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Propagation of analyticity of solutions of partial 
differential equations with constant coefficients 

B y  KARL GUSTAV A~DERSSON 

1. Introduction 

In  [6] L. HSrmander discusses the following problem: Given an open set ~ in R n, 
two relatively closed subset X1, X~ of ~ and a partial differential operator P(D) 
with constant coefficients, which is then the smallest set X c ~  such that  

s .s .Uc X 1, s . s .P(D)UcX2=~s . s .UcX,  U EO' (~). (1.1) 

Here s.s. U denotes the singular support of U, i.e. the smallest, relatively closed 
subset of ~2 such that  U is an infinitely differentiable function in ~ s . s . U .  

In  some cases the problem has been solved completely. Let  Pro(D) be the.principal 
part  of P(D). P(D) is said to be of principal type if grad Pm(~) ~=0 when ~ ER n = Rn~. 
{0} and P(D) is called real if it has real. coefficients. If P(D) is of principal type and 
Pro(D) is real then a line with direction grad Pm(~), for some ~ ER n satisfying Pm(~) =0, 
is called bicharacteristie. The following results are known [4, 6, 11]: 

Theorem 1.1. Suppose that P(D) is of principal type and that P,~(D) is real. I] l is a 
bicharacteristic line and I is any closed interval (finite or infinite) contained in l, then 
there is a distribution F such that s . s .F= I  and P(D)F is infinitely differentiable 
except at the (finite) endpoints of I. 

Theorem 1.2. Let P( D ) be as in Theorem 1.1 and let H be a closed cone in R" containing 
one half ray of every bicharacteristic line for P(D) through the origin. Then there is a 
fundamental solution E of P( D) with s . s .Ec  H. 

These two thereoms together easily give: 

Theorem 1.3. I f  P(D) is of principal type and P,~(D) is real then (1.I) is valid if and 
only if 

X ~ X1N X 2 and, for every bicharacteristice line l, the set X contains any com- 
ponent I of l N ( ~ X  x N X2) such that I c X 1. (1.2) 

The main purpose of this paper is to prove tha t  Theorem 1.3 is valid also when 
infinite differentiability is replaced by  real analytieity. To do so, we will extend 
Theorems 1.1 and 1.2 to the anlytic ease. Theorem 1.1 extends word for word, but  in 
the theorem corresponding to Theorem 1.2 it  seems necessary to strengthen the as- 
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sumption as follows. If  S is the set of all bicharacteristic half rays through the origin, 
we will suppose that,  for any b ES, the set H contains a neighborhood in S of either b 
or - b .  The weaker result that  P(D) has a fundamental solution, which is analytic 
outside all of S, has been proved by  TrOves and Zerner [10] (see also [1]). 

Our version of Theorems 1.1 and 1.2 will be valid for a much more general class of 
differential operators than the one consisting of operators of principal type with real 
coefficients in their principal part. In  particular, all hyperbolic operators are included. 

The construction of the fundamental solution E will be carried out roughly as 
follows. We cover l{n by  open cones A ~, l = 1 .. . . .  p, such that  in each cone A ~ there is 
defined a bounded C ¢~ vector field ~-~v~(~) satisfying P(~+iv~(~))4=O. Following 
HSrmander [6], we then construct a partition of unity {¢~)~=x in C ~, subordinate to 
the covering {A~+,:R~}~=~, such that  ~ ( ~ )  tends very rapidly to zero as ~ tends to 
infinity in some open cone in C ~ containing A ~ and put  

p 

E(y) = Y. E'(y), 
l = l  

where Et(y) = (2~) -~ f e~<V'¢)P(~)-x~t(~ ) d~. (1.3) 

Of course, this has to be interpreted in the distribution sense. 
In  order to show that  El(y) is analytic at x, we shall construct a vector field 

-~w~(~), such tha t  for some e > 0  

(i) P(~+/sw~(~) ) .0 ,  when ~EA z and l~<8~<e]~ I 

(ii) P(~ +i(tw~(~) + (1 -t)vZ(~))) 4=0, when ~ EA l and 0 ~<t ~< 1 

(iii) (x, w~(~)) ~>~, when ~EA l. 

