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Restrictions of Riesz—Morrey potentials

David R. Adams and Jie Xiao

Abstract. This paper is devoted to exploiting the restrictions of Riesz—Morrey potentials
on either unbounded or bounded domains in Euclidean spaces.

Introduction

This paper stems from an error by the present authors, an error discovered by
X. Cabré, but suspected by others. It occurred first in [9] when we attempted to
obtain an estimate for the Wolff potential associated with the Morrey capacities
Cyo(; LP?), to render a lower bound on these capacities in terms of a Hausdorff
capacity of dimension A—ap for 1<p<A/a. Such an estimate now seems unlikely.
Furthermore, this error has now percolated down through the next couple of articles
by the present authors: [10], [11]. This paper, partially inspired by the fundamentals
of the Riesz—Morrey potentials in Propositions 1.1-1.2, is our attempt to fix this
error and its potential disruptive consequences.

A corrected version is given in Theorem 3.2(i) below—an estimate that now
implies the (Riesz operator I,-normalized) embedding with a constant cy>0:

() lMaflleg

loc

() < collfll Lo

for some ¢>1 and d-measure p, i.e., the non-negative Radon measure on the 1< N-
dimensional Euclidean space RY enjoying

sup r*dp({yeRN:|y—x|<r})<oo
(z,r)€Bx(0,00)

for some fixed ball BCRY containing the support of p. Here d plays the role of
the dimension of the measure p in the sense of Frostman; see [5, Theorem 5.1.12].
Of course, Lebesgue measures on hyper-planes of RV are d-measures for d being
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dimension of the hyper-planes. Such estimates as (%) now seem sparse, but, more
interestingly, Theorems 3.1-3.2 (requiring d>N —ap) and their by-products (The-
orems 3.4-3.5 requesting d> N —ap again) are the best of this kind—as a matter of
fact—[9, Remark 2.6(i)] ensures that if 1<p<g<oo, ap<A<N and

(%) 1o fllLaguy < ol fllLea  for a constant ¢f >0,

then

lala:= " sup T u({y RV |y—a| <r})
(z,r)ERN x(0,00)

< oo with d=p tq(A—ap) > A—ap.
But, an application of Frostman’s theorem (cf. [5, Theorem 5.1.12]) implies: if
de(A—ap, N—apl;
(o) A€(ap, N);
qe (pd()‘fap)ila OO),

then there are a d-measure i and a constant ¢; >0 such that the d-dimensional Haus-
dorff capacity At(fo)(E) of any set ECRY is dominated by c;/i(E)—in particular—
one has

rd = A((fo)({ye]RN: ly—z|<r})
<cap({yeRN: [y—z[<r}) V(z,r)eRN x(0,00);
furthermore, if
I o fllLaa) < call fllzen  for a constant ¢y >0,

then [7, Theorem 5.3 (i)] is utilized to produce a constant ¢ >0 such that for any
re(0,1),

Aglm)({yERN: ly—2x| <r})
<cifi({yeRN: [y—z|<r})

< ercy(Ca({y RV : [y—a] <r}; LP))P @

7ﬂd

1
§C1Cgc‘§ 4,.p 11()\*0417)’

—1
which, via letting r—0 and using (x*x), yields a contradiction co<cjcich 7. There-
fore, there is no embedding of type (%) or (x) for such a d-measure i under (xx*x).
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However, in this paper, we have still attempted to explore the limiting situ-
ations in a two-fold manner—first by relaxing the d-measure condition by other
growth conditions (Theorem 2.4, as a consequence of the Wolfl-type-estimate-based
Theorem 2.1) or secondly by looking at the restriction of the Riesz—Morrey poten-
tial I, f to a d-dimensional hyper-plane with the result that the Morrey norm is
replaced by a mixed Morrey norm (Theorem 2.6).

1. Potentials

1.1. Riesz—Morrey potential I

For (a,p, \)€(0,N)x[1,00)x (0, N] and Q—a domain in RY, we say that f:
Q—R is a Morrey function on €2, denoted by f&LP*(Q), provided

1
1floma@:=  sup (MN / |f(y)|pdy> oo,
(©2) B(z,r)NQ

z€Q, 0<r<diam

where diam(2) is the diameter of Q, B(z,r) is the open ball with center x and
radius r, and the integral is taken with respect to the N-dimensional Lebesgue
measure dy. In particular, we have LPN (Q)=LP(Q) and write LP** for LPA(RY).

Given a€ (0, N). A function g on R is said to be a Riesz—Morrey potential
of order « provided

glx)=If(z)= f)ly—z|*Ndy for some fe LP?.
]RN

Putting together all such potentials gives the so-called Riesz—Morrey space I, LP™.
From now on, write 1z and X<Y respectively for the indicator of ECRY and
X<cY with a constant ¢>0. Moreover, X~Y means both XY and Y <X.

