �A(A/I) is
finite. Therefore L is stable, so that we can choose ξ∈L satisfying L2=ξL. Since
I=xL, we have

I2 =(xξ)I,

which yields that A is an Arf ring. �

We finish this section with a few more observations on the Arf property. For
commutative rings A,B, and C, we say that C is an intermediate ring between A

and B, if A,C are subrings of B and A⊆C⊆B.

Proposition 2.8. Assume A is a one-dimensional, Cohen–Macaulay and local

ring with unique maximal ideal m. Let C be an intermediate ring between A and

Q(A) such that C is a finitely generated A-module. Assume e(CM)≤2 for each

maximal ideal M of C. If C⊆D⊆Q(C) is an intermediate ring that is a finitely

generated C-module, then e(DN )≤2 for each maximal ideal N of D. In particular,

C is an Arf ring.

Proof. Let C⊆D⊆Q(C) be an intermediate ring such that D is a module-finite
extension over C. Let N∈Max(D), and set M=N∩C. Then M is a maximal ideal
of C. Note that DM∼=DN and Q(C)M∼=Q(CM). Therefore, CM⊆DM⊆Q(CM),
where DM is a module-finite extension over CM. Since e(CM)≤2, [24, 12.2] shows
e(DN )≤2.

Now, to see C is Arf, let D=Cn, a blowup of C; see Notation 2.6. Then,
e(DN )≤2, which implies 1≤embdim(DN )=e(DN ). Therefore, C is an Arf ring by
Proposition 2.7. �
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3. A Proof of the main result

Setup 3.1. Let (R,m) be a one-dimensional Cohen–Macaulay local ring with
canonical module KR. We set B=m:Q(R)m, the endomorphism algebra of the max-
imal ideal m, where Q(R) denotes the total quotient ring of R.

We fix a canonical ideal I of R, and assume I contains a parameter ideal aR
of R as a reduction. Let

S =R[K], where K = I

a
=
{x

a

∣∣∣ x∈ I
}
⊆Q(R).

Furthermore we define the conductor as c=R:Q(R)S. Notice R⊆K⊆R, where R is
the integral closure of R in Q(R).

Note K∼=I∼=KR, and both B and S, being module finite extensions of R, are
one-dimensional semi-local rings. Note also that e(R)=e0

m(S)=e0
m(B). �

We will make use of the following theorems for our proof of Theorem 3.4, which
is the key ingredient in our proof of Theorem 1.1.

Theorem 3.2. ([14, 5.1]) The following conditions are equivalent.

(i) R is an almost Gorenstein ring and embdim(R)=e(R).
(ii) B is a Gorenstein ring.

Theorem 3.3. ([12, 4.18]) Assume there is an element x∈m such that m2=xm.

Then the following conditions are equivalent.

(i) R is a generalized Gorenstein ring, but R is not an almost Gorenstein ring.

(ii) B is not a Gorenstein ring, but B is a generalized Gorenstein local ring

with maximal ideal n such that n2=xn.

When one of these equivalent conditions hold, we have R/m∼=B/n, and

�B(B/(B :B[L]))= �R(R/c)−1,

where L=BK.

Theorem 3.4. Assume e(R)≥3. Then the following conditions are equivalent.

(i) R is a generalized Gorenstein ring with minimal multiplicity.

(ii) S is Gorenstein, and there is an integer N>0 such that the following hold:

(a) S=RN .

(b) For each integer n=0, ..., N−1, it follows Rn is a local ring such that

embdim(Rn)=e(Rn)=e(R).
Furthermore, if condition (ii) holds, then we have N=�R(R/c).

Proof. We set �=�R(R/c). By [14, 3.5, 3.7], let us remark that R is Gorenstein
if and only if �=0. Besides, by [14, 3.5, 3.16], the condition that R is a non-
Gorenstein almost Gorenstein ring is equivalent to the case where �=1.
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(i)⇒(ii) Since embdim(R)=e(R), we choose x∈m such that m2=xm. Set
N=�=�R(R/c). As e(R)≥3, R is not a Gorenstein ring, so that �>0. If �=1, then
R is an almost Gorenstein ring and S=m:Q(R)m is a Gorenstein ring by Theorem
3.2. Suppose that �>1 and the assertion holds for �−1. We then have R is not an
almost Gorenstein ring. By Theorem 3.3, B is a generalized Gorenstein ring, but
not Gorenstein. Furthermore, n2=xn and R/m∼=B/n, where n denotes the maximal
ideal of B. Hence we have:

e(R)= e0
m(B)= �R(B/xB)= �B(B/xB)= e0

n(B).

