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A u n i q u e  cont inuat ion  t h e o r e m  for  exter ior  differential  

f o r m s  on  R i e m a n n i a n  mani fo lds  

By N. ARONSZAJ~, A. KRZYWICKI and J. SZARSKI (1) 

I n t r o d u c t i o n  

The aim of the present paper is to prove a theorem which may  be stated 
as follows (a more precise formulation will be given later): 

Let ~l" be a Riemannian mani/old with a metric o/ class C 0'1 (2). • an exterior 
di//erential /orm u o/ rank p has a zero o/ in/inite order at a point Poo]  the 
mani/old, and i/ in each compact part o/ any coordinate patch the components o/ 
the di//erential du and o/ the codi//erential ~u are majorated by a constant times 
the sum o/ absolute values o/ components o/ u, then u = 0 on the whole mani/old. 

This theorem is of the type known as strong unique continuation theorems 
which extend the classical proper ty  of analytic functions to other classes of 
functions (3). Such theorems establish the basic characteristic property of quasi- 
analytic classes of functions of one real variable (Carleman [5], Mandelbrojt  [11]). 
This proper ty  was proved by Carleman [6] for solutions of elliptic systems of 
two linear equations of first order in two variables. I n  1954-1955 it was proved 
by  C. Miiller [12] and E. Heinz [8] for solutions of differential inequalities of 
the type  

[Au(x) I<M [ lu(x)] + kfl ~ --d~-du(x) ]] 
in n variables, A being the usual Laplacian, and M a constant.  

One of the present authors was able to replace the Laplacian in the inequality 
by  a general elliptic operator of second order with coefficients in class C 2'1 [1, 2]. 
Soon afterwards, Cordes [7] proved a theorem in the same case but  with coeffi- 
cients only in C 2. Some other unique continuation theorems were proved by  
Pederson [13]. 

I n  most  of the proofs of strong unique continuation theorems for the different 
cases considered, the essential par t  was the establishment of an inequality, the 

(1) This paper was written under Contract Nonr 58 304 with the Office of Naval Research.  
(2) In  general  C m'2 is the class  of functions with continuous derivatives of orders ~m and 

with ruth derivatives satisfying a H61der condition with exponent ~. Hence, C 0'1 means  
"cont inuous  and Lipschitz ian".  

(a) In a we~/c unique cont inuat ion theorem one assumes  that the form vanishes in an open 
non-empty  set instead of merely having a single zero of infinite order. 
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general idea of which was introduced by Carleman, and we shall call these "Carle- 
man  type"  inequalities. 

Considerable progress has been made recently in the investigation Of the ques- 
tion of the uniqueness of solutions of Cauchy problem Q), a question very much 
akin to tha t  of the unique continuation. Most of the recent proofs of uniqueness 
for Cauchy problem also rely on an inequality of Carleman type. 

Every  case in which the non-uniqueness in the Cauchy problem is established 
is one in which unique continuation (weak or strong) is not  valid. 

I n  a recent paper, L. H6rmander  [9] proved tha t  for systems of linear oper- 
ators with constant  coefficients a Carleman type  inequality cannot hold if there 
are multiple characteristics of multiplicity > 2 (2). Quite recently, A. Pli~ con- 
structed several examples in which -mique~!ess in the Cauchy problem does not  
hold (these examples are not  as yet  published). Among these examples we will 
mention two: 

(a) An elliptic equation in R a, of order 4 with real C :r coefficients (3). 
(b) An elliptic equation in R a of order 2 (hence with simple characteristics) 

with coefficients in C r162 outside of a plane and of class C ~ in a neighborhood 
of this plane, for every ~, 0 <  ~t < 1. 

The first example shows tha t  the unique continuation theorem is not  t rue 
for all elliptic systems (and it is only for such systems tha t  it may  be true). 
I t  is therefore of interest to prove the unique continuation for special types of 
systems. 

The second example shows tha t  in our theorem, the regularity requirement 
tha t  the metric aij be of class C ~ cannot,  in general, be lowered to C ~ with 
0 < X < 1. This follows from the fact tha t  our results imply (see Remark  3, w 5) 
the unique continuation theorem for solutions of the corresponding Bel t rami-  
Laplace equation 

(Sdl=- l,_ ~ 1/aa 'j ~1=0.  

However it will be shown in Remark  6, w 5 tha t  the regularity requirement can 
be considerably lowered at  the zero of inf;nite order. 

The:re ex'~ts a genera2 me~];.;:~ ;6~ ~rai~:-6r~in~: -'~ "" :h~trary line;:: different, in! 
system into a system of opera~ors of ~irst ord~r '~Vhener,r t~is tr~msformatiop. 
can be used, it gives rise to a considerable lowering of the regularity require- 
ments  and also a much simpler presentation of the proofs. This method trans- 
forms, in general, a well-determined system into an over-determined system. 
However,  it t ransforms an elliptic system into an elliptie system. (4) 

This leads to a general investigation of the unique continuation for over- 
determined elliptic systems of first order. The present paper can be considered 
as a pilot investigation in this direction. We consider the components of a p- 
form u on an n-dimensional Riemannian manifold as forming (locally) a system 

(t) See, for example, A. P. Calderon [4] and L. ttSrmander [9, 10). 
(') H5rmander, however, considers inequalities of rather special type, adapted to the 

Cauchy problem. In this connection see footnote in Remark 2, w 5. 
(3) To be published in Communications on Pure and Applied Mathematics. 
(4) We call an arbitrary system of linear differential operators elliptic if the sum of ab- 

solute squares of their characteristic polynomials is positive definite. 
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of ( p ) f u n c t i o n s .  The components of the differential du and of the codifferen- 

p +  1 + p - 1  linear operators. This system is 

elliptic (even minimal elliptie, i.e. when a single operator is taken away, the 
system ceases to be elliptic). The reasons for our ehoice of this system are tha t  
1 ~ the operators d and d are of importance in many  domains of mathematics 
and 2 ~ the investigation is made easier by readily available tools of the theory 
of exterior differential forms. 

In  w 1 we give the notations and formulas concerning exterior differential 
forms on Riemannian manifolds which are to be used in this paper. 

In  w we first state our theorem in a precise form and then proceed to a 
series of reductions and transformations of the theorem. First  we reduce it to 
the ease n=2p  (Proposition 1). I n  further transformations we reduce it to the 
ease when, in a neighborhood of P0- - the  zero of infinite o rder - - the  geodesic 
spheres with center P0 coincide with concentric Euclidean spheres (or ellipsoids). 
This reduction allows us to manage with a metric only of class C ~ A final 
t ransformation brings in the reduction to a Carleman type inequality (2.13). 

I n  w 3 we prove the inequality, but  our proof is valid only for n = 2 p, which 
explains the necessity for the reduction of our theorem to this ease. 

I n  order to simplify the presentation of the arguments  in w167 2 and 3, we have 
relegated certain proofs to w 4, especially those of all the evaluations needed in 
the preceding sections. I n  certain instances, particularly in parts  I I I  and VI, 
we have had to prove some properties of exterior differential forms which do 
not seem to be readily available in the literature. Having in mind the exten- 
sions of our results (indicated in w 5), we have made an effort to get quite 
precise evaluations. 

w 5 eontains six remarks treating the following subjects: 1, the best constant  
in the Carleman type  inequality; 2, the Carleman type inequality for n =# 2p;  
3, on solutions of elliptic inequalities of second order; 4, the geometric signifi- 
eance of our inequality of Carleman type; 5, on sets of zeros of /)-form satis- 
fying differential inequalities; 6, on weakening the hypotheses i n  Theorem I. 

w l .  Notations and formulas 

For notat ion concerning differential-forms on Riemannian manifolds we refer 
the reader to the book of de R h a m  [14]. I n  some instances, however, we in- 
troduce special notations which we believe more convenient for our present pur- 
poses, and for the convenience of the reader the formulas from the theory of 
exterior differential forms which we will use in this paper are now given in this 
new notation. 

On a manifold of dimension n, an exterior differential form u of rank p is 
given in a coordinate patch by a system of components u(t). Here, (i) stands 
for a system of indices, il, i2, ..., iT, where l<~i,<~n f o r / ~ = 1 ,  2, ..., p, and the 
indices i ,  are strictly increasing. 

We introduce the following notations. I f  (i) is a system of p indices, then 
(i) c is the "complementa ry"  system, i.e., the system of n - p  indices jv between 
1 and  n which do not  figure in (i), arranged in strictly increasing order. 
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If  j C (i) ~ then (i)U j denotes the sequence (i) increased by  the index j and 
arranged increasingly. If  i ,  E (i) then (i)\i~, is the sequence (i) with i~ deleted 
from it. I f  ix, J2 . . . .  , ~q is any sequence of indices all different, then e [ix, J2 . . . .  , )'q] = 
= _+ 1, depending on the par i ty  of the permutat ion of the q indices j, which 

puts  them in increasing order. We will need the following relation: 

[(i) ~ ( i ) ] = (  - 1 ) ' ( " - ' ) ,  [(i), ( iF].  (1.1) 

:For a p-form u we can write the components of the differential d u in the 
given coordinate patch  as 

p + l  
(du)(j) = ~ ( - 1) ~10u(j)/nj (1.2) 

Here, (j) is a sequence of p +  1 indices. 
Let  ass be a metric tensor on the manifold. As usual, we denote by  a tj the 

corresponding contravariant  tensor (the matr ix (a  ~j} is the inverse of the matrix 
{atj}), by  a the determinant  of the matr ix (aij} so tha t  ~ a d x  is the corre- 
sponding invariant  measure on the manifold. 

For  two p-sequences (i) and (j) we denote by A(0.(j ) the determinant  of the 
minor of the matr ix (a~} with rows given by the indices i ,  and columns given 
by  the indices j~. Similarly, A (~ is formed from (a'J}. Obviously, 

A(1...n),r =a,  A(l"'n).)l"'n) =a  -1. 

For a p-form u the components of ~u ,  which is an ( n - p ) - f o r m ,  are given 
in our notat ion by 

(~u)(~) = Va e [(h) c, (h)] ~. A (h)~'(~ u(o. (1.3) 
(i) 

where (h) is a sequence of n - p  indices and (i) in the sum runs through all 
sequences of p indices. 

We will often use the two well-known formulas for the square of the star 
operator and for the codifferential ~ of a p-form 

-x-%u = ( - 1) v("-~) u, (1.4) 

and (~u = ( - 1) n(~+l)+1%d%u. (1.5) 

For  a p-form u the function defined on the manifold by  ~-(uA-)r will be 
denoted by Q (u). I n  our notat ion it can be written as 

Q (u) = ~. A (~ u(0 ur (1.6) 
(0. (J) 

This is a quadratic form of u at  each point  of the manifold, positive definite, 
and  its square root can be considered as a norm of the p-form u a t  a point  
of the manifold. (I t  is obviously independent of the coordinate p a t c h . ) T h e  
corresponding bilinear form in two p-forms u and v is 
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Q(u, v) = ~ A(t)'(J)u(ov(j). 
(t),(/) 

The following formulas are easy to check. 

Q(~u,  ~v)=Q(u,  v), Q(~u) =Q(u) .  

