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CHAPTER I 

Auxiliaries 
1. | .  Introduction 

The object of this thesis is to study the pr imary process of a smoothing 
relation between two stat ionary stochastic processes of discrete as well as 
continuous parameters. As usually understood, the term smoothing indicates 
an operation of adjustment  or rounding off. in the present s tudy however, it 
is used in a somewhat different sense. When one desires to have certain data, 
it sometimes happens tha t  the information is available in the shape of sums 
of the required data which may  have been "weighted uniformly or otherwise. 
For example, A. R. PREST [1] considers taxes as summed data of profits, and 
G. H. ORCVTT mentions (in the discussion on a paper of D. G. CHAMPERNOWNE 
[1]) how water levels are summed data of the amounts of rainfall. The forma- 
tion of such sums is commonly described as the construction of moving averages. 
Though we treat  of similar sums in this thesis, still we refrain from using the 
term moving average in this connection, because in the theory of stochastic 
processes "moving average" has come to acquire a specific significance, standing 
as it does, for a linear relationship in which the process subjected to the 
summation is non-autocorrelated. For  the sake of compactness, the term 
"smoothing" has been chosen to describe the same operation of forming weighted 
sums of the values of a process, irrespective of the nature of its autocorrelation. 

In  recent studies in Econometrics simple stochastic models have been 
considered with a view to explain economic fluctuations. Sometimes it happens 
that  elimination gives rise to a stochastic difference equation for an economic 
variate such as the price of a commodity. 

If  the prices ~ a t  t ime t in the demand and supply functions are taken to 
satisfy the relations 

422 



ARKIV FOR MATEMATIK. B d  1 n r  32 

and 
X t -  ~ pt + fl + v t  

X t  -- h2 p t -1  + k2 + wt 

(demand) 

(supply) 

(cf. M. A. GIRSHICK and T. HAAVELMO [1]), then we get an equation of the form 

Pt + a p t - 1  = ~t. 

Equations of a similar nature occur or are obtainable at times in connection 
with other economic models (e.g. TJ. KOOPMANS [1], L. HURWlCZ [1], and G. 
H. ORCUTT and D. COCRRANE [1]. In  this connection see also H. B. MANN 
and A. WALD [1]). When the mean value and the variance of the variable 
appearing in such an equation can be regarded as more or less constant, we 
may idealize the equation into a linear relation between two stat ionary processes. 
In the case when the parameter  t ranges over integral values, the relation is 
a difference equation and is similar in form to an autoregression. If  this rela- 
tion is written as 

n 

~_, ar X (t - -  r) = ~ (t), 
~"=0 

it is called an autoregression if the coefficients (at) are suitably restricted and 
(t) is a non-autocorrelated process. Sometimes in econometric work ~(t) is 

termed the "residual" irrespective of the equation being an autoregression or 
not. Quite frequently the ~(t)-process is autocorre!ated for several reasons. 
For example, it might be tha t  in the construction of the model all the relevant 
factors have not been taken into account, and hence the residual contains 
terms other than the purely random (or the shock) terms. Or again, as 
consequence of the eliminations carried out, the residual appearing in the 
stochastic difference equation for the single variable is the sum of a number 
of residuals, which though purely random in themselves have their sums auto- 
correlated. 

In the light of the foregoing considerations it appears tha t  a study of a 
smoothing relation between two stationary processes of general nature is of 
particular interest. 

In this thesis it is proposed to consider such a smoothing relation between 
two stationary stochastic processes. The process which is subjected to the 
operation of smoothing or summation is called the "pr imary  process", and it 
is supposed that  this process is unknown, except that  we have an a pr ior i  
knowledge tha t  it is stat ionary in the wide sense. The process resulting from 
the summation is termed the "resulting process", and it is taken to be more 
or less known. Knowing the details of smoothing, our effort is directed to 
getting an insight into the primary process in terms of the resulting process. 

To achieve our object we have to effect a filtering of the pr imary process 
as well as we can. This is ,lone in the two-fold manner of inversion and linear 
estimation. 

The problem of the inversion of a linear relationship between two stationary 
discrete parameter  processes has been solved by H. WOLD [1] in the case when 
one of the processes involved is non-autocorrelated. In  this connection it has 
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been pointed out by WOLD tha t  the position of the roots of the characteristic 
equation of the smoothing relation with respect to the unit circle is of funda- 
mental  importance for the representation and properties of the solution. In  
the case when the characteristic equation has a root on the unit  circle, WOLD 
[2] has shown tha t  it is possible to find a linear representation of the pr imary 
process by making use of the notion of summability. 

In  the present study we shall be concerned with the inversion problem for 
a smoothing relation between two stat ionary processes, neither of which is 
assumed to be non-autocorrelated. Both the discrete and the continuous pa ra -  
meter  cases will be considered. I t  is of interest to mention here that ,  in the 
discrete parameter  case, the roots of the characteristic equation play a similar 
r61e as in the cases t reated by WOLD. Accordingly, our results in the discrete 
case will be closely connected with the results previously obtained by  WOLD. 
In  particular, when there are roots on the unit circle, we shall have recourse 
to methods of summabili ty in norm. 

In  the continuous parameter  case, the roots of the characteristic equation 
of modulus uni ty will be replaced by the set of real zeros of the Fourier 
t ransform of the weight function connected with the smoothing relation. I t  
will be shown tha t  the process obtained by  inversion can, in many  important  
cases, be represented as the limit in the mean of a sequence of processes, each 
of which is a smoothing of the resulting process. 

The condition of the identi ty between the entire closed Hilbert  spaces gen- 
erated by  the two processes occurring in the given smoothing relation will be 
met  with very frequently in the sequel. This is but  natural,  since we are 
throughout dealing with inversion by means of linear methods, thus trying to 
find linear representations of one of the processes concerned in terms of the other. 

When the available information of the resulting process is incomplete (e.g. 
only the past  values are known), we have to construct an estimate of the 
pr imary process at the t ime instant t or at  a later instant in terms of the 
known values. We are thus led on to the problem of estimation and prediction. 
In  this connection we shall see how our problcm is related to the filtering and 
prediction of N. WIENER [1]. Also in the case of the discrete parameter  we 
shall see that  the spectral method can be used to solve the estimation of R. 
FRISCH [1] in the case of a moving average. 

When we desire to form linear, unbiassed and minimum variance estimates 
of the mean values of the pr imary process, with a knowledge of the values of 
the other process, it is seen tha t  this problem is essentially the same as 
forming such estimates of the mean value of the resulting process in terms of 
its own values, a topic which has been studied by  U. GRENANDER [1]. 

In  connection with a smoothing relation between two stat ionary processes, 
we examine the extent to which the resulting process shares the nature of 
the pr imary process in respect of metric transitivity,  Markoff nature, and 
stochastic periodic terms. This has been considered in chapter IV. 

Derived processes and non-stationary processes of bounded norm are touched 
upon towards the end. 

The method of analysis employed in this thesis is t h e  spectral representation 
of a wide sense stat ionary process by H. CRAM~R [1] and the related theory 
of the Hilbert space of a process developed by  K .  KARHUNEN [1]. 

The following is an outline of the thesis. Chapter I contains an introduction, 
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notation, and the auxiliary notions required for the analysis that  is to follow 
in the subsequent chapters. Chapters I I  and I I I  deal with inversion in the 
discrete and the continuous parameter cases respectively. In chapter IV we 
compare tlm primary and the resulting processes. Estimation and prediction 
form the subject matter  of chapter V, and in the last chapter we consider 
some generalizations. 

1 . 2 .  N o t a t i o n  

The following explains in a general way the notation used in the thesis. 
t is a real variable, usually spoken of as time, and ranging over integral values 

in the case of the discrete parameter and all real values in the continuous 
parameter case, 

X(t) :  the primary process, 
(t): the resulting process, 

Zx(2), (~x(~), Mx, Rx(t) stand respectively for the random spectral function 
in the spectral representation of X(t), the spectrum of X(t), the mean value 
of the X-process, and the covariance function of the X(t)-process. (Here ~t 
is a real variable ranging over values in W, where W stands for tile range 
( - - z ,  ~r) in the discrete parameter case and ( - - c~ ,  c~) in the continuous 
case). A similar notation denotes the corresponding quantities connected with 
the ~-process. However, in the preliminary stage, when we consider only one 
stationary process, it is needless to show by a suffix the process to which 
the expressions refer, and as such, the suffix is dropped. 

E stands for the operation of taking expectation with respect to the probability 
measure put  upon the space of random functions. 

L stands for the smoothing operation, and L -1 for the inverse operation, while 
L 2 (X; --cx), t) stands for the closed Hilbert space of the linear manifold of 

random variables constituting the process X(t) up to the time instant t. 
Also we write shortly L2 (X) for L2 (X; - - c~ ,  c~). 

{at}: the sequence of weights used in the smoothing in the discrete case. 
/ (u ) :  a bounded function of the real variable u such that  

P(,~) = f e-~U~/(u)du 

exists and is bounded for all 2. Sometimes /(u) is supposed to belong to 
the Lebesque class L1 on ( - -  c~, c~). I t  is used as the weight function in the 
smoothing in the continuous parameter case. 

F ( ~ )  = 

P(e -in) = Zare -~r~ in the discrete case 

and 

fe-~Ua/(u) du in the continuous case. 

Q: set of real zeros of F(~). 
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oo 

Though q~(~) stands generally for f e  -~v~ q~(v)dv, it is not uniformly so. Hence 

the meaning must  be sought in relation to the context. ~v(v) is supposed 
to be bounded, and ~(~)  is supposed to exist and be bounded. 

A bar above an expression stands for the complex conjugate. 
Xl(t)  and X2(t) are two stat ionary and mutual ly orthogonal processes into 

which X(t) can be decomposed. Xl(t)  is uniquely determined, while Xe(t) 
is more or less arbitrary.  

rex(Q) = .fd(rx(Jl), and m~(Q) has a similar meaning. 
q 

Re stands for the "real par t  of". 

1 .3 .  Stochastic processes 

Any process tha t  is analyzable in terms of probabili ty distributions in a 
functional space is generally referred to as a "stochastic process". When we 
treat  of r andom variables in a finite number of dimensions, we consider a 
variable point in a Euclidean space Rn with a probabil i ty measure defined on 
it. When we consider an infinite dimensional space, the variable will in the 
two most important  cases have either a denumerable number  of coordinates or 
a continuous infinity of them. In the forme~ case, a point of the space under 
consideration will be an infinite sequence, whereas in the latter, the points of 
the space will be functions of a continuous variable. In  either case t will 
stand for the real variable (which will be referred to as the t ime variable) and 
its range of variation corresponds to the number  of coordinates which a variable 
point of our space is to have. Thus we regard t as taking an infinity of 
integral values when the space has a denumerable number of dimensions, and 
as taking the values of a finite or infinite interval when the dimensionality is 
the continuous infinity. 

From a fundamental  theorem of A. KOLMO~OX~OFF [1] it follows that  a 
probabil i ty measure is uniquely defined on all the Borel sets in the functional 
space, when the probabil i ty of all finite combinations of arbitrarily chosen 
interval sets is known in a consistent manner. Such a P-measure is entirely 
adequate in the denumerable case. In  the case of the continuous infinity the 
P-measure defined on the Borel sets of the function space leaves out many  
interesting probabilities undetermined. In  this connection it is proved by  
J. L. DooB [3] tha t  a P0-measure can still be defined on a smaller sample 
space restricted to contain the appropriate functions, provided tha t  the outer 
measure of the chosen subset of functions is uni ty (see also H. CnAM~R [2]). 

A stochastic process may  then be written as a function of a real variable 
t and a random variable oJ connected with the fundamental  probabil i ty field 
with which we are concerned. Usually the variable o) is dropped in writing, 
and the process is spoken of as a random function X(t). An element of the 
sample space is a sequence or a function as the case may  be, and is called a 
"realization". Due to the dependence of the process on t and o), it can be 
regarded as an ensemble of functions or as a one-parameter family of chance 
variables. (For an exposition see H. CRAMER [2], J.  E. MOYAL [1], U. GnE- 
I~ANDE R [1]). 
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1 .4  Hilbert space of  a process 

If  X (t) is a stochastic process, we shall consider the linear manifold containing 
all elements of the form 

n 
= ~ c ~ X ( t ~ ) ,  

r = l  

where the c's arc complex rmmbeis and n is any arbi t rary positive integer. 
Following CI~AM~R and KARgUNE~, we define the inner product of two elements 
gl and g2 of this manifold by 

(~tl, {72) = fglg2dP 

which being the expectation of gig2 is denoted by E(glg2). We call + VE(g~) 
the norm of the element g and denote it by H gH. I f  

lim Ilgn-gll = o, 
n~o~ 

we say tha t  tlle sequenc6 {gn} "converges in the mean" to g as n tends to 
infinity, and write 

1.i.m. gn = g. 

We shall sometimes speak of convergence in the mean also as "convergence in 
norm". The above linear manifold closed with respect to convergence in the 
mean is termed the "closed Hilbert  space" of a process. If  only the v a l u e s  
of X(t) occurring up to the time instant t are considered, the corresponding 
closed Hilbert  space is denoted by  

L~ (X ; - -  c ~  t), 

while L 2 (X) will be used to denote the entire closed Hilbert  space, the para- 
meter  t ranging over all the possible values. 

l .  5. Random spectral function 

Let  W be a set of elenients (4), and let a(s) be a measure defined on the 
subsets (s) of W. Let  Z (s) be a random set function defined on the elements 
of W such tha t  if sl and s2 are two disjoint sets 

Z ( 8 1 )  ~- Z ( 8 2 )  = Z ( 8 1  -~- 82). 

Without loss of generality we m a y  assume 

E [ z  (8)] = 0. 

If  for any measurable sets Sl and s2 

E [Z (s,)  Z (83)] = ~ (sl" s2), 
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such a set function Z(s) is called a "random spectral function". The process 
Z(s) is also referred to as an orthogona] process. In our later considerations 
W consists of the interval ( - -  z, ~)  or ( - -  c~, vr on the real axis. In  such a 
case we shall denote the random set function corresponding to ( - - ~ ,  4) or 
( - - c ~ ,  2) (as the case may  be) by Z(4) (see 1.9). 
If for all s in W 

~IZ(s)l ~ 

is bounded, then the process Z(s) is of bounded norm, and a(W) is totally 
finite. For a process of this type one can define following KARHUNEN [1] the 
integral 

f /(2)dZ(4) 
W 

as the limit in the mean of the corresponding Riemann-Stieltjes sums, if /(X) 
is any complex valued function of the variable ~t such that  

f l l (2)  l~da(4) 
W 

is bounded. (This definition can be extended to the case where W is the sum 
of a denumerable number of sets each of finite a-measure.) The following 
theorem of KARHONEN [I]  deals with the representation of a process in the 
form of an integral of the type just mentioned. 