When y is close to x, we then obtain by  means of Stokes' formula 

+ (2~)-'j" e ~ ' '  ~)P(~)-~¢~(¢) d~, 

where ~ is compact and B is an (n + 1)-dimensional chain in C'. The first two terms 
obviously_ define functions holomorphic in a neighborhood of x. Furthermore, mainly 
because O~x(~) tends very  rapidly to zero as I ~ I tends to infinity, this is also the case 
for the third term. However, we have to choose our partition of uni ty  {~i} much more 
carefully than in [6]. The construction we give in section 2 was suggested by  Lars 
HSrmander. In  section 3 we analyze the possible choices of the vector fields w~. 
Here we follow Atiyah, Bott,  G~rding [2] very  closely. The extensions of Theorem 
1.1 and 1.2 are proved in section 4. The distribution F occurring in Theorem 1.2 will 
be constructed in much the same way as E(  The main idea will be to insert a factor 
e -e(¢) in the integrand in (1.3). These theorems will then be applied in section 5 to 
prove Theorem 1.3 with infinite differentiability replaced by  real analyticity. 

We should mention that  at the Nice Congress Sato [12] announced that ,  for 
operators of principal type with analytic coefficients and real principal part,  results 
similar to those of this paper had been obtained for hyperfunctions by  Kawai, 
Kashiwabara and himself. 
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2. A partition of  uni ty  

Let K be a compact subset of the open set ~2c R ~ and let ~ be a function in C~(~) 
equal to 1 in a neighborhood of K. Suppose further that  Z is a non-negative function 
in C°°(R ~) with support in (~; ]~[ <~} such that  ~Z(¢)d~=l. Withz(,(~)=7~Z(j~) 
we form the following convolution 

l~<4~k  ( " ) 

where [a] denotes the integral part of the number a , / * ~  =f~e ... ~e/, [a] times, and 
I-h<,<~q~/,=/v)e...-)e/q. Then ~ C ~ ( ~ )  and equals 1 on K if e is small enough, 
independently of k. By letting the derivatives fall on different Z(]):s one easily verifies 
that  

]1)%(¢)1 <M(c2-~b) I~1, [~1 ~</c-4-~, (2.2) 

for some constants M and c. 
Constructions similar to the one above have been used for a long time; see e.g. 

Mandelbrojt [7] or Ehrenpreis [3]. The one we have chosen is tailored to ensure that  
there are functions ~ belonging to the class L(A) which we are now going to define. 
The functions in this class have the important property that  their Fourier transforms 
are analytic in Rn. 

Definition 2.1. Let A =  R~ be an open cone. By L(A) we denote the set of functions 
~EC~(R n) such that  supp ¢ = A  and, for some constants M and c, 

I D~¢(¢)1 <M[¢ I (c2-.)~J, ~ ¢"1 ~[ < [¢1. 
Lemma 2.1. Let {At)~I be a covering o] It ~ with open cones. Then there are ¢IeL(A ~) 

such that ~¢,(~) = 1 when ]~] >11. 

Proo/. Let {gl}~_1 be a partition of unity in {~; 1/3< t~l <3} with gZeC~(A'), i.e. 
~'f g~(¢)= 1 when 1/3 ~<l~l ~< 3. Apply the procedure described above in order to get a 
sequence {gZ), k = 1, 2 . . . .  , of partitions of unity in {~; 1/2 ~< I~] ~< 2} with g~ e C~(At), 
such that  

] D~g~(~) ] ~< M(c2-~k) i~l, when 4~ ] a ] ~< k. 

