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A geometric interpretation
of the Schützenberger group

of a minimal subshift

Jorge Almeida and Alfredo Costa

Abstract. The first author has associated in a natural way a profinite group to each

irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free

profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper

to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the

group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental

groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on

Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the

Return Theorem of Berthé et al.

1. Introduction

The importance of (relatively) free profinite semigroups in the study of pseu-

dovarieties of finite semigroups is well established since the 1980’s, which provides

a strong motivation to understand their structure. The algebraic-topological struc-

ture of free profinite semigroups is far more complex than that of free semigroups.

For instance, Rhodes and Steinberg showed that the (finitely generated) projec-

tive profinite groups are precisely the closed subgroups of (finitely generated) free

profinite semigroups [34].

In the last decade, a connection introduced by the first author with the research

field of symbolic dynamics provided new insight into the structure of free profinite

semigroups, notably in what concerns their maximal subgroups [3], [5] and [6].

This connection is made via the languages of finite blocks of symbolic dynamical
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systems, also known as subshifts [28]. In symbolic dynamics, irreducible subshifts

deserve special attention: they are the ones which have a dense forward orbit.

For each irreducible subshift X over a finite alphabet A, one may consider the

topological closure in the A-generated free profinite semigroup ΩAS of the language

of finite blocks of X . This closure is a union of J -classes, among which there is a

minimum one, J(X ), in the J -ordering [7]. The J -class J(X ) contains (isomorphic)

maximal subgroups, which, as an abstract profinite group, the authors called in [9]

the Schützenberger group of X , denoted G(X ).

The approach used in [5] and [9] consists in obtaining information about G(X )

using ideas, results and techniques borrowed from the theory of symbolic dynam-

ical systems. The minimal subshifts, considered in those papers, are precisely the

subshifts X for which the J -class J(X ) consists of J -maximal regular elements

of ΩAS [5].

The subshifts considered in [5] and [9] are mostly substitutive systems [24]

and [32], that is, subshifts defined by (weakly) primitive substitutions. Substitu-

tive subshifts are minimal subshifts which are described by a finite computable

amount of data, which leads to various decision problems. The authors showed

in [9] how to compute from a primitive substitution a finite profinite presentation

of the Schützenberger group of the subshift defined by the substitution, and used

this to show that it is decidable whether or not a finite group is a (continuous)

homomorphic image of the subshift’s Schützenberger group. The first examples of

maximal subgroups of free profinite semigroups that are not relatively free profinite

groups were also found as Schützenberger groups of substitutive systems [5] and [9].

The Schützenberger group of the full shift AZ is isomorphic to the maximal

subgroups of the minimum ideal of ΩAS and was first identified in [37], with tech-

niques that were later extended to the general sofic case in [19] taking into account

the invariance of G(X ) under conjugacy of symbolic dynamical systems [17]. This

led to the main result of [19] that G(X ) is a free profinite group with rank ℵ0 when

X is a non-periodic irreducible sofic subshift.(1) From the viewpoint of the struc-

ture of the group G(X ), the class of irreducible sofic subshifts is thus quite different

from that of substitutive (minimal) subshifts.

Substitutive systems are a small part of the realm of minimal subshifts, in

the sense that substitutive systems have zero entropy [32], while there are minimal

subshifts of entropy arbitrarily close to that of the full shift [21]. Therefore, it would

be interesting to explore other techniques giving insight on the Schützenberger group

of arbitrary minimal subshifts. That is one of the main purposes of this paper. We

do it by exploring the Rauzy graphs of subshifts, a tool that has been extensively

used in the theory of minimal subshifts. For each subshift X and integer n, the

(1) Note that the minimal sofic subshifts are the periodic ones.
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Rauzy graph Σn(X ) is a De Bruijn graph where the vertices (words of length n)

and edges (words of length n+1) not in the language of the subshift have been

removed. This graph is connected if X is irreducible. In the irreducible case, we

turn our attention to the profinite completion ̂Πn(X ) of the fundamental group of

Σn(X ). The subshift X can be seen in a natural way as an inverse limit of the

graphs of the form Σ2n(X ). The main result of this paper (Corollary 8.13) is that

the induced inverse limit of the profinite groups ̂Π2n(X ) is G(X ), provided X is

minimal. We leave as an open problem whether this result extends to arbitrary

irreducible subshifts.

The study of Rauzy graphs of a minimal subshift often appears associated with

the study of sets of return words, as in the proof of the Return Theorem in [13].

We apply the Return Theorem, together with a technical result on return words

giving a sufficient condition for freeness of the Schützenberger group of a minimal

subshift, to show that if the minimal subshift involves n letters and satisfies the

so-called tree condition [13], then its Schützenberger group is a free profinite group

of rank n (Theorem 6.5). This result was obtained in [5] for the important special

case of Arnoux-Rauzy subshifts, with a different approach: the result was there first

proved for substitutive Arnoux-Rauzy subshifts, and then extended to arbitrary

Arnoux-Rauzy subshifts using approximations by substitutive subshifts.

2. Profinite semigroups, semigroupoids, and groupoids

2.1. Free profinite semigroups

We refer to [6] as a useful introductory text about the theory of profinite semi-

groups. In [2] one finds an introduction to the subject via the more general concept

of profinite algebra. We use the notation ΩAS for the free profinite semigroup gen-

erated by the set A. Recall that ΩAS is a profinite semigroup in which A embeds

and which is characterized by the property that every continuous mapping ϕ : A→S

into a profinite semigroup S extends in a unique way to a continuous semigroup

homomorphism ϕ̂ : ΩAS→S. Replacing the word “semigroup” by “group”, we get

the characterization of the free profinite group with basis A, which we denote by

ΩAG. We shall use frequently the fact that the discrete subsemigroup of ΩAS gener-

ated by A is the free semigroup A+, and that its elements are the isolated elements

of ΩAS (for which reason the elements of A+ are said to be finite, while those in

the subsemigroup ΩAS\A+ are infinite). The free group generated by A, denoted

FG(A), also embeds naturally into ΩAG, but its elements are not isolated.
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2.2. Free profinite semigroupoids

Except when stated otherwise, by a graph we mean a directed graph with

possibly multiple edges. Formally: for us a graph is a pair of disjoint sets V , of

vertices, and E, of edges, together with two incidence maps α and ω from E to V ,

the source and the target. An edge s with source x and target y will sometimes

be denoted s : x→y. Recall that a semigroupoid is a graph endowed with a partial

associative operation, defined on consecutive edges (cf. [11], [26] and [38]): for

s : x→y and t : y→z, their composite is an edge st such that st : x→z. Alternatively,

a semigroupoid may be seen as a small category where some local identities are

possibly missing.

Semigroups can be seen as being the one-vertex semigroupoids. If the set

of loops of the semigroupoid S rooted at a vertex c is nonempty, then, for the

composition law, it is a semigroup (for us an empty set is not a semigroup), the

local semigroup of S at c, denoted S(c).

The theory of topological/profinite semigroups inspires a theory of topolog-

ical/profinite semigroupoids, but as seen in [7], there are some differences which

have to be taken into account, namely in the case of semigroupoids with an infinite

number of vertices. To begin with, the very definition of profinite semigroupoid is

delicate. We use the following definition: a compact semigroupoid S is profinite

if, for every pair u, v of distinct elements of S, there is a continuous semigroupoid

homomorphism ϕ : S→F into a finite semigroupoid such that ϕ(u) �=ϕ(v). There

is an unpublished example due to G. Bergman (mentioned in [33]) of an infinite-

vertex semigroupoid that is profinite according to this definition, but that is not

an inverse limit of finite semigroupoids. On the other hand, it is known that a

topological graph Γ is an inverse limit of finite graphs if and only if for every u, v∈Γ
there is a continuous homomorphism of graphs ϕ : Γ→F into a finite graph F such

that ϕ(u) �=ϕ(v) (see [35] for a proof), in which case Γ is said to be profinite.

For another delicate feature of infinite-vertex profinite semigroupoids, let Γ be a

subgraph of a topological semigroupoid S, and let �Γ� be the closed subsemigroupoid

of S generated by Γ, that is, �Γ� is the intersection of all closed subsemigroupoids

of S that contain Γ. If S has a finite number of vertices, then �Γ� is the topological

closure 〈Γ〉 of the discrete subsemigroupoid 〈Γ〉 of S generated by Γ. But if S has

an infinite number of vertices, then 〈Γ〉 may not be a semigroupoid and thus it

is strictly contained in �Γ� [7]. If Γ is a profinite graph, then the free profinite

semigroupoid generated by Γ, denoted ΩΓSd, is a profinite semigroupoid, in which Γ

embeds as a closed subgraph, characterized by the property that every continuous

graph homomorphism ϕ : Γ→F into a finite semigroupoid F extends in a unique

way to a continuous semigroupoid homomorphism ϕ̂ : ΩΓSd→F . It turns out that
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�Γ�=ΩΓSd. The construction of ΩΓSd is given in [7] (where some problems with

the construction given in [11] are discussed), and consists in a reduction to the case

where Γ is finite, previously treated in [26].

The free semigroupoid generated by Γ, denoted Γ+, is the graph whose vertices

are those of Γ, and whose edges are the paths of Γ with the obvious composition and

incidence laws. The semigroupoid Γ+ embeds naturally in ΩΓSd, with its elements

being topologically isolated in ΩΓSd. Moreover, if Γ is an inverse limit lim←−Γi of

finite graphs, then Γ+=lim←−Γ+
i [7]. Also, one has a natural embedding of ΩΓSd in

lim←−ΩΓiSd [7]. A problem that we believe remains open and is studied in [7], is

whether there exists some example where ΩΓSd �=lim←−ΩΓiSd.

Everything we said about semigroupoids has an analog for categories. We shall

occasionally invoke the free category Γ∗, obtained from Γ+ by adding an empty path

1v at each vertex v.

