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Minimization problems for the functional
sup, F(x, f(x), f'(x)). (I)

By GUNNAR ARONSSON

Introduction

The present paper is a continuation of the paper [1]. This means that we shall
try to minimize the functional

H(f)=sup, F(z, f(z), '(2))

over the class F of all absolutely continuous functions f(x) which satisfy the boundary
conditions f(x,) =y, and f(z,) =¥,.

In Chapter 1 we consider the question of the existence of a minimizing function,
which was left open in [1].

In Chapter 2 some of the previous results are generalized to a wider class of func-
tions F(z,y,z): the previous condition

>0 for 2>0, >0 for z>ow(x,y),

oF . . oF
= =0 for 2=0 is changed into % =0 for z=ow(x,¥y),
<0 for z<O0, <0 for z<w(z,y).

An existence proof for absolutely minimizing functions is given in the general case.

In Chapter 3 we examine further the properties of a.s. minimals. We also consider
uniqueness questions for a.s. minimals and minimizing functions. For reasons of
simplicity, this chapter is restricted to the case w(z,y)=0.

In Chapter 4, finally, we give some examples in order to illustrate the previous
exposition.

We shall now introduce notations for some conditions on F(z,y,z). They are as-
sumed to hold for z€J and for all real y and z. Here J is an interval which will be
stated explicitly in most cases. If it is not explicitly given, then the choice of J
will be clear from the context.

1. F(z,y,z) is continuous and & F/dz exists.

>0 if z>0,
A 6———F(’;’zy’z) is {=0 if 2=0,

<0 if z2<0.
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G. ARONSSON, Minimization problems. I

2B. There is a continuous function w(z, y) such that

>0 i z>ow,y),
oF(x,y.2) .

p =0 if z=w(x,y),

<0 if z<o(e,y).
3. limy, o F2,y,2)= + oo if z and y are fixed.
The conditions 1 and 3 will be assumed to hold throughout this paper, together
with 2A or 2B.1 2A is assumed to hold in Chapter 1 and Chapter 3; in Chapter 2

we shall use the more general condition 2B. It is easy to see (using the Heine-Borel
covering theorem) that

lim ( inf F(x,y,z))= + o
12| >0 agz<f
y|<K

for every compact interval [«,f]<.J and for every K>0.

Chapter 1. The question of the existence of a minimizing function

The assumptions on F(z,y,2) in this chapter are mainly the same as in [1]. We
shall assume that the following conditions are satisfied throughout the chapter:
1, 2A and 3. The interval J will be chosen as z; <x <z,

1. We shall now give an example which shows that the existence of a minimizing
function does not follow from these properties of F(x,y,z).

A counterexample. Choose

F(z,y,2)=2%(y?+1)* —cosx —2(2m —x) cosz —p(y) (27 —@(y)),
2, =0 Zy= 271,
and
=0 y,=0.

H(f)> F(m,f(7),0) =1 +7* —@(f()) 2z —p(f (7))] > 1,

where @(y) =arctgy +m/2;

Let f€ F. We have

since 0<q(f(m)) <m. Hence H(f)>1 for all f€F. Suppose now that 0 <0 <m/2 and
consider the function

1 There is one exception: Example 5 in Chapter 4.
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ARKIV FOR MATEMATIK. Bd 6 nr 22

tg for 0<x<g-6,

4 7 3n
gs(x) = tg(g—é) for 5-—5<x<7+5,

tg(2m—x) for §§+6<x<2n.

It is easy to verify that
H(gy) = F(m,95(n),0) =1 +62

This proves that inf;.; H(f)=1 and that there is no minimizing function. Compare
the remark to Theorem 1.1.

2. It follows from this example that, in order to ensure the existence of a mini-
mizing function, we must impose suitable extra conditions on F(z,y,z). We shall
describe a few such conditions (they are separately sufficient), but we are not aiming
at a complete discussion of the question.

In each existence proof, we shall need

Lemma 1.1. Let {f ()} be a sequence of functions in F such that sup;<y<co H(f,) < oo
and supposethat f,(x) ~f(x) untformly for x, <z <x,. Then f€ F and H(f) <lim,_, , H(f,).!

Proof. Since |f,(x)| <K, and H(f,) <K, for all », it follows from the properties of
F that |f,(x)| <K, Hence all f,(z) and f(x) satisfy a uniform Lipschitz condition.
Clearly f€F, and the rest of the proof follows easily. (Use the fact that if f'(x)
exists, then we have

F (2o, f(%o), 2) = F (o, [(o)s f' (o))

for all z=f'(x,) or for all z<f'(z,), together with a continuity argument.)

Let us now return to the minimization problem and introduce the notation
My=inf;.; H(f). Suppose that {f,}i° is & minimizing sequence, i.e. lim,_, ., H(f,} =M.
If the functions f,(x) are uniformly bounded, then it follows (as above) that they are
equicontinuous, and then there is a uniformly convergent subsequence. Let the limit
function be f(x). It follows from the lemma that H(f)=M,.

Hence, in order to prove that there is a minimizing function, it is sufficient to
prove that there is a minimizing sequence of uniformly bounded functions.

In many cases, it can be seen from the function F(z,y,0) that there is a minimizing
function. This possibility is illustrated by the following theorem.

Theorem 1.1. Suppose that there is a number Y, >max (y,,y,) such that

max F(x,Y;,0)=max (F(«,Y,,0), F(B,Y,,0))

agr<B

for all « and B sotisfying @, <a<fB<z, Suppose also that there is a number
Y, <min(y,, y,) with the same property. Then there is a minimizing function.

1 In other words, the functional H(f) is lower semi-continuous.
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G. ARONSSON, Minimization problems. I1

Y, if fx)>7Y,,
Proof. Let f(x) €F and form g(x)={f(z) if Y,<fx)< Yy,
Y, if flx)<¥,.

Clearly I(g) < H(f) and the rest of the proof is obvious.

It is not difficult to find different conditions on F(z,y,0) which lead to the same
result. (For instance, F(z,y,0) increasing in y for y > Y, and all %, decreasing in y for
y<Y, and all z, are also sufficient conditions for the existence of a minimizing
function.)

3. Suppose that there is a number M > M, (M =inf;.; H(f)) such that H(f)y<M
implies that max|f(z)| <K, where K depends on M but not on f(z). Then, clearly,
every minimizing sequence is bounded and there is 8 minimizing function.

