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Families of Gorenstein and almost Gorenstein
rings

V. Barucci, M. D’Anna and F. Strazzanti

Abstract. Starting with a commutative ring R and an ideal I, it is possible to define

a family of rings R(I)a,b, with a, b∈R, as quotients of the Rees algebra ⊕n≥0I
ntn; among the

rings appearing in this family we find Nagata’s idealization and amalgamated duplication. Many

properties of these rings depend only on R and I and not on a, b; in this paper we show that

the Gorenstein and the almost Gorenstein properties are independent of a, b. More precisely,

we characterize when the rings in the family are Gorenstein, complete intersection, or almost

Gorenstein and we find a formula for the type.

Introduction

Let R be a commutative ring with unity and let I �=0 be a proper ideal of R.

In [1] the authors introduce and study the family of quotient rings

R(I)a,b =R+/
(
I2
(
t2+at+b

))
,

where R+ is the Rees algebra associated with the ring R with respect to I , i.e. R+=⊕
n≥0(I

ntn), and (I2(t2+at+b)) is the contraction to R+ of the ideal generated by

t2+at+b in R[t].

This family provides a unified approach to Nagata’s idealization (with respect

to an ideal, see [11, p. 2]) and to amalgamated duplication (see [4] and [5]); they can

be both obtained as particular members of it, in particular they are R�I∼=R(I)0,0
and R��I∼=R(I)0,−1 respectively. This fact explains why these constructions pro-

duce rings with many common properties; as a matter of fact, it is shown, in [1],

that many properties of the rings in this family (like, e.g., Krull dimension, Noethe-

rianity and local Cohen–Macaulayness) do not depend on the defining polynomial.

One interesting fact about this family is that, if R is a domain, we can always

find domains among its members, while the idealization is never reduced and the

amalgamated duplication is never a domain.
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In this paper we deepen the study of the rings in the family initiated in [1]. In

particular, we characterize when these rings are Gorenstein, complete intersection,

and almost Gorenstein and prove that these properties do not depend on the par-

ticular member chosen in the family, but only on R and I . The concepts of Goren-

stein ring and complete intersection ring are so prominent that they do not need a

presentation; as for the concept of almost Gorenstein ring, we recall that it was in-

troduced for one-dimensional analytically unramified rings by Barucci and Fröberg

in [2]; recently this definition has been generalized for local Cohen–Macaulay one-

dimensional rings possessing a canonical ideal (see [8]) and successively for rings of

any Krull dimension (see [9]). This class of rings has been widely studied in the last

years also because of its connection with almost symmetric numerical semigroups.

The structure of the paper is the following. In the first section we recall some

properties about the family R(I)a,b and complete the characterization of its Cohen–

Macaulayness. Then we prove that R(I)a,b is Gorenstein if and only if I is a canon-

ical ideal of R (see Corollary 1.4); moreover, we determine the type of R(I)a,b
showing that it is independent of a, b (see Theorem 1.3) and, finally, we give a char-

acterization of the complete intersection property for R(I)a,b (see Proposition 1.8).

In Section 2, we consider the almost Gorenstein property of R(I)a,b. As for the one-

dimensional case, we give an explicit description of the canonical ideal of R(I)a,b
(cf. Proposition 2.1) and we use it to find some characterizations that generalize the

particular cases studied in [6] and [8] (cf. Theorem 2.3 and Corollary 2.4); moreover,

in this case, we find a simpler formula for the type of R(I)a,b that depends only

on I and the canonical module of R (cf. Proposition 2.6); furthermore this formula

implies that, in this case, the type of R(I)a,b is odd and included between 1 and

2t(R)+1, where t(R) is the type of R (see Corollary 2.7). Finally, we prove that,

also in the higher dimensional case, the almost Gorenstein property does not de-

pend on a and b (see Proposition 2.12); in particular, the results about idealization

proved in [9] can be generalized to all the members of the family.

1. Gorenstein property for R(I)a,b

We start this section by recalling some basic facts on the rings R(I)a,b proved

in [1].

Proposition 1.1. Let f(t)=t2+at+b∈R[t] be a monic polynomial. Then

f(t)R[t]∩R+ =
{
f(t)g(t) | g(t)∈ I2R+

}
.

If we denote this ideal by (I2f(t)) and the quotient ring R+/(I
2f(t)) by R(I)a,b we

have:
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(1) R(I)a,b∼=R⊕I as R-module (we will denote each element of R(I)a,b simply

by r+it, where r∈R and i∈I);
(2) the ring extensions R⊆R(I)a,b⊆R[t]/(f(t)) are both integral and, therefore,

the three rings have the same Krull dimension;

(3) let Q be the total ring of fractions of R(I)a,b; then each element of Q is of

the form r+it
u , where u is a regular element of R;

(4) assume that I is a regular ideal, i.e. I contains a regular element; the rings

R(I)a,b and R[t]/(f(t)) have the same total ring of fractions and the same integral

closure;

(5) R is a Noetherian ring if and only if R(I)a,b is a Noetherian ring for some

a, b∈R if and only if R(I)a,b is a Noetherian ring for all a, b∈R;

(6) (R,m) is local if and only if R(I)a,b is local. In this case the maximal ideal

of R(I)a,b is M={m+it | m∈m, i∈I} and it is isomorphic to m⊕I as R-module.

Throughout the rest of this paper we will assume that R is Noetherian, that

I �=0 is a proper ideal of R and we fix all the notation above.

