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Convergence and invariance questions for point systems in R,
under random motion

By TorBJORN THEDEEN

ABSTRACT

In section 2 we introduce and study the independence property for a sequence of two-dimen-
sional random variables and by means of this property we define independent motion in section 3.
Section 4 is mainly a survey of known results about the convergence of the spatial distribution
of the point system as the time £ co. In theorem 5.1 we show that the only distributions which
are time-invariant under given reversible motion of non-degenerated type are the weighted
Poisson ones. Lastly in section 6 we study a more general type of random motion where the
position of a point after translation is a function f of its original position and its motion ability.
‘We consider functions f which are monotone in the starting position. Limiting ourselves to the
case when the point system initially is weighted Poisson distributed with independent motion
abilities, we prove in theorem 6.1 that this is the case also after the translations, if and only if
the function f is linear in the starting position. In the paper also some implications of our results
to the theory of road traffic with free overtaking are given.

1. Introduction

In the study of road traffic the simpliest case is when the cars can overtake and
meet each other without delay. The following so-called isoveloxic model for traffic
(see F. Haight [8] pp. 114-123) has been proposed for this case.!

The cars are considered as points on an infinite road with no intersections. They
can overtake and meet each other without delay and they will forever maintain
their once chosen speeds. The trajectories in the road-time diagram will thus be
lines. The initial speeds are independent and identically distributed random variables
and they are also independent of the initial positions of the cars.

It has been shown that under rather weak conditions the spatial distribution of
the cars will tend to a weighted Poisson distribution (as defined in section 2) as the
time £—>oco (see ref. [1], [2], [4], [10] and [12]). Further if the initial positions are
weighted Poisson distributed the spatial distribution and the independence condi-
tions imposed at £ =0 are conserved for all #>>0 (see corollary 6.1). If now the model
should be time-invariant, i.e. the spatial distribution and the independence condi-
tions imposed at {=0 are conserved for all £>>0 it will be shown that the spatial
distribution must be a weighted Poisson one. It has also been possible to somewhat
relax the constant speed assumption.

! The model description is taken from T. Thedéen [11].
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T. THEDEEN, Convergence and invariance quesiions for point systems

After some introductory studies in sections 2-3, section 4, gives a short survey
of the convergence of the point system and its set of motion as t—co. In section 5
we shall give some results about the time-invariance of the spatial distribution of a
point system under what we will call reversible independent motion. These results
contain as a special case (corollary 5.1) the above mentioned one about time-invariant
distributions in the constant speed case. Lastly in section 6 we shall study another
type of independent motion conserving weighted Poisson distributions for the point
system,

The investigations will be restricted to point systems in R, because of the traffic-
theoretical background of the problems. However it is clear that with some modifica-
tions corresponding results can be proved for point systems in R,.

Lastly it should be remarked that the results of sections 5 and 6 in the special
case of constant speeds were presented by the author at The Third International
Symposium on the Theory of Traffic Flow in New York 1965 (see T. Thedéen [11]).

2. Preliminaries

Let {Z,} be a sequence of random variables (r.v.’s). For any Borel set B let
N(B) =number (no.) of Z,€B.

We shall say that {Z,} has no finife limit point if for any finite interval I the r.v.
N(I) is proper, i.e.
P(N(I)<co) =1.

Let us assume that this is the case. Then we can associate to {Z,} a counting process
N(z)! defined by
no. of Z,€(0, x], x>0

N(z) =10, z=0
—no. of Z,€(x,0], 2<0.

Then almost surely (a.s.) the sample functions of such a counting process are non-
decreasing integer-valued stepfunctions with integer-valued jumps. Let now {Z,}
be the sequence of positions for points in R;. We shall say that one or more points
form a cluster if they have the same positions. This in turn corresponds to a jump
of the counting process N(x). The size of the cluster is equal to the size of the corre-
sponding jump of N(x). To the sequence {Z,} then corresponds a sequence of clusters
characterized by their positions and sizes. We can a.s. order the clusters after their
positions thus getting the ordered cluster positions

L2 <D KO<ZM < ZB <,

The size of a cluster with position Z® will be called N,. Thus to a sequence {Z,}
with no finite limit point corresponds a counting process N(x) and a sequence
{(Z®, N,)}. The distribution of N(x) and {(Z%, N,)} is given by the distribution
of (N(I,), ...., N(I,)) for any finite set of disjoint finite intervals I,, ..., I}, (open,

1 To simplify the notation we shall use N(*) in two senses where the actual meaning will be
clear from the argument used. Notice e.g. the difference between N(x) and N({x}).
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semi-closed or closed). (This can be shown by the same method as in Doob [5] p.
403.) This distribution is in turn given by the generating function (g.f.).

k

. . - N

@Sy, ey 85 Iy oo, I)=E [T &%
i—1

7

Now the indexing of a sequence {Z,} may depend on the sizes of the r.v.’s Z,. Thus
two sequences {Z,} and {Z,} can have different distributions but their correspond-
ing counting processes can nevertheless have the same distribution. We shall some-
what inadequately characterize the distribution of {Z,} by that of N(x) (or {(Z®,
N} Let I, ..., I, be any disjoint finite intervals. The following distributions given
by their g.f.’s will be of interest in the following.

The distribution corresponding to a Poisson procesS
k
P81 o ees 85 Iy ooy )= Hlexp {AL|(s,— 1)}
i-

where |I;| is the length of I; and 1 a positive constant. We shall then say that
{Z,} is Poisson distributed (with the parameter 1).

The distribution corresponding to a weighted Poisson process

w K
(p(slr cees S 117 -":I}c) :f H exp {}"I]f('g]_ l}dW(l)
j=1

0

where W(4) is a distribution function (d.f.) on (0, cc). We shall then say that {Z,}
is weighted Poisson distributed (with the parameter d.f. W(4)).

If {Z,} has any of these distributions then a.s. all the clusters have the size one.
In the following case clusters of larger sizes are possible.

The distribution corresponding to a weighted compound Poisson process
o k
@(S1s oer 85 Iy ooy I)=|  TT exp {4|L;|(atsp) — 1)dW (1)
0 j-1

where «(s) is the g.f. of a positive integer-valued r.v. and W(4) a d.f. on (0,0). We
shall then say that {Z,} is weighted compound Poisson distributed.

Let us now consider a sequence {(Z,, V,)} where {Z,} has no finite limit point
and {V,} is a sequence of r.v.’s. By ordering the clusters of {Z,} by position and
the r.v.’s V, in the clusters by size we get the sequence {(Z®), N,; V%, ..., Vi))}
where VP <...<VP.

Definition 2.1. Let {(Z,, V,)} and {(Z,, V,)} be such that {Z,} and {Z,} have no
finite limit points. {(Z,, V,)} and {(Z,, V.)} are said to have the same distribution bz,u‘
for indexing if the associated sequences {(Z®), Ny; V{®, .., Vid)} and {(Z'%, Ni;
Vi, .., Vi) have the same distributions.
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T. THEDEEN, Convergence and invariance questions for point systems

In the following sections we shall often consider sequences of the type {(Z,, V,)}.
We shall see that two such sequences having the same distribution but for indexing
can replace each other in the problems to be considered without changing the results.
With this remark in mind we shall now introduce the independence property of

{(Zs, Vo)

Definition 2.2. Let {(Z,, V,)} be a sequence of r.v.’s, where {Z,} has no finite limit
point, such that
() {Z,} and {V,} are independent and
(i) {V.} is a sequence of independent identically distributed (i.i.d.) r.v.’s with the
common d.f. F(v).
The sequence {(Z,, V,)} has the independence property with the d.f. F(v) if
{(Zy, V.)} and {(Z,, V,)} has the same distribution but for indexing.

For any Borel set B in R, let
M(B) =no. of (Z,, V,)€B

and denote the g.f. of (M(B,), ..., M(B,)) by ¢(sy, ..., 8; By, ..., B,) where By, ..., B,
are Borel sets in R,. The folowing lemma gives an equivalent characterization of
the independence property. Let for any d.f. F(x)

F)= f dF (z),
A
A Borel set.

Lemma 2.1. {(Z,, V,)} where {Z,} has no finite limit point has the independence
property with the d.f. F(v) if and only if for any disjoint finite intervals I,, ..., I, and
for any dusjoint Borel sets By, ..., By, with Ui, By, =Ry, =1, ..., k the g.f.

