ARKIV FOR MATEMATIK Band 1 nr 32

Communicated 24 January 1951 by H. Cramfr and O. KrLEmN

The primary process of a smoothing relation

By K. NAGABHUSHANAM

34

—

i

Lol o

ot ot ot ot ot ot

A

SRSISISECISRSISIS

PHOL®AS oW~

e S

BES o0 o e wo -

[

Contents

Chapter I. Auxiliaries

Introduction .......... . .. e 422
Notation . ... 425
Stochastic Processes ...........oiiiiiiiiiiiiiiniiiiiieiaaan 426
Hilbert space of a process......... ... ..o, 427
Random spectral function ............... ... ... .. ..o i 427
Stationary processes............. ...ttt 428
Integration of a process ....... ... i 429
Aldemma. ... ... 431
An integral transformation.............. ... ... .o iiiiiiiiia 431
Derivative of a process .......... ... .. i ittt 434
Non-autocorrelated process............c..ociiiiiiiirereerennnnnns 434
Deterministic nature ............ .. ... .. . i, 434

Chapter II. Inversion: Discrete parameter

An outline of the chapter .................... .. .. ... .0 435
General ... ... .. e 436
Earlier work on inversion ...............uiiiiiiiiiiiiniiiaia. 437
Two lemmas relating to spectral measures ..............cc.uuu... 438
On the existence of a stationary solution for X (¢)................ 440
Relation between the Hilbert spaces of the processes ............. 442
Uniqueness of inversion .............c.ouuiinininienenannaananans 443
Linear inversion .................... ..., N 444
Roots of modulus unity ........ ... .. ... 0t 447
Elementary Gaussian processes............oeeeereierurnnenninonns 450
Infinite smoothing ....... ... ... . . . i 451
Covariance sequence of the primary process...................... 451

Chapter III. Inversion: Continuous parameter

An outline of the chapter ............. ..ottt 452
Conditions for obtaining inversion as a smoothing ................ 453
Sequence of processes converging to the primary process.......... 458
Uniqueness of inversion .............cvvuvieirininrnrnenrnnnnnns 462
An orthogonal decomposition ...............cvuiiiiiiireneiann... 462
Covariance function of the primary process ...................... 463
On obtaining X (¢) by smoothing &(t) over its past values ........ 464
On the nature of the arbitrary part in inversion ................. 465

Chapter IV‘. Frimary and resulting processes compared

Mean values, variances, spectral saltuses, and Gaussian nature..... 466
A case of metric transitivity............ ... . i i, 467

421



K. NAGABHUSHANAM, The primary process of a smoothing relation

4.3, Periodicities . ...ttt i e e i e e et 467
4.4, Gaussian Markoff nature ............ ... .0ttt 468
4. 5. Deterministic and non-deterministic nature ..............c.veveee .. 470

Chapter V. Estimation and prediction

5.1. An outline of the chapter ...........coiiiiiii i 471
5. 2. Inversion, estimation, and filtering ................ ... . ... ..., 472
5.3. Mean value of the primary process..............c..iiiiiieinn. 473
5.4. A problem of Frisch ...... ... ..t 474
5.5. The continuous parameter case.................cceurnnoenreonanns 476
5.6. Relation to Wiener’s filtering ............ ... ... .. iiiiiiiin., 476
5.7. Integral equation for prediction .................. ... ... ... ... 477

Chapter VI. Some generalizations

6.1. Inversion in terms of &(f) and its derived processes ............... 481
6. 2. Vector Processes . ........vviriuirnneiiie oo enneeunonanneenans 484
6. 3. Certain processes of bounded norm ................ ... . il 485

CuaprpTER I

Aucxiliaries
1.1. Introduction

The object of this thesis is to study the primary process of a smoothing
relation between two stationary stochastic processes of discrete as well as
continuous parameters. As usually understood, the term smoothing indicates
an operation of adjustment or rounding off. In the present study however, it
is used in a somewhat different sense. When one desires to have certain data,
it sometimes happens that the information is available in the shape of sums
of the required data which may have been ‘weighted uniformly or otherwise.
For example, A. R. PrEst [1] considers taxes as summed data of profits, and
G. H. Orcurr mentions (in the discussion on & paper of D. G. CHAMPERNOWNE
[1]) how water levels are summed data of the amounts of rainfall. The forma-
tion of such sums is commonly described as the construction of moving averages.
Though we treat of similar sums in this thesis, still we refrain from using the
term moving average in this connection, because in the theory of stochastic
processes ‘moving average” has come to acquire a specific significance, standing
as 1t does, for a linear relationship in which the process subjected to the
summation 1is non-autocorrelated. For the sake of compactness, the term
“smoothing” has been chosen to describe the same operation of forming weighted
sums of the values of a process, irrespective of the nature of its autocorrelation.

In recent studies in Econometrics simple stochastic models have been
considered with a view to explain economic fluctuations. Sometimes it happens
that elimination gives rise to a stochastic difference equation for an economic
variate such as the price of a commodity.

If the prices p; at time ¢ in the demand and supply functions are taken to
satisfy the relations
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Xi=oap+ 8+ u (demand)
and
Xy = hypr—1 + kg -+ wr (supply)

(cf. M. A. Girsuick and T. HaaveLmo [1]), then we get an equation of the form
o+ ap—1=&.

Equations of a similar nature occur or are obtainable at times in connection
with other economic models (e.g. Ts. Koopmans [1], L. Hurwicz [1], and G.
H. Orcurr and D. Cocurank [1]. In this connection see also H. B. ManN
and A. WarLp [1]). When the mean value and the variance of the variable
appearing in such an equation can be regarded as more or less constant, we
may idealize the equation into a linear relation between two stationary processes.
In the case when the parameter ¢ ranges over integral values, the relation is
a difference equation and is similar in form to an autoregression. If this rela-
tion is written as

TiarX(t —r) = &(1),

it is called an autoregression if the coefficients (a,) are suitably restricted and
£(t) 1s a non-autocorrelated process. Sometimes In econometric work £(f) is
termed the ‘‘residual” irrespective of the equation being an autoregression or
not. Quite frequently the &(¢)-process is autocorrelated for several reasons.
For example, it might be that in the construction of the model all the relevant
factors have not been taken into account, and hence the residual contains
terms other than the purcly random (or the shock) terms. Or again, as a
consequence of the eliminations carried out, the residual appearing in the
stochastic difference equation for the single variable is the sum of a number
of residuals, which though purely random in themselves have their sums auto-
correlated.

In the light of the foregoing considerations it appears that a study of a
smoothing relation between two stationary processes of general nature is of
particular interest.

In this thesis it is proposed to consider such a smoothing relation between
two stationary stochastic processes. The process which is subjected to the
operation of smoothing or summation is called the “primary process”, and it
is supposed that this process is unknown, except that we have an a prior:
knowledge that it is stationary in the wide sense. The process resulting from
the summation is termed the “resulting process”, and it is taken to be more
or less known. Knowing the details of smoothing, our effort is directed to
getting an insight into the primary process in terms of the resulting process.

To achieve our object we have to effect a filtering of the primary process
as well as we can. This is done in the two-fold manner of inversion and linear
estimation.

The problem of the inversion of a linear relationship between two stationary
discrete parameter processes has been solved by H. WoLp [1] in the case when
vne of the processes involved is non-autocorrelated. In this connection it has
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been pointed out by Woup that the position of the roots of the characteristic
equation of the smoothing relation with respect to the unit circle is of funda-
mental importance for the representation and properties of the solution. In
the case when the characteristic equation has a root on the unit circle, WoLp
[2] has shown that it is possible to find a linear representation of the primary
process by making use of the notion of summability.

In the present study we shall be concerned with the inversion problem for
a smoothing relation between two stationary processes, neither of which is
assumed to be non-autocorrelated. Both the discrete and the continuous para -
meter cases will be considered. It is of interest to mention here that, in the
discrete parameter case, the roots of the characteristic equation play a similar
role as in the cases treated by WoLbp. Accordingly, our results in the discrete
case will be closely connected with the results previously obtained by WoLp.
In particular, when there are roots on the unit circle, we shall have recourse
to methods of summability in norm.

In the continuous parameter case, the roots of the characteristic equation
of modulus unity will be replaced by the set of real zeros of the Fourier
transform of the weight function connected with the smoothing relation. It
will be shown that the process obtained by inversion can, in many important
cases, be represented as the limit in the mean of a sequence of processes, each
of which is a smoothing of the resulting process.

The condition of the identity between the entire closed Hilbert spaces gen-
erated by the two processes occurring in the given smoothing relation will be
met with very frequently in the sequel. This is but natural, since we are
throughout dealing with inversion by means of linear methods, thus trying to
find linear representations of one of the processes concerned in terms of the other.

When the available information of the resulting process is incomplete (e.g.
only the past values are known), we have to construct an estimate of the
primary process at the time instant ¢ or at a later instant in terms of the
known values. We are thus led on to the problem of estimation and prediction.
In this connection we shall see how our problem is related to the filtering and
prediction of N. Wiengr [1]. Also in the case of the discrete parameter we
shall see that the spectral method can be used to solve the estimation of R.
Friscu [1] in the case of a moving average.

When we desire to form linear, unbiassed and minimum variance estimates
of the mean values of the primary process, with a knowledge of the values of
the other process, it is seen that this problem is essentially the same as
forming such estimates of the mean value of the resulting process in terms of
its own values, a topic which has been studied by U. GRENANDER [1].

In connection with a smoothing relation hetween two stationary processes,
we examine the extent to which the resulting process shares the nature of
the primary process in respect of metric tfansitivity, Markoff nature, and
stochastic periodic terms. This has been considered in chapter IV.

Derived processes and non-stationary processes of bounded norm are touched

upon towards the end. :
- The method of analysis employed in this thesis is the spectral representation
of a wide sense stationary process by H. CraMERr [1] and the related theory
of the Hilbert space of a process developed by K. KARHUNEN [1].

The following is an outlinc of the thesis. Chapter I contains an introduction,
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notation, and the auxiliary notions required for the analysis that is to follow
in the subsequent chapters. Chapters II and IIT deal with inversion in the
discrete and the continuous parameter cases respectively. In chapter IV we
compare the primary and the resulting processes. Estimation and prediction
form the subject matter of chapter V, and in the last chapter we consider
some generalizations.

1.2. Notation

The following explains in a general way the notation used in the thesis.

¢t is a real variable, usually spoken of as time, and ranging over integral values
in the case of the discrete parameter and all real values in the continuous
parameter case, ’

X (t): the primary process,

£(¢): the resulting process,

Zx(4), ox(A), Mx, Rx(t) stand respectively for the random spectral function
in the spectral representation of X (¢), the spectrum of X (¢), the mean value
of the X-process, and the covariance function of the X (f)-process. (Here A
is a real variable ranging over values in W, where W stands for the range
(—m, ) in the discrete parameter case and (— oo, co) in the continuous
case). A similar notation denotes the corresponding quantities connected with
the &-process. However, in the preliminary stage, when we consider only one
stationary process, it is needless to show by a suffix the process to which
the expressions refer, and as such, the suffix is dropped.

E stands for the operation of taking expectation with respect to the probability
measure put upon the space of random functions.

L stands for the smoothing operation, and L1 for the inverse operation, while

Ly(X; —oco,t) stands for the closed Hilbert space of the linear manifold of
random variables constituting the process X (f) up to the time instant ¢.
Also we write shortly Ly (X) for Ly(X; — oo, oo).

{a,}: the sequence of weights used in the smoothing in the discrete case.

f(u): a bounded function of the real variable « such that

[+
F) = [eiv f(u)du

exists and is bounded for all 2. Sometimes f(u) is supposed to belong to
the Lebesque class L; on (— oo, o0). It is used as the weight function in the
smoothing in the continuous parameter case.

P(e " = Za,e " in the discrete case

F(A)=1and

f e %2 f{(u) du in the continuous case.
—oo

Q: set of real zeros of F(1).
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Though @(4) stands generally for fe*"“ @(v)dv, it is not uniformly so. Hence
the meaning must be sought in relation to the context. ¢(v) is supposed
to be bounded, and @ (Z) is supposed to exist and be bounded.

A bar above an expression stands for the complex conjugate.

Xi(t) and X,(f) are two stationary and mutually orthogonal processes into
which X (t) can be decomposed. X, (¢) is uniquely determined, while X, (?)
is more or less arbitrary.

mx (Q) = fdax(l), and me(Q) has a similar meaning.

Q
Re stands for the ‘“‘real part of”.

1.3. Stochastic processes

Any process that is analyzable in terms of probability distributions in a
functional space is generally referred to as a “‘stochastic process”. When we
treat of random variables in a finite number of dimensions, we consider a
variable point in a Euclidean space R, with a probability measure defined on
it. When we consider an infinite dimensional space, the variable will in the
two most important cases have either a denumerable number of coordinates or
a continuous infinity of them. In the former case, a point of the space under
consideration will be an infinite sequence, whereas in the latter, the points of
the space will be functions of a continuous variable. In either case ¢ will
stand for the real variable (which will be referred to as the time variable) and
its range of variation corresponds to the number of coordinates which a variable
point of our space is to have. Thus we regard ¢ as taking an infinity of
integral values when the space has a denumerable number of dimensions, and
as taking the values of a finite or infinite interval when the dimensionality is
the continuous infinity.

From a fundamental theorem of A. KorMogoroFr [1] it follows that a
probability measure is uniquely defined on all the Borel sets in the functional
space, when the probability of all finite combinations of arbitrarily chosen
interval sets is known in a consistent manner. Such a P-measure is entirely
adequate in the denumerable case. In the case of the continuous infinity the
P-measure defined on the Borel sets of the function space leaves out many
interesting probabilities undetermined. In this connection it is proved by
J. L. Door [3] that a Py-measure can still be defined on a smaller sample
space restricted to contain the appropriate functions, provided that the outer
measure of the chosen subset of functions is unity (see also H. Cramer [2]).