In order to study the Gorenstein property for R(I)a,b, we have to look first

at Cohen–Macaulayness (briefly CM). A weaker formulation of the following result

is Proposition 2.7 of [1]. For the convenience of the reader we include here the

complete proof.

Proposition 1.2. Assume that R is a local ring. The following conditions are

equivalent:

(1) R is a CM ring and I is a maximal CM R-module;

(2) R(I)a,b is a CM R-module;

(3) R(I)a,b is a CM ring;

(4) R is a CM ring and each regular R-sequence of R is also an R(I)a,b-regular

sequence.

Proof. We set dimR=dimR(I)a,b=d (cf. Proposition 1.1 (2)) and observe that

also dimR R(I)a,b=d as R-module, because AnnR(I)a,b=0.

(1) ⇔ (2): Since R(I)a,b is isomorphic to R⊕I as R-module, we have that

depthR(I)a,b=min{depthR, depth I} and so depthR(I)a,b=d (i.e. R(I)a,b is a

maximal CM R-module) if and only if depthR=d (i.e. R is a CM ring) and

depth I=d. This last equality holds if and only if dimR I=depth I=d, i.e. I is

a maximal CM R-module.

(2) ⇔ (3): We know that R and R(I)a,b have the same Krull dimension.

Moreover, since the extension R⊂R(I)a,b is finite, the depth of R(I)a,b as R-module

coincides with the depth of R(I)a,b as R(I)a,b-module (see [3, Exercise 1.2.26]).
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(3) ⇒ (4): We have already proved that (3) is equivalent to (1) and thus also

R is a CM ring. Since in a CM ring x is a regular sequence if and only if it is part of

a system of parameters (cf. [3, Theorem 2.1.2(d)]), it is enough to recall that if x is

part of a system of parameters of R, then it is also part of a system of parameters

of R(I)a,b, because the extension R⊆R(I)a,b is integral.

(4) ⇒ (2): We know that there exists an R-regular sequence of R of length d.

It is also an R(I)a,b-regular sequence and so R(I)a,b is a CM R-module. �

We recall (following [7, Sects. 21.1 and 21.3]) that a canonical module of a

zero-dimensional local ring is defined as the injective hull of its residue class field; if

R is a local CM ring of dimension d>0, then a finitely generated R-module ωR is a

canonical module of R if there exists a non-zerodivisor x∈R such that ωR/xωR is a

canonical module of R/(x). If R has a canonical module ωR and this is isomorphic

to an ideal of R, we say that ωR is a canonical ideal of R. It is well known that a

CM local ring R has a canonical module if and only if it is the homomorphic image

of a Gorenstein local ring (cf. e.g. [3, Proposition 3.3.6]) and the canonical module

is isomorphic to an ideal I if and only if R is generically Gorenstein, i.e. Rp is

Gorenstein for each minimal prime p of R (see [7, Exercise 21.18]).

The authors proved in [1, Corollary 3.3] that, if R is a one-dimensional Noethe-

rian local ring and I is a regular ideal of R, then R(I)a,b is Gorenstein if and only

if I is a canonical ideal of R.

The main goal of this section is to generalize this result to any dimension d≥0.

More generally in the next theorem we compute the type of R(I)a,b generalizing [1,

Theorem 3.2].

Theorem 1.3. Let (R,m) be a local CM ring of Krull dimension d≥1 and let

I be a regular ideal and a maximal CM R-module. Then the CM type of R(I)a,b is

t(R(I)a,b)=λR

(
(J :m)∩(JI : I)

J

)
+λR

(
(JI :m)

JI

)
,

where λR(.) denotes the length of an R-module and J=(x1, x2, ..., xd) is an ideal of

R generated by an R-regular sequence.

In particular, the type of R(I)a,b is independent of a, b.

Proof. Let M be the maximal ideal of R(I)a,b. It is well known that

t(R(I)a,b) = λR(I)a,b

(
ExtdR(I)a,b

(R(I)a,b/M,R(I)a,b)
)

= λR(I)a,b

(
HomR(I)a,b

(R(I)a,b/M,R(I)a,b/H)
)
=λR(I)a,b

(
H :M

H

)
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for any ideal H generated by an R(I)a,b-regular sequence (see [12, Theorem 3.1(ii)]).

By Proposition 1.2 we can choose H generated by an R-regular sequence x=

x1, ..., xd. This means that H=JR(I)a,b={j1+ij2t| j1, j2∈J, i∈I, t2=−at−b},
where J is the ideal of R generated by x. Moreover, since (H :M)/H is annihi-

lated by m, its length as R(I)a,b-module coincides with its length as R-module (see

[1, Remark 2.2]). Hence

t(R(I)a,b)=λR

(
(JR(I)a,b :M)

JR(I)a,b

)
.

We want to show that

(JR(I)a,b :M)=

{
r

s
+

i

s
t ;

i

s
∈ (JI :m),

r

s
∈ (JI : I)∩(J :m)

}
.

Since I is a regular ideal, a generic element of Q(R(I)a,b) is of the form r/s+(i/s)t,

where r, s∈R, i∈I and s is regular (cf. Proposition 1.1(3)). Therefore it is an

element of (JR(I)a,b :M) if and only if

(
r/s+(i/s)t

)
(m+jt) = rm/s+(im/s)t+(rj/s)t+(ij/s)t2

= rm/s−ijb/s+(im/s+rj/s−ija/s)t

is an element of JR(I)a,b, for any m∈m and for any j∈I ; that is (rm/s−ijb/s)∈J
and (im/s+rj/s−ija/s)∈JI .