2.3. Profinite completions of finite-vertex semigroupoids

A congruence on a semigroupoid S is an equivalence relation θ on the set of

edges of S such that uθv implies that u and v are coterminal (that is, they have

the same source and the same target), and also that xuθxv and uyθvy whenever

the products xu, xv, uy, vy are defined. The quotient S/θ is the semigroupoid with

the same set of vertices of S and edges the classes u/θ with the natural incidence

and composition laws. The relation that identifies coterminal edges is a congruence.

Therefore, if S has a finite number of vertices, the set Λ of congruences on S such

that S/θ is finite is nonempty. Note that if the congruences θ and ρ are such that

θ⊆ρ, then one has a natural semigroupoid homomorphism S/θ→S/ρ. Hence, when

S has a finite number of vertices, we may consider the inverse limit ̂S=lim←−θ∈Λ
S/θ,

which is a profinite semigroupoid, called the profinite completion of S. Let ι be the

natural mapping S→ ̂S. Then ι(S) is a dense subsemigroupoid of ̂S and ̂S has the

property that for every continuous semigroupoid homomorphism ϕ from S into a

profinite semigroupoid T there is a unique continuous semigroupoid homomorphism

ϕ̂ : ̂S→T such that ϕ̂◦ι=ϕ [26]. If Γ is a finite-vertex graph, then ΩΓSd is the

profinite completion of the free semigroupoid Γ+ [26].

2.4. Profinite groupoids

A groupoid is a (small) category in which every morphism has an inverse. The

parallelism between the definitions of profinite semigroups and profinite groups

carries on to an obvious parallelism between the definitions of topological/profinite
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semigroupoids and topological/profinite groupoids. As groupoids are special cases of

semigroupoids some care is sometimes needed when relating corresponding concepts.

The next lemma addresses one of such situations. For its proof, recall the well known

fact that if t is an element of a compact semigroup T , then the closed subsemigroup

〈t〉 has a unique idempotent, denoted tω ; in case T is profinite, one has tω=lim tn! [2].

The inverse of t·tω in the maximal subgroup of 〈t〉 is denoted tω−1.

Lemma 2.1. Let G be a compact groupoid and suppose that A is a strongly

connected subgraph that generates G as a topological groupoid. Then A also gener-

ates G as a topological semigroupoid.

Proof. Denote by VA and VG the vertex sets of A and G, respectively. Let H

be the subgraph of G with vertex set VA and whose edges are the edges of G with

source and target in VA. Clearly, H is closed and a subgroupoid. Since H contains

A and A generates G as a topological groupoid, we conclude that H=G and thus

VA=VG.

Consider an arbitrary closed subsemigroupoid S of G containing A. Let s

be an edge of S. Since VA=VG, there are nets (ai)i∈I and (bj)j∈J of elements

of VA respectively converging to α(s) and ω(s). Because A is strongly connected,

for each (i, j)∈I×J there is some path ui,j in A from (bj)j∈J to (ai)i∈I . Take

an accumulation point u of the net (ui,j)(i,j)∈I×J . Then u is an element of S

such that α(u)=ω(s) and ω(u)=α(s). In particular, we may consider the element

(su)ω−1 of the local semigroup of S at α(s). We claim that u(su)ω−1=s−1. Indeed,

s·u(su)ω−1=(su)ω is the local identity of G at α(s), while u(su)ω−1 ·s=(us)ω is the

local identity at ω(s). Hence s−1∈S. Since S is an arbitrary closed subsemigroupoid

of G containing A, we conclude that s−1 belongs to the closed subsemigroupoid K

of G generated by A. Therefore, K is a closed subgroupoid of G containing A.

Since G is generated by A as a topological groupoid, it follows that K=G. �

A groupoid congruence is a semigroupoid congruence θ on a groupoid such that

uθv implies u−1θv−1. If S is a compact groupoid, then all closed semigroupoid

congruences on S are groupoid congruences. Indeed, if u, v∈S are coterminal edges

then v−1=u−1(vu−1)ω−1, and if moreover uθv, then u−1(vu−1)kθu−1 for every

integer k≥1, whence v−1θu−1.

Replacing semigroupoid congruences by groupoid congruences, one gets the

notion of profinite completion of a finite-vertex groupoid analogous to the corre-

sponding one for semigroupoids. These notions generalize the more familiar ones

of profinite completion of a group and of a semigroup, since (semi)groups are the

one-vertex (semi)groupoids. The following lemma relates these concepts.
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Lemma 2.2. Let G be a connected groupoid with finitely many vertices. Then

the profinite completion of a local group of G is a local group of the profinite com-

pletion of G.

Proof. Denote by ̂G the profinite completion of G and let x be a vertex of G.

We must show that the local group ̂G(x) is the profinite completion ̂G(x) of the

local group G(x).

Consider the natural homomorphism λ : G→ ̂G. Note that it maps G(x) into

the profinite group ̂G(x), which is generated, as a topological group, by λ(G(x)).

Thus, the restriction ˇ=λ|G(x) induces a unique continuous homomorphism ψ :

̂G(x)→ ̂G(x), which is onto.

Suppose that g∈̂G(x)\{1}. Since ̂G(x) is a profinite group, there exists a

continuous homomorphism θ : ̂G(x)→H onto a finite group H such that θ(g) �=1.

For each vertex y in G, let py : x→y be an edge from G. It is easy to check that

the following relation is a congruence on G: given two edges u, v :y→z in G, u∼v

if θ◦ι(pyup−1
z )=θ◦ι(pyvp−1

z ). Moreover, note that, in case u, v∈G(x), u∼v if and

only if θ◦ι(u)=θ◦ι(v). Therefore, if S=G/∼, then S(x) is finite, whence, since S is

a connected groupoid, S is finite. As ̂G is the profinite completion of G, it follows

that the natural quotient mapping γ : G→S factors through λ as a continuous

homomorphism γ′ : ̂G→S. The restriction ̂G(x)→S(x) of γ′ is denoted by γ′′.

Noting that θ◦ι is onto because the image of ι is dense, and since

θ◦ι(u)= θ◦ι(v) ⇐==⇒ u∼ v ⇐==⇒ γ(u)= γ(v),

there is an isomorphism ϕ : H→S(x) such that ϕ◦θ◦ι=γ|G(x)=γ′′◦ψ◦ι. Again

because the image of ι is dense, we deduce that ϕ◦θ=γ′′◦ψ.
All these morphisms are represented in Diagram (2.1).
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As θ(g) �=1, we get γ′′◦ψ(g)=ϕ◦θ(g) �=1, whence ψ(g) �=1. Therefore, ψ is an iso-

morphism of topological groups. �

2.5. The fundamental groupoid

For the reader’s convenience, we write down a definition of the fundamental

groupoid of a graph. Let Γ be a graph. Extend Γ to a graph ˜Γ by injectively

associating to each edge u a new formal inverse edge u−1 with α(u−1)=ω(u) and

ω(u−1)=α(u). One makes (u−1)−1=u. Graphs of the form ˜Γ endowed with the

mapping u �→u−1 on the edge set are precisely the graphs in the sense of J.-P. Serre.

These are the graphs upon which the definition of fundamental groupoid of a graph

is built in [30], the supporting reference we give for the next lines. Consider in

the free category ˜Γ∗ the congruence ∼ generated by the identification of uu−1 with

1α(u) and u−1u with 1ω(u), where u runs over the set of edges of Γ. The quotient

Π(Γ)=˜Γ∗/∼ is a groupoid, called the fundamental groupoid of Γ. Note that if

ϕ : Γ1→Γ2 is a homomorphism of graphs, then the correspondence Π(ϕ) : Π(Γ1)→
Π(Γ2) such that Π(ϕ)(x/∼)=ϕ(x)/∼ is a well defined homomorphism of groupoids,

and the correspondence ϕ �→Π(ϕ) defines a functor from the category of graphs to

the category of groupoids.

It is well known that the natural graph homomorphism from Γ∗ to Π(Γ) (that

is, the restriction to Γ∗ of the quotient mapping ˜Γ∗→Π(Γ)) is injective. If Γ is

connected (as an undirected graph), then the local groups of Π(Γ) are isomorphic;

their isomorphism class is the fundamental group of Γ. It is also well known that if

Γ is a connected (finite) graph, then its fundamental group is a (finitely generated)

free group.

Lemma 2.3. Let Γ be a strongly connected finite-vertex profinite graph. Then

the natural continuous homomorphism from the free profinite semigroupoid ΩΓSd to

the profinite completion of Π(Γ), extending the natural graph homomorphism from

Γ to Π(Γ), is onto.

To prove Lemma 2.3 one uses the following fact [7, Corollary 3.20].

Lemma 2.4. Let ψ : S→T be a continuous homomorphism of compact semi-

groupoids. Let X be a subgraph of S. Then ψ(�X�)⊆�ψ(X)�. Moreover, ψ(�X�)=
�ψ(X)� if ψ is injective on the set of vertices of S.

Proof of Lemma 2.3. Denote by ̂Π(Γ) the profinite completion of Π(Γ) and by h

the natural continuous semigroupoid homomorphism ΩΓSd→̂Π(Γ). By Lemma 2.4,
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the image of h is the closed subsemigroupoid of ̂Π(Γ) generated by h(Γ). Since
̂Π(Γ) is generated by h(Γ) as a profinite groupoid, it follows from Lemma 2.1, that

h is onto. �

3. Subshifts and their connection with free profinite semigroups

An element s of a semigroup S is said to be a factor of t if t belongs to the ideal

generated by s, in which case we also write t≤J s; the element s is then a proper

factor of t if t is not a factor of s. If (two-sided) ideals are replaced respectively

by right ideals or left ideals, then the corresponding relations are denoted ≤R and

≤L. For K∈{J ,L,R}, the so-defined relations ≤K are quasi-orders determining

equivalence relations ≤K∩≥K, which is also denoted K. These relations are known

as Green’s relations on the semigroup S (cf. [16]).

A subset X of a semigroup S is factorial if the factors of elements of X also

belong to X . A subset X of S is prolongable if for every x∈X there are s, t∈S such

that xs, tx∈X . It is irreducible if for every u, v∈X there is w∈S such that uwv∈X .

