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On empirical spectral analysis of  stochastic processes 

By U L F  GRENANDER 

1. Introduction 

Two main cases of empirical determination of the spectrum of a stat ionary 
stochastic process will be treated in this paper. 

To a given frequency, which all the t ime will be chosen as zero, there cor- 
responds a discrete line in the spectrum. One wants to determine its mean 
amplitude when a realization of the process has been observed. Among all 
possible ways of estimating the mean amplitude there is one which gives 
maximum precision. If  the rest of the spectrum is known a p r i o r i  this esti- 
mate  can be explicitly constructed. I t  is shown tha t  this construction is related 
to the problem of prediction. For the construction of the asymptotical ly best 
estimate the knowledge of the rest of the spectrum is not necessary, at least 
not for purely non-deterministic processes. 

The other case arises when the spectrum is absolutely continuous and one 
wants to estimate the spectral intensity or, what  is equivalent, the covariance 
function. A class of estimates is given and studied in relation to periodogram 
analysis and to an estimate proposed by  BARTLETT [2]. A principle of uncer- 
ta in ty  is stated. 

In  passing, some simple properties of linear processes are studied. 

2. Estimation and prediction 

2.1. Let x (t), - - c ~  ~ t ~ c~, be a real valued process with finite variance. 
The mean value m and the covariance function Q (s, t) are defined as 

" m = E x ( t )  

e (s,  t) = E Ix  (s)  - m] Ix (t) - -  m]. 

The process is supposed to be continuous in the mean. Consider x (t) in an 
interval T = (a, b). Introduce the inner product 

(y ,  z) = E y z  
and the norm 

I! v II = V~, y), 
for any stochastic variables y and z with finite variance. The Hilbert  space 
generated by x ( t )  wheh t runs through T is denoted L~, (T). When T is the 
whole real axis we shall write L 2 (T) = L,,. 
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Suppose now tha t  m is unknown, tha t  a realization of x(t) is observed in 
T and tha t  we want  to estimate m by  a linear, unbiased estimate. I n  other  
words we want  to form a linear combinat ion 

n 

~* ~ ~ ,c ix ( t~ )  
1 

n 

~,ci = 1, tiE T, 
1 

or a limit of such combinations. The c's shall not  depend on m. in  the  set 
M consisting of all such unbiased linear estimates we want  to choose one 
with small s tandard deviation. In  a recent publication [7] the author  has 
shown the  existence of one and but  for equivalence only one estimate m* 
for which 

I m * E M  

~ D m* = inf D/t*.  
~*EM 

Fur the r  m* is the unique solution of the integral equation 

E m * [ x ( t ) - - m ] ~ - c ,  tET ,  (1) 

where the  constant  c is equal to the minimum variance 

D 2 m *  = c .  

2.2. We shall now make a detour  to the problem of prediction. Under  the  
same conditions as above, except t ha t  we now put  m = 0, we want  to find 
an element in L~(T) which can be used as a prognosis to the time b + h, 
h ) 0 .  The best linear prognosis Jv (b + h) is defined as the element in Z2 (T) 
which makes II x (b + h) - -  x (b + h)II a minimum. Then 

(b + h) = PL2(•> x (b + h) e L~ (T) 

satisfying the equation 

E [ ~ ( b + h )  x (b + h)] x (t) ------ 0, t e  T. (2) 

The "predict ion" (or extrapolation) backwards in t ime is defined in the ana- 
logous way. When T is a finite interval KARnUNEN has given an explicit solu- 
t ion  in terms of the eigen-elements of the kernel r (s, t). When  a = - - c ~  and 
x (t) is a s ta t ionary  process WIENER [14] has constructed the solution. 

Let  us now return to the case when m is an unknown constant .  Then it 
seems advantageous to introduce one more condition on the predictor, t h a t  

E x * ( b  ~ h ) = E x ( b + h ) = m  

irrespective of the value of m. In order to define the best of these predictors 
consider the  set M defined above. M is a convex s e t  and then it can be 
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shown in the same way as in [7] p. 241 tha t  there  is a unique element 
x* (b + h) e M  such tha t  

II x* (b + h) - -  �9 (b + 2~)II := i n f  !1 z - -  x (b + h ) I I  
zEM 

and this element satisfies the equation 

The constant  is 

E [ x * ( b + h )  x ( b + h ) ] x ( t ) = k  for all t e T .  

k : IIx*(b + h)ll ~ - -  (x<b + h~, x*<b + h:~). 

(3) 

x*(b + h) is called the best unbiased prediction. This concept seems to have 
been introduced first by  DOLPH and WOODBURY [5]. These authors  have con- 
s tructed x* in the case when the covariance function is a Green function of 
a second order differential operator.  

2.3. We shall show tha t  for s ta t ionary processes the best unbiased esthnate 
of the mean value can be expressed in terms of the best unbiased prediction. 
To do this we shall first s tudy  an operator P* associated with the prediction. 
P* is defined in the following way. For  any  element x EL2 we defin(~ P * x  as 
the  unique element in M which satisfies 

f i x -  P* xl l -  i~lJ x--  zll. 

For  x = x (b + h) we clearly get P* x (b + h) = x* (b + h), i.e. the best unbiased 
prediction to the time b + h. 

If  P* were a linear bounded operator we would have 

II P*xll ~ ell ~11 
| P *  ( a x  + by)  = a P *  x + bP* y, 

but  these relations do not  hold in general  for P*. Some similar relations can 
however be easily obtained. We have 

and hence 
E [x - -  P* x] x (t) ~- constant  for t e T 

x - - P * x •  x(fl) for all ~ , b E T .  