Suppose that r/s+(i/s)t∈(JR(I)a,b :M); in particular, if j=0 we have rm/s∈
J and im/s∈JI , that is r/s∈(J :m) and i/s∈(JI :m). Moreover, since ja∈I⊆m

and i/s∈(JI :m), we have im/s, ija/s∈JI , hence rj/s∈JI for any j∈I and then

r/s∈(JI :I).
Conversely, suppose that i/s∈(JI :m) and r/s∈(JI :I)∩(J :m). Then rm/s−

ijb/s∈J+JI=J and im/s+rj/s−ija/s∈JI+JI+JI=JI , consequently r/s+

(i/s)t∈(JR(I)a,b :M).

Now it is straightforward to see that the homomorphism of R-modules

(JR(I)a,b :M) −→
(
(J :m)∩(JI : I)

J

)
×
(
(JI :m)

JI

)

defined by r/s+(i/s)t �→(r/s+J, i/s+JI) is surjective and its kernel is JR(I)a,b.

The thesis follows immediately. �

Corollary 1.4. Let R be a local ring of dimension d≥1 and let I be a regular

ideal of R. Then, for every a, b∈R, the ring R(I)a,b is Gorenstein if and only if R

is a CM ring and I is a canonical ideal of R.
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Proof. Under our hypotheses, it is well known that the idealization (see [13])

and the duplication (see [4] and [15]) produce a Gorenstein ring if and only if R is

CM and I is a canonical ideal. Since a CM ring is Gorenstein if and only if its CM

type is one, the thesis follows immediately by Theorem 1.3. �

We notice that, if I is a canonical ideal of R, we can apply a result of Eisenbud

(stated and proved in [4]) to prove one direction of the above result, i.e. that R(I)a,b
is Gorenstein for every a, b∈R.

Corollary 1.5. Let R be a regular local ring. The ring R(I)a,b is CM if and

only if it is Gorenstein.

Proof. An ideal I of a regular local ring is a maximal CM module if and only if

it is a principal ideal by the Auslander–Buchsbaum formula (cf. [3, Theorem 1.3.3])

if and only if it is a canonical ideal, because a regular local ring is Gorenstein.

Therefore it is enough to apply Proposition 1.2 and Corollary 1.4. �

Notice that, if R is zero-dimensional, its canonical module is isomorphic to an

ideal if and only if R is Gorenstein and, in this case, we have ωR
∼=R; in any case,

ωR is never isomorphic to a proper ideal of R and therefore the next theorem is not

surprising.

Theorem 1.6. Let (R,m) be a local Artinian ring. Then R(I)a,b is not Goren-

stein.

Proof. Since R(I)a,b is an Artinian ring, it is Gorenstein if and only if its

socle, socR(I)a,b=(0:R(I)a,b
M), is a k-vector space of dimension one, where k=

R(I)a,b/M∼=R/m. We have that r+it∈socR(I)a,b if and only if

{
rm−ijb=0,

rj+mi−aij=0

for any m+jt∈M (i.e. for any m∈m and any j∈I). In particular, if j=0 we get

r∈socR and i∈I∩socR; thus

socR(I)a,b ⊆{r+it | r∈ socR, i∈ I∩socR}.

It is straightforward to check the opposite inclusion, so we have an equality. We

claim that I∩socR �=(0). Indeed, if 0 �=x∈I , we have xmn=(0) for some n∈N,
because m is nilpotent by artinianity. We can assume that xmn−1 �=(0) and clearly

xmn−1⊆I∩socR.
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Consequently, if 0 �=i∈I∩socR, we have that i and it are elements of socR(I)a,b
and they are linearly independent on k; hence R(I)a,b is not a Gorenstein ring. �

We end this section studying when R(I)a,b is a complete intersection (briefly,

c.i.). We recall that, following [7, Section 18.5], a local ring R is a c.i. if its

completion with respect to the m-adic topology R̂ can be written as a regular local

ring modulo a regular sequence.

Remark 1.7. Assume that (R,m) is local; in this case we know that also R(I)a,b
is local, with maximal ideal M=m⊕I (see Proposition 1.1(6)). Since the powers of

M are, as R-modules, Mn=mn⊕mn−1I (see the proof of [1, Proposition 2.3]), it

is straightforward that the M -adic topology on R(I)a,b coincides with the m-adic

topology induced by the structure of R(I)a,b as R-module. Hence, as R-module,
̂R(I)a,b∼=R̂⊕Î .

Since we are supposing R to be Noetherian, we can assume that R⊂R̂ and

thus a, b∈R̂; now it is clear that ̂R(I)a,b∼=R̂(Î)a,b.

Proposition 1.8. Let R be a local ring and let I be a regular ideal of R. The

ring R(I)a,b is a c.i. if and only if R is a c.i. and I is a canonical ideal. In

particular the property of being a c.i. is independent of the choice of a and b.

Proof. Let I be minimally generated by i1, ..., ip. By Cohen’s structure theorem

we have that R̂∼=S/J , where S is a complete regular local ring. It follows that

the ring ̂R(I)a,b can be presented as S[[y1, ..., yp]]/ kerϕ, where ϕ:S[[y1, ..., yp]]→
̂R(I)a,b is defined by ϕ(s)=s+J and ϕ(yh)=iht, for every h=i, ..., p. Notice that

S[[y1, ..., yp]] is again a regular local ring.

