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A unique continuation theorem for exterior differential

forms on Riemannian manifolds

By N. Aronszajn, A. Krzywickl and J. Szarski (1)

Introduction

The aim of the present paper is to prove a theorem which may be stated
as follows (a more precise formulation will be given later):

Let M" be a Riemannian manifold with a metric of class C*' (2). If an exterior
differential form wu of rank p has a zero of infinite order at a point Py of the
manifold, and if in each compact part of any coordinate patch the components of
the differential du and of the codifferential du are majorated by a constant times
the sum of absolute values of components of u, then w=0 on the whole manifold.

This theorem is of the type known as sirong unique continuation theorems
which extend the classical property of analytic functions to other classes of
functions (3). Such theorems establish the basic characteristic property of quasi-
analytic classes of functions of one real variable (Carleman [5], Mandelbrojt [11]).
This property was proved by Carleman [6] for solutions of elliptic systems of
two linear equations of first order in two variables. In 1954-1955 it was proved
by C. Miiller [12] and E. Heinz [8] for solutions of differential inequalities of
the type

in n variables, A being the usual Laplacian, and M a constant.

One of the present authors was able to replace the Laplacian in the inequality
by a general elliptic operator of second order with coefficients in class C** [1, 2].
Soon afterwards, Cordes [7] proved a theorem in the same case but with coeffi-
cients only in C®. Some other unique continuation theorems were proved by
Pederson [13].

In most of the proofs of strong unique continuation theorems for the different
cases considered, the essential part was the establishment of an inequality, the

n

lAu(x)|<M[lu(x)|+ s 4@
k=1

T

(*) This paper was written under Contract Nonr 58 304 with the Office of Naval Research.

() In general C™?% is the class of functions with continuous derivatives of orders <m and
with mth derivatives satisfying & Holder condition with exponent A. Hence, %! means
“continuous and Lipschitzian”.

(®) In a weak unique continuation theorem one assumes that the form vanishes in an open
non-empty set instead of merely having a single zero of infinite order.
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general idea of which was introduced by Carleman, and we shall call these “Carle-
man type” inequalities.

Considerable progress has been made recently in the investigation of the ques-
tion of the uniqueness of solutions of Cauchy problem (}), a question very much
akin to that of the unique continuation. Most of the recent proofs of uniqueness
for Cauchy problem also rely on an inequality of Carleman type.

Every case in which the non-uniqueness in the Cauchy problem is established
is one in which unique continuation (weak or strong) is not valid.

In a recent paper, L. Hormander [9] proved that for systems of linear oper-
ators with constant coefficients a Carleman type inequality cannot hold if there
are multiple characteristics of multiplicity >2(*). Quite recently, A. Pli§ con-
structed several examples in which “niqueness in the tauchy probl>m does not
hold (these examples are not as yet published). Among these examples we will
mention two:

(a) An elliptic equation in R®, of order 4 with real C* coefficients (3).

(b) An elliptic equation in R3 of order 2 (hence with sunple characteristics)
with coefficients in C* outside of a plane and of class C* in a neighborhood
of this plane, for every 4, 0<A<1.

The first example shows that the unique continuation theorem is not true
for all elliptic systems (and it is only for such systems that it may be true).
It is therefore of interest to prove the unique continuation for special types of
systems.

The second example shows that in our theorem, the regularity requirement
that the metric a; be of class C*' cannot, in general, be lowered to C** with
0<A<1. This follows from the fact that our results imply (see Remark 3, §5)
the unique continuation theorem for solutions of the corresponding Beltrami-
Laplace equation

of

adfﬂﬁé—;l/ i

However it will be shown in Remark 6, §5 that the regularity requirement can
be cons1dvrably lowered at the zero of infinite order.

s @ gemera! wethod o tramsioiiving s = ohitrary lines - differentis)
sys’cem 1nt0 a system of operators of first order. Whenever tnis fransformation
can be used, it gives rise to a considerable lowering of the regularity require-
ments and also a much simpler presentation of the proofs. This method trans-
forms, in general, a well-determined system into an over-determined system.
However, it transforms an elliptic system into an elliptic system. ()

This leads to a general investigation of the unique continuation for over-
determined elliptic systems of first order. The present paper can be considered
as a pilot investigation in this direction. We consider the components of a p-
form u on an n-dimensional Riemannian manifold as forming (locally) a system

('} See, for example, A. P. Calderon [4] and L. Hdormander [9, 10).

(?) Hérmander, however, considers inequalities of rather special type, adapted to the
Cauchy problem. In this connection sce footnote in Remurk 2, § 5.

(3) To be published in Communications on Pure and Applied Mathematics.

(*) We call an arbitrary system of linear differential operators eiliptic if the sum of ab-
solute squares of their characteristic polynomials is positive definite.
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of (n) functions. The components of the differential du and of the codifferen-

tial 6w form a system of [(p-?— 1) + (pf 1)] linear operators. This system is

elliptic (even minimal elliptic, i.e. when a single operator is taken away, the
system ceases to be elliptic). The reasons for our choice of this system are that
1° the operators d and & are of importance in many domains of mathematics
and 2° the investigation is made easier by readily available tools of the theory
of exterior differential forms.

In §1 we give the notations and formulas concerning exterior differential
forms on Riemannian manifolds which are to be used in this paper.

In §2 we first state our theorem in a precise form and then proceed to a
series of reductions and transformations of the theorem. First we reduce it to
the case n=2p (Proposition 1). In further transformations we reduce it to the
case when, in a neighborhood of Pj—the zero of infinite order—the geodesic
spheres with center P, coincide with concentric Euclidean spheres (or ellipsoids).
This reduction allows us to manage with a metric only of class C*'. A final
transformation brings in the reduction to a Carleman type inequality (2.13).

In §3 we prove the inequality, but our proof is valid only for » =2 p, which
explains the necessity for the reduction of our theorem to this case.

In order to simplify the presentation of the arguments in §§ 2 and 3, we have
relegated certain proofs to §4, especially those of all the evaluations needed in
the preceding sections. In certain instances, particularly in parts III and VI,
we have had to prove some properties of exterior differential forms which do
not seem to be readily available in the literature. Having in mind the exten-
sions of our results (indicated in §5), we have made an effort to get quite
precise evaluations.

§ 5 contains six remarks treating the following subjects: 1, the best constant
in the Carleman type inequality; 2, the Carleman type inequality for = + 2p;
3, on solutions of elliptic inequalities of second order; 4, the geometric signifi-
cance of our inequality of Carleman type; 5, on sets of zeros of p-form satis-
fying differential inequalities; 6, on weakening the hypotheses in Theorem I.

§ 1. Notations and formulas

For notation concerning differential forms on Riemannian manifolds we refer
the reader to the book of de Rham [14]. In some instances, however, we in-
troduce special notations which we believe more convenient for our present pur-
poses, and for the convenience of the reader the formulas from the theory of
exterior differential forms which we will use in this paper are now given in this
new notation.

On  a manifold of dimension %, an exterior differential form » of rank p is
given in a coordinate patch by a system of components uy. Here, (i) stands
for a system of indices, 4, 1,, ..., 9,, where 1<i,<nfor u=1, 2, ..., p, and the
indices i, are strictly increasing. ' )

We introduce the following notations. If (5) is a system of p indices, then
(¢)° is the “‘complementary” system, ie., the system of n—p indices 4, between
1 and » which do not figure in (¢), arranged in strictly increasing order.

419



N. ARONSZAJN et al., Exterior differential forms on Riemannian manifolds

If €@ then (¢)UJ denotes the sequence (¢) increased by the index § and
arranged increasingly. If 4, € (¢) then (4)\14, is the sequence (i) with i, deleted
from it. If 4y, jy, ..., f¢ is any sequence of indices all different, then & [f,, ja, ..., 7q] =
= 11, depending on the parity of the permutation of the ¢ indices j, which
puts them in increasing order. We will need the following relation:

e[, )]=(=1)"""Pe[(), ()] (1.1)

For a pform % we can write the components of the differential du in the
given coordinate patch as

p+1

1 O Uy
@up= 3 (=1y* 5% (1.2)

Here, (j) is a sequence of p+1 indices. )

Let a; be a metric tensor on the manifold. As usual, we denote by a¥ the
corresponding contravariant tensor (the matrix {a”} is the inverse of the matrix
{ay}), by a the determinant of the matrix {ay} so that Vadz is the corre-
sponding invariant measure on the manifold.

For two p-sequences (f) and (j) we denote by A,y the determinant of the
minor of the matrix {a;} with rows given by the indices i, and columns given
by the indices j,. Similarly, 4?" is formed from {a”}. Obviously,

. deemydle-em) _ —1
A(l..‘n),(]...n)—a, A =q .

For a p-form u the components of %u, which is an (n—p)-form, are given
in our notation by

(*u)ay =Va g [(R), ()] S AP, (1.3)
®
where (k) is a sequence of n—p indices and (¢) in the sum runs through all
sequences of p indices.

We will often use the two well-known formulas for the square of the star
operator and for the codifferential ¢ of a p-form

**u_:(_l)v("—}?)u’ (1.4)
and du=(—1D"P xdxqy. (1.5)

For a p-form u the function defined on the manifold by *(uA %u) will be
denoted by @Q(u). In our notation it can be written as

Q (u) =(‘ )Z(;) AGD Uy Ugsy- (1.6)

This is a quadratic form of u at each point of the manifold, positive definite,
and its square root can be considered as a norm of the p-form u at a point
of the manifold. (It is obviously independent of the coordinate patch.) The
corresponding bilinear form in two p-forms % and v is
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Q (u7 'U) = Z A(i)‘(j) u(t) ’U(j)- (1.6')

oX))
The following formulas are easy to check.
Q(xu, %v)=Q(u, v), Q(%u)=Q(u). (1.7)
From (1.5) and (1.7) it follows that

Q(8u)=Q(d %u). (1.8)
We have fQ(u, dv) Vadx
=fQ(6u, vyWadx (1.9)

for any two forms u,v of rank p and p—1 respectively, of which one at least
vanishes outside of a compact. The last formula represents the fact that the
operators d and & are adjoint to one another.