Starting with a function beO~({¢; [¢[ <1) which equals 1 in a neighborhood of 
{¢; I~l ~< 1/2}, we obtain in the same way functions b~ e C~'({¢; I~1 < 1 }) equal to 1 in a 
neighborhood of {~; ]¢[< 1/2} such that  

[ D~bk(~) ] ~< M(c2-~k) ~l, when 4 ~ I ~ [ ~< k. 

Put  ?~(~)=g~(¢/k) and g~(¢)=bk+~(¢/k+l)-bk(~/k), k>~l. Then k /2<l~  ] < k + l  for 
any ¢ with gk(~) *0  and 5t?~,(~) = 1 in the support of gk. We now define 

By first summing over 1 and then over b it  follows that  Z ¢z(¢) = 1 when } ~ ~> 1. I t  
remains to estimate the derivatives of ¢,. If b~< ]~l < k + l ,  then 4~]~ I <[~l  

279 



~. c. ~v~.asso~,  Propagation of analytlclty of solutions 

if and only if 4"[~[ ~<k. Furthermore, 

k~,t~2k+l 

According to Leibniz' formula we have 

where, as usual, fl ~< ~ means fl~ ~< ~i, y~, and M means 1-It ~!. Now (2.2) together with 
the binomial theorem give tha t  

Thus 
I D-(x,(~)ri(~))l ~<21~lM(c2-r)M. 

I D~¢,(~) I <M~I~I (e2-~)~ 

with some new constants M~ and c~. 
We are now going to extend the elements in L(A) appropriately into the complex 

domain. The construction is similar to the one in [6]. Let 2 q C~(R) have its support 
in {t; t > 0} and be equal to 1 when t/> 1. Given ff ~ C~(R ~) we define 

(2.3) 

Lemma 2.2. I~ ~ EL(A) is extended into C n by (2.3), then there are positive constants M 
and c such that 

,~¢h =.¢(~+i~) = o 

M(I,71 + 1 ) <  I~1 =" IZ¢(~+~'7)1 <Ml~le-I¢~ 
M2,( I~I  + 2 , ) <  1¢1 ~- I¢(¢ +~,7) I <MI~I ~e°l'l'~'. 

(2.4) 

(2.5) 

(2.6) 

Proo I. (2.4) is obvious. Put AI(~) = {a; I~ I + 1 ~< I~l - 1}, A,(~) = {=; I~1 - 1 < I = I + 
1<  I~1) ~nd A,(~) ={~;  I~1 + 1 = [ 1 ~ 1 - 1 ] ) .  Then 

(a/at, + ialP~j) ¢(~ + i~) 

= (ala~j + i~l@,) { Y ¢c~,(~) (in).l~! 

+ (alab +ial@,)( Y ¢(-)(~)(i~)-x(l~l- (1=1 + 1))/~!). 
~eA2(D 

According to Stirling's formula pv/erp! is a bounded function of p. Furthermore, 
ZZ.l_~¢/~t ==,. ~ we put P=[I~I-13, Definition 2.1 thus gives 

280 



ARKIV FSR ~TEMATIK. Bd 8 nr 27 

lal-P 
<Mll~l(cg.], l / l~l) ~. 

If in addition e c, IV I ~< [~], we get 

The second term admits a similar estimate. This proves (2.5). 
To prove (2.6) we define functions ¢, by 

I t  follows directly from Definition 2.1 that  ¢,, satisfies the estimate in (2.6) in all of 
C ~. In  fact 

We ~ finish the proof by showing that 1¢(~+~'7)-~,(~+~'7)1 <constant-1~1 ~, 
when ~2"(I,71 + 2") ~< I~:1" 

¢(~ +~'7)-~,(~+~'~)-- ~ ¢~"(~)(~'~r(~(l~l-(1~'1 + a)) -~( l~l -¥( l~ ' l  + X)))/~, ~A,C~) 

where A4(~)={a G I : '1+ ~1¢ /~ ,~ ( I . : , 1+1 )+~ }  • I f  we denote by 0=0( l : ' l )  the 
largest integer such that  ~ l aq --~ I~1 then Definition 2.1 gives that  

1¢(~+~,~)-¢,(~+~,~)1 <MI~ I  Z (~2-~1,71)'"'I~ 
~A~(~) 

As in the proof of (2.5) we get, with IA, I(~)={1~1; ~eA,(~)}, 

I¢(~+iV)-¢,(~+iV)l<M,l~l ~ (~,2 -~ vlh,) ~ 
p e  A4 (~:) 

<M, I~ I  Z (c,2'+'1,7 / ~: )'. 