A stochastic process may then be written as a function of a real variable
¢t and a random variable w connected with the fundamental probability field
with which we are concerned. Usually the variable @ is dropped in writing,
and the process is spoken of as a random function X (f). An element of the
sample space is a sequence or a function as the case may be, and is called a
“realization”. Due to the dependence of the process on ¢ and w, it can be
regarded as an ensemble of functions or as a one-parameter family of chance
variables. (For an exposition see H. Cramgr [2], J. E. Movar [1], U. Gre-
NANDER [1]).
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1.4 Hilbert space of a process

If X () is a stochastic process, we shall consider the linear manifold containing
all elements of the form
n

g = ZCTX<tT)>

r=1

where the ¢’s are complex numbers and n is any arbitrary positive integer.
Following Cramr and KarHUNEN, we define the inner product of two elements
g1 and g, of this manifold by

(91, 92) = fglgzdp

which being the expectation of g,g, is denoted by E (g, gs). We call -+ VE(gg)
the norm of the element g and denote it by |¢|. If

lim ||gn — gl = 0,
n—o0

we say that the sequence {g,} ‘“‘converges in the mean” to g as n tends to
infinity, and write
l.i.m. gn = ¢.

H—>00

We shall sometimes speak of convergence in the mean also as “convergence in
norm”. The above linear manifold closed with respect to convergence in the
mean is termed the “closed Hilbert space” of a process. If only the values
of X(#) occurring up to the time instant ¢ are considered, the corresponding
closed Hilbert space is denoted by

L2(X7 — o0, t)y

while L, (X) will be used to denote the entire closed Hilbert space, the para-
meter ¢ ranging over all the possible values.

1.5. Random spectral function

Let W be a set of elenients (1), and let o(s) be a measure defined on the
subsets. (s) of W. Let Z(s) be a random set function defined on the elements
of W such that if s, and s, are two disjoint sets

Z (1) + Z(sy) = Z (81 + s3).
Without loss of generality we may assume
E[Z(s)] = 0.

If for any measurable sets s; and s,

E[Z (81) Z (s3)] = 0 (51" 52),
427
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such a set function Z(s) is called a “random spectral function”. The process
Z(s) is also referred to as an orthogonal process. In our later considerations
W consists of the interval (—m, @) or (— 00, 00) on the real axis. In such a
case we shall denote the random set function corresponding to (—z, 4) or
(— oo, A) (as the case may be) by Z (1) (see 1.9).
If for all s in W

E|Z(s)]

is bounded, then the process Z(s) is of bounded norm, and o(W) is totally
finite. For a process of this type one can define following Karumunen [1] the
integral

[iwazw
w

as the limit in the mean of the corresponding Riemann-Stieltjes sums, if f(4)
is any complex valued function of the variable A such that

[t Eda2)
w

is bounded. (This definition can be extended to the case where W is the sum
of a denumerable number of sets each of finite g-measure.) The following
theorem of KARHUNEN [1] deals with the representation of a process in the
form of an integral of the type just mentioned.

Suppose that X (¢) is a process with mean value zero and that its covariance
function has the representation

R(t,u) = E(XOXw) = [t )f(u, Nda(A),
w

then there exists a random spectral function (or an orthogonal process) Z (s)
such that the process X (¢) has the representation

X() = [, )dZ Q).
w

1.6. Stationary processes
Suppose that the stochastic process X (¢) is such that

E(X®) =M, a constant,
and

E(X®—M)(Xw— M) =Rt u)

is a function of ¢—u only, say R(t—w). Then X (¢) is said to be stationary
in the wide sense. As against this we have the strict stationarity of a process,
when all the finite dimensional probability distributions are invariant with
respect to each translation on the time axis. We shall generally concern our-
selves with processes which are stationary in the wide sense. Let R{z) be the
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covariance function of a (wide sense) stationary process of continuous para-
meter, and let R(¢) be continuous at the origin. Then it is continuous for all
¢, and X (¢) is continuous in the mean. From a theorem of A. KHINTCHINE [1]
we have ~

R(t) = femda(l),

where o(A) is real, bounded, and never decreasing function of 4 which is called
the “spectrum” of the stationary process X (f). We have
o (+ 00) —a(—o0) = R(0) = ¢

Under these conditions

o0

X = [et4dZ(d) -

in accordance with Karhunen’s theorem mentioned in 1.5. This is Cramér’s
spectral representation of a stationary process (see H. Cram#r [1]).
For a stationary process of discrete parameter

R(n) = fne"“da(l)

—n

where the spectrum o(4) is real, bounded, and non-decreasing. Then

X (n) = f ¢ dZ (2).

1.7. Integration of a process

Let a process X (t) be such that the inner product of X (f) with any given
element of its Hilbert space is a Lebesque measurable function of ¢£. Following
U. GRENANDER [1], we then call the process as K-measurable. If § is a measur- .
able subset on the real axis, and

E(ZX®)

for Z € Ly(X) is Lebesque integrable over S, and if

1 f TP
SUp T EZX(t)dtl<00,
Yo 2] l N

ZEL(X)
it has been shown by KarHUNEN [1] that there exists a unique element I in
Ly (X) such that
E@zD) = [E@ZXe)dt.
8

429



K. NAGABHUSHANAM, The primary process of a smoothing relation

Then the integral of X () over the set S with respect to ¢ is defined by the
relation

I-[X@at
N

If g(¢) is an ordinary function of the real variable ¢, one can in a similar
manner define

[o X @,

provided g¢(f) satisfies suitable conditions. If further ¢(f) is continuous, and
X (t) is continuous in the mean, this integral will be the same as the integral
in the sense of Cramér (see U. GRENANDER [1]) which is defined as the limit
in the mean of the corresponding Riemann sums.

We shall be interested in Chapter 11T and subsequently in integrals of the form

oo

[X(t—w)f(u)du = @),

— xR

where X () is a continuous parameter stationary process which is continuous
in the mean, and f(u) is a bounded function such that

(=]

F@) = f e~ fuydu

—o0

exists and is bounded. (We shall sometimes consider the case where f(u)
belongs to Lebesque class L; on (— oo, o0)). For each fixed ¢ for which the
above integral £(f) exists, we get a chance variable. Thus when f(u) is such
that &(¢) exists for all ¢, we have the process £(#). In this connection, we shall
consider the following theorem of Karmunen [1].

If the function «(¢, 1) is measurable on T X W, t€T, 4 € W, then the random
function '

X(t) = [a(t,)dZ()

w

is measurable. T being a measurable subset on the real axis of u, X (u) is
integrable with respect to v on 7 if and only if

[ etu, ydul da() is bounded (4).
w T -

Then
[X@ydu= [([o(u, 2)du)dZ ().
w T

T

Reverting to our integral £(t), we have
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f(u) X (t—w) = f(u fe‘(‘ WidZ (2)

oo

= [J(wet-1dZ (1),

—00

o0

= f‘P(u, A dZ(2) when ¢ is fixed.

— o0

Also

fl f‘P(“,i)duFdG f| fe’“ —tudj(y dul do(A _fwlF(l)FdG(l)

oo —o0 —00 —00

Since F(2) is bounded and o (W) is totally finite, being the spectrum of a
stationary process, we have for the process

o0

f) X (¢—w) = [ o(u, HdAZ ()

— o0

that .the function ¢(u, A) satisfies the condition (4). Hence the process
f{u) X (¢ —u) 18 integrable with respect to u over (—oo, o). Then

ff X(t—u du—f [fewe—wﬂf( ydu]|dZ(A) femF YA Z(3).

— 00 — 00

From this relation it follows that the &-process is stationary.

1.8. A lemma

It Z(s) is an orthogonal process with the associated measure o(s) on the
subsets s of the elements (1) of W, and if g; () and g, (1) are complex valued
functions of the variable 1 such that each of them is quadratically integrable
on W with respect to the o-measure, then we have from KARHUNEN [1] (see
his formula (5.13) on page 39) that

E[fo(0)d f% = [0 D) gs () do(A).
w

w

This lemma is still true if the set W is replaced by any subset s of W, and
it is of frequent application in our subsequent work.

1.9. An integral transformation

This section is devoted to showing that if X (t) and &(t) be two stationary
processes continuous in the mean which are related by '
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[ X ¢—u)fw)du=E@), (A)
and if f(u) is bounded, and

fe—i“‘f(u)du. = F (1) exists and is bounded, (B)

then
[dzZe(h) = [F(HdZx ()
5 .8
for every Borel set S.
It may be remarked that an exactly analogous relation holds in the case of
the discrete parameter processes.
In what follows we shall denote the expressions corresponding to the two
processes X (¢) and £(¢) by the suffixes X and & respectively.
From the spectral representation of the X-process we get by inversion

—lut__ p—imt

. e
Zx(n) — Zx(u) = Lim. [ *Z5=E X (0ar.
-7

The right side exists as the limit in the mean (see J. L. Doos [1]), and the
chance variable Zx (1) has zero mean. If (u;, up) is a continuity interval of ox (4),

E|Zx (us) — Zx (1) [P = 0x () — 0x (12)- (©)
Following DooB we may define
Z(u) = Z(u—0),
and ,
o(p)=0a(p—0)

at a point of discontinuity. Then the relation (C) holds good for all x; and u,.
From the inversion it follows that for a stationary process X (¢)

Ly (X) = Ly (2). (D)

The results (C) and (D) are true for discrete stationary processes also, and
the former can be obtained in a similar manner by using Fourier series instead
of Fourier integrals.

Let y(u1, pz) stand for Zx(ug) — Zx ().

hen
Ely (1, po) - Ze (14) — Ze (ps)]
we-‘@’lgt —— e—tmt we—w.u__e-—w,u
. 1 v we-—w,t J— e—m,t ew.u_ e ———
= «Iy_f’f f " E(X(t)é&u))dtﬂluT
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Now
E(X®éw) = E(X® wa(u—v)f(v)dv) = E(fwei“dZX(A) feiwﬁ(z)dzx(z))
using the result at the end of section 1.7.
By lemma 1.8 this becomes
fw“‘ WiF () dax(A).

Thus
E (y(py, o) Zelpg) — Ze(py)

P [ eimt — gmimt gimu_ gimu( [ —
z%ﬁffe " te mt gin ue’i_u{jei“““)‘F(l)daX(l)}dtdu

—00 —00 —
F r o ( ) Lo (A~ pg)
1 Gtl—m) _ itld—m) e tuldp) _ p—tu(dpy
= Ndox(A) | —————-dt- ~du
4 7° f x(4) t u
-— 00 — o0 — o0

~ [FR)dox (),

this last integral being taken over the common part of the two intervals
(1, #2) and (ug, pa). 1f ur is any discontinuity point, it will be replaced by
—O0 in our work, and the result is still true. From this relation for any
interval, we get that it is true for all Borel sets.
The conditions corresponding to (A) and (B) in the discrete parameter case
are respectively

Sa,X(t—r) = £() (A)
and
Sare " = F(4), (B,

where the series Xa, is convergent. )

Let now s; and s, be any two Borel sets, in the interval W which is (— z, )
in the discrete parameter case and (—oo, o) in the continuous parameter case,
and let

y=[dZx(})
Then "
E[ydeg )| = fF )dox(4)
- E[fdzx(x)fF(z)dzx(z)]
- E[u(F)dzZz ).
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Also the set of elements (y) from a basis in Ly(Zx) = La(X) to which L, (&)
belongs by virtue of the relation (A).
Hence

[dzey = [F(3)dZx(3).

This we write as
dZ:(2) = F(A)dZx (2), (E)
from which we obtain
dog(d) = |F (W) dox (). (¥)

These last two results are of fundamental importance in the work that follows
in subsequent chapters.

1.10. Derivative of a process

We define the strong derivative of a process at the value ¢ as

Lim

X(it+h—X(1)
h~>0- h

when it exists. It is alternatively known as the mean square derivative also
(cf, J. E. MovaL [1]). As we shall exclusively deal with convergence in the
mean. it is not proposed to discuss the idea of weak convergence and weak
deriviitive. When the derivative exists for all ¢, we can construct the derived
process of X (¢). This belongs to L, (X).

1. 11. Non-autocorrelated process

In the discrete parameter case a special type of stationary process is the
non-autocorrelated process, characterized by its covariance sequence {R (n)} which
is such that only R(0) is non-vanishing. For such a process the spectrum is
given by do(d) = CdA, where C is a constant.

If
goa,X(tmr) = &(t),

and £(f) is a stationary non-autocorrelated process, and all the roots of the
characteristic equation X a,Z7 " = 0 le inside the unit circle, then the relation
is known as an ‘“‘autoregression”. If however X(f) is a stationary and non-
autocorrelated process, then £(¢) given by the above equation is known as a
“moving average process’ generated by X (¢).

1.12. Deterministic nature

If X(¢) is a stationary process, we may classify it into two main types
according to the manner in which Ly(X; — oo, ) unfolds with ¢. If two
different values ¢; and ¢, exist such that
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Ly (X; — 00, ty) = Ly (X; — 00, ty),

then as a result of stationarity, the Hilbert space at any instant is identical
with that at any other instant, so that it is non-developing with ¢ (see KARHUNEN
(2] and O. Hawner [1]). The values of X (#) occurring up to any instant form
a basis for any element belonging to the entire Hilbert space L;(X). No new
elements of positive norm get added as time flows. Such a process is termed
a “‘deterministic process’.
The analytical conditions for a stationary process to be deterministic in this
sense is that
|log o’ (4)]

1 dh=e°

14

where W is (—m, #) for the discrete parameter case and (— oo, co) for the
continuous parameter process, and o’ (1) is the absolutely continuous part of the
spectrum.