W(8115 «ovs Sinys ooos Sk1s oo Sknges Ly X Bygy ey Iy X Bngs voes I X By, ooy Iy X Bieg) =

=@P(P11S11+ -+ T PrnaStns or PieaSier + ooe + DienaSienes Lay o5 L) (2.1)
where

Py =F(B,;),v=1,..,n,7=1, ..,k

Proof. Necessity. The sequence {(Z,, V,)} of definition 2.2 determines g.f.’s v
and ¢ which fulfil (2.1). Further {(Z,, V,)} and {(Z,, V,)} have the same distribu-
tion but for indexing and thus determine equal g.f.’s  and ¢. Then the g.f.’s given
by {(Z,, V,)} also fulfil (2.1).

Sufficiency. In the proof we shall use an idea from Doob [5] p. 403. Now {Z,}
has no finite limit point. Then to the sequence {(Z,, V,)} corresponds another se-
quence {(ZV, N; VY, ..., Vi)}. We have to prove that this last sequence has the
same distribution as the sequence {(Z\), N Vi?, ..., Vi")} of definition 2.2. This
is the case if and only if any finite set of r.v.’s from the sequence {(Z‘, N; Vi, ...,
V{3 has the same distribution as the corresponding set from the sequence

{Z9, Ny V1P, .., Vi)}. It is easily seen that it is no restriction to choose the r.v.’s
from {(Z), N;; V{, ..., V¥)} with consecutive indexes (j). In order to avoid nota-

tional complications we shall here consider only positive indexes and choose the
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indexes 1, ..., k. (The case with some negative indexes can be treated in the same
way.) Let for any Borel set B in R,

2;(B)=no. of V{’€B
% (B)=no. of V,€B

The distribution of (2, N;; V{, .., V{,j=1, ..., k) is determined by that of
(Z9D, N xi(Bi)s - 2(Biny), 1=1, ..., k) for all disjoint Borel sets Bj, j=1, ..., k,
U7, B;,=E,. Thus we have to prove that (ZD, N;; 4{(B1)s -r x{(Bmy), 1=1, ..., k)
has the same distribution as (Z“) N x,(Bﬂ) o 2i(Bin), §=1, ..., k). Let now
O=z,<z,<.. <z,c and let o;,, =1, ..., n;, j=1, ..., k be non- negatwe integers with
Zv—l ap=n;j=1, .., k Put

k
]J .. Olj paﬂ ) 7(?‘7].
It is easily seen from the definition 2.2 that P(Z‘“<z N;=n;, y;(B;,)=a;,, v=
1, .., ny5=1, .., k) P(Z”’ <z, Nj=mn; §=1, ..., k)-p(a).
The sufflelency of (2.1) is proved if

P =P(Z9<z;, N;=n;, 1,(B;,),v=1, ., n;, 1=1, ..., k)
—P(ZD <z, Ny=ny, j=1, ., B)pla)  (2.2)

Let us for j=1, ..., k divide the interval (z;_,, z,) into n intervals of equal length
I,=(a,,b,), v=n(j—1)+1, ..., nj, where the intervals are numbered from left to
right. Note that

max |1,|<z/n 2.3

1<v<kn

Put further
A={g(By)=a;, v=1, ..,n;, =1, .., k}

Then approximating P by the probability in the case when no Z¢”’s fall in the same
I, we get
|P— > P(ZP€l,;, Ny=n;, j=1,....k, Z*"Ve'L,; 4|

1<, <wg
vigjn,j=1. e k

k kn
<> > Pzvel, Z9vel,)
j=1 p=1

From (2.3) and the fact that 0<ZM <...<Z*™D we get

k kn

3
> > PZ"el, Z9vel)< Z P(Z%Y — ZD| < z,/n) =0, n—> 00 2.9

j=1»=1

Thus
P=lim > PZYEL

vj’
n—>o P1<...<0g
y<in, j=1, ...k

Ny=n,j=1,....k Z%*Ve'l,; A)

(2.5)
and in the same way we find that
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T. THEDEEN, Convergence and invariance questions for point systems
P(ZD <z, N;=n;,5=1,...,k)
=lim > PZ9el, Ny=n;j=1,.... k zZ%ver, (2.6)

n->00 V<. <V
VI, j=1s cems K

We shall now estimate the summands of (2.5) and (2.6). Put b,, =0. Let us approxi-
mate

P(Z9€elLy;, Ny=n;, j=1, .., k; Z¥V € L,,; 4) by
PN({(by_ys av]) =0, M(Ly; < By} = o5, p=1, ..., np, j=1, ..., k) (2.7
From (2.1) we get
P(N((bs;_,, an]) = 0, M(Ly;x By,) = o5, p=1, ooy my, =1, ..., k)=
P(N((by;_,, 0]} =0, N(Ly)=m;, j=1, ..., k).p(e) (2.8)
Combining (2.7), (2.8) with (2.5) we get

P=p(x) lim > ) PN{(b,, ;, 0,))=0, NL,)=n;, j=1,....k) (2.9)
By iR G STy K

in the same way as we got (2.4).
Let us further approximate

P(ZNeL, N;=n;, j=1, ...k Z* V€L, by
P(N((by;_,, 0,])) =0, N(L;)=n;, 1=1, ..., k) (2.10)
Using (2.4) we get from (2.10) and (2.6) that

PZD <z, Ny=mn,;, j=1, ..., k)
=lim S PW((by a D=0, Nd)=n,i=1,...k)  @ID

N-»00 1< <VE
<IN, §=1, ok

(2.9) and (2.11) proves (2.2) and thus the sufficiency of (2.1) is shown.
A weaker type of independence property is given by the following.

Definition 2.3. 4 sequence {(Z,, V,)} where {Z,} has no finite limit point has the
weak independence property with the d.f. F(v) if for any Borel sets By, ..., By and any
dusjoint finite intervals I, ..., I,

Y(S115 S18s - Skt Skgs L1 X By, Iy x Bn vy Ty By, I % Ek)
= @(P1811 + Q1819 - St + WeSuas L1 oo L)

where p;=F(B)), ¢;=1—p, =1, ..., k.

The relation between the independence property and the weak independence
property is given by the following
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Lemma 2.2, Let {(Z,, V,)} be a sequence with {Z,} having no finite limst point. Then

() if {(Z,, V,)} has the independence property with the d.f. F(v) it also has the weak
independence property with the d.f. F(v)

(ii) if no two of the Z,’s are equal with positive probability the weak independence
property with the d.f. F(v) implies the independence property with the d.f. F(v)

Proof. (i) follows at once from lemma 2.1. Let now {(Z,, V,}} have the weak inde-
pendence property with the d.f. F(v) and suppose that no two of the Z,’s are equal
with positive probability. Then

P(N,=1,k=+1, +2,..) =

and using the same technique as in the sufficiency part of lemma 2.1, (i) can be
proved.

Denote by ¢(sy, ..., 8; By, ..., By) the g.f. of N(By), ..., N(By), where B, ..., By
are Borel sets in R;.

The case when {Z,} is weighted Poisson distributed and {(Z,, V,)} has the inde-
pendence property will be of particular interest in the sequel. Lemma 2.4 will give
a characterization of this case. In the proof of that lemma we shall need the following

Lemma 2.3. Let {Z,} be weighted Poisson distributed with the parameter d.f. W(A).
Let further By, ..., B, be disjoint Borel sets in R, with finite Lebesgue measures pu(B;),
s 4{By). Then

=] k
@1y ey Si; By, oo, B = f exp {l > uwB) (s;— l)} aw Q)
0 -1

Remark. This simple lemma may be found in the literature but since the same
technique will be used in the proof of lemma 2.4 the proof will be given below.

Proof. Let us first consider the case k=1. Let B be a Borel set with u(B)<oco.
We shall prove that N(B) has the g.f.

o B)y=q@p(s; B)= f exp {AuB) (s— D}dWQ). 2.12)
0

(2.12) is easily seen to hold for B=U;2; I, where I; =1,2 ... are disjoint inter-
vals with 332, u(I,)<oco. Let J be the class of all intervals (open, semiclosed and
closed). We know that

(B)~1nf{2‘u BCUIJ,IjﬂIk ¢, j+k L€, j=1,2,...}.
Thus given any & >0 there is a sequence of disjoint intervals {I,} such that
Bc UI,, Bs= UI —B where u(Bs)<9.
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In the same way we see that there is a sequence of disjoint intervals {I;} such that

Bsc U ILj; u(Bsy<u (U I;) <24.
i=1 j=1
Note that
H(z)= f (1—e*)dW(})

[

is a continuous d.f. with H(0)=0, since W(0)=0. Thus given &>0 there is a 6>0
such that H(x) <e¢, 0<x<<24. Choose § in accordance to this requirement. Now

|p(s; B) — @ (s; B)| <I<p(s; U Iz) —@p(s; B)|+

But for 0 <s<1

@(s; B) - <p(s; U7 1)

o)

fo exp {/1 3 ) (s—l)}dww—f oxp {u(B) (s — 1)} AW (2)

< f: 11 —exp { — Au(Bs)} [dW (1) = H(p(Bs)) < ¢

Further for 0 <s <1

¢(s; B)— ¢ (s; U 1,) l = | Bs*® — Bs"® D |
i=1

<E|1—s"<Ba>|<P(N (u I;) >o) <H@28)<e
i=1

Thus |g(s; B) —@x(s; B)] <2¢, 0<s<1 which proves the case k=1. In the general
case we use the same approximation procedure for each of the Borel sets By, ..., B,.