The last inequali ty follows from the fact  tha t  4 .+ 1119 > }~1" NOW 4@p ~- I ~1 "~< ~'(~19 -~- 1) -~- 1 
when p 61Aal (~). This together with the assumptions of (2.6) give that  

3. Loca l izat ions  and vector fields 

We are now going to define the class of differential operators P(D) which will be 
studied in the rest of the paper. In  most of this section we will restrict ourselves to 
the homogeneous case, but  at the end we will show tha t  the main results are valid also 
for inhomogenous polynomials P weaker than their principal part  Pro, provided that  
Pm belongs to the class in question. 
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Most of the results will be quite straightforward extensions of the corresponding 
ones for hyperbolic polynomials in [2]. However, for the convenience of the reader, 
we shall repeat the proofs of all facts that  we need. 

To begin with, we denote by V the topological space of all vector fields ~-~v(~) 
from R" to i~ ", homogeneous of degree zero, with the topology of uniform convergence. 

Remark. Observe that  we don't  require any continuity of the vector fields in V. 

Definition 3.1. If P is a homogeneous polynomial and s a positive number, we 
define V(P, s) as the subspaee of V consisting of all vector fields v in V with the pro- 
perty that  to every ~oER ~ there is a neighborhood O of ~o+iV(~o)in C ~ such that  

(~+iO) e O, Is01 < sl~01 and Im s~-O:~P(~+sO) 4=O (3.1) 

The union U~>o V(P, s) is denoted by V(P). 

Remark. (3.1) says that  all sufficiently small zeros of the polynomials s~P(~+ 
sO), ~ + iO CO, are real. When P(~0)~=0 there are no small zeros so that  (3.1) is non- 
empty only if P(~o) =0. Note that  it is sufficient to assume (3.1) when Re s --0. 

De/inition 3.2. A homogeneous polynomial P is called locally hyperbolic with re- 

spect to the vector field v E V if 

P(v(~)) ~:0 for all ~ER" (3.2) 

v e F(P). (3.3) 

The class of polynomials locally hyperbolic with respect to v will be denoted by 
Hyplo¢(V). 

Examples 
1. The homogeneous polynomials hyperbolic with respect to the vector N, i.e. 

Hyp(N). This class is obviously contained in HyIoloc(N). Here the vector field ~-~/V 
is constant and the number s in Definition 3.1 may be taken as + ~ .  

2. The homogeneous polynomials P, with real coefficients, such that  grad P(~) ~=0 
whenever P(~) =0 and ~ER n. If, for z, ~EC n, we p.ut (z, ~ =z1~1+ ... + z ~ ,  then any v 
in V, such that  (grad P(~), v(~)> :i:0, for all ~ER n with P(~)=0, belongs to V(P). In 
fact 

P(~ +/a0) = P(~) + is<grad Pm(~), 0> + 0(a 2) 

Here the first term is real, whilhe second is imaginary and non-vanishlng when 
+ iO is close to ~0 + iv(~o) and P(~0) =0. Thisproves that  v E V(P). Furthermore 

the set of w~V such tha t  P(w(~)) ~0,  for all ~ER n, is dense in V. Thus there are 
vector fields v in V, such that  PEHg/hoc(V), arbitrarily close to e.g. ~-+grad P(~)/ 
]grad P(~)]. 