Proposition 1.1. Given N> >ap and co>p>1, let BY be the unit open ball
of RY with wy being its volume. Then

pN
A—ap’

HI(xf”L'JSHf”LP,% VO%fELp’A = q=

On the other hand, if fo(x):|x|7%131v () and A<N then fo€LP?, but

X—ap

o A
(Lo fo(x))1p(0,1/2) () = |2 2 1p0,1/2)(x) and 1o foll | ox = o0.
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Proof. To check the first assertion, we assume that the last inequality is valid
for f.(x)=f(rz), thereby calculating

_a U
[frllor=r"7 (I fllLes  and Lo frllLa =r="" " [[lof] La

and getting
_AyN
Hafllze ST 7 T fllooo.

Consequently, if
AN

a——+—#0
p g
then f=0 follows from letting r—0 or r— o0, and so a contradiction occurs. There-

fore,
_ PN

q_/\—ozp'

For the second assertion, given (x,7)€RY x (0, 00) we calculate

P )l dy = lyl > dy
B(z,r) B(z,r)NBN

:r/\_N/ |z —2| 7 dz,
|z|<r,|z—2z|<1

thereby establishing fo€ LP* via handling two situations below.
Case 1—under r€[l,00) and A<N we have

r)‘*N/ |f0(y)|pdy§/ lr—2| A dz~1.
B(z,r) lz—z|<1

Case 2—under r€(0,1) and A<N we have
|x|<2r=|z—2z|<3r
:>7">‘_N/ ‘fo(y)|pdy§rA_N/ lo—2z| " dz~1;
B(z,r) |z—2z|<3r
|x|22r:>|x—z\2r:r>‘*]v/ |f0(y)|pdy§r/\*N/ r A dz~1.
B(z,r) |z|<r
At the same time, if N>A>ap>« and |z|<1/2 then

A
0<a—=<N and 27'y|<|z—y|<2ly| Vy eRV\BY,
p

and hence it follows from [14, p. 132, (3)] that
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_2
nfola) = [ lo=yl" sl dy

_ _2A _ 2
= [ e [ el
R RN\B

A

_2A _ _2
ot [ N

~
~

~
~

_2 _ _2A
|x|a _/N\ N |y|a N|y| ’ dy‘
RN\B

~|z*Tr V|a| < 1/2.

With the above estimate and g=pN/(A—ap), we compute

afold, > /

(Iafo(fﬂ))quvZ/ lz| N dz=00. O
|z]<1/2

|z|<1/2

1.2. Riesz—Morrey potential 11

A further examination of Proposition 1.1 and its proof leads to the following
result.

Proposition 1.2. Let f be a non-negative LP* function with support in B
and

[l zer>0;
f@)=f(lz[) VoeRY;
Fll2l)>f(lyl)  Vizl<lyl-

(i) If N>A>ap, co>p>1 and 1<q<pN(A—pa)~!, then

I f(z) )q
/BN (nfm i < 0.

(ii) If N>A>ap, co>p>1 and 1<y<q=pN(A—pa)~!, then

[ () (11 B0)) s

(iii) If N> =ap, co>p>1 and B€]0,1], then there is a constant co>0 such

that 5
/ exp(daf(x)> dx <oo Vee(0,c¢).
BN [RAlp=
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Proof. Using the hypothesis of f and its dilation f, defined in Proposition 1.1,

we get
(f(r))pﬁ/ Kl(f(r\yl))”dyﬁ Fllos =72 NG pn Y >0,

whence controlling three cases (i), (ii) and (iii) below.
(i) If
N>A>ap>a and 1<qg<pNA—ap)!,

then a combination of the last inequality for (f(r))? and [14, p. 132, (3)] gives
(@)= [ Je=sl* 1 (ol) dy
BN

_ —2 _2A
<l [l Vol > dy S flsalel”F vocBY,
B
and hence

a2
/ (I f(2))" dz < 117, / 1)) dz S | £11%, 5.
BN BN

This implies the desired estimate.
(ii) If
N>A>ap and 1<y<g=pN(A—pa)?!,

then the following function

a
q

s— s(In(1+s))

is increasing in [0, 00), and hence it follows that

L) (n(ee (i) e [ o) nafore=0)

1
5/ t (I (14¢71)) Tt
0

< 00,

whence deriving the desired inequality.
(iii) If
N>A=ap>a and F€][0,1],

then an application of the already-verified inequality

£yl <lylMPIf pes Wyl >0
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implies
Tnf@ = [ o=l 1)) dy

<l [ Jo=yl* Ny dy S Lo In(2fal 1) vz B,
B

and hence there is a constant ¢; >0 such that

L exp(ﬁlfTﬁfdxs/m exp((cer In(2fe]1))") da
S /O1 eXP((Ccl)B(lnfl)B) dt

5/ exp((ccl)ﬁsﬁ—s) ds.
0

Since S€]0, 1], an appropriate choice of ¢ ensures that the last integral is convergent,
thereby producing the desired inequality. [