In order to prevent a cumbersome number of indices we omit the index for
Q (there will be no ambiguity) to indicate the rank of forms % to which @ is
applied.

§ 2. The main theorem, its reductions and transformations

We now state our main theorem precisely, giving all the hypotheses in their
weakest form.

Our hypotheses concerning the manifold and the metric are as follows:

(i) M is a manifold of class C**. The metric tensor ay is locally in class C™*.

Obviously we have to assume the manifold of at least class C™!' in order to
give a meaning to C*'. A tensor is locally in C*' if for each point of the mani-
fold there exists a coordinate patch containing it where the components of the
tensor are of class C%.

We give now our hypotheses about the p-form u.

(ii) w ts locally L* with strong L*-derivatives of first order.

(iil) At a point Py€M™, u has a zero of infinite order in l-mean.

In a Euclidean space R", a function f defined a.e. in a neighborhood of a
point z;, has a zero of infinite order at z, in ¢-mean (¢=>1) if

|[f()|°dz =0 ()
fe—-z4f<r
for all «>0 when r—0.

Obviously a zero of infinite order in g-mean, for any ¢>1, is a zero of in-
finite order in l-mean. Hypothesis (iii) means that in a coordinate patch con-
taining P, all components of % have a zero of infinite order in 1-mean. (This
is independent of the choice of the coordinate patch.) Even for continuous %
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(iii) is weaker than the usual notion of zero of infinite order. However, (iii)
jointly with (ii) implies that « has at P, a zero of infinite order in 2-mean (%).

Finally, our hypothesis concerning the majoration of du and du by u may
be written in the invariant form:

(iv) For every compact K <" there exists a constant M, such that Q(du)+
+Q U< MyQ(u) ae. on XK.

Because of the weakness of hypotheses (i) and (ii), », du, and du exist and
are well determined only a.e. on " hence we can assume the majoration in
(iv) only a.e. Besides this change, hypothesis (iv) is equivalent to the corre-
sponding hypothesis in the introduction.

We can now state our theorem as follows.

Theorem 1. If hypotheses (i)—(iv) are satisfied, u=0 a.e. on M".

Remark 1. Hypothesis (ii) could be replaced by a more restrictive one, namely:

(it') » is locally in P', ie. in each coordinate palch the components are locally
potentials of order 1(2).

A pform wu satisfying (ii’) is defined everywhere on M" except on a set of
2-capacity 0; hence it is much more precisely defined than a u satisfying (ii).
However, each u satisfying (ii) is a.e. equal to a u’ satisfying (ii’), so that
hypothesis (ii’) is not essentially more restrictive. Replacing (ii) by (ii") allows
a more precise conclusion in Theorem 1, namely that » vanishes everywhere
on M" except on a set of 2-capacity 0.

We give now a series of reductions and transformations of Theorem 1.

Proposition 1. Theorem 1 is equivalent to the special case where the dimension
n equals twice the rank p of the form wu.

Proof. We first notice that in hypothesis (iv) the inequality can be written
Qdu)+QE@xu)< My Q(u) = MyQ(*u), (by virtue of (1.5) and (1.7)). It is
therefore obvious that the hypotheses and the conclusion of Theorem 1 are
equivalent when stated for % and »wu. Since %u is an (n — p)-form, and 0<p<mn,
there is no loss of generality in assuming that the rank p is >2/2. Assume
that p>n/2, and replace the manifold " by T* =" R**"". In this product
manifold we consider coordinate patches which are products of coordinate patches
in M* by R* ", and in these coordinate patches we define the metric tensor d; as
equal to a; for ¢ and j<n and = J;; when one of the ¢, § is > n. For any g-form
v in ™ we define its extension & (of the same rank) to M?* by putting
By (Tyy vy Tny ...y Top) =V (24, ..., T,) When the sequence (i) contains only in-
dices <n and ;=0 when the sequence (¢) contains at least one index > n.

Denote by X%, d, 8, @, the operators and the forms @ on M?®. By using the
formulas from §1 we check immediately that d7=(dv), @ (d5)=Q(dv) and
Q(39)=Q (d%0) = Q(d%v) =Q(8v). _

It follows that hypothesis (iv) for % on M?” is implied by the same hypo-
thesis for » on " On the other hand, hypotheses (i)—(iii) for d; and @ are

() See §4, 1.
(?) For the definition and properties of classes P*, see Aronszajn and Smith [3].
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obviously implied by the corresponding hypotheses for ay; and u (the point P,
can be chosen as {P,, 0}). Hence if the theorem is true for n=2p, we get

@=0 a.e. on M?® and thus v =0 a.e. on M

Eemark 2. We use this reduction of the theorem only at the end of our
proof in §3. It will then become clear why it is necessary for the proof to
impose the restriction n=2p.

We might restrict ourselves to coordinate patches U on " whose images in
R" are not the whole of R". We can transfer the Euclidean metric from R" to
U, and then consider the distance of P €U to the boundary of U (in R"). This
distance will be denoted by 27, (P).

Proposition 2. Let the coordinate patches U, form a locally finite covering of TH™.
Theorem 1 is equivalent to the following statement: If hypotheses (i), (ii) and (iv)
hold, then for each U, there exists a continuous positive function r,(s) for s>0
(r1(s) depends on U,) such that r,(s)<s and whenever (iii) is valid with P,¢ U,,
u vanishes a.e. in a Buclidean sphere around P, with radius r, (ry(Py)).

Proof. We have only to prove that the statement implies Theorem 1. If the
hypotheses of Theorem 1 are satisfied, there exists an open neighborhood of
P, where u vanishes a.e. Consider the largest open set G where w vanishes a.e.
If @=M", Theorem 1 is proved. On the other hand, if G were not equal to
M", there would be a boundary point Py of ¢ in M*. Pg lies in some U,, and
for arbitrarily small ¢ there will exist a Py €@ n U, with Euclidean distance
<e¢ from P,. Therefore, |r,(Ps)~7,(Py)|<e&/2. Since hypothesis (iii) is satisfied
at Py, it is clear from our statement that u must vanish a.e. in the Euclidean
sphere with radius r, (r,(Py’)) around P{, and for ¢ small enough, by continuity
of r,(s),” this sphere will contain P, and thus Pg€ (@, which is impossible.

Proposition 2 allows us to restrict ourselves to a single coordinate patch on
M". We can even choose the coordinate patch to be a relatively compact sub-
domain of another coordinate patch and transfer our considerations to its image
in B". We can further restrict ourselves to the case where the image of the
coordinate patch is the sphere |x| <27, the image of P, being 0. We are led
therefere to the following statement which implies Thecrem 1.

Theorem 2. There exists a positive function vy, ry=ry(ry, Ay, Ayy A, M, p, n),
defined for positive ry, Ay, Ay, A, and M with A;<A,, and integers p and n with
0<p<n, which is continuous in ry, A;, A,, A, and M, and which has the following
property: if ay is a metric tensor and w is a p-form defined in [|z|<2r]< B,
then u=0 a.e. in |x|<r, if the following conditions are satisfied:

There exist positive constants A, and A, such that for every
z€flx|<2r], A |EP<ay@) EE<A|EPY). 2.1

On all straight segments contained in [Jx|<2ry] the a; are absolutely continuous
and there exists a positive constant A such that

(*) We use the usual summation convention for tensors. |£| is the Euclidean norm of &.
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Oy 4 4 2 ,
ae“ <A|g| 2.1)

for every vector & and every vector e(t) whenever all day;/de exist.
u is L* and has strong L? first derivatives in |x]|<2r,. (2.2)
w has a zero of infinite order in 2-mean at 0. {2.3)
There exists a constant M such that a.e. in |z|<2r,
Q@du)+Q(du) <M Q(u). (2.4)

Our manifold is now the Euclidean sphere |z|<27, In all the hypotheses,
the local conditions have become global. Properties (2.1) and (2.1') give a quan-
titative form for hypothesis (i). In fact (2.1) means that the matrix a;(x) is
uniformly bounded and uniformly positive definite in |x| <27, whereas (2.1')
means that the derivatives da,/de are uniformly bounded wherever they exist
and this in turn, with the absolute continuity of a, is equivalent to a; being
C* in |z]<2r,

Proof of Theorem 2. We assume that properties (2.1), (2.1'), (2.2), (2.3), and
(2.4) hold. Put
r=r(z)=(ay(0) ' ')}, (2.5)

or 8r] 2.6)

ay (x) = ay; (%) [akl () Py

@y is a new metric tensor in |z|< 27, for which we have the following evalua-
tions:(2)

A ER<a, (@) B E<A,|EPR  for every vector & 2.7
: - A} - A}
with Al—sz and Az—xl.
ae. i [|x] <27, %E‘é’léﬂlﬂz for every e (2.7)
: L _BAA} VX
and & with A= A? 2 Kf

Introducing the corresponding 4, 8, and é, we deduce from (2.4) the evaluation
ae. in [|z|<2r], Q(du)+QBu)<M Q(u). (2.8)

(}) d/oe is the derivative in the direction of the unit vector e.
(?) The proof of these evaluations is given in § 4, II.
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In §4, III, we give M as function of M, Ay, Ay, A, n, and p. Below we
give the value for n=2p (see (4.IIL2)}):

M=ﬁM for n=2p. (2.8")
A

We now introduce a positive function § (to be determined at the end of § 3)
8=81{r,, Ay, Ay, A, p, n) which is continuous in 7, A;, A,, A.