If for a stationary process ¢’ (1) vanishes in an interval, the above integral
is obviously divergent, and the process is deterministic. We shall have occasion
to consider such processes later on.

When this is violated the process is termed ‘‘non-deterministic”’. The condi-
tion for non-determinism is then obviously

([ log o"&)]

g1+ 22
w

dA << oo,

In this case in each interval of time new elements of positive norm are added
to the Hilbert space which thus goes on developing with time.

CuaprteER 11

Inversion: Discrete parameter

2.1, An outline of the chapter

In this chapter we shall study the inversion of a smoothing relation be-
tween two wide sense stationary discrete parameter processes. For the most
part we deal with the case of a finite smoothing.

A set of necessary and sufficient conditions is obtained for a stationary
solution for X (f) to exist when the weights and the spectrum of the resulting
process are given. When these conditions hold, we say that the smoothing is
“consistent”. In our study it is assumed that these conditions of consistency
are satisfied.

Given the weights, a certain set ¢ is defined on the real axis. If this set
Is empty, or the spectval mass of the primary process in it. vanishes, we have
that Ly (X) = Ly (£). 1f not, Ly () is a proper subspace of L (X).
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When @ is empty, the solution for the primary process is unigue. When @
is non-empty, there exists an infinity of solutions for X (¢), and of these there
is but one which belongs to L, (&), and the spectral mass of this process in
the set @ is zero.

The set @ corresponds to the roots of modulus unity of the characteristic
equation (cf. H. WorLp [1]). When @ is empty, the position of the roots in
relation to the wunit circle determines the nature of the linear representation
of X{t) in terms of the values (past and future) of &(7).

The difference between any two solutions of the primary process (in the
case of finite smoothing) consists of stochastic periodic terms of the form
WE eith. .

If @ is non-empty and the spectral mass of the &process vanishes in an
interval or a sum of intervals to whose interior @ belongs, a linear represen-
tation in a summability sense can be given to X (¢), provided the roots on
the unit circle are not repeated.

If the spectral mass of £(¢) vanishes only in the set @ and not in inter-
vals covering it, we can construct a sequence of processes { X,(f)}, each of
which has a linear summability representation in terms of £ (¢), and such that
as r tends to infinity X,(f) converges in the mean to the primary process
belonging to L, (&).

Again, when @ is non-empty, the resulting process is necessarily autocor-
related. The order of smallness of the spectrum of the £-process in the neigh-
bourhood of @ is determined by the third condition of consistency.

The result of applying the same smoothing to the covariance sequence of
the primary process is also obtained at the end of the chapter.

2.2. General

Let X (t) be an unknown wide sense stationary process of discrete para-
meter, and let a sequence of numbers aq, ay, ..., an, and a wide sense sta-
tionary process £(¢) be given. Let L stand for the linear operator

3

Il

LX) = 0arX(t—r).

T

We describe this linear operation as smoothing in this thesis, and the se-
quence {a,} as the ‘“weights” of smoothing. Sometimes for the sake of ex-
plicitness we write the operator also as L : {a }. Writing :

LX) = &),

we call X (¢) the primary process, and £ (f) the resulting process. Qur object
is to study the unknown primary process in terms of £(¢) and {a,}. If the
number of weights in the smoothing is infinite, it is clear (by taking the ex-
pectations of both sides) that X a, is to be convergent. We shall presently
see that besides this, the spectrum o¢(A) of the given &-process and the weights
{ar} must be inter-related in two other ways to validate our assumptions.
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The case where the number of weights is infinite is treated towards the
end of the chapter. Until then the smoothing to be considered will be by
means of a finite number of weights. In what follows we generally make the
inconsequential assumption that ag = 1. When the smoothing relation is an
autoregression, the £-process is non-autocorrelated, and

n
"+ Y aZv =0
r=1

is the well-known characteristic equation connected with the stochastic dif-
ference equation (cf. H. Wowp [1]). It will be seen that in the general case
as well one encounters the same equation; and as such, we shall in all cases
construct the same equation which may still be called the ‘“‘characteristic
equation of the smoothing relation”.

As already mentioned in chapter I, no assumption of the autocorrelatedness
will be made with reference to either process when we discuss the problem
in general. Let the operator inverse to L be L~!, so that

LX(t)=£&(), and D*ﬂn%Xm.

Then the following questions naturally arise:

1) Can L1 always be found?
) When is L™ in the form L=1: {b,}?
iii) What can be said about the uniqueness of L~1?%
) When does the suffix s in the sequence of weights in the inverse operator

range over only positive integers, thus involving only the past values of
the process?

Before addressing ourselves to a consideration of these and other related
questions, we shall briefly summarize the nature of the earlier work up till
now bearing upon this problem of inversion.

2.3. Earlier work on inversion

The following problem, formulated by H. Cramfr in 1933, has been dis-
cussed by H. WoLp [1] in the discrete parameter case:

given the covariance sequence of a stationary process of moving average,
to find the primary process as a linear combination of the values of
the other process.

In the study we are now going to make we take the weights of smoothing
as known. Then obviously we shall not be concerned with the questions relat-
ing to the various alternative ways in which the weights may be chosen for
a given covariance sequence. However, in view of what has been remarked
earlier regarding the characteristic polynomial equation in the general case as
well, despite the fact that we do not restrict ourselves to examining only the
moving average process, the discussion on the position of roots of the charac-
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teristic equation with reference to the unit circle has naturally points of
conta[ct with the treatment of the moving average case by H. Worp [1]
and [2]. .

When there is a root on [Z| =1, exact linear inversion fails, a fact which
has led H. Worp [2] to consider the summability aspect and R. Friscu [1]
to consider the question of estimation of X (¢} linearly in terms of a specified
number of values of the resulting process.

Lastly we refer to some remarks of K. KaruuNen [3]. He considers a
continuous parameter stationary process smoothed over a finite number of its
values at equi-distant time instants to yield the resulting process, and makes
the observation that the primary process can be uniquely recovered if the
characteristic polynomial equation has no root of modulus unity.

2.4. Two lemmas relating to spectral measures

Given a finite smoothing as
L:lag=1ay,0as,... 0n},

and also the wide sense stationary process £(f) arising out of the smoothing
of the unknown wide sense stationary process X (¢), we proceed to find L~!
so that the primary process is obtained as X (t) = L~*£(#). To achieve this
end, we apply CrAMER’s spectral representation of a wide sense stationary
process to both the sides of the smoothing relation. If Zx (1) and Zg(A) de-
note the orthogonal processes in the spectral representation associated respec-
tively with the X- and the &-processes, we have

n

-
n

= ZO a X (t—7)
- g"o [arénrd Zx ()

= i’ et P(e~ydZx (A)

where

P@2)=3 aZ.

We have seen in chapter 1 that from such an integral relationship it fol-
lows that

P~ dZx(A) =dZ:(4)
in the sense that the integral of both sides over any Borel set in (-- 7, )
is the same element in L, (X). If we suppose that there exists another func-

tien 4 (4) such that
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y()dZx (3) = dZ:(2),
then
[ty —PH1dzx () = 0.
S

The necessary and sufficient condition for this is that

[le () — PP dox () = 0.
S

Hence y () differs from P (¢~**) possibly only over set of ox-measure zero.
Let the interval (—m, @) be denoted by W and divided into two sets as
follows: the set @ of the real zeros of

F(2) =P,
and let the complementary set be W —¢. Then we write

X()= [ é"dzZy )+ [ dZx ().
Q

As a result of the orthogonality of the two parts it follows that

WX || [ edzed| || [éraze ]
W@ Q

Writing nx (@) for the square of the norm of the second term on the right
side, we get

my (Q) = [dox (2) = 0.
4]

Lemma 2.4.1. It is necessary for the consistency of the smoothing relation
that the spectral mass of the E-process wn the set Q vanishes.

This follows directly from the fact that as a consequence of the smoothing
relation and the nature of the set Q,

me (@) = lle ¢ dz: ()|’

~

_ ”Qf ¢ P (e~ d Zx (A) “2

1P
Q

Lemma 2.4.2. Every set of 2 in (—m, &) of ox-measure zero is of as-
measure zero, and every set disjoint from Q and of cemeasure zero is also of
Ox-measure zero.
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Proof:
We have ‘
| F(A)Pdox (A) = do:(4)

where
FA =P =3 ae
r=0

and 1t is obvious that if

my(s) = [dox () =0,

me (s) is likewise zero. To prove the latter part of the lemma, we proceed
thus.

Let P be a non-empty set disjoint from @ and of oe-measure zero. Con-
sider the sequence of sets {P,} such that P, consists of all points 1€ P
satisfying

|F @)=

<

For every A€ P we can find an r, such that 1 is in sets {P,} for all r > r,.

In fact, if this were not possible for a certain i € P, we should have | F (1) | <%

for all r, and hence F (1) = 0, contrary to our hypothesis that P is disjoint
from @. Thus { P,} is a non-decreasing sequence of sets tending to the limit-
ing set P and accordingly

mx (Py) - mx (P)
as r - oo, But

mx (Py) = [dox (D) <7 [dog(2) = r2me(P) = 0.
PT PT
Hence
mx (P) = Q. .
2.5. On the existence of a stationary solution for X (z).

We shall consider under what conditions there exists a stationary process
X (¢) satisfying the smoothing relation.

Theorem 2.5. For a stationary proczss X (1) to exist as a solution of the
smoothing relation, it is both necessary amd sufficient that the following *‘condi-
tions of consistency” be satisfied by the spectrum of the given &-proczss and the
weights of smoothing :

1) Xar#0, whenever Mg 7# 0,
1) me(Q) =0, and

i) ‘/ Tﬁ”zdo& (1) < oo,
w-qQ

where W is the interval (— =, 7).
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Proof:

a) The conditions are neczssary.

We note that condition ii) has already been shown to be necessary (lemma
2.4.1.). Further, conditiop i) is necessary because

M:=E[((0)] =E[Sar X (t—7)] = Mx (S a),

where My is constant. When the first condition holds good, we can write
the smoothing relation as

Sa{X(—r)—My)=E@)— M.
Then '
FQ)dZx(A) = dZe(A)

from which we get that d Zyx (1) is given by

b

a2z ()= 535

dZ¢(2)

for A€ W@, and for A1€Q, dZx(A) is subject to the conditions that Z (s) is
to be an orthogonal process of bounded norm in the set @, and

EldZx(3)dZx ()] =0
for A€Q, ue W—¢. Then
ox =1 XOIF= [dox() + [dox(d)
wW—Q Q

1
|F @)

=

d oe(A)
wie

which is to be bounded if a stationary solution X (f) is to exist.

b). The conditions are also sufficient.

In view of the first condition we can assume without loss of generality that
the processes have mean value zero. Then we define two processes X, (¢) and
X, (t) as follows:

. 1
— itA__—
X () ¢t @ dZe (),
w-Q .
and t

X, (1) = [édZx (})
Q
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the norm of which is finite but arbitrary. By the third condition it follows

that
| X1 (2> < o0,

so that X, (1) exists as an element of L, (£). Subjecting the process X, (¢) + X, (¢)
to the smoothing operation, we have

.

LI + X0l = [0 F 0 5

~ [ édz: ()

w-Q

dZs(A) + [ G F () d Zx (A)
)

= f é'*d Zs (A) by the second condition
W

= £(1).

Thus X (f) = X;(¢) + X5(¢) is a solution of the primary process. Since X (f)
is clearly stationary, the conditions are also sufficient.

We assume in our work that the three conditions of consistency given in
theorem 2.5. for a stationary solution to exist are satisfied.

We may note at this stage that

i) LX;(t)=&(), and
i)y LX,(t) =0,

so that when @ is non-empty, there exists an arbitrary part X, (f) (which
may be called the “complementary part”) in the solution cf X (¢).

As we are considering only the case in which the smoothing contains a
finite number of weights, the set @ consists of discrete points. Hence it fol-
lows that, if 4;, 43, ..., 4, are the points constituting @, we can put

»
X, (8) = D wpetht.

=1
(See also chapter IV). The process X, (¢) is deterministic.

In view of lemma 2.4.2, we see that if ox (4) has any saltuses in @, they
are no longer saltus positions of oz (4).

2.6. Relation between the Hilbert spaces of the processes
We shall next prove
Theorem 2. 6.
[mx (@) = 0]= [Ly (X) = Ly (£)],

and
[mx (Q) > 0]=[Ly (&) is a proper subspace of Ly (X)].
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Proof:
Case (1): mx (@) = 0.

From the relation (D) of chapter I, we have

Ly (X) = Ly (Zx).

Since my (@) = 0. and for Ae W —Q, dZx (}) = F—l(l—) dZs (1), it follows that
Ly (Zx) = Ly (Z).

But
Ly (Z) = Ly (8),

80 that

Ly (X) = Ly (§).
Also Ly (X) o Ly (&) by the smoothing relation. Hence

Ly (X) = Ly (§).
Case (ii): mx (@) > 0.

In this case
X () = X1 () + Xy (0),
where

I X5 (t) |2 = mx (Q) > 0.

Thus X,(¢) is a non-null process. Further by Lemma 2.4.1, the X,-process
is orthogonal to L, (Z:) = L, (£). Hence

Ly (X) # Ly (8).

Therefore L, (&) is a proper subspace of L, (X). )
The converse inferences contained in the theorem are clearly true in view
of the exclusive nature of the two alternative possibilities.

2.7. Uniqueness of inversion

The question of uniqueness of inversion is closely related to the content
of the spectral mass of the X-process in the set Q.