Suppose tha t  X(t)  is a process with mean value zero and tha t  its covariance 
function has the representation 

R ( t ,  u) = E (X( t )X(u) )  = f /(t, 4)/(u, 4)da(4), 
W 

then there exists a random spectral function (or an orthogonal process) Z(s) 
such tha t  the process X (t) has the representation 

x (t) = f / (t, ~) d z (~). 
W 

1.6. Stationary processes 

Suppose tha t  the stochastic process X(t )  is such that  

B(X(t))  = M, a constant, 
and 

JE(X(t) - -  M) (X(u) - -  M) = R(t,  u) 

is a function of t - - u  only, say R ( t -  u). Then X (t) is said to be stationary 
in the wide sense. As against this we have the strict s tat ionari ty of a process, 
when all the finite dimensional probabili ty distributions are invariant with 
respect to each translation on the time axis. We shall generally concern our- 
selves with processes which are stat ionary in the wide sense. Let R ( t ) b e  the 
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covariance function of a (wide sense) stationary process of continuous para- 
meter, and let R(t) be continuous at the origin. Then it is continuous for all 
t, and X(t) is continuous in the mean. From a theorem of A. KmNTCHINE [1] 
we have 

oO 

R(t) = f e~t~da(~l), 
- -  0 o  

where a(2) is real, bounded, and never decreasing function of ~ which is called 
the "spectrum" of the stationary process X(t). We have 

a ( +  c ~ ) - - a ( - - o o )  = R(O) = e 2. 

Under these conditions 
o o  

X(t) = f e"adZ(2) 
- -  C t O  

in accordance with Karhunen's theorem mentioned in 1.5. This is Cram~r's 
spectral representation of a stationary process (see H. CRAM~R [1]). 

For a stationary process of discrete parameter 

R(n) = f e~'~da(~) 

where the spectrum a(~) is real, bounded, and non-decreasing. 

? t  

x(n) = f e" dZ 

Then 

1 . 7 .  Integrat ion o f  a process 

Let a process X(t) be such that  the inner product of X(t) with any given 
element of its Hilbert space is a Lebesque measurable function of t. FollOwing 
U. GRE~ANDER [1], we then call the process as K-measurable. If S is a measur- �9 
able subset on the real axis, and 

E (z x (t)) 

for Z E L2 (X) is Lebesque integrable over S, and if 

s u p  - -  E(ZX(t))dt < c% 
. e .(x)II z II 

it has been shown by KARHUNEN [1] that  there exists a unique element I in 
L 2 (X) such that  

E(Zi) = f E(ZX~t))dt. 
8 
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Then the integral of X(t) over the set S with respect to t is defined by the 
relation 

I = f x ( t ) d t .  
S 

If  g(t) is an ordinary function of the real variable t, one can in a similar 
manner define 

f g(t) X(t)dt, 
S 

provided g(t) satisfies suitable conditions. If  further g(t) is continuous, and 
X(t) is continuous in the mean, this integral will be the same as the integral 
in the sense of Cram6r (see U. GRENANDER [l]) which is defined as the limit. 
in the mean of the corresponding Riemann sums. 

We shall be interested in Chapter I I I  and subsequently in integrals of the form 

c~ 

f x ( t - - u ) / ( u ) d u  = ~(t), 
--r162 

where X(t) is a continuous parameter  stationary process which is continuous 
in the mean, and /(u) is a bounded function such that  

r162 

F (2) = .t' e-iu~ / (u) du 
- - o r  

exists and is bounded. (We shall sometimes consider the case where /(u) 
belongs to Lebesque class L 1 on ( - - c ~ ,  oo)). For each fixed t for which the 
above integral ~(t) exists, we get a chance variable. Thus when /(u) is such 
tha t  ~(t) exists for all t, we have the process ~(t). In this connection, we shall 
consider the following theorem of KARrIU~EN [1]. 

If the function :r (t, 2) is measurable on T X W, t E T, 2 E W, then the random 
function 

x(t) = f ~(t, 2)dZ(2)  
W 

is measurable. T being a measurable subset on the real axis of u, X(u) is 
integrable with respect to u on T if and only if 

Then 

f I f a (u, 2) d u 2 d a (2) is bounded (A). 
W T 

f X(u)du = f (f 
T W T 

Reverting to our integral ~(t), we h a v e  
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- - o o  

= f/(u)ei(t-u)~dZ(2), 
- - o o  

= fcf(u, 2) dZ(2) when t is fixed. 

Also 

t ~  r  oO 

~ l f ~(u, 2) du 2 da(2) = f l f e~t~e-~u~/(u)du e da(2) = f [F(2)12da(2)" 

Since F(2) is bounded and a(W) is totally finite, being the spectrum of a 
stationary process, we have for the process 

/ (u) X (t - -  u) = f q~ (u, 4) dZ (4) 

tha t  .the function ~(u, 2) satisfies the condition (A). Hence the process 
/(u) X ( t - - u )  is integrable with respect to u over ( - -co ,  c~). Then 

~ ( t )  = f /(u)X(t--u)du = f [f  e"ae-~Ua/(u)du]dZ(2) = f e"~F(,~)dZ(2). 
- - o o  - - o o  - -  ~ o  - -  c ~  

From this relation it follows that  the ~-process is stationary. 

1.8. A lemma 

If Z (s) is an orthogonal process with tile associated measure a(s) on the 
subsets s of the elements (2) of W, and if gl (2) and g2 (2) are complex valued 
functions of the variable 2 such that  each of them is quadratically integrable 
on W with respect to the a-measure, ' then we have from KARHUNEN [1] (see 
his formula (5. 13) on page 39) that  

f (2) dz-(2)] = f g, (2) (2) a a (2). 
W W W 

This lemma is still true if the set W is replaced by any subset s of W, and 
it  is of frequent application in our subsequent work. 

1.9. An integral transformation 

This section is devoted to showing that  if X(t) and ~(t) be two stationary 
processes continuous in the mean which are related by 
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f x (t - u) / (u) d u = (t), 
- -oo  

and if /(u) is bounded, and 
oo  

fe-i~/(u)du = F ( 2 )  exists and is bounded, 

then 

(A) 

(B) 

f d Z~(4) = f_ F (4) d Zx (~) 
S . S 

for every Borel set S. 
I t  may be remarked that  an exactly analogous relation holds in the case of 

the discrete parameter processes. 
In what follows we shall denote the expressions corresponding to the two 

processes X(t )  and ~(t) by the suffixes X and ~ respectively. 
From the spectral representation of the X-process we get by inversion 

T 
f e - i ~ t - - e - i ~ l t  

Z x  ( ~ )  - -  Z x  (~ )  = 1.i.m. X (t) d t. 
T~r162 . ]  - -  2 ~ i t  

--T 

The right side exists as the limit in the mean (see J. L. DOOB [1]), and the 
chance variable Z x  (~u) has zero mean. If (/~1,/~z) is a continuity interval of ax (4), 

"~ I Z X  (1,12) - -  Z x  ( ~ 1 )  12 = o ' x  ( / ~ z )  - -  o ' x  ( j U l ) .  ( C )  

Following DOOR we may define 

Z (~) = Z (~ --  0), 
and 

a(~) = a ( ~ - -  O) 

at a point of discontinuity. Then the relation (C)holds good for all/~1 and/~2. 
From the inversion it follows that  for a stationary process X( t )  

L2 (X) = L~ (Z). (D) 

The results (C) and (D) are true for discrete stationary processes also, and 
the former can be obtained in a similar manner by using Fourier series instead 
of Fourier integrals. 

Let y (jul,/~z) stand for Z x  (l~) - -  Z x  (lal). 
Then 

g [y (~, ~)- z~ (~4)- z~ (~3)1 
~ ~ . 

~ [  f e - i ~  t _ e- i . , t  f e - ~ , ~ _ e - ~ . , u  
= E ~ j  ~ 2 - ~ t i t  X ( t ) d t  ~ (u )du  . ]  - -  2~t iu  ! 

;/ 1 e-i~ - -  e-i~'t ei~U-- ei~su E (X(t)~(u)) d t d u .  
= ~ t r 
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Now 

E(X(t)~(u)) = E(X(t) f X(u--v)](v)dv) = E ( f  eU~dZx(2) f e+u~F(~)dZx(~)) 
- - o o  - - o 0  - - c ~  

using the result at the end of section 1.7. 
By lemma 1.8 this becomes 

oo  , 

f ei(t-u)zF(~) dax (~). 
- -  oo  

Thus 

E (y(ttl, ~ 2  ~" Z~(~t 4) - -  Z~(#3) ) 

= 1 f e-imt--_ e -it~lt ei~*u--e i~au 
4Y~ 2 , ]  t u 

- - o o  - - o o  

oo  oo  

= 4 1=~ fT(Z)dax(Z) jfeit(a-t'2)---eit(a-m)'t 

- - o o  - - ~  

= fF(,~)dax(+~), 

oO 

- - o o  

oO 

d r .  /'e-iu(~-tq)ue-iu(~-m)'du 
- -  oO 

this last integral being taken over the common part of the two intervals 
(/ix,/~2) and (/*3,/~4). If /*r is any discontinuity point, it will be replaced by 
/ ~ r -  0 in our work, and the result is still true. From this relation for any 
interval, we get that  it is true for all Borel sets. 

The conditions corresponding to (A) and (B) in the discrete parameter case 
are respectively 

and 
F. arX(t-- r) = ~(t) (A') 

Eare -i~r = F(~t), (B'), 

where the series Ear  is convergent. 
Let now Sx and s2 be any two Borei sets, in the interval W which is ( - -  ~, ~) 

in the discrete parameter case and (--0% oo) in the continuous parameter case, 
and let 

y : fdZx(~) .  
$1 

Then 

$2 81 "$2 

$1 $2 

= E [ , ,  
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Also the set of elements (y) from a basis in L 2 ( Z x ) =  L2(X) to which L~(~) 
belongs by virtue of the relation (A). 

Hence 

f dZ~(~) = f F(,~)dZx(~). 
82 82 

This we write as 

from which we obtain 
dZ~(2) = F(,~)dZx(~), (E) 

d a~ (~) = IF (~)12 d ax (2). (F) 

These last two results are of fundamental importance in the work tha t  follows 
in subsequent chapters. 

1 .10 .  Derivative of  a process 

We define the strong derivative of a process at the value t as 

1.i.m. X (t + h) - -  X (t), 
h-~ 0 h 

when it exists. I t  is alternatively known as the mean square derivative also 
(cf. 3. E. MOYAL [1]). As we shall exclusively deal with convergence in the 
metaL, it is not proposed to discuss the idea of weak convergence and weak 
deriv~tive. When the derivative exists for all t, w(~ can construct the derived 
proc(.ss of X(t) .  This belongs to Le(X ). 

I .  11. Non-autocorrelated process 

In the discrete parameter  case a special type of stationary process is the 
non-autocorrelated process, characterized by its covariance sequence {R (n)} which 
is such that  only R(0) is non-vanishing. For such a process the spectrum is 
given by da(2) - C d J t ,  where C is a constant. 

If  

~ a r X ( t - -  r) = ~(t), 
r=O 

and ~(t) is a stationary non-autocorrelated process, and all the roots of the 
characteristic equation E a, Z . . . . . .  0 lie inside the unit circle, then the relation 
is known as an "autoregression". If  however X(t)  is a stationary and non- 
autocorrelated process, then ~(t) given by the above equation is known as a 
"moving average process" generated by  X(t) .  

l .  12. Deterministic nature 

If X(t)  is a stationary process, we may classify it into two main types 
according to the manner in which L , ( X ; -  co, t) unfolds with t. If  two 
different values tl and t~ exist such tha t  
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L2 (X; - -  0% tl) = L2 (X; - -  c~, t2), 

then as a result of stationarity, the Hilbert space at any instant is identical 
with that  at any other instant, so tha t  it is non-developing with t (see KARHUNEN 
[2] and O. HANNER [1]). The values of X(t) occurring up to any instant form 
a basis for any element belonging to the entire Hilbert space L~ (X). No new 
elements of positive norm get added as time flows. Such a process is termed 
a "deterministic process". 

The analytical conditions for a stat ionary process to be deterministic in this 
sense is that  

f I log a' (2) 1 
�9 1 + 2 3  d 2 = c ~  
W 

where W is ( - - ~ ,  z) for the discrete parameter  case and ( - - 0 %  c~) for the 
continuous parameter process, and a' (2) is the absolutely continuous part  of the 
spectrum. 

If  for a stationary process a' (2) vanishes in an interval, the above integral 
is obviously divergent, and the process is deterministic. We shall have occasion 
to consider such processes later on. 

When this is violated the process is t e r m e d  "non-deterministic". The condi- 
tion for non-determinism is then obviously 

f [  log a '  (2)] 
1 +23  d 2 < ~ .  ! 

In this case in each interval of time new elements of positive norm are added 
to the Hilbert space which thus goes on developing with time. 

C H A P T E R  I I  

Inversion: Discrete parameter 

2. 1. A n  out l ine  o f  the chapter 

In this chapter we shall s tudy the inversion of a smoothing relation be- 
tween two wide sense stat ionary discrete parameter  processes. For the most 
part  we deal with the case of a finite smoothing. 

A set of necessary and sufficient conditions is obtained for a stationary 
solution for X(t)  to exist when the weights and the spectrum of the resulting 
process are given. When these conditions hold, we say that  the smoothing is 
"consistent". In our study it is assumed that  these conditions of consistency 
are satisfied. 

Given the weights, a certain set Q is defined on the real axis. I f  t]~i~ set 
is empty, o r  the spectral mass of the i)rimary process in i t  vanishes, w(~ have 
tha t  Lg. ( X ) =  L~ (~). If  not, L~ (~) is a proper subspace of L2 (X). 
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When Q is empty, the solution for the primary process is unique. When Q 
is non-empty, there exists an infinity of solutions for X (t), and of these there 
is but  one which belongs to L2 (t), and the spectral mass of this process in 
the set Q is zero. 

The set Q corresponds to the roots of modulus unity of the characteristic 
equation (cf. H. WOLD [1]). When Q is empty, the position of the roots in 
relation to the unit circle determines the nature of the linear representation 
of X (t) in terms of the values (past and future) of t (~). 

The difference between any two solutions of the primary process (in the 
case of finite smoothing) consists of stochastic periodic terms of the form 
W K  e i t ~ K  . 

If Q is non-empty and the spectral mass of the t-process vanishes in an 
interval or a sum of intervals to whose interior Q belongs, a linear represen- 
tation in a summability sense can be given to X (t), provided the roots on 
the unit circle are not repeated. 

]f the spectral mass of t (t) vanishes only in the set Q and not in inter- 
vals covering it, we can construct a sequence of processes {Xr (t)}, each of 
which has a linear summability representation in terms of t (t), and such that  
as r tends to infinity X~ (t) converges in the mean to the primary process 
belonging to L2 (t). 

Again, when Q is non-empty, the resu]ting process is necessarily autocof- 
related. The order of smallness of the spectrum of the t-process in the neigh- 
bourhood of Q is determined by the third condition of consistency. 

The result of applying the same smoothing to the covariance sequence of 
the primary process is also obtained at the end of the chapter. 

2 .2 .  General 

Let X( t )  be an unknown wide sense stationary process of discrete para- 
meter, and let a sequence of numbers ao, a l , . . . ,  an, and a wide sense sta- 
t ionary process t (t) be given. Let  L stand for the linear operator 

LX(t) = ~ ~X(t--r).  
r=O 

We describe this linear operation as smoothing in this thesis, and the se- 
quence {a~ } as the "weights" of smoothing. Sometimes for the sake of ex- 
plicitness we write the operator also as L : { a~ }. Writing 

L X ( t )  = t( t ) ,  

w e  call X (t) the primary process, and t (t) the resulting process. Our object 
is to study the unknown primary process in terms of t (t) and {ar }. If the 
number of weights in the smoothing is infinite, it is clear (by taking the ex- 
pectations of both sides) tha t  Z ar is to be convergent. We shall presently 
see that  besides this, the spectrum at (2) of the given t-process and the weights 
{ a~ } must be inter-related in two other ways to validate our assumptions. 
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The case where the number of weights is infinite is treated towards the 
end of the chapter. Until then the smoothing to be considered will be by 
means of a finite mlmber of weights. In what follows we generally make the 
inconsequential assumption that  a0 = 1. When the smoothing relation is an 
autoreg.ression, the ~-process is non-autocorrelated, and 

Z n+ ~ arZ n-r=O 
r = l  

is the well-known characteristic equation connected with the stochastic dif- 
ference equation (cf. H. WOLD [1]). I t  will be seen that  in the general case 
as well one encounters the same equation; and as such, we shall in all cases 
construct the same equation which may still be called the "characteristic 
equation of the smoothing relation". 

