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Minimizat ion prob lems  for the funct ional  

supxF(x,f (x),f'(x)). ( I I )  

By Gu~NAR AnoNsso~ 

Introduction 

The present paper is a continuation of the paper [1]. This means that  we shall 
t ry  to minimize the functional 

/t(/) =sup~/~(z,/(x),/'(x)) 

over the class :~ of all absolutely continuous functions/(x) which satisfy the boundary 
conditions/@1) =Yl and/(Xz) =Y2- 

In  Chapter 1 we consider the question of the existence of a minimizing function, 
which was left open in [1]. 

In  Chapter 2 some of the previous results are generalized to a wider class of func- 
tions F(x,y,z): the previous condition 

~F 
~z 

> 0  for z > 0  [!o orz> x  
= 0 for z = 0 is changed into ~-z 0 for z = ~o(x, y), 

< 0  for z < 0 ,  0 for z<o:,(x,y). 

An existence proof for absolutely minimizing functions is given in the general case. 
In  Chapter 3 we examine further the properties of a.s. minimals. We also consider 

uniqueness questions for a.s. minimals and minimizing functions. For reasons of 
simplicity, this chapter is restricted to the case o(x,y)=-0. 

In  Chapter 4, finally, we give some examples in order to illustrate the previous 
exposition. 

We shall now introduce notations for some conditions on F(x,y, z). They are as- 
sumed to hold for x E J and for all real y and z. Here J is an interval which will be 
stated explicitly in most cases. If  it is not explicitly given, then the choice of J 
will be clear from the context. 

1. F(x,y,z) is continuous and ~F/~z exists. 

~F(x, y, z) is 
2A. ~z 

> 0  if 

= 0  if 

< 0  if 

z > 0 ,  

Z ~ 0 ,  

z < 0 .  
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c. AROrCSSO~, Minimization problems. I I  

2B. There is a continuous funct ion co(x, y) such tha t  

OF(x, y, z) 
Oz f! 

O if z>o~(x,y), 

is 0 if z=o~(x,y) ,  

0 if z<co(x,y). 

3. liml~l_,~r F(x, y, z ) =  + oo if x and  y are fixed. 

The conditions 1 and 3 will be assumed to hold th roughout  this paper,  together  
with 2 A  or 2B.  1 2 A  is assumed to hold in Chapter  1 and Chapter  3; in Chapter  2 
we shall use the more general condition 2 B. Xt is easy to  see (using the Heine-Bore l  
covering theorem) tha t  

lim ( inf F(x, y, z))= + 
I z l ~  ~x~<~ 

l y K K  

for every compact  interval  [:r c J and for every K > 0. 

Chapter 1. The question of the existence of a minimizing function 

The assumptions on F(x,y,z) in this chapter  are mainly the same as in [1]. W e  
shall assume tha t  the following conditions are satisfied th roughout  the chapter :  
1, 2 A  and 3. The interval  J will be chosen as Xl<~X<~X ~. 

1. We shall now give an example which shows tha t  the existence of a minimizing 
function does not  follow from these properties of F(x, y, z). 

A counterexample. Choose 

F(x, y, z) =z2/(y 2 + 1) 2 - cosx - x ( 2 ~  - x )  c o s x - ~ ( y )  (2~ -~(y) ) ,  

where~(y)=arctgy+~/2; 

x l = 0  and I x2=2~' 

Yl = 0 [ Y2 = 0. 

Let  /E :~. We have 

H(I) >I F ( ~ , / ( ~ ) ,  0) = 1 +~2  - ~( / (~) ) [2~  - ~ ( / ( ~ ) ) ]  > 1, 

since 0 < ~ ( / ( ~ ) ) < z .  Hence H ( / ) > I  for all /E:~. Suppose now tha t  0 < ~ < g / 2  and 
consider the funct ion 

1 There is one exception: Example  5 in Chapter  4. 
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ARKIV FOR MATEMATIK. Bd 6 nr 22 

tg x 

tg (2 :~ - x )  

I t  is easy to verify tha t  

for 0 ~ < x - ~ -  ~, 

for 2 - -  (~ ~ < x ~ +  (5, 

for 3-~+ ~ ~<x~<27~. 

H(g~) = F(z ,  g~(ze), O) = 1 + ~2. 

This proves tha t  infr~ ~ H ( / ) =  1 and tha t  there is no minimizing function. Compare 
the remark to Theorem 1.1. 

2. I t  follows from this example that,  in order to ensure the existence of a mini- 
mizing function, we must  impose suitable extra conditions on F(x,y ,z) .  We shall 
describe a few such conditions (they are separately sufficient), but we are not aiming 
at  a complete discussion of the question. 

In  each existence proof, we shall need 

Lemma 1.1. Let {/~(x)}~ be a sequence o//unctions in :~ such that supl.<~<~ H(/~) < 
and suppose that ]~(x) -+/(x) uni/ormly /or x I <<. x <~ x 2 . Then / 6 :~ and H(/) <~ lim~_~ ~ H(/r).l  

Proo/. Since ]/r(x)] ~<K1 and H(/~)<~K 2 for all v, it follows from the properties of 
F tha t  ]/:(x)] ~<K a. Hence all/~(x) and / (x )  satisfy a uniform Lipschitz condition. 
Clearly /6:~, and the rest of the proof follows easily. (Use the fact tha t  if /'(xo) 
exists, then we have 

~(xo, /(xo), z) >~ F(Xo, /(xo), /'(xo)) 

for all z >~/'(xo) or for all z <<./'(xo), together with a continuity argument.) 
Let  us now return to the minimization problem and introduce the notation 

M 0 =inf~E~ H(/). Suppose tha t  {/~}F is a minimizing sequence, i.e. lim~_~ ~ H(/ , )  = M  0. 
I f  the functions/ , (x)  are uni/ormly bounded, then it follows (as above) tha t  they are 
equicontinuous, and then there is a uniformly convergent subsequence. Let  the limit 
function be/(x) .  I t  follows from the lemma that  H ( / ) = M  0. 

Hence, in order to prove tha t  there is a minimizing function, it is sufficient to 
prove tha t  there is a minimizing sequence of uniformly bounded functions. 

In  many  cases, it can be seen from the function F(x, y, 0) tha t  there is a minimizing 
function. This possibility is illustrated by  the following theorem. 

Theorem 1.1. Suppose that there is a number Y1 >~max (Yl, Y2) such that 

max F(x, Yl ,  O) = max  (F(~, Yl, 0), F(/~, Y1, 0)) 

/or all :r and fi satis/ying xl <~<fl<~x ~. Suppose also that there is a 
Y2 ~< rain (Yl, Y2) with the same property. Then there is a minimizing/unct ion.  

number 

1 In other words, the functional H(]) is lower semi-continuous. 
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G. AROrr Minimization problems. I I  

Proo/. 

Y1 if / (x)> Y1, 

Let / (x)  e ~  and form g(x) = /(x) if Y2 <~/(x) <~ Y1, 

[Y2 if /(x)<Y2. 

Clearly H(g)<.H(/) and the rest of the proof is obvious. 
I t  is not difficult to find different conditions on F(x, y, 0) which lead to the same 

result. (For instance, F(x, y, 0) increasing in y for y >/]71 and all x, decreasing in y for 
Y ~< Ye and all x, are also sufficient conditions for the existence of a minimizing 
function.) 

3. Suppose that there is a number M > M  o (M0=infrE~ H(/)) such that  H(/)<M 
implies that  max I/(x) l<~g, where K depends on M but not on/(x). Then, clearly, 
every minimizing sequence is bounded and there is a minimizing function. 

I t  is evident that  every number M > M 0 has this property if limlzl_~ F(x, y, z) = + 
uniformly for all x and y. But there may exist numbers M with this property even if 
the limit is not uniform. We can describe the result of this section thus: if the roots 
zl and z2 of the equation F(x, y, z )=M do not increase too fast in absolute value 
when [Yl -+c~, then the attainable set E(M) is bounded, and then there is a mini- 
mizing function. For instance, it will follow from Theorem 1.2' tha t  there is a 
minimizing function if liml~l_~r F(x, y, y) = + ~ uniformly in x. 