From (1.5) and (1.7) it follows tha t  

(1.6') 

(1.7) 

We have 

Q (0 u) = Q (d ~u) .  (1.S) 

f Q(u, dv) ~adx  

= f Q ( S u ,  v) Vadx (1.9) 

for any  two forms u, v of rank p and p -  1 respectively, of which one a t  least 
vanishes outside of a compact.  The last formula represents the fact tha t  the 
operators d and (~ are adjoint to one another. 

I n  order to prevent  a cumbersome number  of indices we omit the index for 
Q (there will be no ambiguity) to indicate the rank of forms u to which Q is 
applied. 

w 2. The main theorem, its reductions and transformations 

We now state our main theorem precisely, giving all the hypotheses in their 
weakest form. 

Our hypotheses concerning the manifold and the metric are as follows: 

(i) 7~" is a mani'/old o/ class C ~'1. The metric tensor a~j is locally in class C ~ 

Obviously we have to assume the manifold of at  least class C ~'1 in order to 
give a meaning to C ~ A tensor is locally in C ~ if for each point  of the mani- 
fold there exists a coordinate patch containing it where the components of the 
tensor are of class C ~ 

We give now our hypotheses about  the p-form u. 

(ii) u is locally L z with strong LZ-derivatives o] first order. 
(iii) At a point Po E 7n ~, u has a zero o] in/inite order in 1-mean. 

I n  a Euclidean space R", a function / defined a.e. in a neighborhood of a 
point x o has a zero of infinite order at  x o in q-mean (q~  1) if 

f ]/(~)l"d~=o(r ~) 
Ix-xel<r 

for all a > 0 when r --> O. 
Obviously a zero of infinite order in q-mean, for any  q >  1, is a zero of in- 

finite order in 1-mean. Hypothesis  (iii) means tha t  in a coordinate patch  con- 
raining P0 all components of u have a zero of infinite order in 1-mean. (This 
is independent of the choice of the coordinate patch.) Even  for continuous u 
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(iii) is weaker than  the usual not ion of zero of infinite order. However ,  (iii) 
jo in t ly  wi th  (ii) implies t h a t  u has a t  P0 a zero of infinite order  in 2-mean(I) .  

F inal ly ,  our hypothes is  concerning the ma jo ra t ion  of d u  and (~u by  u m a y  
be wr i t t en  in the  invar ian t  form: 

(iv) ~'or every compact ~ c 7~ ~ there exists a constant M x such t ha t  Q (du )+  
+Q((~u)<~MxQ(u  ) a.e. on :K. 

Because of the  weakness of hypotheses  (i) and  (ii), u, d u, and  (~u exis t  and  
are well de te rmined  only a.e. on ~ ;  hence we can assume the majora t ion  in 
(iv) only a.e. Besides this  change, hypothesis  (iv) is equivalent  to the  corre- 
sponding hypothes is  in  the  in t roduct ion.  

We can now s ta te  our theorem as follows. 

Theorem 1. I /  hypotheses (i)-(iv) are satis/ied, u = 0  a.e. on 7n'.  

Remark 1. Hypothes i s  (ii) could be replaced by  a more restr ic t ive one, namely:  

(ii') u is locally in p1, i.e. in each coordinate patch the components are locally 
potentials o/ order 1 (2). 

A p-form u sat isfying (ii') is defined everywhere on ~ except  on a set of 
2-capaci ty  0; hence i t  is much more precisely defined t han  a u sat isfying (ii). 
However ,  each u sat isfying (ii) is a.e. equal to a u' sat isfying (ii'), so t h a t  
hypothesis  (ii') is not  essent ial ly  more restr ict ive.  Replacing (ii) by  (ii') allows 
a more precise conclusion in Theorem 1, namely  t ha t  u vanishes everywhere 
on 7n ~ except  on a set of 2-capaci ty  0. 

We give now a series of reduct ions  and  t ransformat ions  of Theorem 1. 

Proposit ion 1. Theorem 1 is equivalent to the special case where the dimension 
n equals twice the rank p o/ the /arm u. 

Proo[. We first  notice t h a t  in hypothesis  (iv) the  inequal i ty  can be wr i t t en  
Q ( d u ) + Q ( d ~ u ) < ~ M ~ Q ( u )  = M ~ Q ( ~ u ) ,  (by vir tue of (1.5) and  (1.7)). I t  is 
therefore obvious t h a t  the  hypotheses  and the conclusion of Theorem 1 are 
equivalent  when s t a ted  for u and  -x-u. Since ~ u  is an  (n - p)-form, and  0 ~< p ~< n, 
there  is no loss of general i ty  in assuming t ha t  the  r ank  p is >~n/2. Assume 

tha t  p > n / 2 ,  and replace the  manifold  7n n by  7~ 2p = 7 ~ n •  2p-~. I n  this  p roduc t  
manifold  we consider coordinate  patches  which are products  of coordinate  pa tches  
in 7~ n by  R 2p-~, and  in these coordinate  patches  we define the  metr ic  tensor  5ij as  
equal to a~j for i and  j < n and  = ~ j  when one of the  i, ] is > n. F o r  any  q-form 

v in ~ we define its extension ~ (of the  same rank)  to ~ v  by  pu t t ing  
~(~) (x I . . . . .  x . . . . . .  x2~) = v(~)(x I . . . . .  x~) when the sequence (i) contains  only in- 
dices ~<n and v(0 = 0  when the sequence (i) contains a t  least  one index > n. 

Denote  b y  ~-, ~, $, ~), the  opera tors  and  the  forms Q on 7n 2~. By  using the 

formulas  from w we check immedia te ly  t h a t  d ~ = ( d v ) ,  Q ( ~ ) = Q ( d v ) a n d  
Q (~ ~) = Q (c7~)  = Q (d~ev) = Q (3 v). 

I t  follows t h a t  hypothes is  (iv) for fi on ~ 2 p  is impl ied by  the same hypo-  
thesis  for u on ~ n .  On the  other  hand,  hypotheses  (i)-(iii) for ais and  4 are 

(t) See w 4, I. 
(2) For the definition and properties of classes P% see Aronszajn and Smith [3]. 
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obviously implied by the corresponding hypotheses for a~j and u (the point -Po 
can be chosen as {P0, 0}). Hence if the theorem is true for n = 2 p ,  we get 

= 0  a.e. on 7~{ 2p and thus u = 0  a.e. on ~ .  

Remark 2. We use this reduction of the theorem only at  the end of our 
proof in w I t  will then become clear why it is necessary for the proof to 
impose the restriction n = 2 p .  

We might  restrict ourselves to coordinate patches U on ~7/~ whose images in 
R n are not the whole of RL We can transfer the Euclidean metric from R = to 
U, and then consider the distance of P E U to the boundary  of U (in R~). This 
distance will be denoted by 2r0(P  ). 

Proposition 2. Let the coordinate patches 5~ ]orm a locally/inite covering o/ 711 ~. 
Theorem 1 is equivalent to the /ollowing statement: I /  hypotheses (i), (ii) and (iv) 
hold, then /or each U k there exists a continuous positive /unction r 1 (8) /or s > 0 
(r 1 (s) depends on Uk) such that r x (s)<~s and whenever (iii) is valid with Po E U~, 
u vanishes a.e. in a Euclidean sphere around Po with radius rl(ro(Po) ). 

Proo/. We have only to prove tha t  the s tatement  implies Theorem 1. If  the 
hypotheses of Theorem 1 are satisfied, there exists an open neighborhood of 
Po where u vanishes a.e. Consider the largest open set G where u vanishes a.e. 
I f  G=7~{ ~, Theorem 1 is proved. On the other hand, if G were not  equal to 
7~ =, there would be a boundary  point P0 of G in ~/~. P0 lies in some UT~, and 
for arbitrarily small s there will exist a P0'C G N UI~ with Euclidean distance 
< e from P0. Therefore, {r 0 (Po) - r0 (P0'){ ~< s/2. Since hypothesis (iii) is satisfied 
at  Po', it is clear from our s tatement  tha t  u must  vanish a.e. in the Euclidean 
sphere with radius r x (r 0 (P0')) around P0', and for e small enough, by continuity 
of r 1 (s), this sphere will contain P0 and thus P0E G, which is impossible. 

Proposition 2 allows us to restrict ourselves to a single coordinate patch on 
T//=. We can even choose the coordinate patch to be a relatively compact  sub- 
domain of another coordinate patch and transfer our considerations to its image 
in R n. We can further restrict ourselves to the case where the image of the 
coordinate patch is the sphere {x{ < 2to, the image of Po being 0. We are led 
thcrcfc:'e ~o the following statement  which implies TheOrem 1. 

Theorem 2. There exists a positive /'unction rl, r lr~r 1(to, A1, A2, A,  M,  p, n), 
de/ined /or positive to, A1, A2, A,  and M with A 1 ~ A2, and integers p and n with 
0 ~ p ~ n, which is continuous in ro, A1, i z ,  A, and M,  and which has the/oUowing 
property: i/ a~j is a metric tensor and u is a p-/orm defined in [{ x{< 2ro] c: R ~, 
then u = 0  a.e. in {x I <~ r I i /  the /ollowing conditions are saris/led: 

There exist positive constants A 1 and A2 such that /or every 

xeilxl<2r0], AII ~12 <a~r ~'~J<A2 I~l~(q. (2.1) 

On all straight segments contained in [I x] < 2 ro] the a~j are absolutely continuous 
and there exists a positive constant A such that 

(1) We use the usual summation convention for tensors. [~{ is the Euclidean norm of ~. 

423 



N. AROI~SZAJN et al., Exterior differential forms on Riemannian manifolds 

s (2 .1 ' )  

/or every vector ~ and every vector e (1) whenever all ~atj/~e exist. 

u is L s and has strong 5 2 /irst derivatives in Ix] < 2 r  o. (2.2) 

u has a zero o/ in/inite order in 2-mean at O. (2.3) 

There exists a constant M such that a.e. in I xl < 2 r  o, 

Q (d u) § Q (~ u) ~< M Q (u). (2.4) 

Our manifold is now the Euclidean sphere Ix] < 2 r  o. In all the hypotheses, 
the local conditions have become global. Properties (2.1) and (2.1') give a quan- 
ti tative form for hypothesis (i). In fact (2.1) means tha t  the matr ix atj (x) is 
uniformly bounded and uniformly positive definite in I xl < 2 ro, whereas (2.1') 
means tha t  the derivatives ~atj/~e are uniformly bounded wherever they exist 
and this in turn, with the absolute continuity of a~j is equivalent to a~j being 
C ~ in ] x ] < 2 r  o. 