Note that L=KB is a B-submodule of Q(B) such that B⊆L⊆B, L∼=KB , and
S=B[L]; see [7, 5.1] for the details. Therefore, we get

�B(B/a)= �R(R/a)−1 = �−1,

where a=B :Q(R)B[L] denotes the conductor of B[L]. Hence, by induction hy-
pothesis, S=B[L] is a Gorenstein ring and Rn=Bn−1 is a local ring with minimal
multiplicity e(R) for every 1≤n<�.

(ii)⇒(i) If N=1, then S=m:Q(R)m, since m is stable. Hence, by Theorem
3.2, the Gorensteinness of S implies that R is an almost Gorenstein ring and �=N .
Suppose that N>1 and the assertion holds for N−1. Since R=R0 has minimal
multiplicity, there exists x∈m such that m2=xm. Then, since N≥2, it follows

R1 =m :Q(R) m=B

is a local ring with minimal multiplicity e(R). Note xB is a parameter ideal of B.
Moreover we have

e(R)= e0
m(R)= e0

m(B)= �R(B/xB)≥ �B(B/xB)≥ e0
n(B)= e(R),

where n denotes the maximal ideal of B. It follows that R/m∼=B/n. Thus, by [34],
xB is a reduction of n, whence n2=xn. Therefore the induction arguments shows
B is a generalized Gorenstein ring. Since B is not a Gorenstein ring, by Theorem
3.3, we see R is a generalized Gorenstein ring, but not an almost Gorenstein ring,
and also

�B(B/a)= �−1,

where a=B :B[KB]. Note that Rn has minimal multiplicity e(R) for every 1≤
n<N , so is Bn−1. By the induction hypothesis, we conclude that N−1=�−1, as
desired. �

We are now ready to prove our main result, namely Theorem 1.1 advertised in
the introduction.
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Proof of Theorem 1.1. Notice, if R is Arf, then the maximal ideal m is stable so
that R has minimal multiplicity; see Definition 2.4. Therefore, throughout, we may
assume R has minimal multiplicity. We may also assume e(R)≥3 by Proposition
2.8. So, by Theorem 3.4, we conclude S is Gorenstein, S=RN for some positive
integer N , and the blowup Rn of R is a local ring with minimal multiplicity for
each integer n=0, ..., N−1.

(i)⇒(ii): Assume R is Arf. Then, for each nonnegative integer n and each
maximal ideal M of Rn, it follows from Proposition 2.7 that embdim((Rn)M)=
e((Rn)M). Since Sv=RN+v for each nonnegative integer v, we conclude, using
Proposition 2.7 once more, that S is Arf. One can now observe that SM has
minimal multiplicity for all maximal ideals M of S. Thus the Cohen-Macaulay
type of SM equals e(SM)−1, provided SM is not regular. In particular, since S is
Gorenstein, we obtain e(SM)≤2.

(ii)⇒(i): Assume R has minimal multiplicity and e(SM)≤2 for each maxi-
mal ideal M of S. Letting C=S, we see from Proposition 2.8 that S is an Arf
ring. Letting A=S in Proposition 2.7, we conclude that all the localizations of
the blowups of S have minimal multiplicity, i.e., for each nonnegative integer l,
and for each maximal ideal N of Sl, the ring (Sl)N has minimal multiplicity. Since
S=RN , this property is also true for the blowups of R, which are local rings. There-
fore embdim(Rn)=e(Rn) for each integer n=0, ..., N−1. Finally we deduce from
Proposition 2.7 that R is Arf. �

4. Corollaries of the main argument

In this section we maintain the notations of Setup 3.1. We give applications
of our argument and obtain new characterizations of Arf rings. In particular, we
extend a result of Barucci and Fröberg [5] and determine certain conditions that
make the idealization R�c to be a generalized Gorenstein Arf ring; see Corollaries
4.5, 4.6 and Theorem 4.10.

We start by giving two examples that show Arf and generalized Gorenstein
properties are independent of each other, in general.

Example 4.1. Let k be a field and set R=k[[t3, t7, t11]]. Then R is a Cohen-
Macaulay, non-Gorenstein ring of Cohen-Macaulay type two. We proceed and prove
that R is almost Gorenstein, and hence generalized Gorenstein, but is not Arf; see
Definitions 2.3 and 2.5.