Lemma 2.4. The sequence {(Z,, V,)} has the independence property with the d.f. F(v)
and {Z,} is weighted Poisson distributed with the parameter d.f. W{(A) if and only if
for any disjoint Borel sets By, ..., B, in R, such that

#(B;) < co where z(Bi)=f dedF(v),i=1,....,k
B

i

the rwv. (M(B,), ..., M(B,)) has the g.f.

o0 k
Y(Sps +-» 813 By, ...,Bk)=f exp{z > x(Bi)(s,-—l)}dW(l). (2.13)
i=1

0 i=

Remark. In the sufficiency part we need only (2.13) to hold for the B,’s being
products of intervals,
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Proof. Sufficiency. Put B;=1,x R, where the I/s are disjoint finite intervals.
Then it follows at once from (2.13) that {Z,} is weighted Poisson distributed with
the parameter d.f. W(1). Taking the B;’s as products of intervals it follows from
definition 2.3 that {(Z,, V,,)} has the weak independence property with the d.f. F(v).
Since {Z,} is weighted Poisson distributed no two of the Z,’s are equal with positive
probability. The independence property then follows from lemma 2.2 (ii).

Necessity.

1. From lemma 2.3 it follows that (2.13) holds for B,=A4; x R,, i=1, ..., k, where
the A;’s are disjoint Borel sets in' R, with u(4;) <co, z—l s k.

2. The independence property 1mphes (2.13) to hold for dlsJomt products of Borel
sets of finite x-measure.

3. (2.13) is easily seen to hold also for disjoint sets of finite x-measure in the
algebra generated by all finite unions of measurable rectangles.

4. Let B be a Borel set in R, with finite x-measure. In a similar way as that used
in the proof of lemma 2.3 we can approximate this set in »-measure by a union of
disjoint products of measurable rectangles and prove (2.13) for k=1.

5. The proof of (2.13) for any k is done in the same way.

3. The point system and its set of motion

We shall consider a countable number of points distributed on R, and performing
a random motion in time. The positions of the points at =0 are given by the se-
quence of r.v.’s {X,} the points being arbitrarily enumerated. In the following we
shall always assume that {X,} has no finite limit point. If the position of point »
at ¢ (t>0) is denoted by X, (t) the positions at ¢ (¢ >0) are given by the sequence of
r.v.’s {X,(t)}. Using the notation

Yn(t) = Xn(t) _Xn

we shall call {Y,(t)}, following J. Goldman [7], the set of motion for the point system.
The special case when for all i >0.
Y, t)=U,-t

will be called the constant speed case (in this case the trajectories will be straight
lines). We shall here deal with the case when the points do not interact with each
other in their motions and we will thus introduce the following definitions.

Definition 3.1, {X,(8)} has (or {Y, ()} ts) an independent set of motion at t with
the d.f. F,(y) if {(X,, Y,.(&))} has the independence property with the d.f. F(y).

Definition 3.2. {X (1)} has (or {Y,(¢)} ts) an independent set of motion with the
family {F,(y)} if it has an independent set of motion at t with the d.f. F (y) for all t >0.

In the constant speed case we replace the family {F,(y)} in this definition by
the d.f. of the speed G(u).

4. The asymptotic distribution of the point system

We shall here study the asymptotic distribution of {X,(f)} when {Y,(f)} is an
independent set of motion for all £ >0. Let {X%} be a sequence of r.v.’s with no finite
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limit point. Similarly to section 2 we introduce the following r.v.’s and associated
gf’s
N(I)=no.of X €I, gf ¢

Ny(I)=no. of X,(t)€I, g.f. ¢,, N°(I) =no. of X} €I,

where I is a finite interval.

Definition 4.1. {X,(¢)} is said to converge in distribution to {X%} if for any disjoint
finate intervals I, ..., I, the distribution of (NJ(I,), ..., Ny(I,)) converges to that of
(NO(I,), ..., N°(I,)), as t—oo.

Such a convergence will take place if and only if we have convergence of the
corresponding g.f.’s. The convergence problem was first studied by R. Dobrushin
[4] and G. Maruyama [10]. Later similar results were obtained by L. Breiman [1]
and [2] and T. Thedéen [12]. These results were summarized and completed by
J. Goldman [7]. We shall in this section somewhat generalize the results of Goldman.
Our treatment will also serve as a motivation and introduction to the invariance
problems dealt with in section 5.

Let us assume that {X, (t)} has an independent set of motion with the family
{Fyy)}. It follows from definition 2.2 that when we consider the distribution of
N (I ), 1=1, ..., k, we will get the same dlstrlbutlon if we replace the last assumption
by the followmg assumptions for {(X,, ¥,(#)}

1) {X,L} and {Y,(t)} are independent
(ii) {Y,(6)} is a sequence of i.i.d. r.v.’s with P(Y,(t) <y)=F(y).

With these assumptions it is easily seen that

k

PRCTNERY AN & EH{ZsFtI -X, +1—ZFtI X)} (4.1)

-1
It should be noted that this g.f. does not necessarily have the value one for
§;=...=8, =1

In order to get any general results about the convergence of g, it seems natural to
study the g.f.
k k
“t:H{Z s;Fy(I;—,) +1— Vlej(Ij‘xn)}
iz

n =1

where {z,} is an infinite sequence of real numbers. This is the g.f. of a sum of inde-
pendent r.v.’s. The equivalent in this case to the so called 'uan’-condition (see
Loéve [9] p. 290) is

lim sup F,(I —x,)=0 4.2)

t—>o00 n

for all finite intervals I: If (4.2) should hold for all sequences {x,} then we will require

lim sup F,(I—x)=0 (4.3)

t>o0 xeR;
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for all finite intervals I. Following J. Goldman [7] we shall then say that we have
a spread out sef of motion.

In the study of the convergence of «, under (4.3) we shall use a slight generaliza-
tion of the fundamental lemma by J. Goldman [7] p. 23. First we shall give the
following notations and definitions. Let us consider arrays {X,,} of k-dimensional
rv.’s, n=1,2, ... and t indexed on the positive integers or positive real numbers
where X, = (X%, ..., X{). The row sums are denoted by _

Y,= 21 X

Definition 4.2. An array {X,,} will be called a null array if
lim sup P(X{$>0)=0

t—=>o0 j,n
Definition 4.3. A Bernoulli sequence is a sequence of independent k-dimensional r.v.’s
Xl = ( il)’ ey Xik))7 X2: ( él): [REX] ch))3 v
assuming only the values

(0,0, ..., 0, (1,0,0, ..., 0), (0, 1,0, ..., 0), ..., (0,0, ..., 0, 1).

Definition 4.4. 4 Bernoulli array {X,,} is an array such that for any t {X,,} is a
Bernoulli sequence.

Definition 4.5. A r.v. X has a k-dimensional Poisson distribution with parameter

Ay, s ) if o
PX=(ny,...,n) =1L e¥

j=1 ?’L]-!

for all non-negative integers n;.

Lemma 4.1. Let {X,,} be a Bernoulli null array. Then

(i) the only possible limit distributions for Y, are the Poisson ones (including those
with some A; equal to zero).

(ii) the distribution of Y, converges to a Poisson distribution with parameter (A, ..., &)
if and only if

lim 3 PXE=1)=4j=1,....k (4.4)

t—>o00 n=1

Proof. The sufficiency of (4.4) was proved for k=1 by L. Breiman [2] and for
any k by T. Thedéen [12]. (ii) was proved by J. Goldman [7] p. 23. Thus we only
need to prove (i). Let '

P- 3 XY
n=1
and fix j for a while. Y{” may be an improper r.v. More precisely Y{” being a sum
of independent r.v.’s must be a.s. finite or infinite. With the notation
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P(X(J)_ ) (7)
the g.f. of Y{ is

ﬂg]‘) Io_il (f) 8))

In order that 5{’(s) should converge to a g.f. of a proper r.v. it is necessary that
lim; o Zn 1 p§)) exists and is equal to a constant e.g. A, Using the same argument
for j=1, ..., k we see that (4.4) (for some (A, ..., 4;)) is necessary for the complete
convergence of the d.f. of Y,. The sufficiency of (4.4) then proves (i).