(4) 

This implies t ha t  if x and y are two arb i t rary  elements of L2 we have 

x - -  y P* x - -  P* y + x - -  P* x - -  y + P* y = P* x - -  P* y + u. u L P* x - -  P* y 

so tha t  
IIP* x - -  P* yI] <-- I I x - - y l l .  (5) 
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From this we infer tha t  the process P*x (t) is continuous in the mean and 
hence Cram6r integrable (see [3]) which fact will be used below. - -  Suppose 

that  ~ e ~ = l  and consider the element P*lfLc~x~l where x~EL~. Clearly 
1 LT J 

and 

n 

~c~P* x~EM 
1 

E cvP*x~- P* c~x, x(t) = ~_c~EP*x,.x(t)--E c,x~x(t)--c. 
1 1 

But E[P*x~--x~]x(t) is a constant so that  the above expression is also a 
constant. As P*x is uniquely determined by (4) we have 

If  

P*[~l C~X~] = ~c~P* xv. (6) 

t~ 

I = t; 1--t i f x  (t) dt 
tt 

we can approximate  I by  sums of the type Sn = n ~ x ,(~(n)~ ,, and we get using 

(5) and (6) 

l iP* I -  n ~ ~ P* x (v~")) ll = Il P* I - e *  Sn ll <-I I I - -Sn l l  + o 

as n tends to infinity. Thus we have as P*x (t) is integrable 

t ~ t., 

P*[t x(t)dt]-t tqf P*x(t)dt. (7) 
tt tt 

Let x (t) be a s tat ionary process. Then the limit 

A 

l'il'm'2~A /x( t )  dt 
- - A  

exists and is an unbiased estimate of m. I t  is easily seen tha t  this estimate 
has minimum variance among all linear, unbiased estimates of m which can 
be formed using values of the process from the entire t ime axis. When we 
have observed a realization in the finite time interval T and want to obtain 
the best estimate of m, the above integral cannot be calculated as x (t) is not 
known for t ~ T. I t  is then natural  to extrapolate the realization and use this 
to determine the above integral. We shall now make this argument rigorous. 
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When A and B tend to infinity we have 

A B 

1 x a,liBm []7~ f (t) dt--  ~--~B (x(t)  dt = 
- - A  - - B  

O. 

But then according to (7) and (5) 

A B 

a,B~o 2-A x (t) dt--  2B x*(t) dt <-- 
- - A  - B  

so that  

,1  
z = l ii2m. 2 A f x* (t) d t 

--A 

A B 

A ! i ~ l l ~ A f  x ( t ) d t - - : j B j  x(t) d t =  
- A  - - B  

exists. Further zeM and as (if 81, 8 2 E T  ) because of (4) 

A 

Ez[x(sl)--x(s~)] = lim 2 ~  ; Ex*(t )[x(s l ) -x(~)]dt= 
- A  

A 

= lira A f Ex(t)[x(sl)--x(s2)]dt= 
--A 

A--s1 A--s~ 

A-- ~ 2-A r (t) d t - -  lim 1 �9 A ~ r162 2-A r ( t )  d t = 0 ,  

- - A  - $1 - - A  - -$2  

we have according to (1) the wanted representation 

A 

m* = 1.i.m. (t) dt. a~oo 2 A.J 
- A  

(8) 

2.4. We shall now show that  there is a similar relation betwee.*i the best 
unbiased estimate m* and the best prognosis ~(t), at least under some re- 
gularity conditions. As the prediction operator is a projection and hence linear 
and bounded, &(t) is continuous in the mean. We shall consider stationary 
processes for which the integral 

Oo 

I = j'~ (t) dt (9) 
- - o o  

exists. If x(t) is purely non-deterministic (see [8] and [10]) it can be re- 
presented by means of a homogeneous orthogonal process ~ (u) as 
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where 

The convergence of 

t 

x(t) = f g ( t - - u )  ds  ~(u) 
--Oq 

or 

.t Ig(u)l = du < oo. 
0 

oo 

f u2la(u)12d~ < ~ (lO) 
0 

is a sufficient, condition for the ex i s tence  of (9). To show this we consider 
the quanti ty 

I[ ~ (b + h) - �9 (b + h)II 2, h >  o. 

Introducing the prediction x ~ ( t ) =  PL,(-=c,b) x(t), which corresponds to a real- 
ization observed in ( c~, b), we get 

II ~ (b + h) - -  x (b § h)I[ ~ II & (b + h) - -  x (b § h)H. 

But we have (see [11] p. 65) 

h 

Ilx~ (b + h ) - - . ( b  + h)[I ~ = f l g ( u ) l ~ d u  
0 

and thus 
h 

II~(b + h)--x(b + h)ll~-> f la(u)12du. 
0 

But 
x (b + h) = ; (b + h) + Ix (b + h ) -  ~ (b + h)], 

where the second term is orthogonal to the first one, from which follows 

and 

f la(u)12du = IIx(b + h)ll 2 = II&(b + h)ll ~ + IIx(b + h ) - - ~ ( b  + h)ll 2, 
0 

oo 

[I ~ (b + h)[12 <-- f [ g  (u)] 2 du. 
h 

Because of the symmetry  of the covariance function we get a similar inequality 
for the extrapolation backwards in time. Now we get using (10) 

oo oo or oo 

fll (b § II dh -< f dh f I g(u) = g(u) < 
0 0 h 0 

so tha t  according to Theorem 7 in [9] the integral (9) exists. 
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We have 
c o  

r ( t ) =  f g ( u ) g ( u + t ) d u ;  g(u )=O for u < O ;  
�9 - - o o  

where g (u) is absolutely integrable because of 

Hence 

o o  o o  r)o 

If, f g(u) ldu  <- i O + u 2 ) l a ( u ) 1 2 d u < ~ "  
- - c o  - - o o  ~ o o  

B 00  B 00  

f l~(t)ldt~ f lg(~)lduf lg(u + x ) ld t~[ f  la(~)ldu] ~ < 
A - - ~  A - - 0 0  

so that r (t) is absolutely integrable. Using this and (2) we get 

o o  r  

E I [x (s) - -  m] = f E ~ (t) [x (s) - -  m] dt  = f E x (t) [x (s),-- m] dt  = 
~ o o  - - r  

= f r  (t) d t  ~ constant for sE T. 
- - o o  

oo  

Supposing that f r (t) d t # 0, i.e. that the spectral intensity corresponding to the 

frequency ;t = 0 is positive, there is a constant ~, such that 

o o  

r f &( t )d t  = m*. 
- - o o  

Let us apply the above to a process with the eovariance function r (t) = e -altl. 
As is well known (see [14]) the best prediction has the form 

( b + ~ ) = e  -€ ~ > 0 }  

( t ) = x ( t ) ,  t e ( a , b )  