It is evident that every number M > M has this property if im ;.. F(x,y,2) =+ oo
uniformly for all x and y. But there may exist numbers M with this property even if
the limit is not uniform. We can describe the result of this section thus: if the roots
z; and z, of the equation F(x,y,z)=M do not increase too fast in absolute value
when |y| —co, then the attainable set (M) is bounded, and then there is a mini-
mizing function. For instance, it will follow from Theorem 1.2’ that there is a
minimizing function if limy|,. F(z,¥, y) = + oo uniformly in z.

Let us denote by E,(M) the set of points (z, y) such that

a) ¥, STy,
b) there is an absolutely continuous function g(f), joining the points (z;, y,) and
(x,%), such that
sup F(t, g(t), 9'(t)) < M.

The set E (M) is defined analogously, but with (x,,%,) instead of (#,7;). We are
interested in the set
E(M)y=E (M) n Ey(M).

It is clear that H(f) <M implies that max |f(x)| <K if and only if E(M) is bounded,
and in that case the constant K is determined by E(M).

We shall first examine E(M) in the case F = F(y, z). Later, we shall try to carry
over some of the results to the general case.

Using some results from [1], we can easily prove the following theorem (concerning
Dy(t), pu(f) and the integrals below, see section 2 of [1]):

Theorem 1.2, Assume that F is independent of x and that M > M.

A) E(M) is unbounded above (i.e. it contains points with arbitrarily large ordinates)
if and only if the integrals

*dt *® dt
I,= d I,=
1 f o, L—w(t)

are well-defined, convergent and

Il+12<x2—x1. (1)
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B) E(M) is unbounded below if and only if the integrals

Y1 dt Y2 dt
I,= d I,=| —x
3 f—oo - 1/)M(t) o ¢ - (I)M(t)

are well-defined, convergent and
I+ 1, <2, —a,. ()

Proof. We restrict the proof to the first part of the theorem. Assume first that E(M)
is unbounded above. Let (z, y,) € E(M) and y,>max (y,,ys). It follows from Theorem 2

in [1] that
Yo dt Yo dt
— < gy <y,
J‘yl (DM (t) xo xl and J‘lle - 1/)M (t) xz xo

If we add these inequalities and let y, tend to infinity, then we have proved one
part of the assertion. '

Next, suppose that I;-+7,<z,—z,. It follows from the discussion of “the at-
tainable cone” in section 2B of [1] that (z,y)€E (M) if z,+ I, <z <z, and y>y,.
Similarly, it follows that (z, ) € Ey(M) if o, <z <zx,— I, and y>y,.

Clearly, all points (z, -+ I, y), where y > max(y,, ¥,), belong to E(M). This completes
the proof of Theorem 1.2, since the reasoning in the case B is analogous.

A consequence of the theorem is that E(M) is bounded if and only if neither (1)
nor (2) is satisfied.

Let us now consider the general case F=F(z,y,z2). It can be “reduced” to the
previous case simply by neglecting the dependence on z. This may be considered
to be a crude method, but, nevertheless, it works in many cases.

The functions @, (y) and w,(y) were defined in [1]. Clearly, we can introduce
here the corresponding functions ®(z,y, M) and y(z,y, M). Now fix y and M and
suppose that U ={x| F(x, y,0) <M} is non-empty.

Definition: { a(y, M) =max, .y D, y, U),

ﬁ(?/,M) =ming ¢y 7/)(:”; ?/’M)'

It is easy to verify that these functions are continuous and that they are monotonic
in M, as are @y (y) and yy(y). Finally, an argumentation, similar to the one used in
the special case F = F(y,z), leads to the following result:

Theorem 1.2, Assume that M > M.
A) If E(M) is unbounded above, then the integrals

© dt ® dt
I =f — and 1 =f —_—
! ¥ ‘x(ti M) 2 Ys _ﬁ(t’ M)
are well-defined, convergent and I+ I,<zy—x,.
B) If E(M) is unbounded below, then the integrals
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G. ARONSSON, Minimization problems. 11

Y1 dt Ya dt
If"‘f_m —p, 1) “™ I“f_m @, 30)

are well-defined, convergent and I3+ I, <x,—x,.

An application of this theorem is given in Example 1 in Chapter 4. Compare also
the counterexample.

Chapter 2. A more general case. Proof of the existence of absolutely minimizing
functions -

1. In this section we shall generalize some of the previous results to a more general
class of functions F(z, y, 2).

We are not going to change the condition lim . F(2,y, 2) =+ co, which has
turned out to be very useful and which is a rather natural condition. However, the
assumption that F(zg, ¥y, 2) has a minimum at z=0 for all (z,, y,), is more restrictive,
and we shall assume instead that F(x,, ¥y, 2) has a minimum at z =w(xy,y,), where
o(x,y) is a continuous function. Compare Example 5 in Chapter 4.

Thus, let us assume that the following conditions hold throughout this chapter:
F(z,y,z)€CY; 2B and 3.

The minimization problem is meaningful, since we have

H(f)Zmax [F(zy, Y1, 021, Y1), F (@2 Yo, (%, Y5))]

for every admissible function f(z).

We shall now carry over some of the results of the paper [1] and of the previous
chapter to this more general case.

The analogues of the Theorems 5 and 6 in [1] are

Theorem 5'. Let f(x) be an admissible function such that:

a) f'(x) is continuous on I (x, <z <a,),
b) F.(z, f(z), f(x))=0 on I, or<0 on I,
o) F(z, f(z), f(x)=M on I

Then f(x) is a minimizing function* (not necessarily unigue).

Theorem 6'. Suppose that f(x) € F satisfies:
a) f'(x) is conbinuous on I (x;, <z <wp),
b) F(x, f(x), f'(x)) %0 on I,
o) Flx, f@), f (&) =M on I.

Then f(x) is a unique minimizing funétion.l

The proofs are analogous to those of the case w(z, y) =0 and they are omitted.
Lemma 4 in [1] holds in this case without changes. The proof is simple.

1 It also follows that f(x) is an a.s. minimal on I.
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A consequence of this lemma is that we can neglect sets of measure zero. This
means that we can join two functions at a finite number of points where they are
equal by taking one or the other on successive intervals. Then these points will not
affect the value of the functional for the resulting function. (This situation will
occur in the next section.)

Next, we make a jump to Theorem 9, which is carried over without changes:

Theorem 9. If f(z) is an a.s. minimal on the interval I (x, <z <), then:

1) f(x)€C' on I,
2) the differential equation

F ’
QLZ(Z)_HL)) F (2, f(@),f (@)= 0

is satisfied on I in the sense that if F,(x, f(x), f'(x)) =0 on o sub-interval I,< I, then
Flx, f(z), f (x)) is constant on I,.