Following J. Goldman [7] we now give the following definitions.

In the following two definitions let {I,} be any sequence of finite intervals,

LclLc., lim |I,|=oco.
n—>ro

Definition 4.6. 4 point system {X,} is well-distributed with a parameter d.f. W(A) if
lim N(Z,)/|I,| = A as.

where A is a rv. with d.f. W(A).

Definition 4.7. A set of motion {Y ,(t)} is well-distributed if for any finite 4 and for
any set of numbers {x,} such that

lim (no. of wzel,)/|1,| =2

we have lim 3 F (I —x,)=A|I|

t—>»0 7

for any finite interval I.

J. Goldman proved using his equivalent to lemma 4.1 (ii) the following theorem
(this is his theorem 6.2 where we have just somewhat changed the formulation).

. Theorem 4.1. Let {Y (1)} be a spread out set of motion. Then a necessary and suffi-
cient condition for every initially well-distributed point system under an mdependent
set of motion for all time u>0 to be in the limit t— oo weighted Poisson distributed is
that {Y . (t)} ts well-distributed.

Remark. The case when the weighted Poisson distribution has a parameter d.f.
W(A) with W(0) >0 is not excluded. Using lemma 4.1 (i) and (ii) we get

Theorem 4.2, Let {Y ,(t)} be a spread out set of motion.

Then a necessarg condition for every initially well-distributed point sy stem under an
tndependent set of motion for all time uw>0 to converge in distribution as t— oo is that
{Y (&)} is well-distributed.

The proof is omitted.
- In the following example the set of motion is well-distributed and spread out.
Let Y, (t)=U,-t (the constant speed case) and let U, have an absolutely conti-
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nuous d.f. G(u) with the density g(u). Assume g(u) bounded, almost everywhere
continuous and with compact support. (Cf. L. Breiman [2] and T. Thedéen {12].)
Let now {X,} be an initially well-distributed point system with the parameter
d.f. W(4) and let {Y,(¢)} be the independent set of motion above. Then by theorem
4.1 we have convergence to a weighted Poisson distribution with the parameter
d.f. W(4). Further it can be shown that {(X,(¢), U,)} has the independence property
with the d.f. G(u) in the limit {— oo.
More precisely: Let for any Borel set B, in R,, i=1, ..., k, M(B;)=no. of
(Xn(t)’ Un) EB:

with the g.f. wi'(sy, ..., 845 By, ..., By).

Definition 4.8. {(X,(#), U,)} has asymptotically the independence property with the
d.f. G(u) and {X,(t)} is asympiotically weighted Poisson distributed with the parameter
d.f. W(A) if for any disjoint finite intervals I,, ..., I, and intervals J, ..., J,

Hm (811, S125 -+ Sts S Ly X I 1, Iy X T gy ven, Lex Ty, Iy X T
(] k
- fo exp {/1 421 |I,-|(G(Ji)sﬂ+G(J,-)si2—1)}dW(l)

Remark. Compare with definition 2.3, lemma 2.2 and lemma 2.4 and the remark
following that lemma.
By the same method of proof as that used by L. Breiman [2] we get

Theorem 4.3. Let {X,} be a well-distributed point system with the parameter d.f.
W(A) and let {Y,(t)=U,t} be an independent set of motion for all t>0 (the constant
speed case). The d.f. of U,, G{u), is absolutely continuous with the density g(u) being
bounded, almost everywhere continuous and with compact support.

Then {(X,(t), U,)} kas asymptoticall  the independence property with the d.f. G(u)
and {X, ()} is as mptotically weighted Poisson distributed with the parameter d.f.
W(4).

Remark. It should be possible to weaken the conditions on g(u). This we have
not done since the theorem is included mainly as a motivation for the condition
about reversible independent motion used in section 5.

5. Time-invariant distributions for point systems under reversible
independent motion

The important role of weighted Poisson distributions as limit distributions for
point systems with independent sets of motion stands out clearly from section 4.

Doob [5] p. 404 showed that if a point system is Poisson distributed at t=0 and
has an independent set of motion its spatial distribution will be conserved for all
¢>0. The same result for weighted Poisson distributions was shown by J. Goldman
[7]. From these results it is rather easily seen that a point system with EN(I)<oo
for any finite interval I has the same distribution for all ¢>0 for all independent
sets of motion if and only if it is weighted Poisson distributed (see R. L. Dobrushin
[4] and J. Goldman [7]). Here we shall try to characterize those distributions for
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point systems which are time-invariant for a given independent set of motion. Let
us first note that in the special case treated in theorem 4.3 the sequence {(X,(t), U,)}
has the independence property in the limit {—oco. This means that in the limit we
have a kind of backwards independent set of motion. In the general case we have
the following definition of this concept.

Definition 5.1. {X )} has (or {Y,()} ¢s) a backwards independent set of motion
ab t with the d.f. F(y) if {X,(£)} has no finite imit point and {(X,(t), Y ()} has the
tndependence property with the d.f. F(y).

Definition 5.2. {X,(t)} has (or {Y,.()} is) @ backwards independent set of motion
with the family {F ()} tf it has o backwards independent sel of motion at t with the
d.f. Fy) for all t>0.

If in these definitions we have the weak independence property in place of the
independence property we shall say that we have a backwards weak independent set
of motion. We can now introduce the concept of time-invariance under a reversible
set of motion.

Definition 5.3. {X,} has an invariant distribution at ¢ for a d.f. F(y) under reversible
independent motion if {X,(t)} has an independent set of motion at t and a backwards
independent set of motion at t both with the d.f. F(y) and {X,} and {X (1)} have the
same distribution.

Definition 5.4. {X,} has a time-invariant distribution under reversible independent
motion for the family {F (y)} if the distribution of {X,} is invariant at t under reversible
independent motion for the d.f. Fy) for all >0.

If in definition 5.3 we instead of a backwards independent set of motion have a
weak one we shall say that {Xn} has a invariant distribution under weak reversible
independent motion. We shall in this section show that the distributions of {X,}
which are time-invariant under reversible independent motion for a non-degenerated
family {F,(y)} (see definition 5.5) are the weighted Poisson ones. We shall need
the following two simple lemmas about g.f.’s for random vectors. Let ¥ =(Y, ..., ¥y)
and Z =(Z,, ..., Z,) be two random vectors the components of which are non-negative
and integervalued and let their g.f.’s be p(sy, ..., &) and yu(sy, ..., 8;) respectively.

Lemma 5.1. If
yl(sl; teey sk) :‘}/2(81’ seey Sk)

for s;€(a,, b;) where —1<a,<b,<1, 1= .k, then Y and Z have the same distribu-
tion.

The proof follows at once from the generalization of the identity principle for
holomorphic functions of a complex variable to the case with several complex
variables.

Lemma 52. If Y, <Z,, i=1, ..., k a.s. then
V1815 ces S) ZVa(81, ooy &), 8,€00, 17, 2=1, ..., k.
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Proof. The given inequalities imply that
Si'...stkz=sfr .. stk a.s. for 5;€[0,1], ¢=1, ..., k

from which inequality the lemma follows at once.
Let for any Borel set B in R,

Mf.t(B) =no. of (Xm Yn(t))EB’ Mbt(B) =no. of (Xn(t)f Yn(t))EB

and denote the corresponding g.f.’s by v, , and y, , respectively (cf. section 2). Let
further for any d.f. F(y) and a Borel set B in B, with F(B)>0

Fyly) = F(BN(—oo,yl)/F(B)
be the conditional d.f. given B.

Lemma 5.3. Let the distribution of {X,} be invariant at t under reversible independent
motion for a d.f. F,(y). Then it is also invariant at t under weak reversible independent
motion for the d.f. F; g(y).

Remark. Actually the lemma is true also when weak is omitted but this we do
not need in the following.