We put G (%) =y (x) e, (2.9)
R=R@)=>(1-¢%). (2.10)

dy is again a metric tensor in [|z|<2r)] and we have the following evalua-
tions (1).

A &P <y (@) §*§I<KZ|§|2 for every & (2.11)
y. ¢ % —~46r z A%
with A1=/—l:e ° and A2=1T1.
ae. in [|z|<2r,], %5’5’)<KIEI2 for every e (2.11")
and £ with i ﬁAA2 A L 20A3VA,
A
ae. in [|z]<2r], 5(du)+é(5u)<ﬁé(u) (2.12)

The expression of llzf is given in §4, III. For n=2p we have (see (4.1I1.3))

=220 0 for n=2p. 2.12')
A

Our proof is now achieved by using the following lemma which gives an
inequality of Carleman type and which will be proved in §3.

Lemma. Let the continuous metric tensor ay satisfy (2.1) and (2.1°). There exists
a positive function R, depending only on ry, Ay, A, A p and n,. continuous in
re, Ay, Aoy, A, with the following property: for every s< R, and for every p- ,‘orm
v satisfying (2.2) and (2.3) and vanishing outside of a compact contained in
[R(x) <), we have

(1) The proof is similar to the one for (2.7), (2.7), and (2.8) and is given in § 4, II-III.
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s fR‘zﬁ[é(dv)Jré(gv)]ngx? fR‘zaé(v)l/gdx (2.13)

R(r)<s R(r)<s
for every a=0.

Remark 3. Actually this lemma will be proved only for »=2p and it is for this
reason that we need the reduction of Theorem 1 to the case n=2p (see Pro-
position 1). However, since the need for this restriction will become apparent
only at the end of §3, we will proceed now as if no such restriction were im-
posed. We could consider the inequality (2.13) with a positive constant C
multiplying the left-hand side of it. In §3 we prove the inequality for n=2p

with the constants C=1, 0=(2p — 1) w, and R°=%pi—i)—a)’ where

w=30AA3VA,/AL

In §5, Remark 1, we will indicate that the constant C=1 could be replaced
by any €>1/46=0.1729 ... with a suitable choice of R,; here j,, is the first
positive zero of the Bessel function J,(z).

The proof of Theorem 2, based on the lemma, is a standard procedure in
unique continuation theorems. We will give a brief sketch of this proof since
we wish to determine the function r; which is asked for in our theorem.

We notice first that by (2.1) written for z =0 and by (2.5) and {2.10) we have

1oe 2V _RG)_ ) (2.14)
20r, VA, (@)

Atlzl<r@)<Allz|, Q=

Hence At Qlz|<R(x) <A}zl (2.15)

We shall prove that our theorem holds with r, given by

¥
r; =min (ﬁ) Qr,, ——R:", —; (2.16)
A2 VA2 VMAZ

We must show that the form « vanishes a.e. in the sphere |z|<r,. By (2.15)
it is enough to show that % vanishes a.e. in [R (z) < s] for

8 < min [QrijTl,Ro, l/VlT:I]

From (2.15) it is also clear that the set [R(z)<s]<[|z|<r,].

Consider any positive s, and s, with s, <s,<s. Let ¢ be a function in C*,
=1 for [R(x) <s,] and vanishing outside of a compact in [R(z) < s]. Then
v=g@u is a p-form satisfying the hypothesis of the lemma, and using the in-
equalities (2.13), and (2.12) for x € [R(x) < s,] where v=u, we arrive at the in-
equality
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(1- M s?) jR-%é(u)Védxsﬁ fR‘2“[é(dv)+é(5v)]V5dx,

R(X)<s$, S, R(T)<8

which is valid for arbitrarily large «. Therefore Q(u) =0 ae. in [B(x)<s].
=0 a.e. in the same set and since s, can be taken arbitrarily near s, the proof
is achieved.

Remark 4. In the case n=2p we get a value of r, by putting =(2p—-1)w.

R,=2/52p—1)w and M =(A,/A,)e*"* M (see Remark 3 and (2.12")). This value
depends on A;, A,, A, M, r, and p. If we want a value of r, for n=2p, we
have first to extend the manifold, the metric and the form as in the proof of
Proposition 1. If we extend the metric by a;=I'd; when one of the 1, § is
>n. with a constant I' between A, and A,, all the relations in the proof of
Proposition 1 will stay unchanged and in addition the inequalities (2.1) and
(2.1') will hold for the extended metric with the same constants A;, A, and A.
It follows that for n+2p we get the same expression for r; as in the case
n=2p provided we replace p by max [p, n - p].

§ 3. Proof of the inequality

We remark first that the lemma of the preceding section will be proved in
all generality if we show that it holds under the following assumptions: (1)

1° The metric tensor a; is defined and of class C* in the sphere |z|<37,/2
and satisfies there conditions (2.1) and (2.1').

2° The p-form v is defined and of class C* in the sphere |z|<37,/2 and
vanishes outside of a compact lying in [0<e< R(x)<s] with ¢ depending on .

From now on we assume that the above conditions are satisfied for a;; and v.

The metric tensors d; and §; are then obviously of class C* in the sphere
|x|<87,/2 except at the origin, where in general they will be only of class C*'.

We will prove that r(z) is the geodesic distance from 0 to x in the metric
dy and that in this metric the geodesic lines passing through the origin satisfy
the following system of ordinary differential equations:

Pl

[ lfi

L 07

ik .
g*(;:a 5;], ’l-=1,2, ey I (3])
We notice first that the ellipsoid
8= 8; =[r(x) <7yl, (3.2)

where 7, =7, VK; is contained in the sphere |z|<r,. Take a point ¢ on the
boundary 2 of this ellipsoid and solve the system (3.1) with the initial condition

z (7)) =t. (3.3)

(}) This will be shown in §4, IV.
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As is well known, there exists a unique solution z(¢) of (3.1) and (3.3) defined
and of class C* in an open interval of ¢ containing 7, and which appreaches
the boundary of |z|<3r,/2, or the origin, when ¢ approaches the endpoints
of the interval(!). By (2.6) we have

dr(z(o)) ordz' _, or or ( ; or 87‘) (a"’ or ar) -1

oz o’ a8

T de  ordo =7 ozt ox
Hence 7(x(0))=0+c¢; ¢=0 since r(x(fy)) =r(t) =7, and thus
r(z(o)) =o0. (3.4)

This means that the interval where z (o) is defined starts at zero and when we
consider the solutions z (o) in the interval (0, 7,] for all points ¢ on 2 we get
a system of simple arcs joining zero to ¢, mutually disjoint and filling out the
whole ellipsoid §.

The points of the arc joining 0 to ¢ can be denoted by z(o)=x(t; o) and if

we choose local coordinates £, ..., t""! on 2 we can write z(f}, ..., "7 ¢). The
manifold §—(0) now becomes the product 2x(0, 7). We now introduce the
polar coordinates ¢, ..., t""%, r; they correspond to the point z(f, ... t"7%; r)

with r=r(x).
Writing the metric tensor in these coordinates, we get

ox ot o2 ox
~ 3 — A s o tﬂ
dydrtdr’=ay, (6tﬂdtu+ar dr) (6t"d oy dr),

where 1 and v run from 1 to »—1. Noticing that

au@_x‘@_x’ a 07 ~I, ~k16r'ar_1
ar or

@y a* Py ax Y Y

and i oa'ox’ _ . 0% ator a_"ﬂlﬂ=ﬂ=0
Vot or Vot ax ot odd oF

we obtain the following form for our metric
1 o' or
_2

dyda'da' =r'b, dt de +dr* with bu=zdy g .

(3.5)

This formula indicates that the line { = constant is a geodesic line and that
5,,,, (t; ), for r = const. is the restnctlon of the metric d; to the concentric
hypersurface 2, up to the factor 7%. It also shows that the polar coordinates
' ...t""Y, r are geodesic relative to the metric @, and hence r is the geodesic
dlstance from 0 to .

At a point $ €2 consider a fixed contravariant vector 7 tangential to 2. The

(*) It should be noticed that the right-hand side of (3.1) is not continuous at the origin
even that it is of class C® everywhere else in |z |<37y/2.
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quadratic form b,,7" 7" considered as function of the parameter r satisfies the
following inequality: (*)

b,
et i Y
or

-
Swbptt) with o= M%@ (3.6)
1

If we now change the coordinate r into B =(1/6) (1 —e¢ %) the manifold S — (0)
becomes 2 x (0, &), where B,=(1/6) (1 —e .
Consider the metric gy. By (2.9) we have

didr'da’ =e * (y2b,, dt" A +dr®) = R¥b,, dt* d¢' +d R?, 3.7)

where we have put

2,207 N ) 1
b ="z b = OO b with (o)~ —. (38)
Formula (3.7) shows that ¢, ..., #""', B are polar geodesic coordinates for the

metric §; and hence R is the new geodesic distance from 0 to .

We shall write the two sides of inequality (2.13) in terms of the last polar
coordinates,

Since b,,(f, ..., "1, R) for R = const. is a metric tensor on the corresponding
hypersurface 2,, we will give the subscript B to all operators, ete. of §1 re-
ferring to this metric on 2, (e.g. *gz, Or, Qg etc.).