The operation of smoothing may be regarded as a mapping of the elements
of L;(X) on a subspace of itself, viz., the elements of L,(&) which belongs
to Ly (X) by virtue of the smoothing relation. Then it is but natural to con-
jecture that for uniqueness of inversion the transformation must carry the
whole of L,(X) into its entirety, and not into a part of itself. We have just
seen in- theorem 2.6 that this geometrical property is in turn related to the
spectral content of the X-process in the set . Bearing out the conjecture,
we have
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Theorem 2.7. In a consistent smoothing the inversion s unique when the
set @ +s empty. If Q is non-empty, the inversion problem has an infinity of solu-
tions. Out of these solutions, there exists one and only one (in the sense of
equivalence n norm) which belongs to Ly (£), and only for this process s
mx (@) zero.

Proof: When @ is empty,
T . 1
— it
X () { e F(l)ng(l).

—T

In this case mx (@) = 0, and inversion is uniquely given the above formula.
If @ is non-empty,
X () = X5 (0) + X, (1),

where || X, (¢)]| is arbitrary and X, (¢) is given by

1
F)

X, = | 62— dZe(2).

w-Q

Since X, (t) is of arbitrary norm, we have an infinity of choices. When we
choose X,(f) as the null process, X () is uniquely determined as X; (f) which
belongs to L,(£). Only in this case are the two Hilbert spaces identical and
mx (@) = 0. :

2.8. Linear inversion

We shall have to consider the real zeros of
F(3)=P(e

in connection with linear inversion of the smoothing relation. A zero a« +¢f
can be classified into one of the three types according as f =0, or >0, or
f <0, ie., according as the zero is real, or lies in the upper half plane, or
lies in the lower half plane. The set of real zeros is denoted by Q. If we
consider the Z-plane, where Z = e—%4, the real axis in the A-plane is mapped
on the circle |Z| =1, and the zeros in the lower and upper half planes be-
come respectively the roots of P(Z) =0 inside and outside the unit circle,
|Z|=1. The set @ in the A-plane corresponds to the roots on |Z|=1. We
shall frequently express our statements in terms of the roots of the charac-
teristic equation which are the reciprocals of the roots of P(Z) = 0. The set
¢ continues to correspond to the roots on the unit circle of the characteristic
equation, while the roots of P (Z) = 0 inside (and outside) the unit circle be-
come the roots of the characteristic equation outside (and inside) it.

.In any attempt to obtain the primary process.as a linear representation in
terms of the values of £(¢) the position of the zeros of F (1) with respect to
the real axis in the A-plane (and hence the position of the roots of the char-
-acteristic equation in relation to |Z| = 1) plays an important role.
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We have seen that X; (¢) is almost certainly X (£) if mx (@) = 0. Otherwise
it forms the best estimate of X (¢), viz., as much of X (¢) as belongs to L, (&).
The problem of inversion is then naturally to obtain X, (¢), since we are given
only the &-process. A special case of inversion is linear inversion in which
X, (¢) is to be obtained as X b, & (¢ —r).

We start by examining the case when the equation P (Z) = 0 has no roots
inside or on the unit circle. Then there exists a positive constant R > 1 such
that for values of the complex variable Z lying inside |Z| = R the function

1
F(Z) can be expanded as a Taylor series. Thus

> it I
X () = {e B 440

o
it

E = d
= > [étbieiitdZe(A) + [ " Rxd Z: (D),
=0 ", —x

where
IRKl—>0 as K —»> oo, .

The first: term becomes
K

E E(t—9),

while

“ fei“RKdZ,: (A) ”2 = fn|RK |2d o¢ (4) < constant - | Rg |2

The constant being independent of K,
. v

X —3bee—ilE= [ |RaPdo:)

tends to zero as K — oo, Hence

X (f) = lim. Zba-f(t—i)

K—>00 j=
which we denote by writing

1
P(z)

can be expanded on the unit

The b’s are the coefficients appearing in the convergent expansion of

in powers of Z. It is then evident that if P (7 ( Z)

circle in a Laurent’s series, X (f) will have the corresponding linear representa-
tion in which j will range over integers positive as well as negative. The roots
of the characteristic equation being the reciprocals of the roots of the equation
P (Z) = 0, we have the following
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Theorem 2.8.1. If X (t) and &(t) are any stationary processes connected by
a consistent smoothing relation, and if the characteristic equation has all its roots
inside the unit circle, the primary process X (t) has a linear representation en-
tirely in terms of the past values of & (2).

This result is known in the cases treated earlier by Worp [1]. If, however,
all the roots of P(Z) = 0 lie inside |Z| = 1, then it is seen that

2 bi&(t—1),

—.—OO

and when the roots lie both inside and outside but not on |Z| =1,

(==}

X = 2 bE(—19.

=

The fact that on the unit circle TJ%Z—) has no convergent expansion only in

positive powers of Z when P (Z) = 0 has some roots inside | Z | = 1 is equivalent
to the following

Theorem 2.8.2. When the characteristic equation has mo root on |Z| =1,
but has one or more of its roots outside the umit circle, the primary process has
a linear representation in &(t), but this represemtation will mot be in terms of
only the past values of &(t), but will involve its future values as well.

The following examples show how L' goes to infinity in either direction.

Example 1.

If L=L:|1,a},|a|<1, then

Ve Lot o, — o, o2 — a3, .. )

Example 2.

L Ll —(a+p),xp), a1, |B] <], then

L7 L7V (a+ B) (@24 af o 3% oo, (o " L NP
Ezxample 3.
If L=L:{l a},]a|>1, then

X(@ty="E@t+r1)— &y 1 2) 4 3§(l :

gr—a

and hence

.[1_] = ]Jml M '{ R 2 T3 "7 Ty o
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Example 4.
IBL=L:{1, —(x+p),aB}, |a|<1,|[B]>1, then

X () - — (goafs(t—r)+r;2:ﬁfs(t—r))-
Hence

PR 1 1« o2

U TR e—B) Ba—p) a—p a—p a—p

y 0 e

[—

2.9. Roots of modulus unity

In this section we shall prove

Theorem 2.9.1. When the characteristic equation has a root on | Z| =1,
the resulting process 1s autocorrelated, and

Theorem 2.9.2. Let all the roots of the characteristic equation be of modulus
less than or equal to unity, and let nome of the roots on |Z| = 1 be repeated. If
the roots on the unit circle be &, &, . &%, let the points Ay, As, ..., Ap On
the real azis be interior points of one or more intervals in which the spectral mass
of the &-process vanishes. Then using (E, q) summability interpretation, the part
X, (t) of the primary process belonging to Ly (£) has a linear representation entirely
i terms of the past values of &(t).

As for Theorem 2.9.1, it follows as a consequence of condition iii) of
Theorem 2.5. To see this, let the root on the unit circle of the characteristic
equation be €%, where A; is real, and let it be a root of multiplicity 5. Then

F(3) = P(e~i%) = Py (e {1 — ¢ith—D)h

where P, (e **) is a polynomial in e** which does not vanish for A = 4;. The
condition iii) of the theorem then requires that the limit of

11‘"61 n

o1
(f+ [) | Py (e—i%) |2|1_ei(/11—z)l2hd06(1)
% 11:|'Eg

is finite when €; and €, tend to zero. Since P;(¢~'*) is continuous at A = 4;
and does not vanish for that value, this in turn is equivalent to the condi-

tion that
n-€ =
. 1
him R oo . A
ot ([ )agmnw <o ®)
-7 }«1+e.2

If the &-process were non-autocorrelated,

dog(A) = C-dA, (C, a constant),
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and the above integral diverges. Hence the £(f)-process is autocorrelated which
proves the theorem.

In fact, the condition (4) on the nature of smallness of dos(4) in the
neighbourhood of 4, goes beyond the autocorrelatedness of £(¢), and describes
the actual situation.

Summability in norm

When a root of modulus unity exists, it is sometimes still possible to represent
X (t) in the form

X(t) = zbr t—r),

if this interpreted in the sense of summability in norm with respect to Hilbert
space built by the process involved. The question of summability has been
considered by Worbp [2]. As our present purpose is only to make the idea of
summability in norm precise, we shall confine our attention to the simple case
of (E, q)-summability.

If the real part of Z is less than unity, we can find a ¢ > 0 such that

l¢ +Z|<1+gq.

1 _ 1 th)‘ s (g +2r
I—ZAl»}—q(l 1+¢ ,Zo gyt

For such Z

Whenever > Z" is convergent,

n=0
272 ((\)ﬂ)ﬂ'

The latter series converges for some Z for which the former does not. We say

that, whenever the latter series is convergent, £ Z" is summable (E, q) to

1—Z
The meaning is as follows: consider the transformation 7' such that
, e+ 2y
n —
17 1+ qr 1

When X(T'Z") is convergent, we say that XZ” is summable to the sum of
(T Z). ‘

The same notion can be transferred to a series whose terms are elements of
the Hilbert space of a process. Suppose that &s and #’s are elements belonging
to the space built by the same process, and T is a transformation giving

Té& = n, for all r.

If |Z& — x|l = 0, whenever ||Z&]| < oo, then we shall say that by method
(T ) 2§, is summable in norm to the sum of Xy, this last mentioned sum
existing.
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Let
X — e X(—1) = £,

2, being real, and let the spectral mass of the &-process vanish in an interval
¢, of which 2; is an interior point. Then

) 1
Xy (f) = feltlm:adzs(l)

W—
N * e’itl q + eile—ill -1
_] 1+q(1 . ) dZ:(h).
W—e
If we put
it q + ezz,e U.)
f e A2
and write as before
|0 = 20lF = || [ e Reaze ]

. . . 2 (g + et i

it follows from the uniform convergence of the series 3 T for
n=0

A€ (W—@,) that |Rg|— 0 as K - oo, the same K holding good for all . Hence

1t follows that

Lim. z 7= X, (2).

K- r=

The transformation T' of the elements of L, (&) corresponding to above .
summability is given by T (¢¢47&(¢—r) = #,. We have that

o0 o0
>ehrE(t—r1) z
r=0 r=0

whenever the former series converges in norm, and we say as before that

o0

z z}.lr§ t-—~7)

is summable (E, ¢) to

-]

ZOT (ehrEt —mn) = Zoﬂr

o
= X, (8.

When none of the roots of the characteristic equation lying on |Z| =1 are

repeated, resolution by partial fractions will help us to carry the proof of

theorem 2.9.2 to completion. .
More comprehensive forms of summablhty can be considered in the same way.
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From lemma 2.4.2 it follows that the spectrum of the X,;-process has also
to vanish in €; when m (@) = 0. Thus the processes become restricted if the
&-process 1s to fulfill such a condition.

Let none of the roots on |Z| =1 be repeated, and let them be denoted by
{et*r}) as before. With each Ax we can associate the closed interval

(ZK—-E: Ak + 1)’
r r

thus getting p intervals corresponding to the p roots on the unit circle. Let
the sum set of these intervals be .. As r tends to infinity, @, tends to the
set of p points Ay, A5, ... 4,. We may consider the process X,(¢) defined by

1
X, (1) = fe@“P(e_“)dZs(l).

wle,

by partial fractions, and using (E, ¢) summability we get that

E briE(t—17).

j=—00

1
Resolving —— Pl e a

If there are no roots of the characteristic equation outside |Z| = 1, the above
representation will involve only the past values, i.e., b,; = 0, for j << 0. Further

Lim. X, (6) = X(¢).

r—>o0

Hence we can approach the primary process through a sequence of processes
as nearly as desired (in the sense that the norm of the difference can be made
as small as wished for). Each of these approximating processes has a linear
summability representation in & (¢).

2.10. Elementary Gaussian processes

In connection with inversion where the primary process is given linearly in
terms of the past valués of the resulting process, we may consider the processes
studied by J. L. Doos [2] under the name of elementary Gaussian process.
Let X(f) be an elementary t. h. G. Mx”’ one-dimensional process of the non-
deterministic type in the discrete parameter case. Such a process satisfies a
difference equation '

t) + ia,X(t—n — E(),

where (£(t)) are independent chance variables. It has been shown by Doos how
the non-deterministic nature of X (¢) requires that all the roots of the charac-
teristic equation of the above smoothing relation lie inside the unit circle, if
the difference equation is expressed with the least possible number of terms.
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If we take the smoothing relation with the weights (ar) occurring in it where
the number of terms is least, and invert, we get

X (1) =§0b75(z— 7,

where £(f) is a stationary process of independent chance variables.

4

2.11. Infinite smoothing

Let us now consider smoothing by means of an infinite sequence of W_eights,
going to infinity in one or both the directions. In order to ensure the'e‘mstence
of the first and second moments of the process, we impose the conditions

i) Zar<<co and
i) X|a,? < oo.

The process X, () is obtained as
' X = | e

1
P(et%)

dZs(2),

where P(e7*") = Za,e~'"* is now an infinite series, and @ is the set of real 1 for
which P(e~%%) vanishes. The problem of linear inversion is then equivalent to

. 1 . .. .
that of expanding m as a convergent series on the unit circle in powers
of ¢'*. If we now impose the restriction that

Ly (X) = Ly ($),
then X (¢) is given almost certainly by X (¢).

2.12. Covariance sequence of the primary process

It is well known that the covariance sequence of a stationary autoregressive
process satisfies the homogeneous difference equation

SaiRx(K—j) =0, K>0,
=0

where {Rx(p)} denotes the covariance sequence of the X-process which is
autoregressive. :

It will be of interest to examine the effect of subjecting Rx(t) to the same
smoothing operation L in the general case.

Theorem 2.12. The covariance sequence of the primary process satisfies the
following relation:

Suree—i—9- [

w-Q

ei(t—s)l

dag(4),
provided mx(Q) = 0.
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Proof: Consider the smoothing relation
n
Z (t—14) =&

and the result of inversion, viz.,

Then

_ it " a7 ]
E[[e dZ:() s )
we
— Ai(t—s)A _ .
P o:(4)
wieo

CuaptERr III

Inversion. Continuous parameter

3.1. An outline of the 'chapter

The following is a brief summary of the results of this chapter.