Let us denote by El(M) the set of points (x, y) such that 

a) xl<~x<~x~, 
b) there is an absolutely continuous function g(t), joining the points @1, Yl) and 

(x,y), such that  
sup F(t, g(t), g'(t)) <~ M. 

t 

The set Ee(M ) is defined analogously, but with (x2,y~) instead of (xl, Yl). We are 
interested in the set 

E(M) = EI(M ) N E2(M ). 

I t  is clear that  H(/) <~ M implies that  max I/(x) I <~ K if and only if E(M) is bounded, 
and in that  case the constant K is determined by E(M). 

We shall first examine E(M) in the case F = F(y, z). Later, we shall try to carry 
over some of the results to the general case. 

Using some results from [1], we can easily prove the following theorem (concerning 
dPM(t), ~pM(t) and the integrals below, see section 2 of [1]): 

Theorem 1.2. Assume that F is independent o /x  and that M > Mo. 

A) E(M) is unbounded above (i.e. it contains points with arbitrarily large ordinates) 
i /and only i/the integrals 

f~  dt and 12= f~ dt 11 
J~, O~(t)  J ~  - ~,(t) 

are well-de/ined, convergent and 

I i + I ~ < x 2 - x  1. (1) 
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ARKIV FOR MATEMATIK.  B d  6 n r  2 2  

B) E(M) is unbounded below i /and only i/the integrals 

i3=f   dt and i4=fu  dt 
_ - V,~(t) _ opt(t) 

are well-de/ined, convergent and 

I3 + I4 < x 2 - x  1. (2) 

Proo]. We restrict the proof to the first par t  of the theorem. Assume first tha t  B(M) 
is unbounded above. Let  (x0, Yo) C E(M) and Yo > max (Yl, Y2). I t  follows from Theorem 2 
in [1] tha t  

f yV~ dt f y . dt 1 ~  ~< x ~  xl and ~<x 2 - x  0. 
, - ~ , ~ ( t )  

I f  we add these inequalities and let Y0 tend to infinity, then we have proved one 
par t  of the assertion. 

Next,  suppose tha t  I i + I 2 < x 2 - x  1. I t  follows from the discussion of " the at- 
tainable cone" in section 2B of [1] tha t  (x, y )EEI(M ) if x 1 + I  l < x  < x  2 and Y>~Yl. 
Similarly, it follows tha t  (x, y)EE2(M ) if x 1 <x<~x 2 - I  3 and Y>~Y2. 

Clearly, all points (Xl + I1, y), where y ~> max (Yl, Y2), belong to E(M). This completes 
the proof of Theorem 1.2, since the reasoning in the case B is analogous. 

A consequence of the theorem is tha t  E(M) is bounded if and only if neither (1) 
nor (2) is satisfied. 

Let  us now consider the general case F = F ( x ,  y, z). I t  can be "reduced" to the 
previous case simply by  neglecting the dependence on x. This may  be considered 
to be a crude method, but, nevertheless, it works in many  cases. 

The functions ~gM(y) and ~fM(Y) w e r e  defined in [1]. Clearly, we can introduce 
here the corresponding functions O(x,y,M) and ~(x, y, M). Now fix y and M and 
suppose that  U = {x IF(x, y, 0) ~<M} is non-empty.  

De/inition: I ~(y' M) = max~ ~ v O(x, y, M), 
[ fl(y, M) = minx ~ v ~f(x, y, M). 

I t  is easy to verify tha t  these functions are continuous and that  they are monotonic 
in M, as are (I)~(y) and ~v~(y). Finally, an argumentation, similar to the one used in 
the special case F = F(y,z), leads to the following result: 

Theorem 1.2'. Assume that M > M o. 

A) I / E ( M )  is unbounded above, then the integrals 

dt 
I1= , a(t ,M) and 

dt 
12= ~ - f l ( t ,  M )  

are well.de/ined, convergent and I 1 + 12 <<-x2 - x l .  

B) I / E ( M )  is unbounded below, then the integrals 
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c. ARO~SSOr~, Minimization problems. I I  

i3=f   dt 
_ - f l ( t , M )  

and 
Y~ dt 

I ~ =  _ a(t, M )  

are well-defined, convergent and I a + I a <~ x 2 - x 1, 

An application of this theorem is given in Example 1 in Chapter 4. Compare also 
the counterexample. 

Chapter 2. A more general case. Proof  of the existence of  absolutely minimizing 

functions 

]. In  this section we shall generalize some of the previous results to a more general 
class of functions F(x, y, z). 

We are not going to change the condition limN_~cF(x, y, z)= +co,  which has 
turned out to be very useful and which is a rather natural condition. However, the 
assumption that  F(Xo, Yo, z) has a minimum at z =0  for all (x0, Y0), is more restrictive, 
and we shall assume instead that  F(x0, Yo, z) has a minimum at z=eo(x0,yo) , where 
oo(x,y) is a continuous function. Compare Example 5 in Chapter 4. 

Thus, let us assume that  the following conditions hold throughout this chapter: 
F(x, y, z) E C1; 2B and 3. 

The minimization problem is meaningful, since we have 

H(/) >~ m a x  [F(Xl, Yl, O~(Xl, Yl)), F(x2, Y2, c~ 

for every admissible function/(x). 
We shall now carry over some of the results of the paper [1] and of the previous 

chapter to this more general case. 
The analogues of the Theorems 5 and 6 in [1] are 

Theorem 5'. Le t / ( x )  be an admissible/unction such that :  

a) / '(x) is continuous on I (x 1 <~x <~x2), 
b) Fz(x , / (x ) , / ' (x ) )>~O on I ,  or<O on I ,  
c) F(x,/(x),/'(x)) = M  on I .  

Then / ( x )  is a min imiz ing /unc t ion  1 (not necessarily unique). 

Theorem 6'. Suppose that /(x)  E ~ satisfies: 

a) / '(x) is continuous on I (x 1 ~x<~x~), 
b) Fz(x , / (x ) , / ' ( x ) )  # 0  on I ,  
c) F(x,/(x),/'(x)) = M  on I .  

Then / ( x )  is a unique minimiz ing/unct ion.  1 

The proofs are analogous to those of the case ~o(x, y)=~0 and they are omitted. 
Lemma 4 in [1] holds in this case without changes. The proof is simple. 

1 It also follows that ](x) is an a.s. minimal on I. 
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A consequence of this  l emma  is t h a t  we can neglect  sets of measure  zero. This 
means  t h a t  we can join  two funct ions  a t  a f ini te  n u m b e r  of po in ts  where t h e y  are  
equal  b y  t ak ing  one or the  o ther  on successive in tervals .  Then  these  poin ts  will no t  
affect the  va lue  of the  funct ional  for the  resul t ing funct ion.  (This s i tua t ion  will 
occur  in the  nex t  section.) 

:Next, we make  a j u m p  to Theorem 9, which is carr ied  over  wi thou t  changes: 

Theorem 9'.  I / ] ( x )  is an a.s. minimal on the interval 1 (x 1 ~ x  <~x2), then: 

1) / (x)EC 1 on I ,  
2) the differential equation 

dF(~,/(x),/'(~)) Fz(X,  / ( x ) , / ' ( x ) )  = 0 
dx 

is satisfied on I in the sense that i /F~(x , / (x ) , / ' ( x ) )  =#0 on a sub-interval I 1 c  I, then 
F(x ,  /(x), / ' (x)) is constant on 11. 

W e  shall  p rove  the  asser t ions 1) and  2) under  the  following, weaker  assumpt ions  
on/(x): 

I) /(x) satisfies a Lipschi tz  condi t ion  on [Xl, x2], 
I I )  there  is a cons tan t  K > 0  such t h a t  if [tl, t2] is an  a r b i t r a r y  sub- in te rva l  of I ,  

t hen  there  are  two (not necessar i ly  different)  minimiz ing  funct ions  u(x) and  v(x) be- 
tween ( t i , / ( t i )  ) and  (t2,/(t2) ) such t h a t  [u(x)[ ~ K ,  Iv(x)] ~ K  and  u(x) <~/(x) <~v(x) 
for t 1 ~< x ~< t 2. 

(These assumpt ions  are  sat isf ied if /(x) is an  a.s. minimal ,  since we can choose 
K = m a x z ~  ]/(x) l and  u(x)=v(x)=/ (x)  in t h a t  case.) 

The reason why  we shall  prove  this  more  general  resul t  is t h a t  i t  will be useful in 
the  nex t  section. 