Proo/ o/ Theorem 2. We assume tha t  properties (2.1), (2.1'), (2.2), (2.3), and 
(2.4) hold. Pu t  

r --  r (x) = (atj (0) x' xJ) �89 (2.5)  

[a Owl d~j (x) = a,j (x) ~i (x) ~ ~xix t (2.6) 

d~j is a new metric tensor in I x I < 2 r o for which we have the following evalua- 
tions: (2) 

with 

Jkl I ~ I s <~ d~ (x) ~ ~' <~ s ~ I s /or every vector 

=h. and - 
As = A--~I " As 

(2.7) 

a.e. in [Ixl<2r0], ~'~' ~< i [~ l  s /or every e (2.7') 

and with s 6 A h l  

Introducing the corresponding X, ~, and Q, we deduce from (2.4) the evaluation 

a.e. in [Ixl<2ro], Q(du)§ (2.8) 

(1) ~/8 e is the derivative in the direction of the unit vector e. 
(s) The proof of these evaluations is given in w 4, II. 
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In w ]II, we give ~/ as function of M, As, As, A, n, and p. Below we 
give the value for n = 2 p  (see (4.III.2)): 

= A ~ M  /or n = 2 p .  (2.8') 
A1 

We now introduce a positive function 0 (to be determined at the end of w 3) 
0 ~ 9 (r o, A s, A~, A, p, n) which is continuous in r0, A1, As, A. 

We put do (x) = dff (x) e -2at, (2.9) 

1 _ e_er). R - R ( x )  =0 (1 (2.10) 

ao is again a metric tensor in [I x l < 2r  o] and we have the following evalua- 
tions (2). 

/or every ~ (2.11) 

with ~ -A~-- 'a'~ and z A~ 

]~ao~,~,] /~[$]2 /or every (2.11') a.e. in [[x[<2r0] , ~ e  ~< e 

and ~ with ~ 6 A A ~ l / ~  2 0 A ~ ] / ~  + -A; 

a.e. in [Ix[<2ro], (2.12) 

The expression of 3I is given in w 4, III .  For n =2p  we have (see (4.III.3)) 

3l  = ~ e4ar" M /or n = 2 p. (2.12') 

Our proof is now achieved by using the following lemma which gives an 
inequality of Carleman type and which will be proved in w 3. 

Lemma. Let the continuous metric tensor ao satis/y (2.1) and (2.1'). There exists 
a positive /unction R o depending only on to, As, As, A, p and n, continuous i n 
r O, As, A s, A, with the /oUowing property: /or every s<.R o and /or every p-form 
v satisfying (2.2) and (2.3) and vanishing outside o/ a compact contained in 
[R (x) < s], we have 

{1) The proof is similar to the one for (2.7), (2.7'), and (2.8) and is given in w 4, II-IH. 
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R(x)<s R(x)<s 

(2.13) 

/or every ~ >~ O. 

Remark 3. Actually this l emma will be proved only for n = 2 p and it is for this 
reason tha t  we need the reduction of Theorem 1 to the case n = 2 p  (see Pro- 
position 1). However,  since the need for this restriction will become apparen t  
only a t  the end of w 3, we will proceed now as if no such restriction were im- 
posed. We could consider the inequali ty (2.13) with a positive constant  C 
mult iplying the left-hand side of it. I n  w 3 we prove the inequal i ty  for n = 2 p 

2 
with the constants  C = I ,  O = ( 2 p - 1 ) w ,  and R 0 = 5 ( 2 p _ l ) c  o, where 

A~VA~/A1. w = 3 0 A  6 -  7 

In  w 5, R e m a r k  1, we will indicate t ha t  the constant  C = I  could be replaced 
by  any  C>1/jo~1=0.1729 ... with a suitable choice of R0; here ?Ol is the first 
positive zero of the Bessel function Je (z). 

The proof of Theorem 2, based on the lemma, is a s tandard  procedure in 
unique continuation theorems. We will give a brief sketch of this proof since 
we wish to determine the funct ion r 1 which is asked for in our theorem. 

We notice first t ha t  by  (2.1) wri t ten for x = 0  and by  (2.5) and (2.10) we have 

a~ Ix[ <~r(x)~A~ [x], 1 - e  -2~176 R(x)  (2.14) 

20r0r 

Hence AI~ ~ [ x I ~< R (x) ~< A~ Ix [. (2.15) 

We shall prove t ha t  our theorem holds with r 1 given by  

r l = m i n  [ \ A J  ~ r ~  ] / ~ '  ~/ " (2.16) 

We must  show t h a t  the form u vanishes a.e. in the sphere ] x l < r  r By  (2.15) 
it is enough to show tha t  u vanishes a.e. in [R ( x ) <  s] for 

s < m i n  [ ~ r 0 V ~ l ,  R 0 , 1 / V ~ ] .  

From (2.15) it is also clear t ha t  the set [R (x) < 8] c [I x] < r0]. 
Consider any  positive s 1 and s~ with s l < s 2 < s .  Let  ~0 be a function in C ~, 

= 1 for [ R ( x ) <  s~] and vanishing outside of a compact  in [ R ( x ) <  s]. Then 
v = ~ u  is a p-form satisfying the hypothesis  of the lemma, and  using the in- 
equalities (2.13), and (2.12) for x E [ R ( x ) <  s~] where v=u ,  we arrive a t  the in- 
equal i ty  
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R(z)<s~ s,<~ R(z)<s 

which is val id  for a rb i t r a r i ly  large ~. Therefore Q ( u ) =  0 a.e. in [R(x)<s~] .  
u = 0 a.e. in the  same set and  since s 1 can be t aken  a rb i t ra r i ly  near  s, the  proof 
is achieved. 

Remark 4. I n  the  case n=2p we get  a value of r I by  pu t t i ng  O=(2p-1)o,  
R 0 = 2 /5  (2 p - 1) r and  M = (A~/A1) e4~ (see R e m a r k  3 and (2.12')). This value 
depends  on A1, A2, A,  M,  r 0 and p. I f  we want  a value of r I for n * 2 p ,  we 
have first  to  ex tend  the manifold,  the  metr ic  and  the form as in the  proof of 
Propos i t ion  1. I f  we ex tend  the metr ic  by  a~j =FO~j, when one of the  i, ] is 
> n. with a cons tant  F between A 1 and A~, all the  relat ions in the  proof of 

Propos i t ion  i will s t ay  unchanged and  in add i t ion  the  inequali t ies (2.1) and  
(2.1') will hold for the  ex tended  metr ic  with the  same constants  A~, A~ and  A.  
I t  follows t h a t  for n=~2p  we get  the  same expression for r I as in the  case 
n = 2 p provided  we replace p by  max  [p, n -  p]. 

w 3. Proof  o f  the inequality 

We remark  first  t h a t  the  lemma of the preceding section will be proved in 
all  genera l i ty  if we show t h a t  i t  holds under  the  following assumptions:  (1) 

1 ~ The metr ic  tensor  aij is defined and  of class C :r in the  sphere Ix[ < 3r0//2 
and  satisfies there  condit ions (2.1) and  (2.1'). 

2 ~ The p-form v is defined and  of class C ~~ in the  sphere [ x i < 3 r o / 2  and 
vanishes outside of a compac t  lying in [0 < e < R (x) < s] with e depending on v. 

F rom now on we assume tha t  the  above  condit ions are satisfied for a~s and v. 
The metr ic  tensors d~j and  ~ j  are then  obviously of class C ~ in the  sphere 

I xl < 3ro /2  except  a t  the  origin, where in general  t h e y  will be only of class C ~ 
We will prove t h a t  r(x) is the  geodesic dis tance from 0 to  x in the  metr ic  

d~ and t h a t  in this  metr ic  the  geodesic lines passing th rough  the origin sat isfy 
the  following sys tem of o rd ina ry  differential  equations:  

d-~-=a"~,~" ~" i = 1 ,  2 . . . . .  n. (3.1.) 

We notice first  t ha t  the  ellipsoid 

S---- $5 = [r(x) < r0], (3.2) 

where r0 = ro ] / ~  is contained in  the  sphere I x I < ro- Take a poin t  t on the  
bounda ry  ~ of this  ellipsoid and solve the  system (3.1) with the  init ial  condit ion 

(1) This will be shown in w 4, IV. 

x (~o) = t. (3.3) 
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As is well known, there  exists  a unique solution x(a) of (3.1) and  (3 .3 )def ined  
and  of class Coo in an  open in terva l  of a containing r0 and which approaches  
the  bounda ry  of Ix] < 3 ro/2, or the  origin, when a approaches  the  endpoints  
of the  interval(X). By  (2.6) we have 

dr(x(a))  Or dx  ~_ = do__Or Or__ = [ tjOr Or) ( Or O r ~  -1 

Hence  r ( x ( a ) ) = a + c ;  c = 0  since r(x(~o))=r(t)=~o, and  thus  

r (x ((~)) = a .  (3 .4)  

This means  t ha t  the  in te rva l  where x(a) is defined s ta r t s  a t  zero and  when we 
consider the  solutions x (a )  in the  in terva l  (0, ~0] for all  points  t on Y we ge t  
a sys tem of simple arcs joining zero to t, mu tua l ly  d is jo int  and  filling o u t  the  
whole ell ipsoid S. 

The points  of the  arc joining 0 to  t can be denoted  b y  x(a)=--x(t; a) and  if 
we choose local coordinates  t x . . . . .  in-1 on Y we can wri te  x (t x . . . . .  in-x; a). The  
manifold  S - ( 0 )  now becomes the  p roduc t  ~ •  ro). We  now in t roduce  the  
polar  coordinates t 1, . . . ,  t n-l, r; t hey  correspond to the  poin t  x(t  x, ... tn-x; r) 
wi th  r~--r(x). 

Wri t ing  the  metr ic  tensor  in these coordinates,  we get  

, 

where p and  v run  from 1 to  n -  1. Not ic ing  t ha t  

O s  O x  "~ Or ~.~ Or =07kz Or Or = l 
07~J Or Or 07~ 07~' ~ a~ ~x z O--~ O x ---i 

Oxt Ox~ Oxi ~'l Or Ox I Or Or 
and  07o Ot ~ Or O Ox Ot Ox O~ 07~j - ~  a' ~ = ~ ~5_~ O, 

we obta in  the  following form for our metr ic  

07,jdx' dxJ=r2[~u, df f  dt" + d r  2 with ~ - lo70x--~OxJ 
tJV--r  2 ~](::gt ~ Ot  ~" (3 .5)  

This formula  indicates  t h a t  the  line t = cons tant  is a geodesic line and  t h a t  
~u,(t; r), for r = const,  is the  res t r ic t ion of the  metr ic  07tJ to  the  concentr ic  
hypersufface ~ ,  up to  the  fac tor  r ~. I t  also shows t h a t  the  po la r  coordinates  
~a ... tn-x, r are  geodesic re la t ive  to the  metr ic  07~ and  hence r is the  geodesic 
d is tance  from 0 to  x. 

A t  a po in t  t E 5" consider a f ixed con t rava r i an t  vec tor  v t angent ia l  to  ~.  The  

(1) I t  should be noticed that the right-hand side of (3.1) is not continuous at the origin 
even that it is of class C ~ everywhere else in Ix]< 3r0/2. 
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quadra t ic  form b,~z" ~" considered as funct ion of the  pa rame te r  r satisfies the  
following inequal i ty:  (1) 

~ , ,  ~ , 30 h h~ l / ~  (3.6) 
~-r- ~ ~ <" w (b~, ~ ~') with o~ A~ 

I f  we now change the coordinate  r into R = (1/0) ( i  - e  -~ the  manifold  S -  (O) 

becomes ~ • (0,/~o), where /~o = (1/0) (1 - e-d*). 