As already mentioned in chapter I, no assumption of the autocorrelatedness 
will be made with reference to either process when we discuss the problem 
in general. Let  the operator inverse to L be L -1, so that  

LX(t) =~(t), and L - l ~ ( t )  =X(t). 

Then the following questions naturally arise: 

i) Can L -1 always be found? 
ii) When is L -1 in the form L -1 : {bs }? 

iii) What can be said about the uniqueness of L -1 ? 
iv) When does the suffix s in the sequence of weights in the inverse operator 

range over only positive integers, thus involving only the past values of 
the process ? 

Before addressing ourselves to a consideration of these and other related 
questions, we shall briefly summarize the nature of the earlier work up till 
now bearing upon this problem of inversion. 

2 . 3 .  Ear l i er  w o r k  o n  i n v e r s i o n  

The following problem, formulated by H. CRAMI~.R in 1933, has been dis- 
cussed by H. WOLD [1] in the discrete parameter ease: 

given the covariance sequence of a stationary process of moving average, 
to find the primary process as a linear combination of the values of 
the other process. 

In  the study we are now going to make we take the weights of smoothing 
as known. Then obviously we shall not be concerned with the questions relat- 
ing to the various alternative ways in which the weights may be chosen for 
a given covariance sequence. However, in view of what has been remarked 
earlier regarding the characteristic polynomial equation in the general case as 
well, despite the fact tha t  we do not restrict ourselves to examining only the 
moving average process, the discussion on the position of toots of the charac- 
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teristic equation with reference to the unit circle has naturally points of 
contact with the treatment of the moving average case by H. WOLD [1] 
and [2]. 

When there is a root on [Z I =  1, exact linear inversion fails, a fact which 
has led H. WOLD [2] to consider the summability aspect and R. FRISC~ [1] 
to consider the question of estimation of X (t) linearly in terms of a specified 
number of values of the resulting process. 

Lastly we refer to some remarks of K. KARItUNEN [3]. He considers a 
continuous parameter stationary process smoothed over a finite number of its 
values at equi-distant time instants to yield the resulting process, and makes 
the observation that  the primary process can be uniquely recovered if the 
characteristic polynomial equation has no root of modulus unity. 

2 . 4 .  T w o  l e m m a s  re lat ing  to  spectral  m e a s u r e s  

Given a finite smoothing as 

L : {,% = 1, a l ,  a2 . . . . .  an }, 

and also the wide sense stationary process ~ (t) arising out of the smoothing 
of the unknown wide sense stationary process X (t), we proceed to find L -1 
so that  the primary process is obtained as X ( t ) =  L-l~(t). To achieve this 
end, we apply CRAM~R'S spectral representation of a wide sense stationary 
process to both the sides of the smoothing relation. If Zx (2) and Z~ (2) de- 
note the orthogonal processes in the spectral representation a~sociated respec- 
t.ively with the X- and the ~-processes, we have 

where 

.f e "~ d Z~ (2) = 

= ~ a r i ( t - - r )  

= r=o_ ~ fare'(t-r)~dZx(~') 

= .f e ~t:~ P (e -~'~) d Z x  (2) 

P(Z) -=-  ~ arZ r. 
~':=0 

We have seen in chalm'r I that  from such an integral relationship i~ fol- 
lows that  

P (e- ' )  d Z x  (2) = dZ~ (2) 

in the sense that  the b~r of both sides over any Bt,rel set in (---~, .~) 
is the sam,, element in L2(X ). If we suppose ~.hat there exists another func- 
Li(,n yJ (2) such that  
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~, (2) d Z x  (2) = d Z~ (2), 
then 

f {  ~f (2) - -  P (e -~)  } d Z x  (2) = O. 
s 

The necessary and sufficient condition for this is tha t  

f I ~ (2) - -  P (e -~ )  [2 d ax  (2) = 0. 
8 

Hence ~(~t) differs from P(e  -i~) possibly only over set of ax-measure zero. 
Let  the interval ( - - ~ ,  ~) be denoted by  W and divided into two sets as 

follows: the set Q of the real zeros of 

F (2) = P (e-~),  

and leg the complementary set be W - - Q .  Then we write 

X (t) = f e ira d Z x  (~) + f e it~ d Z x  (2). 
W-Q Q 

As a result of the orthog(mality of the two parts it follows tha t  

IIx(t)ll II i"e" dZx(2)l"- fe"  Zx(2)I 
~, Q O 

Writing mx (Q) for the sqmm~ of the norm of the second term on the right 
side, we get 

m~ (Q) = .f d ax  (2) >- 0. 
Q 

Lonaraa 2 .4 .  I .  It  is neces:;ary ]or the consistency o/ the smoothing relation 
that the spectral mass o~ the ~-process in the set Q vanishes. 

This follows directly from the fact tha t  as a consequence of the smoothing 
relation and the nature of the set Q, 

m~ (Q) = ] ie" dZ,(2)r 
Q 

f d t~ P (e -i'~) d Z x  (20 2 
Q 

.f I e (e -~)  [ 2 d ax (~) 
Q 

== 0 ,  

Leranaa  2 .4 .2 .  Every set o~ 2 in ( - -~ ,  ~) o~ ax-measure zero is o~ a~- 
measure zero, and every set disjoint ]tom Q and o/ a~-measure zero is also ,~[ 
ax-measure zero. 
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P r o o f  : 

We have 

where 

and it is obvious t h a t  if 

I F (2)12 d ax  (2) = d a~ (2) 

F(2) = P(e  -ia) = i are-iar, 
r = 0  

m x  (s) = f d ,~x (2) = O, 
$ 

ms (s) is likewise zero. To prove the la t ter  par t  of the lemma,  we proceed 
thus. 

Le t  P be a non-empty  set disjoint f rom Q and of as-measure zero. Con- 
sider the sequence of sets P ,}  such t h a t  Pr  consists of all points  2 E P  
satisfying 

1 
I r ( 2 )  l >_ - .  

r 

For  every 2 E P  we can find an ro such t h a t  2 is in sets {P~} for all r > r 0. 
1 

In  fact,  if this were not  possible for a certain 2 E P,  we should have ] F (4) I < - 
r 

for  all r, and hence F ( 2 ) -  0, con t ra ry  to our hypothesis  t h a t  P is disjoint  
f rom Q. Thus {P~} is a non-decreasing sequence of sets tending to the  limit- 
ing set P and accordingly 

mx (P~) ~ mx (P) 
as r --> oo. But  

mx (Pr) = f d ax (2) --< r 2 f d at (2) -<- r 2 m~ (P) = O. 
Pr Pr 

Hence 
mx (P) = O. . 

2 . 5 .  On the existence of  a stationary solution for X (t). 

We shall consider under  wha t  conditions there exists a s t a t ionary  process 
X (t) satisfying the smoothing relation. 

T h e o r e m  2 .5 .  For a stationary process X (t) to exist as a solution o] the 
smoothing relation, it is both necessary and su//icient that the ]ollowing "condi- 
tions o/ consistency" be satis/ied by the spzctrum o/ the given ~-proczss and the 
weights o/ smoothing: 

i) E a r  7 g O, whenever Ms ~ O, 
ii) ms (Q) = 0, and 

iii) �9 I F ( ' ~ ) [ ' d a t ( ~ ) < c ~  
W - Q  

where W is the interval ( - -~ ,  ~). 
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P r o o f  : 

a) The conditions are necessary. 

We note that  condition ii) has already been shown to be necessary (lemma 
2.4.  1.). Further,  condition i) is necessary because 

M~ = E [~ (t)] = E [Z ar X ( t  - -  r ) ]  = M x  (E at), 

where M x  is constant. When the first condition holds good, we can write 
the smoothing relation as 

Then 
E a , { X ( t - - r ) - - M x }  = ~ ( t ) - - M .  

F (2) d Zx  (2) = d Z~ (2) 

from which we get tha t  d Z x  (2) is given by 

1 
d Zx (2) = ~ d Z~ (2) 

for 2 E W - - Q ,  and for 2 E Q, d Z x  (2) is subject to the conditions that  Z (s) i~ 
to be an orthogonal process of bounded norm in the set Q, and 

E [d zx  (2) d Zx ( g ) ]  = 0 

for 2 e Q , # f i W - Q .  Then 

e 'x  = I I x ( t ) l l  ~ = f dax(2) + f dax(2) 
w-Q q 

1 
>_ f ~ d ~(2) 

w-Q 

which is to be bounded if a stationary solution X (t) is to exist. 

b )  The conditions are also su//icient. 

In view of the first condition we can assume without loss of generality tha t  
the processes have mean value zero. Then we define two processes X 1 (t) and 
X~ (t) as follows : 

x , ( t )  = fe~t~dZ~(2), 
W-Q 

and 

X~ (t) = f e~tadZx (2) 
Q 
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the norm of which is finite but  arbitrary. By the third condition it follows 
that  

I[ x1 (t)II ~ < ~ ,  

so that  X 1 (t) exists as an element of L2 (~). Subjecting the process X1 (t) + X2 (t) 
to the smoothing operation, we have 

L IX 1 (t) § X 2 (/)] 1 

W-Q Q 

= f e itxdZ~ (4) 
W-Q 

= f e u~dZr by the second condition 
W 

- ~ ( t ) .  

Thus X (t) = X 1 (t) + X~ (t) is a solution of the primary process. Since X (t) 
is clearly stationary, the conditions are also sufficient. 

We assume in our work that  the three conditions of consistency given in 
theorem 2.5.  for a stationary solution to exist are satisfied. 

We may note at this stage that  

i) L X  l(t) = ~(t), and 
ii) L X2 (t ) = O, 

so that  when Q is non-empty, there exists an arbitrary part  X2 (t) (which 
may be called the "complementary part") in the solution of X (t). 

As we are considering only the case in which the smoothing contains a 
finite number of weights, the set Q consists of discrete points. Hence it fol- 
lows that,  if 41, 4~ . . . . .  4p are the points constituting Q, we can put  

P 
X 2 ( t  ) = ~ w k e  i~kt. 

k=l  

(See also chapter IV). The process X2 (t) is deterministic. 

In view of lemma 2 .4 .2 ,  we see that  if ax (4) has any saltuses in Q, they 
are no longer saltus positions of at (4). 

2.6 .  Relation between the Hilbcrt spaces of  the processes 

We shall next prove 

T h e o r e m  2.6. 

[mx (Q) = O] ~ [L2 (X) = L~ (~)], 
and 

[rex (Q) > O] ~ [L2 (~) is a proper subspace o] L~ (X)]. 
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P r o o f  : 

Case (i): m x ( Q )  = O. 

From the relation (D) of chapter I, we have 

L 2 (X)  = L 2 (Zx).  

1 
Since mx (Q) = 0, and for 2 e W - -  O, d Z x  ()~) = ~ dZ~ (2), it follows that 

/ 'tA) 

Le (Zx)  c L 2 (Z~). 
But 

L 2 (Z~) - L 2 (2), 
so that  

L 2 (X) c L2 (2). 

Also L 2 (X) ~ L  2 (2) by the smoothing relation. Hence 

Case (if): m x  (Q) > O. 

In this case 

where 

g 2 ( X )  = L 2(2). 

x (t) = x l  (t) + x 2  (t), 

1] x~  (t)]]~ = m~ (Q) > 0. 

Thus X 2 (t) is a aon-null process. Further by Lemma 2.4. 1, the X2-process 
is orthogonal to L~ (Z~)= L2 (2). Hence 

L 2 ( X )  ~ L2(2 ). 

Therefore L,  (2) is a proper subspace of L 2 (X). 
The converse inferences contained in the theorem are clearly true in view 

of the exclusive nature of the two alternative possibilities. 

2. 7.  U n i q u e n e s s  o f  i n v e r s i o n  

The question of uniqueness of inversion is closely related to the content 
of the spectral mass of the X-process in the set Q. 

The operation of smoothing may be regarded as a mapping of the elements 
of L2 (X) on a subspace of itself, viz., the elements of L~ (2) which belongs 
to L2 (X) by virtue of the smoothing relation. Then it is but  natural to con- 
jecture that  for uniqueness of inversion the transformation must carry the 
whole of L2 (X) into its entirety, and not into a part  of itself. We have just 
seen inJ theorem 2.6  that  this geometrical property is in turn related to the 
spectral content of the X-process in the set Q. Bearing out the conjecture, 
we have 
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T he o re m 2.7. In  a consistent smoothing the inversion is unique when the 
set Q is empty. I] Q is non-empty, the inversion problem has an in/inity o/solu- 
tions. Out o/ these solutions, there exists one and only one (in the sense o] 
equivalence in norm) which bvlongs to L2(~), and only /or this process is 
mx (Q) zero. 

Proof :  When Q is empty, 

7 
X ( t ) =  t e i t aF~)dZ~(~  ). 

In this case mx (Q)= O, and inversion is uniquely given the above formula. 
If Q is non-empty, 

X (t) = X 1 (t) + i 2 (t),  

where [[ X,  (t)[] is arbitrary and X 1 (t) is given by 

X l ( t )  = . f  eita~(~) dZ~(~) �9 
W-Q 

Since X2 (t) is of arbitrary norm, we have an infinity of choices. When we 
choose X~ (t) as the null process, X (t) is uniquely determined as X1 (t) which 
belongs to L 2 (~). Only in this case are the two Hilbert spaces identical and 
mx (Q) = O. 

2.8.  Linear inversion 

We shall have to consider the real zeros of 

F(~) = P ( e  -ia) 

in connection with linear inversion of the smoothing relation. A zero ~ + i fl 
can be classified into one of the three types according as fl = 0, or fl > 0, or 
fl < 0, i.e., according as the zero is real, or lies in the upper half plane, or 
lies in the lower half plane. The set of real zeros is denoted by Q. If we 
consider the Z-plane, where Z = e -ia, the real axis in the X-plane is mapped 
on the circle ] Z I =  1, and the zeros in the lower and upper half planes be- 
come respectively the roots of P ( Z ) =  0 inside and outside the unit circle, 
I Z [ =  1. The set Q in the 2-plane corresponds to the roots on ]Z I =  1. We 
shall frequently express our statements in terms of the roots of the charac- 
teristic equation which are the reciprocals of the roots of P (Z )=  0. The set 
Q continues to correspond to the roots on the unit circle of the characteristic 
equation, while the roots of P (Z )=  0 inside (and outside) the unit circle be- 
come the roots of the characteristic equation outside (and inside) it. 

�9 In any attempt to obtain the primary process.as a linear representation in 
terms of the values of ~ (t) the position of the zeros of F (2) with respect to 
the real axis in the X-plane (and hence the position of the roots of the char- 
acteristic equation in relation to I Z I =  1) plays an important rSle. 
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We have seen that  X 1 (t) is almost certainly X (t) if mx (Q)=  0. Otherwise 
it forms the best estimate of X (t), viz., as much of X (t) as belongs to L2 (~). 
The problem of inversion is then naturally to obtain Xx (t), since we are given 
only the ~-process. A special case of inversion is linear inversion in which 
Xl(t)  is to be obtained as E br ~ ( t - - r ) .  