2. Restrictions of Riesz—Morrey potentials on unbounded domains

2.1. Wolff type estimation

This will be one of the most effective tools for our approach to the restriction
problem on unbounded domains; see e.g. [6], [13], [17], [3]. In what follows, A,¢ (1 )
stands for the class of all non-negative functions w on RY such that

dy = dy Pl
Coordin:tlipcubes Q (/Q w(y) @) (/Q (w(y>) |Q| ) =

In the above and below, a coordinate cube always means a cube in RY with edges
parallel to the coordinate axes, and |@Q| stands for the Lebesgue measure of Q). As
p—00 we have Ao =Upc(1,00)Ap. Meanwhile, if p—1, then we get A;—the class of
all non-negative functions w on R¥ such that

dy > ( : -1
su w(y)— | inf w ) < 0.
coordinatcpcubcs Q (/Q (y) |Q‘ yeQ (y)

It is well-known that we€ A; ensures we€Nye(1,00)Ap. Moreover, Wi _» (0<A<N)
comprises all non-negative functions w on RY obeying

/RNwdAg\(;i)A::/o Ag\?i)A({xERN:w(x)>t}) dt<1
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for which the symbol Ag\?i))\ expresses the (N —\)-dimensional Hausdorff capacity,
namely, AS@A (E)=inf}_, T;-V*A where the infimum is over all coverings U;B; 2 E
for which Bj is a ball with radius r;. For simplicity, set

ANV Z A nWn_, VAE(0,N).

Theorem 2.1. Let (o, \,p)€(0,N)x(0,N)x(1,N/«a), p'=p/(p—1), and p be
a non-negative Radon measure on RN . Then
(i)
[Zapllf,  ~  sup Wt (y) duly).-
L BN

wGA(le)‘)

(i)

P’ . . o 1—-p’ - . Low,2
el =, iaf [ (an)” ) 7 [ W) du)
1
Here
_1_ .
Y BN T [ () ) i as =1,
Wep™ (y) =

PN w(Bly, )7 ([, ) (W(2) 77 d2) e as j=2.

Proof. (i) According to [8, Lemma 11], we have

Haplyn swp [ (fan(e))” wlz) da.
wea®—» Jry

Note that

So, we utilize [3, Theorem 3.2] to get

[ o) wlwydom [ w2 ) duty

RN

7)‘), implies the equivalence in (i).
(ii) In accordance with [8, Theorem 7], we have

. . N
which, plus taking the supremum over Ag

||Ia;u||];{/p/y>\ ~ inf / (Ia,u/(y))p (w(y))lfp dy
weA RN

(N=X)
1

Since
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an application of [3, Theorem 3.2] yields
/ 17 / w
[ ) )™ g [ W) duty),
RN RN
and then the estimate in (ii) after taking the infimum over AgNﬁ)‘). ]
Corollary 2.2. Let (a,\,p)€(0,N)x(0,N)x(1,N/a), p'=p/(p—1), and p be

a non-negative Radon measure on RN. Then
(i) [8, Theorem 21(i)]

1
/ i B(y,r)) \* *dr
P« _H(B(y,r)) ar
HIOLMHL;;’,)\ N/RN (/0 <Tk+p(1\/—>\—a) r d:u‘(y)

Meanwhile, when 0<A<p' (N —«) and, supp(n) (the support of n) is contained in
an origin-centered ball B(0, R), one has

, </ WB(y,r) \7T dr
S 1(B(y,
et [ ([, (it ) o

(ii) [8, Theorem 21(ii)]

/ oo ap ﬁ
Tl int (/ (M) ﬂ)du(w.
' wGAngM RN 0 fB(y,t) U)(Z) dz 3

Proof. (i) Note that (cf. [8, p. 212])
ol 5 [ wddG2

So, using Holder’s inequality we get that for any ball B(z,r)CRY and any we
A,

w(y)dy < |lwl| xS
/B(.'r,r) Ly=2

This in turn implies
1
> B(y,r)) \? ' dr
pyw, 1 < /.L( Y, wr
Wh " (y) /0 (*THW_A_Q) o

thereby deriving via Theorem 2.1(i)

/ */ w(B(y,r) \7T dr
Yoo« 1(B(y,
[ Lapll} N/RN (/0 (ﬁﬂ,wq_a)) . ) dp(y).

This inequality yields the upper bound estimate of [8, Theorem 21(i)].
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However, as a replacement of the lower bound estimate of [8, Theorem 21(i)],
we have the second part of (i). In order to verify this new estimation, we utilize [5,
Lemma 3.3.1] to get

, 3 o0 dt p/
otz s N[ )
(z,7)ERN % (0,00) B(z,r) \JO

2 sup PN’ (r_N/ (H(B(ZU,QT)))p/ dy)
(z,r)ERN x(0,00) B(z,r)

Z sup e (T_N/ (n(B(y,2r)))" dy)'
(z,r)ERN X[2R,00) B(w,r)

In the meantime, an application of Fubini’s theorem gives that if (z,r)eRN x
[2R, c0) then

’

)

’

ZT_N/l__ ‘<_(M(B(y72r)))” (B, 2r)) dy

p'—1
([ )
lz—y|<r \J|y—z|<2r ly—z|<2r
p'—1
Zr‘N/ </ dﬂ(Z)) (/ dy>du(2)
|Z—z|<r/2 |z—Z|<r |z—y|<r|ly—z|<r/2,|ly—Z|<r/2

This last estimate for (z,r)e{0}x[2R, 00), along with supp(u) CB(0, R), derives
that if A<(N—a)p’ then

||IaMHZ,—ip/,AZ sup  sup 'r)\Jr(OLN)p'(TN/ (u(B(y,?r)))p dy>
r€[2R,00) zeRN B(z,r)

> sup rAHa*N)P'/ M(B(Z,r))plfld,u(é)
r€[2R,00) B(0,R)



Restrictions of Riesz—Morrey potentials

’ _1
~ sup PO [ (B n) ()
re[2R,00) RN

/RN/ (rk+p(zv P L))p 1 drd ().