Consider the  metr ic  a~j. By  (2.9) we have 

a~s d x ~ d x r = e-2~ (r 2 ~ d t ~ d t" + d r 2) = R ~ b,~ d t ~ d t ~ + d R 2, (3.7) 

where we have pu t  

r 2 e -2~ e ~ -- 1 
b~v R2 ~ = r  with ( P ( a ) = - -  (3.8) 

(7 

Formu la  (3.7) shows t ha t  t 1 . . . . .  t n- l ,  R are polar  geodesic coordinates  for the  
metr ic  dis and  hence R is the  new geodesic dis tance from O to x. 

We shall wri te  the  two sides of inequa l i ty  ( 2 . 1 3 ) i n  terms of the  last  polar  
coordinates.  

Since b.~ (t x, . . . ,  t n-4, R) for R = eonst,  is a metr ic  tensor  on the corresponding 
hypersurfaee  ~n, we will give the  subscr ipt  R to all  operators ,  etc. of w I re- 
ferring to this  metr ic  on ~n (e.g. -)en, On, Qs, etc.). 

F r o m  now on the no ta t ion  (i), (j) will refer only to  increasing systems of in- 
dices, an ~ < n -  1. I f  we wan t  to  consider such a system with one index = n, 
we will wri te  (i)U n. F o r  two systems of q indices we define B (~176 s imilar ly  
to  A 0)'u). 

B y  vir tue of (3.7) and  (3.8) we have the following relations:  

~a= Rn- l  Vb= Rn- l  ~p (Or)--(n-1) V~" (3.9) 

I [  (i) and (j) are q-sequences, then 

A (0'~ = R -2q B (0'r = R -~'q �9 (0 r) 2q ~')'r (3.1o) 

For two (q-1).sequences (i), (j), we have 

.4(0 u n. (1)o n = R-2(q-1) B(0.r = R-2(q-1) (I) (0 r) 2(q-1) j~(0.(]), (3.1o') 

and [inally /or a q-sequence (i) and a (q-I) -sequence (i), we have 

.z~.(O. (t) U n = d(t) u n. (0 = 0. (3.1o") 

Let  w be a q-form on S - ( 0 ) .  I t s  components  in the  polar  coordinates  de- 
compose into  two classes: those eorrespoding to  q-sequences (i) and  those cor- 

(1) This property will be proved in w 4, V. 
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responding to sequences (i ')U n with (i') a (q-1) -sequence .  On each hypersur-  
face ~R, the former consti tute a q-form @, and the latter,  a ( q - 1 ) - f o r m  4.  
These two forms are invar iant  under the change of local coordinates t 1, ..., in-1 
and can be considered as forms defined on ~, depending on the pa ramete r  R. By  
using formulas (3.10), (3.10'), and (3.10") we see immediate ly  t h a t  

(w) = QR (R -q ~v) + QR(R -(q-l) w). (3 .11)  

For  the differential dw we verify (by (1.2)) the following formulas where (k) is 
a (q+ 1)-sequence and (k') a q-sequence: 

(d w)~k) = (d~)(~), (3.12) 

(d w)~k.~ = (dw)(k') + ( --1)q ( ~ )  (k,)" (3.12') 

For  the operator  ~ w  we get from (1.3), (3.10), (3.10'), and (3.10"), with (h) 
an (n -q ) - sequence  and (h') an  ( n - q - 1 ) - s e q u e n c e ,  

( ~  w);~) = ( - 1) (=- ' )  R ~ -2 '  +1 ( * ~  ~ ) ( , ) ,  (3.13) 

( ~ W],~ = R n -  iq 1 (_ ) ( _ /~ l~ ) ) ( h . )  ' 
J ( h ' )  - "  

(3 .13' )  

Combining (3.12), (3.12'), (3.13) and (3.13') we obtain,  for (m) an ( n - q + l ) -  
sequence and for (m') an (n -q ) - sequence ,  

(d~ W)(m) = ( -- 1) n-q R ~-2~§ (d~a  ~)(~), (3.14) 

(d~ w):m.) = Rn-2q-l (d~RCV),m.) § ( ~  (Rn-Uq+l ~Rw)) (m.). (3.14') 

Applying the above formulas to our p-form v, we notice t ha t  ~ and v vanish 
for R outside of a closed interval  contained in (0, s). Assuming s ~< ~0 we can 
write the inequali ty (2.13) in polar coordinates in the following form 

0 Y. 

+QR (R P-l (d~-Rv+R2~(-)env)+ ( n - 2 p +  l)R-)eav))] Rn-lWb 

>1 f f R-z~[Q.(R-'v)+Qn(R-(p-1)v)]Rn-IV~dtdR 
0 Z 

dtdR 

(3.15) 

We now change the variable R into ~ by  

R = e-e, (3.16) 
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which transforms the 
We put  

manifold S - (0) into ~ • (Oo, ~ ) ,  with Oo = - log (/~o). 

n 
fl = a - ~ + 1, (3.17) 

and then write the forms v and v in the following way: 

~) = e -(fi+p)e V, ~) = e -(fl+v-i)e U. (3.18) 

Denoting - l o g  s by a and replacing the subscript R in the operators by 
the corresponding value Q = - l o g  R, we write inequality (3.15) (which is to be 
proved) in the form: 

oo 

a E 

+ Qo (d~q U) + Qo (d~-o V + (fl + n - p)~q U - (~o U)')] gb dt d o 

f f e 2oCO,(v) +Qo(.oU)]Ubdtdo. (3.19) 
a E 

In  the above inequality the primes indicate differentiation with respect to 0" 
For the proof we will develop the left-hand side, transform it by partial 

integration, with respect to ~, or over the concentric hypersurfaees ~ (using 
(I.9)), and then group the terms suitably. To simplify all these operations we 
will make use of a symmetry in the integrand of the left-hand side. The terms 
in the first line of the square bracket transform into the corresponding terms 
of the second line if we replace U by ~Q V, V by ( -1)P-~qU,  and then p by 
n -  p. Also if we make the same substitution in the second line, it will be trans- 
formed into the first one (using (1.4)). In  order to take full advantage of t h i s  
symmetry we maintain, in all transformations, the separation of the terms into 
two kinds, those of the first being transformed into the corresponding terms of 
the second by the above substitutions. I t  will be enough to perform the trans- 
formations for half of the terms; the remaining terms will be written just by 
using the substitutions. We put 

= (log (3.20) 

By developing the first line of the integral in the left-hand side of (3.19) we 
obtain 

f f [Qq(dV)+Qq(dU)+(fl+p)~Qe(V)+Qq(V')+2(-1)P(fl+p)Qe(dU, V) 

+ 2( - -  1 )  T M  Qo(d U, g') - 2  (fl +p)Qo(V,  V')] Ubdtd O. (3.21) 

By partial integration with respect to 0 we transform the last term as follows: 
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-2(fl+p) f f  Q~(V, V')V~dtdq=(fl+p) f f  [Q'~(V)+~Q~(V)]Vbdtdq, (3.22) 

where Q~ is obtained by considering Qe as a quadratic form defined for exterior 
differential forms on the manifold ~ but depending on the parameter ~, and 
taking the derivative with respect to ~. A similar meaning will be given to -~e" 

We now combine the next to the last term in (3.21) with the corresponding 
term of second kind and put half of this sum among terms of first kind and 
half among terms of second kind. The corresponding integral in the first part  
is then transformed as follows: 

f f  [(-1)~+lQe(dU, V')-QQ(d%eV, (%eU)')]Vbdtd~ 

= f f (  - 1)~+1Qe(d U, V') -Qe(d-)% V, -~U') -Q~(d~ e V, ~'Q U)] Vbdtd~ 

= f f  [(-1)"Qo(dU, V')+(-1)'+IQe(dU', V)]~/bdtde 

- f fQo(d~ e V, ~'~U) ~/bdtd~(1). 

In  the first integral we apply integration by parts with respect to Q and 
thus the whole expression becomes 

+ Qe(d+~V, +'qU)Vbdtd~. (-1)" f f  [Q'e(dU, V) q~Qe(dU, V)][/bdtdQ- f f  (3.23) 

The first integral is put  among the terms of first kind, the second among terms 
of second kind which means that  the corresponding term 

I f  " = - ( - 1 )  ~'("-~ QQ(dU, ~e-~eV)~dtde (3.24) 

is put among terms of first kind. In  this way, the term which is next to the 
last in (3.21) is replaced by sum of three terms; this changes the expression 
(3.21) but does not change the total sum of terms of first and second kind. 

We now introduce the operator H e which transforms forms into forms of the 
same rank, and is defined by 

Q~ (x ,  Y) = Q~ (X, H e Y). ( 3 . 2 5 )  

We prove in w VI, that  (see (4.VI.6)) 

( - 1)  "p§  -X-~ * e = ~oI + He. ( 3 . 2 6 )  

(1) We uso here (1.4), (1.5), (1.7) and (1.9) and the symmetry of Qe. 
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Using this relation we see tha t  expression (3.22) becomes 

( -  1)nv+l(~+p) f f  QQ(~'e~ ~ V, V)Vbdtd~,  

and the first integral in (3.23) added to the integral in (3.24) give 

2 ( -  1W +I+, ffQ (du, v) V dtde. 
dJ 

Putt ing these expressions in place of the last two terms in (3.21) allows us 
to write the left-hand integral in (3.19) in the form 

a 

a X a Z 

a X  a Z  

+ corresponding terms o/ second kind. (3.27) 

In w 4, VI, we prove tha t  the symmetric operator ( - 1 )  np ~ - ) %  for p-forms 
lies between the following bounds 

e_e eOr [(2 p `  ~ _{_ 1)0 (I~' (O r ) n - - 1  ] �9 (Or) 2 o) I~< ( - -1 )n ' - ) e~q  

n - - 1  ~ r  (Or) + - - ~ -  o ]  I.  ~<e-Qe ~ [ ( 2 p - n + l ) _  @(Or) 

(3.28) 

Here eo is the constant introduced in (3.6), (P(a) is the function ( e " - l ) / a .  
We check immediately tha t  

r  (a) ] (p' 
is increasing /or a >~ 0, ~ ~ ~ 1. (3.29) 

r (a) z r (a) 

To achieve our proof we have to find, in the /irst place, a positive value of 
0 such tha t  the second integral in (3.27) as well as the corresponding integral 
of second kind be positive. By  (3.28) such choice of 0 is possible for the inte- 
gral of first kind if 2 p - n + l > O  and, for the integral of second kind, if 
2 (n - p) - n + 1 = n + 1 - 2 p > 0. These two condititions can be satisfied if and 
only if n =2p.  If  n = 2 p ,  a suitable choice of 0 (in wiev of (3.29)) is 0 >~ (n - 1) eo = 
= ( 2 p - 1 ) w .  We assume therefore from now on 
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n=2p,  0~> ( 2 p -  1)r (3.30) 

I t  follows that: f i + p = ~ + l  (see (3.17)); ( - 1 ) n p = I ;  the form ~U, which in 
terms of second kind corresponds to ( - 1 )  v V, is also a p-form and hence what- 
ever we get for terms of first kind is true also for corresponding terms of 
second kind, Furthermore 

Q e ( ~  ~ V, V)= - [Q~(V) + ~Qe(V)] >~0. (3.31) 

In the second place, we require for our proo[ that  the difference between the 
second and third integrals in (3.27) be >~0. This is achieved if Qq(~'~-~w)<~ 
<.(~+l) Qe(%'e%ew, w ) for any p-form w, i.e. if 

I ~ ~Q I ~< ~ § 1. (3.32) 

Assuming this inequality valid over the whole domain of integration ~ > a, i.e. 
R<s, we proceed to the proof of our inequality (3.19). The integral in the left- 
hand side, which is the expression (3.27), is now 

o o  

o Y, o Y, 

For the first term of the right-hand side we obtain by partial integration rela- 
tive to Q and by (3.31) 

e 2~ Vbdtdo= ~ e-~~ V')+q'o(V)+q~Qo(V)]l/bclt40 
~ 52 e N 

~ f f e - 2 ~ Q ~ ( V ,  V ' ) V b d t d ~  
a 2~ 

<~ fe-2" O~(V)l/bdtde ,I e-2e QQ(V')l/bdsd e , 
a Z a Z 

a ]g a 2; a 

We proceed similarly with the second term of the right-hand side and thus the 
inequality is proved. 