Proo]. 1 Consider an  a r b i t r a r y  po in t  x o on the  in te rva l  x 1 ~ x  < x  2 and  suppose t h a t  
the  uppe r  and  lower r igh t -hand  der iva t ives  of /(x), :r and  /~, are  different  a t  x 0. 
(Clearly, t h e y  are  finite.) Choose a number  7 ~:o)(Xo,/(Xo)) such t h a t  g > ~  >ft. The 
in i t ia l -va lue  p rob lem F(x, g(x), g'(x))=constant,  g(xo)=/(x0), g'(xo)=~, has a solu- 
t ion ~(x) in a ne ighbourhood  of x 0. Since ~ > ~  >fi,  the re  are  po in ts  x > x  o, a rb i t r a r i l y  
close to  x0, where  /(x)=~0(x). But  since ~, ~=eo(x0,/(xo)), i t  follows f rom the  condi- 
t ion I I  and  f rom Theorem 6' t h a t / ( x )  =q~(x) on [Xo, x0+~t ] for some ~ > 0 .  The  con- 
t r ad ic t ion  shows t h a t / ( x )  has  a r i gh t -hand  der iva t ive .  Similar ly ,  i t  follows t h a t / ( x )  
has  a l e f t -hand  de r iva t ive  for x 1 < x  ~<x 2. 

Our  nex t  s tep is to p rove  t h a t  the  one-sided der iva t ives  a re  equal.  Consider a 
po in t  x0, and  assume t h a t  o:=/'(xo)+4fi=/'(xo)-. Choose a n u m b e r  y be tween  
and  ft. Clearly 

F(x0,/(Xo), y) < m a x  [F(xo,/(xo) , o:), F(x  o, ](Xo), fl)]. 

Select  a sequence of in te rva ls  [Pn, q~] such t h a t  

p~ <xo <q~, q~-p~-->O 

a n d  /(q~) - / ( P ~ )  
q~ - p~ 

1 The reasoning will be similar to the one used in [1], but not identically the same. 
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I t  is obvious tha t  

lim M(pn, qn; /(P,), /(q,)) < F(xo,/(xo), ~). 
n ---> o v  

(The nota t ion M(...) was introduced in [1].) Let  us assume, for example, t ha t  g > y  >f l  
and F(xo,/(xo) , ~) > F(x0,/(xo) , y). Let  the functions Un(X) correspond to the intervals 
[p~, q~] according to I I .  I t  follows tha t  lim~_~r (SUpx u'~(x))>~ ~z. Thus 

Consequently 

lira H(un) ~ F(xo, /(xo), ~). 
n ---> ~ r  

lim H(u~) > lira M(pn, qn; /(Pn), /(qn)), 
n .--> o r  n ---> ~ 

which is a contradiction. 
The reasoning is analogous in the other cases. This proves t h a t / ' ( x )  exists. 
Suppose now tha t  Fz(xo,/(xo) ,/'(xo) ) #0.  Then we assert t h a t / ( x )  E C 2 in a neigh- 

bourhood U of x 0 and tha t  F(x, /(x), /'(x)) is constant  in U. This is proved in the 
same way  as Theorem 8 in [1]. We omit  the details. 

Now the only thing left to prove is t h a t / ' ( x )  is continuous a t  those points where 
Fz(X, /(x), /'(x)) =0.  Assume then tha t  ]'(Xo)=o~(x o,/(x0) ). Assume fur ther  tha t  there 
are numbers  ~n->x0, ~ > x  0 such tha t  /'(~)>~/'(Xo)+~. I f  the functions Un(X)cor- 
respond to the intervals x 0 ~ x  ~ according to I I ,  then we have sup~ u'~(x) >~/'(xo) § ~. 
Hence l i m n ~  H(Un) ~ F(Xo,/(Xo) ,/'(Xo) +~). But  this contradicts the obvious relation 

lim M(xo, ~n; /(xo), /(~n)) <~ F(xo, /(Xo), /'(Xo)). 
n - ->  o ~  

The other  cases can be t reated similarly. This completes the proof. 
We have thus established some impor tan t  properties of a.s. minimals. But  we 

have no t  examined the properties of minimizing functions in general. The reason 
for this is evident f rom Example  2 in Chapter  4. 

I n  the previous chapter  we t reated the question of the existence of a minimizing 
function for the case co(x,y)~O. I t  is easy to verify tha t  Lemma 1.1 holds in the  
present case. This means tha t  if there is a minimizing sequence of uniformly bounded 
functions, then there is a minimizing function. I n  particular, this is t rue if E(M) is 
bounded for some M>Mo.  1 

We shall not  discuss generalizations of the other  criteria in Chapter  1. 

2. A problem which we have not  yet  discussed, is tha t  of the existence of absolutely 
minimizing functions. We shall give an existence proof for the general case. 

Theorem 2.1. Assume that F(x, y, z) E C 1 and satisfies the conditions 2 B and 3 /or  
XI  <~x<~X 2 and all y, z. (Thus J=[X1,X2]. ) 

Assume/urther that, /or every choice o/(~1,~1) and (~2,~2), there is a minimizing/unc- 
tion between these points, and, i/ there are several such/unctions, that they are uni/ormly 
bounded. (The bounds will depend on ~1, ~h, ~ and ~2") 

1 A sufficient condition for this is that limlz[-~r F(x,y, z) = + c~ uniformly for all x and y. 
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Then there is an absolutely m in im i z ing /unc t i on /o r  every minimization problem in 
the strip X I  <~ x ~ X2, - ~ < y < ~ . 

Proo/. In  order to make the proof more lucid, we shall divide it into several parts. 

l) Consider the minimization problem between (Xl, Yl) and (x2, Y2). Let  ~ be the 
class of minimizing functions, which, by  assumption, is not empty.  

Put  

[ u(x) ~ inf [(x) 

and 
lv (x) = sup/(x). 

feTn 

I t  is clear that  u(x) and v(x) belong to ~ .  
Consequently there are always a smallest minimizing function u(x) and a greatest 

minimizing function v(x). 
2) We shall introduce two notations in order to simplify the expressions later on. 
Let  p(x) be a function on an interval I .  Let [Xl,X2] be a sub-interval of I and 

consider the minimization problem between (Xl, p(xl)  ) and (x2, p(x2)). Let u(x) be 
the smallest and v(x) the greatest minimizing function, as above. We shall agree to 
say that  p(x) has the property A on I if p(x)>~u(x) on Ix1, xe]/or every sub-interval 
[xi, x2] of I and tha t  p(x) has the property B on I if p(x) <~v(x) on [xl, xeJ/or every 
sub-interval Ix1, x2] of I .  (Compare subharmonic and superharmonic functions.) 

3) Consider our minimization problem on an interval I with some boundary 
values. I t  is obvious that  the greatest minimizing function v(x) is not less than the 
greatest minimizing function Vi(X ) between any two points (tl, v(ti) ) and (t2, v(t2) ). 
Similarly, the smallest minimizing function u(x) is not greater than the smallest 
minimizing function u1(x ) between any two points (tl, u(tl) ) and (t2, u(t2) ). 

4) We shall now construct an a.s. minimal. From now on, we consider a /ixed 
minimization problem, namely between (Xl, y~) and (x2, Y2). Let  G be the class of those 
minimizing functions which have the property A on [xl,x2]. G is not empty,  since 
the greatest minimizing function belongs to G. 

We introduce the/unction 
h(x) = inf g(x) 

geG 

and we assert that h(x) is an a.s. minimal.  
I t  is clear that  h(x) is a minimizing function. 
5) Now let us prove that  h(x) has the properties A and B. 
I) Choose an arbi trary interval it1, t2] and let u(x) be the smallest minimizing func- 

tion between (tl, h(tl) ) and (t2, h(t2) ). Let g(x)CG. We assert tha t  g(x)>~u(x) on 
t 1 ~<x ~ t  2. I f  this were not true, then there would be an interval s 1 ~<x ~<s 2 such tha t  
U(81)=g(81) , U(S2)=g(82) and u(x)>g(x)  for 81<x<82. Let ul(x ) be the smallest 
minimizing function between (Sl, u(sl) ) and (se, u(s2) ). I t  follows from the definition 
of G tha t  g(x)~>Ul(X ). But  we also have u ( x ) ~ u l ( x  ). (See par t  3 of the proof.) This 
gives g(x)>~ul(x ) ~u(x )  and we have a contradiction. 