Note that KR=R+Rt4 by [28, 2.1.9] (see also [1, Section 2] and [29, Section
6]). As mKR=mt4⊆R, we conclude from [14, 3.11] that R is almost Gorenstein.



44 Ela Celikbas, Olgur Celikbas, Shiro Goto and Naoki Taniguchi

To show R is not Arf, we compute the blowup of R at m:

(4.1.1) R1 =Rm =R
[
m

t3

]
= k[[t3, t4]]

Here, in (4.1.1), the second equality holds since t3 is a reduction of m; see the
discussion preceding Definition 2.4. As R1 does not have minimal multiplicity, R is
not Arf by Proposition 2.7.

Example 4.2. Let k be a field and set R=k[[t4, t7, t9, t10]]. Then R is not
generalized Gorenstein ring; see [12, 4.27]. To see R is Arf, we proceed as in
Example 4.1.

(4.2.1) R1 =Rm =R
[
m

t4

]
= k[[t3, t4, t5]]

Here, in (4.2.1), the second equality holds since t4 is a reduction of m. Letting m1

to be the unique maximal ideal of R1, we get:

(4.2.2) R2 =Rm
1 =R

[
m1

t4

]
= k[[t]].

The second equality in (4.2.2) holds since m1
2=t3m1. As each blowup of R is

contained in the integral closure R=k[[t]] of R, we conclude that R=R0, R1 and
R2=R are the only distinct blowups of R. Since each of these blowups have minimal
multiplicities, we see that R is Arf by Proposition 2.7. �

Note that it follows from the definition that S is a local ring in case R is a
numerical semigroup ring. Hence the ring S in Example 4.1 is local, whilst R is a
non-Arf ring with minimal multiplicity three. The next corollary of Theorem 1.1
shows that such a ring R must be Arf in case S is not local.

Corollary 4.3. Assume embdim(R)=e(R)=3, i.e., R has minimal multiplic-

ity three. If S is not a local ring, then R is an Arf ring.

Proof. Note that, since R has minimal multiplicity, there exists an element
x∈m such that m2=xm. We conclude by [12, 4.8] that R is a generalized Gorenstein
ring. Therefore we have:

3 = e(R)= e0
m(S)= e0

xR(S)= �R(S/xS)≥ �S(S/xS)

=
∑

M∈Max(S)

�SM(SM/xSM)

≥
∑

M∈Max(S)

e(SM),
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where Max(S) denotes the set of all maximal ideals of S. Since S is not local,
there are at least two distinct ideals in Max(S). This implies that e(SM)≤2 for
each M∈Max(S). Now, since R is a generalized Gorenstein ring with minimal
multiplicity, it follows from Theorem 1.1 that R is Arf. �

Next we recall a beautiful result of Barucci and Fröberg [5, 13] that gives a
characterization of almost Gorenstein Arf numerical semigroup rings.

Theorem 4.4. (see [5, 13]) Let �>0 be an integer and 0<a1<a2<...<a� be

integers such that gcd(a1, a2, ..., a�)=1. Assume k is a field, R=k[[ta1 , ta2 , ..., ta� ]]
is the numerical semigroup ring over k, and H=〈a1, a2, ..., a�〉 is the corresponding

semigroup. Then the following are equivalent.

(i) R is an almost Gorenstein Arf ring.

(ii) 2+ai∈H for each i=1, ..., �.

In Corollary 4.5 and Proposition 4.6, we will obtain natural generalizations
of Theorem 4.4. These results will be useful to construct new examples of almost
Gorenstein Arf rings; see Examples 4.7 and 4.8.

Recall that, in the following, and unless otherwise stated, we maintain the
notations of Setup 3.1.

Corollary 4.5. The following conditions are equivalent.

(i) R is an almost Gorenstein Arf ring.

(ii) e(BN )≤2 for each maximal ideal N of B.

Proof. First assume e(R)≤2. Then it follows from Proposition 2.8 that R is
Arf. Hence, since R is Gorenstein, (i) follows. If e(R)=1, then R is regular so that
B=R=R; in particular (ii) holds. Moreover, if e(R)=2, then (ii) follows from [24,
12.2]. Consequently we may assume e(R)≥3.

(i)⇒(ii) Assume R is Arf. Then R has minimal multiplicity so that m is stable
and B=R1=Rm; see Definition 2.4 and Notation 2.6. Therefore, by Proposition
2.7, BN has minimal multiplicity for each maximal ideal N of B. This implies
that B is Gorenstein. Consequently, given a maximal ideal N of B, since BN is a
Gorenstein ring with minimal multiplicity, we conclude that e(BN )≤2.