I t  remains to check on the validity of (3.32). By (3.28) it is enough to have 
(see (3.29)) 
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We m a y  want  to have it for all possible domains of integrat ion contained in 
S = [ r ( x ) < . ~ o = r o V ~ ] .  Since by  (2.10) and (3.16) e - ~ 1 7 6  we get a 
condition for 

~z + 1 > 0 (0 ~o) ~o (0 + 2 ~ 7 1  o)) 

and the smallest  bound is obtained for the smallest choice of 0, namely,  
0 = (2 p - 1) co, and then  

> 3  
a + l - J ~  O (~oeo(2 p -1 ) )~o~o  ( 2 p - 1 ) .  

However,  in the l emma of w 2 we wan t  the inequali ty to be valid for all a>~0. 
Writ ing now e - q e ~  we have to satisfy 

R<. 

and the least restrictive bound for R is obtained again by  0 = ( 2 p - 1 ) a )  and 
the desired bound R 0 is then 

2 
R~ - 5 (2p  - 1) co" (3.33) 

w 4. Evaluations 

I. We assume tha t  the p-form u satisfies (ii) and (iii) of w 2 and prove t h a t  

For n~>2, u has at Po a zero o/ in/inite order in q-mean, /or every q < 2 +  
+ 4 / ( n  - 2 ) .  (4.I.1) 

For n = 1, u is equivalent to a continuous /unction which has at Po = 0  a zero o/ 
infinite order in the classical sense, i.e. l u (x) l = o (I z t ~) /or any ~ > 0. (4.I.2) 

Proo/ o/ (4.I.1). Take a coordinate patch U containing P0. We can transfer  
our considerations to the image G c R n of U. We m a y  assume tha t  P0 corre- 
sponds to 0 and consider each component  u(f) of u separately.  By  (ii) and the 
Young-Soboleff  theorem, ua) is locally in i ql for any  ql < 2 + 4 / (n  - 2). Take  
q < q l < 2  + 4 / ( n  - 2 ) ,  v = ( q l - q ) / ( q l  - 1), 0 =q l  (q - 1 ) / ( q i -  1) (hence ~ + 0  =q)  and 
apply  H61der's inequality: 

Proo/ o/ (4.I.2). We can assume 0 < x < a <  co and replace u by  the equi- 
valent  continuous function u (x) = u (0) + S~ u' (y) d y  and, by  (iii), u (0) = 0. Fur ther-  
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more [u (x~) - u (Xl) < A �89 x 2 - x 1 [�89 wi th  A = So u'2 dx. H e n c e  ( l / A )  ]u(x)]  ~ ~< x and  
in the  in terva l  0 < x - ( l / A )  u (x) 2 < y < x we have [u (y) >~ u (x) - A t (x - y)t  > 0. 
Thus 

f Ilu( )l-A'(x- )'ldy= tu(x)l 
o z_l]u(x)[2 

H. We assume aij to sat isfy  (2.1) and  (2.1'). We will use Hi lbcr t  space nota-  
tions, the  scalar  p roduc t  being (~, ~) = ~ ~*~, [~] = (~, ~)�89 The ma t r ix  {a,j} then  
represents  a l inear  opera tor  T - T ,  depending on the  vector  (point) x. Fo rmula  
(2.1) means then  t h a t  T is posi t ive definite,  A 1 I<~ T<<.A,I, with I denot ing the  
ident i ty .  We int roduce following no ta t ion  for differential  re lat ive to  a vec tor  
w # 0 ,  

D w T = - D w T ,  = lira (4.II.1) 
T-+0 

Whenever  D w T  exists,  D ( ~ w ) T = v D w T  for real ~ 0 .  When  the Fr6chet  
differential  exists  a t  x (and i t  does a.e., since T,  is COa L D w T  is l inear  in w. 
D w T  is a symmetr ic  opera tor  and  the inequal i ty  in (2 .1 ' )means  t h a t  whenever  
D w T exists i ts  bound '  [ D w T[ ~ A [w I. 

The ma t r ix  {a *j} corresponds to T - '  and  (2.5) can be wr i t t en  

r = (To x, = [ To �89 x l- (4.11.2) 

Hence,  the  vector  {~r/~x ~) is (1//r) Tox and we can pu t  

(F=-VF(x)=(a~J~-- t~)=(T-11T~ ~x r 

= ( T o x ,  x)-l(ToT-1To x, x), for xd :0 ,  t~ (0) = 1. (4.II.3) 

1 F o r  x # y ,  put t ing  w = y - x ,  we have T~-Tx=SoDwT~+~wdT and  

IF -TxI-<AlY-xl, 

F o r  x d:O, we have 

[T~ 1 - T ~ [  = [ T y  I ( T  x - Tv) T x l ]  

A l y - x l  

A~ 

(4.11.4) 

[ ~ (x) - ~ (0) l = [(To ( T o  I - T -1) To x, x)[ (T O x, x) 1 

= (To ~ (To 1 - T -I)  To ~ To ~ x, To ~ x) 
ITo ~ x[ 2 

~ < h h 2 [ x [  

A~ 
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For x4y ,  both ~=0, we put  w = y - x  and obtain 

1 

0 

Since by (4.II.3) D w ~ ( x )  exists whenever D w f x  exists, it follows from (2.1') 
that  ~ will be proved to be in C ~ if we show that  IDw~(x )  I~CIwl with 
C independent of w and x. We assume that  D wTx exists and obtain 

Dw CF (x) = Dw (T~ T~I Tox' x) 
(To x, x) 

(To(DwT~ 1) Tox,x) +2(ToT; lTox ,w)  2(Tox, w)(ToT;lTox, x) 
(To x, x) (Tox, x) (Tox, x) ~ 

_ (T  o (D w T~ 1) To x, x) ~- 2 (T o x, x) (T o ( T ;  1 _ To  1) To x, w) 
(T o x, x) (T O x, x) ~ 

2 (T o x, w) (T O (T;  1 - T~ 1) T O x, x) 
(T o x, x) ~ 

(T~o (DwT;I) T~o T~o x, T~o x) 2 (T o (T; 1 - T ~  1) To ~ To ~ x, w) 

iT~oxl2 § IT~oxl2 

2 (T o x, w) (T~o (T~ ~ - T~ ~) T~o T~o x, Tto x) 

Using the relations 

AA~ w D w T ; I =  - T ~ ( D w T ~ ) T ~  1, ITtonwT~lTto[ ~ ~ - I  I, 

I T x l -  T~ <~A ]xlA~-I ' ] T~  T~ T~~ l<~ A~-IAA~ ]xl, 

]Yioxi~]/~ix[, I(Yox, W)]<~lT~ox]V-~21wf, 

A A~ IT o (T2-To  T o[ A -I I, 

we get IDw~(x)l<~ A ~  1 + 4  Iw ~ < ~  ]w I. (4.II.5) 

The metric tensor d~j = ~ aij corresponds to the operator ~ T. Formula (2.7) 
comes from 

A1 _< ~ (x) ~< A~ 

and (2.7') from 
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I Dw (OF (x)T~)I< IDwCF (x)I I T~ I §  (~)IDwT~I 

6AA~ ~ i w  I . "~'< S AA~ V ~  Iwl A~ § A IWI < A~ 

The metric tensor a,j corresponds to the operator ~:F T with fF = ~ exp( - 2 0 IT0 ~ �9 l) 

We proceed with ~ as with ff~. We calculate 

Dw exp ( - 20  IT0 ~ x[)= -20 (T~~ T~~ iT~oxl e~p(-2oIrtxl) .  

The evaluations (2.11) are immediate whereas (2.11') results from 

IDw~TI<~IDwCFle-~~176 CFe-~~ I 

2oA  ] Iwl. 

HI. To obtain evaluations (2.8) and (2.12) we deduce first the following inequality 
for u, a 1-form, and v, a p-form ( p < n ) :  

Q (u h v) ~< Q (u) Q (v). (1) (4.III.1) 

We write first (u A v)(k) = 5 u .  v(k\).s [g, (k)\g]. 
tz~(k) 

We then choose local coordinates such tha t  at  the point  of the manifold in 
question we have a~j=~j. Thus A(~)'(J)=O (O'(j) and 

p = l  (t) 

Q (u A v) = ~ (u A v)~k). 
(k) 

Denoting by  (i') a ( p - 1 ) - s y s t e m  we now obtain 

2 Q(uA v)=~v~) ~. u.+ Z ~ vr (i') O vie[v, (i') U #] 
(t) Iz ~ (t) ~ (t') p e (t')c 

v e (t9 r 

n 
__ 2 2 x~ - Z v(,) Z u~ - { Z vd,)v~ u~ e [(i ') , /z]} ~ ~< Q (u) Q (v). 

(0 p = l  ~ "  ~E(i,)e 

(i) T h i s  i n e q u a l i t y  is  t h e  b e s t  pos s ib l e .  W h e n  u is a q - f o r m  ( p + q < ~ n ) ,  a s i m i l a r  i n e q u a l i t y  ( (o') 
c a n  b e  p r o v e d  w i t h  a c o n s t a n t  f a c t o r  (7 i n  t h e  r i g h t - h a n d  s ide  (7 c a n  b e  t a k e n  a s  o r  q 

(npq) or(P;q)). But it seems difficult to find the best possible (7 in this general case. 
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This proof actually gives the identity 

Q (u A v) + Q (u A ~v) = Q (u) Q (v). (4.III.l ')  

Consider now the metric tensor du =U~aij. I t  is clear that 

a~J=~-la ~j, d = ~ n a ,  

_/i(~)'u)=~'-PA 0)'(j) ]or T-systems (i) and (j), 

4e u =gdcnl~-m~u /or a p-/orm u, 

(2(du)=~-V-XQ(du), Q(u)=VF-~'Q(u), 

(d4eu) = CF-(n-~'+I) Q (d (u~(n/~-P)-x-u)). 