The conditions of consistency are mainly the same as in the case of the
discrete parameter processes. Theorems 2.5, 2.6, and 2.7 are still true.

Sufficient conditions for inversion to be given as again a smoothing rela-
tionship are obtained. When the weight functions in such dual smoothing rela-
tionships are restricted to belong to the Lebesque class L;, as in a finite
smoothing, the processes have to belong to a subclass of the deterministic type.

It is seen that sometimes it is possible to approximate to a non-deterministic
process by a sequence of deterministic processes.

In theorem 3.5 the following question is considered. If the primary process
is obtainable as a smoothing of £(¢), are the two parts of the smoothing over
its past values and future values orthogonal? Sufficient conditions are given
for their orthogonality.

We obtain the result of effecting the same smoothmg on the covariance
function of the primary process as the process itself is subjected to. Lastly
the nature of the singular process X,(f) is also discussed.

452



ARKIV FOR MATEMATIK. Bd 1 nr 32

3.2. Conditions for obtaining inversion as a smoothing

In chapter I the meaning of integration of a process has been explained.
Passing on to the continuous parameter case we naturally consider smoothing
by means of a weight function which is a function of a real variable, The
study of inversion will now have to deal with some new questions not met
with in the earlier case of the discrete parameter. Having restricted the weight
function f(u) suitably, we form the resulting process by the integral smoothing

relation
o0

[ X(t—u)f(u)du = &)

— o0

The range of integration is taken to comprise the entire real axis even when
the interval over which the smoothing is effected is finite by regarding the
weight function as vanishing outside this range, the main reason for this being
that smoothing over a finite range is effectively covered by supposing the weight
function to belong to the Lebesque class L; on (— oo, co).

The following are some aspects of interest in the study of the problem of
inversion in the continuous parameter case:

i) Can X () have the representation

[=2]

X() = [Et—v)g@)dv,

- 00

and if so, what is ¢ (v)?

ii) When is inversion unique ?

iii) When can the primary process be obtained as a smoothing of the resulting
process over its past values only?

As before X () is the unknown wide sense stationary process and &(t) is the
completely known also wide sense stationary process. Taking the expectation
of both sides of the smoothing relation, we get (see: Additional Note at the end)

Mz [ f(u)du = M.
Hence if M:# 0, then
[fyduso. @)

Condition (i) has to be satisfied as the first condition of consistency. The other
two conditions necessary and sufficient for a stationary solution X (f) of the
smoothing relation to exist are in the same form as in the discrete parameter case.

In chapter I we have seen that the resulting process £(f) obtained by the

smoothing is given by
. oo

E@) = [ F(A)dZx (D),

— o0
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when f(u) is bounded, and
POy = f e ) du,
exists and is bounded. Also )
dZ:(A) = F(A)dZx(4). (4)

It is then clear that if F,(A) is any bounded function of A, we can replace
F(4) in (A) by F; over a set of ox-measure zero. As before

X(t) = [e*dZx () + [€*dZx(3)
w—Q Q
= X, () + X2 (0).

Then X, (¢) and X, (¢) are stationary processes with associated random spectral
functions :

dZx () for le W —Q dZx () for 1€Q
dZx, (1) = 1 and ' , dZx,(A) = 1 and v
0 otherwise 0 otherwise.

By the orthogonality of the two parts it follows that
X = 1 X2 @ + | X2 ) %

When the third condition of consistency holds good, X, (f) defined above is
completely specified by the relation

X, (0 - [ emF—h—)dzf(z).
woQ

Exactly as in chapter I, we can prove for the continuous parameter case also
theorems 2.5, 2.6, and 2.7.

In what follows it is assumed that the smoothing is consistent with the given
- -process and the weight function f(u). We seek in our problem of inversion
the primary process belonging to Ly (£), so that L, (X) = Ly (&) and mx (@) = 0.
Under these conditions the primary process is almost certainly the process X, (¢),
and we shall write it without the suffix 1. Since mx (@) =0, every set of
ox-measure zero is also of gg-measure zero and vice versa.

Suppose that we now want to obtain the primary process again as an integral
smoothing of the &-process in the dual form as

= [Et—v)p@)dv,
where @ (v) is bounded and
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D(A) = r e" g (v)do

exists and is bounded for all . It is evident at the very outset that, when
inversion is obtainable as a smoothing of &(¢f), the entire closed Hilbert spaces
spanned by the two processes are identical, as each belongs to the other.
Regarding sufficient conditions for the existence of such an inverse smoothing
relationship we state

Theorem 3.2. Let £(t) be a given stationary process with zero mean and with
spectrum o¢(A), and let f(u) be a known real or complex valued bounded function
of the real variable w such that

F(3) = fe*i“f(u)du

exists and is bounded. Let @ be the set of real zeros of F (1), and let

1 -
f riﬁ(};ﬂédag(l) be finite (A)
w-g
and
me(Q) = 0. (B)
Let the processes X (t) and £(t) be related by the smoothing relation
[ X@—wiwdu=&@).

Let
i) Lz (X) = Lz(f)-

Further, let ¢(v) be a bounded function (real or complex) of the real variable v
such that

b)) = fwe—i“(p(v)dv

exists and 1s bounded, and let

i) [ |1—F@) D) Fdoc(d) = 0.

—o0

The conditions 1) and i) are sufficient for the primary process to be given by the
tnverse smoothing relationship

[Et—vpw)do=X().

Before taking up the proof we may note the following facts:
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a) In view of the conditions (A) and (B), a stationary solution for X (¢) exists.
b) From condition 1) we have that

in the set @ is not any inconsistency for a @ (1) to exist.

¢) The condition ii) can be written with the og-measure being replaced by
ox-measure because of condition i).

d) There is a considerable amount of symmetry in the conditions of this
theorem except that the conditions corresponding to (A) and (B) involving the
set @' of the real zeros of @(i) do not occur explicitly. Once the theorem is
proved, it follows from the stationarity of the known &-process that

f mdax(z) is finite (A")
w—Q'

and that
mx (@) = 0. (®)

As a consequence of the condition i), it follows that me(Q’) = 0.

e) When we take the X-process, and the function ¢(v) as known, we shall
impose the conditions (A’) and (B’) instead of (A) and (B) and then seek the
&-process as a smoothing of the X-process.

f) It is obvious that condition i) is necessary.

Proof: We have from the given smoothing relationship that almost certainly
with respect to ox- and cemeasure that
dZ:(A) = F(A)dZx ()
80 that
PNdZ(A) = DA F(A)dZx(A).

The right side reduces to dZx(4) almost certainly, as a result of condition ii).

Hence
dZx(A) = ©(A)dZ:(2)
and

X(t) = fem(p(z) dZ:(h).

The conditions imposed on ¢ (v) and @(4) are sufficient for the relation

o0

| e—vp@)dv = [ 61 PR)dz(A)

— 00
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to hold. Thus

o

X(t) = [ Et—v)p)do,

-0

which proves our theorem.
The following example is illustrative.
Let v and v be real variables, and let

3In a -

f(u) = > a>0,

and let the spectral mass of the &-process be vanishing outside the interval
(¢, B), where @ exceeds the greater of the two numbers |a| and |B|. Let us
seek the primary process whose Hilbert space is the same as L,(£). Now

1 for [A|<a
F(1) = ¢ and
0 otherwise

and W—@Q is (—a, a). F(4) is bounded, and

a—

€0
—(@—

€

. 1

lim ll?—(l)'sz dO’E(X) = Q? < oo,
€)

If ¢(v) is chosen as

o) = 02 450, b [al, 5> ],
) ‘
then
1 for |A]<Dd
@A) =4 and

10 otherwise

and the conditions of theorem 3. 2 are satisfied, for in («, 5) we have F (1) @ () =1.
Hence in this case we obtain from the relation

fX(t—~u)%Zﬁdu ~ E(1)

the inverse smoothing relation

‘ f.f(t—v) sinbe gy~ x).

T
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Let us next examine the nature of the processes for which such an inverse
smoothing relationship can exist, when the weight functions f(u) and ¢ (v) are
both restricted to belong to the Lebesque class L; on (— oo, c0). By the
Riemann-Lebesque lemma on the Fourier transforms of functions belonging to
the class L; we have

lim F(1) =0,

|4f—c0

and a similar result for @(1). Therefore, when the numerical value of 4 is
sufficiently large, the product F(A) @ (1) becomes small and cannot become
unity. Then condition ii) of the theorem will be satisfied if and only if

dox (1) = 0.

141> 4,

Having regard to condition i), we can write a similar result involving the
spectral measure of the &-process. Hence the only processes that can have a dual
smoothing relationship with such weight functions are those whose spectral emergy
is entirely confined to a finite region of the real azis. As such processes then
have intervals of vanishing spectral mass the integral

(llog o ()]
f 1+ 42 da

diverges, o¢'(A) standing for the absolutely continuous part of the spectrum.
Hence these processes are deterministic in the sense explained in Chapter I.
As every deterministic process need not have its spectral mass confined to a
finite part of the real axis, the processes having a dual smoothing relationship
with weight functions belonging to the L, class form but a subclass of the
deterministic ones. Also, these processes are completely characterized from the
point of view of spectral properties by some discrete parameter stationary
processes, since the spectral mass can by a change of origin and units be
repacked in the interval (— =, 7).

In view of the fact that the primary process is derivable as a smoothing of
the &-process only in special instances, the integral equation derived on the
assumption of the existence of an inverse smoothing relation is of limited
validity. However, notwithstanding this apparent drawback, one can sometimes
construct a sequence of stationary processes {X,(t)} by a repeated application
of the integral equation so as to converge to the primary process. The following
section deals with this topic.

3.3. Sequence of processes converging to the primary process

In any general case the spectral mass of the processes will spread over the
entire real axis. Hence we shall here consider a procedure of sucessively en-
larging the region on the real axis so as to bring into the picture by going
to the limit the entire spectrum of the processes. In this connection we state
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Theorem 3.3. Let {S,} be a convergent scquence of sets on the real axzis
to which the set @ and successively receding tail ends of the real axis belong.
Let us suppose that we are able to effect a solution of ¢, (v) for every r from
the integral equation

[11—=F @)@ ()P do: () = 0,

w-s,
where
() = [ e o (v)du,
and @, (v) and D, (A) are bounded.
Further let
de'X(l)—>0 as r — 09, (i)
S?‘
and
Sf]qbr(z)lzdafm +0 as 1 — oo. i)

Let the given smoothing relation be consistent. Then the sequence of processes

{ X, (8)} given by

oo

X0~ [Et—ve@do

—Q
converges in the mean to the primary process belonging to L, (§).
Proof : The process X, (f) constructed is given by

X ()= [ 0, az:() v [P Zs (D).
W-8, Sy

Since by hypothesis the integral equation is satisfied for cverv 70 wr can write
for Ae W8,

i respeet of sach of the speciral measures under considevriin. For the same
A it foilows that
DA dZ(A)  dZx(A).
Henee
XWX [e?dZx)

S

[t @, (dyd 7 (4.
8
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As 7 tends to infinity, the norm of each term on the right side of the above
equation tends to zero, and hence the theorem is proved.

An important case is when the set @ is empty. We can then take W — S,
as the interval (— », r) and condition (i) of the theorem holds automatically.
Further let us assume that Ft 7 is differentiable in every interval (—7, 7).
Then we define v, (3) and ¢ (v) as follows:

L 4D
7o) for A€(— &+ 1), &r + D)
wr(d) = and
0 otherwise
and
o) = = [ erpyan
r 2x . ’
Then

()= [ e i, (v)dv

=y (4) for A belonging to (— 7, 7} because of the differentiability

1 .
of m m (—&+ 1, &+ l))

Hence for 1 in (—7, 7) including the end points,
@, (A F @) =1,

so that @,(2) is a solution of the integral equation with the range W —S§;.
Therefore the sequence of processes are given by

{X:(t)} l f&'(t—v ¢p,(v)dv}>
and

Lim. X, (8)=X ().

r—0

This method of truncation can be evidently employed when the set @ can be
covered by a convergent sequence of sets on the real axis, each set being
comprised of a finite number of intervals such that condltlons analogous to
(i) and (i) hold.

Let us now turn our attention to the case where the set @ is empty and
the given £-process has a continuous spectrum. Then the primary process has
also a continuous spectrum for otherwise the spectrum of the &-process will
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have to have a saltus part (cf. chapter IV, section 4.1). Constructing wr(A)
as before as the truncated form of the reciprocal of F(A), we note that v, (1)
belongs to the I; class. Thus it can be recovered as the Fourier inversion
of its Fourier transform except possibly for a set of Lebesque measure zero.
As a consequence of the continuity of the spectra, every set of Lebesque
measure zero is also of ox- and osmeasure zero. Smoothing £ (¢) with the
weight function ¢, (v) of the previous paragraph, we get X, (¢). The difference
process of X (¢} and X, (¢) tends to zero in norm unconditionally. The differ-
ence process has been seen earlier to be made up of two terms each of which
depends on §8,. The first term tends to zero in norm as 7 -> oo because of
the convergence of the spectral mass, and the second term

[ et @, (2)d Z: (3)

Sf
13 of vanishing norm, for, when 1€ S,
D, (1) = pr (1) = 0, almost everywhere.

In these cases, each process of the sequence { X,(t)} belongs to that sub-
class of deterministic processes whose spectral range is but finite and is obtained
as a smoothing of the &-process. When we focus our attention on processes
which have their spectrum spread out over the entire real axis, it is clear that
the limit function of weighting does not exist. As the primary process need
not be necessarily deterministic, we have incidentally that 7¢ is sometimes pos-
stble to approzimate to a non-determinmistic process by a sequemce of deterministic
processes with their spectral mass vanishing outside a finite range though con-
tinually expanding.