Since (iht)
2=−ai2ht−bi2h, with aih, bi

2
h∈R̂, if we choose αh, βh∈S such that

ϕ(αh)=aih and ϕ(βh)=bi2h, then kerϕ contains the elements of the form Fh :=

y2h+αhyh+βh. Hence kerϕ⊇J+(F1, ..., Fp). For every index h, an element of the

form Fh is necessary as a generator of kerϕ, since it contains a pure power of yh
of the lowest possible degree. Moreover, kerϕ∩S=J , since the restriction of ϕ to

S gives the presentation of R̂. It follows that μ(kerϕ) (i.e. the cardinality of a

minimal set of generators of kerϕ) is bigger than or equal to μ(J)+p.

Assume that R(I)a,b is a c.i.; this means that dimS+p−dim ̂R(I)a,b=μ(kerϕ).

Hence we have the following chain of inequalities:

dimS+p−dim ̂R(I)a,b =μ(kerϕ)≥μ(J)+p≥dimS−dim R̂+p.

Since dim R̂=dim ̂R(I)a,b, all the above inequalities are equalities and, in particular,

μ(J)=dimS−dim R̂, i.e. R is a c.i.
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Moreover, since R(I)a,b is a c.i., it is Gorenstein and I has to be a canonical

ideal of R by Corollary 1.4.

Conversely, assume that R is a c.i. and that I is a canonical ideal of R. We

have that μ(I)=1, since it equals the type of R̂, which is Gorenstein. Using the

above notation we have kerϕ⊇J+(F1). The reverse inclusion is also true, since, if

g(y1)∈kerϕ, its class modulo J+(F1) is of the form g0+g1y1 (with g0, g1∈S) and
it belongs to kerϕ if and only if g0∈J and ϕ(g1)i1t=0; the last equality, since i1
is a non-zerodivisor, implies that also g1∈J . This proves that μ(kerϕ)=μ(J)+1;

since μ(J)=dimS−dim R̂, also R(I)a,b is a c.i. �

2. Almost Gorenstein property for R(I)a,b

Let (R,m) be a local one-dimensional Cohen–Macaulay ring. We say that R is

an almost Gorenstein ring if it has a canonical module ωR which is isomorphic to a

fractional ideal of R such that

R⊆ωR ⊆ (m :m).

This definition generalizes the first one given in [2] for one-dimensional analytically

unramified rings and it is equivalent to the definition given in [8] if R/m is infinite,

since, in this case, we can assume that R⊆ωR⊆R (see [8, Theorem 3.11]). Thus

for a local one-dimensional almost Gorenstein ring we have an exact sequence of

R-modules

0−→R−→ωR −→ωR/R−→ 0

with mωR⊆m or, equivalently, mωR⊆R, i.e. m(ωR/R)=0.

Following [9], a CM local ring (R,m) of any Krull dimension d possessing a

canonical module ωR is defined to be almost Gorenstein if there exists an exact

sequence of R-modules

0−→R−→ωR −→C −→ 0

such that μR(C)=e0m(C), where μR(C)=λR(C/mC) is the number of generators

of C and e0m(C) is the multiplicity of C with respect to m. It turns out that

dimRC=d−1. Thus, in dimension d, the condition mC=0, given in dimension one,

becomes mC=(f1, ..., fd−1)C, for some f1, ..., fd−1∈m, i.e. μR(C)=λR(C/mC)=

λR(C/(f1, ..., fd−1)C)=e0m(C).

Moreover, if R is one-dimensional and satisfies this general definition, we may

assume that the canonical module ωR is a fractional ideal of R, i.e. that ωR is

a canonical ideal of R, because the total ring of fractions of R turns out to be a

Gorenstein ring (cf. [9, Lemma 3.1, (1) and Remark 3.2]). If we also assume that

R/m is infinite, the definition of one-dimensional almost Gorenstein ring given in
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the beginning of this section, which we adopt, is equivalent to that given in [9], as

proved in [9, Proposition 3.4].

We finally recall that, if d=0, a ring is almost Gorenstein if and only if it is

Gorenstein.

The goal of this section is to study when R(I)a,b is almost Gorenstein and to

prove that this property is independent also of the choice of a, b∈R. We first study

the one-dimensional case, giving an explicit description of the canonical ideal of

R(I)a,b and some constructive methods to get almost Gorenstein rings; then, we

study the case of dimension d>1.

Throughout this section we assume that R(I)a,b is a CM local ring; we recall

that it is equivalent to require that R is CM and local and I is a maximal CM

module (cf. Proposition 1.2); we will also assume that R/m is infinite.

2.1. The one-dimensional case

Let (R,m) be a one-dimensional Cohen–Macaulay local ring and I be an m-

primary ideal of R. We further assume throughout this subsection that R has a

canonical ideal ωR that is a fractional ideal such that R⊆ωR⊆R.

Let H be a fractional ideal of R; since by definition there exists a regular

element y∈R such that yH=J⊂R, we can consider a minimal reduction xR of J

and, with a slight abuse of terminology, we call xy−1R a minimal reduction of H ,

where now xy−1∈Q(R), the total ring of fractions of R.