Since d (~('/2-m-x-u) = (d (F ('lz-~)) A -)eu + ~(n12-v) d-,'eu 
= (n/2 - p) ~(n,2-~-1) (dVF) A ~u  + ~<"'~'-~)d~u, 

we get, by (4.III.1) 

Q(du)-~-Q,(d-~(-u)=~-P-lQ(du)-]-~-P-lQ(d.-)(-u-~(2-rp)l{P-ld~xeA-X~u ) 

At each point x where T z has a Frdehet differential, the eovariant vector d ~  
coincides with the linear functional D w d,Z, and therefore our evaluations in I I  
give (see (4.II.5)): 

Q(dVF)=(T-X dVF, d~F)<~ll  d : .2  25A~A~ �9 1 <  �9 

P) ] 

In the specially important case p =n/2  we get a much simpler formula 

Q(du)+Q(d~u)=CF -~'-a [Q(du)+Q(d-,'eu)]<~-~MQ(u). (4.III.2) 

Similarly for ~u = ~ a~j, we get 

~ - l d ~ = ( F - l d ~ t ~  +esOrde -sOt, 

T O x 

M =  ~,h2 40r. [M n 2 ~ e  L +20 . 
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Again, in the special case p = n / 2 ,  we get 

-< A2 e4~ M Q (u). (4.III.3) 

IV. We shall prove more than  what  is s tated at  the beginning of w 3. 

Suppose that the inequality (2.13) holds /or a fixed real ~, /or all s with 
0<s<~R0,  C (see Remark 3, w 2) and R o possibly depending also on a, /or all 
metric tensors a~j satis/ying 1 ~ of w 3 and for all p-/orms v satis/ying 2 ~ o[ w 3. 
Then (2.13) holds .with the same C and R o /or all a~j satis/ying (2.1) and (2.1') 
and all v satisfying (2.2), vanishing outside o/ a compact in R (x) < s and such that 

f Q(v)~adx=o(92~+2) .  

Ixl<0 

(4.IV.l) 

Proof. (1) Suppose first tha t  aij satisfies only (2.1) and (2.1') but  v satisfies 
the conditions in 2 ~ of w 3. We regularize aij as usual by  convoluting it with 
a regularizing function 3 - h e  (x/v)  for v ~ 0 .  The resulting tensors atj(3) still 
satisfy (2.1) and (2.1') with the same constants and are C ~. Hence by our 
assumption inequality (2.13) is valid for them and for the form v. Since the 
integrals in (2.13) now extend over e <  R ( x ) < s ,  the integrands are uniformly 
bounded (all the evaluations of w 2 are valid for r (v), R (3), aij (v) and ai~ (v)) and 
converge pointwise i.e. to the corresponding integrands for a~j and v when 3 ~ 0 .  
Therefore (2.13) is valid for aij and v. 

(2) Suppose now tha t  a~j satisfies (2.1) and (2.1') and tha t  v satisfies only 
(2.2) but  still vanishes outside of a compact  lying in e < R ( x ) <  s. Regularising 
the components of v we obtain a form v(3) which for 3 ~ 0  converges pointwise 
a.e. together with its first derivatives to v and its derivatives. I n  addition, v(3) 
and its derivatives are dominated by fixed L 2 functions. Since for 3 sufficiently 
small, v(3) vanishes for Ixl<~e/2, we can apply (2.13) to a~j and v(3) and the 
integrals in (2.13) converge for v"~0 to their values for aij and v. 

(3) Finally, suppose tha t  a~j satisfy (2.1) and (2.1') and tha t  v satisfies (2.2), 
vanishes outside of a compact  in R ( x ) < s  and tha t  (4 . IV. l )holds .  Take a func- 
tion in C ~r depending only on I x ] a n d  non-decreasing as function of Ix ] and 
such tha t  q ( x ) = 0  for ] x l < ~  and q ( x ) = l  for Ixl ~>1" We may  assume tha t  
the left-hand side integral in (2.13) for aij and v is finite (otherwise the inequal- 
i ty  holds trivially)(1). Consider now the form v ( T ) = ~ ( x / 3 ) v  for 3 ~ 0 .  By  the 
preceding proofs we can apply the inequality to a~j and v(~). The r ight-hand 
side converges increasingly to its value for v. I t  is enough therefore to show 
tha t  the left-hand side integral converges to its value for v. For  I x I > 3, v (3) = v 
and for Ix] < 3 / 2 ,  v ( 3 ) = 0 ;  hence we must  show tha t  the integral restricted to 
3 / 2 < 1 x [ < 3  converges to 0. The integrand (by (4.III.1)) is 

(1) Our present hypotheses on v do not make it sure that this integral is finite. 
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The second pa r t  here, integrated over  z / 2  < i x[ < v, obviously converges to 0 
(by our assumpt ion t ha t  the integral for v is finite). In  view of (2.14) we can 
replace R by  Ix] in the first  pa r t  and consider 

f 
v/2<lxI<.t �9 

Noticing t ha t  I d cf (x/v) l < H r -1 with constant  H,  and hence Q (d cf (x/z)) = 0 (z -2) 
we get by  part ial  integrat ion and  by  (4.IV.l)  

~/2<lz[<~ 

f f 
Ixl<v Ixl<w/2 

T/2 J xl<,2 

= o  (1). 

Remark. I f  we accept  the natura l  definition t ha t  v has a zero of order fl in 
/ a  

p-mean  if | ]vlPdx=O(qV~+n), then  (4.IV.l) means tha t  v has a zero O~ order 

Ixl<~ 
+ 1 - n / 2  in 2-mean. 

V. To prove the evaluat ion (3.6) we write the sys tem (3.1), and the  initial 
condition (3.3) in the notat ions of (II) ,  where T now stands for the operator  
corresponding to the mat r ix  (d~j} and all the constants  are proved  with - 

dz ! 
d-~ = T;1Tox with r2=(Tox, X), (4.V.1) 

x=x(t; r), x(t; ~o)=t with (Tot, t )=~. (4.V.l ' )  

On the hypersurface Z we take  any  local cOordinates (t 1 . . . . .  t n -1 )= t ,  and" in- 
t roduce the vectors 
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We have 

l O x  
(4.V.2) 

0 y~ 
Or 

1 1 ~ ( T ; 1 T o X  ) 1 +~[(Dy=T;1)Tox+T;1ToY=] 
;y~ + ~ = --rv, 

- r  1 T ; t  (Dy~ T , )  T ;  1 T O x + 1 (T~I _ Tgl) To Y=. 

Also, if we put y ~ = y ~  for any fixed tangential vector v=(v  1, . . . ,  T "-1) at the 
point t of Z, we have by linearity 

- 1 T ;  1 (Dy~ T~) T ;  1 T O x + ( T ;  1 - To  1) T o Yr. 
Or r 

(4.v.3) 

By (3.5) we have 

Hence 

Since 

it follows 

with 

t i b~ ~ ~" = dtj y~ y~ = (T~ y~, y~). 

z*'C[ ~ t 3 ~  ~ + 2--~-h t [y~l= ~< ~ ( 3 ~  +2 ~ ) ( T ~ y ~ ,  y~) 
] ~ .A 1 V'Xll/ i l  

r b~v ~ v*, 

r X~ -51 

(4.V.4) 

(4.V.5) 

YI. To prove the statements made at the end of w 3 we start by some 
general considerations. 

Let b~, be a metric tensor on a (n-1)-dimensional manifold (in our case Z) 
depending on a parameter r. Assume that  for any tangential vector ~ at a 
point t we have 
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~T" T ~ ~ ~5 b~ ~ z ~, (4.VI.1) 

with a positive &, independent of T, but  which may  depend on t and r. The 
manifold, and tensor b,~ and its dependence on r are assumed to be C ~. 

Fixing local coordinates around t and considering the corresponding Euclidean 
scalar product  on the tangential space at  t we can write b~,TUT"=(BT, T), 
(Obu~/Or) ~ ' ~  = ((OB/Or) v, T). Then (4.IV.l) means tha t  [B -�89 (OB/Or) B-~[<~do. 

Considering the determinant  b of {b,,.} it is easy to check directly tha t  

0 l o g ] / ~ = l  b 0 b  1 ~ O B B l l = I  IB_�89189 
Or 0 r  2 trace ( 0 r  J ~ trace [ 0r  J 

~ r l o g  Vb < l & ( n - 1 ) .  (4.VI.2) 

Since B ~ ((a/Or) B --1) B�89 = --B - t  (OB/Or) B-�89 (4.VI.1) gives 

0 b "~ 
(4.VI.3) 

Take now Q (u) for a p-form v independent of r: 

Q (v) = E B (t)' (j) v(o re). 
(0, (J) 

For  convenience,, we fix the local coordinates temporari ly so tha t  for a given 
r and t the tensor b~, be Euclidean, i.e. tha t  b,~ = ~,~. Then b ~ =  6 ~ and B (~)' o) 

~(o.o) Fur thermore an inspection of (O/Or)B (~ gives 

B ( ')( ')= ~ ~ ( - 1 )  "+~ b'~'," B(')\ % (') \'L 
,a=l ~ = 1  

Hence OB(~),<o = ~" ~ r  b~.,'., 
0 r  . :1 

0_bk'~ 
~ r  ~ B(~') u k. (~,) u z = e [(i'), k] e [(i'), 1] 0 r 

for a ( p - 1 ) - s y s t e m  (i'), k # l  and (k, l ) c ( i ' )  c, 

8 B(i) .(j) = 0 
Or 

in all other  cases. I t  follows tha t  
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O~ O B ~ o) 
Q (v) = ~. v(,) vo) 

(~). (t) 0 r 

Obk. ' 
= Y~ Y - ~ r  e [ 63 ,  k] v(~,)o~ e [(i'), l] v(~.)~. 

(i') (k, l) C(t')e 

(P) k r (P)r 

(4.VI.4) 

Consider now the  operators  ~- t ransforming the space of p-forms u a t  t on to  
the  space of ( n - l - p )  forms v a t  t. By  (1.3), wi th  (h) an ( n - l - p ) - s y s t e m  
and  (i) a p -sys tem 

(~u)(h) = Vb ~ [(h) ~ (h)] ~ B (~)~. o)u0), 
(t) 

0) \0  r / u(~). 

I f  we again use the  local coordinates  as above  i t  becomes clear t h a t  ~ (O~/Or) u 
is a p-form given b y  

(-)eO~ul - ( ~ l o g V b ) ( - 1 ) n ' u o ) + ( - l ) n ' : ( ~ B  o)'0)) 
O r  ] ( i ) - -  O) u(t). 

I t  follows t h a t  in these coordinates,  with another  p-form v 

0 log W 0 Q 

If  we introduce Q(u) as square of a norm in the  space of p-forms a t  the  
po in t  t of the  manifold  and  for the  value r of the  parameter ,  we can wri te  
(OQ/Or)(u,v)=Q(u, Hv) (as in  (3.25)) and  the  above  formula  shows t h a t  

O-x- O log ]/bI+H, 
( - 1)nP-'~ Or Or 

where I is the  ident i ty .  
Since, by  (1.4) ~ -~  = ( - 1 ) n ~ I ,  d i f ferent ia t ion gives 

0 ~  00e 
-~, (4.VI.5) Or Or 

(1) U n d e r  the  hypothes is  (4.VI.1) the  inequali t ies  (4.VI.2-4) are the  bes t  possible. Example :  
b ~  =~o (t; r ) ~  wi th  ~ independen t  of r; here  & = (1]~) I0~o]0 r]. 