We shall prove the assertions 1) and 2) under the following, weaker assumptions
on f(x):

I) f(x) satisfies a Lipschitz condition on [z, z,],

II) there is a constant K >0 such that if [¢,,¢,] is an arbitrary sub-interval of I,
then there are two (not necessarily different) minimizing functions «(z) and v(x) be-
tween (ty, f(£,)) and (f,, f(t,)) such that |u(x)| <K, |o(x)| <K and wu(z)<f(x) <v(z)
for t, <x <t,. ,

(These assumptions are satisfied if f(x) is an a.s. minimal, since we can choose
K —max,. |f(x)| and u(x) =v(z)=Hx) in that case.)

The reason why we shall prove this more general result is that it will be useful in
the next section.

Proof.r Consider an arbitrary point x, on the interval x; <x <, and suppose that
the upper and lower right-hand derivatives of f(x), « and f, are different at x,.
(Clearly, they are finite.) Choose a number y = (x,, f(%,)) such that o>y >f. The
initial-value problem F(z, g(z), ¢’(x)) =constant, g(x,)=f(x,), ¢'(%,) =y, has a solu-
tion g(x) in a neighbourhood of x,. Since « >y >, there are points x> x,, arbitrarily
close to x,, where f(x)=gp(z). But since y +w(x,, f(%,)), it follows from the condi-
tion IT and from Theorem 6’ that f(x) =@(z) on [z,, x,+0d] for some 6>0. The con-
tradiction shows that f(x) has a right-hand derivative. Similarly, it follows that f(x)
has a left-hand derivative for z; <x <z,.

Our next step is to prove that the one-sided derivatives are equal. Consider a
point x,, and assume that a=jf'(z,)* =45 =f"(x,)~. Choose a number y between o
and f. Clearly

F(xm f(xo): '}’) <max [F(x()’ f(x())’ O(,), F(xo, f(xo)’ ﬂ)]
Select a sequence of intervals {p,,q,] such that
Pn <x0 <Qn’ n—DPn -0

and z(in)_f(pn)zy
9n— Pn

1 The reasoning will be similar to the one used in [1], but not identically the same.
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G. ARONSSON, Minimization problems. 11

It is obvious that
Tim M (P gui H(pa), f02)) < Pz, (@), )

(The notation M(...) was introduced in [1].) Let us assume, for example, that o>y >f
and F(x,, f(x,), &) > F(z,, f(,), 7). Let the functions u,(x) correspond to the intervals
[P ¢:] according to IL. It follows that lim,, ., (sup, un(x)) = a. Thus

IE H(un) = F(xm f(x0)7 “)'
Consequently T o

n—>o0 n—-> oo

which is a contradiction.

The reasoning is analogous in the other cases. This proves that f'(x) exists.

Suppose now that F,(x,, f(x,), f'(x,)) 0. Then we assert that f(x) €C? in a neigh-
bourhood U of z, and that F(x, f(z), f(x)) is constant in U. This is proved in the
same way as Theorem 8 in [1]. We omit the details.

Now the only thing left to prove is that f'(x) is continuous at those points where
F(z, f(x), f'(x))=0. Assume then that f'(z,) =w(z,, f(z,)). Assume further that there
are numbers &, —z,, &, >, such that f'(£,)>f(x,)+0d. If the functions u,(x) cor-
respond to the intervals x, <z <&, according to IT, then we have sup, 4, (z) >f (z,) +J.
Hence lim,,_, oo H(u,) = F(x,, f(z,), f () +96). But this contradicts the obvious relation

Tim Mz, &a; flzo), 1(Ea) < Flao, fo), f'(2).

The other cases can be treated similarly. This completes the proof.

We have thus established some important properties of a.s. minimals. But we
have not examined the properties of minimizing functions in general. The reason
for this is evident from Example 2 in Chapter 4.

In the previous chapter we treated the question of the existence of a minimizing
function for the case w(z,y)=0. It is easy to verify that Lemma 1.1 holds in the
present case. This means that if there is a minimizing sequence of uniformly bounded
functions, then there is a minimizing function. In particular, this is true if (M) is
bounded for some M > M,.1

We shall not discuss generalizations of the other criteria in Chapter 1.

2. A problem which we have not yet discussed, is that of the existence of absolutely
minimizing functions. We shall give an existence proof for the general case.

Theorem 2.1. Assume that F(x,y,2)€ECt and satisfies the conditions 2B and 3 for
X, <x<X, and oll y,z. (Thus J =[X,,X,].)

Assume further that, for every choice of (&1,m1) and (£2,7,), there is a minimizing func-
tion between these points, and, if there are several such functions, that they are uniformly
bounded. (The bounds will depend on &, 1y, &, and ,.)

1 A sufficient condition for this is that limjs|>e F(2,¥, 2) = -+ co uniformly for all # and y.
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Then there is an absolutely minimizing function for every minimization problem in
the strip X, <z <X,, — oo <y< oo,

Proof. In order to make the proof more lucid, we shall divide it into several parts.

1) Consider the minimization problem between (z,,%;) and (z,, ¥,). Let T be the
class of minimizing functions, which, by assumption, is not empty.

Put
[u(x) = inf f(x)
Fem
and
|o(@) = sup fo)

fem

It is clear that u(z) and »(x) belong to .

Consequently there are always a smallest minimizing function u(x) and a greatest
minimizing function v(x).

2) We shall introduce two notations in order to simplify the expressions later on.

Let p(x) be a function on an interval I. Let [x,,x,] be a sub-interval of I and
consider the minimization problem between (z,, p(x;)) and (z,, p(x;)). Let u(x) be
the smallest and v(x) the greatest minimizing function, as above. We shall agree to
say that p(x) has the property 4 on I if p(z) = u(x) on [z,, x,] for every sub-interval
[#,, 2,] of I and that p(x) has the property B on [ if p(x) <v(z) on [z, x,] for every
sub-interval [z;,,] of I. (Compare subharmonic and superharmonic functions.)

3) Consider our minimization problem on an interval I with some boundary
values. It is obvious that the greatest minimizing function v(x) is not less than the
greatest minimizing function v,(2) between any two points (¢, v(t;)) and (%, v(fy)).
Similarly, the smallest minimizing function w«(z) is not greater than the smallest
minimizing function «,(x) between any two points (¢, u(t;)) and (¢, u(t,)).

4) We shall now construct an a.s. minimal. From now on, we consider a fixed
mintmization problem, namely between (z,, y,) and (z,, y,). Let G be the class of those
minimizing functions which have the property 4 on [z;,2,]. ¢ is not empty, since
the greatest minimizing function belongs to G.