Needless to say, the last inequality needs a verification. To do so, note that
supp(p) CB(0, R) and

lz|<R<r/3 and yeB(z,r)\B(z,2R) — |y|>R
ensure
B(z,2R) C B(z,r)
and p(B(z,r)) <p(B(x,2R))+p(B(x,7)\B(z,2R)) = n(B(x,2R)).
Accordingly, if A<(a—N)p’ then

/RN/ (erN /\))a)>pllgdu(x)
/OR)/ (r/\ﬂ?(N p) )a))pll%du(m)
dr

e ([t )
[ ([ ) &

SERMENY [ (u(B(,2R)” " du(o)

B(0,R)

< swp T)\-‘r(oc—N)p’/ (N(B(gc,r)))p_ildu(w)
r€[2R,00) RN

(ii) Note that weAgN_A) ensures weA, V pe(1l,00). So, the definition of A,

gives
1
=7
T*N/ (w(z)) 7 4y < (rN/ w(zx) dm) .
B(z,r) B(z,r)

At the same time, a combination of 1<p<oc and the Hélder inequality further

1—1
N z/ dx < (/ w(x) dw) </ (w(a:))ﬁ d:c) ,
B(z,r) B(z,r) B(z,r)

derives

=
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whence yielding

Putting the foregoing estimates together, we obtain

r*N/ (w(x))ﬁdxz (TN/ w(zx) dx) ,
B(z,r) B(z,r)

thereby finding

% s 4ap (B =
g [ (B Y
' 0 fB(y,t) w(z)dz t

Therefore, Theorem 2.1(ii) is used to derive Corollary 2.2(ii), i.e., [8, Theorem
21(ii)]. O

Remark 2.3. Additionally, we would like to point out that the argument from
line 5 of p. 220 to line 3 of p. 222 in [8] can only validate [8, Theorem 18] under
Ao=A1=Ag—this has been examined in [15, Remark 1.6(iii)] through a Hausdorff-
capacity-free treatment.

2.2. Restriction under 1<p<min{q, N/a}

Globally, we discover the following assertion.

Theorem 2.4. Let

(o, A\, p)€(0,N)x (0, N) x (1,min{q,N/a});

e TN I )

and 11 be a non-negative Radon measure on RY.
(i) If
a(1—p)

X ap- 1 dt p _
p(B(z,r)) S </ e / (w(y) 7 dy t]VH) for some we ANV,
r B(z,t)

then

HI(Xf”Lq(/L) 5 ||f||LPv*-
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(ii)
B(x,r
. Ber)
(w,r) ERN x(0,00) (bup EA(N 2) f t = fB(m ) )dy W)

<0

a(1—p)
D

= | Lafllraq SIfllae-
Consequently, if
Ileella < o0 for0<d:p*1()\—p(a—|—)\—N))q§N,

then
Mo fllLacw) SISl e

Proof. (i) If

_a(p=1)

 ap-N L dt P (N=X)
w(B(z,7)) < t 1 (w(y)) ™" dy NI for some w € A;j
r B(z,t) t

then by [3, Theorem 7.1] we find

Haf g S [ |7 wla) da
RN
which, along with [8, Lemma 11], implies

o fllLag SIF e

(ii) Since
~ . P 1-p
PEE TN @l ) .
if
Mo fll ot S 1l
then
17
o [ 17 (w(@)' da
]RN

Thanks to

EA%N_)‘) — w:(wlfp)ﬁero,

it follows from [3, Theorem 7.1] that

X ap-N dt N pl
e ([ 055 [ o)
( ( )) r B(z,t) () tN+1
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and so that

a(p—1)
X ap-nN dt T
< 1 p— _
#(Blzm) Nwejx?fg‘” (/r b /B(a:,t) vy tN“)

Conversely, if the last inequality is true, then

a(p—1)
© ap-N dt Tp —
M(B(I,T)),S (/ tr1 /B( t)w(y) dy m) VweAEN ),
Again, applying [3, Theorem 7.1], we find
1- N-X
Mol S [ 17 (W) "y vwe A=,
RN

thereby reaching

o fllzag SN lerea-
Furthermore, according to Corollary 2.2(ii) one has:

- A
weAgN M and — <N-a
p

— t*N‘/ w(y) dygt)‘*N
B(z,t)
a(p—1)

()xfp(a#»)\fN))q - (/OO ap_ N / ( )d dt TTp
r—» < t p-1 w\y)ay —)
ESaa ; B(at) tN+1