(ii)⇒(i) Assume e(BN )≤2 for each maximal ideal N of B. Then B is Goren-
stein. Hence, by Theorem 3.2, R is an almost Gorenstein ring with minimal multi-
plicity.

Now, if R is Gorenstein, then R is a hypersurface with e(R)≤2. In particular,
R is Arf by Proposition 2.8. If R is not Gorenstein, since it is almost Gorenstein,
we have from [14, 3.16] that B=S. Hence, by the hypothesis, e(SN )≤2 for each
maximal ideal N of S. So R is Arf by Theorem 1.1. �
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In passing, we give a short proof of Theorem 4.4 which is different from the
argument of Barucci and Fröberg [5]. We will use Corollary 4.5 and the fact that,
if R is a numerical semigroup ring as in Theorem 4.4, then B=m:Q(R)m is also a
numerical semigroup ring (in particular, B is local); see, for example, [23, 2.13].

A proof of Theorem 4.4. Assume R is an almost Gorenstein Arf ring. Then it
follows from Corollary 4.5 that e(B)≤2. Therefore t2∈B and t2m⊆m. This shows
2+ai∈H for each i=1, ..., �.

Now assume 2+ai∈H for each i=1, ..., �. Hence t2m⊆m and t2∈B. Let V and
n denote R and the unique maximal ideal of B, respectively. Note that nV =xV for
some x∈n. Then, seeting q=(x), we have:

e(B)= e0
n(B)= e0

n(V )= e0
q(V )= �B(V/qV )= �B(V/nV ).

Here the third equality holds since q is a reduction of n. Therefore it follows that:

e(B)= �B(V/nV )≤ �B(V/t2V )= �V (V/t2V )= 2.

Consequently, by Corollary 4.5, R is almost Gorenstein and Arf. �

Our next result yields an extension of Theorem 4.4.

Proposition 4.6. Assume R is a numerical semigroup ring as in Theorem 4.4.

Assume further R is a generalized Gorenstein ring. Then the following conditions

are equivalent.

(i) R is an Arf ring.

(ii) R has minimal multiplicity, 2+�R(R/c)·a1∈H, and 2+ai∈H for each i=
2, ..., �.

Proof. Recall that an Arf ring has minimal multiplicity. Hence we may assume
R has minimal multiplicity throughout the proof.

Assume a1=e(R)≤2. Then R is Arf by Proposition 2.8. Hence (i) holds.
Since a1∈H, we see that 2+ai∈H for all i=1, ..., �. Moreover, as R is Gorenstein,
�R(R/c)=0 so that 2+�R(R/c)·a1∈H. In particular (ii) holds. Consequently we
may assume e(R)≥3. So it follows from Theorem 3.4 that S=RN is Gorenstein
and Ri is a local ring with minimal multiplicity e(R) for each i=0, ..., N−1, where
N=�R(R/c).

Fix i with 1≤i≤N−1, and let mi denote the unique maximal ideal of the local
ring Ri. Then, since mi is stable, we have Ri=mi−1 :Q(Ri)mi−1; see Definition 2.4.
(Here m0=m).

Note, by Proposition 2.7, R is Arf if and only if RN−1 is Arf. Also, since
S=RN =mN−1 :Q(RN )mN−1 is Gorenstein, we see from Theorem 3.2 that RN−1 is
almost Gorenstein. So R is Arf if and only if RN−1 is almost Gorenstein Arf.
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The ring Ri, since it has minimal multiplicity, is a numerical semigroup ring;
see [7, Section 6]. More precisely, Ri=k[[Hi]], where Hi is the numerical semigroup
generated by {a1, a2−ia1, ..., a�−ia1}. Therefore, by Theorem 4.4, for each j=
2, ..., N , we have:

(4.6.1) R is Arf if and only if 2+a1 ∈HN−1 and aj−(N−1)·a1+2∈HN−1.

Now we claim that x∈H1 if and only if x+a1∈H for each nonnegative integer
x. First we proceed by assuming the claim.

It follows from the claim, for a nonnegative integer x, we have that:

(4.6.2) x∈HN−1 if and only if x+(N−1)a1 ∈H.