From now on the notation (z), (f) will refer only to increasing systems of in-
dices, all <n—1.If we want to consider such a system with one index = n,
:ve Avg:'l(lj) write (i) Un. For two systems of ¢ indices we define B™ similarly
o ADO,

By virtue of (3.7) and (3.8) we have the following relations:

Va=RB"'Vb=R"10@6r) " >Vb. (3.9)
If (5) and (j) are q-sequences, then
j(i)-a‘)= R2% B0 — R-20 @ (f )2 B (3.10)
For two (g —1)-sequences (i), (j), we have
j(nun.o‘)w = R~2@D p®.0) _ R-2@-D @ (§ y)2@-D B, {3.10)

and finally for a q-sequence (1) and a (q— 1)-sequence (j), we have

j(i).m un _ A’d)u i -, (3.10")

Let w be a g-form on §—(0). Its components in the polar coordinates de-
compose into two classes; those correspoding to g-sequences (i) and those cor-

(*) This property will be proved in §4, V.
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responding to sequences (') Un with (i') a (¢ —1)-sequence. On each hypersur-
face 2,, the former constitute a ¢-form @, and the latter, a (g—1)-form 4.
These two forms are invariant under the change of local coordinates ¢, OIS At
and can be considered as forms defined on 2, depending on the parameter R. By
using formulas (3.10), (3.10°), and (3.10") we see immediately that

Q(w) = Qr(R™“®) + Qn(B™ "V 4p). (3.11)

For the differential dw we verify (by (1.2)) the following formulas where (k) is
a (¢ +1)-sequence and (k') a g¢-sequence:

(Bw) ey = (dD) oy, (3.12)

A . 010 ,
(dw)., = @) +(—1)° (6—;)@')' (3.12)

For the operator 3w we get from (1.3), (3.10), (3.10°), and (3.10"), with (&)
an (n-—q)-sequence and (k') an (n—q—1)-sequence,

(% W)y = (— D" P R* 724 (5 1) ny, (3.13)

(% W), =R (xp B, (3.13")

Combining (3.12), (3.12"), (3.13) and (3.13’) we obtain, for (m) an (n —q+1)-
sequence and for (m’) an (n — g)-sequence,

(d% w)em =(—=1)" T R* 2 (d% g ib)omy (3.14)
(d% w)(:m') =R"7* N (A% g D) omy + (5% (R 72! xp 12))) . (3.14')
)

Applying the above formulas to our p-form v, we notice that ¢ and § vanish
for R outside of a closed interval contained in (0, s). Assuming s< K, we can
write the inequality (2.13) in polar coordinates in the following form

s* f JR”“ [QR(R‘”‘l dov)+ Qg (R"’ (d?; +(-1y7 :—z)) +Qr(B7 dx*yd)
0z
+Qp (R""1 (d*nq}+R2—é%(*R1§)+ n—2p+1) R*R%;))] R*'VbdtdR
>f fR'% [Qe(B?2)+Qn(R"® V3R 'VbdtdR. (3.15)
0 X

We now change the variable R into p by
R=e¢, (3.16)
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which transforms the manifold §-—(0) into 3 x(gy, o0), with g,= —log ().
We put

ﬂ=°¢*g+ 1, (3.17)

and then write the forms » and § in the following way:

=g Gtrey
F]

p=e Brrbey (3.18)

Denoting —logs by o and replacing the subscript B in the operators by
the corresponding value ¢ = —log B, we write inequality (3.15) (which is to be
proved) in the form:

o0

e"z"ff[Qo(d M +@,dU+{(-12B+p)V—(-1"V)
o T

+Qu(d%,U) + Q,(d%, V + (B+n—p)%,U~(x,U))1Vbdtdp

>ffe‘2“[Qg(V)+QQ(*QU)]V5dtdg. (3.19)
s %

In the above inequality the primes indicate differentiation with respect to g.

For the proof we will develop the left-hand side, transform it by partial
integration, with respect to p, or over the concentric hypersurfaces 2, (using
(1.9)), and then group the terms suitably. To simplify all these operations we
will make use of a symmetry in the integrand of the left-hand side. The terms
in the first line of the square bracket transform into the corresponding terms
of the second line if we replace U by %,V, V by (—1)? %, U, and then p by
n—p. Also if we make the same substitution in the second line, it will be trans-
formed into the first one (using (1.4)). In order to take full advantage of this
symmetry we maintain, in all transformations, the separation of the terms into
two kinds, those of the first being transformed into the corresponding terms of
the second by the above substitutions. It will be enough to perform the trans-
formations for half of the terms; the remaining terms will be written just by
using the substitutions. We put

@ =(log V)", (3.20)

By developing the first line of the integral in the left-hand side of (3.19) we
obtain

ff[Qe(deg(dU)+<ﬁ+p>ZQQ<V>+QQ(V')+z<—1)ﬂ<ﬂ+p)Qg<dv, V)
G 3
+2(—1)" Q@ U, V) —-2(B+p) Q(V, V)Vbdtdo. (3.21)

By partial integration with respect to o we transform the last term as follows:
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~2(8+p) ”QQ(V, V)yWedtde=(8+p) ff[Q;(V)'+¢QQ(V)]V5dtdQ, (3.22)

where @, is obtained by considering @, as a quadratic form defined for exterior
differential forms on the manifold 2 but depending on the parameter o, and
taking the derivative with respect to g. A similar meaning will be given to *,.

We now combine the next to the last term in (3.21) with the correspondmg
term of second kind and put half of this sum among terms of first kind and
half among terms of second kind. The corresponding integral in the first part
is then transformed as follows:

ff[(—l)””Q (@U, V)= Q@ %, V, (%,U))]Vbdide

” 1741 QA U, V') = Qu(d%, V, %,U") ~ Qy(d%, V, x,U)]Vbdtdo

= ” (=1 Q,(@dU, V') +(—1"*1Q,d U’, V)1Vbdtdg
—f Q,(d %, V, x,U)Ybdtdo (%)

In the first integral we apply integration by parts with respect to ¢ and
thus the whole expression becomes

(—l)””[Q; @U, V)+ 9Q,(dU, V)] ngtdg-f Q,(d%,V, %,U)Vbdtdo. (3.23)

The first integral is put among the terms of first kind, the second among terms
of second kind which means that the corresponding term

—fo,_,(d*Q(—l)"—" x,U, %, %, V)Vbdtdo
= ~(_1)n<n—p)J~ Q,@dU, *; ¥, V) Vl—)dtdg (3.24)

is put among terms of first kind. In this way, the term which is next to the
last in (3.21) is replaced by sum of three terms; this changes the expression
(3.21) but does not change the total sum of terms of first and second kind.

We now introduce the operator H, which transforms forms into forms of the
same rank, and is defined by

Q) (X, Y)=Q,(X, H,Y). (3.25)
We prove in §4, VI, that (see (4.VL.6))

(=1 %) %, =gl +H,. (3.26)

() We use here (1.4), (1.5), (1.7) and (1.9) and the symmetry of Q,.
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Using this relation we see that expression (3.22) becomes
(=)™ (B +p) f f Qo (%%, V, V)Vbdtde,

and the first integral in (3.23) added to the integral in (3.24) give
2(—1)rrrivy ffgg(w, xo %, V)Vbdtdg.

Putting these expressions in place of the last two.terms in (3.21) allows us
to write the left-hand integral in (3.19) in the form

(=]

fng((ﬂ"'P)(—l)”V+dU+(—1)"”+l“’%;-)egV)Vl;dtdg
c I
+Jf(~1)"”(ﬂ+p)Qg(*;*QV, V)Vidtdg—ffqgg(*;*g V)Vbdtde
g 3 ¢

s f JQMWW j j Q (V) Vedtdg

+ corresponding terms of second kind. (3.27)

In §4, VI, we prove that the symmetric operator (—1)" %, %, for p-forms
lies between the following bounds

O (fr) n-1  ymp
o6 2 w]1<( 1™ 3¢, %,

e ee” [(2p—n +1)6

o@En 2 °

(3.28)

<e-96"'[(2p—n+1)0® (6r) n_1 ]1.

Here w is the constant introduced in (3.6), @ (o) is the function (¢”—1)/c.
We check immediately that

D' (o)

@ (o) ' (o)
@ (o)

(o)

1§ ncreasing for o>0, <

<. (3.29)

DO | bt

To achieve our proof we have to find, in the first place, a positive value of
6 such that the second integral in (3.27) as well as the corresponding integral
of second kind be positive. By (3.28) such choice of # is possible for the inte-
gral of first kind if 2p—%-+1>0 and, for the integral of second kind, if
2(n—p)—n+1l=n+1-2p>0. These two condititions can be satisfied if and
only if n=2p. If n=2p, a suitable choice of 6 (in wiev of (3.29)) is0>(n—~1)w=
=2p—1)w. We assume therefore from now on
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n=2p, 0=22p-1)o. (3.30)

It follows that: f+p=a+1 (see (3.17)); (—1)"=1; the form % U, which in
terms of second kind corresponds to (—1)*V, is also a p-form and hence what-
ever we get for terms of first kind is true also for corresponding terms of
second kind. Furthermore

Qu(% %, V, V)= ~ [Q(V) + 9 @ (V)] >0. (331)

In the second place, we require for our proof that the difference between the
second and third integrals in (3.27) be >0. This is achieved if @Q,(%,%,w)<
<o+ 1) Qp (%4 %, w, w) for any p-form w, ie. if

| % %o| <o+ 1. (3.32)
Assuming this inequality valid over the whole domain of integration g >g, i.e.