We star~ by examining the case when the equation P ( Z ) =  0 has no roots 
inside or on the unit circle. Then there exists a positive constant R > 1 such 
that  for values of the complex variable Z lying inside t Z = R the function 

1 
- - - - -  can be expanded as a Taylor series. Thus 
P (Z) 

where 

X ( t ) =  f e 1 dZ~(,~) 
P (e -~) 

- -  Y t  

= e~t~bie-ii~dZ~(;t) + " eU~RKdZ~(2), 
1=0 - n  - ~  

] R K [ + 0  as K - + o o .  �9 

The first term becomes 
K 

j=~o bj ~ (t - -  J), 

while 

I flR l d ,(X)g Constant. IR~I 2. 
- - ~  - - ? t  

The constant being independent of K, 

K 

l ix(t)-  ~ bj~(t--j)II 2 = f IR~12d~,(X) 
1=0 _ ~  

tends to zero as K ~ oo. Hence 
K 

X (t) = l.i.m. ~ bj ~ ( t - -  j) 
K ~ r 1 6 2  j=O 

which we denote by writing 

X( t )  = ~ hisS(t--j) .  
i = 0  

1 
The b's are the coefficients appearing in the convergent expansion o f -  

P ( Z }  
1 

in powers of Z. I t  is then evident that  if p ~  can be expanded on the unit 

circle in a Laurent 's series, X (t) will have the corresponding linear representa- 
tion in which j will range over integers positive as well as negative. The roots 
of the characteristic equation being the reciprocals of the roots of the equation 
P ( Z ) =  O, we have the following 
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T h e o r e m  2 .8 .  I .  11/ X (t) and ~ (t) are any stationary processes connected by 
a consistent smoothing relation, and i] the characteristic equation has all its roots 
inside the unit circle, the primary process X (t) has a linear representation en- 
tirely in terms o~ the past values o/ ~ (t). 

This result is known in the cases t reated earlier by  WOLD [1]. If, however, 
all the roots of P ( Z )  = 0 lie inside I ZI  = l,  then it is seen tha t  

X(t )  = ~_, b ib ( t - - j ) ,  

and when the roots lie both  inside and outside bu t  not  on ] Z I =  ], 

X ( t ) =  ~ b i ~ ( t - - j  ). 

1 
The fact tha t  on the uni t  circle ~ has no convergent expansion only in 

positive powers of Z when P (Z) = 0 has some roots inside I Z I = 1 is equivalent  
to the following 

T h e o l - e m  2 . 8 . 2 .  When the characteristic equation has no root on [ Z [ = 1, 
but has one or more o/ its roots outside the unit circle, the primary process has 
a linear representation in ~ (t), but this representation will not be in terms o~ 
only the past values o~ ~ (t), but will involve its /uture values as well. 

The following examples show how L -1 goes to infinity in either direction. 

Example 1. 

If L = L :  [ l ,  :r }, [~ l< :  1, then 

L I ~ - L  1 : { 1 ,  __ ~ , ~ 2 , _ : r  

Example 2. 

I f  1, = L : l l ,  l f i l < J ,  t h e .  

L -~ L -1 : { l , ( ~  fl) ( ~ + : r  !- i~), . . . ,  (:r ! a t' I i) r + I" ) . . . .  }. 

Exa~,ide 3. 

If L =:L : { I. 0r ] : r  then 

~-u~. d hence 

X( t )  = ~l ~(t + 1 ) - - ~ 2 ~ ( ,  r 2)+--1--#(t~3 , a l  

1 1 1 0 l  
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Example 4. 

I f  L = L :  { 1 , - - ( ~ + f l ) , ~ f l } , i ~ ] < l , [ f l l > l ,  then 

) 1 ar~(t__r) + ~ flr~(t__r) " 
X ( t )  q . - -  fl r=o r = - I  

Hence 

= : . . . ,  f l ) ,  _ f l ,  . . . . .  

2.9.  Roots of  modulus unity 

In  this section we shall prove 

T h e o r e m  2.9.  t .  When the characteristic equation has a root o n ] Z  I= 1, 
the resulting process is autocorrelated, and 

T h e o r e m  2 .9 .2 .  Let all the roots o/ the characteristic equation be o/ modulus 
less than or equal to unity, and let none o] the roots on [Z] = 1 be repeated. I] 
the roots on the unit circle be e ~1, e i~ , , . . . ,  ei~, let the points ~1, ~ 2 , - . . ,  2p on 
the real axis be interior points o/ one or more intervals in which the spectral mass 
o/ the ~-process vanishes. Then using (E, q) summability interpretation, the part 
X 1 (t) o] the primary process belonging to L~ (~) has a linear representation entirely 
in terms o/ the past values o] ~(t). 

As for Theorem 2.9.  1, it follows as a consequence of condition iii) of 
Theorem 2.5.  To see this, let the root on the unit circle of the characteristic 
equation be e ~' ,  where 21 is real, and let it be a root of multiplicity h. Then 

F ().) = P (e-i~) = P1 (e-i'~) { 1 - -  ei(X~-x)} a 

where P l (e  -i~) is a polynomial in e -i~ which does not vanish for 2 = ~x. 
condition iii) of the theorem then requires tha t  the limit of 

~-E~ ~. . 1 

( f + . ]  ) IPl(e-'s 2hd(~'(~) 

The 

is finite when E 1 and E~ tend to zero. Since Pl (e  -i~) is continuous at ~ = 21 
and does not vanish for tha t  value, this in turn is equivalent to the condi- 
tion that  

~1 - E1 = 

lim + ( ; t -  a~ ('~) < oo ... (A) 
EI~0, E~-~o - =  ~+Ez 

I f  the ~-process were non-autocorrelated, 

dcI~(,t) = C ' d ) .  (C, a constant), 
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and the above integral diverges.  Hence the ~ (t)-process is autocorrelated which 
proves the theorem. 

In fact, the condition (A) on the nature of smallness of d ~ ( X ) i n  the 
neighbourhood of 21 goes beyond the autoeorrelatedness of ~(t), and describes 
the actual situation. 

S u m m a b i l i t y  i n  n o r m  

When a root of modulus unity exists, it is sometimes still possible to represent 
X ( t )  in the form 

X ( t )  = ~ b r ~ ( t - - r ) ,  
r = O  

if this interpreted in the sense of summability in norm with respect to Hilbert 
space built by  the process involved. The question of summability has been 
considered by  WOLD [2]. As our present purpose is only to make the idea of 
summability in norm precise, we shall confine our attention to the simple case 
of (E, q)-summability. 

If the real part of Z is less than unity, we can find a q > 0 such tha t  

Iq+ Zl<l  +q. 
For such Z 

1 1 (1 q + Z l - a  = ~'--(-q ~+~Z)-~ 
1 - -  Z 1 + q _ 1 + q /  .-~o (1 + q) .+l" 

Whenever Y Z" is convergent, 
n = O  

oo 

~__0 Z n = ~  ( q +  Z) n " 
= n=0 (1 + q ) .+ l  

The latter series converges for some Z for which the former does not. 

that,  whenever the latter series is convergent, Z Z n is summable (E, q) to - -  

The meaning is as follows: consider the transformation T such tha t  

T z . =  (q + zi" 
(1 + q)n+l 

When G ( T Z  't) is convergent, 
Z ( r Z " ) .  

We say 
1 

1 - -Z  

we say that  G Z n is summable to the sum of 

The same notion can be transferred to a series whose terms are elements of 
the Hilbert space of a process. Suppose that  ~'s and ~/'s are elements belonging 
to the space built by the same process, and T is a transformation giving 

T~,  = ~r for all r. 

If llz r-Z  ll = 0, whenever I[Z~,]I < 0% then we shall say that  by method 
(T), Z ~  is summable in norm to the sum of Z~/r, this last mentioned sum 
existing. 
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Let 
X( t ) - - e iX , .X ( t  - 1) -- #(t), 

/t 1 being real, and let the spectral mass of the ~e-process vanish in an interval 
Q1 of which )~1 is an interior point. Then 

/ l ( t )  = fie'" 1 
1 - -  ei2~e - i g  

W - Q ~  

= eit~ (1 q + e ~ e - i ~  -1 j '~ l + q  I dZ,(2) .  
W - Q 1  

If we put 

and write as before 

( l  t q) 
W-Q1 

K 

xi  ( t ) -  ~o~rl " = J f_:"*R~dZ~(,t) ~, 

it follows from the uniform convergence of the series ~ (q + eia'e-i~)n ~=-'0 (1 + q)n+l for 

E (W--  Q1) that  IRK] -+ 0 as K ~ c~, the same K holding good for all ~. Hence 
it  follows that  

K 
l..i.m. ~ ~r = Xl(t)-  
K-~:o r=0  

The transformation T of the elements of L2(~) corresponding to a b o v e  
summability is given by T(eia , '~( t - -r ) )= ~ .  We have that  

~eia'r~(t - r) = ~ ~r 
r=O r~O 

whenever the former series converges "m norm, and we say as before that  

is summable (E, q) to 
r=O 

~ T ( e i ~ ( t  --  r)) = ~ ~ 
r=O r=O 

= X 1  ( t ) .  

When none of the roots of the characteristic equation lying on [ Z I =  1 are 
Tepeated, resolution by partial fractions will help us to carry the proof of 
theorem 2.9.  2 to completion. 

More comprehensive forms of summability can be considered in the same way. 
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From lemma 2 .4 .2  it follows that  the spectrum of the Xl-process has also 
to vanish in Q1 when m,(Qt)= 0. Thus the processes become restricted if the 
~-process is to fulfill such a condition. 

Let  none of the roots on ]Z] = 1 be repeated, and let them be denoted by 
{eiaK} as before. With each 2K we can associate the closed interval 

thus getting p intervals corresponding to the p roots on the unit circle. Let  
the sum set of these intervals be Qr. As r tends to infinity, Qr tends to the 
set of p points 21, 22 . . . .  2p. We may consider the process X~(t) defined by  

X~( t )=  f eU~(le_iaidZ~(2 ). 
W - - Q  r 

1 
Resolving p(e_i~ ) by partial fractions, and using (E, q) summability we get tha t  

Xr(t)= ~ b r j ~ ( t - - i ) .  

If there are no roots of the characteristic equation outside [Z I = 1, the above 
representation will involve only the past values, i.e., brj = 0, for j < 0. Further  

1.i.m. X, (t) = X (t). 
r---> 0r 

Hence we can approach the primary process through a sequence of processes 
as nearly as desired (in the sense that  the norm of the difference can be made 
as small as wished for). Each of these approximating processes has a linear 
summability representation in ~ (t). 

2. |0 .  Elementary Gaussian processes 

In connection with inversion where the primary process is given linearly in 
terms of the past values of the resulting process, we may consider the processes 
studied by J. L. Doo• [2] under the name of elementary Gaussian process. 
Let X(t) be an "elementary t. h. G. M•" one-dimensional process of the non- 
deterministic type in the discrete parameter case. Such a process satisfies a 
difference equation 

N 

X(t) + ~arX(t - -r )  = ~(t), 

where (~(t)) are independent chance variables. I t  has been shown by DOOB how 
the non-deterministic nature of X(t) requires that  all the roots of the charac- 
teristic equation of the above smoothing relation lie inside the unit circle, if 
the difference equation is expressed with the least possible number of terms. 
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If we take the smoothing relation with the weights (at) occurring in it where 
the number of terms is least, and invert, we get 

+b  X(t) = ]~ r } ( t - - r ) ,  
r = O  

where }(t) is a stationary process of independent chance variables. 

2 .11 .  Infinite smoothing 

Let us now consider smoothing by means of an infinite sequence of weights, 
going to infinity in one or both the directions, in order to ensure the existence 
of the first and second moments of the process, we impose the conditions 

i) Z ar < oo and 
ii) Z larl2 < co. 

The process Xl(t) is obtained as 

Xl(t ) = f eit a 1 dZ,(+~) p(e-ia) 
W-Q 

where P(e -in) = Zare -ir~ is now an infinite series, and Q is the set of real 2 for 
which P(e -in) vanishes. The problem of linear inversion is then equivalent to 

1 
that  of expanding p(e_ia ) as a convergent series on the unit circle in powers 

of e in. If we now impose the restriction that  

L~ (X) = L~ (~), 

then X (t) is given almost certainly by X1 (t). 

2 .12 .  Covariance sequence of  the primary process 

I t  is well known that  the covariance sequence of a stationary autoregressive 
process satisfies the homogeneous "difference equation 

j~=oaiRx(K--i) = O, K > O, 

where {Rx(p)} denotes the covariance sequence of the X-process which is 
autoregressive. 

I t  will be of interest to examine the effect of subjecting Rx(t) to the same 
Smoothing operation L in the general case. 

T h e o r e m  2. t2. The covariance sequence o/ the primary process satisfies the 
]ollowinq relation: 

. . ~ f d  (t-')~ ~=o a j R x ( t - ~ - s )  _ P(e-ia~) dab(a)' 

provided rex(Q) = O. 
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Proof: Consider the smoothing relation 

n 

j ~ o a i X ( t - -  j) = ~(t) 

and the result of inversion, viz., 

Then 

j " e i s). 

i ( s )  = p ( e _ i ~ )  dZ+(2) .  

W - Q  

n n 

~_, aj R x  (t - -  j - -  s) = E [(~_, a 1 X  (t - -  j)} X (s)] 
j=o j=o 

= E [ $ ( t ) X ( s ) ]  

:'+If++"'+++(+J'e+++*+ ] P (e-+~) d Z+ (2) 
W - Q  W - Q  

= f e i ( t - s ) ~ l  - -  
P (e-i~) d a+ ().). 

W - Q  

C H A P T E R  I I I  

Inversion. Continuous parameter 

3. 1. An outline of the chapter 

The following is a brief summary of the results of this chapter. 
The conditions of consistency are mainly the same as in the case of the 

discrete parameter  processes. Theorems 2.5,  2.6,  and 2 .7  are still true. 
Sufficient conditions for inversion to be given as again a smoothing rela- 

tionship are obtained. When the weight functions in such dual smoothing rela- 
tionships are restricted to belong to the Lebesque class LI, as in a finite 
smoothing, the processes have to belong to a subclass of the deterministic type. 

I t  is seen that  sometimes it is possible to approximate to a non-deterministic 
process by a sequence of deterministic processes. 

In theorem 3. 5 the following question is considered. I f  the pr imary process 
is obtainable as a smoothing of ~(t), are the two parts of the smoothing over 
its past values and future values orthogonal ? Sufficient conditions are given 
for their or~hogonality. 

We obtain the result of effeeting the same smoothing on the covariance 
function of the primary process as the process itself is subjected to. Lastly 
the nature of the singular process X~( t )  is also discussed. 
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3 . 2 .  Condit ions for obta in ing  invers ion  as a s m o o t h i n g  

In chapter I the meaning of integration of a process has been explained. 
Passing on to the continuous parameter case we naturally consider smoothing 
by means of a weight function which is a function of a real variable. The 
study of inversion will now have to deal with some new questions not met 
with in the earlier case of the discrete parameter. Having restricted the weight 
function ](u) suitably, we form the resulting process by the integral smoothing 
relation 

r 1 6 2  

j" x ( t -  u) / (u) d u = ~ (t). 
- - o 0  

The range of integration is taken to comprise the entire real axis even when 
the interval over which the smoothing is effected is finite by regarding the 
weight function as vanishing outside this range, the main reason for this being 
that  smoothing over a finite range is effectively covered by supposing the weight 
function to belong to the Lebesque class L1 on ( - - c o ,  oz). 