The following example is illustrative:

Let
f(u).= o1,
Then ,
1 1+
Fj 2
is differentiable for all A.
We now have
1+ 22

for 2| <r+1

yr(4) = and

0 otherwise

and
A2y a2\ 41 ,
¢r—1(v)—4n{v(1+r' vz)smrv+vzcosrv}
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The two conditions that the set @ is empty and FW is differentiahble are

sufficient for the sequence of processes

| X)) = {~f f(t—v)tpr(v)dv}

o0

to converge to X (t) in norm as r tends to infinity.

It may be noted that in this case the sequence of functions { ¢, (z)} does
not converge to a limit function as r tends to infinity. Yet, the sequence of
processes obtained by smoothing the resulting process with these functions
as the weight functions converges in norm to the primary process.

3.4. Uniqueness of inversion

Following an earlier notation, we write
X (@)= X:0) + X2 (t)

where the second process on the right side is arbitrary but for constancy of
norm, while the first process is completely specified in the sense of norm.
Therefore the primary process will be unique if and only if the arbitrary part
is of vanishing norm, which condition is in turn equivalent to the identity of
the entire closed Hilbert spaces of the primary and the resulting processes.

3.5. An orthogonal decomposition

In this section we shall consider a decomposition into two parts of the pri-
mary process of a consistent smoothing for which there exists a duality of the
smoothing relationship. Then we can form the primary process as the sum of
two smoothings of the resulting process, viz., smoothing over the past values
of the resulting process and smoothing over the future values of the same.
Then it is natural to inquire if the two parts are orthogonal. Relating to this
we state

Theorem 3.5. Let the smoothing be consistent and let the giwen &-process
have absolutely continuous spectrum. If the weight function appearing in the in-
version s real and belongs to the Lebesque class Ly on (— oo, o0), and the

real and zmagmary parts of @, &, (occurring below) do not ck(mge their sign, then
the two parts wn question are orthogonal.

Proof : Putting

@ () = g1 (v) + @2 (v),
where
@) for v=0

@1 (v) = | and

0 otherwise
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@ (v) for v <0
s (v) = ¢ and

0 otherwise,
the two parts

."E(t—v)fpl(v)dv, and fé(t—v)(pz(v)d'v

v=0 <0

are orthogonal if

E[f¢t—v)gr(0)dv[Ea—0)pw)dv] =0

which is equivalent to the condition (to be proved)

o0

| ®:.0) Dy (A)d e (3) = 0,

where -
() = [e g (v)do, k=12

Since @, (v) is real,

and by the assumption that ¢ (v) belongs to the Lebesque class L, we know
that ¢;(v) and @,(v) also belong to that class. Hence by Parseval’s relation
we_ have '

5177 fq)l(amz(z)dz:%t / D, (4) Dy (— A)d A
= [o1(0) g2 (v)dv

= 0 by definition of ¢, (v) and of @, (v).

Now we use the hypothesis that the spectrum of the &-process is absolutely‘
continuous which implies that all sets of Lebesque measure zero are also of
osz-measure zero. Then from the conditions imposed we have

J ®1(3) @y Wy doe (1) =0
which "proves the required orthogoﬁality.

3.6. The covariance function of the primary process

In analogy with the discrete parameter case we shall here show that if
myx (@) = 0, then the covariance function Rx (f) of the primary process satisfies
the relation
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fo(t—u)f(u)duz femﬁ%dag(l).

Since mx (Q) = 0,

X = fei“Fl(l)ng )

almost certainly. Then

[ o0

[Rxt—wfwydu= [E{XO)Xw)}f@)du
= [{ feme—i“mdag(l)}f(u)du
—;o —Q
A F (1)

- | Fapde@
L TE@P

on interchanging the order of integrations,

. eitl d 2
N jF(A) % ()
wW—-Q

3.7. On obtaining X (t) by smoothing £ () over its past values

We next make a brief reference as to when inversion yields the primary
process as a smoothing of the resulting process over only the past values. If
the function @ (4) in the integral equation

[II—FP@ oo -0
can be solved for and has the representation
D(A) = Ofe"'“(p(v)dv,_
where ¢ (v) and @ (1) are bounded, then it is clear that
X () = bfof(t—v)qo(v)dv,

1t being however assumed that mx (Q) = 0.
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3.8. On the nature of the arbitrary part in inversion

We shall conclude this chapter with some remarks on the nature of the
arbitrary stationary process X, (f) appearing in the solution of X (f) by inver-
sion. We shall treat both cases of the discrete as well as the continuous para-
meters together by using symbols in a form suitable to either. The smoothing
relation is written in a brief way as

LX) =£&(@) (4)

irrespective of the nature of the parameter. The range W and the function
F (A) have their significance appropriate to the instance under consideration.
Associated with the smoothing is the equation

LX) =0 (B)

and the stationary process which is a solution of this relation is what we call
the singular process or the complementary part. This latter equation can be

written as
[FWedzx()+ [ FQ)et*dZx(d) =0
Q w-Q

from which we get that

WfQF(z)erZX(z) =0.

Denoting the stationary solution of (B) by X! (f), we have
X(t) = [édZx(d)
w

where
dZx(4) for 1€9

dZx(2) =3 and

0 otherwise.

Thus the part X,(¢f) of X () previously considered is the same as the sin-
gular process X! (¢) associated with the smoothing relation.

We shall next show that the part X,(¢) is deterministic, when the weight
function f(u) belongs to the Lj-class. F (1) is now continuous, and does not
vanish -identically. Hence the set @ of the real zeros of F (1) is not every-
where dense in W, and W — @ contains one or more non-degenerate intervals.

Since dZyx,(4) =0 in W — @, it follows that

[log ok, M) ,,
f i A=

w
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Therefore X, (t) is a deterministic process. In particular if the set @ consists
only of discrete points, and mx (@) >0, the singular process now consists of
terms of the type

izt
wg e k",

(see 4.3), and is thus deterministic.

CuarTER IV

Primary and resulting processes compared

4.1. Mean values, variances, spectral saltuses, and Gaussian nature

In this chapter we shall occupy ourselves mainly with a consideration of the
extent to which smoothing transmits to the resulting process some important
characteristics which the primary process may have.

We start by noting that the strict or wide sense stationarity of the X-
process implies that the &-process has the same property. The mean values,
spectra and variances of the processes are related by

i) Mx-(Za,) = M: in the discrete parameter case and
Mx- | fu)du= M;

in the continuous parameter case.
ity |F(A)|*dox(4) =doe(d), and
iii) E|£(t)— Mel? = le )|d ox (1), and

BIXO—Mxl = [ gprpdocd
wie
provided myx (@) = 0.

We have also noted earlier that every set of ox-measure zero is also of o:-
measure zero, while for the converse to be true it is both necessary and suf-
ficient that myx (Q) = 0. .

Let 1, be a saltus position of ox(4) and this point be not in the set Q.
Using Lebesque-decomposition of an additive set function in respect of both
ox(A) and o¢(A), we find that A, is also a saltus point of o¢(4). If on the
contrary any A; should bolong to @, then mx (@) > 0, and this saltus does not
reappear as a saltus of (1) having been now obliterated by smoothing.
Hence the condition that mx (@) = O ensures that none of the saltuses of ox (1)
belong to @, and then the saltus positions are common to both the spectra.
If the spectrum of the primary process is continuous, so is that of the result-

466



ARKIV FOR MATEMATIK. Bd 1 nr 32

ing process, while myx (Q) = 0 is a sufficient condition for the validity of the
converse. _

If X(f) is a Gaussian process, the same is true of the resulting process.
When the smoothing is consistent, and mx (@) = 0, and the & (¢)-process is
Gaussian, it follows from

1
Xt = | et ——dZz: ()

that the X (t)-process is also Gaussian.

4.2, A case of metric transitivity

Let the primary process be a Gaussian stationary process with a continuous
spectrum, and let the weight function f(u) be suitably chosen so that the
smoothing relation is consistent. Then the &-process has the same features
as X (¢). In this case we infer the sameness of the nature of the two processes
in respect of metric transitivity from the following theorem of U. GRENAN-
DER [1]: In order that a stationary normal process with a continuous covari-
ance function shall be metrically transitive, it is both necessary and sufficient
that the spectrum be continuous.

4. 3. Periodicities

From a result of KmintcHINE [1] which is sometimes called “the statistical
ergodic theorem” (see Hopr [1]) we have that for real A and a stationary
process X (i), '

v

. 1 (f
z= lim. —— | e "2 X (f)dt
Jo—u|—>00© — U
u

exists. When z; is different from zero, A is called an ‘“‘eigen frequency”. The
eigen frequencies constitute the saltus points of the spectrum of the process
and form at most a denumerable set. Further

X = gzke“k‘ + (1),

where () and the terms in the summation on the right side are all mutually
orthogonal and where ¢ () has no eigen frequencies. (See K. KArRHUNEN [1]).
Hence every periodic term -of non-zero norm comes from a saltus in the
spectrum.

With this background let us examine the effect of smoothing on periodic
terms. It is evident that if mx (@) >0, X (f) may have more periodic terms
than &(t), while if mx (Q) = 0, the periodic terms present in both the processes
are the same in respect of frequencies though with differing associated energies
(or the squares of norms). Thus a periodic term may sometimes be obliterated
by smoothing, while inversion sometimes leads to the introduction of a periodic
term into the primary process with a frequency mot present in the resulting
process.
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In. the case when @ consists of a discrete set of poiats, and myx (Q) >0, it
must happen that some or all of the points of ¢ are saltus positions of the
spectrum of the X-process. Writing X (f) as in the previous chapters as the
sum of two stationary processes X, (t) and X, (¢), we now see that X, (), the
singular process forming the complementary part, is almost periodic, being com-
posed entirely of harmonic terms.

The search for periodicities has figured prominently in a number of studies
on time series. The rest of this section touches upon some aspects of this in
relation to our smoothing problem.

Firstly the relation between the spectra shows how an unstressed frequency
in the spectrum of the primary process near the maximum of the function
| F(A)| appears as a stressed frequency in the spectrum of the resulting pro-
cess as a consequence of smoothing. (See also J. L. DooB [1]). When talking
about a single smoothing in contradistinction to continued iteration of it, it is
not true to say that smoothing may introduce a periodicity into the resulting
process not originally to be found in the primary process, except as being in-
tended to convey in a loosely worded way the idea that there is a shift in
the emphasis laid on the spectral frequencies (not necessarily the eigen fre-
quencies), caused by operation of smoothing.

Coming to the topic of continued iteration of the same smoothing operation,
it has been recently shown by P. A. P. Moran [1] that a discrete parameter
stationary process when put through the same smoothing again and agam will
for some types of smoothing yield a process whose spectrum tends to a pure
step function as the number of repetitions of the smoothing tends to infinity.
To the same set of ideas also belongs the sinusoidal limit theorem of E. Svut-
sky [1], differing however from the result of MoraN in that an iteration of
two types of smoothing are under consideration in the treatment of SLUTSKY.

Notwithstanding the foregoing theoretical possibility of the existence of
stochastic periodic terms in a process, in any practical instance relating to
observed data one generally fails to find exact periodic components, and hence,
as has been pointed out by N. Wiener [1], the only spectra that become
relevant in applications are almost always those belonging to the continuous
type.

4.4. Gaussian Markoff nature

Suppose we consider real Gaussian stationary processes with the additional
condition that the primary process is of the Markoff type. We desire to know
if this Markoff nature is trahsmitted to the resulting process in spite of the
operation of smoothing.

a) Duscrete parameter case:

With the hypothesis made, the covariance sequence of the primary process
is given by
Rx (p) = h2cl?l,

where h® is the variance of the X-process and ¢ is a real constant numerically
less than or equal to unity. Without any loss of generality we may suppose
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that the X-process has been standardized to have its variance unity so that
h* = 1. In the case of the discrete parameter processes we have three extreme
types of Gaussian Markoff processes, viz., those corresponding to

¢=—1,1,and 0.

We shall exclude them from our consideration here.
Let us take the simple example where

L=L:{1,a}.
Then
R:(0)=(1+ad)+(a+a)-e
R(l)=(1+ad)c+a-+ac,
and

R:2)=(1+ad)c®+ac+ac.

1f possible let &(¢) be also a Markoff process. As a necessary condition we
must have

[B: (1)]? = Re(0) - R:(2),
which gives

a=0,orc=F1, orat+tc=0, or dc=—1.

Leaving out the first case where the smoothing is the identity operation, and
the second one referring to excluded types, the other alternatives are seen by
some calculations to lead to

RB:(p) =0

which "is again an excluded case. Hence the resulting process cannot belong to
the proper Markoff class. If the weights in the general case are unrelated to
the number ¢, the same procedure shows that smoothing destroys the Markoff
property. Nevertheless it is a moot question whether there may not be some
types of smoothing with more than two terms in the sequence of weights
standing in a special relation to the number ¢ such as lead to resulting pro-
cesses in which the Markoff property is preserved. It appears likely that the
Markoff property is not transmitted to £ (t).

b) Continuous parameter case:

Turning to the continuous parameter case, we answer the question in the
negative whenever the weight function f(u) used in the smoothing relation
belongs to the L; or the L, class. The covariance function of the standardized
X-process is e~¢ltl, so that the spectral density is given by

—° .
(e + 2?)
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If possible let the resulting process possess the Markoff property. Then its
spectral density must be of the form

R
7 (o? + A%) ’

and by virtue of the smoothing relation it follows that

c - K. o .

Fyle. ¢ .
17 @) w(c? + %) 7 (a? + A%)

Taking note of the fact that F(4) is a Fourier transform and is hence small
at infinity, we find that the two sides of the above equation cannot be eq}lal
for numerically large values of A. Hence it is not possible that the resulting
process is also of the Markoff type.