3. Homogeneous polynomials P with the following property: every ~o E t t" with 
P(~o) =0 has a complex neighborhood O(~0) where P(~) is a product FI(~) ... Fk($) of 
holomorphic factors F j  such that  F~(~o ) =0,  grad F j (~)~0  and Fj(~) is real for real 
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in 0(~0). For such P:s we have, as in example 2, tha t  v E V(P) if <F¢(~), v(~)> 40,  
= 1 . . . .  , k, when ~ q 0(~o) is real and F~(~)= 0. As above we may perturb such a v 

arbitrarily little to get wE V such that  PEHyp~oo(W). 
Finally we give two examples of polynomials which are not locally hyperbolic 

with respect to any v E V as will follow directly from Lemma 3.1 below. 
4. Homogeneous polynomials P such that  grad Re P(~0) and grad Im P(~o) are 

linearly independent at some $, el{ = satisfying P($0)=0. 
When grad Re P(~) and grad Im P(~) are linearly independent at all points ~ e R= 

with P(~) =0  results, similar to those in this paper, have been obtained by  somewhat 
different methods in [1]. 

5. P(~)=~=Q(C1, ..., C=-l)+R(~l ..... ~=_~), where ~ and R are homogeneous poly- 
nomials of degree m - 1 and m respectively, and Q is not hyperbolic. 

Our next  step is to s tudy the localizations of locally hyperbohe polynomials. Let  P 
be a homogeneous polynomial of degree m. We develop P(~ + r$) around 

P(~: +v~) =r rP i ($ )+ te rms  of higher order in v. 

If Pe(~) 4 0  for some ~, then P~($) is called the localization of P at ~ and p =m~(P) the 
multiplicity of P at ~. Under these circumstances it is obvious that  

~m-~P(v-l~ + ~) -- P~(~) + terms of positive order in 

tends to P~(~), locally unifirmly in ~, when T tends to zero. 
The localizations above have been utilized by Atiyah-Bott-G£rding in [2]. HSrman- 

der [6] uses a more sophisticated process of localization of non-homogeneous polyno- 
mials. 

Examples  

1. When P(~) 4 0  then P~(~) =P(~) is a non-zero constant. 
2. If  P (~ )=0  but  grad P(~)#0 ,  then P~(~)=(grad P(~), ~> is a first order poly- 

nomial. 
3. I f  P(~)=~,Q(~l  . . . .  , ~ - l )  + R(~l . . . .  , ~ l )  is a polynomial satisfying the condi- 

tions in example 5 above and e, = (0, ..., 0, 1), then P~n(~) =Q(~l .. . .  , ~n-1) and me,(P) = 
~ - 1 .  

L e m m a  3.1. Suppose that P is a homogeneous polynomial, v E V(P) and ~o ER' .  Then 
P ~ e H y T  (v($0)) when ~ is close to ~o. 

Proo]. Suppose that  ~ER ~ and sEC\R are given. Since vE V(P) it is obvious tha t  
the distance from (~+ v(~ + sv(~0))) to {~; P(~)=0}  is bounded from below by some 
positive constant times x when ~ is close to $o and x is small. If we denote m~(P) 
by p then, according to Lemma 4.1.1 in [5], 

0 < c < v -~ P(¢ + ~(~ + sv(~0))) = P~(V + sv(~)) + 0(T). 

Since ~ and s were arbitrary, this proves that  P(~/+ sv(~0) ) # 0  when ~/ER ~ and Im 
s 40 .  In  particular it follows from the homogeniety of P that  P~(v(~o) ) 4= O. 

Corollary 3.1. P e Hyplo¢(V), ~o E i t  ~ ~P~ E Hyp (V(~o)) when ~ is close to ~o. 
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Remark. This corollary and the examples 2 and 3 preceding the lemma now im- 
mediately show tha t  the polynomials in the examples 4 and 5 above are not locally 
hyperbolic with respect to any v ~ V. 