( a - - ~ )  = e  - ~ x ( a ) ,  ~ > 0  
We get 

~ ~ f e -~(t-b) x (b) dt I = f ~ ( t ) d t  = f e - O ( a - t ) x ( a ) d t  + f x ( t ) d t  + = 
- - o o  - - 0 0  a . b 

b 

If r 2 + f l (b--a)  
has the form 

x (a) f x (b) t~ + ~(t) d t + ~ - .  
a 

- -  the estimate ~ I is unbiased and the best unbiased estimate 
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b 

x(a) + x(b) + fl f x(t) ~d t 
m S .  ~ a 

2 + fl(b--a) 

which was proved in another way in [7]. For such processes for which the 
best prediction depends only upon the last observed value of the realization 
and a finite number N of its derivatives, the best unbiased estimate is the 
sum of terms of the type 

b 

f x(t)dt, x(a), zib), x'(a), ..., x<~)(b). 
a 

2.5. I t  deserves mentioning that  it is not essential to the above that  T is 
an interval. T may be any bounded measurable set on the real axis and the 
results still hold. Consider e.g. the following problem. The process has again 
the covariance function e-~ltl and the mean value m shall be estimated. I t  is 
possible to observe the process in a given interval (A, B) but  it is required 
that  the set of all time points of observation shall consist of at most n 
disjoint interval situated in (A, B) and of total given length L < B -  A. How 
are these intervals to be chosen in order to get maximum information about m ? 

Suppose that  the intervals are fixed. We can then construct the best unbiased 
estimate of m in the manner described above, because for the given covariance 
function the problem of extrapolation and interpolation is solved. The variance 
of this best estimate is a function of the location of the intervals of observa- 
tion. One of the solutions (there are several) realizing the minimum of this 
function locates the intervals symmetrically in (A, B). 

3. Asymptotic properties of the equidistributed estimate 

3.1. In 2.4. we showed how m could be expressed in terms of the best 
prediction 

a b 

m*= y[ f ~(t)dt + f x(t)dt + .I'x(t) dt]. (11) 
--~o a b 

The second integral can be used as an estimate of m because of its simple 
form and especially because it does not depend upon the covariance function. 
Let us form the equidistributed estimate (putting T = (-- T, T)) 

T 

if= m~ = ~ .  (t)dt. (121 
- T  

If the process is purely non-deterministic the first and third terms in (11)will 
be small compared to the second one. More precisely, we have shown in [7] 
that  if x (t) is purely non-deterministic, so that  there is at least one ~ (~t) whose 
Fourier transform vanishes for negative arguments and such that  F '  (4) = I ~ (4) I ~, 
and if there is one ~(~) satisfying this condition a n d  
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~o(~t) = ~o + ~1 .2(1  + o(]), 2 ~ 0 ,  ~o 4:0,  (13) 

lim D(m*) _ 1, (14) 
T~oo D (m~) 

i.e. the equidistributed estimate is asymptotically efficient (in this linear sense). 
Can it happen I that  the equidistributed estimate is not only asymptotically 

efficient but  that  already for some finite T 

Dm~ = Dm*? 

As the best unbiased estimate is unique 
cause of (1) 

E m~ [x (t) - -  m] ---- c, 

we mus t  have m ~ = m *  and be- 

- - T g t < _ T .  

If the spectral distribution function of the process is denoted by F (~) we get 

W 

- - T  - - 0 o  

- - T ~ _ t < _ T .  

Derivation of this equation with respect to t may be performed under the sign 
of integration (see e.g. [4] p. 68) and gives 

f e - ~ " s i n T 2 d F ( 2 ) = O ,  - - T < _ t < _ T .  
- -  o o  

Putting t = -  T and t = T and subtracting the two resulting equations w e  
obtain 

c,o , 

f sin s T ;L d F ()l) = O. 

Hence the spectrum must be empty except perhaps for the frequencies 

n7~  
2 = ~ - , n = 0 ,  •  •  

To show that  this condition is also sufficient we have only to consider the 
expression 

T 

F,m~[x(t)--m]= ~ /r(s--t)ds. 
- - T  

1 T h i s  q u e s t i o n  w a s  r a i s e d  b y  Prof .  CRAM~R a t  a s e m i n a r  o n  s t o c h a s t i c  p rocesses  i n  
M a r c h  1950. 

511 



U. GRENANDER, On empirical spectral analysis of stochastic processes 

But 

r(t) = ~ AF .e  '-Tat 

n z Hence where A F~ are the saltuses of F(2)  in the points 2 = T "  

E m~ [x (t) - -  m] = zJFo, - - T ~ t _ < T ,  

which implies m~ = m*. One has to observe however tha t  if m~ is efficient 
for some value of T it does not follow tha t  it is efficient for all larger val~ 
ues of T. 

3.2. The condition (13) can be replaced by another which is given directly 
in terms of the spectral intensity F '  (2) = / (2). Although it is presumably far 
from necessary it is sufficient for our purpose. 

Suppose tha t  we consider a purely con-deterministic process with an integral 
valued time parameter;  further let /(2) be positive and have continuous de- 
rivatives of the first and second order. Then (1.3) is satisfied. To show this 
we use Wiener's construction (see [14]) of ~(2). The function ]og / (~)  is con~ 
tinuous together with its derivatives of the first and second order. We can 
develop in ( - z e ,  n) 

log / (2) = ~ y~ e i"a 

and we have 

Putt ing 

we have 

If  we put  

c ~  

R e h (2) = l o g  / (2).  

(2) = e 

which can be developed in non-negative powers of e i~ we have 

] 9~ (2) [2 = elog l(a) = / (2). 
As 

the functions h (2) and ~0 (2) have a continuous first derivative as stated. 

4.  The  l inear  processes  

4.1. Any wide sense s ta t ionary  process, which is continuous in the mean,  
can be written as the sum of two wide sense s tat ionary processes  
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where 
x(t) = xl (t) + X2 (t) 

t 

X 1 (t) = f g (t --- u) d ~: (u) 

x 2 ( t ) •  for all t a n d  s. 
05) 

c,o 

(u) is orthogonal and 1[ d ~ (u)[12 = du,  f i g  (u)12 d u  < co, Xl (t) is pure]y non- 
0 

deterministic and x2 (t) deterministic (see [8] and [10]). In applications x2 (t) 
either vanishes or is of some simple form, e.g. a finite trigonometrical sum 
with random amplitudes. 

I t  is possible to give (15) a simple physical interpretation. Let us consider 
A ~ (u) as a series of random shocks entering a linear filter characterized by 
the transient function g(t). xl(t) is then the output of the filter. In many 
cases it is natural to assume that the increments of ~ (u) over disjoint inter- 
vals are not only uncorrelated but also independent. Using the terminology of 
Bartlett  Xl (t) is then called a linear process. 