(s) This relation could also be obtained by differentiating the formula Q (u, v) = ~ (u  ^ %r). 
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and the above formula gives 

( - 1 )  ~ r  + 
0 log "~ I + H. (4.VI.6) 

Or 

Since H is obviously symmetric (rel. to norm ]/~)~), (0 + / 0 r ) +  is symmetric 
too and commutes with H. From (4.VI.2) and (4.VI.4)we could already obtain 
an evaluation of ](~+//~r)+l, but we shall obtain a slightly better bound as 
follows. Differentiating the equation Q(-~u, ~u)=Q(u, u) we get 

~ ( +u, +u) + Q (~rr U , +u) + O (+u, ~-)e ~rU) OQ = ~-V (u, u), 

( -  1)"P [Q (+  0+~ru, u) +Q(u, -)e~r ulj ~+ ~] =-~roQ (u, u) - ~ ( + u ,  +u), 

1 [~-~(+u, +u)-OQ(u, 
( - 1 ) " ' Q  ( ~ r  ~u,  u)=~ ~ r  u)].  (4.VI.7) 

Since (O+/Or) -)e is symmetric it follows by (4.VI.4) for (n - 1 -p)-forms +u  
and for p-forms u 

~ + ~ ~ - -  ~o. (1) (4.vI.s) 

We recM1 now the situation treated in w 3 where, on }2, the metric tensors 
b,, depend on Q. We know from (3.8) that b~,, is related to b~,, and from this 
relation we get 

~o = (I) (0 r) -(n-1)+2~ -~r /or p-/orms, (4.VI.9) 

+5 = ap (0 r) (~-a)-2~ ~r /or (n- 1 - p)-/orm8. (4.VI.9') 

The parameters ~ and r are related by R=e-Q=(1-e-~ hence (~//0~) 
= - e-Q e ar (~/~ r). By differentiating (4.VI.9') we get 

�9 [ r + ~ r ]  ~o= -e-qeOraP(Or) "-'-2p (n-l~2p)O ~o-~ gr -~r j" 

Composing this with (4.VI.9) gives 

�9 [ ~P'(Or)I+O~" ] -~Q+e=-e-Oe ~ ( - 1 ) " ~ ( n - l - 2 p ) O - ~  ~7-Ter �9 

Since for p-forms, Q~(u)=(I)(Or)2PQr(u), the bounds of an operator with 

respect to the norms ]/Qe (u) and V(~r(u) are the same. By (3,6) and (4.VI.8) 
considered for the metric ~g, we obtain 

(1) The constant (n- 1)/2 is the best possible. 
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(P'(Or) n--1 ] 
e ~176 ( 2 p - n + l ) O d p ( O r )  -,2 I<(-])" .~% 

< e  e e O r [ ( 2 p - - n + l )  
r ~ -  I. l o -r + - ~ - , . j  z. 

(4.VI.IO) 

w 5. Final remarks 

Remark 1. The best constant in the Carleman type inequality. The constant  
C =  1 with which we prove our inequali ty (see R e m a r k  3 in w 2) is not  the best  
possible. I t  can be proved t h a t  if ?o,~ denotes the smallest  posit ive zero of the 
Bessel function J0 (z) the inequali ty holds for any  C > 1/jo, 1 with a proper  choice 
of R0, whereas the inequali ty is not  t rue for C <  1/~.1 (with any  choice of Ro) 
and a suitably chosen p-form. I t  is not  clear if 1/]o2,1 =0.1729 ... is always an 
admissible value for C. To prove this assertion we notice tha t  from the proof 
in w 3 it follows tha t  the quan t i ty  

f f e - ~ Q q ( V ) V b d t d  e 

C*= lim sup -y f l  . . . . . . . . . . . . . . . . .  

. . . .  ff e ~ Qe(V ' )VDdtdo  
a Z  

separates the admissible f rom the non-admissible values of C. 
B y  using (3.6) and (4.VI.4) we prove immedia te ly  for a fixed p-form v and 

point  t on Z tha t  for 0 < r l < r  2 

e - ~ ( ' ' - ' ' )  (~, (v) ~- Q~, (v) < e p~( . . . .  ) (~, (v), 

hence, for the  corresponding ~01 and e2, ~1>~2, 

e p~(r,- ,a (I) (0 r~) '~" QQ,(v) <~ (1) (0 ra) -2p Qq, (v) ~ e "~(r'-~') (I) (0 r 2)-2p Qq, (v). 

This shows tha t  when ~--> + oo (i.e. r->0),  Qq (v)---)-Q~ (v) an4 

e - w r  ((I) (0 r)) -2v Qo (v) < Q~ (v) < e p~r ((I) (0 r)) -2p Qe (v). 

Hence in the expression for C* we can replace QQ by  Q~. Then by  choosing 
an or thonormal  sys tem {u k} of p-forms relative to the quadrat ic  norm 

we develop 

II~ll~= f Q~(~)V~=~t, 

oo  

V = Z s (e) u~ 
1 
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and find tha t  

0 0 

for /EC  ~ vanishing outside of a closed interval on the positive half-axis. 
One then shows tha t  C* is the reciprocal of the smallest eigenvalue of the 

eigenvalue p r o b l e m / "  (~) + ~ e-2Q /(~) = 0 for 0 ~< Q ~< o~ with "boundary  condit ions" 
/ ( 0 ) = 0  and / 'EL2[O, o~]. 

The eigenvalues of this problem are ~ =j~. ~ and a corresponding eigenfunc- 
tion is J0 (i0. m e-e), where j0. m is the ruth positive root of Jo(z). 

Remark 2. The Carleman type inequality /or n # 2 p. The idea which allowed 
the reduction of Theorem 1, w 2, to the case n = 2 p can be applied to deduce 
a Carleman type  inequality for n # 2 p  from the inequality which was proved 
for n = 2 p .  

To simplify our considerations we assume that  the local coordinates are chosen so 
tha t  a~j (0) is the Euclidean metric, i.e. r (x) = I x I and tha t  a ~ (0 r/~ x ~) (~ r//9 x ~) = 1 
holds; this last proper ty  was obtained in w 2 by passing from a~j to 5~j. Hence 
the geodesic distance from zero coincides with the Euclidean distance. Let  u 
be a p-form satisfying (2.2) and (2.3) and vanishing outside of a compact con- 
tained in I x [ < s. To simplify, we assume tha t  p > n /2 .  The manifold is ex- 
tended by  taking its product  with R 2p-~. The metric a~j extended to the 2p-  
dimensional manifold (as in the proof of proposition 1, w 2) will be denoted by 
5~j with i, j varying now from I to 2p.  For  this metric the geodesic distance 
from the origin is also equal to the Euclidean distance. 

The form u, extended as in the proof of proposition 1, to  the new manifold 
no longer vanishes outside of a compact  there. Denote by  X the point with 

coordinates x 1 ... x ~, ... by r'(.~)= IZ I  2 , by ~(r ' )  a non- 
\ k = n + l  

�9 increasing function in C ~, with ~ (r') = 1 for r '  ~< 1 and ~ (r') = 0 for r '  >~ 2. Then 
by putt ing ~=cp((1 /s )r ' )u ,  we obtain now a p-form in the 2p-dimensional 
manifold vanishing outside of a compact in I~] < 3 s. 

For  the metric 5~j we construct the corresponding metric a with a suitable 
0 such tha t  inequality (2.13) is valid. We use this inequali ty for the form ~2 
and taking advantage of the relations: 

1 r= l~ l ,  R = o ( 1 - e  ~ ] / a = ] / S e  -~~ 

02) = e ~~ Q (~2), Q (d~2) = e 2~ (d fi), 

= -2- for p-forms, Q (d~,~.) = e 2~247 (d~fi). 

Hence the inequality can now be written (for small s, say s<~l /30)  
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1~l<3s 

I~l<Zs 

We notice now t h a t  

d = a ,  {~(+2)=q~ z ( ~ r ' ) Q ( u ) ,  d~2=dq)(lr')Auq-fp(~r')du, 

Therefore, b y  in tegra t ing  in the  above inequal i ty  wi th  respect  to  the  var iables  
x n+l ... x ~p and  in t roducing for 0 < t <~ s the  expressions 

R ( t ,  8, 0~)= f [~(1-e-OVt*i~rTi)]-2gq22(1rt)dx, n+1...dx2P. 
T'<28 

S<r'<2$ 

we deduce 

f 
982e~O~ | R([~ I, s, ~) [Q (du) + Q (d~u)] l/adx ~d 

Ixl<s 

f - (Ixll ~, oOQ(u)~adx 
oJ 

Izl<s 

>1 f R(Ix], s, ~)Q(u)l/~dx. (A) i1r 
Ixl<s 

This inequal i ty  is not of the  usual  Carleman type.  However ,  if we r emark  tha t :  
R and  R are decreasing functions of t; t h a t  for 0 r  l im R = + oo for 
t->0; t h a t  for t=s<l ,  s~-2~+nR is bounded  above  and  below b y  two posi t ive 
constants  independent  of s and  ~; t h a t  s 2~-2~+n/~ (t, s, a), is bounded  above  and  
below b y  two constants  independent  of t, s, and  a; a n d  finally,  t h a t  for t l <  t 2 
and  ~---> + c0, R (t z, s, a)/R (t 1, s, a)--~0, i t  becomes clear t h a t  the  inequa l i ty  (A) 
can be used for a proof of a unique cont inuat ion  theorem in the  same way  as 
(2.13). We  can say  t h a t  {A) is a Car leman t y p e  inequal i ty  of a general ized 
k ind  and  hence we ob ta in  th is  k ind  of inequal i ty  for p-forms on n-manifolds  
wi thou t  assuming n = 2 p (1). 

(1) I t  would be of interest to investigate the generalized kind of inequality in view of the 
limitations in the applicability of the usual kind as described rocently by L. HSrmander [9]. 
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Remark 3. On solutions o/ elliptic inequalities o/ second, order. We mentioned 
in the introduction tha t  we can now prove the unique continuation for  such 
solutions under much weaker hypotheses than was done before. This result is 
obtained by  using our inequality rather than  the theorem. 

I f  a ~j are the leading coefficients of the elliptic linear operator in quest ion--  
we assume t h a t  these are in class C~ differential inequality can be written 
in the form 

Q(~d/)<.M[I/J2+Q(d/)], / being a /unction. 

We consider now the ( n - 1 ) - f o r m  u =  ~d/. We assume, as in the preceding 
Remark,  tha t  the metric a~j is already transformed and the local coordinates 
chosen so tha t  the geodesic distance from the origin equals the Euclidean dis- 
tance. We extend the manifold to a (2n -2 ) -d imens iona l  one and the metric 
to ~ j  and then define a suitable metric a~j with geodesic distance R from the 
origin as in the preceding Remark.  