Let zR (with z∈Q(R)) be a minimal reduction of (ωR :I) and let us fix this

notation for the whole current subsection; note that in this case z has to be an

invertible element of Q(R): in fact, if z=xy−1 as above, y∈y(ωR :I), so this is a

regular ideal and a minimal reduction of a regular ideal has to be generated by a

non-zerodivisor.

The inclusion R⊆R(I)a,b is a local homomorphism and R(I)a,b is a finite R-

module, hence the canonical module of R(I)a,b is HomR(R(I)a,b, ωR) (by [3, Theo-

rem 3.3.7(b)]), where the structure of R(I)a,b-module is given by ((r+it)ϕ)(s+jt)=

ϕ((r+it)(s+jt)), for each ϕ∈HomR(R(I)a,b, ωR).

Our first goal is to give an explicit description of a canonical ideal K of R(I)a,b
such that R(I)a,b⊆K⊆R(I)a,b.

Clearly, as R-modules,

ωR(I)a,b
∼= HomR

(
R(I)a,b, ωR

)∼=HomR(R⊕I, ωR)

∼= HomR(R,ωR)⊕HomR(I, ωR)∼=ωR⊕(ωR : I)∼=
1

z
(ωR : I)⊕ 1

z
ωR.
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We want to see that 1
z (ωR :I)⊕ 1

zωR is also an R(I)a,b-module isomorphic to

ωR(I)a,b
. More precisely, we define

K =

{
x

z
+
y

z
t| x∈ (ωR : I), y ∈ωR

}

and, given (r+it)∈R(I)a,b and (xz +
y
z t)∈K, we set

(r+it)

(
x

z
+
y

z
t

)
=

(
rx

z
− biy

z
+

(
ry

z
+
ix

z
− aiy

z

)
t

)
∈K;

it is easy to see that, in this way, we define an R(I)a,b-module.

Proposition 2.1. The R(I)a,b-module K, defined above, is a canonical ideal

of R(I)a,b such that R(I)a,b⊆K⊆R(I)a,b.

Proof. Consider the map ϕ:K→HomR(R(I)a,b, ωR) that associates with (xz +
y
z t) the homomorphism f( x

z +
y
z t)

:(s+jt) �→(xj+y(s−ja)). It is enough to prove

that this is an isomorphism of R(I)a,b-modules. Clearly ϕ is well defined. Let

(r+it), (s+jt)∈R(I)a,b and (xz +
y
z t)∈K, one has

(
(r+it)ϕ

(
x

z
+
y

z
t

))
(s+jt)

= (r+it)f( x
z + y

z t)
(s+jt)

= f( x
z + y

z t)

(
(r+it)(s+jt)

)
= f( x

z + y
z t)

(
rs−bij+(rj+is−aij)t

)

=xrj+xis−aijx+yrs−bijy−arjy−aisy+a2ijy

= f( rx−biy
z + ix+ry−aiy

z t)(s+jt)=ϕ

(
(r+it)

(
x

z
+
y

z
t

))
(s+jt).

This proves that ϕ is an homomorphism of R(I)a,b-modules. Moreover, if

f( x
z + y

z t)
(s+jt)=0 for any (s+jt)∈R(I)a,b, chosen λ∈I regular, one has

{
y=f( x

z +
y
z t)

(1)=0

λx=f( x
z +

y
z t)

(λa+λt)=0

then (x, y)=(0, 0) and therefore ϕ is injective.

As for the surjectivity, consider g∈HomR(R(I)a,b, ωR). Let λ∈I be a regular

element and set {
x= g(λt)

λ +g(a)

y=g(1)
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Clearly y∈ωR and we claim that x∈(ωR :I); in fact, if i∈I ,

ix=
ig(λt)

λ
+ig(a)=

λg(it)

λ
+g(ai)= g(ai+it)∈ωR.

Hence x
z +

y
z t∈K. Finally, for any s+jt∈R(I)a,b, one has

f( x
z +

y
z t)

(s+jt) = xj+y(s−ja)=
g(λt)

λ
j+g(aj)+g(s)−g(aj)

=
λg(jt)

λ
+g(s)= g(s+jt)

and consequently ϕ is surjective.

We recall that, by Corollary 1.8 of [1], the integral closure of R(I)a,b contains

the ring R[t]/(t2+at+b)={r1+r2t| r1, r2∈R, t2=−at−b}.
One has R⊆ 1

z (ωR :I) and I⊆ 1
zωR, because z∈(ωR :I), thus R(I)a,b⊆K. More-

over ωR⊆(ωR :I)⊆zR, since z is a minimal reduction of (ωR :I) (see e.g. [2, Propo-

sition 16]). Hence

R(I)a,b ⊆K ⊆R[t]/
(
t2+at+b

)
⊆R(I)a,b.

Finally K is a fractional ideal of R(I)a,b. In fact we can choose two regular

elements i∈I and r∈R, such that rωR⊆R; hence riz∈R⊆R(I)a,b is such that

riz K⊆R(I)a,b. �

The next lemma is proved, in a different way, in the proof of [8, Proposition 6.1].

If a is a fractional ideal of R, we denote its dual, (ωR :a), by a∨.

Lemma 2.2. Let a, b, and c be fractional ideals of R and let z be a reduction

of I∨. The following statements hold.

(1) ab⊆c if and only if ac∨⊆b∨.

(2) mI∨⊆zR if and only if mωR⊆zI .

(3) II∨=zI if and only if zI∨=(I∨)2.