In this paper we shall from now on deal with the case of an integral valued 
parameter. With some obvious modifications the results of 2 . 1 . - 3 . 1 .  hold in 
this case also. The processes shall be linear 

Xn= ~a~n-~, - - o o <  n < O o ,  (16) 

where the ~'s are independent and identically distributed w i t h  finite var- 
iance. Let  

According to a theorem of Kolmogoroff the sum in (16) converges then almost 
certainly. We shall have to introduce a more stringent condition later on. 

4.2.1. Let x, be a stationary (strict sense)process whose realizations we 
denote by o )=  ( . . .  x - l ,  Xo, X l . . . ) .  The sample space consisting of all r will 
be denoted by ~2. If F (r is a function which is measurable and quadratically 
integrable with respect to the probability measure defined on ~2 and if the 
usual operator of translation is T, then 

yn = F [T n r 

is evidently a stationary (strict sense) process. 

4.2.2. Let  x~ be ergodic, i.e. for every ] (r L 1 (•) the limit 
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which exists almost cel"~ainly 
constant 

according to the ergodic theorem, reduces to a 

] (~o) = E / (o~). 

Then it is self-evident that  also Yn is ergodic. 

4.2.3. Suppose now that  F(eo) depends only upon the values o f . . .  x - e ,  
X - - l : -  X 0 �9 

F (r = F ( . . .  x - 2 ,  x_~,  Xo). 

Further let x~ be a linear process. I t  is then automatically purely non-deter- 
ministic. The process 

Yn = F [T -n  col - -  E F [T -n  col 

is also purely non-deterministic. To show this let us assume the contrary. 
The Hilbert space spanned by y, for v--~n will be called L2(Y; n) and 

lim L,z (Y;  n ) = / ~ . ( Y ; -  c~). Under our assumption there exists a non-va,- 

ishing element z (r E L~ (Y ; - -  co) ~ L 2 (Y; n). The last relation holds by detini- 
tion for all n. ~Tow it is known (see [6]) that  

lim E [z (co){ ~ n ,  ~n,~- i  . . . .  ] = Z ( (D)  
n - - >  - -  oo  

almos~ certainly. But as z ( o J ) e L 2 ( Y ;  n - - l ) ,  it is the limit of functions ,~,l~ 
depending upon ~n, ~n+l, ~+2,  . . . .  Then 

contrary to our hypothesis. 

z ( ~ ) -  E z ( ~ )  = 0 

4.2.4. Starting from a purely random 
tion F as 

o~ 

F[~o] = ~ a ~ _ , ,  

we get a linear process 

process ~. and defining the func- 

oo 

oo 

Xn = F[T-n,:o]  = ~ , a ~ n - v .  

As a simple application of 4 .2 .1 . -4 .5 .3 .  this p~'oc~s3 is strict'.y sta~,ion~,r], er- 
godic and purely non-deterministic. 

4.2.5. Now we shall consider a special functional of the realization, viz. the 
equidistributed estimate 

m~ 1 ~ 
n 

which has been considered above. 
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This estimate is asymptotically normally distributed according to a theorem 
of MORAN, who has shown [13] that  the central limit law applies to the linear 
processes if 

I = 
0 

MORAN gives an example of a linear process for which /(0) - 0 and for which 
the central limit law is not valid. 

5. Introductory  remarks  on the e s t imat ion  o f  the covariance  sequence  and 
the spectral  intens i ty  

Suppose tha t  we have observed the process xn in a finite number of points 
and have got a sample (x-iv, x-N+m . . . .  x~v-1, XN). To simplify the problem 
let E x~ ~ 0. I t  is required to form a function of the sample and of n in such 
a way tha t  this function can be used as an estimate of the covariance se- 
quence rn. Because of the Fourier representation of r= this is equivalent to esti- 
mating the spectral intensity ](2). Some special cases, e.g. when xn is an 
autoregressive process and the problem is reduced to estimating the parameters 
in the characteristic equation, have been studied a great deal. I t  seems im- 
portant,  however, to consider this problem of estimation more generally without 
restricting the type of process too much. This has been pointed out especially 
by  BARTLETT [2]. 

As rn = Ex~x~+,, it seems natural  to consider some quadratic form of the 
sample values 

r* = q,~ (x-N . . . .  x~v) (17) 

as an estmlate of the covariance sequence. In  the same way we can choose 
another quadratic form 

/ '  (A) = Q (x-N . . . .  xN; A) (18) 

as an estimate of the spectral intensity. As 

/ ; rn = "e {n~/(2) d 

1(2) = ~ _ ~  rne -i~', 

(19) 

where the second formula holds in the cases we are going to consider, it seems 
natural  to connect the estimates in the corresponding way. Further  the estimate 
]* (~) of the spectral intensity shall be non-negative; r~ is then an admissible 
covariaDce sequence because of (19). 

In  addition to these conditions we want some criterion in order to be able 
to choose between all existing estimates of the above type. To do this we 
shall study the mean value, and, though in general no unbiased estimate of 
/(2) exists, we can study the deviation El* ( ~ ) -  ] (~) and tr~z to make it small 
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in some sense. As the estimates introduced above are quadratic forms in the 
sample values, the knowledge of the covarianees of the process is enough for 
the determination of E /*  (2). To study the sampling fluctuations of the esti- 
mates we consider their variances. But  to be able to determine these we must  
in general know the moments of the process up to the 4th order. In order to 
avoid complications we shall now introduce the assumption that  the process is 
normal, so that  its distribution is completely specified by the mean value and 
the covariance function. I t  must  be admitted that  this condition is of a rather 
restrictive character, but we hope that,  if these processes can be treated satis- 
factorily, the general case will be considerably clarified. 

In  addition we shall from now orL suppose that  /(;t) is 1) positive, 2) con- 
tinuous together with its two first derivatives. This regularity condition which 
is presumably far from necessary will be denoted by  (R). 

6. Estimation of  the correlation sequence 

Having observed the sample (x-~r . . . . .  xx) we want to estimate r~ = Exvx~+n.  
We possess the following 2 N + 1 - -  in I unbiased estimates of r~ 

X--N X--N+ Inl, X - N + l  X - N  +I + In[ , . . . ,  XN-Inl  XN. (20) 

If  ]n I >  2 N  it is evidently impossible to give an unbiased estimate of r~. 
Combining the estimates (20) linearly we get 

N--Inl 
: cvx  ,+H (21) 

and to make this estimate unbiased we have to put 

N 

c, = 1. (22) 

The estimates are then of the following type 

N - n  

= - n > 0  

= "n, Y_, Ci n) = 1 (23) 
y 

=0; I n l > - 2 U  + 1 .  