Using standard compactness arguments, one can show (see [19] for a proof) that if

S is a compact semigroup and X is a nonempty, closed, factorial and irreducible

subset of S, then X contains a regular J -class, called the apex of X and denoted

J(X), such that every element of X is a factor of every element of J(X).

Let A be a finite set. Endow AZ with the product topology, where A is viewed

as discrete space. Let σ be the homeomorphism AZ→AZ defined by σ((xi)i∈Z)=

(xi+1)i∈Z, the shift mapping on AZ. A subshift of AZ is a nonempty closed subset

X of AZ such that σ(X )=X . A finite block of an element x=(xi)i∈Z of AZ is a word

of the form xixi+1...xi+n (which is also denoted by x[i,i+n]) for some n≥0. For a

subset X of AZ, denote by L(X ) the set of finite blocks of elements of X . Then

the correspondence X �→L(X ) is an isomorphism between the poset of subshifts of

AZ and the poset of factorial, prolongable languages of A+ [28, Proposition 1.3.4].

A subshift X is irreducible if L(X ) is irreducible. We are interested in studying the

topological closure of L(X ) in ΩAS, when X is a subshift of AZ. It was noticed

in [7] that L(X ) is a factorial and prolongable subset of ΩAS, and that if X is

irreducible then L(X ) is an irreducible subset of ΩAS. Therefore, supposing X is

irreducible, we can consider the apex J(X ) of L(X ). Since J(X ) is regular, it has

maximal subgroups, which are isomorphic as profinite groups; we denote by G(X )

the corresponding abstract profinite group.

In this paper we concentrate our attention on an important class of irreducible

subshifts, the minimal subshifts, that is, those that do not contain proper subshifts.

This class includes the periodic subshifts, finite subshifts X for which there is a

positive integer n (called a period) and x∈AZ such that σn(x)=x and X={σk(x)|
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0≤k<n}. It is well known that a subshift X is minimal if and only if L(X ) is

uniformly recurrent, that is, if and only if for every u∈L(X ) there is an integer

n such that every word of L(X ) with length at least n has u as a factor (cf. [29,

Theorem 1.5.9]).

For a subshift X of AZ, denote by M(X ) the set of elements u of ΩAS such that

all finite factors of u belong to L(X ). One has L(X )⊆M(X ), and there are simple

examples of irreducible subshifts where this inclusion is strict [17]. In what follows,

a maximal regular element of ΩAS is a regular element of ΩAS that is J -equivalent

with its regular factors. The maximal regular elements of ΩAS are precisely the

elements of ΩAS\A+ all of whose proper factors belong to A+.

Theorem 3.1. Let X be a minimal subshift. Then L(X )=M(X ) and L(X )\
A+=J(X ). The correspondence X �→J(X ) is a bijection between the set of minimal

subshifts of AZ and the set of J -classes of maximal regular elements of ΩAS.

Theorem 3.1 is from [5]. In [7], an approach whose tools are recalled in the

next section, distinct from that of [5], was used to deduce the equalities L(X )=

M(X )=J(X )∪L(X ), when X is minimal.

A fact that we shall use quite often is that every element of ΩAS\A+ has a

unique prefix in A+ with length k, and a unique suffix in A+ with length k, for

every k≥1 (cf. [1, Sect. 5.2]). Let Z+
0 and Z

− be respectively the sets of nonnegative

integers and of negative integers. For u∈ΩAS\A+, we denote by −→u the unique

element (xi)i∈Z
+
0
of AZ

+
0 such that x[0,k] is a prefix of u, for every k≥0, and by ←−u

the unique element (xi)i∈Z− of AZ
−

such that x[−k,−1] is a suffix of u, for every

k≥1. Finally, we denote by ←−u .−→u the element of AZ that restricts in AZ
−
to ←−u and

in AZ
+
0 to −→u .

The part of the next lemma about Green’s relations R and L was observed

in [4] and in [7, Lemma 6.6]. The second part, about the H relation, is an easy

consequence of the first part, and it is proved in a more general context in [8,

Lemma 5.3].

Lemma 3.2. Let X be a minimal subshift. Two elements u and v of J(X ) are

R-equivalent (respectively, L-equivalent) if and only if −→u =−→v (respectively, ←−u =←−v ).

Moreover, if x∈X , then the H-class Gx formed by the elements u of J(X ) such that
←−u .−→u =x is a maximal subgroup of J(X ).

We retain for the rest of the paper the notation Gx given in Lemma 3.2.
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4. Free profinite semigroupoids generated by Rauzy graphs

Let X be a subshift of AZ. The graph of X is the graph Σ(X ) having X as

the set of vertices and where the edges are precisely the pairs (x, σ(x)), with source

and target being respectively equal to x and σ(x). The graph Σ(X ) is a compact

graph, with the topology on the edge set being naturally induced by that of X .

Denote by Ln(X ) the set of elements of L(X ) with length n. The Rauzy graph

of order n of X , denoted Σn(X ), is the graph defined by the following data: the set

of vertices is Ln(X ), the set of edges is Ln+1(X ), and incidence of edges in vertices

is given by

a1a2...an
a1a2...anan+1

−−−−−−−−−→ a2...anan+1,

where ai∈A.

Remark 4.1. If X is irreducible, then Σn(X ) is strongly connected.

In the case of a Rauzy graph of even order 2n, we consider a function μn,

called central labeling, assigning to each edge a1a2...a2na2n+1 (ai∈A) its middle

letter an+1.

Remark 4.2. Extending the labeling μn as a semigroupoid homomorphism

Σ2n(X )+→A+, one sees that the set of images of paths of Σ2n(X ) by that ho-

momorphism is the set of elements of A+ whose factors of length at most 2n+1

belong to L(X ).

For m≥n, we define a graph homomorphism pm,n : Σ2m(X )→Σ2n(X ) as fol-

lows: if w∈L2m(X )∪L2m+1(X ) and if w=vuv′ with v, v′∈Am−n, then pm,n(w)=u.

Note that pn preserves the central labeling, that is, μn◦pm,n(w)=μm(w) for every

edge w of Σ2m(X ). The family of onto graph homomorphisms {pm,n |n≤m} defines

an inverse system of compact graphs. The corresponding inverse limit lim←−Σ2n(X )

will be identified with Σ(X ) since the mapping from Σ(X ) to lim←−Σ2n(X ) sending

x∈X to (x[−n,n−1])n and (x, σ(x)) to (x[−n,n])n is a continuous graph isomorphism.

The projection Σ(X )→Σ2n(X ) is denoted by pn. Let μ be the mapping defined on

the set of edges of Σ(X ) by assigning x0 to (x, σ(x)). Then μ=μn◦pn, for every

n≥1.

We proceed with the setting of [7]. As in that paper, denote by ̂Σ2n(X ) and

by ̂Σ(X ) the free profinite semigroupoids generated respectively by Σ2n(X ) and

by Σ(X ). The graph homomorphism pm,n : Σ2m(X )→Σ2n(X ) extends uniquely to

a continuous homomorphism p̂m,n : ̂Σ2m(X )→̂Σ2n(X ) of compact semigroupoids.

This establishes an inverse limit lim←−
̂Σ2n(X ) in the category of compact semi-

groupoids, in which the graph Σ(X )=lim←−Σ2n(X ) naturally embeds. The canonical
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projection lim←−
̂Σ2n(X )→̂Σ2k(X ) is denoted p̂k. Recall that the free profinite semi-

groupoid ̂Σ(X ) also embeds in lim←−
̂Σ2n(X ), and that we do not know of any example

where the inclusion is strict.

Theorem 4.3. ([7]) If X is a minimal subshift then ̂Σ(X )=lim←−
̂Σ2n(X )=

Σ(X )+.

In [7] one finds examples of irreducible subshifts X for which one has Σ(X )+ �=
̂Σ(X ).

Viewing A as a virtual one-vertex graph, whose edges are the elements of A,

the graph homomorphism μn : Σ2n(X )→A extends in a unique way to a continu-

ous semigroupoid homomorphism μ̂n : ̂Σ2n(X )→ΩAS. The equality μm=μn◦pm,n

yields μ̂n◦p̂m,n=μ̂m, when m≥n≥1, and so we may consider the continuous semi-

groupoid homomorphism μ̂ : lim←−
̂Σ2n(X )→ΩAS such that μ̂=μ̂n◦p̂n for every n≥1.

Recall that a graph homomorphism is faithful if distinct coterminal edges have dis-

tinct images. It turns out that μ̂n is faithful (cf. [7, Proposition 4.6]) and therefore

so is μ̂.

Let us now turn our attention to the images of μ̂n and μ̂. For a positive integer

n, let Mn(X ) be the set of all elements u of ΩAS such that all factors of u with

length at most n belong to L(X ).

Lemma 4.4. Let X be a subshift. For every positive integer n, the equality

μ̂n(̂Σ2n(X ))=M2n+1(X ) holds.

Proof. We clearly have μ̂n(Σ2n(X )+)=M2n+1(X )∩A+ (cf. Remark 4.2). Not-

ing that M2n+1(X ) is closed and open, that A+ is dense in ΩAS, and that Σ2n(X )+

is dense in ̂Σ2n(X ), the lemma follows immediately. �

Note that M1(X )⊇M2(X )⊇M3(X )⊇... and M(X )=
⋂

n≥1 Mn(X ). There-

fore, the image of μ̂ is contained in M(X ), by Lemma 4.4. One actually has

μ̂(lim←−
̂Σ2n(X ))=M(X ) (cf. [7, Proposition 4.5]), but we shall not need this fact.

The next two lemmas were observed in [7, Lemmas 4.2 and 4.3]. We introduce

some notation. We denote by |u| the length of a word in A+, and let |u|=+∞ for

u∈ΩAS\A+.

Lemma 4.5. Consider a subshift X . Let q : x[−n,n−1]→y[−n,n−1] be an edge

of ̂Σ2n(X ), where x, y∈X . Let u=μ̂n(q). If k=min{|u|, n} then x[0,k−1] is a prefix

of u and y[−k,−1] is a suffix of u.
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Lemma 4.6. Consider a subshift X . Let q : x→y be an edge of lim←−
̂Σ2n(X ).