Thus u(x) <~g(x), and the inequality u(x) <~h(x) follows from the definition of h(x). 
This proves that  h(x) has the property A. 
I I )  Assume that  h(x) has not the property B. This means that  there is an interval 

It1, t2] such that  the corresponding greatest minimizing function v(x) does not satisfy 
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the inequali ty v(x)>~h(x). I t  follows from par t  3 of the proof t ha t  we m a y  assume 
tha t  h(x)>v(x) for t I < X  < t  2. Let  us form the funct ion 

h(x) for x<~q, 

p(x)=]v(x)  for t l<x<t2 ,  

[h(x) for x ~ t  2. 

I f  we can prove tha t  p(x)E G, then this will contradict  the definition of h(x), since 
we have p(x) < h(x) on (tl, t2). I t  is clear tha t  p(x) is a minimizing function on [xl, x~], 
and it remains to prove tha t  p(x) has the proper ty  A. So let us consider an  interval  
Is1, s2] and let the corresponding smallest minimizing function be ul(x ). We have 
ul(sl)=p(sl)<h(sO and ul(s2)=p(%)<~h(% ). Since h(x) has the p roper ty  A, this 
implies t ha t  h(x)~>Ul(X ). I f  p(~)<ul(~  ) for some ~E(Sl, S2), then we mus t  have 
p(~)=v(~)<ul(~ ). Consequently there mus t  be an interval  [rl, r2] such tha t  
v(rl) =u l ( r0 ,  v(r2) -ul(r2) and v(x) < ul(x ) for r 1 < x < r  2. Let  u2(x ) and  v2(x ) corre- 
spond to this interval and these boundary  values in the usual manner.  Then we have 

udx) <u2(x) <v2(x) < v(x). 

But  this contradicts the inequali ty v(x)<ul(x ). This proves tha t  h(x) has the pro- 
pe r ty  B. 

6) I t  is obvious tha t  h(x) satisfies the conditions I and I I  which, as we h a v e  
seen, guarantee tha t  the assertions in Theorem 9' are true. Thus h(x)E C 1 and the 
differential equation 

dE(x, h(x), h'(x)) 
dx �9 Fz(x, h(x), h'(x)) = 0 

is satisfied in the sense described there. 
7) We are now in a position to prove tha t  h(x) is an a.s. minimal. Consider an 

arb i t rary  interval t 1 < x  < t  2. Let  M 0 be the min imum value of the functional,  as 
usual, and pu t  

M = m a x  F(x, h(x), h'(x)). 
t x ~ x ~ t ~  

We want  to prove tha t  M = M 0. 
I f  F(t 1, h(tl), h'(t 0)  = M, then the result follows at  once, since h(x) has the properties 

A and B, and the same is t rue for t 2. So let us assume tha t  F(t 1, h(tl), h'(tl))<M 
and tha t  F(t~, h(t~), h'(t2))<M. I t  follows from par t  6 t ha t  there is a number  
2, tl<~<t2, such tha t  h'(~)=r h(~)) and F(~, h(~), h'(~)) = M .  Let  us assume t h a t  
M > M  o 

This means tha t  there is no minimizing function co(x) for which 0)(2)=h(~). (I.e. 
(2, h(~)) CE(Mo). ) 

Let  K be the class of those minimizing functions a)(x), for which 0)(2)<h(~). (K 
is not  empty,  see pa r t  5.) P u t  k ( x ) = s u p ~ K  co(x). I t  is clear tha t  k(x)EK and  tha t  
k(~) < h(~). 

P u t  
/ 81 = sup {x ix < ~, h(x) = k(x)} 

a n d  ) 
[ s2 = inf {x ] x > ~, h(x) = k(x)}. 
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We introduce the funct ion 

h(x) for x < s  1, 

q(x)= jk(x) for s l < x < s  2, 

[h(x) for x ~ s  2. 

If  we can prove tha t  q(x)E G, then this will contradict  the definition of h(x), since 
q(x) <h(x) on (s 1, s2). (Compare par t  4.) So all we have to prove is that q(x) has the 
property A. Consider then an  arb i t rary  interval  [rl, r2] and let u(x) be the smallest 
minimizing funct ion between (rl, q(rl) ) and (r2, q(r2) ). We have u(rl)=q(ri)<~h(rl) 
and u(r2) =q(r2) <~h(r2). Since h(x) has the proper ty  A, it follows easily t ha t  h(x) >~u(x) 
for r~ ~< x ~< r e. 

So if we assume tha t  u(xo)>q(x0) for some x0, then we must  have s 1 <xo<s 2 and 
q(xo) =k(x0). 

Consequently there mus t  be an  interval (~h, ~2) such t h a t  s 1~<~1 <~2 ~<s2, u(~h) = 
k(~l), u(~2) = k(~2) and u(x) > k(x) for ~1 < x <V2. 

If  H(k; ~ ,  ~2) <~H(u; ~ ,  ~2), then we get  a contradict ion to the definition of u(x). 

Suppose then tha t  

Let  us form the funct ion 

H(k; ~1, ~2)>H(u;  ~1, ~2)" 

[ ~(X) for Z ~ l  , 

kl(x )= ju (x )  for ~ 1 < x ~ 2 ,  

[k(x) for x ~ 2 .  

Clearly, kl(X ) is a minimizing function between (tl, h(tl) ) and (t~, h(t2) ). Further ,  we 
have kl(~)~<h(~ ) (for, as we ment ioned above, u(x)~h(x) for all x, where u(x) is 
defined). Hence kl(x ) EK. :But this contradicts the definition of k(x). Hence we get 
a contradict ion in any  case. 

This completes the proof of Theorem 2.1. 

3. The method of approximat ing a max imum by  a sequence of integral mean 
values is well known. I n  our case it means tha t  we should consider the functional 
H(/) as the limit of the sequence of functionals 

Hn( l )=  1 , [F(x,/(x),f(x))]ndx] 11~, n = 1 , 2 , 3 , . . . .  

We have used this approach in [1] to derive the differential equat ion (dF/dx). F z = O. 
I t  can also be used to give a different existence proof for a.s. minimals. This is very  
natura l  since a minimizing function in the calculus of variations automat ical ly  is 
minimizing on every sub-interval. However,  we shall not  carry  through this proof 
since it is more complicated than  the one already given, and since it requires stronger 
conditions on F(x, y, z). 

Another  result which can be proved with this "integral  me thod"  is the following: 
if/o(X) is the only a.s. minimal for H(/) and if/~(x) minimizes Hn(/) for n = 1, 2, 3, ..., 
then limn_~ ~/~(x) =/o(X) uniformly. 
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Chapter 3. Further examination of absolutely minimizing functions. 
Uniqueness questions 

For reasons of simplicity, this chapter will t reat  only the case (o(x,y)=-O. No 
doubt, the results can be modified for the general case. 

1. The following theorem gives us further information on the structure of absolutely 
minimizing functions: 

Theorem 3.1. Assume that F(x, y, z) satis/ies these conditions: 

F(x, y, z) is an analytic/unction o/ x, y and z in a complex neighbourhood o/the set 
o/ values 

{ Xl  ~ X ~ X  2 

y, z real; 
2 A and 3. 

Assume/urther that/(x) is an absolutely minimizing/unction on the compact interval 
xl ~ x ~ x  2. 

Then: 

a) /(x) EC 1 on [xl, x2] (already proved); 
b) the set {x I F~(x, /(x), /'(x)) #0}  consists o / a f i n i t e  number o/intervals (to be proved 

now); 
c) the di//erential equation 

dF(x, /(x), /'(x)) Fz(x, /(x), /'(x)) = 0 
dx 

is satis/ied in the sense that F(x, /(x), /'(x)) is constant on each o/these intervals (al- 
ready proved). 

Proo/. In  order to facilitate the further references, we divide the proof into several 
parts. 

1) Assume that  ] ' (x)#0 for p < x < q  and t h a t / ' ( p )  =/'(q)=0. 

Fx(p , / (p) ,  o) < o, 
Then / 

[ Fx(q,/(q), O) >10. 