R <s, we proceed to the proof of our inequality (3.19). The integral in the left-
hand side, which is the expression (3.27), is now

>ffQQ(V')VEdtdwfJQQ((*QU)')VEdtdQ.
o X T T

For the first term of the right-hand side we obtain by partial integration rela-
tive to p and by (3.31)

oo o0

f fﬂwg(m ngtdg=—12- f fe”@ [2Q,(V, V') +Q(V) + @@ (M]Vbdtdg

g X 3

<

{

f—?ng(V V')Vbdtde

—3

Q
v}

&_ﬁs

- 7 _ 3
[e-% QQ(V)Vbdtdgf fe““e QQ(V’)Vbdtdg} ,
¢ Xz

ffe’% Q,(MVbdtde< ffe’29 QQ(V')VEdtdQ<e'2"fIQQ(V’)VEdtdg.
c T c T a X

We proceed similarly with the second term of the right-hand side and thus the
inequality is proved.

It remains to check on the validity of (3.32). By (3.28) it is enough to have
(see (3.29))

1
e ee” (0+ p2 w)<oz+1.
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We may want to have it for all possible domains of integration contained in
S=[r(x)<r~0=roVA1]. Since by (2.10) and (3.16) e =D (Or)r, we get a
condition for «

a+1>cp(ef0)io(e+2—p—2f-lw)

and the smallest bound is obtained for the smallest choice of 6, namely,
0=2p—1)w, and then

a+1>g®(f0w(2p—1))fow(2p—1).

However, in the lemma of § 2 we want the inequality to be valid for all «>0.
Writing now e ?¢®” =R/(1 —R) we have to satisfy

R 2p—1 1
< €,
1—012(9+ 2 “’) L R 2p—1

249—{~-~-——2 w

and the least restrictive bound for R is obtained again by 6=(2p—1)w and
the desired bound R, is then

2

R,=
§ 4. Evaluations

I. We assume that the p-form u satisfies (ii) and (iii) of § 2 and prove that

For n>2, u has at P, a zero of infinite order in g-mean, for every ¢g<2+
+4/(n—2). (4.1.1)

For n=1, u is equivalent to a continuous function which has at Py=0 a zero of
infinite order in the classical sense, i.e. |u(z)|=o0(|z|*) for any «>0. (4.1.2)

Proof of (4.1.1). Take a coordinate patch U containing P,. We can transfer
our considerations to the image G<R" of U. We may assume that P, corre-
sponds to O and consider each component uy, of u separately. By (ii) and the
Young—Soboleff theorem, ug is locally in L* for any ¢,<2+4/(n—2). Take
1<q<2+4/(n-2), T=(¢;—9)/(¢,~1), 0=¢:(¢—1)/(¢,—1) (hence 7+6=q) and
apply Holder’s inequality:

T 1-7
fl Ug) Ie dx= flud) l’ |“(t) |sdf” < U.l Ug) I d“’] [fl Ug) lq' d“’] .

Proof of (41.2). We can assume O<z<a< oo and replace u by the equi-
valent continuous function u (x) =% (0) + [ ' (y) dy and, by (iii), » (0) =0. Further-
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more | u (z,) —u (2,) | < A} |z, — 2, |* with 4 = [¢|u'|* d=. Hence (1/4) |u (z) P <z and
in the interval 0 <z —(1/4) |u (2)|* <y <= we have |u(y)| >|u (x)| — 4t (x —y)} >0.
Thus

X x
" 1
o(l=f )=flu(y)|dy> f lu(@]- 4t @ -yt dy =z |u@]"
° 2w
II. We assume a; to satisfy (2.1) and (2.1'). We will use Hilbert space nota-
tions, the scalar product being (£, ) =2 &', |£]= (&, €)}. The matrix {a;} then
represents a linear operator I'=7, depending on the vector (point) x. Formula
(2.1) means then that T' is positive definite, A, I<T <A, I, with I denoting the

identity. We introduce following notation for differential relative to a vector
w0,

DwT=DwT, = lim Tovew =T,
>0 T

(4.11.1)

Whenever DwT exists, D(tw)T=tvDwT for real 7+0. When the Fréchet
differential exists at z (and it does a.e., since T, is C*'), DwT is linear in w.
DwT is a symmetric operator and the inequality in (2.1') means that whenever
DwT exists its bound [DwT|< A |wl.

The matrix {a} corresponds to 7' and (2.5) can be written

r(x)=(T,x, x)t =| Tt x| (4.11.2)

Hence, the vector {0r/02*} is (1/r)Tyx and we can put
$ =¥ (@)= (a7 2 (11 p 4 LY.
N z r 070

=(Tyz, )\ (T,T ' Ty, z), for z+0, ¥ (0)=1.  (4IL3)
For x+y, putting w=y—=, we have T, — T, =i DwT, ., d7 and

ITy_TzlgAly—xli |T;1_T;1|=IT;1(T1_T1/)T;1| (4114)

Aly—=|

<
2
Af

For 40, we have

| ¥ () =¥ (0)| = | (T (To* = T7Y) Ty, 2)| (Ty %, 2)

_ (T (T -T7) T§ T§ =, T =)
|78 f*

AAz'“’I
—5—.

<
Aj
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For z=+y, both +0, we put w=y—2 and obtain

| (y)— x)]— wa‘F (r+7w)dz].

Since by (4.1I1.3) Dw‘f"(x) exists whenever Dw T, exists, it follows from (2.1')

that ¥ will be proved to be in C™ if we show that |Dw ¥ (z)|<C|w| with
C independent of w and x. We assume that DwT, exists and obtain

w(TOT;1 T0z9 x)

Dw¥ (x)=D T2, 2)

_ (T DwT:") Tyz, x) 4 2(T,T:' Ty =, w) 2(Tyz,w) (ToT:' Ty, x)
Ty, ) Ty, 2) (Tyx, 2)*
_(Ty(DwT:") Ty, 2) +2 (T, 2) (Ty (T —To") Ty, w)
(T2, x) (T, )
2(Tyz, w) (T (T=' — T5") Ty, x)
(TO x, x)z

_ (TS (DwT) Ty T, T x) | 2 (Ty (T —Ts") T4 Ts , w)
| 75 |2 | T4 =]
_2(Ty, w) (T§ (T:' — To") T§ Th 2, T} )
| 7§ !

Using the relations

DwT:'= —T;*(DwT,) T5Y, |T§DwT;1T§|<AA2

Alz|
A3

| T 2| >VA 2], | (Tym,w)| <|Tha| VA, |w],

AA
T8 (@ = T0") T§] < g,

we get IDw‘F(x) | <=5 AA2 [1 +4 VA ] [\ 5AA2 VA2| (4.11.5)

The metric tensor ;=¥ a; corresponds to the operator ¥ 7. Formula 2.7
comes from

AAZ

|72 - 16| < | Ty (T~ To|<

and (2.7") from
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| Dw (¥ () T,)|<| Dw ¥ @)|| T, | +¥ ()| Dw T,|

5AA: I/A2 A, 6 AA3 VAz
< 2 - i2
el v Ry wl Lol il

The metric tensor g,; corresponds to the operator ¥ T with ¥ =¥ exp( — 20 |T3 z))
We proceed with ¥ as with ¥. We calculate

(T8 2, Tdw)

Dwexp (—20|Ttz|)=—26

~20|Tt z)).

The evaluations (2.11) are immediate whereas (2.11°) results from

|Dw¥ T|<|Dw¥|e " |T|+|Dwe " | ¥ |T|+¥ e 2" | DwT)|

<[6AA2 A 20A2 A]
) ()
1

HI. To obtain evaluations (2.8) and (2.12) we deduce first the following inequality
for u, a 1-form, and v, a p-form (p<n):

QuAv)<Qu) Q). 1) (4.111.1)
We write first (A v)gey = %) W Ve € [, (K)\u].
HE!

We then choose local coordinates such that at the point of the manifold in
question we have a,=4,. Thus A®?=§"D and

(u) Z uw Q (v)= %’l)%{),

QA v)=2 (A V).
(k)

Denoting by (i) a (p-—1)-system we now obtain
Quhv)= %va) 2 Ut 23 v Vaou e €, (8) Urlely, () U p]

ped® @ pedn®
ve(d)°®
pEy

=20t 2 ui= 3{ 3 veww el sl <Qw) Q).

0 @ ey

(!) This inequality is the best possible. When u is a g-form (p + ¢ <n), & similar inequality
can be proved with a constant factor C in the right-hand side (C can be taken as (n; p) or

(n ; q) or (p ; q)) But it seems difficult to find the best possible C in this general case.
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This proof actually gives the identity
Quhv)+Q(uh %v)=Q(u) Q). (4.II1.1)

Consider now the metric tensor d,,=‘-f"a,,. It is clear that

GV =W-1g¥ G=¥ngq,
AP D=7 A0 D for psystems (5) and (j),
% u=Far-ny, for a p-form u,
QUEw=¥""Qu), Qu=Y"Qw),
Q (dxw) =Jr-(-p+D Qd (\fr(nm—m*u))‘
Since d (‘i’""/z—m*u) =(d \ir(n/Z—m) A %+ P20 Jseq
=(n/2—p) V22D (@F)A *¥u+ PP dxy,
we get, by (4.II1.1)

Q@du)+Q(dsu)=P71¢Q @du)+¥7"1Q (d*u-f- (—g —p) LEPA *u)
<2y-r1 [Q (Au) + @ (d*u) + (g—p)zQ (F1d¥) Q(u)]
<2¥- [M+ (g—p)m(‘if—ld‘f’)] Q ().