The following are some aspects of interest in the study of the problem of 
inversion in the continuous parameter case: 

i) Can X(t) have the representation 

oc  

X(t) = f ~(t-- v) q~(v) dv, 
- -  0 o  

and if so, what is ~(v)? 
ii) When is inversion unique ? 

iii) When can the primary process be obtained as a smoothing of the resulting 
process over its past values only ? 

As before X(t) is the unknown wide sense stationary process and ~(t) is  the 
completely known also wide sense stationary process. Taking the expectation 
of both sides of the smoothing relation, we get (see: Additional Note at the end) 

Mx" f l(u) du = Me. 
- - o o  

Hence if M~ # 0, then 
eO 

f /(u) du ~ o. (i) 
- - o O  

Condition (i) has to be satisfied as the first condition of consistency. The other 
two conditions necessary and sufficient for a stationary solution X(t) of the 
smoothing relation to exist are in the same form as in the discrete parameter case. 

In chapter I we have seen that  the resulting process ~(t) obtained by the 
smoothing is given by 

Oo 

(t) = j" ~ ' .F  (~)dZx (~), 
- -  o 0  
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when /(u) is bounded, and 

F(2) = fe - iua/ (u)du,  
- -oo  

exists and is bounded. Also 

d Z~ (2) - F (~,) d Z x  (4). (A) 

I t  is then clear that if F :  (2) is any bounded function of 2, we can replace 
F(2) in (A) by F1 over a set of ax-measure zero. As before 

x(t) = f e"~dZx(2) + f e"*dZx(2) 
W - Q  Q 

= X l(t) + X2(t). 

Then X1 (t) and X2 (t) are stationary processes with associated random spectral 
functions 

dZx(2) for 2e W - - Q  [ dZx(2) for 2 e Q 
1 

dZxl(2) = and , dZx,(2) = / a n d  
1 

0 otherwise [ 0 otherwise. 

By the orthogonality of the two parts it follows that  

l l x ( t ) l l  2 = I lxx(t) l [  ~ + IIx:( t ) l l  ~. 

When the third condition of consistency holds good, Xl(t ) defined above is 
completely specified by the relation 

Xl(t)  = . /  it~ 1 e ~(~dZ~(2).  
W - Q  

Exactly as in chapter II, we can prove for the continuous parameter case also 
theorems 2.5,  2.6,  and 2.7.  

In what follows it is assumed that  the smoothing is consistent with the given 
~-process and the weight function /(u). We seek in our problem of inversion 
the primary process belonging to L~ (~), so that  L2 (X) = L2 (~e) and mx (Q) = O. 
Under these conditions the primary process is almost certainly the process X1 (t), 
and we shall write it without the suffix 1. Since rex(Q)= O, every set of 
ax-measure zero is also of a~-measure zero and vice versa. 

Suppose that  we now want to obtain the primary proce3s again as an integral 
smoothing of the ~-process in the dual form as 

X (0 = ; ~ (t - -  v) ~o (v) d v,  

where ~ (v) is bounded and 
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r 

q~(2) = f e-i'aq~(v)d v 

exists and is bounded for all 2. I t  is evident at the very outset that, when 
inversion is obtainable as a smoothing of ~(t), the entire closed Hilber~ spaces 
spanned by the two processes are identical, as each belongs to the other. 
Regarding sufficient conditions for the existence of such an inverse smoothing 
relationship we state 

Theorem 3.2.  Let $(t) be a given stationary process with zero mean and with 
spectrum at(X), and let /(u) be a known real or complex valued bounded/unction 
o/ the real variable u such that 

F(2) = f e - i ~ / ( u ) d u  

exists and is bounded. 

and 

Let Q be the set o/ real zeros o/ F(2), and let 

f l  iF~)t)-]2d~(2) be /inite (A) 
W - -  Q 

m~(Q) = 0. (B) 

Let the processes X(t)  and ~(t) be related by the smoothing relation 

; X ( t - - u ) / ( u ) d u  = ~(t). 

Let 

i) L~ (X) = L~ (~). 

Further, let q~ (v) be a bounded /unction (real or complex) o/ the real variable v 
such that 

q)(~) = f e-iraqi(v) dv 

exists and is bounded, and let 

ii) ~ I 1 - - F ( 2 )  r  12da~(2) = O. 

The conditions i) and ii) are su//icient /or the primary process to be given by the 
inverse smoothing relationship 

o~ 

f ~ ( t - - v )  cf(v)dv = X( t ) .  
- -  o o  

Before taking up the proof we may note the following facts: 
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a) In view of the conditions (A) and (B), a stationary solution for X (t) exists. 
b) From condition i) we have that  

m x  (Q) : m~(Q)  : 0 

so that  the failure of the condition 

F (2) q) (2) = 1 

in the set Q is not any inconsistency for a r  to exist. 
c) The condition ii) can be written with the a~-measure being replaced by 

(rx-measure because of condition i). 
d) There is a considerable amount of symmetry in the conditions of this 

theorem except that  the conditions corresponding to (A) and (B) involving the 
set Q' of the real zeros of q)(~) do not occur explicitly. Once the theorem is 
proved, it follows from the stationarity of the known ~-process that  

and that  

1 
f l~b~2)l~dax(2)is finite 

W-Q' 

(A') 

mx(Q') = o. (B') 

As a consequence of the condition i), it follows that  m~(Q')= O. 
e) When we take the X-process, and the function ~(v) as known, we shall 

impose the conditions (A') and (B') instead of (A) and (B) and then seek the 
~-process as a smoothing of the X-process. 

f) I t  is obvious that  condition i) is necessary. 

Proof :  We have from the given smoothing relationship that  almost certainly 
with respect to ax- and (r~-measure that  

dZ~(; 0 = F(2) dZx(2) 
so that  

q~ (2) d Z~ (2) = q5 (2) F (2)d Zx (2). 

The right side reduces to dZx(2) almost certainly, as a result of condition ii). 
Hence 

dZx  (2) = ~b (2) dZ~ (2) 
and 

x(t) = f e'"+(a) dZ,(x). 

The conditions imposed on ~o (v) and ~(2) are sufficient for the relation 

f  (t-vl (vlav = 
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to hold. Thus 

X(t) = ; ~(t--v) cf(v)dv, 
- - 0 r  

which proves our theorem. 
The following example is ilhtstrative. 
Let  u and v be real variables, and let 

sin a u~ 
/ ( u ) -  , a > 0 ,  

7~U 

and let the spectral mass of the t-process be vanishing outside the interval 
(~, fl), where a exceeds the greater of the two numbers ]:r and I fll. Let us 
seek the primary process whose Hilbert space is the same as L2 (2). Now 

F(~) = l 
1 for I ~ l < a  

and 

0 otherwise 

and W - - Q  is (--a, a). F(2) is bounded, and 

If ~(v) is chosen as 

then 

a - E  

lim f 1 
e~0 I F (4)l ~ d ~ (~) = ~ < ~ .  

- ( a - E )  

sin b v 
•(v) - - ,  b > 0 ,  b > ] ~ [ ,  b>[fl[, 

7~V 

1 for I ~ [ < b  

r (2) = and 

0 otherwise 

and the  conditions of theorem 3.2 are satisfied, for in (cr fl) we have F ().) ~b (+~) = I. 
Hence in this case we obtain from the relation 

o0 

f x (t-- u) sin a u du  = ~ (t) 
~ u  

the inverse smoothing relation 

oO 

' f  (t-v)sin ~v b v d v  = X( t ) .  
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Let us next examine the nature of the processes for which such an inverse 
smoothing relationship can exist, when the weight functions ](u) and ~ (v) are 
both restricted to belong to the Lebesque class L 1 on  ( - - c ~ 3 ,  cx3). By the 
Riemann-Lebesque lemma on the Fourier transforms of functions belonging to 
the class L1 we have 

lira F(~t) = O, 

and a similar result for ~b(,l). Therefore, when the numerical value of ~ is 
sufficiently large, the product F(,~)~b(A) becomes small and cannot become 
unity. Then condition ii) of the theorem will be satisfied if and only if 

P 

I dax(A) = O. 
l~,l > Ao 

Having regard to condition i), we can write a similar result involving the 
spectral measure of the ~-process. Hence the only processes that can have a dual 
smoothing relationship with such weight /unctions are those whose spectral energy 
is entirely cbn[ined to a finite region o/ the real axis. As such processes then 
have intervals of vanishing spectral mass the integral 

I log a' (~t)[ 
1 + ,~ d;t 

diverges, a' (2) standing for the absolutely continuous part of the spectrum. 
Hence these processes are deterministic in the sense explained in Chapter I. 
As every deterministic process need not have its spectral mass confined to a 
finite part of the real axis, the processes having a dual smoothing relationship 
with weight functions belonging to the L 1 class form but a subclass of the 
deterministic ones. Also, these processes are completely characterized from the 
point of view of spectral properties b y  some discrete parameter stationary 
processes, since the spectral mass can by a change of origin and units be 
repacked in the interval ( - - : r ,  :r). 

In view of the fact that the primary process is derivable as a smoothing of 
the ~-process only in special instances, the integral equation derived on the 
assumption of the existence of an inverse smoothing relation is of limited 
validity. However, notwithstanding this apparent drawback, one can sometimes 
construct a sequence of stationary processes {Xr(t)} by a repeated application 
of the integral equation so as to converge to the primary process. The following 
section deals with this topic. 

3.3.  Sequence of processes converging to the primary process 

]n any general case the spectral mass of the processes will spread over the 
entire real axis. Hence we shall here consider a procedure of sucessively en- 
larging the region on the real axis so as to bring into the picture by going 
to the limit the entire spectrum of the processes. I n  this connection we state 
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T h e o r e m  3. 3. Let { St} be a convergent sequence o/ sets on the real axis 
to which the set Q and successively receding tail ends o/ the real axis belong. 
Let us suppose that we are able to e//ect a solution o~ q~r (v) ]or every r from 
the integral equation 

f I 1 - F (2) Cr (2)[~ d a~ (2) = 0, 
w - s  r 

where 

and qJr (v) and O, (2) are bounded. 
Further let 

and 

e i~cf~(v)dv, 

f dax(2)-+O as r + o %  (i)  
S r 

[ , .  

J l Or (~) 1~ d ~ (~) -~ 0 as r -+ c~. (ii) 
Sr 

Let the given smoothing relation be consistent. Then the sequence o/ processes 
{ X~ (t) } given by 

X~(t) = / $ ( t - - v )  cfr(v)dv 
- - 0 r  

converges in the mean to the primary process belonging to L2 (~). 

P r o o f :  The process Xr (t) constructed is given by  

Xr (t) = f e"~ Or (~) dZ~ (~) ~ f e "~ r  (~1 ~l Z~ (.~). 
W - S r S r 

Since by  hypothesis the integral equation is satisfied for , . . , ' v  r. ~,' ~:an write 
for 2 E[~ ...... S~ 

1 

~"(~) F ,~, (a) 

,i, r~:-i , , , 't  (,f cat-h cf the speclral nma, stm~s under ~,msi,l,~L,~i,;~, 
~i it I, il,'rws tha t  

]]~qV, 
Cr ~;~) d Z~ (~) d Zx  (;~). 

X (t) ..... ~'~r(t) . ]'d't~ d Z x ( / . )  
'~r 

Sr 

F o r  tho sam~' 
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As r tends to infinity, the norm of each term on the right side of the above 
equation tends to zero, and hence the theorem is proved. 

An important case is when the set Q is empty. We can then take W -  S~ 
as the interval ( - - r ,  r) and condition (i) of the theorem holds automatically. 

1 
Further  let us assume that  ~ is differentiable in every interval ( - - r ,  r). 

Then we define ~r (4) and ~0~ (v) as follows: 

and 

Then 

v,, (2) = 

1 
for  2 e ( - -  (r + 1), (r + 1)) 

and 

0 otherwise 

~0 

~ (v) = ~ d "~ ~r (4) d 4. 

- - o o  

Oo 

qb~(2)= f e - i ' ~ ( v ) d v  
- - o 0  

= ~ (2) for ;t belonging to ( - - r ,  r) because of the differentiability 
1 

of ~ in ( - - ( r  + 1), (r + 1)). 

Hence for 2 in ( - - r ,  r) including the end points, 

a~, (,l) F (2) = ~, 

so that  Or (2) is a solution of the integral equation with the range W - - S t .  
Therefore the sequence of processes are given by  

and 

{ X , ( t ) } =  _ ~ ( t - - v )  q ~ ( v ) d v  , 

1.i.m. X, (t) = i (t). 
~"-'r 

This method of truncation can be evidently employed when the set Q can be 
covered by a convergent sequence of sets on the real axis, each set being 
comprised of a finite number of intervals such that  conditions analogous to 
0) and (if) hold. 

Let  us now turn our attention to the case where the set Q is empty and 
the given ~-process has a continuous spectrum. Then the primary process has 
also a continuous spectrum for otherwise the spectrum of the ~-process will 
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have to have a saltus part  (cf. chapter IV, section 4. 1). Constructing ~,v,(4) 
as before as the truncated form of the reciprocal of F (4), we note that  y~ (2) 
belongs to the L1 class. Thus it can be recovered as the Fourier inversion 
of its Fourier transform except possibly for a set of Lebesque measure zero. 
As a consequence of the continuity of the spectra, every set of Lebesque 
measure zero is also of ax- and at-measure zero. Smoothing ~ ( t ) w i t h  the 
weight function q, (v) of the previous paragraph, we get Xr (t). The difference 
process of X (t) and X,  (t) tends to zero in norm unconditionally. The differ- 
ence process has been seen earlier to be made up of two terms each of which 
depends on St. The first term tends to zero in norm as r -+  c~ because of 
the convergence of the spectral mass, and the second term 

f e,t~ r (4) d Z, (4) 
8r 

is of vanishing norm, for, when 4 E S, 

~br (2) = ~pr (4) = 0, almost everywhere. 

In  these cases, each process of the sequence {Xr(t)} belongs to tha t  sub- 
class of deterministic processes whose spectral range is but finite and is obtained 
as a smoothing of the C-process. When we focus our attention on processes 
which have their spectrum spread out over the entire real axis, it is clear tha t  
the limit function of weighting does not exist. As the pr imary process need 
not be necessarily deterministic, we have incidentally that  it is sometimes pos- 
sible to approximate to a non-deterministic process by a sequence o/ deterministic 
processes with their spectral mass vanishing outside a finite range though con- 
tinually expanding. 

The following example is illustrative: 

Let  

Then 

is differentiable for all Jl. 

We now have 

~ ,  (X) = 

and 1/ (1 ~,-l(v) = ~ ; 

/ (u)= e-l~l. 

1 1 + 2 2  

(x) 2 

1 +  4 2 
~ -  for I~1 

and 

0 otherwise 

2) 
+ r* - ~ s in 

< r + l  

4, } 
r v  -]- ~ c o s  r v  �9 
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1 
The two conditions that  the set Q is empty  and F ~ ) i s  differentiable are 

sufficient for the sequence of processes 

{ xr  (t) } = [ : f  ~ ( t -  v) ~, (v) d v 

to converge to X (t) in norm as r tends to infinity. 
I t  may  be noted tha t  in this case the sequence of functions {~r (v)} does 

not converge to a limit function as r tends to infinity. Yet, the sequence of 
processes obtained by  smoothing the resulting process with these functions 
as the weight functions converges in norm to the pr imary process. 