We introduce the function

h(z) =inf g(x)
geq

and we assert that h{z) is an a.s. minimal.

It is clear that A(x) is a minimizing function.

5) Now let us prove that h(x) has the properties 4 and B.

I) Choose an arbitrary interval [£,, #,] and let u(z) be the smallest minimizing func-
tion between (f;, h(t;)) and (ty, A(t,)). Let g(x)€G. We assert that g(z)>u(x) on
t) S <{,. If this were not true, then there would be an interval s, <z <s, such that
u(s,) =g(s;), u(s,)=g(s;) and wu(x)>g(zx) for s, <w<s, Let u,(x) be the smallest
minimizing function between (s,, u(s;)) and (sy, u(s,)). It follows from the definition
of G that g(x) >u,(x). But we also have u(x) <u,(x). (See part 3 of the proof.) This
gives g(x) > u,(x) > u(x) and we have a contradiction.

Thus u(z) <g(z), and the inequality w(z) <h(x) follows from the definition of A(x).

This proves that k(x) has the property A.

II) Assume that A(x) has not the property B. This means that there is an interval
{t;, ;] such that the corresponding greatest minimizing funetion v(x) does not satisfy
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the inequality v(x) =h(x). It follows from part 3 of the proof that we may assume
that h(x) >w(x) for t; <x <t,. Let us form the function

h(z) for x<t,
p(x)=1v(x) for & <x<t,,
h(z) for x=1i,.

If we can prove that p(x) €G, then this will contradict the definition of A(x), since
we have p(z) <h(z) on (4, t,). It is clear that p(x) is a minimizing function on [z, z,],
and it remains to prove that p(x) has the property A. So let us consider an interval
[81,8,] and let the corresponding smallest minimizing function be u,(x). We have
uy(s1) =2(8;) <h(s;) and u,(s,) =p(s,) <h(s,). Since h(x) has the property 4, this
implies that h(z)>wu,(z). If p(&)<u,(£) for some &€(sy, s,), then we must have
P(&) =v(é) <u,y(£). Consequently there must be an interval [ry,r,] such that
v(ry) =uy(ry), v(ry) =u (ry) and o(x) <wu,(x) for r; <z <r,. Let u,(x) and v,(x) corre-
spond to this interval and these boundary values in the usual manner. Then we have

uy () Suy(z) <wy(x) <o(x).

But this contradicts the inequality v(x) <w,(z). This proves that A(x) has the pro-
perty B.

6) It is obvious that h(x) satisfies the conditions I and IT which, as we have
seen, guarantee that the assertions in Theorem 9’ are true. Thus A(x) €C' and the
differential equation

AR MO VD, o, b, (@) =0
dx
is satisfied in the sense described there.

7) We are now in a position to prove that k(z) is an a.s. minimal. Consider an
arbitrary interval i, <z <{,. Let M, be the minimum value of the functional, as
usual, and put

M= max F(z, h(z), h'(z)).
ti<z <t
We want to prove that M =M.

If F(ty, h(t;), B'(¢,)) = M, then the result follows at once, since k(x) has the properties
A and B, and the same is true for £,. So let us assume that F(t, h{ty), b'(t;)) <M
and that F(ty, h(t,), A'(,)) <M. Tt follows from part 6 that there is a number
&, t, <E<t,, such that k(&) =w(&, k(&) and F(&, k&), k' (£))=DM. Let us assume that
M=>M, ‘

This means that there is no minimizing function w(x) for which w(§)="n(&). (L.e.
(&, h(E)) ¢ B(M,).)

Let K be the class of those minimizing functions w(x), for which w(&) <h(£). (K
is not empty, see part 5.) Put k(z)=sup,.x o(x). It is clear that k(x)€K and that
k(&) <h(§).

Put

8y =sup {z|z <&, h(x)=k(z)}
and
sy =inf {z|x>§, h(x) =k(x)}.
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We introduce the function
h(z) for xx<sg,

qg(x)=1k(x) for s <x<s,,

h(x) for xz=s,.

If we can prove that q(z) €@, then this will contradict the definition of A(x), since
g(x) <h(x) on (s,, s,). (Compare part 4.) So all we have to prove is that q(x) has the
property A. Consider then an arbitrary interval [r, r,] and let u(x) be the smallest
minimizing function between (r, g(r()}) and (r,, q(r)). We have u(r;)=q(r) <h(r;)
and u(r,y) =g(r,) <h(r,). Since h(x) has the property A, it follows easily that A(zx) > u(x)
for ry <z <r,.

So if we assume that u(x,) >q(x,) for some z,, then we must have s; <x,<s, and
() =k(,).

Consequently there must be an interval (z,,#,) such that s; <p; <n9,<s,, u(n,)=
k(ny), u(ns) =k(ns) and u(x) > k(z) for 1, <z <y,.

If H(k; ny, 15) <H{u; my, n5), then we get a contradiction to the definition of u(x).

Suppose then that
‘ H (k; 171, 12) > H (u; 11, 770)-
Let us form the function
k(x) for x<wy,

ky(x) = u(x) for n,<z<7n),,

k(z) for z>u,.

Clearly, k,(x) is a minimizing function between (¢, A(¢,)) and (&, A(fy)). Further, we
have k(&) <Ah(&) (for, as we mentioned above, u{x) <h(x) for all », where wu(z) is
defined). Hence k,(x) € K. But this contradicts the definition of k(x). Hence we get
a contradiction in any case.

This completes the proof of Theorem 2.1.

3. The method of approximating a maximum by a sequence of integral mean
values is well known. In our case it means that we should consider the functional
H{(f) as the limit of the sequence of functionals

T2 1/n
H,(f)= [ ! f [F (2, {(z), f’(x))]"dx] , n=1,2,3,....

Xy — Xy

We have used this approach in [1] to derive the differential equation (dF/dx)- F,=0.
It can also be used to give a different existence proof for a.s. minimals. This is very
natural since a minimizing function in the calculus of variations automatically is
minimizing on every sub-interval. However, we shall not carry through this proof
since it is more complicated than the one already given, and since it requires stronger
conditions on F(z, y, ).

Another result which can be proved with this “integral method” is the following:
if fy(x) is the only a.s. minimal for H(f) and if f,(x) minimizes H,(f) forn=1,2,3, ...,
then lim,_, ., f,(®) =f,(x) uniformly.
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Chapter 3. Further examination of absolutely minimizing functions.
Uniqueness questions

For reasons of simplicity, this chapter will treat only the case w(z, y)=0. No
doubt, the results can be modified for the general case.