This, plus the above-verified equivalence, gives the desired implication:

l|pella < oo under 0 <d=p~ ' (A—p(a+A—N))g< N

= |aflloog SIflaer. O

Remark 2.5. Here it is perhaps worth mentioning that if weAgN_)‘) then

1—1
(/ (w(y)) ™7 dy> >N
B(z,r)
and hence

a(l—p)
o0 ap—N 1 dt p
t 1 / w(y)) =" dy —)
</7~ B(x,t)( ) N+l
a(1—p)

o0 ap— 1 dt D
([T / gy
~ (/r B(x,r) (w(y)) ! N+
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2.3. Restriction on R¥ with 1<k<N—1

Theorem 2.6. Given

N>2;
ke{l,..,N—1};
l<p<ia™l;

A—ap<d<k<A<N;
1<g<dp(A\—ap)~L.

Suppose f is a non-negative function with support in RExBN=F_ Let u be a non-
negative Radon measure with support in R* and ||p|lq<oc. Then

IMafllLage) SIFIlLe@e)Ler—k@y—r) = ||Hf(yvg)”Lp*)"k(@EBN’k)HLP(@ERIC)'

Proof. Note that if z€supp(u) CRF then
r=(z,0) eRF xRN F,

and hence y€RY is written as y=(7,§) ER* x RNk,
Under
0<y=N-)A—e<N-=)\,

set
w(y)=w(@,9)=91"" for y=(7,7) e RF xRN,

Clearly, we Ay, and this weight satisfies

/ wly) dy~ / / 9177 dg dg ~erN .
B(z=(%,0),r) lg|<r J]|z—g|<r

If |ju|l denotes the total variation of u, then the Wolff potential in Theo-
rem 2.1(ii) enjoys

1
*( tPu(B(x,t)) \ 7T dt
Wi, 0~ [ (—“( o ))) -
0

fB(z,t) w(y) dy t
£ (B, 1) 7
R
16 aptd—Nty dt  ap-N+y dt
Sl / a el 7 / e
0 5 t

ap+ +y=N apty—

Sl 555 a5
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under
N—-—ap>y>N—-ap—d <+—— ap+d>AIte>ap.
Taking
1
a
- ()’
[l14lla
we find

ap—N+vy

1 ;
) Ll
W2 (3,0) < Juf 7 (Tn .

In the meantime, we utilize Fubini’s theorem, Holder’s inequality and [3, Theo-
rem 3.2] to make the following estimation:

/ Lfdu= [ f()Tap(y)dy
RN RN

Next, for any o>0 let
E,= {ZGRN: I, f(z) >U} and pp, =u|E,.

Using the observation on supp(u) CR* made at the beginning of the proof, we obtain
that if the support of f is contained in R*¥ x BN ~* then

ou(Ey) < / I f dp

Es

= f(y)IaUEa (y) dy
RN
S ( [ wie dch,)
]RN
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1
7

Wl ()7 (45D Qg(p_Wu(Ef,)) "

4]l

N-ap— ap—Nidiy g

N—ap—~ ap—N4diy N
S Lo el (((Eq)) =0 ) 7,

and hence

||f||Lp w N- ap v
W(E,) < ||ud< ) .

Furthermore, an application of the layer cake representation (cf. [14, Theorem 1.13])

yields
oW = ([ / JuveRs 1uf) > ) a
TR
<l + el / ( ) dor
n g
peyTE— o0 dp dt
S+l S [ ==
n
N—ap—~v ,q— Nd—
e Ll -+l e = ==
under

d, d, d,
g __d _
N—-ap—y A—ap+e A—ap

Il
pllay
77: Hf”LP(w) < |||M”| > 9

(N—ap—v)

n>0,

and ap<A<N.

Upon taking

we get

q
4]l
o f 1 2a ) ST o ||u|||<
R L) el

It remains to control || f||z»(w) from above. To do so, writing

(0@) = [ (#@0)" g ViR,

W= [ [, (0G00)"1a1 did

we find
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Now, if k<A<N and ECRY~F is covered by a sequence of (N —k)-dimensional
balls B; with radius r; then

/E (g(@))pdz)sz /B (9(9))" di

= A (2 [ o))

J

N-X
§||9||I£p,xfk(]gz\f—k)zrj .
J

Via taking the infimum in the last inequality over all such coverings Ujgj DF, we

obtain

[ 6@ a5 ol r-s - AT )

Upon choosing
>t}

E:{ BN k y

and integrating the last inequality over t€[0, 00), we get that if

E<A<N and 0<y=N-A—e<N-A\

then

||f||Lp(u,)N(/ O — y)/o A (5B 311> 1))

</ ||f ||LPA k(]BN k g)

x(1+/ AR, ({geBNF: y|<t—%})dt)
(/ [P — )(1+/1 tht)
S [ G e

This actually implies the desired estimate for || f||Lr(w). O
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3. Restrictions of Riesz—Morrey potentials on bounded domains

3.1. Restriction under g€{1,00}

The following L'(u) and L™ estimates for I,f with f€LP* on a bounded
domain Q of RY form two supporting points to discover L%(p)-estimate.