To see this, we recall tha t / (x)  EC 2 on (p,q) and that  F(x, /(x), /'(x)) is constant there 
(Theorem 8 in [1]). So we have 

Fx(X, /(x), /'(x)) + F~(...) /'(x) + Fz(...)/"(x) = 0 

for p <x<q.  Clearly, there must  be points arbitrarily close to p, where /'(x) and 
/"(x) have the same sign. At such a point Fz(...)/"(x)>0, which gives 

Fx(x, l(x), l'(x)) + ~'y(...) /'(x) <0 .  
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Since l imx-~v/ ' (x )=O,  this  proves  the  f irst  inequal i ty ,  and  the  second is p roved  
s imi la r ly  (there are  po in ts  a rb i t r a r i l y  close to  q where Fz(...)/"(x ) <0, etc.). 

Now suppose t h a t  there  is a n u m b e r  t>q such t h a t / ' ( t )  4=0. Then i t  follows from 
the  above  resul t  t h a t  we can define 

r=inf{xlx>~q, F~(z,/(z),  0)=0},  

a n d  i t  follows t h a t  q<r<t.  If  q<r, t hen  we obvious ly  have  /'(x)=O for q~x<~r 
(and if q = r ,  t hen  this  is t r iv ia l ly  true).  

I f  there  is a number  u<p  such t h a t  ]'(u)4=0, t hen  we define 

s = s u p  {x; x < p ,  F ~ ( x , / ( x ) ,  0) = 0} .  

W e  h a v e / ' ( x )  = 0  for s ~ x ~ p .  
Fina l ly ,  we observe t h a t  

{ Fx(x,/(x),O)~O for s<~x~p, 

Fx(x,/(x), 0)~>0 for q<~x<~r. 

2) W e  shall  give an  indirect  proof  of the  theorem.  So we assume t h a t  the  set 
{x[ x 1 < x < x2, /'(x) 40}  is the  union of an  inf ini te  number  of d is jo in t  open in t e r -  
vals.  These in terva ls  mus t  have  a l imi t -po in t  and  we m a y  assume t h a t  i t  is x=O. 
W e  m a y  also assume t h a t / ( 0 )  = 0 and  t h a t  there  are  inf in i te ly  m a n y  such in te rva ls  
in  eve ry  in t e rva l  0 < x < e. C l ea r l y / ' ( 0 )  = 0 and  Fx(0, 0, 0) = 0. 

The funct ion  Fx(x, y, 0) will be i m p o r t a n t  for the  res t  of the  proof. I t  m a y  be 
iden t ica l ly  zero or not.  This  gives us two cases a n d  we shall  s t a r t  wi th  the  s imples t  
of them.  

3) Assume t h a t  Fx(x, y, 0) ~ 0. This  means  t h a t  we have  F(x, y, O) = F(O, y, O) =of(y), 
where  ~c(y) is ana ly t ic  in a (complex) ne ighbourhood  of y = 0 .  

A) ~c(y)------ constant ,  i.e. F(x, y, 0) ------ constant .  

Consider an  in te rva l  (p, q) as in 1). P u t  t=�89 +q). Then we have  

F(t, /(t), /'(t)) > F(t , /( t) ,  0) = F(p, tip), 0), 

which gives a contradic t ion .  

B) ~c(y) ~ constant .  

I t  follows from Theorem 10 in [1] 1 t h a t / ( x )  is monotonic ,  for ins tance  non-decreas-  
ing. 

Bu t  ~c ' (y)#0 for 0 < y < ~. Hence  ~c(y) is s t r i c t ly  monotonic  for 0 ~ y  ~ .  Consider  
a n  in te rva l  (p,q) such t h a t  O</(p)</(q)<~. Then  we mus t  have  cf(/(p))=cf(/(q)) 
which gives a cont rad ic t ion .  

1 I t  is c lear  t h a t  t he  cond i t ion  on F z in  Theorem 10 need  on ly  be a s s u m e d  to  ho ld  for z = 0. 
I n  fact ,  t he  cond i t ion  of Theorem 1.1 in  th i s  p a p e r  is suff ic ient  if i t  ho lds  for a l l  y. 
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4) ~qow let us assume tha t  F~(x, y, 0) ~ 0. Clearly F~(x, y, 0) is an  analyt ic  funct ion 
and we can apply  Weierstrass '  preparat ion theorem (see [2], p. 89). I n  our case it 
says t h a t  

F~(x, y, O) =x~o~(x, y)W'(x, y) 

in a neighbourhood U of the origin. Here # is an integer ~>0; ~o(x,y) is analyt ic  in U 
and # 0 ;  ~F(x, y) is either =- 1 or of the form 

vt~(x ' y) =ym + A~(x)y,~-i + A2(x)ym-2 + ... + A,~(x), 

where the functions Ak(x) are analyt ic  in a (sufficiently small) ne ighbourhood of 
x=O and Ak(0)=0  for all k. 

We know f rom 2) t ha t  F:~(x, y, 0) - 0  at  the points (r,/(r)) and (s, ](s)). Therefore 
we can exclude the case ~F ~= 1 and, instead, we inquire about  the zeros of 

uz.(x,y ) =ym + A~(x)yr~-I + ... +Am(x). 

Let  us, for the present, replace x and y by  the complex variables ~ and  ~]. We shall 
t ry  to determine ~ as a funct ion of $ f rom the relation ~F(~,~) =0 .  We are only in- 
terested in the solutions of this equat ion in a neighbourhood of ~ = 9  =0 .  

Consider a complex neighbourhood V of $ = 0 and cut  it along the negative real 
axis. Then every root  of ~ can be defined as a regular funct ion in V, and the roots 
~k of ~F(~, ~]) = 0  m a y  be wri t ten 

= ~ C  i~l/n~ for k = l , 2 ,  . . ,m.  ,~,o, j , k ~  , 

Concerning this expansion, see [3], p. 50; [4], pp. 98-103 and [5], Chapter  X I I I .  (The 
roots can be divided into cyclic systems, and  the number  n can be chosen as the  
produc t  of the number  of roots in each system.) 

We m a y  assume tha t  ~l/n is real for ~ > 0, which gives the expressions 

~ / k =  1, 2, m. 1/n~i 
~-~J .k[  x ) ~ . . . ,  

j = l  

Clearly, we need only consider those series in which Cj.g are real for all ?'. (If there 
are no such series, then there is nothing left to prove.) Therefore, let us suppose tha t  

~]k(x), k = 1,2 ..... M, 

are real for 0 < x  <0,  and tha t  ~k(x) are complex (not real) for k > M  and  0 < x  <0.  
We know from the first par t  of the proof tha t  

Fx(r,/(r), 0)= Fx(8,/(s), 0)=0. 

Hence the points (r,/(r)) and (s,/(s)) must  lie on the curves y =~k(x) if r and  s are 
sufficiently close to x = 0. 
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5) W e  shall  now s t u d y  in some deta i l  the  funct ions  

~k(x) -= ~ ~].k ( x l / n )  ~ = g k ( X l / n )  �9 
j = l  

Here  the  funct ions  g~(z) are  ana ly t ic  for ]z[ < 8. F u r t h e r ,  every  g~(z) is real  if z is real .  
Dif ferent ia t ion  gives 

. _ _  - 1 - - 1  
,(X)=gk(xl/n ) 1 "X n for  O < x < 8  n. 

n 

P u t  t = x ~/n, which gives 

~k (x) = g; (0 [ ~  = ~ ( t ) .  

The funct ion  ~ ( z )  is ana ly t ic  in 0 < I z] < 8 and  the  s ingula r i ty  a t  z = 0 is e i ther  re- 
movab le  or a pole. W e  have  

l im ~ (x) = l im F~(t), 
x --.-~ + 0  t ' - ->+O 

and  this  l imi t  mus t  be real.  I t  can be + o% - 0% fini te  bu t  ~ 0 and  0. Since ]'(0) = 0 ,  
we can exclude f rom considera t ion those values  of/c for which we do not have  ~ ( 0 )  =0 .  
Therefore  we can  assume t h a t  ~ ( z )  is ana ly t i c  for l zl <~.  

A consequence of th is  is t h a t  there  is a 81>0  such t h a t  ~vk(z ) 4=0 for 0 <  ]z] <81, 
unless ~vk(z)~0. F r o m  t h e r e l a t i o n  ~ ( x )  =~k(xl/~), we can infer a corresponding resul t  
for ~ ( x ) .  

Now let  us compare  the  funct ions  ~ ( x )  =gk(t) and  ~ l (x ) -g l ( t ) .  The  funct ions  gk(z) 
and  gz(z) are  ana ly t i c  and  no t  ident ical .  Hence  there  mus t  exis t  a 82 > 0  such t h a t  

9k(z)#gl(z) for 0 < l z  ] <82. 