1. The following theorem gives us further information on the structure of absolutely
minimizing functions:
Theorem 3.1. Assume that F(x,y, z) satisfies these conditions:

F(z,y,z2) is an analytic function of z,y and z in a complex neighbourhood of the set
of values

T SxSw,
Y,z real;
2A and 3.
Assume further that f(x) is an absolutely minimizing function on the compact interval
T ST,
Then:

a) f(x) EC* on [x,, x,] (already proved);

b) the set {z| F(z, (), f' (%)) 0} consists of a finite number of intervals (to be proved
now);

c) the differential equation

dF(, (), ['(z))

L B, fl@), f/@) =0

is satisfied in the sense that F(x, f(x), f'(x)) s constant on each of these intervals (al-
ready proved).

Proof. In order to facilitate the further references, we divide the proof into several
parts.

1) Assume that f'(x) 40 for p <z <q and that f'(p)=f(g)=0.
Fu(p, [(p), 0)<0,

F.(q,1(q),0)=>0.

To see this, we recall that f(x) EC? on (p,q) and that F(z, f(2), f'(x)) is constant there
(Theorem 8 in {1]). So we have

Fo(w, f(@), ['(@)) + Fy(...) f'(@) + Fo (. ) f'(2) =0

for p<x<gq. Clearly, there must be points arbitrarily close to p, where f'(x) and
#'(x) have the same sign. At such a point F,(...)/"(z) >0, which gives

Fo(x, f(@), ['(@)) + Fy(...)f () <0.

Then {
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Since lim,_,, () =0, this proves the first inequality, and the second is proved
similarly (there are points arbitrarily close to ¢ where F.(...)f"(x) <0, etc.).

Now suppose that there is a number ¢ >g¢ such that f/(f) =0. Then it follows from
the above result that we can define

r=inf{z|x>q, F,(x, {(z), 0)=0},

and it follows that g<r<t. If ¢<7, then we obviously have f'(x)=0 for g<z<r
(and if g=r, then this is trivially true).
If there is a number w <p such that f'(u) =0, then we define

s=sup {z; x<p, F(z, f(x), 0)=0}.

We have f'(z)=0 for s<z<p.
Finally, we observe that

F(z, f(x),0)<0 for s<x<p,
F(z, f(x),0) =0 for g<z<r.

2) We shall give an indirect proof of the theorem. So we assume that the set
{w|x, <x <, f(x)+0} is the union of an infinite number of disjoint open inter-
vals. These intervals must have a limit-point and we may assume that it is =0.
We may also assume that f(0) =0 and that there are infinitely many such intervals
in every interval 0<x <e. Clearly f(0)=0 and F. (0, 0, 0)=0.

The function F,(z,y,0) will be important for the rest of the proof. It may be
identically zero or not. This gives us two cases and we shall start with the simplest
of them.

3) Assume that F,(x,y,0)=0. This means that we have F(x,y,0) = F(0,y,0) =¢(y),
where @(y) is analytic in a (complex) neighbourhood of y=0.

A) @(y)=-constant, i.e. F(x,y,0)=constant.

Consider an interval (p, ¢) as in 1). Put {=1(p +¢). Then we have

F, [@t), f () > F(t, [(2), 0)=F(p, f(p), 0),

which gives a contradiction.
B) @(y) = constant.
. It follows from Theorem 10 in [1]! that f(x) is monotonic, for instance non-decreas-
m%ut @'(y) +0 for 0 <y <4. Hence ¢(y) is strictly monotonic for 0 <y <4. Consider
an interval (p,q) such that 0<f(p)<f(q)<d. Then we must have @(f(p))=¢(f(g))

which gives a contradiction.

i It is clear that the condition on ¥, in Theorem 10 need only be assumed to hold for z=0.
In fact, the condition of Theorem 1.1 in this paper is sufficient if it holds for all y.
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4) Now let us assume that F (z, y, 0) £0. Clearly F (z, y, 0) is an analytic function
and we can apply Weierstrass’ preparation theorem (see [2], p. 89). In our case it
says that

Fz(x’ Y, 0) =x/‘w(.’t, ?/)\F(% y)

in a neighbourhood U of the origin. Here y is an integer >0; w(x,y) is analytic in U
and 0; W(x,y) is either =1 or of the form

Wz, y) ="+ Ay (@)y" '+ Ay(2)y" " 4+ A (2),

where the functions A4,(x) are analytic in a (sufficiently small) neighbourhood of
=0 and 4,(0)=0 for all %.

We know from 2) that F (x,y,0)=0 at the points (r, f(r)} and (s, f(s)). Therefore
we can exclude the case W= 1 and, instead, we inquire about the zeros of

Wz, y)=y™+A,(x)y™ ... + 4 ,,(%).

Let us, for the present, replace x and y by the complex variables £ and 5. We shall
try to determine 7 as a function of & from the relation ¥'(£,7) =0. We are only in-
terested in the solutions of this equation in a neighbourhood of &£ =%=0.

Consider a complex neighbourhood V of £=0 and cut it along the negative real
axis. Then every root of £ can be defined as a regular function in V, and the roots
1 of W(&, ) =0 may be written

&)= Cir(EY™Y for k=1,2,...,m.

L8

7

Concerning this expansion, see [3], p. 50; [4], pp. 98-103 and [5], Chapter XIII. (The
roots can be divided into cyclic systems, and the number » can be chosen as the
produet of the number of roots in each system.)

We may assume that £/" is real for & >0, which gives the expressions

O, n@™y, k=1,2, ..., m.

L8

J

Clearly, we need only consider those series in which C,, are real for all §. (If there
are no such series, then there is nothing left to prove.) Therefore, let us suppose that

ne(x), k=1,2,...,M,

are real for 0 <x<g, and that 5, (x) are complex (not real) for £>M and 0<wx<4.
We know from the first part of the proof that

FI(/"’ f(T), O) = FI(S, f(S), 0) =0.

Hence the points (r, f{r)) and (s, f(s)) must lie on the curves y=y,(2) if » and s are
sufficiently close to x=0.
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5) We shall now study in some detail the functions

() ““ji Cix (xlm)j = !]k(xlm)-

Here the functions g,(z) are analytic for |z| <§. Further, every g,(z) is real if z is real.
Differentiation gives
1 —_

gt for O<w<om

R | =

7 (%) = g (2V") -

Put ¢ = 2", which gives

p 1, 1
nr(x) = n g (t) g1 = @i(f).