Proof. Put Fy(B)=p,q=1—p. Let I,, ..., I, be any disjoint finite intervals and
By, ..., B, any Borel sets in R,. Put further

A;=B;,NB,C;=B,NB,p, =F(4,), ps=F(C)), =1, ... k

Note that for the distributions considered in this section {(X,, ¥ ,())} can be assumed
to fulfil the conditions (i) and (ii) just above (4.1). Then

W, £ (S11s 8195 +ves Sprs Sigs L1 x A1, Iy x Cqy ooy I x Ay, I x Cy)

=E]] {E,l spFo((L;— Xo) N A4y) + 2:1 8 Fy(I;— Xa) N C))

F1- 3 F(L-X)0 B)}

7
=@(P11811 T Pr12S12 T @ o o> Pra S T PraSia T & Ly o5 L) (6.1)

where the last equality follows from the assumed invariance under reversible inde-
pendent motion together with lemma 2.1. Putting

s4 =psy;+q,1=1, ..,k §=1,2
we get from (5.1)

7

k k k
EH{ ls;lFt,B((Ij_Xn) n Aj)+ Z 8.7"2Ft.B((Ij_Xn) N Oj)+ 1 —jZl Ft,B(IJ'_Xn)}
n U= j=1 -

=(p(p118{1/p +p1281,2/p: -"3pk181161/p+pk2‘sl;2/p; 119 ey Ik) fOI'
Silfe[q_pzl]ai:l:'”:k’jzl:z' (5'2)
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Under an independent set of motion at t with the d.f. F, z(y) we have for any
finite interval I and any Borel set 4 in R,

M, (IxA)=M, (Ix(ANB))as.
Using the index B for the g.f. of M, , in this case we get
Wo,t, (5115 125 ++» Sievs Sz Ly X By, [y X B, ., I % By, I x By)

=Yyt B(S11 S125 -+ vs S Sy Ly X Ay, Iy X Oy oo, I X Ay, I < C)

k P
:EH{ ISjIFt,B((Ij_Xn) n4,)+ '21 8l 5(([;— X)) NCY)
n U= i=

+1- i Ft,B(Ii‘Xn)} (53)
j=1

But for s;,=s;;, =1, ..., k, =1, 2, the right member of (5.3) equals the left member
of (5.2). Thus

Yo.t. B(S115 S125 ++05 Sk1> Suas L3 X By, I Bl’ ey Ly X By, I x Ek)
= @(PuS1/P + P12S12/Ps s PiaSialP + PraSial P Iy s i) (5.4)
for s,,€[q—p, 1] and by lemma 5.1 for s;,€[ -1, 1], =1, ..., k, j=1, 2. Now

F, 5(B;) = py/p, Ft,B(B;') =pp/p:i=1, ...k

which put into (5.4) proves the lemma. Note that the distribution of {X,(#)} is the
same as that of {X,} under an independent set of motion with the d.f. F; z(y). This
is seen by putting B, =...=B,= R, in (5.4). The lemma is proved.

In order to get our results about time-invariant distributions for point systems
we shall have to require that arbitrarily small displacements and unequal displace-
ments arbitrarily close to each other are possible. These requirements are made
precise in the following definition 5.5. Let the support set Sy of a d.f. F(x) be

Sp={x; Fx+h)—F(z—h)>0, all h>0}

Definition 5.5. A family of d.f’s {F(y), 0<t<oco} is said to be non-degenerated if

(i) for any given &>0 there is a t and a y such that y€ Sy, and 0<|y| <e¢ and
(ii) for any given €>0 there is a t and y, 1y, such that y,, y,€Sr, and |y, —y,| <e.

Remark. In the constant speed case when Y, (#)=U,-t and G(u)=P(U,<u) the
non-degeneracy of {F,(y)} is equivalent to the d.f. G(u) being non-degenerated.
In deciding whether (ii) holds or not the following lemma may be useful.

Lemma 5.4. If at least one of the F,(yYs is not purely discontinuous the condition
(ii) of definition 5.5 is fulfilled.
The proof follows at once from the following

Lemma b5.5. Let F(z) be a d.f. which is not purely discontinuous. Then for any
given &>0 there are numbers x, +x, such that x,, £, €Sy and |z, —x,| <e.
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Proof. Let D be the discontinuity set of F(z) and put C=D N S;. Let us for a mo-
ment assume that there is a g,>0 such that for all »; +z, with z,, #,€C we have
|4, — 25| >&, This implies that ¢ is countable which contradicts F(z) being not
purely discontinuous. This proves the lemma.

Lemma 5.6. Let the distribution of {X,} be time-invariant under reversible indepen-
dent motion for a non-degenerated family {F (y)}. Then

(i) the counting process corresponding to {X,} has a.s. no fized discontinuity points,
(i) for a monotonely decreasing (or increasing) sequence of intervals {I,} such that
lim, .. I, =1 where I is a finite interval we have

lim @(s; 1,) =@(s; I) uniformly for s€[ -1, 1];

Proof. (i). Let us assume that (i) does not hold. Then there is an x; such that
P(N({2,})>0) = p>0.

By the non-degeneracy assumption given ¢>0 there is a ¢ and a y such that y €S,
and 0< |y| <e. Put B=(—¢, 0) U (0, £). Then F,(B)>0 and by lemma 5.3 it follows
that the distribution of {X,} is invariant at ¢ under weak reversible independent
motion for the d.f. F, 5(y). This implies that with A =(z, —¢, 2,) U (%}, 2, +-£) and
an independent set of motion at ¢ with the d.f. F, z(y) o

N,(4)=N({x,} as.
But N(4) and N,(4) have the same distribution. Thus
P(N(A4)>0) >P(N({xl})>0)

and with a probability no less than p there is a point arbitrarily near but separate
from the position z,. This contradicts {X,} having no finite limit point and (i) is
proved.

(ii) follows at once from (i) and the fact that g.f.’s are bounded and continuous
in [-1, 1].

Theorem 5.1.

(i) {X,} is time-invariant under reversible independent motion for the family {F(y)},
of {X,} is weighted Poisson distributed.

(ii) Let {F(y)} be a non-degenerated family of d.f.’s.

Then the distribution of {X,} is time-invariant under reversibe independent motion
for the family {F(y)} only if {X,) is weighted Poisson distributed.

Remark. In comparison with the invariance theorems by R. L. Dobrushin [4] and
J. Goldman [7], (ii) of our theorem on the one hand demands reversible independent
motion but on the other hand characterize distributions for point systems which
are time-invariant under reversible independent motion for an arbitrary fized non-
degenerated family {F(y)}.
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Proof. (i). The proof follows from the more general statement of theorem 6.1 if
in that theorem we put V,=7Y,(t), F(y)=Fy) and f(z, y) =2 +y.

(ii) In the proof we shall rely on the results by H. Bithimann [3] 4. Kap. concerning
processes on [0, 1] with exchangeable increments. It is however easy to see that
his results still hold also for processes on (— oo, +oc) in which case his proofs can
be done in the same way. He considers processes which are separable with the set
of the diadic numbers as a separating set. In our case it is seen from the definition
of the counting process N(x) defined by {X,} that N(x) is separable with any count-
able set which is dense in R, as separating set. Let us divide R, into disjoint intervals
I, of equal length |I|. The counting process N(x) is a process with exchangeable
increments if for any such division the distribution of N(Iy), ..., N(I;) where
j1 %... #7j, only depends on k and the length | I|. Let now F be the class of distribu-
tions for random processes with stationary independent increments having infinitely
divisible distributions. Then Biihlmann proved that any process which is separable
with the set of diadic numbers as a separating set and. which has exchangeable
increments has a distribution weighted over F. In our case the increments are non-
negative and integer-valued. The only infinitely divisible distributions of non-
negative integer-valued r.v.’s are the compound Poisson ones (see e.g. Feller [6]
p. 271). We shall show that N(x) has exchangeable increments (point 1-4 below).
Then it is seen that {X,} must have a weighted compound Poisson distribution.
Lastly in point 5 we shall prove that this distribution cannot be compound. Now
{X,} was assumed to be a countable set of r.v.’s, which set we tacitly assume to be
non-empty. By this the case when the parameter d.f. W(4) has W(0) >0 is excluded.