3. 4. Uniqueness of inversion 

Following an earlier notation, we w r i t e  

X(t)  = X l(t) § X~(t) 

where the second process on the right side is arbitrary but  for constancy of 
norm, while the first process is completely specified in the sense of norm. 
Therefore the pr imary process will be unique if and only if the arbi trary par t  
is of vanishing norm, which condition is in turn equivalent to the identity of 
the entire closed Hilbert  spaces of the pr imary and the resulting processes. 

3.5 .  An orthogonal decomposition 

In this section we shall consider a decomposition into two parts  of the pri- 
mary  process of a consistent smoothing for which there exists a duality of the 
smoothing relationship. Then we can form the pr imary process as the sum of 
two smoothings of the result ing process, viz., smoothing over the past  values 
of the resulting process and smoothing over the future values of the same. 
Then it is natural  to inquire if the two parts are orthogonal. Relating to this 
we state 

T h e o r e m  3.5. Let the smoothing be consistent and let the given ~-process 
have absolutely continuous spectrum. I[ the weight /unction appearing in the in- 
version is real and belongs to the Lebesque class Lu on ( - -c~,  c<)), and the 
real and imaginary parts o/ q51 ~2 (occurring below) do not change their sign, then 
the two parts in question are orthogonal. 

Proof : Putt ing 

where 
(v) = ~1 (v) + ~ (v), 

{ ~(v) for v--> 0 

~1 (v) = and 

0 otherwise 
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the two parts 

f ~ (t - v) ~1 (v) d v, 
v_>O 

are orthogonal if 

(v) for v~<O 

and 

0 otherwise, 

and f ~ ( t - - v ) ~ 2 ( v ) d v  
v,<O 

E [ f  ~<t--v)cfx<v)dv f ~<t--v)q~2(v)dv] = 0 

which is equivalent to the condition (to be proved) 

c,o 

f (/)1 (4) ~2 (4) d at (4) = O, 

where 

Since ~02 (v) is real, 

q)k(2) : fe-i*'~cfk(v)dv,, k = 1,  2 .  
--oo 

�9 ~ (4) = ~ ( -  2), 

and by the assumption that  ~0 (v) belongs to the Lebe~que class L~ we know 
that  991 (V) and ~02 (v) also belong to that  class. Hence by Parseval's relation 
w e  h a v e  

/ /~ 1 ~ 1 ( 2 )  ~ 2  (2) d 2  = ~ ( f ) 2 ( _ 2 ) d 2  
27e 

= / 9 3 1 ( v ) ~ 9 2 ( v ) d v  
--oo 

= 0 by definition of V1 (v) and of V~ (v). 

Now we use the hypothesis that  the spectrum of the ~-process is absolutely 
continuous which implies that  all sets of Lebesque measure �9 are also of 
a~-measure zero. Then from the conditions imposed we have 

f +~ (4) +~ (4) d ~ (4) = o 

which proves the required orthogonality. 

3 . 6 .  The  covariance  funct ion  o f  the  primary process 

In analogy with the discrete parameter case we shall here show that  if 
mx (Q) = 0, then the covariance function Rx (t) of the primary process satisfies 
the relation 
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oo 

f R X ( t -  u)](u)du = f e it~ 1 d o ' ~  ( '1). 
('1) 

- : r  W - Q  

Since mx (Q) = O, 

almost certainly. Then 
W - Q  

f R x  ( t - -  u) / (u) d u = E { X(t) X (u) } / (u) d u 
--oo --oo 

oo 

- ~  W - Q  

= f e "~ F ('1) 
l F (2)12 d a~ (4) 

W-Q 

on interchanging the order of integrations, 

= I "  ei t~ 

a -F (,t) d a~ (~). 
W - Q  

3.7.  On obtaining X (t) by smoothing ~ (t) over its past values 

We next make a brief reference as to when inversion yields the primary 
process as a smoothing of the resulting process over only the  past values. If 
the function q~ ('1) in the integral equation 

f l 1 - -  F ('1) qS (]t) r da~(]O = 0 

can be solved for and has the representation 

(4) = f e - i ~  q (v) d v, 
0 

where iv (v) and ~b ('1) are bounded, then it is clear that  

X(t)  = f ~ ( t - - v )  lv(v)dv, 
o 

it being however assumed that  m x ( Q ) =  O. 
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3 . 8 .  On the nature o f  the arbitrary part in  invers ion 

We shall conclude this chapter with some remarks on the  nature of the 
arbitrary stationary process X:  (t) appearing in the solution of X (t) by inver- 
sion. We shall treat both cases of the discrete as well as the continuous para- 
meters together by using symbols in a form suitable to either. The smoothing 
relation is written in a brief way as 

L X  (t) = ~ (t) (A) 

irrespective of the nature of the parameter. The range W and  the function 
F (~) have their significance appropriate to the instance under consideration. 

Associated with the smoothing is the equation 

L X (t) = 0 (B) 

and the stationary process which is a solution of this relation is what we call 
the singular process or the complementary part. This latter equation can be 
written as 

f F(~)e"~dZx(,~) + f F ( 2 ) e ' t X d Z x ( 2 ) =  0 
Q W - Q  

from which we get that  

f F (x) e"~ d Zx  (4) = O. 
W - Q  

Denoting the stationary solution of (B) by X: (t), we have 

X:  (t) = f e it~ d Zx,  (2) 
W 

where 

d Z x  (2) for 2 e Q 

dZx,(2)  = and 

0 otherwise. 

Thus the part  X 2 (t) of X (t) previously considered is the same as the sin- 
gular process X:  (t) associated with the smoothing relation. 

We shall next show that  the part  Xz (t) is deterministic, when the weight 
function / (u)  belongs to the Ll-class. F (2) is now continuous, and does not 
vanish .identically. Hence the set Q of the real zeros of F (~t) is not every- 
where dense in W, and W -  Q contains one or more non-degenerate intervals. 

Since d Zx,  (2 )=  0 in W - - Q ,  it follows that  

f l l o g  . ~ , ( ~ ) l d ;  " = ~ .  
1+ ,~  ~ 

W 
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Therefore X 2 (t) is a deterministic process. In particular if the set Q consists 
only of discrete points, and mx (Q)~  O, the singular process now consists of 
terms of the type 

w k  e i~kt , 

(see 4. 3), and is thus deterministic. 

CHAPTER I V  

Primary and resulting processes compared 
4. 1. Mean values, variances, spectral saltuses, and Ganssian nature 

In this chapter we shall occupy ourselves mainly with a consideration of the 
extent to which smoothing transmits to the resulting process some important 
characteristics which the primary process may have. 

We start by noting that  the strict or wide sense stationarity of the X- 
process implies that  the ~-process has the same property. The mean values, 
spectra and variances of the processes are related by 

i) M x .  (E a t ) -  M~ in the discrete parameter case and 

Mx"  ; /(u) d u =  Me 

in the continuous parameter case. 

ii) IF  (2)[2 d ~rx (2) = d ~ (2), and 

iii) E ] ~ ( t ) - - M t [ 2 =  f t F ( 1 )  l sdax(2), and 
W 

E I X ( t ) - - M x I  2 =  " ]F(X)lzd~(t), 
W - Q  

provided mx (Q) = O. 

We have also noted earlier that  every set of ax-measure zero is also of ~t- 
measure zero, while for the converse to be true it is both necessary and suf- 
ficient that mx (Q) = O. 

Let 11 be a saltus position of ax( t )  and t h i sp o in t  be not in the set Q. 
Using Lebesque-decomposition of an additive set function in respect of both 
ax(4) and at(2), we find that  41 is also a saltus point of at (t). If on the  
contrary any 41 should bolong to Q, then m x ( Q ) >  0, and this saltus does not 
reappear as a saltus of (~t(4) having been now obliterated by smoothing. 
Hence the condition that  mx (Q)= 0 ensures that none of the saltuses of ax (4) 
belong to Q, and then the saltus positions are common to both the spectra. 
If the spectrum of the primary process is continuous, so is that  of the result- 

466 



ARKIV FOR MATEMATIK. Bd 1 nr 32 

ing process, while mx (Q)=  0 is a sufficient condition for the validity of the 
converse. 

If  X (t) is a Gaussian process, the same is true of the resulting process. 
When the smoothing is consistent, and rex(Q)= o, and the ~(t)-process is 
Gaussian, it follows from 

X (t) = ( e  "~ ~ d z~ (;~) 
j P (k) 

W-Q 

tha t  the X (t)-process is also Gaussian. 

4 . 2 .  A case o f  metr ic  transit ivity  

Let the primary process be a Gaussian stationary process with a continuous 
spectrum, and let the weight function /(u) be suitably chosen so that  the 
smoothing relation is consistent. Then the ~-process has the same features 
as X (t). In this case we infer the sameness of the nature of the two processes 
in respect of metric transit ivity from the following theorem of U. GRENAN- 
DER [1]: In order that  a stationary normal process with a continuous covari- 
ance function shall be metrically transitive, it is both necessary and sufficient 
that  the spectrum be continuous. 

4. 3. Periodicit ies  

From a result of KHINTCHINE [1] which is sometimes called "the statistical 
ergodic theorem" (see HoPF [1]) we have that  for real k and a stationary 
process X (t), 

V 

zx= 1.i.m. 1 fl e_it~X(t) d t 
I v - u l - ~ r 1 6 2  v - -  u 

U 

exists. When za is different from zero, 2 is called an "eigen frequency". The 
eigen frequencies constitute the saltus points of the spectrum of the process 
and form at  most a denumerable .set. Further  

X (t) = ~ z~eiak t + ~ (t), 
k 

where ~ (t) and the terms in the summation on the right side are all mutually 
orthogonal and where $(t) has 11o eigen frequencies. (See K. KARHUNEN [1]). 
Hence every periodic term o f  non-zero norm comes from a saltus in the 
spectrum. 

With this background let us examine the effect of smoothing on periodic 
terms. I t  is evident tha t  if mx (Q):> O, X (t) may have more periodic terms 
than ~ (t), while if mx (Q) = 0, the periodic terms present in both the processes 
are the same in respect of frequencies though with differing associated energies 
(or the squares of norms). Thus a periodic term may sometimes be obliterated 
by smoothing, while inversion sometimes leads to the introduction o] a periodic 
term into the primary process with a /requency not present in the resulting 
process. 
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In the case when Q consists of a discrete set of points, and mx (Q )>  0, it 
must happen that  some or all of the points of Q a r e  saltus positions of the 
spectrum of the X-process. Writing X (t) as in the previous chapters as the 
sum of two stationary processes X1 (t) and X2 (t), we now see that  X2 (t), the 
singular process forming the complementary part, is almost periodic, being com- 
posed entirely of harmonic terms. 

The search for periodicities has figured prominently in a number of studies 
on time series. The rest of this section touches upon some aspects of this in 
relation to our smoothing problem. 

Firstly the relation between the spectra shows how an unstressed frequency 
in the spectrum of the primary process near the maximum of the function 
IF  (),)[ appears as a stressed frequency in the spectrum of the iesulting pro- 
cess as a consequence of smoothing. (See also J. L. DOOB [1]). When talking 
about a single smoothing in contradistinction to continued iteration of it, it is 
not true to say that  smoothing may introduce a periodicity into the resulting 
process not originally to be found in the primary process, except as being in- 
tended to convey in a loosely worded way the idea that  there is a shift in 
the emphasis laid on the spectral frequencies (not necessarily the eigen fre- 
quencies), caused by operation of smoothing. 

Coming to the topic of continued iteration of the same smoothing operation, 
it has been recently shown by 1 ). A. P. MORAN [1] that  a discrete parameter 
stationary process when put  through the same smoothing again and again will 
for some types of smoothing yield a process whose spectrum tends to a pure 
step function as the number of repetitions of the smoothing tends to infinity. 
To the same set of ideas also belon(;s the sinusoidal limit theorem of E. SLUT- 
SKY [1], differing however from the result of Mom~N in that  an iteration of 
two types of smoothing are under consideration in the treatment of SLUTSKY. 

Notwithstanding the foregoing theoretical possibility o f  the existence of 
stochastic periodic terms in a process, in any practical instance relating to 
observed data one generally fails to find exact periodic components, and hence, 
as has been pointed out by N. WIENER [1], the only spectra that  become 
relevant in applications are almost always those belonging to the continuous 
type. 

4. 4. Gaussian Markof f  nature 

Suppose we consider real Gaussian stationary processes with the additional 
condition that  the primary process is of the Markoff type. We desire to know 
if this Markoff nature is trahsmitted to the resulting process in spite of the 
operation of smoothing. 

a) Discrete parameter case: 

With the hypothesis made, the covariance sequence of the primary process 
is given by 

Rx (p) = M d ~l, 

where h 2 is the variance of the X-process and c is a real constant numerically 
less than or equal to unity. Without any loss of generality we may suppose 
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tha t  the X-process has been standardized to have its variance unity so tha t  
h 2 = 1. In  the case of the discrete parameter  processes we have three extreme 
types of Gaussian Markoff processes, viz., those corresponding to 

c = - -  1, 1, and O. 

We shall exclude them from our consideration here. 
Let us take the simple example where 

Then 
L = L : { 1 ,  a}. 

R~(0) = (1 + aS) + (a + 5) .  c, 

and 
R~(1) = (1 + aS) c + a + 5c  2, 

R~(2) = (1 + aS)c  ~ + ac + 5c a. 

I f  possible let ~ (t) be also a Markoff process. As a necessary condition we 
must  have 

[Re (1)] 2 = R~ (0). Re (2), 
which gives 

a = O ,  or c = + l ,  or a + c = O ,  or 5 c = - - 1 .  

Leaving out the first case where the smoothing is the identity operation, and 
the second one referring to excluded types, the other alternatives are seen by 
some calculations to lead to 

Re (p) = 0 

which is again an excluded case. Hence the resulting process cannot belong to 
the proper Marko/ /  class. I f  the weights in the general case are unrelated to 
the number c, the same procedure shows tha t  smoothing destroys the Markoff 
property. Nevertheless it is a moot question whether there may not be some 
types of smoothing with more than two terms in the sequence of weights 
standing in a special relation to the number c such as lead to resulting pro- 
cesses in which the Markoff property is preserved. I t  appears likely that  the 
Markoff property is not t ransmitted to ~ (t). 

b) Continuous parameter case: 

Turning to the continuous parameter  case, we answer the question in the 
negative whenever the weight function /(u) used in the smoothing relation 
belongs to the L1 or the L2 class. The covariance function of the standardized 
X-process is e-el tl, so tha t  the spectral density is given by 

C 

~ (c ~ + ~ )  
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If  possible let the resulting process possess the Markoff property. 
spectral density must  be of the form 

/ ~ .  cr 
y.g (~2 ~_ 22) '  

Then its 

and by virtue of the smoothing relation it follows that  

[ F  ( ) . ) j2 .  c / / 2 .  ~ . 
7/: (C 2 "~ 22) y.~ (0r + ,~2) 

Taking note of the fact that  F (2) is a Fourier transform and is hence small 
at infinity, we find that  the two sides of the above equation cannot be equal 
for numerically large values of 2. Hence it is not possible tha t  the resulting 
process is also of the Markoff type. 

4 . 5 .  Determinis t ic  and non-determinis t ic  nature 

When the resulting process is formed by smoothing the primary process only 
over its past values, and when inversion yields the pr imary process as again 
a smoothing of the resulting process over only its past values or even as t h e  
limit of a sequence of such smoothings, it is clear tha t  

L 2 { X  ; - c ~ , t }  = L 2 { 2 ; - - c ~ , t } .  