The function g,(2) is analytic in 0<|z] <& and the singularity at z=0 is either re-
movable or a pole. We have

M e () = i ),

and this limit must be real. Tt can be + oo, —co, finite but == 0 and 0. Since f/(0) =0,
we can exclude from consideration those values of k for which we do not have 7;(0) =0.
Therefore we can assume that ¢,(z) is analytic for |z| <4.

A consequence of this is that there is a 6, >0 such that ¢,(z) +0 for 0<<|z| <6,,
unless ¢,(z) =0. From the-relation #,(x) =¢,(x/"), we can infer a corresponding result
for 7y (x).

Now let us compare the functions 1, (x) =g,(t) and 5,(x) =g,(¢). The functions g,(z)
and g,(z) are analytic and not identical. Hence there must exist a d,>0 such that

9i(2) #=gi(z) for 0<|z| <d,.

This gives a corresponding result for 7,(z) and #,(z).
We have found that n,(x) =g,(zV/") and 5;(x) =@ (xV"), where g,(z) and @, (z) are
analytic for |z| <. Let us write 22/"=t, as above. This gives

F(w, my(x), 0) = F(", gi(t), 0) =u(t)
and F(x, mi(@), niu(@) = F (£, glt), gilt) =0(t).

Clearly, the functions u(z) and v(z) are analytic in a neighbourhood of z=0. Hence
there is a ,>0 such that each of the functions F(xz, n,(x), 0} and F(z, 7,(»), nx(x))
is either increasing, constant or decreasing on the whole interval 0 <z <§,.

We have excluded those functions #,(x), for which we did not have 7;(0) =0. After
a renumbering, we have n,(x), k=1, 2, ..., P, left.

If we collect our results, then we see that there exist numbers o. >0 and v, such that:

a) 1(x) #(x) if 0<x<w« and k=I. This means that one of the functions 7,(x)
is smallest and one is greatest on the whole interval 0 <z <a.

b) 7,(x) €C" on 0 <z <o and 7,(0) =#,(0) =0. If n,(z) £ 0, thenz,(x) +0 for 0 <z <a.

c) If we have p, ¢, 7 and s ag in 1) and 0 <s <r <«, then f(r) =7,(r) for some k<P
and f(s) =,,(s) for some k, <P,
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d) Every function F(z,7,(z),0) is either constant or strictly monotonic on
0 <z <a. The same is true for F(z, n(x), ni(z)) (L <k<P).

6) We are interested only in those functions 1,(x) for which one of the relations
under c) above really occurs on the interval 0 <z <a. If we exclude the others, then
we get (after a renumbering) the functions (), k=1, 2, ..., N, left. This does not
affect the validity of the summary a)-d).

If N =1 and #,(x) =0, then we get a contradiction at once and there is nothing left
to prove.

If this is not the case, then the greatest of the functions n,(x) is >0 (for 0 <z <«)
or the smallest is <0.

Let us choose the first case and let #,(x) be the function in question. Then #y(x) >0
and () >0 on 0<z<a.

Tt follows from our choice of 7y(x) that there is an interval (py, g,) such that f(ry) =

7n(re). We have thus
, 1(go) =f(ro) =nw(ro); 1(20)=0
and (@) >0.

Hence f(x) >ny(z) for ¢,—0<x<g, But we also have f(p,) =(sy) <nn(so) (oWing
to our choice of ny(x)) and f(p,)=0. Hence f(x) <zy(x) for p,<z<p,+d;. Conse-
quently there must be a &, p,<&<gq, such that f(&)=ny(§) and (&) =nn(&)>0.

Now assume first that F(z, ny(x), 0) is constant or decreasing. Then we have

F(&, nu(&), 0)= F(ro, nu(re), 0) = Figo, f(g0), 0)-

(See the first part of the proof.) This gives

F(&, {(&), F () > F(qo, 1(40): 0),
which is a contradiction.

Assume then that F(x, 7,(x), 0) is increasing. An obvious consequence of this is
that F(z, 7y(z), 7v(x)) is increasing. Let us now consider the minimization problem
between the points @, =y, =0 and x, =&, y,=f(&) =nn(§). Since f(z) is an absolute
minimal, we have

M,=H(f)=F (&, f(§), (&)
But F(z, ny, ny) is increasing, which gives

My <H(ny) = FE (&) nu(€)) <H(f) =M.
Thus H(ny) =M, and y(z) is also a minimizing function.

Choose a function ¢(z) EC! on 0 <x<¢ such that $(0) =4(£) =0 and ¢'(§) <0. Form
the function g(z) =ny(x) +A¢(x), where 1 >0 is a parameter. We have

F(x, g(x), g'()) = F(, ny(z), ny(@)) + Aa()$(@) +b@)¢'(2)) + B(x, ).

Here a(x) = F,(x, ny(x), ny(®)) and b(x) = F(z, ny(x), ny(@)) and | B(z, 4)| < CA* where
C is independent of x and 4, if 0<<A<1.

Now, recalling the fact that F(x, 7y, ny) takes its maximum only at x=& and
that F,(&, ny(E), nx(€)) >0, it is easy to verify that H(g) <H(ny), if A is small enough.
This gives H(g) <M, which is a contradiction. This completes the proof.
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2. This section will treat briefly the question of uniqueness for a.s. minimals. It
will be shown by examples that there may be several a.s. minimals for a given mini-
mization problem. A few sufficient conditions for uniqueness will also be given.

2
Choose F(x,y,2)= W +2%

r=-2, y,=0, z,=2 and y,=0.

It follows from Theorem 2.1 that there is an a.s. minimal f(z). Clearly, g(x) = —f( —)
is also an a.s. minimal. Now, if there is a unique a.s. minimal, then we get —f(—x)=
f(=), i.e. f(0)=0. Consequently M,> F(0,0,0)=2.

2—x for =0,

242 for 2<0.

Clearly H(R)=2/9-+1<2.

The contradiction shows that there is no unique a.s. minimal. (This situation can
be described thus: every minimizing function must evade the maximum at x=y =0,
which, owing to the symmetry, leads to non-uniqueness.)

Put F(z,y,2)=y>+22 and let f,(z) be defined as in Example 3 in [1]. We know
that all functions pfy(x +¢)(p, ¢ are constants) are a.s. minimals. It is evident that
there are infinitely many a.s. minimals if y, = —y, =0 and z, —, >7.