1. The distribution of N(I) where I is a finite interval is independent of the
position of 1.
Let I,=1I+y where y€8p, for some ¢. For any intervals I+> 1> I~ we have by
lemma 5.2
o(s; IT)y<e(s; I)<e@(s; 1), s€[0, 1] (5.5)

By lemma 5.6 (i) we can choose I+ and I- such that given ¢>0
|p(s; I-) —g(s; I%)| <e, $€[0, 1] (5.6)

and such that I+ — I and I — I~ are unions of intervals with positive lengths. There
is an interval B with y € B such that

M, (I- x B)<M, (I, x By<M, (I* x B). (5.7)

For an independent set of motion at ¢ with the d.f. F, g(y) we get from lemma 5.2,
lerama 5.3 and (5.7)
@ls; I <g(s; I} <gls; I7), s€[0, 1]. (5.8)

(5.5), (6.6) and (5.8) together with lemma 5.1 give that
@(s; I) = @(s; I), s€[ -1, 1]

and thus N(I) and N(I,} have the same distribution. Let # be a positive integer.
Then it follows that for any intervals I and J such that J=1+ny or J=1I—-ny
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with y€8F for some ¢ the r.v.’s N(I) and N(J) have the same distribution. Let
now ¥, be any positive number and put

Ty =1+yy, Loo =1~y

In the same way as in lemma 5.6 (ii) it can be shown that given £>0 there is a
6 >0 such that

| @(s; Lo;+h) —q(s; Io,)| <e, |@(s; Io;—h)—qis; Ip;)| <e, s€[0, 1], j=1, 2, 0<h<4.
(5.9)

By the non-degeneracy assumption there is a ¢, an integer n>#,/d and a number y
such that
YE€Sr and  yo/(n+1)< |y| <yo/n

Let us first assume that y>0. Then
Ioy=1+ny+h, =1+n+1)y—hy 0<h<d,i=1,2. (56.10)

We have already proved that N(I), N(I +ny) and N(I+(n-+1)y) have the same
distribution. Then this fact together with (5.9), (5.10) and lemma 5.1 gives that N(I)
and N(I+y,) have the same distribution. If on the other hand y<<0

Iyy=I+ny—hy=I+n+1)y+hy, 0<h<d,i=1,2

from which relation we by the same reasoning prove that N(I) and N(I —y,) have
the same distribution.
Thus the distribution of N(I) does not depend on the position of the interval I.

2. Let Dy stand for the discontinuity set of a d.f. F. Choose for any 6>0 a ¢ and
Y, >y, such that v, ¥, €8r, y; —¥,<8 (see definition 5.5 (ii)). It is easily seen that
9, and y, can be chosen such that either

(a) Y1, y2€ D5, or

(b) ¥y, ¥, € D, and neither g, nor y, are accumulation points of Dg,.
By consecutive intervals we shall in the following mean disjoint finite intervals
numbered from the left to the right and with their union also being an interval.
Let now J, and J, be two consecutive intervals with |J,| =|J,| = —%,. In this
point we shall show that (N(J,), N(J,)) has the same distribution as (N{(J,), N(J;))
and that this distribution is independent of the position of J;. Put J =J, +y, =J5+ ¥,
and choose similarly to point 1 of the proof for given ¢>0 two intervals J+ and J—
such that (1) JtoJ>J-, (2) J*—~J and J—J~ are unions of non-degenerated
intervals, (3) @(s; J=) —g(s; Jt)<g, s€[0, 1].

There exist disjoint intervals B, and B, with y, € B, and y,€ B, for which

My, o J~x B) <M ((Jy x By <My (J+x By), 1=1, 2. (6.11)
Further
My (J-xB)< M, (J x B))<M, (J*xB,), =1, 2. (6.12)

Let B=B,U B, and put F, z(B;)=p;, 0<p;<1,4=1,2. In case (a) we choose B,

and B, degenerated at y, and y, respectively and in this case p;, =1, 2 are indepen-
dent of the chosen ¢, J+ and J-. Consider now the case (b) and fix two numbers
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p;, 0<p;<1,i=1,2, p; + p,=1. We shall prove that we can choose B, and B, such
that F, z(B;)=p,, t=1,2 and (5.11) (and (5.12)) is fulfilled. Consider the intervals
By(h)=(y;—h;, y;+ R, b;>0, and put p;(h;) =F,(Bi(h)), t=1, 2. There exist num-
bers hy, ks, such that for h,<h/, i=1, 2, B;(k,) and B,(h,) are disjoint and (5.11)
holds (with B;= B;(h,;), ¢=1, 2). For h;>0 the functions p;(h;,) are non-decreasing
and positive and limy, ,4p,(h;) =0, 1=1, 2. Now ¥, and y, are not accumulation points
of Dr,. Thus there exists A; such that 0<h; <h; and B,(k) N Dr,=0, i =1, 2. Hence

{y; pi(k;) =y for some 0 <h,<h{} = (0, pi(k})], 1=1,2 (5.13)
From (5.13) it is easily seen that we can choose h; with 0<h,<k;, i=1, 2 such that

P1(Py)[Pa(bs) = py/De
Note that given a £>0 we can in the last relation choose both &, and h, less than A.
Then B;= By(k;), i=1, 2 fulfil (5.11) (and (5.12)) and F; xz(B;)=p;, 1=1, 2.
For any interval I we get from lemma 5.3
Vo1, 881, S23 I X By, I X By) = P18y + 2825 1) (5.14)
Using (5.14) and lemma 5.2 we get from (5.11)

P(P181+Pa82; J ) S@(P18y+ Doy P12+ D282 1, o) S@(D181 D285 T ), 81, 82 €[0, 1]
(5.15)
and from (5.12)

P(P151+ Pady; J¥) S@(P181+ e J) S@(P181+P28e5 I ), 18:€[0, 1] (5.16)
Let us now put s;=p,8; +p, and 85 =p, + P,8, in (5.15) and (5.16). Then
@(s1+85—1; JH)<q(si, 825 Iy, I3) Kp(s1+82— 15 J7)
P(s1+8a—1; JH) <g(s1+s3—1; J)<g(s1+s2—1;J")

fOI' S; € [pZ’ 1], Sé € [pls ]']
Observing that p, and p, are independent of ¢ we get by lemma 5.1

(815 825 J1, Jo) = (81 +8,— 15 J), 81, 8,€[—1, 1] (5.17)

Since by point 1 of the proof the right member of (5.17) does not depend on the posi-
tion of J point 2 is proved.

3. Let J, ..., Ju; be consecutive intervals with |J,|=|y,—w|, i=1,..,k+1
where y, and y, are the same as in point 2 of the proof. We shall show by induction
that

O(815 os Syt T1s ooes Ji1) = @81+ oo+ 851 — K3 J) (5.18)
where J is any interval with |J| = |y,—y,|. Let us assume that
@815 vy 83 1y oy Sy =@(8y + . 8, —k+ 15 J) (5.19)
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Let the distance between two intervals 4, and 4, be
d(4y, 4y) =inf{|z—y|; x€4,;, y€d,}
Choose the intervals J; ,, 1=1, ..., k+1, such that
Jin<dt, AT S n) =k, t=1, .,k and Jy p+y =T n+Ys

Let Jin=J; n+y,i=1, ..., k. Choose similarly to point 2 intervals J;% and J;7
such that

(1) Ji/,+hDJi,.hDJi,.~h> i=1,...,h

2) Ji%—Jin and J{,—J{; are unions of non-degenerated intervals,
i=1,...k,

>

(3) Jih,i=1,..., k are disjoint intervals,
(

4) ‘P(sp cees Sg; Jl,,—h; --'7JI,C._h)_(p(817 ceey Sp J{j-h’ --':J’/C:}‘h)<8
for s,€[0,1],i=1,..., %k (5.20)

In the case when y,, y,€ Dy, let us choose B,={y,} and B,={y,}. If y;, y,€ Dy,
we choose B;=B(k;) with h;<h (see the remark just above (5.14)) as in point 2
of the proof. Then

My (Jin X B)SM; o (J, X BY)<M, (JixBy),i=1,....k
Mo, o(Jiin X By) S My o (Jyes1, n ¥ By) < My o (Jiln % By) (5.21)
NI SNJ)SNJS), i=1, ...,k (5.22)
We get by lemma 5.3 with B=B, U B, in the same way as in point 2 from (5.21)
P(Pr81+ Doy oo P11+ Do, Pr8+ Posirss J1ns oo Jit 1, o Jilh)
S@PP181F Doy -, P18k Doy PrtDaskrs J1ins oo Sesns Jwn,n)

S@(P181 T Doy vvy P1Sk—1 T Doy P18kt PasSis1s J{fh, ,,.,J,;"h)
for s€[0,1],2=1,...,k+1 (5.23)

Let us put s; =p,8,+p,, i=1, ...,k and s;,, =p, + ;8.1 in (5.23). Then

¢P(81/: seey Sllc—l; Sllc +Sl/c+1 - ]-: J{.Jrha LEXEY Jl,ctl. hs JllcTh) <(p(8{: veey Sl,chl; Jl,h; veey Jk+1.h)
<‘P(3{, LERS) Sl,c~1, Sllc +Sl,c+1 - ]-7 J{.‘h: ey JII«::I. hs Jllcjh)> sile[p% 1]7
i=1,...,k sp41€[p;, 1] (5.24)

From (5.22), lemma 5.2 and lemma 5.3 we get

P81 o386 Tty s il n) < @8y, oo, 85 Tt 0y oo Tn)
S@By s S 10y oo es Jin), ;E[0,1],0=1, ..., k (5.25)