Hence in such cases either both the processes are deterministic or both are 
non-deterministic. As an example we may consider the instance of a smooth- 
ing relation in the discrete parameter  case, the operator L being of the form 

L = L :  {a0, a 1 . . . . .  an}, 

and the roots of the characteristic equation of the smoothing all lying within 
the unit circle. 

Next let us consider the case in which the resulting process is formed by 
smoothing the primary process over its values in the range ( - - c ~ ,  t + h). 
Further,  let the resulting process be deterministic, and let us consider the 
primary process which belongs to L2 (2). Then 

L 2 (X, - -  c~, c~) = L 2 (2, - -  c~, c~) 

= L2 ( 2 , -  ~ ,  t) by the assumption of 
determinism, 

= L~ (X, - - c ~ ,  t + h) due to the nature of the 
smoothing 

from which we conclude tha t  X (t) is also deterministic. 
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Lastly, let us consider the weights or the weight function to be such that  

f I log IF (A)11 
1 + / .  2 d~t < oo .  

W 

(In the continuous parameter case we note that  this condition holds good by 
theorem X I I  of PALEY and WIENER [ ] ]  whenever the weight function /(u) 
vanishes over a half axis, and F(~t) belongs to the Lebesque class L2 on 
( - - 0 %  oo)). If, in such a smoothing, we have the primary process as non- 
deterministic, the following shows tha t  the resulting process must  also be non- 
deterministic : 

!log ~(A) I d fllog IF(A)I~(A) IdA 
�9 1 + ,~2 i + ,~2 
W W 

< f2 [1~ IF(A)]I ([I~ ~x (A) ] --  1 + 2  2 d A +  + , t  e d~t 
~  

W IV 

< o o  

since each term on the right side is finite as a result of our hypothesis. 

C H A P T E R  V 

Estimation and prediction 
5 . 1 .  A n  o u t l i n e  o f  t h e  c h a p t e r  

In this chapter the following aspects of estimation and prediction are studied: 

a) Relationship between the topics of inversion, filtering and estimation is 
explained. 

b) Observing the resulting process over a stretch of time (usually some or 
all its past values), we desire to construct a linear, unbiasse4, and minimum 
variance estimate of the mean value of the pr imary process. The case of dis- 
crete parameter  and finite smoothing has been treated. The relation of this 
problem to the construction of similar estimates of the mean value of the 
resulting process by  observations on itself considered by U. GRENANDER is 
explained. 

e) The result of inversion may lead to X(t)with a linear representation 
requiring more than the given set of values of ~ (t). Yet we can sometimes 
form a linear combination of the given values which may be termed the best 
estimate of the primary process. This difference between inversion and estima- 
tion is illustrated by considering two examples of moving averages, viz., the 
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problem of FRIsc~ and the case when the characteristic equation has a root 
equal to 2. In  the continuous parameter  case we have to construct a func- 
tion of a real variable and smooth by it the given values of ~ (t) to obtain 
an estimate of X (t). The function to be constructed for obtaining the best 
estimate is to be a solution of an integral equation, which has been derived, 
assuming tha t  the past values of ~ (t) are all known. 

d) The relation of our present considerations to WIENER'S filtering is dis- 
cussed. Also the integral equation for the function to be used in prediction 
of the primary process is obtained, and it is shown tha t  under suitable re- 
strictions this equation yields LEVINSON'S form of the corresponding one in 
WIENER's theory. 

5.2 .  Inversion, estimation and filtering 

To begin with we may  see how the problem of estimation is connected with 
the earlier one of inversion. Given the resulting process over a stretch of time, 
the problem of estimation will consist of constructing a sequence of numbers 
or a function, as the case may be, using which as the weights or the weight 
function of smoothing the resulting process, we can recover the primary pro- 
cess to the best possible extent according to some desirable criterion of " the  
best".  The condition of minimum variance is here employed to yield the best 
estimate. We have seen tha t  the problem of inversion is to obtain X1 (t), and 
that  X2 ( t ) •  L~ (~). Hence in any a t tempt  at estimation of X (t) with a know- 
ledge of the ~ (t)-process, we shall be concerned only with estimating X1 (t); 
and when estimation gives X1 (t), the results of estimation and inversion coin- 
cide. Thus whenever the process formed by the difference of the pr imary pro- 
cess and its estimate has the square of its norm equal to mx (Q), estimation 
solves the problem of inversion. There are however aspects which distinguish 
them. Linear inversion and linear estimation have not much common ground 
when the norm of the difference process mentioned above exceeds + Vmx (Q). 
Consider a finite moving average relation i n ' t he  discrete parameter case with 
each root of the characteristic equation being of modulus greater than unity. 
We have seen earlier that  in such a case the part  of linear inversion expressed 
in terms of the past values of the resulting process is zero. As we shall see 
in 5.4, it is still possible to construct a linear estimate of non-zero norm in 
terms of a specified set of the past values of the resulting process. 

The process ~ (t) being more or less known, we have at our disposal a cer- 
tain mix-up of the pr imary process with itself, and from such a mixture we 
t ry  to disentangle X (t) in the best possible manner. Hence the construction 
of an estimate X* (t) of X (t) is here also an instance of "filtering". When 
the entire closed Hilbert spaces of the processes are identical, inversion filters 
out the pr imary process completely. Again, when we estimate the value of 
the primary process at  the t ime instant t + h, h > 0, in terms of the values 
of ~ (t) up to t we deal with "prediction" or prognosis. Putt ing h = 0 in this, 
we can also get an estimate of the primary process in terms of the past  
values of the resulting process, whenever the integral equation for prediction 
can be solved. 
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5. 3. Mean value of the primary process 

The object of this section is to form an estimate of the mean value of the 
primary process using observations made on the resulting process. 

Consider the case of finite smoothing in the discrete parameter case, the 
conditions of consistency of smoothing being satisfied. Let the covariance 
sequence of the ~-process be known, but not  i t s  m e a n  value,  except that  we 
have the knowledge that  it is non-zero. Let  the observations consist of k con- 
secutive values of ~ (t) which we shall denote by ~ (t), $ (t - -  1), . . . ,  ~ (t - -  k + 1). 
Under these conditions we wish to form an estimate M,~ of the mean value 
M x  of the primary process such that  

i) the estimate is linear in the observations, 

ii) unbiassed, and 

iii) has minimum variance. 

If the required estimate is 
k--1 

M ~  = ~ cj ~ (t - -  i), 
i = 0  

the condition of unbiassedness gives 

1 ] 
M x  = E [M~:] = E cj ~ (t - -  i) 

t j = O  

Also Ear  # 0, since M~ # 0 and the smoothing is consistent. Hence E cj is 
known being the reciprocal of E at. The condition of minimum variance gives 
tha t  

E [M~: - -  M x ]  2 = E [E cs ~ (t - -  i) - -  M x ]  2 

= H - -  2 M x M ~  �9 E c i  + M~x.  

is to be a minimum, where H is a quadratic form in the c's with known 
coefficients as a consequence of our knowledge of the covariance sequence of 
S-process. Further the quadratic form is positive definite. The minimization 
in question is secured by minimizing H, subject to the linear constraint of 
tmbiassedness. As is known, this problem has a unique solution. Thus the c's 
and hence M~ can be found. 

The quadratic form takes the simple diagonal form when the ~-process is 
non-autocorrelated, i.e., when the smoothing is an autoregression. Also the 
coefficient of each c in the linear constraint is the same. Thus in this case 
the solution is 
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1 
c 1 =  c~ = . . . .  c k -  k '  (Ear  '') 

and the estimate of the mean value of the pr imary process is now equi-distri- 
buted in the observed vahms of the ether process. 

In  a recent s tudy U. GRENANDER [1] has considered the problem of con- 
structing such estimates of M~ in terms of observations on the values of the 
~-process in the continuous parameter case. Let us now examine the connec- 
tion between the two problems, namely of constructing estimates of the mean 
values of the two processes, the observations being made on the ~-process in 
either case. As the smoothing is a linear relation, the properties of linearity, 
unbiassedness, and minimum variance are possessed in common by  the estimates 
M~ and My whenever they are related by  

(E a,). M~ = My. 

Hence the problem of constructing M.~ can be solved by  constructing first M~ 
1 

and then multiplying it by  E a~" The same is true in the continuous para- 

meter case as well, E ar being now replaced by j ' ]  (u)du. 
- - o o  

5.4.  A problem of Frisch 

Let the smoothing be a finite moving average in the discrete parameter  case 
with a root of the characteristic equation on ]z] = 1. Though we could not in 
this case obtain linear inversion in the strict sense, we can still construct 

X* (t) = ~(t) + bl~(t--1) + . ' - +  b~v~(t-- N), 

such that  for a given N the norm of X* ( t ) -  X(t) is a minimum. This deter- 
mination of the b's is what  is here called the problem of R. FRISClL having 
been treated by  him earlier [1]. 

The restriction of the case to a moving average specifies the spectral density 
of the primary process. As such we shall here treat  this problem by  the spectral 
method to show tha t  it is at once simple and effective. Writing the ~'s in 
terms of the pr imary process, and using the spectral representation of it, we have 

where 

and 

X(t ) - -X*( t )  = f eit~(1--P.B)dZx(]t) ,  

Also 

P = ~are -ir~, with ao = 1, X--r 
r = 0  

/v 
B = ~.bie -~i~, with bo = 1. 

i=0 
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dax(X) = I d A ,  

so that  the square of the norm of the error is 

1 i I (1- -P 'B)I2d)~  II X (t) --  X* (t) II "z ~ 
- -  y [  

which is a quadratic polynomial expression in the b's. To select the b's so as 
to minimize the integral on the right side, we differentiate the integral under 
the sign of integration with respect to the real and ima~na ry  parts  of each of 
the b's and equate to zero each of the integrals so obtained. They are seen 
to give 

7g 

J e ~ P ( 1 - - P . B ) d ~  = 0, r = 1, 2 . . . .  , N 

which are N linear equations to determine the N unknown parameters. 
For illustration and comparison we shall consider the case where L = L:  

{ 1, - -  1}, discussed by FRIscm 
The N equations now become 

2bl = 1 + b2, 

2b~ = b~-i + br+l, 
and 

2b~v = bN-1. 

These give the unique solution 
k 

bk - 1 
N + I  

r = 2 , 3 , . . . , N - - 1 ,  

derived by  FRrSCH by  another method. Using these values of the b's we find that  

1 
IIX(t)--X*(t)l l2 - 2(N + 1) ~)~" 

Whenever the solution is unique, it constitutes the minimum solution, as 
there exists just  one element to within equivalence in norm which is nearest 
to X(t)  out of all those possible for various values of b's. 

The same method can be pressed into service even when the roots of the 
characteristic equation of a moving average relation all lie outside the unit 
circle, in spite of the inversive linear representation of X (t) being entirely in 
terms of the future values of ~(t). I f  we consider the equation 

X ( t ) - - 2 X ( t - -  1) = ~(t), 

the best two term linea~ estimate of the pr imary process in the past  values of 
~(t) is obtained as 
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9~ 
X*(t) = ~(t) + 5 ~ ( t - -  1). 

In this case it will be seen that  

16 2 
II x (t) - x* (t)II ~ = ~ ~ .  

5. 5. The cont inuous parameter case 

Even when estimation of X (t) is made in terms of all the values of ~ (t), 
i.e., over the entire past and future, the problem is not often equivalent to 
inversion. When inversion is solvable as a dual smoothing, the inverse weight 
function to be constructed in the estimation problem has already been seen to 
satisfy the integral equation arising in that connection. 

Suppose that  the values of ~ (t) up to the instant t are known, and we desire 
to form estimates of X(t) in the form 

oo 

x*  (t) = f ~ ( t -  v) d~  (v), 
0 

the function q (v) being of bounded variation. Then this inverse weight func- 
tion q (v) has to be the solution of an ~ integral equation, if i t  is to yield the 
best estimate of the primary process. The integral equation in question is ob- 
tainable by putting h -  0 in the integral equation of prediction which we are 
going to derive in 5.7. This gives the equation for ~0(v) as 

oo oo  

- - o o  0 

v : > 0 ,  

where Re stands for " the real part of", and 

for ~ e W - Q  

v2(2) = I and 
I 
( 0 otherwise. 

5 . 6 .  Relation to Wiener's filtering 

N. WIENER [1] has considered the following problem. Two stationary time 
series /(t) and g (t) are taken to stand for a message and a superposed disturbance 
respectively, and the message has to be recovered in the best possible way. 
This can be achieved if one can find an integral operator which when operating 
on the combined series gives the best approximation to the message at a required 
time instant t + h. For solving this problem it is supposed that  the necessary 
information regarding the auto-correlation and cross-correlation of the series 
concerned is available. The point of view adopted in the present study has 
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been somewhat different in respect of the starting assumptions in that  we 
regard that  F(2) and t(t) as known. However, in view of our earlier study of 
the subject of inversion, the gap is seen to disappear. I t  has been observed 
previously that  inversion itself is a special case of filtering. To make this more 
specific, let us write the smoothing relation in all cases symbolically as 

LX( t )  = t ( t ) .  

This can be written alternatively as 

(L - -  1)X(t) + X(t)  = t( t ) ,  

and we may designate X(t)  and (L - -1 )  X(t)  respectively as the message and 
the disturbance. Then our known t-process constitutes their sum function. The 
disentanglement of X (t) (which is inversion) is now described in the terminology 
of filtering, in view of this, the question of examining inversion in relation to 
WIENER'S problem of filtering has been suggested to me by Professor M. S. 
BARTLETT in a discussion of my notes on the topic of inversion of a smoothed 
process. As mentioned in 5.2, filtering coincides with inversion if and only if 

I I x *  (t) - x(t)II ~ = mx(Q). 

The next section is directed towards a clarification of the relationship tha t  
exists between the prediction problem for the primary process in our present 
study and the filtering considered by WIENER. Naturally the two corresponding 
integral equations are under suitable conditions variant forms of one another, 
each adapted to the hypothesis made in that  treatment. In the present study 
the resulting process and the weight function ] (u )a re  supposed to be known, 
and our integral equation for ~0 (v) is expressed in terms of the iF (2) and a~ (2) 
which are known. Under suitable restrictions our equation can be made to 
yield N. LEVINSO~'S form of the corresponding equation in WIENER'S theory. 
The restrictions needed are evidently such as will recast the integrals with 
respect to the spectral measure of the t-process into the time average functions 
in the other approach. 