At each point x where T, has a Fréchet differential, the covariant vector a¥

coincides with the linear functional Dw 'V, and therefore our evaluations in II
give (see (4.IL.5)):
5 . ; 2 A3
QEAY)=(T"'d ¥, d\F)gild‘mk%AGA‘.
A, A
y A n 225 A2 AS]
M=222 - — ] B
2o (5-2) %

In the specially important case p=n/2 we get a much simpler formula
Q@u)+Q@d%u)=¥"?"1[Q (du)+ Q (d*u)] <%§ MQu). (4II12)
1
Similarly for &g=‘~f"a,,, we get

F1gF =10 4207 g o207,

207 J o207 _ ~20|_Z:%x_" Q(ez"'de‘2"')<402%g,
0x 1
= A, m[ (1_1_ )2(§AA§ VA, @)2]
M~2A1e M+ 2 P —M +26 Al
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Again, in the special case p=n/2, we get

Q) +0Q@diu) < %%40'» MQ (). (4.111.3)

1

IV. We shall prove more than what is stated at the beginning of § 3.

Suppose that the inequality (2.13) holds for a fized real o, for all s with
0<s<R, C (see Remark 3, §2) and R, possibly depending also on e, for all
metric tensors a; satisfying 1° of § 3 and for all p-forms v satisfying 2° of § 3.
Then (2.13) holds -with the same C and R, for all a; satisfying (2.1) and (2.1%)
and all v satisfying (2.2), vanishing outside of a compact in R (x) <s and such that

Q (v)Vadz =0 (™). (4.IV.1)

lzl<e

Proof. (1) Suppose first that a; satisfies only (2.1) and (2.1') but v satisfies
the conditions in 2° of § 3. We regularize a; as usual by convoluting it with
a regularizing function 1™ "e (x/7) for T™0. The resulting tensors ay(t) still
satisfy (2.1) and (2.1') with the same constants and are C*. Hence by our
assumption inequality (2.13) is valid for them and for the form ». Since the
integrals in (2.13) now extend over e< R(x)<s, the integrands are uniformly
bounded (all the evaluations of § 2 are valid for r (), R(7), & (t) and @; (7)) and
converge pointwise a.e. to the corresponding integrands for a; and v when 7\0.
Therefore (2.13) is valid for a; and wv.

(2) Suppose now that ay satisfies (2.1) and (2.1') and that v satisfies only
(2.2) but still vanishes outside of a compact lying in &< R(x)<s. Regularising
the components of v we obtain a form v(r) which for T\ 0 converges pointwise
a.e. together with its first derivatives to v and its derivatives. In addition, v(7)
and its derivatives are dominated by fixed L? functions. Since for 7 sufficiently
small, v(r) vanishes for |z|<e/2, we can apply (2.13) to a; and »(7) and the
integrals in (2.13) converge for t\0 to their values for a; and v.

(3) Finally, suppose that a; satisfy (2.1) and (2.1') and that v satisfies (2.2),
vanishes outside of a compact in B(x)<s and that (4.IV.1) holds. Take a func-
tion in C* depending only on |z| and non-decreasing as function of |x| and
such that @(x)=0 for |z|<l and @(x)=1 for |x|>1. We may assume that
the left-hand side integral in (2.13) for e; and v is finite (otherwise the inequal-
ity holds trivially)(}). Consider now the form v(z)=¢ (z/7)v for v\0. By the
preceding proofs we can apply the inequality to a; and v(r). The right-hand
side converges increasingly to its value for ». It is enough therefore to show
that the left-hand side integral converges to its value for v. For |z|>7, v(z)=v
and for |2|<7/2, v(r)=0; hence we must show that the integral restricted to
1/2<|z|<7 converges to 0. The integrand (by (4.IIL.1)) is

(1) Our present hypotheses on v do not make it sure that this integral is finite.
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s
)éor+9* (2) daor+ (a9 (%)) 30+ (7) dtazo)

T

4R Q (dtp (—)) Q(v)Va+2R ™ (9—;) [Q(@v) +Q(d5v)1Va.

The second part here, integrated over t/2<|z|<1t, obviously converges to 0
(by our assumption that the integral for v is finite). In view of (2.14) we can
replace B by |z| in the first part and consider

4|x|‘2“é(d¢(§)) Q:(v) Vada.

T/2<|Tf<zT

Noticing that |deg(z/7)| < Hr™' with constant H, and hence Q(d ¢ (z/7))=0 (%)
we get by partial integration and by (4.IV.1)

47 f || Q) Vi dx
7/2<|z|<
z —2a x —
=472 [1‘2“ f Q(v)ngx—(g) f Q(”)V&dm]

|z]<T |z]<7/2

T

+8a'r_‘2fg~2“*l jé(v)lf&dxdg
/2 I zl<g

=o0(1).

Remark. If we accept the natural definition that v has a zero of order g in

p-mean if f |v|?dz =0 (¢***"), then (4.IV.1) means that v has a zero of order

I.Z‘.|<Q
a+1—-n/2 in 2-mean.

V. To prove the evaluation (3.6) we write the system (3.1), and the initial
condition (3.3) in the notations of (II), where 7' now stands for th(? operator
corresponding to the matrix {d,} and all the constants are proved with .

dx 1

—=-T;'Tyx with =Tz, ), (4.V.1)
dr r
x=x(t;r), x(t; Fp) =t with (Tot, t)=7e. (4.V.1')
On the hypersurface £ we take any local coordinates (£, ..., " ')=¢, and in-

troduce the vectors
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10x
== 4.V2
Ya= 3 ot ( )
We have
0Ya 1 1 0 1 1 1 1 -1
= - = — =—= Dy Ty + T Ty ye
ar rf‘/a+rzata(T1 Tyz) rZ/u+r[( Y )Toz = ToYal
-1 -1 -1 1 -1 -1
=7Tz (DyuTI)Tz Tox-i-;(T, —'T() )Toya-
Also, if we put y,=y,7* for any fixed tangential vector T=(z', ..., v" %) at the

point ¢ of 2, we have by linearity

Z—-”r=71’, Dy, T) T Tzt (T‘ —T§Y) Ty . (4.V.3)
By (3.5) we have
5;4:: ™7 “a/i] yt yl (T Yo ?/r) (4V4)
05 ._{(2 oy,
Hence 5;1)#,,‘["1' —((arT:) Yo,y yt) +2(Tz ar’ :’/-r)-
N - AVA,
Since Sp |l p%%p|<il?®]-A T 1 5| < AR
ar ar ar A
9y _ —1 -1 Yop _
Txar-' r (Derz)TI T0z+r(To Tz)?/‘n
a?/t‘ A‘/K; A
TJ:_ <— |y1|+'-._|yr|,
or A, VJTI
it follows
2 AVA, ) A Vi
harrr|<(32: 2210 2 )1y <2 (3VA,+2VA) (T. 4., v2)
lar # ( A, VA. . vl Al i
<wb, ™7,
with

_5AVA, 30AASVA,

oo AT (4.V.5)

VI. To prove the statements made at the end of §3 we start by some
general considerations.

Let b, be a metric tensor on a (n-1)-dimensional manifold (in our case X)
depending on a parameter r. Assume that for any tangential vector T at a
point £ we have
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ob,,
<o b, 7", 4.VLI)

with a positive ¢, independent of 7, but which may depend on ¢ and r. The
manifold, and tensor b,, and its dependence on r are assumed to be C®.
Fixing local coordinates around ¢ and considering the corresponding Euclidean
scalar product on the tangential space at ¢ we can write b, 77 =(B7, 1),
(0b,,/07) "7 =((0B/0r)7, 7). Then (4.IV.1) means that | B~¥ (9 B/dr) B |<a.
Considering the determinant b of {b,,} it is easy to check directly that

a 5 b ]. aB ~1 ]. _&aB -
— = =_ - == ——B %,
, log Vo trace { B } trace {B ;

196

2bor 2 or
9 log V| <16 (n—1). (4.VL2)
ar 2

Since B! ((8/0r)B™') B*= —B ¥ (9B/or) B}, (4.VL.1) gives

<oV 1,7, (4.VL3)

1y
I ar T

Take now @(u) for a p-form v independent of r:

Qv)= X BY? Yy Viy-

. (D

For convenience, . we fix the local coordinates temporarily so that for a given
r and ¢ the tensor b,, be Euclidean, i.e. that b, =48,. Then ¥ =4 and B>

=4"?, Furthermore an inspection of (8/ar) BY? gives
__a_B(i). N % Ep: ( _ 1),u+r _a_bi,,,i,,) B(i)\\i”, ) \iw
or pu=1 =1 or ’
0 A
Hence - TON O 9 piuin
or ”gl ar
4 ap*!