Proof. As for the first point we have that

ab⊆ c⇐⇒ c
∨ ⊆ (ab)∨ ⇐⇒ c

∨ ⊆
(
b
∨ : a

)
⇐⇒ ac

∨ ⊆ b
∨.

The second point follows applying this to a=m, b=I∨, c=zR. In the same

way we get the last point in the particular case a=I∨, b=I and c=zI , because the

other inclusions are trivial. �

We can see that Proposition 6.1 of [8], proved for the idealization R�I∼=
R(I)0,0, holds also for arbitrary a and b.
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Theorem 2.3. The ring R(I)a,b is almost Gorenstein if and only if II∨=zI

and zm=mI∨. In particular, almost Gorensteinness does not depend on a and b.

Proof. By Proposition 2.1, we have the canonical ideal K of R(I)a,b defined

above. Let M be the maximal ideal of R(I)a,b. R(I)a,b is almost Gorenstein if and

only if MK⊆M or, equivalently, MzK⊆zM . Given (m+it)∈M and (x+yt)∈zK
(i.e. m∈m, i∈I , x∈I∨, y∈ωR), the latter condition means that (m+it)(x+yt)=

mx−biy+(my+ix−aiy)t∈zM , that is

{
mx−biy∈zm
my+ix−aiy∈zI.

Suppose now that R(I)a,b is almost Gorenstein. If we choose i=0, the first

equation becomes mI∨⊆zm, i.e. mI∨=zm. Moreover, if in the second equation we

set y=0, we get II∨⊆zI , i.e. II∨=zI .

Conversely, if the conditions of the statement hold, in light of the previous

lemma we have

mx−biy ∈mI∨+IωR ⊆ zm+mωR ⊆ zm+zI ⊆ zm+zm= zm,

my+ix−aiy ∈mωR+II∨+IωR ⊆ zI+zI+mωR ⊆ zI. �

Theorem 2.3 may have the following equivalent formulation:

Corollary 2.4. The ring R(I)a,b is almost Gorenstein if and only if z−1I∨ is

a ring and R⊆z−1I∨⊆(m:m).

Proof. By Lemma 2.2, the condition II∨=zI is equivalent to zI∨=(I∨)2 and

we note that this happens if and only if z−1I∨ is a ring. Indeed zI∨=(I∨)2 if and

only if for any x, y∈I∨ one has xy∈zI∨, that is equivalent to z−1xz−1y∈z−1I∨ for

any z−1x, z−1y∈z−1I∨, i.e. z−1I∨ is a ring.

Furthermore, the condition zm=mI∨ is equivalent to (m:m)⊇z−1I∨, i.e. (zm:

m)⊇I∨, because we always have mI∨⊇zm. Finally, since zI⊆ωR, we have R=(ωR :

ωR)⊆(ωR :zI)=z−1I∨. �

Corollary 2.4 allows us to construct a large class of one-dimensional almost

Gorenstein rings. In fact, let A be an overring of R, A⊆(m:m). Then A∨=(ωR :A)

is a fractional ideal of R. Let r∈R be a regular element such that rA∨⊆R and set

I :=rA∨. It is easy to check that I satisfies the conditions of Corollary 2.4, in fact

a minimal reduction of I∨=r−1A is z=r−1 and z−1I∨=rr−1A=A.
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If A=R, then A∨=(ωR :A)=ωR and any integral ideal I=rA∨ is a canonical

ideal, giving R(I)a,b Gorenstein.

If A=(m:m), then A∨=(ωR :(m:m)) and any integral ideal of the form r(ωR :

(m:m)) gives R(I)a,b almost Gorenstein (cf. [8, Corollary 6.2]).

In particular, if R is Gorenstein then there are not proper overrings between

R and (m:m). It follows that R(I)a,b is almost Gorenstein if and only if either

I=rR∨=rR or I=r(R:(m:m))=rm (cf. [8, Corollary 6.4]).

Example 2.5. Consider R:=k[[X4, X5, X11]], where k is a field. In this case

(m:m)=k[[X4, X5, X6, X7]]. If we choose the overring A=k[[X4, X5, X7]] of R,

then A∨ is the fractional ideal (X,X4) of R and taking for example r=X4, we get

I=X4A∨=(X5, X8). Thus, for any choice of a, b∈R, we obtain that R(I)a,b is an

almost Gorenstein ring.

We point out that, if I and J are two isomorphic ideals of R, R(I)a,b and

R(J)a,b are not necessarily isomorphic. For example, if we choose the ideal I

above and J=X7A∨=(X8, X11), with a=0, b=−X5, we get R(I)0,−X5=k[[T1]]

and R(J)0,−X5=k[[T2]], with T1=〈8, 10, 15, 21, 22〉 and T2=〈8, 10, 21, 22, 27〉 (cf.

[1, Theorem 3.4]). However, if J=xI , R(I)a,b is almost Gorenstein if and only

if R(J)a,b is almost Gorenstein: in fact, if z is a reduction of I∨, then x−1z is a

reduction of J∨; moreover (x−1z)−1J∨=xz−1J∨=z−1I∨, so, by previous corollary,

the conditions required to be almost Gorenstein coincide for both rings.

If R is a numerical semigroup ring or an algebroid branch, it is possible to

get information about R(I)a,b by studying a numerical semigroup, called numerical

duplication (see [1, Theorems 3.4 and 3.6]). In numerical semigroup theory, the

corresponding concept of almost Gorenstein ring is the notion of almost symmetric

semigroup and, in this context, Corollary 2.4 generalizes Theorem 4.3 of [6]. More-

over, in this case a simple formula is known for the type of the numerical duplication

(see [6, Proposition 4.8]). The next proposition generalizes this result, giving a for-

mula for t(R(I)a,b), the CM type of R(I)a,b.