4.5. Deterministic and non-deterministic nature

When the resulting process is formed by smoothing the primary process on!y
over its past values, and when inversion yields the primary process as again
a smoothing of the resulting process over only its past values or even as the
limit of a sequence of such smoothings, it is clear that

Ly{ X; —oo,t) =Ly {&; —oo,t}

Hence in such cases either both the processes are deterministic or both are
non-deterministic. As an example we may consider the instance of a smooth-
ing relation in the discrete parameter case, the operator L being of the form

L=L:{a0,a1)"'san}’

and the roots of the characteristic equation of the smoothing all lying within
the unit circle,

Next let us consider the case in which the resulting process is formed by
smoothing the primary process over its values in the range (— oo, ¢+ A).
Further, let the resulting process be deterministic, and let us consider the
primary process which belongs to L, (£). Then

LZ(X: — 09, OO) = Lz(f, — 0, OO)

= Ly (&, — 00, ) by the assumption of
determinism,

= Ly(X, — oo, t+ k) due to the nature of the
smoothing

from which we conclude that X (¢) is also deterministic.
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Lastly, let us consider the weights or the weight function to be such that

|log | F (4)
Lt e d A< oo,

{In the continuous parameter case we note that this condition holds good by
theorem XII of Paiey and WieNgr [1] whenever the weight function f(u)
vanishes over a half axis, and F (1) belongs to the Lebesque class L, on
(— o0, 00)). If, in such a smoothing, we have the primary process as non-
deterministic, the following shows that the resulting process must also be non-
deterministic :

[I_log 0t ()
. 1+ 22
w

- [loelE@bo@ly,

1+ 22
W
ollog | F ()] [“Og(fx (4|
< Lo ge AT di
P
< o0

since each term on the right side is finite as a result of our hypothesis.

Cuaprer V

Estimation and prediction .

5.1. An cutline of the chapter

In this chapter the following aspects of estimation and prediction are studied:

a) Relationship between the topics of inversion, filtering and estimation is
explained.

b) Observing the resulting process over a stretch of time (usually some or
all its past values), we desire to construct a linear, unbiassed, and minimum
variance estimate of the mean value of the primary process. The case of dis-
crete parameter and finite smoothing has heen treated. The relation of this
problem to the construction of similar estimates of the mean value of the
resulting process by observations on itself considered by U. GRENANDER is
explained.

¢) The result of inversion may lead to X (¢) with a linear representation
requiring more than the given set of values of £(¢). Yet we can sometimes
form a linear combination of the given values which may be termed the best
estimate of the primary process. This difference between inversion and estima-
tion is illustrated by considering two examples of moving averages, viz., the
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problem of Frisca and the case when the characteristic equation has a root
equal to 2. In the continuous parameter case we have to construct a fune-
tion of a real variable and smooth by it the given values of £ (f) to obtain
an estimate of X (¢). The function to be constructed for obtaining the best
estimate is to be a solution of an integral equation, which has been derived,
assuming that the past values of £(¢) are all known.

d) The relation of our present considerations to WIENER’s filtering is dis-
cussed. Also the integral equation for the function to be used in prediction
of the primary process is obtained, and it is shown that under suitable re-
strictions this equation yields Levinsox’s form of the corresponding one in
WieNER’s theory.

5.2. Inversion, estimation and filtering

To begin with we may see how the problem of estimation is connected with
the earlier one of inversion. Given the resulting process over a stretch of time,
the problem of estimation will consist of constructing a sequence of numbers
or a function, as the case may be, using which as the weights or the weight
function of smoothing the resulting process, we can recover the primary pro-
cess to the best possible extent according to some desirable criterion of ‘“‘the
best”. The condition of minimum variance is here employed to yield the best
estimate. We have seen that the problem of inversion is to obtain X, (¢), and
that X, (f) L Ly (£). Hence in any attempt at estimation of X (®) with a know-
ledge of the £ (¢)-process, we shall be concerned only with estlmatmg Xl()
and when estimation gives Xj (¢), the results of estimation and inversion coin-
cide. Thus whenever the process formed by the difference of the primary pro-
cess and its estimate has the square of its norm equal to mx (§), estimation
solves the problem of inversion. There are however aspects which distinguish
them. Linear inversion and linear estimation have not much common ground

when the norm of the difference process mentioned above exceeds + Vmx (Q).
Consider a finite moving average relation in-the discrete parameter case with
each root of the characteristic equation being of modulus greater than unity.
We have seen earlier that in such a case the part of linear inversion expressed
m terms of the past values of the resulting process is zero. As we shall see
in 5.4, it is still possible to construct a linear estimate of non-zero norm in
terms of a specified set of the past values of the resulting process.

The process & (t) being more or less known, we have at our disposal a cer-
tain mix-up of the primary process with 1tself and from such a mixture we
try to disentangle X (f) in the best possible manner. Hence the construction
of an estimate X*(¢f) of X (f) is here also an instance of “filtering”. When
the entire closed Hilbert spaces of the processes are identical, inversion filters
out the primary process completely. Again, when we estimate the value of
the primary process at the time instant ¢ + A, 2> 0, in terms of the values
of £(¢) up to ¢ we deal with “prediction” or prognosis. Putting A = 0 in this,
we can also get an estimate of the primary process in terms of the past
values of the resulting process, whenever the integral equation for prediction
can be solved. »
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5.3. Mean value of the primary process

The object of this section is to form an estimate of the mean value of the
primary process using observations made on the resulting process.

Consider the case of finite smoothing in the discrete parameter case, the
conditions of consistency of smoothing being satisfied. Let the covariance
sequence of the &-process be known, but not its mean value, except that we
have the knowledge that it is non-zero. Let the observations consist of & con-
secutive values of £ (t) which we shall denote by &(t), £(t—1), ..., &(t—k + 1).
Under these conditions we wish to form an estimate M% of the mean value
Mx of the primary process such that

1) the estimate is linear in the observations,
i} unbiassed, and

iti) has minimum variance.

It the required estimate is
k-1

Mx = 3 ¢&(t—1),

j=0

the condition of unbiassedness gives

k=1

Mx = E[M%] = [.Z Cif(t—j)]

j=0

afgo] exe-ioo]
e (5)-(5)

Also Xa,#0, since M:>0 and the smoothing is consistent. Hence X¢; is
known being the reciprocal of T a,. The condition of minimum variance gives
that

E[MY— Mx]* = E[E¢& (¢t —§) — Mx]?
=H—2MxM;-Z¢; + Mk.

is to be a minimum, where H is a quadratic form in the ¢’s with known
coefficients as a consequence of our knowledge of the covariance sequence of
&-process. Further the quadratic form is positive definite. The minimization
in question is secured by minimizing H, subject to the linear constraint of
unbiassedness. As is known, this problem has a unique solution. Thus the ¢’s
and hence M% can be found.

The quadratic form takes the simple diagonal form when the &-process is
non-autocorrelated, i.e., when the smoothing is an autoregression. Also the
coefficient of each ¢ in the linear constraint is the same. Thus in this case
the solution is
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: 1
cl_—_‘CZ:..._—_ck..—_———7~,

k- Ca)

and the estimate of the mean value of the primary process is now equi-distri-
buted in the observed values of the cther process.

In a recent study U. GreEnanDER [1] has considered the problem of con-
structing such estimates of M¢ in terms of observations on the values of the
&-process in the continuous parameter case. Let us now examine the connec-
tion between the two problems, namely of constructing estimates of the mean
values of the two processes, the observations being made on the &-process in
either case. As the smoothing is a linear relation, the properties of linearity,
unbiassedness, and minimum variance are possessed in common by the estimates
M% and M} whenever they are related by

Ca) - My = M.

Hence the problem of constructing M% can be solved by constructing first M

The same is true in the continuous para-

and then multiplying it by 5
= Ay
=]

meter case as well, a, being now replaced by j f(uw)du.

— 00

5.4. A problem of Frisch

_Let the smoothing be a finite moving average in the discrete parameter case
with a root of the characteristic equation on |z| = 1. Though we could not in
this case obtain linear inversion in the strict sense, we can still construct

X'@)=&@) + b f@¢—1)+ -+ byé(t—N),

such that for a given N the norm of X*(f) — X (¢) is a minimum. This deter-
mination of the b’s is what is here called the problem of R. Friscm, having
been treated by him earlier [1].

The restriction of the case to a moving average specifies the spectral density
of the primary process. As such we shall here treat this problem by the spectral
method to show that it is at once simple and effective. Writing the &’s in
terms of the primary process, and using the spectral representation of it, we have

X(t)—X"(t) = f ¢ti(1—P-B)dZx (),

where
n
P = Y are~i"* with g4 = 1,
r=0
and
N ..
B = Y bje % with b, = 1.
i=0

Also
474



ARKIV FOR MATEMATIK. Bd 1 nr 32
1
dO'X (;[) = :2—; di s

so that the square of the norm of the error is

o [1a—P B

o
bt 1

X)) — X @ =

which is a quadratic polynomial expression in the b’s. To select the b’s so as
to minimize the integral on the right side, we differentiate the integral under
the sign of integration with respect to the real and imaginary parts of each of
the b’s and equate to zero each of the integrals so obtained. They are seen
to give

[eé*P(1—P-B)di—-0, r=12,...,N

—n

which are N linear equations to determine the N unknown parameters.
. For illustration and comparison we shall consider the case where L = L:
{1, — 1}, discussed by FriscH.

The N equations now become

2b1 = 1 + bg,
2br:br—1+br+1, 722,3,...,N—1,
and
2by = by-1.
These give the unique solution
be—1— b
b N+1

~derived by Friscu by another method. Using these values of the b’s we find that

. Y* 2 _ 1 2

Whenever the solution is unique, it constitutes the minimum solution, as
there exists just one element to within equivalence in norm which is nearest
to X(t) out of all those possible for various values of b’s.

The same method can be pressed into service even when the roots of the
characteristic equation of a moving average relation all lie outside the unit
circle, in spite of the inversive linear representation of X (f) being entirely in
terms of the future values of &£(f). If we consider the equation

X(@)—2X@—1)=£(),

the best two term lineal estimate of the primary process in the past values of
£(2) is obtained as
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Xﬂo=ﬂﬁ+§ﬂrﬂy

In this case it will be seen that

. 16 ,
X @) — X0 = 55

3.5. The continuous parameter case

Even when estimation of X () is made in terms of all the values of £ (¢),
Le., over the entire past and future, the problem is not often equivalent to
inversion. When inversion is solvable as a dual smoothing, the inverse weight
function to be constructed in the estimation problem has already been seen to
satisfy the integral equation arising in that connection.

Suppose that the values of &(¢) up to the instant ¢ are known, and we desire
to form estimates of X (¢) in the form

X)) = [2¢—v)do),
(4]

the function ¢ (v) being of bounded variation. Then this inverse weight func-
tion @(v) has to be the solution of an integral equation, if it is to yield the
best estimate of the primary process. The integral equation in question is ob-
tainable by putting %4 = 0 in the integral equation of prediction which we are
going to ‘derive in 5.7. This gives the equation for ¢(v) as

Re{ j?(zp(l)— j‘oe—i“‘dtp(u)) e d og (l)} =0, v>0,
. Y :

where Re stands for “the real part of”’, and

1
F(2)

and

for AEW —Q

p(4) =|

0 otherwise.

5.6. Relation to Wiener’s filtering

N. Wiener {1] has considered the following problem. Two stationary time
series f(t) and g (¢) are taken to stand for a message and a superposed disturbance
respectively, and the message has to be recovered in the best possible way.
This can be achieved if one can find an integral operator which when operating
on the combined series gives the best approximation to the message at a required
time instant ¢+ h. For solving this problem it is supposed that the necessary
information regarding the auto-correlation and cross-correlation of the series
concerned is available. The point of view adopted in the present study has
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been somewhat different in respect of the starting assumptions in that we
regard that F(1) and £(¢) as known. However, in view of our earlier study of
the subject of inversion, the gap is seen to disappear. It has been observed
previously that inversion itself is a special case of filtering. To make this more
specific, let us write the smoothing relation in all cases symbolically as

LX(t)=¢&(t).
This can be written alternatively as
(L—DX@)+ X(t) = &),

and we may designate X (¢) and (L —1) X (¢) respectively as the message and
the disturbance. Then our known &-process constitutes their sum function. The
disentanglement of X (¢) (which is inversion) is now described in the terminology
of filtering. In view of this, the question of examining Inversion in relation to
WIENER’s problem of filtering has been suggested to me by Professor M. S.
BARTLETT in a discussion of my notes on the topic of inversion of a smoothed
process. As mentioned in 5.2, filtering coincides with inversion if and only if

1 X* @) — X @I = mx ().

The next seetion is directed towards a clarification of the relationship that
exists between the prediction problem for the primary process in our present
study and the filtering considered by WieNEr. Naturally the two corresponding
integral equations are under suitable conditions variant forms of one another,
each adapted to the hypothesis made in that treatment. In the present study
the resulting process and the weight function f(u) are supposed to be known,
and our integral equation for ¢(v) is expressed in terms of the F (1) and o¢(4)
which are known. Under suitable restrictions our equation can be made to
vield N. Levinson’s form of the corresponding equation in WIENER’S theory.
The restrictions needed are evidently such as will recast the integrals with
respect to the spectral measure of the &-process into the time average functions
in the other approach.

5.7. Integral equation for prediction

We shall here concern ourselves with the continuous parameter case, the
modifications required for the discrete case being mentioned at the end. Suppose
we take a function ¢ (v) of bounded variation and smooth the resulting process
over its past values with this function to obtain an estimate X* (t + h) of the
prlmary process at the instant ¢ + &, i.e.,

X*(t+h) = f&(t——'v)dtp(v).