This  gives a corresponding resul t  for  ~k(x) and  ~z(x). 
W e  have  found  t h a t  ~/k(x)=gk(x 1/'~) and  ~(x)=(vk(xl /~) ,  where gk(z) and  ~k(z) a re  

ana ly t i c  for Iz[ <8 .  Le t  us wri te  xl/n=t, as above.  This gives 

~'(x, ~(x), o)= ~'(t ~, g~(t), o )=u( t )  

and  F(x, ~k(x), ~'k(x) )= F(t ~, gk(t), qJk(t) )=v(t). 

Clearly, the  funct ions  u(z) and  v(z) are ana ly t ic  in a ne ighbourhood  of z = 0 .  Hence  
there  is a 8~ > 0 such t h a t  each of the  funct ions  F(x, ~k(x), 0) and  F(x, ~(x) ,  ~'k(x)) 
is e i ther  increasing, cons tan t  or decreasing on the  whole in te rva l  0 ~< x ~< 83. 

W e  have  excluded those  funct ions  ~k(x), for which we d id  no t  have  ~]~(0) = 0 .  Af te r  
a renumber ing ,  we have  ~k(x), k = 1, 2 . . . . .  P ,  left. 

I f  we collect our  results ,  then  we see t h a t  there  exis t  numbers  ~ > 0 and  % such tha t :  

a) ~k(X):4:~l(X) if 0 < X ~ : r  and  lc:4:l. This means  t h a t  one of the  funct ions  ~k(x) 
is smal les t  a n d  one is g rea tes t  on the  whole in te rva l  0 < x ~< ~. 

b) ~]k(x) C C 1 on 0 ~<x ~ cr and  ~k(0) =~/~(0) =0 .  I f  ~k(x) ~: 0, then  ~ ( x )  4=0 for 0 < x ~< ~. 
c) I f  we have  p ,  q, r and  s as in 1) a n d  0<s<r~<c~ ,  then  ](r)=~k(r ) for some k<~p 

and  ] ( s )=~(s )  for some k 1 ~<P. 
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d) E v e r y  funct ion F(x, ~k(x), 0) is either constant  or strictly monotonic  on 
0~<x~<~. The same is t rue for F(x, ~k(x), ~ (x ) )  (1 <~k<~P). 

6) We are interested only in those functions ~k(x) for which one of the relations 
under  c) above really occurs on the interval 0 < x ~< ~. I f  we exclude the others, then 
we get (after a renumbering) the functions ~k(x), k = 1, 2 . . . .  , N,  left. This does not  
affect  the val idi ty of the summary  a)-d). 

I f  N = 1 and ~l (x)~0,  then we get a contradict ion at once and there is nothing left 
to  prove. 

I f  this is not  the case, then the greatest  of the functions ~ (x)  is > 0 (for 0 < x ~< r162 
or  the smallest is < 0. 

Let  us choose the first case and  let ~N(X) be the function in question. Then ~N(X) > 0 
and  ~]N(X) > 0  on 0<x~<r162 

I t  follows from our choice of ~N(X) tha t  there is an interval (P0, %) such tha t / (%)  = 
~N(ro). We have thus 

/(qo)--/(ro)=~N(ro); /'(qo) = 0  
and  ~N(X) >0 .  

Hence / ( x ) > ~ ( x )  for q0 - ~  < x  <%.  But  we also have / (Po)  =/(So)<~N(So) (owing 
to  our choice of ~ (x ) )  and / ' (po)-O. Hence / ( x ) < ~ ( x )  for po<x<po§  Conse- 
quent ly  there mus t  be a ~, p 0 < ~ < q 0 ,  such tha t  / ( ~ ) = ~ ( ~ )  and / ' (~)>~N(~)>0.  

Now assume first t ha t  F(x, ~?N(X), 0) is constant  or decreasing. Then we have 

F(~, ~N(~), O) >~ F(r o, ~]N(rO), O) >~ F(q o, ](qo), 0). 

(See the first par t  of the proof.) This gives 

F(8, /(8), /'(8)) > F(q0,/(qo), 0), 
which is a contradiction. 

Assume then tha t  F(x, ~N(X), 0) is increasing. An  obvious consequence of this is 
t h a t  F(x, ~N(X), ~N(X)) is increasing. Let  us now consider the minimization problem 
between the points x l = y l = 0  and x2=~, Y2=/(~)=~N(~). Since /(x) is an absolute 
minimal,  we have 

M o =H( / )  >~F(~,/(~), 1'(~)). 

:But F(x, ~TN, ~7"N) is increasing, which gives 

M o <~ H(~tN ) = F(~, ~IN(~), ~'N(~)) <~ H(/) = M  o. 

Thus  H(~tN ) = M o and ~N(X) is also a minimizing function. 

Choose a funct ion r C 1 on 0 ~<x ~<~ such tha t  ~ ( 0 ) = r  and r  0. F o r m  
the  funct ion g(x)-~N(x)+),~b(x), where A > 0  is a parameter .  We have 

.F(x, g(x), g'(x) ) = F(x, ~N(x), V]'N(X) ) § ~.(a(x)r d-b(x)r ) § R(x, 2.). 

Here  a(x) = Fy(x, ~N(x), ~7'N(X)) and b(x) = F~(x, ~N(x), ~v(x)) and  [ R(x, 4) 1 <~ C~ 2 where 
C is independent  of x and 2, if 0 < ~ < 1. 

Now, recalling the fact  t ha t  F(x, ~TN, ~'N) takes its max imum only at  x = ~  and  
t h a t  F~(~, ~N(~), ~TN(~)) >0 ,  it is easy to verify tha t  H(g) < H ( ~ ) ,  if A is small enough. 
This gives H(g) < M o which is a contradiction. This completes the proof. 
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2. This sect ion will t r ea t  br ief ly  the  quest ion of uniqueness  for a.s. minimals .  I t  
wil l  be shown b y  examples  t ha t  there  m a y  be several  a.s. min imals  for a g iven mini-  
miza t ion  problem.  A few sufficient condi t ions for uniqueness  will also be given. 

2 
Choose F(x, y, z) = (1 + x ~ + y2)2 § z2, 

x 1 = - 2  , yl=O, x 2 = 2  and  y~=0 .  

I t  follows f rom Theorem 2.1 t h a t  there  is an  a.s. m in ima l / (x ) .  Clearly, g(x) = - / ( - x )  
is also an  a.s. minimal .  Now, if there  is a unique  a.s. minimal ,  then  we get  - ] ( - x )  
](x), i.e. /(0) = 0. Consequent ly  M o >~ F(0 ,  0, 0) = 2. 

P u t  h ( x ) = 1 2 - x  for x~>0, 
[2+ x for x ~ 0 .  

Clear ly  H(h) = 2 / 9  § 1 < 2. 
The con t rad ic t ion  shows t h a t  there  is no un ique  a.s. minimal .  (This s i tua t ion  can 

be descr ibed thus:  eve ry  minimizing funct ion  mus t  evade  the  m a x i m u m  a t  x = y = 0 ,  
which,  owing to the  symmet ry ,  leads to  non-uniqueness .)  

P u t  F(x, y, z )=y2+z 2 and  let  /o(X) be defined as in E x a m p l e  3 in [1]. W e  know 
t h a t  all  funct ions  p/o(x+q)(p, q are  constants)  are  a.s. minimals .  I t  is ev iden t  t h a t  
t he re  are  inf in i te ly  m a n y  a.s. min imals  if Y2 = - Y l  44=0 and  x 2 - x  1 >~r. 

I t  follows f rom this  example  t h a t  there  m a y  be several  a.s. min imals  even if 
2'(x, y, z) is convex in y and  z. I n  the  calculus of var ia t ions ,  th is  condi t ion  leads to  
uniqueness  (for all  b o u n d a r y  values).  I t  follows f rom this  example  t h a t  the  condi t ion  
(Yl - C) (Y2 - C) ~> 0 in Theorem 3.3 cannot  be omi t t ed .  