Let u=μ̂(q). If u∈ΩAS\A+ then −→u =(xi)i∈Z
+
0

and ←−u =(yi)i∈Z− . If u∈A+ then q

is the unique edge of Σ(X )+ from x to σ|u|(x).

We denote by Π2n(X ) the fundamental groupoid of Σ2n(X ), and by hn the nat-

ural homomorphism Σ2n(X )→Π2n(X ). The graph homomorphism pm,n : Σ2m(X )→
Σ2n(X ) induces the groupoid homomorphism qm,n=Π(pm,n) : Π2m(X )→Π2n(X ),

characterized by the equality qm,n◦hm=hn◦pm,n. Let ̂Π2n(X ) be the profinite

completion of Π2n(X ), and let ĥn : ̂Σ2n(X )→̂Π2n(X ) and q̂m,n : ̂Π2m(X )→̂Π2n(X )

be the natural homomorphisms respectively induced by hn and qm,n. Then the

following diagram commutes:

̂Σ2m(X )

ĥm

��

p̂m,n

�� ̂Σ2n(X )

ĥn

��

̂Π2m(X )
q̂m,n

�� ̂Π2n(X ).

(4.1)

The family (q̂m,n)m,n defines an inverse system of profinite groupoids. We denote

by ĥ the continuous semigroupoid homomorphism from lim←−
̂Σ2n(X ) to lim←−

̂Π2n(X )

established by the commutativity of Diagram (4.1).

For the remainder of this paper, we need to deal with the local semigroups of

the various semigroupoids defined in this section. Given n, we denote respectively

by Σ2n(X , x)+, ̂Σ2n(X , x), Π2n(X , x), ̂Π2n(X , x) the local semigroups at vertex

p2n(x)=x[−n,n−1] of Σ2n(X )+, ̂Σ2n(X ), Π2n(X ) and ̂Π2n(X ).

Remark 4.7. If X is irreducible, then ̂Π2n(X , x) is the profinite completion of

the fundamental group of the strongly connected graph Σ2n(X ) (cf. Lemma 2.2).

5. Return words in the study of G(X ) in the minimal case

Consider a subshift X of AZ. Let u∈L(X ). The return words(2) of u in X are

the elements of the set R(u) of words v∈A+ such that vu∈L(X )∩uA+ and such

that u occurs in vu only as both prefix and suffix. The characterization of minimal

(2) What we call return words is sometimes in the literature designated first return words,
as is the case of the article [13], which is further cited later in this paper. The terminology that
we adopt appears for instance in [12], [22] and [23].
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subshifts via the notion of uniform recurrence yields that the subshift X is minimal

if and only if, for every u∈L(X ), the set R(u) is finite.

Let n≥0 be such that |u|≥n. Consider words u1 and u2 with u=u1u2 and

|u1|=n. Let R(u1, u2) be the set of words v such that u1vu2∈L(X ) and u1v∈
R(u)u1. In other words, we have R(u1, u2)=u−1

1 (R(u)u1). In particular, R(u1, u2)

and R(u) have the same cardinality. The elements of R(u1, u2) are called in [9]

n-delayed return words of u in X , and return words of u1.u2 in [23]. Note that

R(u1, u2) is a code (actually, a circular code [23, Lemma 17]).

Fix x∈X . Denote by Rn(x) the set R(x[−n,−1], x[0,n−1]). Clearly, if X is a

periodic subshift with period N , then the elements of Rn(x) have length at most N .

On the other hand, we have the following result.

Lemma 5.1. (Cf. [22, Lemma 3.2]) If X is a minimal non-periodic subshift

then limn→∞ min{|r|:r∈Rn(x)}=∞ for every x∈X .(3)

Let u∈Rn(x). The word w=x[−n,−1]ux[0,n−1] belongs to L(X ). Its prefix and

its suffix of length 2n is the word x[−n,n−1]. Hence, the graph Σ2n(X ) has a cycle

s rooted at the vertex x[−n,n−1] such that μn(s)=u. Since μn is faithful, we may

therefore define a function λn : Rn(x)→Σ2n(X , x)+ such that μn◦λn is the identity

1Rn(x) on Rn(x).

To extract consequences from these facts at the level of the free profinite semi-

group ΩAS, we use the following theorem from [31].

Theorem 5.2. If X is a finite code of A+, then the closed subsemigroup of

ΩAS generated by X is a profinite semigroup freely generated by X .

Assuming that X is a minimal subshift, as we do throughout this section,

the code Rn(x) is finite. Therefore it follows from Theorem 5.2 that the profi-

nite subsemigroup 〈Rn(x)〉 of ΩAS is freely generated by Rn(x), and so the map-

ping λn extends in a unique way to a continuous homomorphism λ̂n : 〈Rn(x)〉→
̂Σ2n(X , x) of profinite semigroups. Note that the following equality holds by defi-

nition of λn:

(5.1) μ̂n◦λ̂n =1〈Rn(x)〉.

(3) Lemma 5.1 is taken from [22, Lemma 3.2], but the limit which appears explicitly in [22,
Lemma 3.2] is limn→∞ min{|r|:r∈R(x[0,n−1])}=∞. However, R(z, t) is clearly contained in the

subsemigroup of A+ generated by R(t). In particular, min{|r|:u∈Rn}≥min{|r|:u∈R(x[0,n−1])},
and so our formulation of Lemma 5.1 follows immediately from the one in [22, Lemma 3.2].
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If m≥n, then the inclusion Rm(x)⊆〈Rn(x)〉 clearly holds.

Lemma 5.3. Let X be a minimal non-periodic subshift and let x∈X . Then

we have
⋂

n≥1 〈Rn(x)〉=Gx.

Proof. Denote by I the intersection
⋂

n≥1 〈Rn(x)〉. The inclusion Gx⊆I ap-

pears in [9, Lemma 5.1]. Let us show the reverse inclusion. If w is an element

of 〈Rn(x)〉, then it labels a closed path of Σ2n(X ) at x[−n,n−1]. Therefore, ev-

ery factor of w of length at most 2n+1 belongs to L(X ). Since w is an arbi-

trary element of 〈Rn(x)〉, this implies that every factor of length at most 2n+1

of an element of 〈Rn(x)〉 belongs to L(X ). Therefore, if u∈I , then every fi-

nite factor of u belongs to L(X ). On the other hand, by Lemma 5.1 the ele-

ments of I do not belong to A+. We conclude from Theorem 3.1 that I⊆J(X ).

Let n>0. By Lemma 5.1, there is m>n such that the length of every element

of Rm(x) is greater than n. Since the elements of Rm(x) label closed paths

at x[−m,m−1], we know that Rm(x)⊆x[0,n−1]A
+∩A+x[−n,−1]. Hence, we have

I⊆〈Rm(x)〉⊆x[0,n−1]ΩAS∩ΩASx[−n,−1]. Since n is arbitrary, we deduce from the

definition of Gx that I⊆Gx. �

If X={x} is the singleton periodic subshift given by x=...aaa.aaa..., then

Rn(x)={a} for all n, and Lemma 5.3 does not hold in this case. However, denoting

by 〈Rn(x)〉∞ the profinite semigroup 〈Rn(x)〉\A+, we get the following result, which

can be easily seen to apply to periodic subshifts.

Lemma 5.4. Let X be a minimal subshift and let x∈X . Then we have
⋂

n≥1 〈Rn(x)〉∞=Gx.

We shall consider the inverse systems with connecting morphisms the inclu-

sions im,n : 〈Rm(x)〉→〈Rn(x)〉 and im,n| : 〈Rm(x)〉∞→〈Rn(x)〉∞. Note that we can

identify Gx with lim←−〈Rn(x)〉∞ via Lemma 5.4 (each g∈Gx is identified with the

sequence (g)n≥1). Also, one has Gx⊆lim←−〈Rn(x)〉, with equality in the non-periodic

case, as seen in Lemma 5.3.

Let m≥n, and let r∈〈Rm(x)〉. Then, the equalities

μ̂n

(

p̂m,n◦λ̂m(r)
)

= μ̂m

(

λ̂m(r)
)

= r= μ̂n

(

λ̂n(r)
)

hold by (5.1). Since μ̂n is faithful, this shows that the following diagram commutes:
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〈Rm(x)〉

λ̂m

��

� �
im,n

�� 〈Rn(x)〉

λ̂n

��

̂Σ2m(X , x)
p̂m,n

�� ̂Σ2n(X , x).

(5.2)

The commutativity of Diagram (5.2) yields the existence of the homomorphism

λ̂=lim←− λ̂n from lim←−〈Rn(x)〉 to lim←−
̂Σ2n(X , x). Note that lim←−

̂Σ2n(X , x) is the local

semigroup ̂Σ(X , x) of ̂Σ(X ) at vertex x (cf. Theorem 4.3).

Let ̂Σ∞(X ) be the subgraph of ̂Σ(X )\Σ(X )+ obtained by deleting the edges

in Σ(X )+.

Remark 5.5. When X is a minimal non-periodic subshift, the local semigroup
̂Σ∞(X , x) of ̂Σ∞(X ) at x coincides with ̂Σ(X , x).

It turns out that ̂Σ∞(X , x) is a profinite group whenever X is minimal. Indeed,

the following theorem was announced in [3] and shown in [7, Theorem 6.7].

Theorem 5.6. Let X be a minimal subshift. Then ̂Σ∞(X ) is a profinite con-

nected groupoid.

It should be noted that the notion of profiniteness for semigroupoids is being

taken as compactness plus residual finiteness in the category of semigroupoids. If

the semigroupoid turns out to be a groupoid, one may ask whether profiniteness in

the category of groupoids is an equivalent property. The answer is affirmative since

it is easy to verify that, if ϕ:G→S is a semigroupoid homomorphism and G is a

groupoid, then the subsemigroupoid of S generated by ϕ(G) is a groupoid.