Now, letting x=a1+2, we obtain from (4.6.2) that:

(4.6.3) 2+a1 ∈HN−1 if and only if 2+a1 ·N =2+�R(R/c)·a1 ∈H

Moreover, for each j=2, ...N , it follows from (4.6.2) that:

aj−(N−1)·a1+2∈HN−1 if and only if
[aj−(N−1)·a1+2∈HN−1]+(N−1)·a1 ∈H.(4.6.4)

Therefore, by (4.6.1), (4.6.3) and (4.6.4), we conclude that R is Arf if and only if
2+�R(R/c)·a1∈H, and 2+aj∈H for each j=2, ..., �.

Next, to complete the proof, we justfiy the above claim. Let x∈H1. Then
tx∈R1=m :Q(R)m, i.e., txm⊆m. This implies tx+a1∈m, or equivalently, x+a1∈H.

Now assume x+a1∈H for each nonnegative integer x. Since R has minimal
multiplicity, it follows that m2=ta1m. Therefore,

(4.6.5) R1 =Rm =R

[
m

ta1

]
=

⋃
i≥0

mi

(ta1)i = m

ta1

Here, in (4.6.5), the second equality holds since ta1 is a reduction of m; see the
discussion preceding Definition 2.4. Moreover the fourth equality is due to the fact

that mi

(ta1)i = m

ta1
for each i≥2. Hence, since x+a1∈H, we have:

tx = tx+a1

ta1
∈ m

ta1
=R1 =m :Q(R) m

This implies that x∈H1. �

We are now ready to construct several examples. The rings in Examples 4.7
and 4.8 are almost Gorenstein Arf rings. On the other hand, the one in Example
4.9 is a generalized Gorenstein Arf ring which is not almost Gorenstein.
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Example 4.7. Let k be a field, e≥2 an integer, and R=k[[te, te+1, ..., t2e−1]] be
the numerical semigroup ring. Since the conductor of the corresponding semigroup
is e, we see (e+i)+2∈H for all i=0, ..., e−1. Therefore, by Theorem 4.4, R is an
almost Gorenstein Arf ring.

Notice m2=tem. So it follows that

B =m :Q(R) m=R
[
m

te

]
= k[[t, t2, ..., te−1]] = k[[t]] =R.

Hence e(B)=1≤2, cf., Corollary 4.5. �
Example 4.8. Let k be a field, e≥3 an integer, and R=k[[te, te+2, ..., t2e−1,

t2e+1]] be the numerical semigroup ring. Since the conductor of the corresponding
semigroup is e+2, we see that 2+e, 2+(2e+1), as well as 2+(e+i), for all i=
2, ..., e−1, belong to H. Therefore, by Theorem 4.4, R is an almost Gorenstein Arf
ring.

Notice m2=tem. So it follows that

B =m :Q(R) m=R
[
m

te

]
= k[[1, t2, t3, ..., te−1, te+1]] = k[[t2, t3]].

Hence e(B)=2≤2, cf., Corollary 4.5. �
Example 4.9. Let k be a field and let R=k[[t5, t16, t17, t18, t19]] be the numer-

ical semigroup ring. It was proved in [12, 4.27] that R is a generalized Gorenstein
ring.

The canonical module KR of R is R+Rt+Rt2+Rt3. As t∈KR, we have
that k[[t]]⊆R[KR]=S. Since the conductor of the corresponding semigroup H is
15, setting V =R, we see that c=R:Q(R)S=(tV )15. Therefore we have �R(R/c)=
�R(V/c)−�R(V/R)=15−12=3. This implies 2+�R(R/c)·a1=17∈H. Moreover 2+
ai∈{18, 19, 20, 21}⊆H for each i=2, ..., 5. So R is Arf by Proposition 4.6. Note
mKR�R since t5 ·t∈mKR−R. Consequently, R is not almost Gorenstein; see [14,
3.11]. �

Next we move to another application somewhat different in nature.

An application of Theorem 1.1 on a certain idealization

The aim of this subsection is to give a necessary and sufficient condition for the
ring A=R�c to be generalized Gorenstein and Arf, where A=R�c is the idealiza-
tion of c=R:Q(R)S (Recall we follow the notations of Setup 3.1). Note that, when
R is a generalized Gorenstein, A is always generalized Gorenstein; see [12, 4.15].

Theorem 4.10. Assume R is a generalized Gorenstein ring and set A=R�c,

where c=R:Q(R)S. Then the following conditions are equivalent.
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(i) A is an Arf ring.

(ii) R has minimal multiplicity and S=R.

Moreover, if (i) or (ii) holds, then R is an Arf ring.