Semicontinuity of the local cones. Because P~ is hyperbolic with respect to v(~o) 
when ~ is close to ~o, we may define the local cone F(P~, v(~o) ) as the component of 
v(~ 0) in {~ER'; P~(~)40}. P~ is hyperbolic with respect to any 7~F(P~, v(~o)) (see 
Theorem 5.5.5 in [5]). The dual cone of the cone F(P~, v(~0)) is defined by  

For polynomials P E Hyploc(V) we shall now study the set V(P) more closely. We are 
going to show that  to any 7 ~F(P~0, V(~o) ) there is a neighborhood U of ~o, such that  
the constant vector field U ~ - ~  7 may be extended to an element of V(P). First we 
need a technical lemma about the small zeros of s-~P(~ +sv(~0) ) when ~ is close to ~0- 

Lemma 3.2. L~t ve  V(P, e) and PeHyploo(V). Then there is a neighborhood U of ~o 
in R ~ with the/oUowing IJroperty. Given ~ e U and 7 e R '~ then the zeros o/s  ~P(~ + t~? + 
~V(~o) ) satisfyinq [sV($o) ] <Silo] can be labelled so that they are gifferentiable /unctions 
s~(~, 7], t) o/t,  k = 1 .. . . .  p, when t is small. 

Proof. Let 0 be the neighborhood of ~o + iv(~o) occurring in Definition 3.1 and choose 
U and ~ such that  U+tT+iV(~o)CO when t is real and [t I <& Now (3.1) implies 
that  sk(~, 7, t), k = l  ..... p, is real when t is real and It[ <& Furthermore, because 
P(v(~o)) 40 ,  the functions t ~sk(~, 7, t) may be developed into convergent Puiseux 
series around a real t o 

sk(}, 7, t) = 8k(}, 7, to) +c~(t- toYk(1 + o(1)), (3.4) 

with c~40 and rk>0 rational. If now leo/<c$, then r k has to be an integer, because 
s~(~, 7, t) is real when t is real and close to t o. This gives the differentiabflity of t-+s~(~, 
7, t). 

We are now ready to prove the main result of this section (compare Lemma 5.1 in 
[2]). 

Lemma 3.3. Suppose that PEHypl~(v), ~oeR n and that M is a compact subset o/ 
F(P~., v(~0) ). Then there is a neighborhood U o/~o in R" such that 

7 e M, ~ e U and Im t 4 0  ~ P ( ~  + t~) :~0, 

provided that t is su//iciently small. 

(3.5) 

Proof. Because of (3.2), we may  suppose that  P(v(~o) ) = 1. If m is the degree of P 
and T =m~o(P), we have 

P(¢o + ~ ( ¢ o ) )  = 8" P,.(V(¢o)) + . . .  + s  m (3.6) 

Now, because of the continuity of the zeros and the fact tha t  P~o(v(~o) ) 40,1o zeros 
Pl(~o + ~) .. . .  , ~u~(~o + ~) of P(~0 + ~ + sv(~0)) will be small, while the remaining ones are 
bounded away from the origin, provided that  SER n is small. (3.1) shows then tha t  
the numbers ~u~(~0 + ~) .. . . .  /~(~o + ~) are real. We shall relate these zeros to the zeros 
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/~o (~), .--, #o (~) of the localized equation P¢.(~ +sv(~o) ) = O. Since 

P(¢o + ~ + sV(¢o)) (8 -~(~o  + ~)) 
1 

we get 

q, Cs) = ~:-" P(~o + ~¢ + ~s*,(~o))/IeI ('~ - ~ ( ~ o  + ~¢)) = I~I (8 - ~-~ff~(~o + ~¢)). 
p + l  1 

(3.7) 

If  s and ~ are bounded, then q~(~) converges to P~o(~ +sv(~o))/YI~+~ (-#~(~o)), uniformly 
in s and ~. By choosingp + 1 numbers s o ... . .  s,, such that  (1, So, ..., s~), ..., (1, s, . . . .  ,8;) 
are linearly independent, it follows that  the coefficients, and thus the zeros, of 
q~(s) converge to those of P¢,(~ +sv(~o))/H~+~ (-#~(~0)), uniformly in $. With a suitable 
labelling we then have 

x-1/~(~o+r~)-~/~°(~),/¢=1 ..... p, uniformly in ~, when ~-~0. 