Theorem 3.1. Suppose p and f are a non-negative Radon measure and a
non-negative LP* function with support in a bounded domain QCRYN respectively.
(i) If

1<p<oo, 0<N-ap<d<N and |p|q<oo,

then
1—% . d4+a—2
(Lo fldu<ci(p,N,d,a)wy 7 (diam(Q)) 7 lpllall 1z
Q
where
d
Tra-n @ P=1
Cl(pv N,d, a) = +N—(xp N—ap 2(N—a)pd
(e~tar) ™ (—ap@ Nrap) @ P>1.
(ii) If
1<p<oo and 0<A<ap,
then ) N
-1 _2
suglaf(ﬂﬁ)ﬁcoo(n N, A a)wy 7 (diam ()77 || fll oo,
S
where

e (p N A, @) =280 <p(N+a)—(A+a) )

pa—A

Proof. (i) If N/a>p=1 and N>d>N —a«, then according to [5, Lemma 3.1.1]
and Fubini’s theorem we have

Mol = /Q </Q %)ﬂy) dy
<), (/B(y,diamm)) )y
(oo [

(imn )" (B, dimn(@))) ) 10)
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diam () B dr ) dta—N
d+a—N
< [ola (=) [ e S () ) o)y

d ) dta—\
= (m) (diam(£2)) lellall 1L

Furthermore, if N/a>p>1 and N>d>N—ap, then Holder’s inequality and [1,
Theorem 2] are utilized to deduce

o fll 2oy < el

LN ()

—ap

o T B 1 e Vi P
1_N—op . N=A _N;pap
Shull™ @ (diam(Q)) 7 lully ™ [[f]lzes

< (diam () |l all £l o

Nevertheless, the problem is that the last estimate produces only a rough constant.
In order to overcome such a problem, we employ [16, p. 55, (1.89)] to achieve the
weak-type inequality:

i ((N—a)pdwyy * Sl 75
p({ye: Inf(y)>t}) <|pllat™™ <(N_ap)(d_N+ap)> vt > 0.

This, along with the above-mentioned layer cake representation, the definition of
I/ lL»» and the condition

d>N—-ap>(N—ap)/p and a>0,

derives

”Iozf”Ll(u)*/ p({yeQ: Inf(y)>t})dt

([ [t oo

1—1 pd
(N —a)pdw pf||Lp> N—ap /oo _ _pd
< + t~ N-oap dt
< el ”M|d< (N—ap)(d—N+ap) u

1—1 pd
N—ap N—ap—pd (N—a)pdw, * N-ap
< e (g s Y™ e

pd—N+ap N—ap)(d—N+ap
T d(N—=X)
X HfHLp fp (dlam(Q)) N-ep

Upon choosing
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N—aj

:<( N—ap >||u||d) (( (N—a)pdu) * >(diam(9))¥|f||w

pd—N-+ap/ [ul N—ap)(d—N+ap)
and using
lall < (diam ()" 2]
we obtain

Hafllzr e < 2allu

—ap 1
<( N—ap >—di ( 2N —a)pdwy, ? )
“\pd—N+ap (N—ap)(d—N+ap)

A
[l pllall £l e

X (diam(Q))dJra*

(ii) Although the argument for [18, Lemma 2] can be modified to establish an
inequality for sup,cq I f(x) with a precise constant, we here offer a different ap-
proach. According to [5, Lemma 3.1.1] we have that if z€Q then QC B(z, diam(12))
and hence

If(z) < / F@)ly—z]N dy
|z—y|<diam(£2)

diam(£2) N dt
<[ wea( [ wan)e g
0 B(z,t)

. a—N
+(@am(@)* ™ [ ey J0)

=:(N—-a)X+Y.

For (N —a)X, using the condition f€LP* with support in Q and the Holder
inequality we get

27 diam(Q) dt
/ ( [ iw dy) N &
0 B(x,1) t

and
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diam(Q2) dt
Lo () swdy)e g
2~ 1diam(92) B(z,t)

A 1 diam(Q2) dt
<[ £ll o (diam (@) ¥ Py 7 / e dt
2-1diam() t

w_d 1-1[/2N-a
= (diam(€))* 7wy (N_a)HfIILm.
Putting the above two estimates together yields
pN =\
pa—A

(N—a)X§2N—a< )wjlv_%(diam(ﬁ))a_%ﬂﬂLm.

For Y, we still utilize the Holder inequality and the assumption on f&LP? to
obtain

. a—N 1—1, a— A
Y = (diam(£2)) / fly)dy<wy ? (diam(Q))" 7| fllzor.
B(z,diam(Q2))
Now, the inequalities for (N —a)X and Y are placed together to derive
p(N+a)—(A+a)
pa—A

Iof(x) §2N‘°‘( )w}vé(diam(ﬂ))a_%fﬂm,x. O

3.2. Restriction under g€ (1, co)

Theorem 3.2. Suppose p and f are a non-negative Radon measure and a
non-negative function with support in a bounded domain QCRYN respectively. Let

1<p<oo;
0<N—ap<d<N;
l[plla<oo;

0< | fll 2o < 0.