In the statement of [7, Theorem 6.7], it is only indicated that ̂Σ∞(X ) is a

connected groupoid but we note that, if a compact semigroupoid is a groupoid,

then edge inversion and the mapping associating to each vertex the identity at that

vertex are continuous operations. Thus, ̂Σ∞(X ) is in fact a topological groupoid.

A preliminary version of the next theorem was also announced in [3], and a

proof appears in the doctoral thesis [18]. We present here a different proof, based

on Lemma 5.3.

Theorem 5.7. For every minimal subshift X and every x∈X , the restriction

λ̂| : Gx→̂Σ∞(X , x) is an isomorphism. Its inverse is the restriction μ̂| : ̂Σ∞(X , x)→
Gx.
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Proof. By Lemma 5.4, we know that Gx=
⋂

n≥1 〈Rn(x)〉∞, and so from (5.1)

we deduce that μ̂◦λ̂(g)=g for every g∈Gx. This shows in particular that λ̂(g) must

be an infinite path whenever g∈Gx, whence λ̂(Gx) is indeed contained in ̂Σ∞(X , x).

It also shows that the restriction μ̂| : λ̂(Gx)→Gx is onto. Such a restriction is also

injective, as λ̂(Gx)⊆̂Σ(X , x) and μ̂ is faithful. Therefore, all it remains to show is

the equality λ̂(Gx)=̂Σ∞(X , x).

Let s∈̂Σ∞(X , x) and let g=μ̂(s). By Theorem 4.3, s is the limit of a net of

finite paths of the graph Σ(X ). Since the labeling μ̂ of finite paths clearly belongs

to L(X ), we have g=μ̂(s)∈L(X )\A+ by continuity of μ̂. It follows that μ̂(s)∈J(X )

by Theorem 3.1. Since s is a loop rooted at x, applying Lemma 4.6, we conclude

that μ̂(s)∈Gx. Hence, we have μ̂(s)=g=μ̂(λ̂(g)). As μ̂ is faithful, we get s=λ̂(g),

concluding the proof. �

The notion of isomorphism between subshifts is called conjugacy. If X and Y
are conjugate subshifts, then Σ(X ) and Σ(Y) are isomorphic, which combined The-

orem 5.7 leads to the following result.

Corollary 5.8. If X and Y are conjugate minimal subshifts, then the profinite

groups G(X ) and G(Y) are isomorphic.

Actually, a more general result was proved in [17] using different techniques:

if X and Y are conjugate irreducible subshifts, then the profinite groups G(X ) and

G(Y) are isomorphic.

6. An application: a sufficient condition for freeness

In this section, we establish the next theorem, where FG(A) denotes the free

group generated by A.

Theorem 6.1. Let X be a minimal non-periodic subshift, and take x∈X . Let

A be the set of letters occurring in X . Suppose there is a subgroup K of FG(A) and

an infinite set P of positive integers such that, for every n∈P , the set Rn(x) is a

free basis of K. Let K be the topological closure of K in ΩAG. Then the restriction

to Gx of the canonical projection pG : ΩAS→ΩAG is a continuous isomorphism from

Gx onto K.

The following proposition, taken from [9, Proposition 5.2], plays a key role in

the proof of Theorem 6.1.
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Proposition 6.2. Let X be a minimal non-periodic subshift of AZ and let

x∈X . Suppose there are M≥1 and strictly increasing sequences (pn)n and (qn)n of

positive integers such that R(x[−pn,−1], x[0,qn]) has exactly M elements rn,1, ..., rn,M ,

for every n. Let (r1, ..., rM ) be an arbitrary accumulation point of the sequence

(rn,1, ..., rn,M )n in (ΩAS)
M . Then 〈r1, ..., rM 〉 is the maximal subgroup Gx of J(X ).

In the proof of Theorem 6.1 we shall apply the following lemma, whose proof

is an easy and elementary exercise that we omit.

Lemma 6.3. Let S1⊇S2⊇S3⊇... be a descending sequence of compact sub-

spaces of a compact space S1. Suppose that ϕ : S1→T is a continuous mapping

such that ϕ(Sn)=T for every n≥1. If I=
⋂

n≥1 Sn, then we have ϕ(I)=T .

We shall also use the following tool.

Proposition 6.4. ([20, Corollary 2.2]) Suppose that B is the basis of a finitely

generated subgroup K of FG(A). Let K be the topological closure of K in ΩAG.

Then K is a free profinite group with basis B.

We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. By Lemma 5.3, we have Gx=
⋂

n∈P 〈Rn(x)〉. On the

other hand, for every n∈P , since by hypothesis the set pG(Rn(x))=Rn(x) is a basis

of K, we have pG( 〈Rn(x)〉 )=K . It then follows from Lemma 6.3 that pG(Gx)=K.

By assumption, for every n∈P , the set Rn(x) has M elements, where M is the

rank of K. Therefore, by Proposition 6.2, we know that Gx is generated by M ele-

ments. On the other hand, K is a free profinite group of rank M , by Proposition 6.4.

Hence, there is a continuous onto homomorphism ψ : K→Gx. We may then con-

sider the continuous onto endomorphism ϕ of K such that ϕ(g)=pG(ψ(g)) for every

g∈K. Every onto continuous endomorphism of a finitely generated profinite group

is an isomorphism [36, Proposition 2.5.2], whence ϕ is an isomorphism. Since ψ

is onto, we conclude that ψ is an isomorphism. This shows that the restriction

pG| : Gx→K is the continuous isomorphism ϕ◦ψ−1 : Gx→K. �

We proceed to apply Theorem 6.1 and two of the main results of [13] to deduce

the freeness of the Schützenberger group of the minimal subshifts satisfying the tree

condition, which we next describe.

Let X be a subshift of AZ. Given w∈L(X )∪{1}⊆A∗, let

Lw =
{

a∈A | aw∈L(X )
}

,
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Rw =
{

a∈A |wa∈L(X )
}

,

Ew =
{

(a, b)∈A×A | awb∈L(X )
}

.

The extension graph Gw is the bipartite undirected graph whose vertex set is the

union of disjoint copies of Lw and Rw, and whose edges are the pairs (a, b)∈Ew,

with incidence in a∈Lw and b∈Rw. The subshift X satisfies the tree condition if

Gw is a tree for every w∈L(X )∪{1}.
The class of subshifts satisfying the tree condition contains two classes that

have received considerable attention in the literature: the class of Arnoux-Rauzy

subshifts(4) (see the survey [25]), and the class of subshifts defined by regular interval

exchange transformations (see [13] and [14]).

It is shown in [13, Theorem 4.5] that if the minimal subshift X satisfies the tree

condition, then, for every w∈L(X ), the set of return words R(w) is a basis of the

free group generated by the set of letters occurring in X . This result is called the

Return Theorem in [13]. Combining the Return Theorem with Theorem 6.1, noting

that, for every x∈X , the set Rn(x) is conjugate to Rn(x[−n,n−1]), we immediately

deduce the following theorem.

Theorem 6.5. If X is a minimal subshift satisfying the tree condition, then

G(X ) is a free profinite group with rank M , where M is the number of letters

occurring in X .

There are other cases of minimal subshifts X , not satisfying the tree condition,

for which G(X ) is known to be a free profinite group. Indeed, it is shown in [5]

that if X is the subshift defined by a weakly primitive substitution ϕ which is group

invertible, then G(X ) is a free profinite group. The weakly primitive substitution

ϕ(a)= ab, ϕ(b)= cda, ϕ(c)= cd, and ϕ(d)= abc

is group invertible, but the minimal subshift defined by X is a subshift that fails

the tree condition [13, Example 3.4].

The special case of Theorem 6.5 in which the subshift is an Arnoux-Rauzy

subshift was previously established in [5] by the first author by extending the case

of substitution Arnoux-Rauzy subshifts, for which the substitutions are group in-

vertible.

(4) The Arnoux-Rauzy subshifts over two-letter alphabets are the extensively studied Stur-
mian subshifts, but we warn that in [13] the Arnoux-Rauzy subshifts are called Sturmian.
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7. The groupoids Kn(X )E

Let X be a subshift of AZ. For every positive integer n, if Xn is the subshift of

AZ consisting of those elements x of AZ such that x[k,k+n−1]∈L(X ) for every k∈Z,
then one clearly has L(Xn)=Mn(X )∩A+. Since Mn(X ) is a clopen subset of ΩAS,

it follows that L(Xn)=Mn(X ). From this fact one deduces the following lemma.

For the sake of uniformity, we denote M(X )=
⋂

n≥1 Mn(X ) by M∞(X ).

Lemma 7.1. For every n∈Z+∪{∞}, if the subshift X is irreducible then so

is the set Mn(X ).

Proof. Clearly, for every n≥1, if X is irreducible then so is Xn, whence Mn(X )

=L(Xn) is irreducible. Let u, v∈M∞(X ). For each n≥1, there is wn∈Mn(X ) such

that uwnv∈Mn(X ). If w is an accumulation point of (wn)n∈Z+ then w∈Mn(X )

for every n, since Mn(X ) is closed and wm∈Mn(X ) for every m≥n. This shows

M∞(X ) is irreducible. �

In view of Lemma 7.1, and since clearly Mn(X ) is closed and factorial (ir-

respectively of X being irreducible or not), we may consider the apex Kn(X ) of

Mn(X ) when X is irreducible.

The irreducibility of X also implies that, for every positive integer n, the

semigroupoid ̂Σ2n(X ) is strongly connected, since Σ2n(X ) is then itself strongly

connected.

A subsemigroupoid T of a semigroupoid S is an ideal if for every t∈T and

every s∈S, ω(s)=α(t) implies st∈T , and ω(t)=α(s) implies ts∈T . In a strongly

connected compact semigroupoid S, there is a minimum ideal KerS. This ideal

KerS may be defined as follows. Consider any vertex v of S and the local semigroup

S(v) of S at v. Then S(v) is a compact semigroup, and therefore it has a minimum

ideal Kv . Let KerS be the subsemigroupoid of S with the same set of vertices

as S and whose edges are those edges of S that admit some (and therefore every)

element of Kv as a factor. Note that Kv=(KerS)(v).