These examples  show t h a t  ex t ra  condi t ions on F(x, y, z) or on the  b o u n d a r y  va lues  
m u s t  be a d d e d  to our  usual  ones in order  to secure uniqueness.  Two ways  to do this  
a re  shown b y  the  following theorems:  

Theorem 3.2. Assume that F(x,y,z) satisfies the conditions o/ Theorem 2.1, with 
o)(x, y )~0 .  Then, as we know ]rom that theorem, there is at least one a.s. minimal/or 
every choice o / (x  D Yl) and (x2, y~). 

Assume now that 
~Y(x, y, O) 

0 for all x and y. 
~x 

Then there is a V•IQVE a.s. minimal/or every choice o/(xl ,  Yl) and (x2, Y2). 

Proo/. W e  assume t h a t  Fx(x,y,O ) >0 .  W e  m a y  also assume t h a t  Yl <Y2 (the case 
yl>y2 is analogous  and  the  case Yl=Y2 is t r ivial) .  Le t  /(x) be an  a.s. min imal .  I f  
]'(x) > 0  for x 1 ~ x  <~x2, then  the  asser t ion follows f rom the  Theorems 6 and  9 in [1]. 
I f / ' ( x )  =0 for some x, t hen  i t  follows f rom pa r t  1 of the  proof  of Theorem 3.1 t h a t  
the re  is a n u m b e r  ~, x 1 < ~  ~x2, such t h a t  

> 0  for xl<~x<~, 
/ ' (x)  is = 0  for ~<x~<x~.  
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I f  g(x) is a different a.s. minimal, then the same reasoning holds for g(x). Let ~' 
correspond to g(x). Assume tha t  ~' <~. This gives g'(xl) >]'(xl)  and 

But  we also have 
M1: F(Xl, Yl, /' (xl) ) < F(xl, Yl, g' (x) ) = M e. 

M 1 =F(~,  Y2, 0) > F(~', Ye, 0) = M  e. 

The contradiction proves the theorem. 

Theorem 3.3. Assume that F(x,y,z) satis/ies these conditions: 

F(x,y,z) is analytic, as in Theorem 3.1; 

2A and 3; 

the condition concerning existence and boundedness o/minimizing/unctions, which 
was given in Theorem 2.1; 

t > :  i / y > C '  
~F(x,y,Z) is = i/ y=C,  

@ [ < 0  i/ y<C,  

(C is a constant); 

F(x, ~Yl + ( 1 - 2 )  y~, 4z 1 + (1-4)z2) ~<~F(x, y~, Zl) + ( 1 - 4 )  F(x, y~, z~) 

/or all x, Yl, Y2, zl and z e and/or all 4 such that 0 < 4 < 1 ,  equality holds i/ and only i/ 
Yl =Y~ and z I =z2. 

We consider the minimization problem between (x 1, Yl) and (x 2, Ye). We assume that 
the boundary values satis/y the inequality 

(Yl - C) (Ye - C) >~ O. 

Then there is a VNIQV]~ a.s. minimal between (x 1, Yl) and (xe, Ye). 

The proof is omitted, since it is rather laborious and since the result is not used in 
this paper. 

3. In  the previous section, we discussed the uniqueness question for a.s. minimals. 
We shall now briefly consider the same question for minimizing functions. The 
following theorem shows that  those functions F(x,y,z), for which every minimization 
problem has a unique solution, constitute a very "small" class. 

Theorem 3.4. Let F(x, y, z) satis/y the/ollowing conditions/or X 1 <~x <~X2 and all y,z: 
F(x, y, z) E Ce; 
2A and 3; 
the condition concerning existence and boundedness o/ minimizing /unctions which 

was given in Theorem 2.1. 
We consider the minimization problem between (x~, y)and (xe, Y2) (X1 <~xl <x2 <<-X2) �9 
Then there is a VNTQV~ minimizing /unction /or every choice o/ xl, Yl, x2 and Y2 

i/ and only i/ 
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_F(x, y, O) =-constant. 

Proof. 1) Suppose  t h a t  F(x, y, 0) - c o n s t a n t .  Consider  the  min imiza t ion  p rob lem 
be tween  (xl, Yl) and  (x2, Y2). W e  know t h a t  there  is an  a.s. m i n i m a l / ( x )  and  we know 
t h a t / ( x )  E C 1. 

If  ] ' (x)40 for x 1 ~<x ~<x~ then  i t  follows f rom Theorem 8 and  Theorem 6 in [1] t h a t  
](x) is a unique  minimiz ing  funct ion.  

I f  there  is an  ~ such that / ' ( r162 = 0 ,  t hen  ] ' (x ) -0 .  I n  order  to see tha t ,  suppose t h a t  
/'(fl) # 0  for some fi > ~. :Put 

= sup {x Ix < ~ , / ' ( x )  = o}. 
Then  we ge t  

F(/~, / @ ,  / ' @ )  > P(~ ,  1@,  0) = F ( ~ , / ( r ) ,  0). 

B u t  this  con t rad ic t s  the  re la t ion  F(x , / , / ' )  = c o n s t a n t  which holds on every  i n t e rva l  
where  ]'(x) #0.  

So we have  ](x)-y l (=y2) .  If  g(x) is an  admiss ib le  func t ion  a n d  g ' ( ~ ) # 0  for some 
~, then  we get  

H(g) >~ F($,  g(~), g'($)) > F(~,  g(~), 0) = H ( / ) ,  

a n d  we have  p roved  one half  of the  theorem.  
2) Suppose  now t h a t  there  is a unique  minimizing func t ion  for eve ry  choice of 

xl, x2, Yl and  Y2. 
I f  F=(Xl, Yl, 0) =4=0, then  we choose Y2 =Yl and  x 2 such t h a t  Fz(X , Yl, 0) # 0 for 

xl<~x<<.x ~. Clearly, / ( x ) - Y l  is a minimiz ing  funct ion,  b u t  no t  the  on ly  one. This  
proves  t h a t  Fx(x , y, O) - O. 

I f  Fy(Xl, Yx, 0) # 0 ,  t hen  we choose Yz=Yl and  x 2 such t h a t  Fy(x, Yl, 0) # 0  for 
x 1 ~<x ~<x z. W e  shall  p rove  t h a t / ( x )  =Yl is no t  the  only  minimiz ing  funct ion.  

I t  is no res t r ic t ion  to assume t h a t  x 1 =Yl = 0 and  Fy(0, 0, 0 ) <  0. Consider the  func- 
t ion y = ax2 where  ~ > 0 is a constant .  Taylors  fo rmula  gives 

F (x ,  ~x 2, 2~x) = F(x, O, O) + ax~F~(x, O, O) 

+ l(~2xaF~(x, O. ax2, O. 2ax) 

+ 2. ax~ .2~XF~z(...) + 4~x~F~z(...)). 

I f  we consider  a sui table  ne ighbourhood  of the  origin and  assume t h a t  0 < ~  < 1, 
t hen  F ~ ( x , 0 , 0 ) < - K < 0 ,  and  the  modulus  of the  expression in b r a c k e t s  is no t  
g rea te r  t h a n  K 1 �9 ~2. x 2, where  K and  K 1 are  independen t  of x and  ~. 

This means  t h a t  

F(x, ax e, 2ax) ~< F(x, 0, 0) - K .  ~x 2 + K 1 ~2x2 = F(x, 0, 0) - ax2(K - ~K1). 

I f  we choose ~ so small  t h a t  K - ~ K  1 > 0, then  we have  F(x, ax2, 2~r ~< F(x, 0, 0) for  
0 ~ x < ~ ,  for some 8 > 0 .  

A s imilar  cons t ruc t ion  can be carr ied  th rough  for @2, Y2), and  the  res t  of the  proof  
is obvious.  

Therefore,  if F (x ,  y, 0) is not  cons tant ,  t hen  we mus t  impose  condi t ions  on the  
b o u n d a r y  values  in order  to  secure uniqueness.  The  following theorem i l lus t ra tes  
th is  possibi l i ty .  
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Theorem 3.5. Assume that F(x, y, z) satisfies these conditions: 

F(x, y, z) E C1; 
2A and 3; 

the condition concerning existence and boundedness o/ minimizing /unctions which 
was given in Theorem 2.1; 

either ~F(x, y, O) >~ 0/or all (x, y) or < 0/or  all (x, y). 
~x 

Let us denote the admissible linear/unction by l(x). Finally, we assume that 

min  F(x, l(x), l'(x)) > m a x  F(x, y, 0), 
XI~X~X~ (X , y ) eK  

where K is the set I xl ~ x <~ x 2 
[ Yl <~ Y <~ Y2 (Yl >t Y >1 Y~)" 

Then there is a unique minimizing ]unction/(x). Moreover, ]'(x) #0  /or x 1 ~x<~x2. 