. p@nuk, (Ul __ . .y vy
2D e[(@), Kle (), 1=,

for a (p—1)-system ('), k=1 and (&, l)< (3'),

2

(@ () _
py B 0

in all other cases. It follows that
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o B(i). [

2
IO

Vity iy
[ONG)] 0

or "), k] vanur € [(57), 1 vanut,
@ (k. Hedn®

Z 2 | Vayuk lz,

@) ked)®

|a—arQ(v) <d

la—a;Q(v) <oHpQ ). (1) (4.VL.4)

Consider now the operators % transforming the space of p-forms u at ¢ onto
the space of (n—1—p) forms v at ¢. By (1.3), with (h) an (n —1—p)-system
and (¢) a p-system

(= Voe [, (B)] 2 B ug,

(&) - = (& 108 V8) (w4 Vo e L, 0 3 (2 B ) e
or h) 0

If we again use the local coordinates as above it becomes clear that x (9% /07) u
is a p-form given by

0
(* 6_T‘ “)(j)= (”’“ log V;’) (=D ug+ (-3 ( rB(D (i)) Uiy

O]

It follows that in these coordinates, with another p-form v

9 log Vb '
o(xZu v) -3 (%2 u)mvw=(— 1 [f’—‘;%‘/—cz(u, 9+%%a, v)] .®

)]

If we introduce @(u) as square of a norm in the space of p-forms at the
point ¢t of the manifold and for the value r of the parameter, we can write
©Q/or) (u, v)=Q(u, Hv) (as in (3.25)) and the above formula shows that

ox dlog VZ

np
(=1) ar or

I+H,

where I is the identity.
Since, by (1.4) »x =(—1)"" I, differentiation gives

ox 0%

. A 4.V1L.5
* or or ( )

(!) Under the hygothesns (4.VI.1) the mequa.htles (4.V1.2—4) are the best possible. Example:
buy = (£ 7) by with buy independent of r; here @ = (1/y) |3w/3r|
(?) This relation could also be obtained by differentiating the formula @ (u, v) = % (u A ¥v).
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and the above formula gives

( _, l)np+l _aie_ 3 =a log VbI—l—H, (4.VI.6)
ar ar

Since H is obviously symmetric (rel. to norm V@ (%)), (2 %/8r) % is symmetric
too and commutes with H. From (4.VL.2) and (4.VI.4) we could already obtain
an evaluation of |(9%/8r)%|, but we shall obtain a slightly better bound as
follows. Differentiating the equation @Q (*u, ¥u)=Q(u, u) we get

—Z—?(%u, *u)+@ (%u, %2&) +Q (-)eu, % u) =%g(u, u),
(=D [Q (* %u, u) +Q(u, *% u)] =aa—f(u, u) —aa—?(%u, *u),
(—1)""Q (%3; *u, u) =% [Zﬁg(%u, »*u) — %?—(u, u)] . (4.VLT)

Since (0% /0r)% is symmetric it follows by (4.VI.4) for (n—1—p)-forms *u
and for p-forms u
n—1

0% o <E—6.0) (4.VL8)

or

We recall now the situation treated in § 3 where, on 3, the metric tensors
b, depend on p. We know from (3.8) that b, is related to b,, and from this
relation we get

%,=@ (Or) "D % for p-forms, (4.V1.9)
%o=@ (Or)* P %, for (n—1—p)-forms. (4.V1.9)

The parameters g and 7 are related by R=e¢¢=(1—¢"%)/f, hence (8/20)
= —e72¢" (9/8r). By differentiating (4.V1.9') we get
O (Or) | + %:I
dor T or

¥o=—e 2@ (fr)" 1% [(n ~1-2p)0

Composing this with (4.VI.9) gives

¥y ¥,= —e—eee'[(~1)“’(n—1—2p)0q) (Or) | 0%, ~,]‘

®(07r) ar

Since for p-forms, Q,(u)=® (87)% @, (u), the bounds of an operator with

respect to the norms VQQ () and VQ~, (u) are the same. By (3,6) and (4.VL8)
considered for the metric 5,,, we obtain

(!) The constant (n—1)/2 is the best possible.

445



N, ARONSZAIN el al., Exterior differential forms on Riemannian manifolds

®'fr) n-—1 ,
LRI PR

e e [(‘ p—n+1)

. O (Bry n—-1
< om0 0 _ Rl ST TR
<e?d [(21} n+l)6q)(6r)+ 5 w]l.

(4.VI.10)
§ 5. Final remarks

Remark 1. The best constant in the Carleman type inequality. The constant
C'=1 with which we prove our inequality (see Remark 3 in § 2) is not the best
possible. It can be proved that if jo 1 denotes the smallest positive zero of the
Bessel function J (z) the 1nequallty holds for any C>1/j5,1 with a proper choice
of R,, whereas the inequality is not true for C< 1/70 1 (with any choice of R,)
and a suitably chosen p-form. It is not clear if 1/751 —0 1729 ... is always an
admissible value for C. To prove this assertion we notice that from the proof
in § 3 it follows that the quantity

JJ “2Q (V)Vbdtdo

5 B
= lim sup ~—— o T

" foQ(V Vbdtdo

separates the admissible from the non-admissible values of C.
By using (3.6) and (4.VI.4) we prove immediately for a fixed p-form v and
point ¢ on X that for 0<r,<r,

eIV Q, (v) <Qr, (v) <O TV Qr, (v),
hence, for the corresponding ¢, and g,, 0,>0,,
e PO (B1r,) % Q,, (0) <D (07,) 7% Q,, () <PV D (O7,) " Q,, (v).
This shows that when p— + oo (i.e. 7->0), @, (v)—>@Q. (v) and
e (D (07)) 7 Q, (v) < Quo (v) <™ (D (07)) 7> Q, (v)

Hence in the expression for C* we can replace @, by Q.. Then by choosing
an orthonormal system {u*} of p-forms relative to the quadratic norm

lolf = [ Qu Voo as
p>
we develop
V= ;fk (0) w*
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and find that

=] o0

C* = sup fe‘zgif(e)l“'de/ fl/"(@)lzd@,
7 0

0

for f€C>™ vanishing outside of a eclosed interval on the positive half-axis.

One then shows that ™ is the reciprocal of the smallest eigenvalue of the
eigenvalue problem (g} +Ae %¢f(g) =0 for 0 <p < oo with “boundary conditions”
f(0)=0 and ' €L*[0, <o].

The eigenvalues of this problem are 1=j3 » and a corresponding eigenfunc-
tion is J, (fo, m €7¢), where j, , is the mth positive root of J,(z).

Remark 2. The Carleman type inequality for n=+=2p. The idea which allowed
the reduction of Theorem 1, § 2, to the case n=2p can be applied to deduce
a Carleman type inequality for n=2p from the inequality which was proved
for n=2p.

To simplify our eonsiderations we assume that the local coordinates are chosen so
that a; (0) is the Euclidean metric, i.e.  (x) =| x| and that a¥ (9r/02") (9r/02") =1
holds; this last property was obtained in § 2 by passing from a; to &,. Hence
the geodesic distance from zero coincides with the Euclidean distance. Let u
be a p-form satisfying (2.2) and (2.3) and vanishing outside of a compact con-
tained in |z|<s. To simplify, we assume that p>#x/2. The manifold is ex-
tended by taking its product with R?’~". The metric a; extended to the 2p-
dimensional manifold (as in the proof of proposition 1, § 2) will be denoted by
@y with ¢, § varying now from 1 to 2p. For this metric the geodesic distance
from the origin is also equal to the Euclidean distance.

The form w, extended as in the proof of proposition 1, to the new manifold

no longer vanishes outside of a compact there. Denote by # the point with
2p 3
coordinates ' ... 2", 2"*' ... 2*’, by r’E'r'(:E)=( > ]x’c|z) , by @(r') a non-
K=n+1

- Increasing function in C*, with ¢ (') =1 for 7' <1 and ¢(r') =0 for 7' >2. Then
by putting @4=¢((1/s)r')u, we obtain now a p-form in the 2p-dimensional
manifold vanishing outside of a compact in |#|<3s.

For the metric 4, we construct the corresponding metric ¢ with a suitable
6 such that inequality (2.13) is valid. We use this inequality for the form

and taking advantage of the relations:
r=lal B=Ya—co®, Vioyvaew,

(@) = 0P (@), Q(da)— e VR G (da),

On

~

% =% for p-forms, Q(d3i)=eX?VVQ (dsa).

Hence the inequality can now be written (for small s, say s<1/36)
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(352 f [g a _e_,,,;l)]-h 1 (G (d ) + G (dsalVadz

1Z]<3s

> j [é(l—e-"ﬁ')]—hé(a)l/édz.

17]<3s

We notice now that
i=a, é(d)=<p2 (%r’) Q (), dd=dq)(§r’) A u+¢p(§r’) du,
. 2
a0 -3¢ (i) Q-+ (i) e,
dsi=g (%r) dzu, Qdsd)=g? (E r') Q (dxw).

Therefore, by integrating in the above inequality with respect to the variables

z"*! ... 2® and introducing for 0<¢<s the expressions
1 rew N I § U 2p
R, s, a)= 6(1—e“’V‘ +r) ¢ lor dx o dx®P.
<28
D 1 —oVtirrt 2 ’”2 1 ’ n+1 2
Rt s, )= 6(1—e oyE+r) P Lr da"tt .. da®®,
s<r' <28
we deduce

9 52 %% f R (=], s, @) [Q (du) + @ (d>u)] Vadz

|z]<s

49 % JR(lxl;s,a)Q(u)Vc_ldx

Iz|<s

> f R(|z], s, ®) Q (w)Vaduz. (A)

lz|<s

This inequality is not of the usual Carleman type. However, if we remark that:
R and R are decreasing functions of ¢; that for a>p—n/2, lim R= + o for
t—0; that for t=s<1, s* **" R is bounded above and below by two positive
constants independent of s and «; that s**2**" R(t, s, ), is bounded above and
below by two constants independent of ¢, s, and o; and finally, that for < t?
and a—>+ oo, R(% s, a)/R (!, s, @)—>0, it becomes clear that the inequality (A)
can be used for a proof of a unique continuation theorem in the same way as
(2.13). We can say that (A) is a Carleman type inequality of a generalized
kind and hence we obtain this kind of inequality for p-forms on n-manifolds
without assuming »=2p (1).

(*) It would be of interest to investigate the generalized kind of inequality in view of the
limitations in the applicability of the usual kind as described recently by L. Hérmander [9].
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Remark 3. On solutions of elliptic inequalities of second order. We mentioned
in the introduction that we can now prove the unique continuation for such
solutions under much weaker hypotheses than was done before. This result is
obtained by using our inequality rather than the theorem.

If a¥ are the leading coefficients of the elliptic linear operator in question—
we assume that these are in class C®'—the differential inequality can be written
in the form

QUAN<MI|tF+Q(df)], [ being a function.