Proposition 2.6. Suppose that R(I)a,b is almost Gorenstein, then

t(R(I)a,b)= 2λR

(
z−1I∨

R

)
+1=2λR

(
ωR

zI

)
+1.

Proof. First recall that the CM type of R(I)a,b is

t(R(I)a,b)=λR

(
(I : I)∩(R :m)

R

)
+λR

(
(I :m)

I

)

by [1, Theorem 3.2].
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We note that (I :I)⊆(R:m). Indeed it is easy to see that z(I :I)⊆(ωR :I)⊆z(R:

m), because mI∨=zm by Theorem 2.3.

Moreover (I :I)=((ωR :(ωR :I)):I)=((ωR :I
∨):I)=(ωR :II

∨)=z−1I∨, because

zI=II∨ again by Theorem 2.3.

Finally, to conclude the proof, it is enough to show that λR((I :m)/I)=

λR(z
−1I∨/m). This holds because

λR

(
(I :m)

I

)
= λR

(
((ωR : (ωR : I)) :m)

I

)
=λR

(
(ωR :mI∨)

I

)

= λR

(
(ωR : I)

mI∨

)
=λR

(
I∨

zm

)
=λR

(
z−1I∨

m

)
,

where, since R(I)a,b is almost Gorenstein, we used mI∨=zm (cf. Theorem 2.3). �

By Corollary 1.5, if R is a DVR and R(I)a,b is almost Gorenstein, it follows

that R(I)a,b is Gorenstein, i.e. has type 1. On the other hand if we assume that R

is not a DVR, the type of R is the length of (m:m)/R and then, since in the almost

Gorenstein case z−1I∨⊆(m:m) (cf. Corollary 2.4), the previous proposition implies

the following.

Corollary 2.7. If R(I)a,b is almost Gorenstein, its type is odd and 1≤
t(R(I)a,b)≤2t(R)+1.

Example 2.8. In Example 2.5 we get t(R(I)a,b)=2λR(A/R)+1=3. Observe

that in this example t(R)=2 and all the odd values t, 1≤t≤5=2t(R)+1 can be

realized for t(R(I)a,b). In fact for example for I=(X4, X5), which is a canonical

ideal of R, we get t(R(I)a,b)=1 and for I=(X4, X5, X6)=X4(ωR :(m:m)) we get

t(R(I)a,b)=5.

Since the almost Gorensteinness does not depend on a and b, from [8, Theo-

rem 6.5] we get the following proposition, of which we include also a simple proof.

Proposition 2.9. The ring R is almost Gorenstein if and only if R(m)a,b is

almost Gorenstein. In this case, if R is not a DVR, the type of R(m)a,b is 2t(R)+1.

Proof. We have that R is a DVR if and only if R(m)a,b is Gorenstein (cf. Corol-

lary 1.4). Thus we can exclude this case. If R is almost Gorenstein and not a DVR,

then (ωR :m)=(m:m): in fact, λR((ωR :m)/ωR)=λR(R/m)=1; moreover, denoting

by t(R) the CM type of R, we obtain the following chain of equalities t(R)+1=

λR((m:m) /m) = λR((m:m) /ωR) + λR(ωR /m) = λR((m:m)/ωR) + λR(ωR/mωR) =
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λR((m:m)/ωR)+t(R), that implies λR((m:m)/ωR)=1 (cf. [2, Definition/Propo-

sition 20]). So if I=m, then z=1, z−1I∨=(m:m) and, by Corollary 2.4, R(m)a,b is

almost Gorenstein.

Conversely, if R(m)a,b is almost Gorenstein but not Gorenstein, then z−1(ωR :

m)⊆(m:m) (Corollary 2.4). Moreover it is well known that in dimension one ωR is an

irreducible fractional ideal and λR((ωR :m)/ωR)=1. Thus (ωR :m)⊂¯R (otherwise, if

x∈¯R\ωR, we have ωR=(ωR :m)∩(ωR, x), a contradiction) and by [2, Proposition 16]

z=1 is a minimal reduction of (ωR :m). So ωR⊆(ωR :m)⊆(m:m) and R is almost

Gorenstein.

As for the last part of the statement, we have already proved that in this case

z−1(ωR :m)=(m:m); then it is enough to apply the formula of Proposition 2.6. �

2.2. The general case

Let (R,m) be a Cohen–Macaulay local ring of dimension d, with canonical

module ωR. The goal of this subsection is to prove that the property of being

almost Gorenstein for R(I)a,b is independent of the choice of a and b also in the

case d>1. We recall we are assuming that R/m is infinite. The next lemma is

proved e.g. in the proof of [3, Proposition 3.3.18], but we include the short proof

for the sake of completeness.

Lemma 2.10. Let I be a regular ideal and a maximal CM R-module. Then I

has height one and R/I is a Cohen–Macaulay ring of dimension d−1.

Proof. Since I is a maximal CM R-module, depth I=depthR; moreover I has

positive height, because is regular. Hence the depth lemma [3, Proposition 1.2.9]

implies that

dimR−1 ≥ dimR−height I =dimR/I ≥depthR/I

≥min{depth I−1, depthR}=depthR−1=dimR−1.