The next lemma is folklore. The relations ≤J and J in semigroupoids extend

naturally the corresponding notions for semigroups, namely, in a semigroupoid s≤J
t means the edge t is a factor of the edge s.

Lemma 7.2. If S is a strongly connected compact semigroupoid, then KerS

is a closed ideal of S that does not depend on the choice of v. Moreover, the edges

in KerS are J -equivalent in S; more precisely, they are ≤J -below every edge of S.

We next relate Ker ̂Σ2n(X ) with K2n+1(X ).
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Lemma 7.3. Consider an irreducible subshift X and a positive integer n. Then

we have the equality μ̂n(Ker ̂Σ2n(X ))=K2n+1(X ).

Proof. Let s∈Ker ̂Σ2n(X ) and let w∈K2n+1(X ).

By Lemma 4.4, there is t∈̂Σ2n(X ) such that μ̂n(t)=w. But t is a factor of

s by Lemma 7.2, and so w is a factor of μ̂n(s). Again by Lemma 4.4, we have

μ̂n(s)∈M2n+1(X ). The ≤J -minimality of K2n+1(X ) then yields μ̂n(s)∈K2n+1(X ),

establishing the inclusion μ̂n(Ker ̂Σ2n(X ))⊆K2n+1(X ).

On the other hand, since ̂Σ2n(X ) is strongly connected, there is an edge r

in ̂Σ2n(X ) having s has a factor and such that tr is a loop. Let �=(tr)ω . Since

Ker ̂Σ2n(X ) is an ideal, we have �∈Ker ̂Σ2n(X ), and so the idempotent μ̂n(�) belongs

to K2n+1(X ) by the already proved inclusion. But w=μ̂n(t)∈K2n+1(X ) is a prefix

of the idempotent μ̂n(�), and so wRμ̂n(�) by stability of ΩAS. Hence, we have w=

μ̂n(�)w=μ̂n(�t). Since �t∈Ker ̂Σ2n(X ), this shows the reverse inclusion K2n+1(X )⊆
μ̂n(Ker ̂Σ2n(X )). �

Corollary 7.4. Let X be an irreducible subshift. Fix a positive integer n. For

every vertex v of ̂Σ2n(X ), there is an idempotent loop � of ̂Σ2n(X ) rooted at v such

that μ̂(�)∈K2n+1(X ).

Proof. The graph ̂Σ2n(X ) is strongly connected, and so every element of

Ker ̂Σ2n(X ) is a factor of a loop q rooted at v. The loop �=qω then satisfies the

desired conditions, by Lemma 7.3. �

Let S be a semigroup. The category SE is defined by the following data:

(1) the vertex set is the set of idempotents of S;

(2) the edges from e to f are the triples (e, u, f) with u∈eSf ;
(3) the composition is defined by (e, u, f)(f, v, g)=(e, uv, g).

Note that (e, e, e) is a local identity at each idempotent e of S. This is the instance

for one-vertex semigroupoids of the so-called Karoubi envelope [27] or Cauchy com-

pletion (cf. [15, Sect. 6.5]) of a semigroupoid. The category SE was introduced in

semigroup theory by Tilson in his fundamental paper [38]. Since the construction

S �→SE is functorial, if S is profinite, then SE becomes a profinite category by con-

sidering the product topology in S×S×S. In this paper we are interested in dealing

with the profinite category (ΩAS)E . For an irreducible subshift X and n∈Z+∪{∞},
denote by Kn(X )E the subgraph of (ΩAS)E whose vertices are the idempotents of

Kn(X ) and whose edges are the edges (e, u, f) of (ΩAS)E with u∈Kn(X ).
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Proposition 7.5. Let X be an irreducible subshift. For every n∈Z+∪{∞},
the graph Kn(X )E is a closed subcategory of (ΩAS)E . Moreover, Kn(X )E is a

profinite groupoid.

Proof. We know that Kn(X )E is topologically closed in (ΩAS)E because the

set of idempotents of ΩAS and every J -class of ΩAS are closed.

As shown in [10, Lemma 8.2], if w is a finite factor of a product pqr with

p, q, r∈ΩAS and q /∈A+, then w is a factor of pq or of qr. Therefore, the composi-

tion in (ΩAS)E of two edges of Kn(X )E belongs to Kn(X )E , and so Kn(X )E is a

subcategory of (ΩAS)E .

If (e, u, f) is an edge of Kn(X )E , then eRuLf by stability of ΩAS. It follows

from the basic properties of Green’s relations that there is some v in Kn(X ) such

that fRvLe, uv=e and vu=f . Hence (f, v, e) is an edge of Kn(X )E that is an

inverse of (e, u, f), thereby establishing that Kn(X )E is a groupoid.

To conclude the proof, it remains to show that Kn(X )E is residually finite as

a topological groupoid. Since it is a subgroupoid of the category (ΩAS)E , which

is residually finite as a topological category, the topological groupoid Kn(X )E is

residually finite as the subcategory generated by the image of a homomorphism of

a topological groupoid into a finite category is easily seen to be a groupoid. �

In the minimal case, we may combine Proposition 7.5 and Theorem 5.7 to

obtain an alternative characterization of the profinite groupoid ̂Σ∞(X ) in terms

of the local structure of the free profinite semigroup ΩAS. For this purpose, we

introduce some notation that is also useful in the next section.

Suppose X is a minimal subshift. For each x∈X , let �x be the identity at x

in the groupoid ̂Σ∞(X ) (cf. Theorem 5.6). Let ex be the idempotent μ̂(�x). Recall

that ex is the identity element of Gx (cf. Theorem 5.7).

Remark 7.6. For every minimal subshift, the mapping x∈X �→�x∈̂Σ∞(X ) is

continuous, and therefore so is the mapping x∈X �→ex∈J(X ).

By Theorem 3.1, we know that K∞(X )=J(X ). By Proposition 7.5, we know

that J(X )E is a profinite groupoid. Note that for each x∈X , the profinite groups

Gx and the local group of J(X )E are isomorphic, the mapping u∈Gx �→(ex, u, ex)

being a continuous isomorphism between them. The following gives a sort of first

geometric characterization of the groupoid J(X )E .

Theorem 7.7. For every minimal subshift X , we have a continuous groupoid

isomorphism F : ̂Σ∞(X )→J(X )E defined on vertices by F (x)=ex and on edges by

F (s)=(eα(s), μ̂(s), eω(s)).
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Proof. Note first that F is clearly a functor between categories, as μ̂ is itself

a semigroupoid homomorphism. The continuity of F follows from the continuity

of μ̂ and Remark 7.6. Let e be an idempotent of J(X ), and take x=←−e .−→e . Since

ex∈Gx, we have ex=e in view of Lemma 3.2, whence F (x)=e. On the other hand,

if F (x)=F (y), then x=y, also in view of Lemma 3.2. This establishes that F is

bijective on vertices.

Fix an element x∈X . Consider the isomorphism u∈Gx �→(ex, u, ex), from Gx

onto the local group of J(X )E at e. Composing it with the restriction of μ̂ to the

local group ̂Σ∞(X , x) we get, thanks to Theorem 5.7, a continuous isomorphism,

which is precisely the restriction of F mapping ̂Σ∞(X , x) onto the local group of

J(X )E at e.

Finally, it is an easy exercise to show that if H is a functor between two

connected groupoids S and T that restricts to a bijection between the corresponding

sets of vertices and to a bijection between some local group of S and some local

group of T , then H is an isomorphism of groupoids. �

The following lemma is useful in the sequel.

Lemma 7.8. Let X be an irreducible subshift. If e is an idempotent in K∞(X ),

then there is a sequence (en)n of idempotents en∈Kn(X ) such that lim en=e.

Proof. For each positive integer n, choose vn∈Kn(X ). Since e∈Mn(X ) and

Mn(X ) is irreducible, there are zn, tn∈ΩAS such that eznvntne belongs to Mn(X ),

whence (e, eznvntne, e) is a loop of Kn(X )E , and so is (e, eznvntne, e)
ω in view of

Proposition 7.5. Therefore, the idempotent en=(eznvntne)
ω belongs to Kn(X ).

Let f be an accumulation point of the sequence (en)n. Note that f is an

idempotent such that f≤Re and f≤Le. As m≥n implies em∈Mn(X ) and because

Mn(X ) is closed, we have f∈Mn(X ) for every n≥1, whence f∈M∞(X ). There-

fore, since e∈K∞(X ) is a factor of f , we must have f∈K∞(X ). As ΩAS is stable,

we conclude that f=e. We have shown that e is the unique accumulation point of

(en)n, and so by compactness we conclude that (en)n converges to e. �

8. A geometric interpretation of G(X ) when X is minimal

In this section we present a series of technical results that culminate, for the

case where X is a minimal subshift, in the geometric interpretation of G(X ) as an

inverse limit of the profinite completions of the fundamental groups of the Rauzy

graphs Σ2n(X ) (Corollary 8.13). While some preliminary results are valid for all

irreducible subshifts, we leave open whether our main result generalizes to that case.
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By Corollary 7.4, if X is an irreducible subshift then, for each vertex w of

Σ2n(X ), we may choose an idempotent loop �w,n of ̂Σ2n(X ) rooted at w such that

the idempotent ew,n=μ̂n(�w,n) belongs to K2n+1(X ).

Lemma 8.1. Suppose X is a minimal subshift. For every x∈X , the sequence

(ex[−n,n−1],n)n converges to ex.