For a fixed n we want to choose the c's to minimize the variance D 2 r~*. 
Introducing the process y,  = x , x , + n  which has mean value rn, the problem is 
formally reduced to that  studied in 2.1.--3.2. and there is a unique solution. 
One has to observe, however, that  in the present case the unknown parameters  
rn enter also into the expression for the covariance sequence of the y-process. 
The asymptotically best estimate can, however, he explicitely constructed. We 
shall use the identity 
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E xl x2 x3 xa = E x, x2 E xa xa + E xl xa E x2 xa + E xl x4 E x2 xa (24) 

valid for normally distributed variables with mean zero. The y-process has 
then the covariance sequence 

r~ (y) = r~ + r .+ , , r~ -n .  

The corresponding spectral intensity is then 

(25) 

/~ (4) = f / (~) / (4 - ~) [1 + cos n (4 - 2 ~)] d ~. (26) 

From (26) follows that  1) /u(A)> 0 and 2) /u(A) is continuous together with 
its two first derivatives, so that  /u (4) satisfies (R). Then the equidistributed 
estimate 

1 iv-~ 
* =  . . . . . . .  ~ x~x~+~ (27) 

rn 2 N  + 1 - - n ~ = _ ~ .  

is an asymptotically efficient estimate of r~ as N tends to infinity. Its variance 
is asymptotically 

* ( ]  (/~)[1 + cos 2n#]d /~ .  D { r~} -  N ~- ~ (2S) 

When N tends to infinity the estimate 

1 N--n 
* -  I ~ x.x~-n (29) 

is asymptotically equivalent to r*. 

7. Some properties of the periodogram 

When we turn to the problem of estimating the spectral intensity a rather 
natural way to proceed would be the following, in  6 we have shown that  
Q* is in an asymptotic sense the best estimate of r~. To estimate / ( 4 ) w e  
could then put  ~* instead of rn in (19) and obtain 

/* () l)= 2 - ~ Q * e  - ~  
1 /Y e-i(~-~)~ 

2 ~ (2 N + 1) ~, ~=~-lv x, X~ 

hr 12. 1 X x~e-iV~ 
2 ~ ( 2 N  + 1) ~=-lv 

This is nothing else than the periodogram which was originally devised to 
detect hidden periodicities. I t  is usually used in practice also as an estimate 
of the spectral intensity. 
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Let us introduce the notation 

= 1 [ 2" 

If we have the spectral representation 

we get 

Hence 

x, = f d~adZ(2) 

~" ]" sin (N + I) (l - -  ~, x,e -~'~: 2)dZ(l). 
�9 =-N - sin l - - ~  

1 fsin e(N+ 1)(l_2) 
Ellv(2)  - 2 n ( 2 N  + 1) ~ /  sin2 1 - - 2  /(1)dl, 

- n  2 

(30) 

which tends, according to a property of the F~jer kernel and because of (R), 
~o /(4) as N tends to infinity. This fact that  I~v (4) is an asymptotically un- 
biased estimate of ] (4) has been made an argument in favour of using Iiv (4) 
as an estimate of /(2). 

To compute the variance we note that  (24) can be extended (e.g. by analytic 
continuation of a polynomial from tile real axis to the point z = i) to the case 
when the variables can take complex values. We have using (24) 

where 

and hence 

EEv(A)  : 2[EI~EIz] 2 + IEX21 ~, 

1 N 

X = 27e(2N:+ 1),=~-~v x'e-i'~' 

D 2-(Lv (4)) = [ E I Z  12] 2 + I E Z 212 = 

[ l : s i n 2 ( N + i ) ( l - - 2 ) ]  2 . .  s in21- -2  

- ~  2 

+ 1 : sin(N + I)( l+2)  sin (N+ 1)(1_2) 
2~(2N+ 1) J sinl+~ sinl--2 

-" 2 2 

/(1)dl] 2. (31) 

As /(2) is a symmetric function D 2 (IN (2)) tends to 2/2 ( 2 ) >  0 resp. /2 (2) as 
N tends to infinity when 2 = 0 resp. 2 4 = 0. Hence the periodogram is not 
even a consistent estimate of the spectral intensity. 
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To see whether I x  (k) converges in the mean to some stochastic variable I,  
which then would have positive variance, we consider the expression 

But 
E I s l M  = E I N E I M  + IExs~MI  ~ + IEXNZMI ~. 

E Z s  ZM = 

1 f sin (N + �89 (1-- 2) sin (M + �89 {l + 2) 

2 J r V ( 2 N  + 1)-(2--~:~-1) d sin l - - ~  -- s in- /+  ~ . . . . . .  / ( l )d l .  
- =  2 2 

Fixing N and letting M tend to infinity we obtain using a property of the 
Dirichlet kernel 

lim E Zs  ~]M = 0, 

and analogously 

Hence 

But we should have 

lim E Zs  ~ M  : 0. 
M-+or 

lim lira E I s  I i  = /2 (k ) .  
N - + ~  M-+oo 

(32) 

lira lira E I s  1.1i = lira E I x  I = E 12 = lim E I~v --> 2/2 (k) > / 2  (2). 

Hence the suite I s (k )  does not converge. That I s ( k ) s h o w s  no regular be- 
haviour when N increases has also been observed in practice (see e.g. [2]). 

If 2 is considered as a parameter we get a new stochastic process by forming 
I x  (2). We shall introduce its covariance function 

Rs  (2,/~) = c o v  [ I s  (k), I s  (#)] 
and get 

[ j ], 1 s in (N + �89  sin ( N +  �89  + 
Rs (k, ,u), = _2 ~ (2 N + 1) sin 1 - - k  sin l - - /~ 

-= 2 2 

[ f .',/,, l: 1 sin (N + �89 ( l - - 2 )  sin (N + �89 (l + d l (33) 

+ 2 ~ ( 2 N + 1 )  s i n / - - 2  s i n l + ~  
-= 2 2 

DANIELL has shown that  the correlation tends to zero when N tends to infinity 
([1] p. 90). 