Therefore all inequalities above are equalities and the thesis follows immediately. �

The following lemma allows us to reduce to the one-dimensional case.

Lemma 2.11. Let x be an element of the ring R, that determines a non-

zerodivisor on R/I (i.e. (I :x)=I); then

R(I)a,b
xR(I)a,b

∼=
R

xR

(
I+xR

xR

)

a,b

where a and b are the images of a and b in R/xR.
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Proof. It is not difficult to check that there is a surjective ring homomorphism

α:R(I)a,b→ R
xR ( I+xR

xR )a,b defined by r+it �→(r+xR)+(i+xR)t. The assumption on

x implies that I∩xR=xI ; hence i∈xR if and only if i=xj with j∈I ; therefore

Ker(α)=xR(I)a,b and we obtain the thesis. �

In the next proposition we will use some results about filtrations and superficial

elements that can be found, e.g, in [14, Chap. 1].

Proposition 2.12. Let d≥1 and let I be a regular ideal of R. Then the almost

Gorensteinness of R(I)a,b does not depend on the choice of a and b.

Proof. By Theorem 2.3 it is enough to consider the case d>1. Assume that

there exist two elements a′, b′∈R for which R(I)a′,b′ is almost Gorenstein. We have

to show that R(I)a,b is almost Gorenstein for any a, b∈R. By Corollary 1.4, we can

also assume that R(I)a′,b′ is not Gorenstein.

Our assumption means that there exists an exact sequence of R(I)a′,b′ -modules

0−→R(I)a′,b′ −→ωR(I)a′,b′
−→C −→ 0,

where the number of elements of a minimal system of generators of C equals its

multiplicity. Let M be the maximal ideal of R(I)a′,b′ and consider the filtration of

C induced by M :

C ⊇MC ⊇M2C ⊇ ...⊇M iC ⊇ ... ;

this is an M -filtration of the R(I)a′,b′ -module C, but, if we consider C as an R-

module, it is also an m-filtration. Therefore, we know that in R there exists a

C-superficial sequence for m of length d−1; by definition it is clear that it is also

a C-superficial sequence for M . Moreover, we can choose a sequence f=f1, ..., fd−1

that is also R-regular and, since I has height one, such that I+(f) is m-primary

(see [10, Corollary 8.5.9]). Consequently f is an R(I)a,b-regular sequence for any

a, b∈R and the ideal of R/I generated by the classes f1, ..., fd−1 is m/I-primary;

therefore f is a regular sequence, because R/I is a CM ring of dimension d−1 by

Lemma 2.10. Hence we can use the previous lemma and, from [9, Theorem 3.7(2)],

it follows that
R(I)a′,b′

fR(I)a′,b′

∼=
R

fR

(
I+fR

fR

)

a′,b′

is almost Gorenstein of dimension 1; by Theorem 2.3,

R

fR

(
I+fR

fR

)

a,b
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is an almost Gorenstein ring for any a, b∈R/fR. Observe also that, as above, the

ideal (I+fR)/fR is m/fR-primary.

Finally, since f is an R(I)a,b-regular sequence, this implies that R(I)a,b is

almost Gorenstein for any a, b∈R, by [9, Theorem 3.7(1)]. �

By Proposition 2.12, R(I)a,b is almost Gorenstein if and only if R(I)0,0∼=R�I

is almost Gorenstein. We have already observed that if I and J are two isomorphic

ideals, then R(I)a,b and R(J)a,b do not need to be isomorphic (cf. Example 2.5).

Anyway, it is easy to see that this happens for idealization, i.e. if N1 and N2 are

two isomorphic R-modules then R�N1
∼=R�N2. Thus applying Proposition 2.12

we obtain the following corollary.

Corollary 2.13. If I , J are two isomorphic regular ideals of R, then R(I)a,b
is almost Gorenstein if and only if R(J)a,b is almost Gorenstein.

In [9] the authors study when the idealization is almost Gorenstein. Proposi-

tion 2.12 implies the following generalization of [9, Theorem 6.1].

Corollary 2.14. Let I be a regular ideal of R and assume that I∨ is isomorphic

to a regular ideal of R. Then the following are equivalent:

(1) R(I)a,b is almost Gorenstein for some a, b∈R;

(2) R(I)a,b is almost Gorenstein for all a, b∈R;

(3) I is a maximal CM R-module and any proper ideal J of R isomorphic to

I∨ is such that f1∈J , m(J+Q)=mQ, and (J+Q)2=Q(J+Q), for some parameter

ideal Q=(f1, ..., fd) of R.

Proof. The equivalence between (1) and (2) follows from Proposition 2.12.

(2) ⇒ (3): I is a maximal CM R-module by Proposition 1.2, therefore J∼=I∨

is a maximal CM R-module by [3, Theorem 3.3.10] and it is also isomorphic to a

regular ideal; moreover J∨∼=I , thus the idealizations R�I and R�J∨ are isomor-

phic. Furthermore, by Lemma 2.10, it follows that R/J is a CM ring of dimension

d−1. Thus it follows from [9, Theorem 6.1, (1) ⇒ (2)] that (3) holds because

R(I)0,0∼=R�I∼=R�J∨ is almost Gorenstein.

(3) ⇒ (1): By [9, Theorem 6.1, (2) ⇒ (1)] we have that R�J∨∼=R(I)0,0 is

almost Gorenstein. �
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