We get from (5.20), (5.24) and (5.25) that
‘P(sla sees Spips Jl,ha ceey Jk+1.h) = ¢P(31: s 81, 8 T 81— 1 J{, Ry vees Il’c—l, hs Jl,c. n)
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If we let 2§ 0 in this relation we get using lemma 5.6
PS5, oo er Sis 13 s evos Tiea1) = @Sy eoos Ske1s S T 8601 — L I 15 ooy Jioo1, i)
where Ji=J,+y,i=1,...,k and Ji=J,.1 1y,
From the induction assumption (5.19) we then get
P81, voes Spqas S 15 s J) = @S+ 8 — k5 J)

But (5.19) holds for £ =2 by (5.17). This proves point 3.
4. Let I, ..., I, be consecutive intervals all with the length | I|. We wish to show
that the g.f.
@81, s 83 Ipy oo L) = sy + .. +8,—k+1; 1) (5.26)

From lemma 5.6 it is easily seen that given & >0 there is a §,>0 such that
| @8y, oos S5 Ipy s L) — {84y vy 85 I, o, IR) | <6, 8,€[— 1,1, i=1, ...,k (5.27)
where I, ..., I}, are disjoint intervals with
Ll L= =6867=1,....k; 0<d(I], ;1) <&, j=1,...,k—1

Let now J{, ..., J% be consecutive intervals all with the length |J™| and with
the left endpoint of J{ coinciding with that of I and the right endpoint of J
being the first to lie to the right of the right endpoint of I;. Let for any n the numbers
y, and y, be such that they fulfil the conditions in the first part of point 2 with
d=|1I;|/n. There are arbitrarily large n for which y, and y, can be chosen such
that |y, —y,| = |J™| with |I;|/(n+1)<|J™]|<|Ij|/n. Then I; is included in an
interval I ; which is a union of (n+2) consecutive intervals from {J, ;} and in-
cludes an interval I, ; which is a union of (n—1) consecutive intervals from {J{™}.
Choose n so large that the intervals I, ; are disjoint.

From point 3 it follows that

P81y +evs Smps I, s I = p(sy + oo+ Smy —my + 15 JTV)
and from this
P oo es S5 Ity oes I ) = (0 42) (sy+ ... T 8) + 1 —k(n+2); J)  (5.28)
@1 v s S In1s oo In i) = @((n—1) (8, F ... +8) +1—k(n—1); J{¥) (5.29)

Further by point 3

s 150 =pn+2)s —n—1; J) (5.30)
¢(s; In, 1) = @0 — 1)s = n+2; Ji¥) (5.30)
From (5.28) and (5,30) we get using lemma 5.1
@Sy eees Sy Ity oy Iy ) =@(syF oo T8, —k+ 15 Iy 1) (5.32)
and from (5.29) and (5.31)
Q(S1y ey Sy Lnvy oo I i) =81+ oo F s —k+1; I 4) (5.33)
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Using lemma 5.6 and (5.27), (5.32) and (5.33) it is easily shown that (5.26) holds.
This proves the exchangeability of N(x).

5. From point 4 and the beginning of the proof it follows that {X,} must have
a weighted compound Poisson distribution. We shall now show that this distribution
cannot be compound. This is equivalent with no two of the X,(t)’s being equal
with positive probability. We shall deal with two cases separately.

(a) Fy) has a continuous part for some ¢{>0. By lemma 5.3 we can without any
loss of generality assume that F(y) is purely continuous for this £. Let us consider
the point system at this . Now

P(X(t) = X,(8)) = P(X;+ Y(8) = X;+ Y(t)) = P(Y(t) — Y ;(t) = X; — X))
But Y,(¢)— Y ,(t) has a continuous distribution. Thus by the independence property
P(X(t)=X,(t)) =0, 1]

which proves the proposition in case (a).
(b) All Fy) are purely discontinuous. Let I, and I, be disjoint intervals with
the same length such that I,+y,=1I,+y,=1 where y,, 4,€Sr for some ¢. Put

B={y,} U {y,} and F, p({y;})=p;, 1=1, 2. Now
@8y, 89 Iy, 1) = f: exp {A|1[(a(s;) — 1 +a(sy) — 1)} AW (A) (5,34)
where «(s) is a g.f. and W(4) a d.f. on (0, o). By lemma 5.3 we have for an indepen-
dent set of motion at ¢ with the d.f. F, y(y)
My Iy {s}) + My, oLy % {yo}) = No(I). (5.35)

From (5.34) and (5.35) we get
J:) exp {A|I](e(p;8 + pa) + o(p, + pas) — 2)}AW(2)

= f - exp {A|I|(x(s) = 1)}dW(A). (5.36)
0

From the uniqueness of the Laplace-Stieltjes transform of W(4) we get from (5.36)

o(py) +ocpg) = 1.

Since «(0)=0, «(l)=1 and «(s) is convex and continuous it follows that o(s)=s
which proves the impossibility of a compound distribution in case (b).

The theorem is proved.

In the constant speed case we have Y, (t)=U,-t with P(U,<u)=Q(u). In this
case time-invariance under reversible motion with a non-degenerated family {F,(y)}
is equivalent to that for all t>0{(X,, U,)} and {(X,(¢), U,)} have the independence
property with the same non-degenerated d.f. G(x) and {X,} and {X,(f)} have the
same distribution.
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Corollary 5.1. T'he distribution of {X,} is time-invariant under reversible independent
motion in the constant speed case for a non-degenerated d.f. G(u) if and only if {X,}
15 weighted Poisson distributed.

Proof. From the remark following definition 5.5 we see that a non-degenerated
d 1. in the constant speed case corresponds to a non-degenerated family in the general
case. Then the corollary follows at once from theorem 5.1.

6. Sets of motion conserving weighted Poisson distributed point systems

For point systems with reversible independent sets of motion the role of weighted
Poisson distributions was clarified by the results of section 5. In this section we
shall give a result indicating in which cases weighted Poisson distributions are con-
served for more general types of motion than those considered earlier in this paper.
Let us think of Y ,{f) as measuring the motion ability of point no n. The actual
motion can, however, also be dependent of the starting position of the point. This
leads us to consider the position at ¢ of point n, X,(t), as a function of the starting
position X, and the motion ability Y,(¢), i.e.

Xolt) = (X, Yalt)) (6.1}

which with f(z, y) =z +v includes the case studied in the earlier sections. Similarly
to that case we shall here require the independence property for the positions of
the point system and its set of motion abilities.

Definition 6.1. The distribution class C consists of the distributions for sequences
{(Z,, V,)} where {Z,} is weighted Poisson distributed with some parameter d.f. W(A)
(with W(0)=0) and {(Z,, V,)} has the independence property with some d.f. F(v).

If the distribution of {(Z,, V,)} belongs to C it is characterized by the parameter
d.f. W(A) and the d.f. F(v) and we shall in the following just write: {(Z,, V,)} has
the distribution (W, F)€C. Suppose that the motion is given by (6.1). We shall try
to describe those functions f(z, y) for which both {(X,, Y,(#))} and {(X,(2), Y,(t)}
have distributions in C. We have to place two main restrictions on the functions f.

(i) f(=, y) should be a function from R, onto R,. This means that all positions
are possible at time ¢.

(ii) f(z, y) should be a monotone function in x for any fixed y. This will be the
case e.g. if points with the same motion ability have the same internal order at ¢
as initially. Since ¢ is fixed in the problem studied in this section we shall in the
following theorem use another notation than that used above.

Theorem 8.1. Let {{Z,, V,)} have the distribution (W, F)€C. Let further f(z, v) be
a Borel-measurable function from R, onto R, such that f(z, v) is a monotone function
of z for a.s.* all v. Let
Zn ={Z,, V,) as.

1 Almost surely in this theorem is with respect to the probability measure »; on the Borel
sets in R, induced by F(v).
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Then the distribution of {(Zs, V,)} belongs to C if and only if
f(z, v) = a(v) 2+ b(v) a.s. (6.2)

where 0< f+°° dF,(v)/|a@)| < co. (6.3)

The distribution of {(Z,, V,)} is then given by (W, F,) which is obtained from
W), Fi(y) and a(v) by

Wa(A)=Wy(4/c) (6.4)
where = fﬂo adF,(v)/|a()| (6.5)
and Fy{v)=1 /cfv aF (u)/|a(u)]. (6.6)

Given (W,, F,) and (W,, F,), |a(v})| is determined a.s. from (6.4) and (6.6), whereas
b(v) is arbitrary.