Proof. We start by noting that KA
∼=HomR(c,K)×K∼=S×K; see [12, Section

4]. Set L=S×K. Then it follows that A[L]=L2=S×S; see [12, 4.14]. Notice A is a
generalized Gorenstein ring; this follows from [12, 4.15] in case A is not Gorenstein.
Note also that n=m×c is the unique maximal ideal of A

(1)⇒(2) Assume A is an Arf ring. Then, by Theorem 1.1, e(A[L]N )≤2 for
each maximal ideal N of A[L]. Thus 2·e(SM)=e(SM×SM)≤2, i.e., e(SM)≤1. So
S is a (semi-local) regular ring, and this implies that S=R (recall R⊆S⊆R).

It follows, since A has minimal multiplicity, that n2=ζn. Setting ζ=(α, x) with
α∈m and x∈c, and using the natural projection p:A→R, (α, x) →α, we deduce that
m2=αm, i.e., R has minimal multiplicity. In particular, by Theorem 1.1, we see that
R is an Arf ring.

(2)⇒(1) Assume R has minimal multiplicity and S=R. Notice, for each max-
imal ideal M of S, it follows that e(SM×SM)=2 since SM is regular. Therefore it
suffices to prove A has minimal multiplicity; see Theorem 1.1 and recall A[L]=S×S.

As R has minimal multiplicity, we can pick an element α∈m such that m2=αm.
Then, since m is stable, we have c⊆R⊆R[mα ]=Rm=m:Q(R)m=B. Thus c is an
ideal of B. As R[mα ]= m

α ∈B, it follows that m

α ·c⊆c, i.e., m·c=α·c. Therefore we
have n2=m2×mc=αm×αm=(α, 0)·(m×c), i.e., A has minimal multiplicity. Now,
by Theorem 1.1, A is Arf. �

Here is a consequence of Theorem 4.10 that gives a useful criterion for the
idealization R�m to be almost Gorenstein Arf. Recall, if R is an almost Gorenstein
ring that is not Gorenstein, then c=R:Q(R)S=m; see 3.1 and [14, 3.16].

Corollary 4.11. R�m is an almost Gorenstein Arf ring if and only if mR⊆R.

Proof. Let A=R�m and n=m×m.
Assume first A is an almost Gorenstein Arf ring. Then, by Theorem 3.2, the

endomorphism algebra n:Q(A)n is Gorenstein, where n=m×m. Let N be a maximal
ideal of B=m:Q(R)m. Then, since n:Q(A)n=B×B, and (n :Q(A) n)/(N×B)=B/n,
we see N×B is a maximal ideal of n:Q(A)n. Moreover, the localization
(n :Q(A) n)N×B =Bn×Bn has multiplicity two; see Corollary 4.5. Therefore B is
regular, and B=R.

Conversely, assume mR⊆R. If R is regular, then m∼=R∼=KR so that R�m is
Gorenstein [35]. So we may assume R �=R. Then mR �=R. Since R⊆m:Q(R)m=B, we
have B=R. Then it follows that n:Q(A)n=B×B. In particular, e((n:Q(A)n)N )=2
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for each maximal ideal N of B×B. So, by Corollary 4.5, we conclude A is an almost
Gorenstein Arf ring. �

Here is an application of Corollary 4.11.

Example 4.12. Let (S, n) be a regular local ring of dimension d with d≥3.

Set R=S/I where I =
d⋂

i=1
(x1, ..., x̂i, ..., xd), where x̂i is used to remove xi from the

ideal. Then R is an almost Gorenstein local ring with B=R; see [14, 5.3]. Since B

is Gorenstein, it follows from Theorem 3.2 that R has minimal multiplicity. Hence
the maximal ideal m of R is stable, so that R1=R. This implies all the blowups of
R equal to R, and have multiplicity one. Now, by Proposition 2.8, R is Arf. Since
mR=mB⊆m, we conclude that R�m is an almost Gorenstein Arf ring.

In the next example we find out an idealization ring of the form R�m which
is almost Gorenstein, but neither R nor R�m is Arf.

Example 4.13. Let R=k[[t4, t5, t6]]. Then R�m∼=k[[X,Y, Z, U, V,W ]]/I,
where I is the sum of the ideals (Y U−XV,ZU−XW,ZU−Y V,ZV −YW,X2U−
ZW ), (X3−Z2, Y 2−ZX) and (U, V,W )2. Since R is Gorenstein, we know from [14,
6.5] that R�m is almost Gorenstein. Furthermore, since t7∈mR�R, we conclude
from Corollary 4.11 that R�m is not an Arf ring.
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