(i) If .
N>A>ap and 1<q<u,
A—ap
then f q
1
1 dp < Nl pilla-
‘/Q<||pr.,/\> ”:u’Hd
(ii) If
pd+A-N)

N>A>ap and 1l<y<g= 3
—pa
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then . 7
Y (1ol )) i
/ﬂ (||f||Lm " 1S lledla-
(iii) If
N>A=ap and 0<5<1,

then there is a constant »9>0 such that
Iof \’
) gl e 0.)

exp
/ <||f [FR
Proof. (i)—(ii) According to [2, Theorem 5.1], under the conditions on p, o, d, u
we have the following weak-type estimate
n({yeB(z,r)NQ: Iof(y)>t})
(d+2=N)p
e e N=A () € RY x (0, 00) % (0, 00),

Slula(llfllzeat™)

where

N—-—ap<d<N and ap<A<N =— d+A-N>0
Selecting x€Q) and r=diam(2) in the above estimate, we find the following weak

type inequality:
({y eN: I.f(y

Slalla(lflzeat™)
If g<p(d+A—N)/(A—pa), then an application of the last inequality gives that

if a>0 then
Inf \*', [~ ({ I.f(y) }) q
)dﬂ/o et [halFZ >ty )

LG
< [ e({oeer f{@) >t} ) ae

)>t})
+A-—N)p N—=X\
Ao (diam(9)) under 0< N—d<ap<A<N.

. — AN dt
g (diam(©) / i
_tapa-mp
S Ipalla?+ ] a(diam($2)) ™~ :
Via minimizing the last summation, we take
) R

= (ll o (diaen(2)



David R. Adams and Jie Xiao

and then employ

d+A—N
Il < (iam(@) e and 4 < 2T

to gain

I.f 1 . d—p~le(h—a
/ (—) dn < Julla® S (diam (€)™ 9O
o\l

If g=p(d+A—N)/(A—pa) and 1<y<gq, then using the basic fact that
t— o(t) =t (In(1+1)) "

increases on [0, 00), the foregoing layer cake representation and the weak type in-
equality for p, one gets

() ((gils))
- e o)
< [Mttas+ [ u({yeg L1 )

M . (dﬂ Nip
S+ lull, " (diam(€) / S
(d+i;N)p . (d+/\ N)p dt
lall+ iy~ (diam(S / o
(d+>;;1\7)p ] dt
<l N, ~ o (diam(® / (1)~ &

< lula( (diamn(22)) +||u||d* = (diam(©)) V).

(iii) First of all, given N>A=ap and for a sufficiently large natural number ¢
let us choose three positive constants: €;aq; as such that
_d+ap—N
VT
a1 = - +e < N;
p

<d,

012—01+5<N
N-— a1+(q—1)(N—a2)
q q

N—-—a=
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An application of the Holder inequality yields

I.f(x) :/Q fi(y)qf(y)(qqil)mi%) dy

N—aj
ly—z| " ly—=[ 1

< (f i) (] item)

This, along with Theorem 3.1(i) for I,, f and Theorem 3.1(ii) for I,, f, implies

qg—1

e < Mo Lo (500 s £(2))

-1 a(1-3)
SCl(paNadaal)(coo(paNa)\7a2)) Wy

. dta1—g+(a2—3)(g—1)
x (diam(2)) MTpTeRTyM [l allall F1IT0.5

-1 q(1-%) .. d
=c1(p, N,d, 1) (coo(p, N, X, 02)) " wyy #7 (diam(92) allall £/,

Next, if p=1, then a simple calculation with A=pa=a«a gives

c1(p, N,d,a1)<e1d;
Coo<pa N7 )‘7 a2)§5_12N(N—a),

and hence

g—1 d2N p(N—a)g\*
< .
Cl(pvNvdval)(coo(p7N7>\’a2)) (N_a><d+a_N

Moreover, if p>1, then a slightly long (but elementary) estimation with
A=pa, N-—ap<d and ¢q/(¢g—1)<2

yields

d+N—ap

Cl(p7N7d7O(1)S2€_1((p—1)7 pd +(p_1)7ﬁ)7
Coo (pv N7 >\, a2)§€71N2N*a+17

and hence

Cl(p7 N7 d7 al)(coo(p7 N7 )‘7 OLQ))q71

d+N—ap

NNt (p—1)T e 4 (p—1)

|~

|

2N—a+1Npq q
p)< d+ap—N ) '
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Putting the previous two cases together deduces

Cl(p7 N7 d7 Oq)(coo(p, N7 Aa aQ))q_l < C(Eq)qy

where
B2 s p=1;
c:= .
N—121—N+Ot((p_1)7d+]:d p+(p_1)7ﬁ) as p>1,
N N—
[ =
) gN-a+ip
W—]\fp asp>1.
Consequently,