Summing up we can describe the behaviour of the periodogram for large 
values of N in the following way: Iiv (2) will fluctuate about ] (2) but  will in 
general not tend to this or some other definite value when the sample number 
increases. As Rs  (1, #) tends to zero, I s  (k) and I s  (#) will be uncolrelated 
(and even independent, see [12]) in the limit. The curve will hence show a 
very irregular appearance. 
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There is a simple paradox here. Although we have used the estimate Q*, 
which in 6 was shown to be asymptotically efficient, we have got a very poor 
estimate I~v (2). This can be explained in the following way. In  6 we were 
mainly interested in estimating r~ for n fixed, i.e. a single covariance. But  
when estimating /(2) we have to estimate all the covariances at  the same t ime 
and this constitutes an entirely different problem. 

8. A class of estimates of the spectral intensity 

In this section we shall introduce a class of estimates of the spectral intensity. 
In  (19) we shall insert some estimates of the covarianccs instead of rn. Al- 
though we know that  ~* is an asymptotically best estimate of r~, it is clear 
tha t  for a fixed sample number N the estimates ~* will be formed by  a smaller 
and smaller number of the observed values when n increases. I t  is then natural  
to introduce some weighting factors w~ (2) 

1 ~ Q, e_i, ~ /* (~) = 2 ~  ~.r (2) (34) 

and choose the w's in order to get a good estimate of /(2). The w's may depend 
on 2. I t  has to be observed that  they cannot be chosen completely arbitrarily 
because ]~ (2) should be non-negative. Hence 

1 N 
t*(2) 2 3 ( 2 N  + 1)~,,,=A,_:vw~_~,(2)e-i(~-~,)~x,,x :>_O 

Separating the real and imaginary parts of w,e - i 'a  we get 

w,e -~'~ = ~., + ifl~ 
and 

N 2r 

X ~ _ , x , x , _ >  0; Z fl, x , ~ =  0. (3s) 

(35) implies tha t  ~ shall be a positive semidefinite sequence. Then there exists 
a bounded non-decreasing function Wa (1) so that  

= f e~ '~  d W~ q). (36) 

We thus get the following representation for the estimates under consideration 

/ * ( ~ ) -  2=(2N1 + 1) Z x~x~, fe~( ' -s>ldW,( l )=_:f I~(1)dWa(l) .  (37) 

W~(1) can be chosen so that  d W(1)= A W(-- l~ ,  which is supposed in the 
variance formulae. 

�9 Especially if we choose W~(l )=  e ( l -  ~t) we get the periodogram 

t* (2) = In (2) 
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which, as we have seen in 6, is not a satisfactory estimate. I t  seems more 
promising to choose W~(l) as an absolutely continuous function with a de- 
rivative 

d W~ (1) 
w, (0. (38) 

dl  

If for different values of ;t we just translate the weighting function we get 

W~ (l) = W (l - -  )~) (39) 
and 

Thus 

w,(2)e-i ,~.  = f ei~ZdW(l - , t )  = e~,~ f e i 'ZdW(u)  = w,e~,~. 
- -oz  - - ~  

1 ~ W v  (40) 

and the weighting factors do not depend upon 2 when the different wdghting 
functions have been generated by translation. 

In [1] p. 89 DANIELL proposed (starting from another point of view) aver- 
aging the periodogram over neighbouring frequencies. That is a special case of 
(37) which will be studied in 10.1. 

Foc a given estimate we can calculate two coefficients 81 and 82 measuring 
the errors in the following way 

I /:/, 1 81 = (4) -- / (4)] 2 d ;~ 
! -'~ 

From (40) one gets 

2N+~ N + 1 - - [ ~ 1  E 1 = ~ ?'~ [W~,2 
-2~v-~ 2 N + 1 

2Nr 
= ,., w,D {Q,}. 82 

--2N--1 
We also have 

1 § 

f E [1" (4) - -  / (4)] 2 d ~ = 81 + 82. 

(41) 

9. Estimates with an absolutely continuous weighting function 

9.1. Consider the estimate 

]* (2) = f I~  (!) w~ (l) d l 

where wa (1) is a quadratic(lly integrable function in ( - - u ,  u). We have 
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E/* (2) = f E IN (l) w~ (1) d 1. (42) 

Using the representation of E I~  (2) in 7 and the condition (R) it is seen that  
E I~v (2) is uniformly bounded, and as it tends to /(1) we get 

lim E/* (2) = f / (l) w~ (1) dl. (43) 
zV-->oo _ ~  

To get a 
period 2 ~ and put 

[ w~ q) = w (l - 2) 

] w(u) = o, I h l < ! u l < ~  

simple and meaningful estimate we let w (u) be periodic with the 

(44) 

Then we get the estimate 
2 + h  

/*(2) = f I~(l)  w(1)dl (45) 
Jl--h 

which is an asymptotically unbiased estimate of the spectral mass situated in 
the frequency band (2 -- h, 2 + h). We can say that  the resolving power of this 
estimate is limited to frequencies differing at least 2 h. 

To ev~iuate the variance of estimates of the type under consideration we 
use (33). We have putting w~0 (l) = w (l) 

and then 

D~ 1" (20) = / / R~ ) (2, ju) .w (2) w (#) d 2 d # 

4 == (2 N + 1 ) = ~ / *  00) = 

iiT; = ein(u-k)r im(u-~) + it (v-~)+~l(v-~). ] (u) / (v) w (2) w (/~) du dvd/~ d2 = 
n , m ,  Ic, l = - - N  _~,  

N 

= ~ r,~+mrk+~W,~+kwm+z. (46) 
n, m, k, l =  -- zV 

Here we have denoted the first term of the right side of (33) with R~ ) (2,/~). 
The second term gives also the sum in (46). 

Introducing the quantity 

s, = ~ I~= w=+, I (47) 

we get using (R) 
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and 

o o  

S~ < i (1 + Inl)=~ ~ I~"+~1= 
~=_~ ~ ( 1  + I~1) = 

Iwnl 2 

S ~  w. ( 1 +  i n _ ~ , l )  2 
~ c ~ .  

(4s) 

Hence we have absolute convergence 

i I~W~+~mWm§ 
n , m , v ~ - o o  

(49) 

Returning to (46) we have 

where 

and 

2 ~ 2 ( 2 N  + 1)2D2/*(tto) = ~. c(~, fl, 7)r, rzw~w,+~-r 
a, fl, y 

O~ c(a, fl, y)- -<2N + 1 

c(~'fl'~)-~l a s  N - > c ~ .  
2 N + 1  

Because of (49) we get 

l i m 2 ~ 2 ( 2 N + l ) D 2 / * ( ~ o )  = i r~wn§ 

l n W n + v  = 8.~ 3 f w2(1)/2(l) dl. 