Remark 1. If for a.s. all v, f(z, v) is one-to-one and continuous then it is also mono-
tone for a.s. all ».

Remark 2. Let us drop the assumption {(Z,, V,)} €C and replace it by the assump-
tion that {Z,} is weighted Poisson distributed. Then (6.2) does not necessarily hold.
This is seen from the following example:

Let F,(z) have the jump 4 at z=0 and at z=1. Put

0 2,2<0
2,2<
f(z,0)={ fz, 1) =32, 0<2<2
+ > ’
#+Lz20 z—1,222

Then it is easily seen that {Z,} is weighted Poisson distributed with the same para-
meter d.f. W, (1) as {Z,}.

Proof. Sufficiency. Let us introduce the following notation (cf. section 2).

M, (B)=no. of (Z,, V,)€B, gf. p,(s; B)
My(B)=no. of (Z,, V,)€B, g.f. wy(s; B), B a Borel set in R,.

Let further », and v, denote the probability measures on the Borel sets in R,
induced by F)(v) and Fy(v) respectively and u the Lebesgue measure in R,;. These
measures induce in R, the product measures », =y x v, ¢t =1, 2. In the proof we shall
use lemma 2 4 and the remark following this lemma. Let us choose finite intervals
I; and J,, , k such that the sets B;=1I,xJ; are disjoint. We have to show
that the g f of (Mg( s - Mo(By))
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00 k
Ya(81, ooy 83 By, ooy By) = fo exp {/1 igllu(l,)vz(J,-) (8;— 1)}dW2(l) (6.7)

where Wy(4) and Fy(v) (which induces v,) are given by (6.4), (6.5) and (6.6). Denote
by T the transformation from R, onto R, given by

T(z) ’U) = (f(z) ’l)), ’l))

({v; f(z, v) +a(v) -2 +b(v)}) =
and by (6.3) the set {(z, v); a(v) =0} has »,-measure zero. Then

Now by (6.2)

% (T7'By)=pu(l) f; dF,(v)/|a(v)| < (6.8)

The event
{M2(31)=”1} = {MI(T_IBi) :ni}’ i=1,..,k

where T-1B; are disjoint Borel sets. Lemma 2.4 gives that the r.v.’s M,(B,), i=
., k have the g.f.

=] k
Yo(8y, .- 83 By ooy By) = fo exp {l 21 % (T7'B) (s;— 1)} dw,(A) (6.9)
i=
Using (6.8) it is seen that (6.9) can be written in the form
=] k
Wa(S1s oes 85 By, ooe, By) = fo eXp {Zc 21 u(l)ve () (s;— 1)}dW1 (4) (6.10)

where ¢ is given by (6.5). Putting Wy(1)= W,(4/c) in (6.10) we obtain (6.7). We have
thus proved the sufficiency of (6.2) and (6.3) and the validity of (6.4), (6.5) and (6.6).

Necessnsy Suppose that {(Z,, V,)} has the distribution (W, F}}€C and that
{{Z,, V,)} has the distribution (W,, F,)€C. The sequences are related through the
transformation 7 defined above. From lemma 2.4 we get that for any disjoint
Borel sets B;, i =1, ..., k with finite x,-measures

on exp {l Eic: 2 (B;) (8 — 1)}dW2(/1)= fw exp{ gk (s:— 1)}dW1(l). (6.11)

0 0

We shall first show that Wy(1) = W,(A/c), where ¢ is a constant. Let
B, ={t,i+1]x Ry, i=1,

Then x,(B;) =1, t=1, ... and from (6.11)

fw exp {A(s—1)}dW,(2)= fw exp {Ax, (T7'B) (s—1)}dW,(A) i=1,... (6.12)
0 0

If F(z)is a d.f. on (0,00) and F(u) its Laplace-Stieltjes transform then

(a) F(x) and F(u) are in a one-to-one correspondence with each other
(b) F(u) is a decreasing function of u, 0 <u<co.
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Using these properties on (6.12) we get
#,(T1B;) = constant = ¢ (6.13)
and from (6.11) WAy = W,(Afe). (6.14)
(6.14) together with (6.11) give that for any Borel set with finite x,-measure
sy(B) = 1/c -2, (T1B). (6.15)

Let us now choose B=[z,, z,] x C where C is a Borel set in R; and let B,=[z,, 2,] X
(— oo, + o0). Let further for any set A in the (2, v)-plane A4, be the section at v.
Then we get from (6.15)

(s 22)95(C) = 1/c fcu«T“BndvI ~1/e f W B,

Thus v, is absolutely continuous with respect to »; and by the Radon-Nikodym
theorem

v(0)= L g(v)dy,
where for fixed z, and z,
g(v) = 1l/e- u{((T1B,),) /(25 —2;) a.8. (6.16)
Let D be a dense countable set in R;. Then
v{v; g(v) +1/c- u((T-1By),)/(z,—2;) for some z;,2,€D, 2, <2} =0.  (6.17)
We shall need the following lemma,

Lemma 6.1. Let h(z) be a monotone function from R, onto Ry and suppose that

(1) pi{x; ¥y <h(®) <y,}/(y2 —y,) =constant =c for all y, <y, such that y;, y,€ D where
D is a dense countable set in R,. Then
(ii) h(z) is a linear function of x, i.e. h(z) =ax+b where |a| =1/c>0.

Remark 1. (ii) implies (i) without the restriction of y,, ¥, €D.
Remark 2. If h(x) is one-to-one and continuous then it is also monotone.

Proof. Let us first note that a monotone function is measurable so that (i) has a
meaning. We shall first show that every monotone function which satisfies (i) is
strictly monotone. Let us now for simplicity suppose that k() is non-decreasing.
In order to prove the strict monotony let us suppose the opposite, i.e. there exist
two numbers z,<w, such that h(x;) =h(x,) =y, <h(z), x>z, Let us first consider
the case when y, €D. Then for any 6 >0 such that 4, +-6 €D we have

¢ = p{w; Y1 Shx) <y, +0}/6 > (2, —2,) /0
For 4 sufficiently small and with y, +6€D this cannot be true and thus
hx+e)~h(z)>0 for £>0 and =z€R YD)
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Let us now consider the case when ¥, €'D. Choose an & such that 0<e<(x,—x;)/c
and let y; be a number such that y; €D, y; <y, and y, —y; <e. Then for any §>0
such that y, +6 €D we have

o= u{w; y1 <h(x) <y, +0}/(8 +e) > (2, —2,)/(0 +e)
Let now 6—0 such that y, +6€D. Then
c=(xy—2,)/e

But ¢ <(x,—,)/c means a contradiction and thus h(x) is strictly increasing and in
the general case strictly monotone. From this we see that the inverse function A1
is well defined and also strictly monotone. Then (i) can be written in the form

1@ Y1 <h(@) <y} [(ya—y1) = | B ya) =B W) | /(2 —31) = ¢
or all y, <y, such that y,, y,€D. This means that for x€A-1(D), k(x) is of the form
h(z) =ax+b where |a|=1/c>0 (6.18)

Now 2~1(D) is also a dense countable set in R, and this fact together with the mono-
tony of h(x) implies that h(zx)=ax+b for all x. |a| is determined by (6.18) and b
is arbitrary. The validity of the two remarks follows at once. This ends the proof
of the lemma.

By applying lemma 6.1 to (6.17) the necessity of (6.2) and (6.3) is easily shown.
The function |a(v)| is determined a.s. from (6.4) and (6.6).

Corollary 6.1. In order that in the theorem 6.1
Wy(d) = Wi(A) and Fyv) = Fy(v)
1t 1s necessary and sufficient that

|a(v)| =1 a.s. with respect to v,.

The proof follows at once from theorem 6.1.

Remark. For the case a(v) =1 the sufficiency of theorem 6.1 implies the sufficiency
part of theorem 5.1,

An application to road traffic flow. Let the car positions at =0, {X,}, be weighted
Poisson distributed and suppose that the cars can overtake (and meet) each other
without any delay. The trajectories in the road-time diagram are assumed to be
lines, i.e. we have the constant speed case. Further the sequence of car positions
and speeds at t=0 {(X,, U,)} has the independence property. Let L be a fixed line
in the road-time diagram and denote the intersections between the trajectories and
L and the corresponding speeds by {(X}, U)}. From theorem 6.1 it then follows
that {X7} is weighted Poisson distributed and that {(X%, U%)} has the independence
property (if (6.3) holds with the relevant a(.) and d.f. F;(.)). In the case when L
is the t-axis this has been treated by F. Haight [8] p. 121 for {X,} Poisson distributed.
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