. d, 1-1_
[ af (L0, < c(diam(€)) " (wy *&q) |lpllall £12,-

Finally, let us verify the desired inequality. Of course, it is enough to handle
the situation under S€(0, 1]. Assuming >0 and using the Holder inequality with

0<B<1 we obtain

slo f )ﬁ . 1(%||Iaf|Ljﬂ(H)>jﬁ
exp dp= — —=
/Q <||f||Lw ZJ! [ £ll e

Jj=0

q—1 o) J B
1-8 1 #laf > )
<llell+ el < +;> ! (/Q(nfmx ") -

j=1

If 1<j<gq, then a combination of the Hélder inequality and the estimate for
”IafH%q(M) gives

Ia J B . Ia q % B
([ (s) ) = (i) )

(sect (wy "eq))”” (diann(€)) |l

IN

Moreover, if j>g¢, then the estimate for ||Iaf\|qu(u) also applies to ||Iaf||JLJ (u) and
hence for

112 -1
n<e ﬁ(wN pc) =:

one has
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(L) w)
b Y L(FL)

o0
< el ((diam(€) ||u||dﬂ2
J=q

< (diam(€2)) ‘| ulla-

Accordingly, the previous treatment ensures

£\’ J
/eXp(||f||z A) dp < (diam(Q))“lulla V 2 € (0,30). O

Remark 3.3. Theorem 3.2 leads to the following question: if

p(d—|—/\—N)< < pd ’
A—ap ~A—ap

ap< A< N and

are there embeddings of type (x) or (xx) (stated in the introduction of this paper)
for a d-measure u? The conjecture now is that there are none.

3.3. Two consequences

As a straightforward application of Theorem 3.2, the forthcoming two theorems
characterize the restrictions of a k-th order Sobolev—Morrey function fe€Cge(RY)
with |V¥ f|€ LP* being compactly supported in a bounded domain € and a Riesz—
Morrey potential on B¥ CR*¥CRY respectively. In the above and below, Cs°(RY)
consists of all infinitely differentiable functions with compact support in RY and

—A %f as k is even;
VEf= =4 - .
V(=A)= f askis odd.

Theorem 3.4. Given feC(RY), N>2 and ke{l,2,...,N—1}, suppose p
and |V*f| are a non-negative Radon measure and a non-negative function with
support in a bounded domain QCRYN respectively. Let

1<p<oo;
0<N—kp<d<N;
| pella<o0;
O<[[VEF[l <00
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vy d+A—N
N>A>kp and 1<q<u,
A—kp
then ,
[ (et ) dnslula
o \[IV*fllze
(ii) If
d+A—N
N>X>kp and 1<7§q:w,
A—kp
then , .
/] ) ( ( /1 )>_
In{ 1+ orm— du 5 ||mla-
/Q (nv'cfan,A IV Fll oo I
(iii) If

N>XA=kp and 0<p3<1,

then there is a constant co>0 such that

/ exp(i)ﬂdmnund Vee (0, o)
o P\ s ) W= :

Proof. Utilizing the following representation (cf. [4, Lemma 2] for general k
and [12, Lemma 7.14] for k=1) for feC§°(RY):

Fx) =3 Jan lz=yl""NVEf(y)dy  for k=even;
= %k, N
Jon l2=y|F NNz —y)-VEf(y)dy for k=odd;

with a constant s, y depending only on k£ and N, plus Theorem 3.2, we achieve
()| S (1k]VE £]) ()
whence reaching the desired restriction results. [
Theorem 3.5. Given N>2 and k€{l1,2,..., N—1}, suppose u and f are a

non-negative Radon measure and a non-negative function with support in B* and
B* x BN % respectively. Let

1<p<o;
N<a+k<A+k;
0<N—ap<d<k;

| 2] a < 00;

0< [ £l Lorr—n @r)yLo@y—ry:= ||| £ (7, 9)

pogeny o)l o epny <00
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(i) If

d+A—k
k> E4A—N > (a+h—N)p and 1<q< — PAFAZR)

A=pa+(N—k)(p—1)’

.4k< B )QW4%0>§MM

17 Teresn @5y Lo @)

then

(i) If
pd+A—Fk)

> —N —N 1 <g=
kE>k+A >(a+k—N)p and 1<vy<gq et (N=R (=1’

then

I.f(z,0 e I.f(%,0 —
/( 1(@,0) )(ln(1+ 112, 9) )) a S e
Bt \ | Il prts—n BEY Lo BN —F) |l Lortr—n @ryLe@N—*)

(iii) If

E>A+k—N=(a+k—N)p and 0<3<1,

then there is a constant co>0 such that

_ 8
/Bkexp< claf(2,0) )du<x,0>snund Ve (0,c0).

[ Fll Lortr—n wryLe@N—*)

Proof. Writing

we use the Holder inequality to get

nf@o)= [ [ (=gl ) dyd

< lx—yla—N(/ f(y,@))dz))dy
Bk BN—k

< / 251N g(g) dg
Bk

S IaJrkag((E)a

whence reaching the desired estimates through Theorem 3.2 with f; N;a; A being
replaced by g; k; a+k—N; A\+k—N respectively. [
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