It follows from this example that there may be several a.s. minimals even if
F(x,y,2)is convex in y and z. In the calculus of variations, this condition leads to
uniqueness (for all boundary valtues). It follows from this example that the condition
{#1 —C)(y, —C) =0 in Theorem 3.3 cannot be omitted.

These examples show that extra conditions on F(z, y, z) or on the boundary values
must be added to our usual ones in order to secure uniqueness. Two ways to do this
are shown by the following theorems:

Theorem 3.2. Assume that F(x,y,z) satisfies the conditions of Theorem 2.1, with
o(z, y)=0. Then, as we know from that theorem, there is at least one a.s. minimal for
every choice of (zy, y,) and (x, ¥,).

Assume now that

oF (x, y, 0)

ax—#o for all x and y.

Then there is @ UNIQUE a.s. minimal for every choice of (xy, y,) and (2, Ys).

Proof. We assume that F,(x,y,0)>0. We may also assume that y; <y, (the case
¥1 >y, is analogous and the case y, =y, is trivial). Let f(z) be an a.s. minimal. If
f' () >0 for z, <z <z,, then the assertion follows from the Theorems 6 and 9 in [1].
If f'(x) =0 for some w, then it follows from part 1 of the proof of Theorem 3.1 that
there is a number &, 2; <& <x,, such that

>0 for z;<z<§,

=0 for é<z<uz,.

f(z) is {
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If g(x) is a different a.s. minimal, then the same reasoning holds for g(x). Let &'
correspond to g{x). Assume that & <&. This gives ¢g'(x;) > f'(2,) and

My =F(zy, yy, (1) < F (%1, 42, §' (%)) = M.
But we also have
MIZF(E’ Y2, 0) >F(, Ya> 0)=2M,.
The contradiction proves the theorem.

Theorem 3.3. Assume that F(x,y,z) satisfies these conditions:

F(z,y,2) is analytic, as in Theorem 3.1;
24 and 3;

the condition concerning existence and boundedness of minimizing functions, which
was given tn Theorem 2.1;

>0 if y>0C,
6—_F(9;,yy, ?) s 1=0 if y=0C,
<0 f y<C,

(C is a constant);
F(x, 2y, +(1 —A)yy, A2y + (1 —2A)29) SAF(x, Yy, 21) + (1 — 1) F(, Yy, 2,)

for all x, y;, ys, 2, and z, and for all J such that 0<A<1, equality holds if and only if
Yr=Ys and 2, =2,. .

We consider the minimization problem between (%y,y,) and (X, ¥,). We assume that
the boundary values satisfy the inequality

(¥ —~C)(y,— ) >0.
Then there is @ UNIQUE a.s. minimal between (xy, y;) ond (%, Ys)-

The proof is omitted, since it is rather laborious and since the result is not used in
this paper.

3. In the previous section, we discussed the uniqueness question for a.s. minimals.
We shall now briefly consider the same question for minimizing functions. The
following theorem shows that those functions F(z,y,z), for which every minimization
problem has a unique solution, constitute a very “small” class.

Theorem 3.4. Let F(x, y, 2) satisfy the following conditions for X, <ax <X, and all y,z:

F(z,y,2)€C?;

2A and 3;

the condition concerning existence and boundedness of minimizing functions which
was given in Theorem 2.1.

We consider the minimization problem between (x,,y) and (z,, ¥5) (Xy <z, <z <X,).

Then there is a UNIQUE minimizing function for every choice of x;, y;, xy and y,
if and only if
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F(z, y, 0)=constant.

Proof. 1) Suppose that F(z,y, 0) =constant. Consider the minimization problem
between (x;,y;) and (z,, ¥,). We know that there is an a.s. minimal f(x) and we know
that f(x) € CL

If f'(x) +0 for @, <z <, then it follows from Theorem 8 and Theorem 6 in [1] that
f(x) is a unique minimizing function. .

If there is an « such that f'(«) =0, then f'(x) =0. In order to see that, suppose that
f'(B) =0 for some §>a. Put

y=sup{z|r<p, f(x)=0}.
FB, 1(B), 1(B))>F (B, {(B), 0)=F(y, {(y), 0).

But this contradicts the relation F(z, f, f') =constant which holds on every interval
where f'(x) +0.

So we have f(x)=y,(=ys,). If g(x) is an admissible function and ¢'(£) =0 for some
&, then we get

Then we get

Hig)=>F(& g(8), g'(€)) > F&, g(§), 0) = H(f),

and we have proved one half of the theorem.

2) Suppose now that there is a unique minimizing function for every choice of
Ty, Ty, Yy and y,.

It Fi(z,9,,0)+0, then we choose y,=y, and x, such that F,(z,y,,0)=0 for
x, Sz <, Clearly, f(x)=y, is a minimizing function, but not the only one. This
proves that F,(x,y, 0)=0.

If Fy(x,4,,0)+0, then we choose y,=y, and x, such that F,(z,vy,, 0)==0 for
# S <2y We shall prove that f(x) =y, is not the only minimizing function.

It is no restriction to assume that z; =y, =0 and F,(0,0,0) <0. Consider the func-
tion y =ax? where o> 0 is a constant. Taylors formula gives

F(x,a2?, 20) = F(z, 0, 0) + ax®F,(x, 0, 0)
+ (o2, (x, 0- ox?, 0-20x)
+2-aa? 20 F, (...) + 4222, (...)).

If we consider a suitable neighbourhood of the origin and assume that 0<a <1,
then F,(2,0,0)<—K <0, and the modulus of the expression in brackets is not
greater than K, -a2-22, where K and K, are independent of « and a.

This means that

F(z,0x?, 202) <F(x,0,0) — K- or?-+ K, 2222 = F(z, 0, 0) — ax*(K — aK,).

If we choose « so small that K —aK, >0, then we have F(z, aa?, 20) < F(z,0,0) for
0<z <4, for some §>0.

A similar construction can be carried through for (x,, y,), and the rest of the proof
is obvious.

Therefore, if F(x,y,0) is not constant, then we must impose conditions on the
boundary values in order to secure uniqueness. The following theorem illustrates
this possibility.
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Theorem 3.5. Assume that F(x,y, ) satisfies these conditions:

Fx,y,2)€0;
2A and 3;

the condition concerning existence and boundedness of minimizing functions which
was given in Theorem 2.1;

F
either 8_(92,;,_0)> 0 for all (z,y) or <O for all (x,y).

Let us denote the admissible linear function by l(x). Finally, we assume that

min P(z, l(x),U'(x))> max F(z,y,0),
< T<Ls (r,y)eK
<<
where K is the set { ! 2
NSYSY Y ZY>Ys).