Hence we get the asymptotic relation as N tends infinity 

27~j" 
D~ ]* (;o) - -N-- w 2 (l) ]2 (l) d 1. (50) 

As this expression tends to zero for large values of N the stochastic variable 
]* (~0) converges in probability to /(4) so that  the estimate is consistent. 

9.2. If we consider only the asymptotic behaviour of ]~ (4) its variance can 
be minimized subject $o a condition of unbiasedness 

and we then get 

�9 and 

~o+h 

f w~o(1)dl=l 

w~.q) 1 1 
/ '  (1) a+h 

[ ~  dl 
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Min w~o (1)/~ (l) d 1 . . . . .  i ; u  - -" 

_~ f 1 
2j--h 

If the spectral intensity does not vary too much in ( '~o-  h, 20 + h) so tha t  
/(2) can be considered as approximately a constant we can take a constant 
weighting function as the best estimate in the class considered. 

Usually we do not know anything about the form of [ (2) so that  the best 
weighting function cannot be determined. Then it seems still natural to choose 
a constant w (l), at least from the point of view of getting simple computations. 

9.3. The greater h is chosen the smaller resolvibility do we get. Let us 
call this uncertainty A 1 and give it a quantitative meaning by  putting A1 = h. 

The sampling variability gives rise to another uncertainty, say A2, and we 
shall take A2 as proportional (at least asymptotically) to the variance of the 
estimate : 

Y~ 

A2 = f w ~ (l) /2 (1) dl. 

Consider the product of the two uncertainties 

zJ = zJ 1 A 2 = h /w2(l) /2(1)dl .  

Irrespective of the choice of w (l) we have because of (51) 

1 
A ~  ~o+h 

I f  1 /ffD d z 
2~- h 

The right side is a positive continuous function of h so that  there is a positive 
number Ao ([) depending only upon / satisfying 

A >_ Ao (/). (52) 

From this "uncertainty principle" follows that  if we want high resolvability 
we have to sacrifice some precision of the estimate and v/ce versa. As an ex- 
treme case we can consider the periodogram which is asymptotically unbiased 
but  not even consistent. 

I t  is possible to extend (52) to estimates whose weighting functions do not 
necessarily vanish outside some interval ( 2 o -  h, 20 + h) < ( - - n ,  n). In order 
tha t  the estimate shall still possess a sort of asymptotic unbiasedness we shall 

demand that  / w (1) d 1 = 1 (see (37)). To measure the resolvability we introduce 

the quantities 
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] ~=_~flw(Z)dz 
dl 

We can consider w (1) as a frequency function for a stochastic variable 1 taking 
values in ( - - g ,  ~). The above quantities are then the mean and the standard 
deviation of this variable. Using the inequalities of Schwarz and Tchebycheff 
we get 

- t 

~ + 2 A 1  P 2 [ l l - - ~ [ < 2 A i ]  9 fw~(z)az>_ f , ~ ( Z ) d z >  , - >  . . . . . . .  -~ ~-2~', -- 4 A1 64 A~ 

Hence 

A' = A~ A2 ~ .F A'I f w2 (l) d l >~ F > O, 
- -  xg 

so that  (52) is replaced by 

A' -> A~, (/). (52 a) 

10. Some  special  es t imates  wi th  absolutely  cont inuous  we ight ing  funct ions  

10.1. A simple form of the estimate is obtained when w(2) is chosen as a 
constant in ( 2 - -h ,  2 + h ) .  We then get (supposing 0 ~ 2 - - h ~ 2 + h ~ )  

with 

2 + h  

) . - h  

2 - - h  

D2 l* (2) 4 h 2N t ~(1) dl. 
~ - - h  

(53) 

(54) 

The corresponding weighting factors are according to (39) and (40) 

so that  

h 

1 fe.ldl 1 sin vh  
w , =  -2-~ h ~, 

- h  

_ 1 2 ~ 1  1 
l* (~) - ~ , - ~ - 2 ~ - 1  

sin vho~ e -i,~. 
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10.2. Bart let t  has proposed an estimate which we shall denote /$ (2). For 
the motivation we refer to [2], where this estimate has been applied to Ken- 
dalls artificial series. Let  2 N + 1 = n m where n and m are positive integers. 
Then 

/~, (2) ~ 2-~ ~ = - . + ~  

so tha t  

1 n-1 n 
- Y" I~ I ~* e-"~" (56) /~(2) 2 ~ : ~ . + ~ 1 _  _ _  

n l  

To study ]~ (2) we introduce a modified form of this estimate 

/~ (~) = ~ + 1  - 

T h e  weighting factors are 

{ l o ' V ] ] v ' ~ n ,  
W ~ n )  ~ ~ " 

, i , , l > .  
and the weighting function 

n 
sin 2 ~ 1 

1 
w.(l) = 2ztn sins / 

2 

(57) 

(5s) 

(59) 

As E I~ (2) tends uniformly to [ (2) we get from (37) after a simple reasoning 

lira E ]* (2) = / (2). (60) 

To get an asymptotic expression for the variance we have to modify the 
deduction in 9.1. if n and m are tending to infinity in some arbitrary manner, 
because in the present case w, (~t) depends upon n and varies as n and m tend 
to infinity. 

Consider the sum 

1 a., 

As ]w(") I _< 1 and as at  most  2 n + 1 weighting factors appearing in the sum are 
different from zero we get immediately 

a = a l  ,6=81 
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Hence the sum (49) divided with n converges uniformly in n. But  then 

2 ~r2 m D2 /* (2) 

( !) = : ~, r . r~wrwa+~-V--  ~, 1 
'*~,~,:' ~,t~,~ 2 N + n 

and because of the uniform convergence, which has just been shown, the sec- 
ond term tends to zero. Hence, after some calculations of Fourier type,  

and 

Putt ing 

- 1'  (o) ,  z = o.  
l i m  m D 2 ( ] ~  (2 ) )  = /~ 

. . ~  ~ (~),  ~ # 0 .  

u ( n )  = 
v l: , I ~ 1 > ~  

we see tha t  to /~ (2) - -  ]~ (2) correspond the weighting factors v,. But  if [ v I < n 

~b 

n m  

_< _2 w(n); 
m 

otherwise v, = 0. (We have supposed m--> 2.) From this follows that  

and using (60) we get 

We have 

so that  

I E [/~ (2) = / ~  (2)] I < -~ 
~n 

lim E ]~ (2) = / (~). 
~ j  n--> oa 

lira m s D s {]$ (2) - - / *  (2)} < c~. 