We consider now the (rn—1)-form w=xdf. We assume, as in the preceding
Remark, that the metric a; is already transformed and the local coordinates
chosen so that the geodesic distance from the origin equals the Euclidean dis-
tance. We extend the manifold to a (27 —2)-dimensional one and the metric
to d; and then define a suitable metric 4, with geodesic distance R from the
origin as in the preceding Remark.

The form u extended to the new manifold as in the proof of Proposition 1,
§ 2 has a zero of infinite order at the origin. Thus we could proceed with the
proof as given at the end of § 2 if it were not for the change in our differential
inequality which now appears on the original manifold as

Qdu)<SMI[Qu)+|f?l, dxu=0, u=xdf.
On the extended manifold in the metric g, these relations become
é () — (20 -DIF| Q” () = Hn-Didl () = €20 1) Q@f)
= DI G (3 ) = MBI § (d),

We notice that é(d fy=|of/éR|* and obtain an immediate evaluation

2 A0 2
~2a g2y = ~<_i4— —Zza_f ]/:d'
fR IfPVaaz 2@a—2n+4 | B |aB| *%F
R<s, R<s,
2 ’ ~ —
SlA. —Za A V:‘ -
SS@a—2n+a ) FQWlads

R<s,

for every s, < R,, the constants A°, A’ depending only on.R, and the constants
A,, Ay, and A corresponding to the metric ay.

Obviously we can now eliminate the obstructing term, J‘R'%‘I]‘I2 Vi d#, and

finish the proof in the same way as at the end of § 2,

Remark 4: Geomelric significance of our inequality of Carleman type. Inequality
(2.13) has an intrinsic meaning for a p-form % on a 2 p-dimensional Riemannian

manifold with the metric (Z,, where R is the geodesic distance from a point O
of the manifold. Our proof in §3 can be interpreted solely in terms of the

metric- (;7,, without reference to the metric a,; from which - it originated and
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without the change of variables R=e % The operator % defined on the surfaces
Xz of concentric geodesic spheres with center O has the property: (8% /8 R) %5 is
negative semi-definite relative to the norm Qg (u) for p-forms u on X5, It should
be noted that in order to form the derivative of %; we transfer the p-form
along the geodesics issued from O, not by the parallel shift on the Riemannian
manifold. The correspondence is given by polar geodesic coordinates with pole
at O. The inequality is true for every sphere R<s and for every « >0 in each
sphere R<s, in which in addition, the operator (8%z/@R) %z has a bound
<1/R. In general we shall have to assume that the metric has sufficient reg-
ularity (say at least C') to assure the existence of polar geodesic spheres in
which the geodesics issued from O do not intersect. A number of questions
arise in this connection:

(1) Are the above conditions necessary for the validity of our inequality for
any form u vanishing outside of a compact in [R<s] and with a zero of in-
finite -order at O?

(2) ‘What is the connection of the above properties to the usual properties
of Riemannian manifolds?

(3) If we assume the above properties to hold on surfaces of geodesic spheres
for every center O on the manifold, what kind of manifolds will be obtained?

It is not clear if the answers to (2) and (3) can be given in terms of usual
properties of Riemannian manifolds. It seems probable that the answer to (3)
will have to do with the positive curvature of the metric.

Remark 5: On sets of zeros of p-forms satisfying differential inequalities. Our
theorem and the inequality allows us to obtain statements concerning the sets
of zeros (not of infinite order) of a p-form w satisfying a differential inequality
of type (iv) of § 2.

We have already introduced the notion of a zero of order § in 2-mean (see
§ 4, IV, Remark) which means that

f ;|v(,-)|2dx=0(92ﬁ+"), (%)
(%)

1z|<e

where we consider the Euclidean metric in any system of local coordinates with
origin at the zero O in question and where »n is the dimension of the manifold.

» and *u have the same zeros of the same order. We make the construc-
tion as in the proof of proposition 1, § 2, and extend the form u (or *u) to
the extended manifold of dimension 2p (or 2 (n—p)). We obtain a form » on
the extended manifold which has a zero of order f§ at each point of Ox R¥? "l
if and only if the original form » has a zero of order g at O.

We can therefore restrict ourselves to the study of p-forms on a 2p-dimen-
sional manifold, satisfying a differential inequality of type (iv), § 2.

The statement in § 4, IV, tells us that at every zero of the form v of order
>f, our inequality is valid with a<f+n/2—1, and from the inequality we
deduce immediately that for all such zeros contained in a compact subset K

of the manifold there exist constants I'y and Ry such that the integral of é (v)
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over every geodesic sphere (in the metric cf‘,.) centered at such a zero and with
radius o< Ry is <Dgp®™™ %

This fact gives rise immediately to the following statement:

(a) A point p of the manifold which is a limit of a sequence of zeros of v of
orders increasing to co is a zero of infinite order.

For the next statement we introduce some definitions. Consider a point p
which is a limit point of a set P on the manifold. For each ¢>0 denote by
y{¢) the infimum of all ¢’s such that the geodesic spheres of radius ¢ with
centers in P cover the whole geodesic sphere with center p and radius e. We
have, obviously, 0<y (¢)<e. By a familiar argument from the theory of Vitali
coverings we deduce that the sphere S(p, £) can be covered by a finite number
of/ spheres S (p, 37 (e)), k=1,2, ..., N, p,€P, with the number N of order
(e/7 ()"

I y(g)=0(c"), we will say that the density of P at p is of order 7. If the
density is of every order 7>1 we say that it is of infinite order (}). We now
state:

d) 1If at a point p of the manifold the set Pp of zeros of v of order §>1 has
a density of infinite order, then v has at p a zero of infinite order.

From (a) and (b) and Theorem 1 we get the following consequences:

(A) If v does not vanish identically, then on every compact subset of the manifold
the zeros of v have uniformly bounded orders.

(B) If v does not vanish identically, the set Pg of zeros of v of order §>1 does
not have a density of infinite order at any of its limit points on the manifold.

Statement (B) seems rather weak. It is possible that actually the density cannot
be of higher order than 1 and that the statement remains true if we take zeros
of any positive order f.

It should be noticed that statements similar to (4) and (B) can be obtained
for any system of differential inequalities with linear operators of any orders for
which a Carleman type inequality with a single pole is valid.

Remark 6: On weakening the hypotheses in Theorem 1. In view of Pli§’s counter-
example we cannot expect to be able to lower the global hypothesis on the
metric a,; very markedly, for instance, to replace the class C*' by a Holderian
class C"* with 0<i<1.

However, in this counter-example, the lack of Lipschitzian property appears
on a whole hypersurface (3). It therefore seems possible, a priori, that the Lip-
schitz condition could be relaxed at a single point, namely, the zero of infinite
order of %, without losing the theorem.

#) To illustrate these notions take the point p=0 in the plane of the complex variable {.
If P is the set of concentric circumferences TC |=m=%, 0<d<1,m=1,2, ..., its density at 0 is
of order 1+1/; if P is an enumerable set distributed on [|=1/logm, m=2, 3, ..., the part
of P on |{|=1/logm being formed by m equidistant points, the density of P at 0 is of infinite
order.

(%) It is actually a counter-example to the uniqueness of Cauchy problem and the hyper-
surface is the one where the Cauchy data are prescribed.
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We place ourselves in the conditions of Theorem II, § 2, where we may
assume n=2p. We still assume the continuity everywhere of the a;; hence A,
and A, are constant. However, we shall now consider A as a function of 7,
increasing to + oo when 0. It is easy to check the evaluations in § 4, II-III,
in order to see that A and A and M are the same as before (M being so

because n=27p). But A is now a function of r increasing to + oo with 1/r (1

To pass to the metric a; we must replace the constant § by a suitable fune-
tion 6 (r) increasing to + oo with 1/r. We put

r

dii = 6_26(7)T dy, R= J\efO(s)s ds, ‘Dl ('r) =

0

omr

The evaluations for A;, A, and M are again the same, and for A we obtain
a function increasing to + oo with 1/r. Everything will now be settled if the
inequality is proved.

The w of (3.6) is evaluated as in § 4, V, and we obtain a function w(r) e
with 1/r. The crucial point in the proof in §3 is the fact that %, %,>0 and
[%¢ %,/ <1. The expression for x, %, is now

, 1 dd,(r), 0%, . ) 0%y .
¥, ¥, =RefOT| — 1 ]y Xt t AL
e e ¢ [CI)1 (ry dr ar ¥ W h or ©

Hence everything depends on the possibility of a right choice of (r) so that
for r sufficiently small
d ()
dr

1 d(I)l(r)>2p—l

B, dr 2 w(r) and 27 <1.
Such a choice of 6(r) can be made if w(r) and therefore A(r) do not in-

crease too rapidly to + oo for r\0.

As an example consider A(r)=Ar* 0<i<1, A constant. This corresponds
to a Holder condition for a; at 0 of order 1 —A. Evaluating, we get w(r)
=d r* with constant ®. We choose 0 (r)=0r* with 0 =2p— 1) (2—1)/(1 — )%
Using the series development of the exponential, one shows that the conditions
are satisfied, since

6 6?
R—r— 2 g e
"o A" Tag—an”

01-W) s, 002 o0

0y (r)=1+—5 2—2 (2—2)(3-22)
d®, (r) 6(1-/1)2
dlr 57 LSS

(!) The expression of A also now depends on the modulus of continuity of the a;; because of
the evaluation of | T, — T'| in § 4.II.
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Before concluding this remark we notice that-—similarly to other cases of

unique continuation for differential inequalities (e.g. [2])—we can replace the
constant M in inequality (2.4) by the function M r"? with 0<y<2.
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