Proof. Since M(X ) is the intersection of the descending chain of closed sets

(M2n+1(X ))n, we know that every accumulation point e of (ex[−n,n−1],n)n is an

idempotent belonging to M(X ). We also know that, for a fixed a positive integer k,

the word x[0,k] is a prefix of ex[−n,n−1],n whenever n>k, by Lemma 4.6. By continu-

ity, we deduce that x[0,k] is a prefix of e. Similarly, x[−k,−1] is a suffix of e. Since k

is arbitrary, we conclude from Lemma 3.2 that e=ex. Hence, by compactness, the

sequence (ex[−n,n−1],n)n converges to ex, as ex is its sole accumulation point. �

Let u∈ΩAS. Suppose z∈A+ is such that u∈z ·ΩAS. Then there is a unique w

in ΩAS such that u=zw [1, Exercise 10.2.10]. We denote w by z−1u. The product

(z−1u)z is denoted simply by z−1uz, as there is no risk of ambiguity. Observe that

if u is idempotent then z−1uz is also idempotent. In terms of the element x=(xi)i∈Z

of the minimal subshift X , one sees that ex∈x0 ·ΩAS, and so we may consider the

idempotent x−1
0 exx0.

Lemma 8.2. If X is a minimal subshift, then for every x∈X we have eσ(x)=

x−1
0 exx0.

Proof. Let w=x−1
0 exx0. Then we have←−w .−→w=σ(x). Hence, w is an idempotent

in Gσ(x), that is, w=eσ(x). �

By the freeness of the profinite semigroupoid ̂Σ(X ), we may consider the unique

continuous semigroupoid homomorphism Ψ: ̂Σ(X )→ΩAS such that Ψ(s)=eα(s) ·
μ̂(s)·eω(s) for every edge s of Σ(X ).

Lemma 8.3. Suppose X is a minimal subshift. For every edge s of ̂Σ(X ), we

have

(8.1) Ψ(s)= eα(s) ·μ̂(s)·eω(s).

Moreover, if s is an infinite edge then Ψ(s)=μ̂(s).

Proof. We first establish equality (8.1) for finite paths s belonging to Σ(X )+,

by induction on the length of s. The base case holds by the definition of Ψ.
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Suppose that (8.1) holds for paths in Σ(X ) of length k, where k≥1, and let s

be a path in Σ(X ) of length k+1. Factorize s as s=tr with t being a path of length

1 and r a path of length k. Then, by the induction hypothesis, and since Ψ is a

semigroupoid homomorphism, we have,

(8.2) Ψ(s)=Ψ(t)Ψ(r)= eα(s) ·μ̂(t)·eω(t) ·μ̂(r)·eω(s).

Since t has length 1, there is x∈X such that t=(x, σ(x)). As α(s)=x, ω(t)=σ(x)

and μ̂(t)=x0, and taking into account Lemma 8.2, we obtain eα(s) ·μ̂(t)·eω(t)=

ex ·x0 ·x−1
0 exx0=eα(s) ·μ̂(t). Hence, (8.2) simplifies to

Ψ(s)= eα(s) ·μ̂(t)·μ̂(r)·eω(s) = eα(s) ·μ̂(s)·eω(s),

which establishes the inductive step, and concludes the proof by induction that (8.1)

holds for finite paths.

Denote by Φ the mapping ̂Σ(X )→ΩAS such that Φ(s)=eα(s) ·μ̂(s)·eω(s) for

every edge s of ̂Σ(X ). We proved that Ψ and Φ coincide in Σ(X )+. By continuity

of μ̂ and by Remark 7.6, we know that Φ is continuous. Hence, as Σ(X )+ is dense

in ̂Σ(X ) by Theorem 4.3, we conclude that Ψ=Φ.

Suppose s is an infinite edge. Since s and �α(s) have the same source, μ̂(s) and

eα(s) have the same set of finite prefixes by Lemma 4.6. This means that μ̂(s) and

eα(s) are R-equivalent elements of J(X ), by Lemma 3.2. Similarly, μ̂(s) and eω(s)

are L-equivalent. This establishes Ψ(s)=μ̂(s). �

We begin a series of technical lemmas preparing a result (Proposition 8.7)

about the approximation of Ψ by a special sequence of functions in the function

space (ΩAS)
bΣ(X ), endowed with the pointwise topology.

Lemma 8.4. Suppose X is a minimal subshift. Let ϕ be a continuous semi-

group homomorphism from ΩAS into a finite semigroup F . Then there is an in-

teger Nϕ such that if u is an element of MNϕ(X ) with length at least Nϕ, then

ϕ(u)∈ϕ(J(X )).

Proof. Since J(X )⊆L(X ), there is z∈L(X ) such that ϕ(z)∈ϕ(J(X )). By the

uniform recurrence of L(X ), there is an integer M such that every word of L(X ) of

length at least M contains z as a factor.

Let e be an idempotent of J(X ). Since X is a minimal subshift, by Theorem 3.1

we know that K∞(X )=J(X ). Applying Lemma 7.8, we conclude that there is a

sequence (en)n of idempotents converging to e such that en∈Kn(X ) for every n≥1.

Hence, there is an integer Nϕ with Nϕ≥M for which we have ϕ(en)=ϕ(e) whenever

n≥Nϕ.
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Let u∈MNϕ(X ) be such that the length of u is at least Nϕ. Then z is a

factor of u. We also have eNϕ≤J u by the definition of Kn(X ). Hence, we obtain

ϕ(eNϕ)≤J ϕ(u)≤J ϕ(z). But both ϕ(z) and ϕ(eNϕ)=ϕ(e) belong to ϕ(J(X )), thus

ϕ(u)∈ϕ(J(X )). �

Lemma 8.5. Let X , ϕ and Nϕ be as in Lemma 8.4. For all x∈X and n≥Nϕ,

the equality ϕ(ex)=ϕ(ex[−n,n−1],n) holds.

Proof. By Lemmas 4.5 and 4.6, the word x[0,n−1] is a common prefix of

ex[−n,n−1],n and ex. Note also that, for n≥Nϕ, x[0,n−1], ex[−n,n−1],n, and ex be-

long to MNϕ(X ). In view of Lemma 8.4, we conclude that the elements of the

set
{

ϕ(x[0,n−1]), ϕ(ex[−n,n−1],n), ϕ(ex)
}

belong to ϕ(J(X )). By stability of F , we deduce that

ϕ(ex[−n,n−1],n)Rϕ(x[0,n−1])Rϕ(ex).

Similarly, we have

ϕ(ex[−n,n−1],n)Lϕ(x[−n,−1])Lϕ(ex).

Hence ϕ(ex[−n,n−1],n)Hϕ(ex), and since ex[−n,n−1],n and ex are idempotents, we

actually have ϕ(ex[−n,n−1],n)=ϕ(ex). �

Let X be an irreducible subshift. Consider the graph homomorphism ψn :

Σ2n(X )→(ΩAS)E defined by

ψn(s)=
(

eα(s),n, eα(s),n ·μ̂n(s)·eω(s),n, eω(s),n

)

for each edge s of Σ2n(X ). By the freeness of the profinite semigroupoid ̂Σ2n(X ),

the graph homomorphism ψn extends in a unique way to a continuous semigroupoid

homomorphism ψ̂n : ̂Σ2n(X )→(ΩAS)E .

Lemma 8.6. For every irreducible subshift X , the image of ψ̂n is contained

in the groupoid K2n+1(X )E .

Proof. Let s be an edge of Σ2n(X ). By their definition, the idempotents

eα(s),n and eω(s),n belong to K2n+1(X ). Take u=eα(s),n ·μ̂n(s)·eω(s),n. We have

u=μ̂n(�α(s),n ·s·�ω(s),n). Since �α(s),n ·s·�ω(s),n belongs to ̂Σ2n(X ), we must have

u∈M2n+1(X ) by Lemma 4.4. But u=eα(s),n ·u·eω(s),n, and so u∈K2n+1(X ) by the

≤J -minimality of K2n+1(X ), establishing that ψ̂n(s) belongs to K2n+1(X )E . Since
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K2n+1(X )E is a closed subcategory of (ΩAS)E , applying Lemma 2.4 we conclude

that the image of ψ̂n is contained in K2n+1(X )E . �

Denote by γ the continuous semigroupoid homomorphism (ΩAS)E→ΩAS de-

fined by γ(e, u, f)=u. Consider the following sequence of continuous semigroupoid

homomorphisms:

̂Σ(X )
p̂n

�� ̂Σ2n(X )
ψ̂n

�� (ΩAS)E
γ

�� ΩAS.

Let Ψn=γ◦ψ̂n◦p̂n be the resulting composite.

For the next proposition, we take into account the metric d of ΩAS such that

if u and v are distinct elements of ΩAS, then d(u, v)=2−r(u,v), where r(u, v) is the

minimum possible cardinality of a finite semigroup F for which there is a continuous

homomorphism ϕ : ΩAS→F satisfying ϕ(u) �=ϕ(v). The hypothesis which we have

been using that A is finite guarantees that the metric d generates the topology of

ΩAS [2] and [3].

Proposition 8.7. Suppose X is a minimal subshift. Endow the function space

(ΩAS)
bΣ(X ) with the pointwise topology. Then the sequence (Ψn)n converges uni-

formly to Ψ.

Proof. Fix a positive integer k. We want to show that there is a positive integer

Nk such that if n≥Nk then d(Ψn(s),Ψ(s))< 1
2k

for every s∈̂Σ(X ). For that purpose

we use the following auxiliary lemma, whose proof is a standard exercise. It appears

implicitly in the first part of the proof of Proposition 7.4 from [2].

Lemma 8.8. Fix a positive integer k. There is a continuous semigroup ho-

momorphism ϕ from ΩAS onto a finite semigroup F such that

(8.3) d(u, v)<
1

2k
⇐==⇒ ϕ(u)=ϕ(v).

Proceeding with the proof of Proposition 8.7, let ϕ:ΩAS→F be a continuous

homomorphism onto a finite semigroup F such that the equivalence (8.3) holds. Let

Nϕ be an integer as in Lemmas 8.4 and 8.5. Consider an integer n with n≥Nϕ.

In view of equivalence (8.3), the proposition is proved once we show that, for every

edge s of ̂Σ(X ), we have

(8.4) ϕ
(

Ψn(s)
)

=ϕ
(

Ψ(s)
)

.
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If s has length 1, that is, if s is an edge (x, σ(x)) of X , for some x∈X , then we have

(8.5) Ψn(s)= eα(p̂n(s)),n ·μ̂n

(

p̂n(s)
)

·eω(p̂n(s)),n.