Proo/. W e  know t h a t  there  is an  a.s. m i n i m a l / ( x )  EC 1. I f / ' ( x )  = 0  for some x, t h e n  
i t  follows f rom the  Theorems 9 a n d  10 (with a t r iv ia l  change) in [1] t h a t  

M 0 ~ m a x  F(x, y, 0). 
(X,y) E K 

B u t  i t  was p roved  in L e m m a  5 in [1] t h a t  M0>~minxl<x<x ~ F(x, l(x), l'(x)). So the  as-  
sumpt ion  t h a t  ]'(x)~0 for some x leads  to  a contradic t ion .  F ina l ly ,  i t  follows f rom 
Theorem 6 in [1] t h a t  ](x) is a un ique  minimiz ing  funct ion.  

Remark. I t  is easy  to  f ind  new resul ts  of the  same t y p e  b y  using new es t imates .  
I t  should  be men t ioned  here t h a t  the  inequa l i ty  

M 0~> inf F(x,g(x),g'(x)) 
x1~x<~x2 

holds for eve ry  admiss ib le  monotonic  funct ion  g(x)EC 1 (compare  L e m m a  5 in [1]). 
This gives 

M 0 >~ sup [ inf F(x, g(x), g'(x))], 
g(x) xl<~x~x~ 

where  the  sup remum is t a k e n  over  all such funct ions.  
I t  is also clear t h a t  the  condi t ion  on Fx in the  theorem can be rep laced  by  th~ 

condi t ion  in Theorem 1.1 (in th is  case assumed to hold  for all  y). 

Chapter 4. Comments and examples 

I n  this  chapter ,  we shall  i l lus t ra te  some of the  theorems b y  means  of examples .  

Example 1. Suppose t h a t  

F(x, y, z) = G(x, y) + Ay 2 + By + z 2, 

where G(x,y) is cont inuous  and  bounded  from below and  A,  B are constants .  
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Is  there a minimizing function? We shall apply  Theorem 1.2'. Formal  calculation 
gives 

l O(x, y ,M)  = § (M -G(x ,  y) - A y  e - B y )  ~/2, 

�9 (x, y, M) = - (M - G(x, y) - A y  2 - By) 1/2. 

I f  :r is defined for y ~Yl, then we see from the expression for O(x,y, M) t h a t  
a(y,M) =O(y),  when y--> + ~ .  Hence the integral 11 in Theorem 1.2' cannot  exist  
finite. I t  follows in the same way  tha t  none of the integrals Ie, /3 and  14 can exist  
finite. 

So we can conclude tha t  E(M)  is bounded for all M. Consequently there is a mini- 
mizing funct ion for every choice of xl, x2, Yl and Y2- 

Example 2. We have not  studied the properties of minimizing functions in general, 
we have only studied the special cases of a.s. minimals and unique minimizing func- 
tions. The reason for this is clear f rom the following example: 

Choose F(x, y, y') = x + y,2, xi = Yl = 0, x 2 = 1 and Y2 = 0. This gives M o >~ F(x~, y~, O) = 1, 
and if g(x)~-0, then H(g)= 1. 

Thus we have M 0 = 1. I t  follows tha t  i f / (x)  is an admissible function, then it is a 

minimizing funct ion if and  only if I/'(x) l ~ V i - x  a.e. 
Clearly, the fact  t h a t / ( x )  is a minimizing function implies ve ry  little a b o u t / ( x ) .  

This mot ivates  the introduct ion of a.s. minimals. 
On the other  hand, suppose tha t  we have a minimizing function g(x) which belongs 

to C 1. Then the local variat ion method,  which was used in the end of the proof of  
Theorem 3.1, can be applied to g(x). This method  works also in the general case of  
variable ~o(x,y). For  instance, it can be used to derive the following result: if 

Fz(X, g(x), g'(x)).o 

for all x, then F(x, g(x), g'(x)) = M  o for all x. (This is ment ioned in [6] with a sketch 
of a proof.) This result leads us once again to the differential equation (dF/dx)" Fz = 0 
for a.s. minimals. 

Example 3. We have proved in Chapter  2 tha t  if F(x, y, z) satisfies certain condi- 
tions, then there is an a.s. minimal for every choice of the boundary  values, and we 
have also proved tha t  every a.s. minimal belongs to C 1. 

Consequently, there is a minimizing/unction in C 1. 
However,  there need not  exist a minimizing function in C 2, as can be seen f rom 

the following example: 
P u t  F(x, y, y') =y,2_cos2x, xl =Yl =0, x 2 =n7~ and Y2 =2n .  We assert tha t  

/(x)= [cos t l dt 

is the only minimizing function. Clearly, / ' (x)  >~0 and F(x, /(x), /'(x)) - 0 .  I f  H(g) <~0, 
then it follows tha t  g'(x)~/ ' (x)  a.c. This implies tha t  g(x)~/(x),  which proves our  
assertion. 

Finally, it is easy to verify tha t / " (x)  has a jump at x =ze/2 § k.~,  k = 0,1,2 ..... n - 1. 
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Example 4. Let us give a complete t rea tment  of the minimization problem if 
_F(x, y, y') = - x  § and with arbi trary boundary values. 

The case Yl =Y2 is trivial:/(x) =-Yl is the only a.s. minimal (see Theorem 10 in [1]) 
but  not the only minimizing function. 

So let us assume Yl ~ Y2. Let / (x)  be an a.s. minimal (Theorem 2.1). Since F x -  - 1 ,  
it follows (from par t  1 of the proof of Theorem 3.1) tha t  there are two possibilities: 

A) /'(x) # 0  for xl<~x<~x2, 
B) there is a number ~, xl<~$<x2, such tha t / ' ( x )  is = 0  for xl<<.x<~ and 4 0  for 

~<x<~x2. 

Consider the equation - x  § (/'(x)) 2 = cr I t  gives 

/(x) = + ~(o: + xp/2 +8. 

I f  we introduce the function 

then it follows tha t  we have 

{~ t s/~ for t~>0, 

~( t )=  for t~<O. 

/(x)= +_q~(x+~)+fi for xl <~x~x2. 

Clearly, the sign and the constants ~ and fi are uniquely determined from the boundary 
conditions. Consequently, there is a unique a.s. minimal. (This can also be seen from 
Theorem 3.2.) 

I t  is also clear t ha t / (x )  is the only minimizing function if and only if x I + :r >~ 0, 
and this holds if and only if 

l Y2 - Yll ~> ~ (x~ - x l )  a/2. (1) 

(The reader might s tudy the dependence of ~(x2 + ~) - ~ ( x l  + :r on ~.) 
We have thus proved that  there is always a unique a.s. minimal, and tha t  there is 

a unique minimizing/unction i /and  only i / the inequality (1) holds. 
I t  may  be interesting to compare and see what  Theorem 3.5 gives in this case. 

The theorem says that  there is a unique minimizing function if 

-x2 § (Y2-Y~t2> -x l ,  
\xe - xl] 

i .e.  if t Y~ - Yl [ > @2 - x l )  3/~, 

which is not too far from the condition (1). 

Example 5. So far, we have assumed that  limL~l_~ F(x,y ,  z)=  §  tha t  ~v(z)= 
F(x0, Y0, z) has a single minimum, at  z =~o(xo, Y0), and tha t  ~(z) is monotonic for 
z >w(xo, Y0) as well as for z <o~(xo, Y0). Now, let us retain the first condition but allow 
~(z) to have several minima. This example will illustrate such a case. Choose 

F(x, y, z) =y2 -4- (z 2 - 1) 2, 

x l = y l = 0 ,  x ~ = l  and Y2=0. 
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Clearly,  H( / )>0  for eve ry  a d m i s s i b l e / ( x ) .  B u t  t he re  is a sequence  {]~(x))~ r t e n d i n g  
to  zero u n i f o r m l y ,  such  tha t / 'n (x)  t akes  o n l y  t h e  va lues  _--b 1. H e n c e  l i m ~  H(/~) =0. 

Consequently, there is no minimizing/unction in spite o/ the /act that E(M) is bounded 
/or every M. T h u s  H( / )  is no  longer  lower semi -con t inuous .  
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