5 . 7 .  Integral equation for prediction 

We shall here concern ourselves with the continuous parameter case, the  
modifications required for the discrete case being mentioned at the end. Suppose 
we take a function ~o(v) of bounded variation and smooth the resulting process 
over its past values with this function to obtain an  estimate X* (t + h) of the 
primary process at the instant t + h, i.e., 

x *  (t + h) = f t (t - v) d ~ (v). 
0 

As before we shall assume that  the entire closed Hilbert spaces of the two 
processes are identical, and derive the condition which the function ~(v) has 
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to satisfy in order that  the norm of the error process may be the least out 
of all the estimates formed by such smoothings of the ~-process over its past 
values. In this connection we shall write 

r = f e-lV~dq~(v), 
0 

while F(2) has the same meaning as hitherto. The minimization of the norm 
of the error process is given by the usual variational considerations leading 
to the equation 

lim d II x (t 
E--~o 

i.e., 

where 

and 

or 

+ h ) - -  f ~ ( t - - v ) d { r  + E~(v )} l l  z = 0 
0 

E [ I 1 -  I3 + I , - i s ]  = 0, 

o o  

I1 = X ( t  + h) f ~(t--v)d~q,(v) 
0 

oo 

I s = ~ (t - -  v) d ~ (v) f ~ (t - -  v) d (5 q (v) ,  
0 

the bars as usual standing for complex conjugates. Using the spectral representa- 
tion of the processes and the condition of the identity of their ttilbert spaces 
the expectation of the first two terms is 

f [ei h~p (~) f e iv~ d ~ q9 (v) ~ q5 (~) f e iv~ d ~ q~ (v)] d ar (~t) 
- -  zr  0 0 

while that  of the remaining two terms is its complex conjugate. Hence we have 

oo oo  t ~  

--oo 0 0 

where the prefix symbol Re stands for denoting the real part, the function 
~p(2) occurring in the above being the same as in 5 .  5. As q(v) is a function 
of bounded variation, and the function ~ (2) is integrable with respect to at- 
measure, the order of integrations can be interchanged by FUBINI'S theorem. 
Then the fact tha t  O q (v) is arbitrary gives the condition which q(v) has to 
satisfy in the form of the following integral equation 

Re[ f f , - , - ,  = 0, 
- - r  O 

v > 0, 
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which we shall refer  to as the "integral equation for prediction", i f  h is a 
positive number. When ~0(v) is a solution of the integral equation , we have 

oo  

I x<t + + f <t-v)d <v)I 
0 0 

oo  oo  

+ e ~ f~(t--v)d(~q~(v) ~ >_ X ( t +  h ) - - f ~ ( t - - v ) d q ~ ( v ) l  2. 
0 0 

Hence the integral equation is both a necessary and sufficient condition for the 
norm of the error to be a minimum. Thus we can state. 

T h e o r e m  5. 7. I] q~(v) is a solution o/ the integral equation o/ ~rediction, it 
constitutes the best weight ]unction to be used in the inverse smoothing to obtain 
X ( t  + h) /rom the values o/ s up to the instant t. 

I f  the processes and the function q~ (v) are taken to be real, the prefix symbol 
Re drops out. 

Let  us now specialize the processes as follows: 

i) The processes be real, 

ii) the resulting process ~(t) be metrically transitive, and 
iii) for each fixed t the process 

(3) = i ( t + 3 ) ~ ( 3 )  

be continuous and stationary in the wide sense with its spectrum con- 
tinuous in the origin. 

With these restrictions we shall rewrite the integral equation for prediction in 
a form in which $'(4) and ar are eliminated by being expressed in terms of 
the time average functions which are taken as known in the other approach. 
As our equation will be presently seen to reduce to tha t  of LEVINSON, we shall 
refer to a mat ter  concerning the notation to prevent a possible misunderstanding. 
LEVINSON follows in the appendix C of WI~.NER [1] a different notation from 
that  of chapter I I I  of the same book." In  this notation the message is denoted 
by  g(t) and the disturbance by [( t )--g( t) ,  so tha t  ](t) is our ~(t). Hereafter  
we follow the notation of the appendix. The first term of the integral equation 
c a n  be written as 

oO oO 

- - 0 o  - - o O  

According to the mean ergodic theorem 

1 T 
1.i.m. f X ( t  + ~)~(3)dv = z(t) 
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is a random variable with variance equal to the discrete spectral mass of the 
process in the origin which is zero by our hypothesis. Hence the limit is almost 
certainly a constant, being the mean value of the process for each fixed t, so that  

x (t + v) = E [ x  (t + v § ~) ~ (~)]. 

Further  on our hypothesis of metric transitivity of the ~-process we have 

1 T 
~ ( t )  = lim ( ~(t + s)~(s)ds = R~(t) 

"T 

almost certainly for all t. 
The same method of recasting as has been employed in the case of the first 

term can be used to obtain the second term of the equation in the form 

Setting 

o o  

f T (v - u) d ~ (u). 
0 

dcp(u) = K(u)du,  

the integral equation becomes 

z(h + v) = f T(v--u)  K(u)du, 
0 

v > 0  

which is equation 2.2 of LEVINSON in the appendix C. 
The method of solution in WIENER'S theory is still capable of being used 

(under the condition of the existence of certain Fourier transforms, cf. appendix 
C) even in the general Case when the processes are not specialized to make the 
expectations previously considered convertible to the time average forms, provided 
however 

dcf(u) = K(u) du 

where K (u) is real. For, we shall show now that  if we employ the same nota- 
tion in the general case as well, we can arrive at  the same form of the equa- 
tion when K (u) is real. Let  

and 

Re{ ~eiaa~o(2)da~(2)} be denoted by  z(h) 
- - o o  

Re{R~(h)} by ~ ( h ) .  

Then the functions Z (h) and k~ (h) are known. We have 
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- - c O  

= Re{ ; r by the integral equation, 

0 

co 

= f R e  {Rr -- u)K(u) du} since K(u) is real 
0 

Oo 

= . f ~ ( v -  u)K(u) du. 
0 

Hence when K(u) is real, we may adopt the same method of solution of the 
integral equation as in WIENER'S theory. 

Turning to the case of the discrete parameter we shall need the following 
changes to be made. The range for 2 is to be altered to ( - -~ ,  :~), and F (2) now 
becomes the familiar P(e-i~), 

while 

r  = fe-i~drf(v) 
0 

stands for a function with the representation 

~ b r  e -irk 
r = O  

The number h will in this case be a positive integer. The sequence of numbers 
required to be constructed in our estimation problem is then given by { b~ }. 

CHAPTER V I  

Some generalizations 

6 .1 .  Inversion in terms of  $ (t) and its derived processes 

In chapter I I I  we have considered the inversion of a smoothing relation in 
the case of stationary processes of continaous parameter. In theorem 3. 2 we 
obtained the necessary and sufficient conditions for each of the processes to be 
a smoothing of the other. This was seen to be applicable.only to instances 
of processes with restricted types of spectra. To enlarge the class of relevant 
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processes, inversion was attempted not as a single smoothing of the given ~(t)- 
process, but as the limit in the mean of a sequence of processes each of which 
was a smoothing of the resulting process (see theorem 3.3). Here we shall 
consider yet another way of obtaining a solution of the primary process as a 
combined smoothing of the resulting process and its derived processes. 

Let /(u) be bounded and the associated F (2) exist and be bounded, and let 
the smoothing relation 

ov 

f x  ( t - -  u ) / ( u ) d u  = ~(t) 

be consistent, and consequently let the given ~-process have derived processes 
d~(t) 

(as explained in chapter I) up to order p. These will be denoted by ~ - ,  

d 2 ~ (t) dP_~(t) 
dt 2 , ". , dt v ].  The present purpose is to seek inversion of the smoothing 

relation to obtain X(t)  in the form 

P d r ~ (t) 
X(t)  = ~(t--v)q~(v)dv + ~br 

r=o d t r 
- - o r  

where ~(v) is bounded and 

~(2) = ; e - i ' ~ ( v ) d v  
- -  o o  

exists and is bounded. Each of the derived processes is given by 

oo 

d~( t )  f eita(i2)rdZ~(2) 
dV �9 

so that, if X (t) has the above representation, then 

p 

X(t)  = eita {~b(A) + ~ b r ( i 2 )  ~} dZ~(2). 

B y  just adopting the same line of argument a8 employed in proving theorem 
3.2,  we can prove the following 

T h e o r o m  6. t .  I /  ~(t) is a given coxtinuous parameter stationary process 
which is continuous in the mean and i] the smoothing relation 

o O  

f x ( t - - u ) ] ( u ) d u = ~ ( t )  
- -  0 o  

is consistent and ne~cessitates the existence o/ the derived processes o/ ~(t) up to 
the order p, then /or obtaining the inversion as 
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~ dr~(t) 
X(t)  = f ~ ( t - -v )  cf(v)dv + br _~ r=o dt r 

it is sufficient that 

i) L2(X) = L2(~) and 

ii) f i l l - - F ( 2 ) { q ~ ( ~ ) +  ~ b , ( i 2 ) r } 2 d a ~ ( 2 ) = O ,  
- -ar  r = O  

where F (,~) has the usual meaning. 

The following example is of particular interest in that it has been already 
considered in connection with theorem 3.3. 

Example: 
Let 

l ( u )  = ~-I~l 

and let the smoothing be consistent. Then 

2 
F ( , ~ ) -  1 + ) 3  

the set Q of real zeros of which is empty. Then the third condition of con- 
sistency gives that 

; 1 [2da~(X)= ; (1 +),2)2da~(2) 
_ ~  I F ( ~ )  - ~  4 

is finite. From this it follows that the ~-process has derived processes up to 
the second order. Let us put 

(v) = 0 so that  r (~) = 0, 
and choose 

b l = 0 ,  and b o = - - b 2 - 1 .  
Then 

2 

1 - -  F (~) {~b (~). + ~ b, (i 2)~} = 0. 
r = 0  

Further since Q is empty, 

mx (Q) = 0, i.e., L2 (X) = L, ($). 

Hence by theorem 6.1 
d ~ ~ (t) 

X (t) = l ~ (t) __ �89 dt 2 

Therefore the sequence of processes 

{ X r ( t ) / -  ~ f ~(t--v)q~r(v)dv} 

constructed in 3. 3 converges in norm to the right side of (B). 

(B) 
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I t  is clear that  we can generalize the smoothing relation itself into the form 

d~X(t )  
f + 

- -  c , O  

and seek inversion in a similar form, viz., 

~ dr~( t )  
X ( t )  = ~ ( t - - v ) q ) ( v ) d v  ' 'u _~r ~=0 dt  r 

Then the conditions will read as 

i) L2 (X) = La (~) and 

ii) f ] l - - { F ( 2 )  + ~a, ( i2) '}  {r + ~b~( i2)~}]2da~(2)  = O. 
- -oo  s = O  r = 0  

6 .2 .  Vector processes 

Suppose (Xr(t)) to be a set of k stationary processes such that  L2 (Xr)• L2 (X,), 
r ~ s. Let k 2 smoothings (Lt~) be given, and let 

L~rXr( t )  = ~ ( t ) ,  

the repeated index r standing for summation from 1 to k. Such a summation 
convention will be used in what follows. We now suppose the vector process 
(~l(t)) is made up of k stationary processes which are stationarily correlated 
with each other. The (~r(t))-process and the k 2 smoothing operators (Lrs) are 
assumed to be known. The,l the problem of inversion will consist in obtaining 
the primary vector process (Xr(t)). I t  is not proposed to go into any details 
of this and related problems here, except to point out that  they are more or 
less analogous to those treated in this thesis. Corresponding to each smoothing 
operator Lrs we have as before a function F(~t) which we shall denote by 
F~,(2). The set of real zeros of F~s(2) is denoted by Q~,, while the set of real 
), for which 

det IF,,  (~) ] = 0 

is denoted by Q. Also with the smoothing operation Lrs we associate the constant 

[~a(~,)l,  the sum of the weights of the smoothing, in the discrete para- 
j z meter case 

Cr, = and 
oO 

f/(,.)(u)du in the continuous parameter case, ],,(u) being the weight 
-~  function used in the smoothing Lrs .  "~ 
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The determinant ]Or,[ is denoted by A. We shall denote the k mean values 
of the given resulting vector process by (M,r). Then the first condition of 
consistency of the smoothing vector relationship is seen to be that  

if (M#r) is not the null vector, A =~ 0. (i) 

The method of 1.9 combined with the assumption of the orthogonality of 
the Hilbert spaces of the components of the primary vector process leads us 
to the relation 

dZ~ (2) = Fs z (2)dZx Z (2) (A) 

from which we have as the second condition of consistency that for each fixed s 

m~s (Q~i' Q~2 . . . . .  Q~) = O, s = 1, 2 . . . . .  k. (ii) 

(Note that  s (being fixed in any equation) is not a summation symbol). 
When ~ e W - - Q ,  we can solve the linear equations (A) and obtain 

dZx~ (2) = O~, (2) dZ~ s (2). 

The third condition of consistency will be that  

W-Q 

is composed of mutually orthogonal processes of finite norm. 

When these conditions are satisfied, we obtain the primary process belonging to 
the Hilbert space of the given resulting vector process uniquely (in the sense 
of norm) as 

Xr(O = f eU'~Grs(2)dZ~s().). 
W-Q 

6.  3 .  Cer ta in  p r o c e s s e s  o f  b o u n d e d  n o r m  

Lastly let us consider the case where the resulting process ~(t) is  assumed to 
be of bounded norm but not stationary, is of continuous parameter, and is 
adjusted to have its mean value function M~(t)= 0 for all t. Further let this 
process have  KARHUNEN'S representation 

oO 

= f a)dZ(2). 
~ o 0  

We take the smoothing relation to be as before 

oO 

f X ( t - -u ) / (u )du  = ~(t). 
- -  OCJ 
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In our at tempts to recover the primary process we have in our previous 
work obtained by use of Fourier transforms a linear relationship between the 
random spectral functions of the two processes from the given smoothing rela- 
tionship. As this is no longer possible, we shall specify the problem of inversion 
as follows : 

to find X(t) of bounded norm and having the representation 

O0 

X(t) = f ~(t, 2)dZ(~). 
- -  o o  

In this specification we have Lz(X)= L2(~ ). Also the mean value of X(t)may 
be taken to be zero for all t. We must  then have 

] ~ (t, ~) ]2 d a (~) bounded. (i) 
- - o 0  

Also from KARItUNEI~'S theorem of 1.7, it is necessary that  

Then 

so that  

~ ] f ~(t--u,~)/(u)du 2 d(~(2) is bounded. 
- - o 0  - - o o  

(ii) 

f = 
- - o o  - - o 0  - -  c ~  

= ~(t) 
o o  

= f fl(t, ]t)dZ(,~) 
~ o o  

f ] fl(t,,~)-- T ~ 2 d(~(~l)=0 (iii) 
- - o 0  ~ o 0  

for all t. 
When (iii) furnishes a solution of a (t, ~t) which satisfies (i) and (ii), it follows that  

o O  

X(t) = f o~(t,~)dZ(X) 
~ o 0  

exists as an element of L2 (Z) = L2 (~), and constitutes a solution of the pr imary 
process. 

Suppose further that  a function ~ (v) of the real variable v can be found 
such tha t  

f ? 
- - r  - - o o  

for all t, and 
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Then it is seen that  

X(t) = ~ ~(t--v) cf(v)dv. 
- - 0 0  

A d d i t i o n a l  n o t e  

The object of appending this note is to make explicit what is meant by 
taking the expectation of the process obtained by  integrating a stat ionary pro- 
cess. Let us s tar t  by considering the case where the s tat ionary process X (t) 
has the mean value zero~ and the resulting process ~ (t)is given by the integral 
smoothing 

~(t) = X(t--u) / (u)du = 1.i.m. f X( t - -u) / (u)du .  
_ _ r  a - - - - ~ - - ~  a 

b - ~ -  ~ 

Then 
c ~  

~(t)= f eitaF(2)dZx(2), 

where the random spectral function Zx(s) is such tha t  E (Zx(s))= 0. In  this 
case E(~(t)) = O. 

We now turn our at tention to the case in which the mean value of the 
process X(t) is a constant Mx ~ O. In this case we define the integral 

a s  

f x ( t - -u )] (u)du  

f (X( t - -u)- -Mx) / (u)du + f Mx. / (u)du,  

where the first of the integrals is the integral of a s tat ionary process of mean 
value zero in the sense already explained, and the second one is an ordinary 
infinite integral. Thus in this case we have 

~(t) = ~ eitaF(2)dZx(,t) + Mx . f l(u)du. 
- - ~  - - c o  

Taking the expectation of both sides we have 

Mr = E (#(t)) = M x .  f / (u) d u. 
- - 0 0  
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