Because n≥Nϕ, it follows from Lemma 8.5 that

(8.6) ϕ(eα(p̂n(s)),n)=ϕ(eα(s)) and ϕ(eω(p̂n(s)),n)=ϕ(eω(s)).

Since μ̂n◦p̂n=μ̂, from (8.5) and (8.6) we obtain (8.4) in the case where s has length

1. Hence, ϕ◦Ψn and ϕ◦Ψ are continuous semigroupoid homomorphisms coinciding

in Σ(X ). Since Σ(X )+ is dense in ̂Σ(X ) by Theorem 4.3, it follows that we actually

have ϕ◦Ψn=ϕ◦Ψ, thereby establishing (8.4). �

Suppose X is an irreducible subshift. As the graph Σ2n(X ) is strongly con-

nected, for each edge s : v1→v2 of Σ2n(X ) one can choose a path s′ : v2→v1 in

Σ2n(X ). Denote by s∗ the edge (s′s)ω−1s′ of ̂Σ2n(X ) from v2 to v1.

Remark 8.9. For every edge s of Σ2n(X ), the loops s∗ ·s and s·s∗ are idem-

potents. Therefore, if ϕ is a semigroupoid homomorphism from ̂Σ2n(X ) into a

groupoid, then ϕ(s∗)=ϕ(s)−1 for every edge s.

Recall how in Sect. 2.5 we defined the graph ˜Γ from a graph Γ, and denote
˜Σ2n(X ) by ˜Σ2n(X ). Let tε be an edge of ˜Σ2n(X ), where t is an edge of Σ2n(X ),

ε∈{−1, 1} and t1=t. We define

(

tε
)+

=

{

t if ε=1,

t∗ if ε=−1.

If s=s1s2...sk is a path, where each si is an edge of ˜Σ2n(X ), then we define s+=

s+1 s
+
2 ...s

+
k . Note that s+ is an edge of ̂Σ2n(X ) such that α(s+)=α(s) and ω(s+)=

ω(s). We also follow the usual definition s−1=s−1
k ...s−1

2 s−1
1 .

If 1v is the empty path at some vertex v of ˜Σ2n(X ), then one takes 1v=1−1
v =

1∗v=1+v , and if ϕ is a semigroupoid homomorphism from ̂Σ2n(X ) into a groupoid,

then one defines ϕ(1v) as being the local unit at ϕ(v).

Lemma 8.10. Consider an irreducible subshift X . Let ϕ be a semigroupoid

homomorphism from ̂Σ2n(X ) into a groupoid, and let t be a (possible empty) path

of ˜Σ2n(X ). Then we have

(8.7) ϕ
(

t+
)−1

=ϕ
((

t−1
)+)

.
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Proof. The case where t is an empty path is immediate. We show (8.7) by

induction on the length of t. Suppose that t has length 1. Either t∈Σ2n(X ) or

t−1∈Σ2n(X ). In the first case we have t+=t and (t−1)+=t∗, while in the second case

we have t+=(t−1)∗ and (t−1)+=t−1. In either case, (8.7) follows from Remark 8.9.

Suppose that (8.7) holds for paths of length less than k, where k>1. Let t be

a path of ˜Σ2n(X ) of length k, and consider a factorization in ˜Σ2n(X )+ of the form

t=rs with s an edge of ˜Σ2n(X ).

Then t+=r+s+. Therefore, applying the inductive hypothesis, we get

ϕ
(

t+
)−1

=ϕ
(

s+
)−1 ·ϕ

(

r+
)−1

=ϕ
((

s−1
)+)·ϕ

((

r−1
)+)

=ϕ
((

s−1r−1
)+)

=ϕ
((

t−1
)+)

,

which establishes the inductive step and concludes the proof. �

Recall that a spanning tree T of a graph Γ is a subgraph of Γ which, with respect

to inclusion, is maximal for the property that the undirected graph underlying T is

both connected and without cycles. In what follows, we say that a path t1...tk of ˜Γ

lies in T if for each i∈{1, ..., k} we have ti∈T or t−1
i ∈T .

Fix an element x∈X and, for each n, fix a spanning tree T of the graph Σ2n(X ).

For each pair of vertices v1, v2 of Σ2n(X ), let Tv1,v2 be the unique path of ˜Σ2n(X )

from v1 to v2 that does not repeat vertices and lies in T . Note that Tv1,v2=T−1
v2,v1 ,

and that Tv,v is the empty path at v. For each vertex v let γv=Tv,x[−n,n−1]
and

δv=Tx[−n,n−1],v . In particular, we have γv=δ−1
v .

For each edge s of Σ2n(X ), consider the element gs of the local group Π2n(X , x)

given by gs=(δα(s) ·s·γω(s))/∼. Note that gs is the identity of Π2n(X , x) if s belongs

to T . Denote by Y the set of edges of Σ2n(X ) not in T . It is a well known fact that

the set B={gs |s∈Y } is a free basis of the fundamental group Π2n(X , x) [30]. Hence,

B is a basis of the free profinite group ̂Π2n(X , x). In view of Lemma 8.6, we may

therefore consider the unique continuous group homomorphism ζn from ̂Π2n(X , x)

into the local group of the profinite groupoid K2n+1(X )E at en=ex[−n,n−1],n such

that

ζn(gs)= ψ̂n

(

δ+α(s) ·s·γ
+
ω(s)

)

for every s∈Y .

Lemma 8.11. Consider an irreducible subshift X . Let u be a loop of ̂Σ2n(X )

rooted at vertex x[−n,n−1]. Then we have ζn(ĥn(u))=ψ̂n(u).

Proof. Since we are dealing with finite-vertex graphs, we have Σ2n(X )+=
̂Σ2n(X ). And since the vertex space of ̂Σ2n(X ) is discrete, it follows that any
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loop of ̂Σ2n(X ) rooted at x[−n,n−1] is the limit of a net of finite loops of ̂Σ2n(X )

rooted at x[−n,n−1]. Hence, since ζn◦ĥn and ψ̂n are continuous, the lemma is proved

once we show that the equality ζn(ĥn(u))=ψ̂n(u) holds whenever u is a finite loop

rooted at x[−n,n−1]. For such a finite loop u, let

u=u0s1u1s2u2...uk−1skuk

be a factorization in Σ2n(X )+ such that u0, ..., uk are (possibly empty) paths that

lie in T and s1, ..., sk are edges belonging to Y . Let wi be the longest common prefix

of γ−1
ω(si)

and δα(si+1) and let zi and ti be such that the equalities γω(si)=ziw
−1
i and

δα(si+1)=witi hold in ˜Σ2n(X ). Note that

(8.8) u0 = δα(s1), uk = γω(sk), and ui = ziti for i∈{1, ..., k−1}.

It follows that

ĥn(u)= gs1gs2 ...gsk

and so

(8.9) ζn
(

ĥn(u)
)

= ̂ψn

(

δ+α(s1) ·s1 ·γ
+
ω(s1)

·δ+α(s2) ·s2 ·γ
+
ω(s2)

...δ+α(sk) ·sk ·γ
+
ω(sk)

)

.

On the other hand, by (8.8), we have δ+α(s1)=u0, γ
+
ω(sk)

=uk and, in view of Lem-

mas 8.6 and 8.10, for i∈{1, ..., k−1}, the following chain of equalities holds:

ψ̂n

(

γ+
ω(si)

·δ+α(si+1)

)

= ψ̂n

(

z+i
(

w−1
i

)+ ·w+
i t

+
i

)

= ψ̂n

(

z+i
)

· ̂ψn

((

w−1
i

)+)·ψ̂n

(

w+
i

)

·ψ̂n

(

t+i
)

= ψ̂n

(

z+i
)

· ̂ψn

(

w+
i

)−1 ·ψ̂n

(

w+
i

)

· ̂ψn

(

t+i
)

= ψ̂n

(

z+i
)

· ̂ψn

(

t+i
)

= ̂ψn(ui).

Therefore, (8.9) simplifies to ζn(ĥn(u))=ψ̂n(u), as we wished to show. �

Theorem 8.12. Let X be a minimal subshift. Then, the restriction of the

mapping ĥ to ̂Σ∞(X ) is an isomorphism of topological groupoids onto lim←−
̂Π2n(X ).

Proof. By Lemma 2.3, ĥn is onto for every n≥1, which shows that ĥ is onto

(cf. [39, Theorem 29.13]). Therefore, by Theorem 4.3, the equality ĥ(̂Σ(X ))=

lim←−
̂Π2n(X ) holds. If s is a finite edge in ̂Σ(X ), then �α(s)s is an edge in ̂Σ∞(X )

such that ĥ(�α(s)s)=ĥ(s), whence ĥ(̂Σ∞(X ))=lim←−
̂Π2n(X ).

Let s, t be elements of ̂Σ∞(X ) such that ĥ(s)=ĥ(t). Since ĥ is the identity

mapping on vertices, we may assume that s and t are edges and, therefore, they are
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coterminal edges. Then, for every n≥1, we have ĥn(p̂n(ss
−1))=ĥn(p̂n(ts

−1)), and

so from Lemma 8.11 we deduce the equality

ψ̂n

(

p̂n
(

ss−1
))

= ψ̂n

(

p̂n
(

ts−1
))

.

This shows that Ψn(ss
−1)=Ψn(ts

−1) every n≥1. From Proposition 8.7 we then

obtain Ψ(ss−1)=Ψ(ts−1). By Lemma 8.3, this means that μ̂(ss−1)=μ̂(ts−1). Since

μ̂ is faithful, we conclude that ss−1=ts−1, whence s=t. This establishes that ĥ is

injective. �

In view of Theorem 5.7, we may now obtain our main result as an immediate

consequence of Theorem 8.12.

Corollary 8.13. If X is a minimal subshift then G(X ) is isomorphic with

lim←−
̂Π2n(X , x) as a profinite group, for every x∈X .
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