As before we shall assume that the entire closed Hilbert spaces of the two
processes are identical, and derive the condition which the function ¢(v) has
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to satisfy in order that the norm of the error process may be the least out
of all the estimates formed by such smoothings of the &-process over its past
values. In this connection we shall write

-

() = [ e dgw),
0

while F(4) has the same meaning as hitherto. The minimization of the norm
of the error process is given by the usual variational considerations leading
to the equation

. d °° .
gﬂd—euxam Ojft—v lp() + €dp(@)}|F =0

le.,
E[L,—1I,+I,—1,] =0,
where
fg (t—v)ddg(v)
0
and

I, = &(t—v)de©®) f§t~v déep @),
0

the bars as usual standing for complex conjugates. Using the spectral representa-
tion of the processes and the condition of the identity of their Hilbert spaces
the expectation of the first two terms is

[ €™ v@) [evrdsp @) = () [ €7 ddp(v)|doc(d)
"0 0 0 ‘
while that of the remaining two terms is its complex conjugate. Hence we have
Re[[ {™y(3) [er1dd o) — @A) [¢*2ddp@}dos ()] =0, v>0,
— o0 0 ]

where the prefix symbol Re stands for denoting the real part, the function
9 (A) occurring in the above being the same as in -5.5. As @(v) is a function
of bounded variation, and the function (A) is integrable with respect to o:-
measure, the order of integrations can be interchanged by Fupini’s theorem.
Then the fact that d¢(v) is arbitrary gives the condition which ¢(v) has to
satisfy in the form of the following integral equation

‘Re[ f {eirty (1) — f e idg(w)eida ()] =0, >0,
e ]
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which we shall refer to as the ‘‘integral equation for predictio_n"’, if is a
positive number. When ¢@(v) is a solution of the integral equation, we have

| x@+n— _ff(t—v)d{<p(v) +esp)|f = X+ —fwé(t—v)dtp(v)nz
0 0
+ e2||f°°§(z—v)da<p(v) IF=|xe+ h)—fg(t—v)dq;(v)]F.
[ 0

Hence the integral equation is both a necessary and sufficient condition for the
norm of the error to be a minimum. Thus we can state.

Theorem 5.7. If @(v) is a solution of the integral equation of prediction, 1t
constitutes the best weight function to be used in the inverse smoothing to obiain
X(t+ h) from the values of £(t) up to the instant t.

If the processes and the function ¢ (v) are taken to be real, the prefix symbol
Re drops out.
Let us now specialize the processes as follows:

1) The processes be real,
ii) the resulting process £(¢) be metrically transitive, and
iii) for each fixed ¢ the process :

L) =X(t+7)é(x)

be continuous and stationary in the wide sense with its spectrum con-
tinuous in the origin.

With these restrictions we shall rewrite the integral equation for prediction in
a form in which F (1) and o¢(A) are eliminated by being expressed in terms of
the time average functions which are taken as known in the other approach.
As our equation will be presently seen to reduce to that of LEvINsoN, we shall
refer to a matter concerning the notation to prevent a possible misunderstanding.
Levinson follows - in the appendix C of WienERr [1] a different notation from
that of chapter III of the same book.” In this notation the message is denoted
by g¢(¢) and the disturbance by f(f) —g(t), so that f(f) is our £(f). Hereafter
we follow the notation of the appendix. The first term of the integral equation
can be written as

B[ [étrotoiyydze() [é3dZ;(2)] = EIX(h + v + DE(E)].
According to the mean ergodic theorem

.1 7
Lim. 2—1-,_fT X(t+1)E@)dT = %(0)
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is a random variable with variance equal to the discrete spectral mass of the

process in the origin which is zero by our hypothesis. Hence the limit is almost
certainly a constant, being the mean value of the process for each fixed ¢, so that

g(E+0)=E[X(@+0v+1)E)].

Further on our hypothesis of metric transitivity of the &-process we have

N

Y (t) = lim

Lm %_ E(t + s)E(s)ds = Re(t)

b |

almost certainly for all ¢.
The same method of recasting as has been employed in the case of the first
term can be used to obtain the second term of the equation in the form

Yiv—u)de(u).

O\s

Setting
do(u) = K(u)du,

the integral equation becomes

yh+ )= | ¥Pw—u)K(u)du, v>0

Q\s

which is equation 2.2 of LeviNsoN in the appendix C.

The method of solution in WieNER’s theory is still capable of being used
(under the condition of the existence of certain Fourier transforms, cf. appendix
C) even in the general case when the processes are not specialized to make the
expectations previously considered convertible to the time average forms, provided
however

do(u) = K(u)du

where K (u) is real. For, we shall show now that if we employ the same nota-
tion in the general case as well, we can arrive at the same form of the equa-
tion when K (u) is real. Let

Re{ [ ety (A)doe ()} be denoted by % (k)

and

Re {R;(h)} by ¥ (h).

Then the functions y (k) and ¥ (k) are known. We have
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x(h+v) = Re{j (1) €rt0id ge ()}
— Re{_f @ (2)¢i**dos(A)} by the integral equation,
= Re{ fR;(v——u)K(u)du} as before
5

Re{Re(v —u) K (w)du} since K (u) is real

I
o3

H

F'Pv—u (u)du.
b

Hence when K (u) is real, we may adopt the same method of solution of the
integral equation as in WIENER S theory.

Turning to the case of the discrete parameter we shall need the followmg
changes to be made. The range for 2 is to be altered to (— 7z, «), and F (1) now
becomes the familiar P (e~*%),

while

fe-w/l dQO (1)

0

stands for a function with the representation
ib,e'i_”.
r=0

The number 2 will in this case be a positive integer. The sequence of numbers
required to be constructed in our estimation problem is then given by {&}.

CHAPTER VI

Some generalizations

6.1. Inversion in terms of £ (f) and its derived processes

In chapter IIT we have considered the inversion of a smoothing relation in
the case of stationary processes of continaocus parameter. In theorem 3.2 we
obtained the necessary and sufficient conditions for each of the processes to be
a smoothing of the other. This was seen to be applicable only to instances
of processes with restricted types of spectra. To enlarge the class of relevant
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processes, inversion was attempted not as a single smoothing of the given &(¢)-
process, but as the limit in the mean of a sequence of processes each of which
was a smoothing of the resulting process (see theorem 3.3). Here we shall
consider yet another way of obtaining a solution of the primary process as a
combined smoothing of the resulting process and its derived processes.

Let f(u) be bounded and the associated F (1) exist and be bounded, and let
the smoothing relation

oo

[X(t—w)fu)ydu=£(@)

—oQ

be consistent, and consequently let the given &-process have derived processes
’ as().
dit

) . The present purpose is to seek inversion of the smoothing

(as explained in chapter 1) up to order p. (These will be denoted by
¢eq) o drE(

a7 de
relation to obtain X (¢) in the form

X)) = [et—vp@dv +1:jobr drdift).

— o0

where @(v) is bounded and

exists and is bounded. Hach of the derived processes is given by

TEO - [ ooz,

—oC

so that, if X (¢) has the above representation, then

X@) = [ (o + S} dZe(h).

— o0

By just adopting the same line of argument a8 employed in proving theorem
3.2, we can prove the following

Theorem 8.1. If £(8) vs a given comtinuous parameter stationary process
which is continuous in the mean and if the smoothing relation

o0

[X(t—uf)du=EQ

—00

1s consistent and mnecessitates the ewistence of the derived processes of £(t) up to
the order p, then for obtaining the inversion as

482



ARKIV FOR MATEMATIK. Bd 1 nr 32

J Et—v)p@)dv + Ebr dift)

it 1s sufficient that

i) Ly(X) = Ly() and

_f [1—F@){o® +§0b,(' )

where F (1) has the usual meaning.

0'5(/1) = 0,

The following example is of particular interest in that it has been already
considered in connection with theorem 3. 3.

Example :
Let
flu) = e v,
and let the smoothing be consistent. Then
2
PO =1

the set @ of real zeros of which is empty. Then the third condition of con-
sistency gives that

[ 714——«105(1) = f (i%;"—)dos(l)

is finite. From this it follows that the &-process has derived processes up to
the second order. Let us put

@{v) =0 80 that &(1) =0,
and choose

bl 0 and bo "“‘bg = %.
Then

1— FQ){®(0).+ SbAy) -
Further since @ is empty, ~
mx(Q) =0, ie., Ly(X) = Ly(&).
Hence by theorem 6.1 l
X(@®)=3&0)—4

Therefore the sequence of processes

(X, ()} ~ jf(t—vmw)dv}

constructed in 3.3 converges in norm to the right side of (B).
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It is clear that we can generalize the smoothing relation itself into the form

0 ! s
f X(t—u)f(u)du +s§0asd(is@ = £(2)

and seek Inversion in a similar form, viz.,

R R 230
= [ee—mgmdy gy
Then the conditions will read as
1) Ly(X) = Ly (%) and
b I
SJIT—{F Q) + Jaa (i Ay} +2b iy 2 d os (2) = 0.
oo §=0

6.2. Vector processes

Suppose (X,#) to be a set of k stationary processes such that L, (X,) 1 Ls(X),
r#s. Let k® smoothings (Ii) be given, and let

Li: X, (t) = &(t),

the repeated index r standing for summation from 1 to k. Such a summation
convention will be used in what follows. We now suppose the vector process
(&) is made up of k stationary processes which are stationarily correlated
with each other. The (& ()-process and the k? smoothing operators (Lrs) are
assumed to be known. Then the p“ob'em of inversion will consist in obtaining
the primary vector process (X,®). It is not proposed to go into any details
of this and related problems here, except to point out that they are more or
less analogous to those treated in this thesis. Corresponding to each smoothing
operator L,; we have as before a function F(4) which we shall denote by
F,s(A). The set of real zeros of F,s(4) is denoted by Qrs, while the set of real
A for which

is denoted by . Also with the smoothing operation L, we associate the constant

f za(n)z, the sum of the weights of the smoothing, in the discrete para-
J meter case
O,y = and

o0

f fes(u)du in the continuous parameter case, frs(u) being the weight
function used in the smoothing L,s
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The determinant |Cys| is denoted by A. We shall denote the £ mean values
of the given resulting vector process by (Mg,). Then the first condition of

consistency of the smoothing vector relationship is seen to be that
if (Me.) is not the null vector, 4 #0. (i)

The method of 1.9 combined with the assumption of the orthogonality of
the Hilbert spaces of the components of the primary vector process leads us
to the relation

dZe (A) = Fsy (M) dZx; () (A)
from which we have as the second condition of consistency that for each fixed s
me, (Qe1- @s2 -~ Qsx) = 0, s=1,2, ...,k (i1)

(Note that s (being fixed in any equation) is not a summation symbol).
When 1€ W — @, we can solve the linear equations (A) and obtain

dZx,(A) = Grs(A)dZe, (A).
The third condition of consistency will be that

([ €446 () d Ze, (2)

w—-Q
is composed of mutually orthogonal processes of finite norm.

When these conditions are satisfied, we obtain the primary process belonging to
the Hilbert space of the given resulting vector process uniquely (in the sense
of norm) as

X, (1) = [ éGra(R)dZe,(2).
W@ )

6.3. Certain processes of bounded norm

Lastly let us consider the case where the resulting process &(¢) is assumed to
be of bounded norm but not stationary, is of continuous parameter, and is
adjusted to have its mean value function Me(f) = O for all ¢&. Further let this
process have KARHUNEN’S representation

£ = [ B NIZA).
We take the smoothing relation to be as before
[ Xt—wfw)du=¢@.
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In our attempts to recover the primary process we have in our previous
work obtained by use of Fourier transforms a linear relationship between the
random spectral functions of the two processes from the given smoothing rela-
tionship. As this is no longer possible, we shall specify the problem of inversion
as follows:

to find X (#) of bounded norm and having the representation

oo

X(t) = [ a(t, YdZ().

— o0

In this specification we have Ly(X) = Ly(£). Also the mean value of X (¢) may
be taken to be zero for all £. We must then have

oo

[ la(t, )))Pdo(4) bounded. ()

—o0

Also from KARHUNEN'S theorem of 1.7, it is necessary that

o0 o0

[ [at—wnfwduf do@) is bounded. (ii)

Then o
f{fa(t—«u,l)/(u)du}dZ(/l = er—u f(u)du
= £()
Fﬂtle

so that -

[]8@n— foc(t—u,l)f(u)dulzda(ﬂ)z() (i)
for all ¢.

When (iii) furnishes a solution of « (¢, 1) which satisfies (i) and (ii), it follows that

o0

Xy = [ a(t,)dz)

exists as an element of L2 (Z) = Ly(&), and constitutes a solution of the primary
process.

Suppose further that a function ¢(v) of the real variable » can be found
such that

o0

f la(z,z)—_fﬂ(t—v, Nowdv[ de(1) =0

— 00

for all ¢, and
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o0 o0

[][Be—v.nepmdof do()
18 bounded. Then it is seen that

Xt)= [ Et—v)p@do.

Additional note

The object of appending this note is to make explicit what is meant by
taking the expectation of the process obtained by integrating a stationary pro-
cess. Let us start by considering the case where the stationary process X (f)
has the mean value zero and the resulting process &(t) is given by the integral
smoothing

0 b
§0 = [ Xt—wf@du=lim. [ X@¢—u)f()du.

b

Then
Et)~ [ €9 F(A)dZx (),

where the random spectral function Zx(s) is such that E(Zx(s)) = 0. In this
case E(£@®) = 0.

We now turn our attention to the case in which the mean value of the
process X (¢) is a constant My < 0. In this case we define the integral

wa(t—u)f(u)du

as

f(X(t*u)—MX)f(u)du + fo‘f(u)du,

where the first of the integrals is the integral of a stationary process of mean
value zero in the sense already explained, and the second one i3 an ordinary
infinite integral. Thus in this case we have

oc

E@) = [ éHF()dZx() + Mx - [ f(u)du.

Taking the expectation of both sides we have
M:=E(¢@®) = Mx . [ fw)du.
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