From the triangular inequality we get 
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l it  - II - II t7~ - E . /~  I1[ < II 1.~ - t~  - E ( /~,  - - / ~ )  II = D (./.~ - -  t,~) 
3 

which is at most of the order m s But  II I * - E / : ~  II = D (1,*~) is of the order 
1 

m "~. Hence 

lim m D 2 (/~ (2)) = lim m D 2 ([~ (2)) = ~ ~/2 (0), 2 = 0. (62) 
. . . .  ~ , ~  [ i /~(~) ,  4 # 0 .  

Bartlett 's  estimate is asymptotically unbiased contrary to those of the form 
(53). I t  would be possible to make these unbiased in the limit too by  letting 
h tend to zero as N tends to infinity. Because of the uncertainty principle 
we must  be ready, however, to sacrifice some precision of the estimates if we 
want higher resolvability. The variance of /$ (2) e.g., has a variance propor- 
tional to m -~ = n - N  -1 which is infinitely large compared to the variance in 
(54) when n tends to infinity. - -  One could define the asymptotic efficiency 
of an estimate ,0 e.g. by putting 

rain A (/*,/) 
e (/~,/) /* 

A (tL/)  
or one could use A' insteated of A. 

l l .  Some remarks on the case o f  a cont inuous  t ime-parameter  

11.1. ]n sections 5 - -10  we have only dealt with processes whose parameter  
takes integral values. There seems to be no essential difficulty to extend the 
methods used to the case of a continuous parameter. In  this section we shall, 
however, only point out some possible ways of approximating a continuous 
parameter  process with a discrete one and show what the consequences arc for 
the problem of estimating the spectral intensity. 

11.2. Let x (t) be a real-valued stationary process with mean value zero and 
covariance function r (t) with corresponding spectral intensity ] (2) 

cr 

r (t) = f e"~/(,~) d2. 

The process is only observed in the equidistant t ime points h v, where h > 0 
and v runs through the integers. Call the observed process x,. l t s  covarianee 
function is then 

,~ = f e"h~t(4)d4 = f r (63) 
- - o o  - - ~  

where we have put 

1 ~ / ( 2 +  2 n g ) .  (64) 
t~ (4) = ~ _ h 

The sum converges for almost all 2. As is easily seen it is no use trying to 
find a consistent estimate of /(2). Because even if we knew the probability 
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distribution of {x~) completely we could only calculate /h (2) which does not 
determine /(4) uniquely. But  if h is so small that  the spectral mass outside 

/ \ 

the frequency band ( - - ~ ,  h ) c a n  be neglected, then we need only consider the 

term corresponding to n = 0 in (64) and ] (2)can be calculated (approximately). 

11.3. Sometimes it may be more realistic to suppose that  what we observe 
is not x, - x(~h) but  

1 (~+�89 
Y~ h f (t) d t. 

(~--�89 
(See []1] p. 387.) 

The covariance sequence of y. is found to be 

4 sin2 h 4 

f a/ r , ( y )  = h~ e ~ 42 (2) d 2 .  

Hence its spectral intensity is (see (64)) 

4 s in2 -~  ] -2~+ n ~  
]u(2) =]~ _ ( 2 + 2 n ~ )  2 

(65) 

If we use a y-sample to estimate ]~ (2) we make a systematic error because for 
- - z ~ 2 ~  we have 

sin2 2 sin2 -2 
2 2 

( 2 + 2 n ~ ) 2  < 4  42 

which is less than one if 2 is differelt  from zero. Hence we underestimate 
f,  (2) especially at the extreme e n d s  of the spectral interval. Let us again 
.suppose that  h is sufficiently small. Then 

and 

-2 4 
sin 2 4 sin ~ 

4 2 )t 

~2 
/~ (4) - - - -~ /~  (4).  

4 sin ~ - 
2 

-except perhaps in the neighbourhood of the points • ~. 
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11.4. Suppose that  we observe the z-process defined in the following way. 
Introduce a stochastic variable A whose characteristic function is ~ (2) = E e ia a. 
On this variable we make independent observations A~, v = 0, +_ 1, + 2 . . . .  Pu t  

z, = x (v + /M-  

We get the covariance sequence 

~o 

r~_~ (z) : g f e " ' - " ) h a + " ~ - ~ , , ) ~ / ( ; t )  d) .  = 

f ei('-")ha 1~ (h)~)1 ~ t (~) d 

=i/l (~1 d ~ 

The corresponding spectral intensity is 

if v . j u  

if v = #  

where 

As 

1~(~) = h _ ~  - + c ,  

o o  

- - o o  

oo  oo ~z 

(66) 

the total  spectral mass (the variance) is the same for the x- and z-processes, 
only the distributions of the mass differ. I f  we again suppose tha t  h is suffi- 
ciently small one finds 

Hence by using the z-sample to estimate the spectrum of the x-process one 
overestimates the spectral intensity for frequencies where I~ (~)] is near 1 and 
underestimates it where ]~ ('~)1 is small. 

I f  we take A to b~ rectangularly distributed we get 

4 
( ) . )  = ~. sin 2. 

12. We shall point out some questions in connection with empirical spectral 
analysis which have not been studied in this paper: 

1. We have all the t ime supposed tha t  the mean value of the process was 
zero. In  practice this is not known, is it then appropriate to base the cal- 
culations upon the values x: = x , -  ~ ? 

530 



ARKIV FOR MATEMATIK. B d  1 nr  3 5  

2. Asymptotic expressions for the mean value and standard deviation of 
/* (~) have been given. One should like to know also the asymptotic distribu- 
tion of the estimate. 

3. Is it possible to extend the results to non-normal linear processes, e.g. 
using 4 . 2 . 5  ? 

4. In order to study /* (~) for small and moderate values of N one could 
try to determine El* (~) and D/* (~) exactly for some process of simple type. 
The result should be compared with the corresponding asymptotic expressions. 

It would also be interesting to study various forms of estimates by calcu- 
lating them from artificial time-series with known spectra. 
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