Then there is a unique minimizing funciion f(x). Moreover, f'(x) +0 for x, <x <.

Proof. We know that there is an a.s. minimal f(z) €CL If f'(x) =0 for some z, then
it follows from the Theorems 9 and 10 (with a trivial change) in [1] that

M,< max F(z,y,0).

(r,y)eK

But it was proved in Lemma 5 in [1] that M>min, <,<,, Pz, i), I'(z)). So the as-
sumption that f'(z)=0 for some x leads to a contradiction. Finally, it follows from
Theorem 6 in [1] that f(x) is a unique minimizing function.

Remark. Tt is easy to find new results of the same type by using new estimates.
It should be mentioned here that the inequality

M,> inf F(z,g(x), 9 (x))

TISTET,

holds for every admissible monotonic function g(x)€C* (compare Lemma 5 in [1]).
This gives
Myzsup [ inf F(=,g(2),¢'(2))],

g@) Z1<TET:

where the supremum is taken over all such functions.
It is also clear that the condition on F, in the theorem can be replaced by the
condition in Theorem 1.1 (in this case assumed to hold for all ).

Chapter 4. Comments and examples
In this chapter, we shall illustrate some of the theorems by means of examples.
Example 1. Suppose that
F(z,y,2)=06(z, y) + Ay*+ By + 2,

where G{(x,y) is continuous and bounded from below and 4, B are constants.
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Is there a minimizing function? We shall apply Theorem 1.2’. Formal calculation
gives
{ D(w, y, M) = + (M — Gz, y) — Ay*— By)'”,

W@, y, M) = —(M —G(x, y) - Ay? — By)"/2.

If «(y, M) is defined for y=>y,, then we see from the expression for ®(x,y, M) that
a(y, M)=0(y), when y >+ co. Hence the integral I, in Theorem 1.2" cannot exist
finite. It follows in the same way that none of the integrals I,, I and I, can exist
finite.

So we can conclude that E(M) is bounded for all M. Consequently there is a mini-
mizing function for every choice of z,, z,, ¥, and y,.

Example 2. We have not studied the properties of minimizing functions in general,
we have only studied the special cases of a.s. minimals and unique minimizing func-
tions. The reason for this is clear from the following example:

Choose F(x,y,y’) =x +y'2, 2, =y, =0, z, =1 and y, =0. This gives M > F(x,,9,,0) =1,
and if g(z) =0, then H(g)=1.

Thus we have My=1. It follows that if f(x) is an admissible function, then it is a
minimizing function if and only if |f'(z)| <V1-zae.

Clearly, the fact that f(») is a minimizing function implies very little about f(x).
This motivates the introduction of a.s. minimals.

On the other hand, suppose that we have a minimizing function g(x) which belongs
to O'. Then the local variation method, which was used in the end of the proof of
Theorem 3.1, can be applied to g(x). This method works also in the general case of
variable w(z,y). For instance, it can be used to derive the following result: if

F (z, g(x), g'(x)) +0

for all z, then F(z, g(z), g’(x)) = M, for all z. (This is mentioned in [6] with a sketch
of a proof.) This result leads us once again to the differential equation (d F/dx)- F,=0
for a.s. minimals.

Ezxample 3. We have proved in Chapter 2 that if F(z,y, #) satisfies certain condi-
tions, then there is an a.s. minimal for every choice of the boundary values, and we
have also proved that every a.s. minimal belongs to C*.

Consequently, there is a minimizing function in C.

However, there need not exist a minimizing function in C? as can be seen from
the following example:

Put F(z,y,y')=y"?—cos?x, 2, =y, =0, x,=nm and y,=2n. We assert that

flx)= le cos | dt

is the only minimizing function. Clearly, f'(z) >0 and F(z, f(x), f ()) =0. If H(g) <0,
then it follows that g'(x) <{'(z) a.e. This implies that g(x)=f(x), which proves our
assertion.

Finally, it is easy to verify that f”(z) has a jump at x=7/2+%k-#n, k=0,1,2,...,n—1.
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Example 4. Let us give a complete treatment of the minimization problem if
F(zx,y,y')= —x+y'? and with arbitrary boundary values.

The case y, =y, is trivial: f(x) =y, is the only a.s. minimal (see Theorem 10 in [1])
but not the only minimizing function.

So let us assume y; 4= ,. Let f(z) be an a.s. minimal (Theorem 2.1). Since ¥, = —1,
it follows (from part 1 of the proof of Theorem 3.1) that there are two possibilities:

A) f(x) 0 for o, <z <z,
B) there is a number &, &, <& <x,, such that f'(z) is =0 for z; <z <§ and =0 for
E<a<w,.

Consider the equation —xz4-(f'(x))? =«. It gives

flx) = £ 3(a-+2)32+ .

If we introduce the function
o= 22 for t=0,
? 0 for t<0.
then it follows that we have
flx)=Fplxt+o)+p for x<zx<uw,

Clearly, the sign and the constants « and 8 are uniquely determined from the boundary
conditions. Consequently, there is a unique a.s. minimal. (This can also be seen from
Theorem 3.2.)

It is also clear that f(z) is the only minimizing function if and only if x; +« >0,
and this holds if and only if

I?/z_?/ll >3 (xz_%)g/z' (1)

(The reader might study the dependence of g(x,+«) —@(r; + o) on a«.)

We have thus proved that there is always a unique a.s. minimal, and that there is
a unique minimizing function if and only if the inequality (1) holds.

It may be interesting to compare and see what Theorem 3.5 gives in this case.
The theorem says that there is a unique minimizing function if

_ 2
—x, T Y2~ % > —xy,
Xy — T

ie. if | Yo~ Y1 |> (2y— ),

which is not too far from the condition (1).

Example 5. So far, we have assumed that lim, ., . F(z,y, 2) =+ oo, that ¢(z) =
F(xy, yg,2) has a single minimum, at z=w(®y, y,), and that ¢(z) is monotonic for
2> w(%y, Yo) as well as for z<w(x,, y,). Now, let us retain the first condition but allow
@(z) to have several minima. This example will illustrate such a case. Choose

F(x7 Y, Z) :y2+(z2—1)23
xy=y,=0, x,=1 and y,=0.
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Clearly, H(f)>0 for every admissible f(z). But there is a sequence {f,(z)}{°, tending
to zero uniformly, such that f,(z) takes only the values + 1. Hence lim,_, .. H(f,)=0.

Consequently, there is no minimizing function in spite of the fact that E(M) is bounded
for every M. Thus H(f) is no longer lower semi-continuous.
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