The form u extended to the new manifold as in the proof of Proposition 1, 
w 2 has a zero of infinite order at  the origin. Thus we could proceed with the 
proof as given at the end of w 2 if it were not  for the change in our differential 
inequality which now appears on the original manifold as 

Q(du)<-~M[Q(u)+l/12], d~u=O, u=~d/ .  

On the extended manifold in the metric a~j these relations become 

(u) --e ~e(n-1) I~1 ~ (u) = e ~~ 1)I~1 Q (u) = e 2~ I;IQ (d/) 

= e ~~ Q (dl) = e ~~ Q ( d t ) .  

We notice tha t  Q(d/)>~la//~R[ 2 and obtain a n  immediate evaluation 

f R-2~ ~ ~ ~ s ~ A  ~ 

R < 8 1  R < 8  l 

A' Va d 
~ < 2 ( 2 g - 2 n + 4 )  f R - ~ Q ( u )  

N < S  1 

for every 81 < R0, the constants A ~ A' depending only o n  R o and the constants 
At, A2, and A corresponding to the metric a~j. 

~ R -~  Va d,2, Obviously we can now eliminate the obstructing term, [/I 2 and 

finish the proof in the same way as at  the end of w 2. 

Remark 4: Geometric significance o/ our inequality o/ Carleman type. Inequal i ty 
(2.13) has an intrinsic meaning for a p-form u on a 2p-dimensional l~iemannian 
manifold with the metric 5~, where R is the geodesic distance from a point 0 
of the manifold. Our proof in w 3 can be interpreted solely in terms of the 
m e t r i c  a~j without  reference to the metric a~j from which it originated and 
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without the change of variables R = e-~. The operator %R defined on the surfaces 
Z~ of concentric geodesic spheres with center 0 has the property:  ( ~ R / ~ R )  -X-R is 
negative semi-definite relative to the norm QR (u) for p-forms u on ZR. I t  should 
be noted tha t  in order to form the derivative of ~R we transfer the p-form 
along the geodesics issued from O, not by the parallel shift on the Riemannian 
manifold. The correspondence is given by polar geodesic coordinates with pole 
at  O. The inequality is true for every sphere R <  s and for every ~ >/0 in each 
sphere R < s ,  in which in addition, the operator (~-)eR/aR)-)e n has a bound 
~< 1/R. In  general we shall have to assume tha t  the metric has sufficient reg- 

ulari ty (say at least C L1) to assure the existence of polar geodesic spheres in 
which the geodesics issued from 0 do not  intersect. A number  of questions 
arise in this connection: 

(1) Are the above conditions necessary for the validity of our inequality for 
any  form u vanishing outside of a compact  in [ R <  s] and with a zero of in- 
finite o rde r  at  O? 

(2) W h a t  is the connection of the above properties to the usual properties 
of Riemannian manifolds? 

(3) If  we assume the above properties to hold on surfaces of geodesic spheres 
for every center 0 on the manifold, what  kind of manifolds will be obtained? 

I t  is not  clear if the answers to (2) and (3) can be given in terms of usual 
properties of Riemannian manifolds. I t  seems probable tha t  the answer to (3) 
will have to do with the positive curvature of the metric. 

Remark 5: On sets o/ zeros o/ p-/orms satis/ying di]/erential inequalities. Our 
theorem and the inequality allows us to obtain statements concerning the sets 
of zeros (not of infinite order) of a p-form u satisfying a differential inequality 
of type  (iv) of w 2. 

We have already introduced the notion of a zero of order fl in 2-mean (see 
w 4, IV, Remark) which means tha t  

(t) 
Ixl<q 

(~) 

where we consider the Euchdean metric in any  system of local coordinates with 
origin a t  the zero O in question and where n is the dimension of the manifold. 

u and ~ u  have the same zeros of the same order. We make the construc- 
tion as in the proof of proposition 1, w 2, and extend the form u (or ~u)  to 
the extended manifold of dimension 2 p  (or 2 ( n - p ) ) .  We obtain a form v on 
the extended manifold which has a zero of order fl a t  each point of 0 •  12p-=l 
if and only if the original form u has a zero of order fl a t  0. 

We can therefore restrict ourselves to the s tudy of p-forms on a 2p-dimen- 
sional manifold, satisfying a differential inequality of type  (iv), w 2. 

The s tatement  in w 4, IV, tells us tha t  at  every zero of the form v of order 
>fl,  our inequality is valid with ~ <~fl + n / 2 - 1 ,  and from the inequality we 

deduce immediately tha t  for all such zeros contained in a compact  subset K 

of the manifold there exist constants FK and R~ such tha t  the integral of Q (v) 
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over every geodesic sphere (in the metric a~) centered a t  such a zero and  with 
radius ~ < R ~  is ~FKQ e~+~-2. 

This fact gives rise immediate ly  to the following s ta tement :  

(a) A point p o/ the mani/old which is a limit o/ a sequence el zeros o/ v el 
orders increasing to ~ is a zero o/ infinite order. 

For the next  s ta tement  we introduce some definitionsl Consider a point  p 
which is a l imit  point  of a set P on the manifold. For  each ~ > 0  denote by 

(~) the inf imum of all q's such tha t  the geodesic spheres of radius Q with 
centers in P cover the whole geodesic sphere with center p and  radius ~. We 
have, obviously, 0 < ? (e)~< e. By a familiar a rgument  from the theory of Vitali 
coverings we deduce tha t  the sphere S (p, s) can be covered by  a finite number  
of spheres S(pk, 37(e) )  , k = l ,  2 . . . . .  N ,  pkEP,  with the number  N of order 
(*/r (~))~- 

If 7 ( e ) = O ( e ' ) ,  we will say tha t  the density of P a t  p is of order T. If the 
densi ty is of every order T > 1 we say tha t  it  is of infinite order (1). We now 
state: 

(b) I /  at a point p o/ the mani]old the set P~ o~ zeros el v el order f l> l has 
a density o/ in]inite order, then v has at p a zero o/ in/inite order. 

From (a) and  (b) and  Theorem 1 we get the following consequences: 

(A) I /  v does not vanish identically, then on every compact subset o / the  mani/old 
the zeros el v have uni/ormly bounded orders. 

(B) I] v does not vanish identically, the set P~ el zeros o/ v el order fl > 1 does 
not have a density el in/inite order at any el its limit points on the mani/oht. 

Sta tement  (B) seems rather  weak. I t  is possible tha t  actual ly the density cannot  
be of higher order t han  1 and tha t  the s ta tement  remains true if we take zeros 
of any  positive order ft. 

I t  should be noticed tha t  s ta tements  similar to (A) and  (B) can be obtained 
for any  system of differential inequalities with linear operators of any  orders for 
which a Carleman type inequal i ty  with a single pole is valid. 

Remark 6: On weakening the hypotheses in Theorem I.  I n  view of Plig's counter- 
example we cannot  expect to be ahle to lower the global hypothesis on the 
metric a~ very markedly,  for instance, to replace the class C ~ by a HSlderian 
class C ~ with 0 < 2 < 1 .  

However, in this counter-example, the lack of Lipschitzian proper ty  appears 
on a whole hypersurface (3). I t  therefore seems possible, a priori, t ha t  the Lip- 
schitz condit ion could be relaxed a t  a single point ,  namely,  the zero of infinite 
order of u, without  losing the theorem. 

~) To illustrate these notions take the point p = 0 in the plane of the complex variable ~. 
If P is the set of concentric circumferences I~l = m -~, 0<($< 1, m = 1, 2 . . . .  , its density at 0 is 
of order 1 + 1/(~; if P is an enumerable set distributed on I ~1 = I/log m, m = 2, 3 . . . . .  the part 
of P on ]~] = 1/logm being formed by m equidistant points, the density of P at 0 is of infinite 
order. 

(~) It  is actually a counter-example to the uniqueness of Cauchy problem and the hyper- 
surface is the one where the Caueby data are prescribed. 
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We place ourselves in the conditions of Theorem II ,  w 2, where we may  
assume n = 2 p .  We still assume the continuity everywhere of the a~j; hence A 1 
and A S are constant.  However,  we shall now consider A as a function of r, 
increasing to + ~ when rXa0. I t  is easy to check the evaluations in ~ 4, I I - I I I ,  
in order to  see tha t  /~1 and /~2 and M are the same as before (M being so ~ 
because n = 2  p). Bu t  A is now a function of r increasing to + oo with 1/r (1). 

To pass to the metric a~j we must  replace the constant  0 by  a suitable func- 
tion 0 (r) increasing to + oo with 1/r. We put  

r 
v f e0(r)r R 
d i j = e  -2~ R =  e -~ (I) l ( r ) = -  . 

r 
o 

The evaluations for /~1, /~z and M are again the same, and for /~ we obtain 
a function increasing to + ~ with 1/r .  Every th ing  will now be settled if the 
inequali ty is proved. 

The o~ of (3.6) is evaluated as in w 4, V, and we obtain a function o~ ( r ) S  + c~ 
with 1/r. The crucial point  in the proof in w 3 is the fact  tha t  *~ -)% > 0 and 
[-x-~ ~q[ < 1. The expression for -)e~ ~ is now 

, [ 1 dOi)l(r)i 0 ~ ~ ]  10-7+~_7e~ ~_l_o~(r) .  
-)ee ~e = R e ~ (I); (r) d r - ~ r ~ r j '  with - ~ r  ~< 

Hence everything depends on the possibility of a r ight  choice of 0 (r) so tha t  
for r sufficiently small 

d ~1 (r) < 1. 1 d r  ) and 2 r  dr 
(I) x (r) d r 2 

Such a choice of 0(r) can be made if co(r) and therefore A(r )  do not  in- 
crease too rapidly to + r for r Na0. 

As an example consider A ( r ) = A t  -~, 0 < 2 <  1, /k constant.  This corresponds 
to a H61der condition for a~j at  0 of order 1 - 2 .  Evaluating,  we get re(r) 
= e5 r ~ with constant  r We choose 0 (r) = 0 r -~ with 0 = (2 p - 1) c5 (2 - 2)/(1 - 2) ~. 

Using the series development of the exponential, one shows tha t  the conditions 
arc satisfied, since 

0"22)r~ 2a R = r -  _ r e - a + 2 ( 3 _  - - . . . ,  

O ( 1 - 2 ) r l _ a  + O~ ( 1 - 2 i  ~ r~_2~ + 
(I) 1 (r)  = 1 q- ~ - ~ -  (2 -- 2) (3 --2 2) . . . .  

d (I)x (r) 0(1 - 2 ) ~ r _ ~ +  . . . .  
dr 2 - 2  

(1) The expression of ] also now depends on the modulus of continuity of the a# because of 
the evaluation of [ T x - T O [ in w 4 .II .  
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B e f o r e  c o n c l u d i n g  t h i s  r e m a r k  we n o t i c e  t h a t - - s i m i l a r l y  to  o t h e r  cases  of 
u n i q u e  c o n t i n u a t i o n  for  d i f f e r e n t i a l  i n e q u a l i t i e s  (e.g. [ 2 ] ) - - w e  c a n  r e p l a c e  t h e  
c o n s t a n t  M in  i n e q u a l i t y  (2.4) b y  t h e  f u n c t i o n  M r  -v w i t h  0 <  y < 2. 
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