Using that  all/~(~o + x~) and/~o (~) are real and that,  furthermore,/~o($) is homogeneous 
of degree one, we get 

~(~o +~) = ~o(~) +e~(~) [~1, (3.8) 

where ~1(~) is real, for small ~ER n, and tends to zero when ~-~0. 
• If  ~1, ~ belong to a compact subset of R ~ we define 2~,.k(~) as the/a°(~) such that  
I/~°($1)-/~(~)1 attains its minimum. Because a continuous function is uniformly 
continuous on compact sets, the ftmction/~°(~l) 2 ° - ¢,. k(~2) tends to zero together with 
]~1-~I-  Not exhibiting the dependence of 2~,k(~) on ~1 and again using its homo- 
geneity of degree 1 we get, with ~1 =~+t~l, ~2 =t~l and ~ EM, 

~o(~ +t~)  = t~°(~) +e~(~, t~), (3.9) 

where the real function ~(( ,  t~/) tends to zero, uniformly with respect to ~/EM and t 
small, when (-~0. Replacing ( by ( + t ~  in (3.8), this together with (3.9) finally gives 

~,,:(~o +~ +t~) = t (~(~)  +e~(~, t~)) +e,(~,  t~), (3.10) 

where q~, /=3,  4, are realvalued and ~(~, t~)-+0 as (~, t)-~0, uniformly when ~ e M, 
while pa(¢, t~/)-~0 as ¢-~0, uniformly when ~/~M and t is small. 

We now put s=O in (3.7) 
]0 rn 

P( ~:o + ~" + t~) = ( - ~)~ II~ ~ (~o + ¢ + t ~ ) ~  ~(~e o + ¢ + tV)- 

According to Lemma 3.2, we may suppose that  the functions t-+/~(~o+~+t~), 
k = 1 .. . .  , T, are differentiable for every fixed ~, small enough. Because we know that  
t->P(~0 +~ + t~/) has exactly p small zeros, it  now only remains to show that,  given 
e>0,  there is a ~>0,  such that  to every ~ R  ~ with [~[ <~, every r/~M and every k 
with 1 ~<k~<p there is a real t with/~(~o+~+t~/) =0. This, however, follows directly 
from (3.10) since, because P¢o(~/) 4:0 when ~ eM, the real numbers 2°(~) are bounded 
away from zero on M and since q~(~, t~7)-~0, uniformly in t~/when ~-+ 0. This finishes 
the proof. 

As in [2] it  now easily follows that  the local cones F(P~, V(~o)) contain any preas- 
signed subset M of F(P¢., V(~o) ), if only ~ is close enough to ~0. 
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Lemma 3.4. Suppose that P E Hyploc (v), to E l{n and that M is a compact subset of 
F(Pc,, V(to)). Then M c  F(Pc, V(to))/or all t e R n sufficiently close to to. 

Proo/. We suppose that  P(v(to))=1. Because of Corollay 3.1. PcEHyp (v(t0)) if t 
is close to t0. Thus Pc(v(to)) ~0  and 

P( t  + sV(~o)) = sq(P~(v(~o)) + 0(s)), 
where q =q(t)=me(P). 

We may suppose tha t  M is convex and contains v(t0). Then it suffices to show that  
P(~+t~?) vanishes precisely of order q at t=0 ,  when t dose to to and ~ ~M. In fact, 
then P¢(~):~0 when ~ EM so tha t  M ~  F(P c, V(~o) ). By (3.7), we have 

P(t + t~ + sv(t0)) = l-[~ (s -/~k(t + t~))i~+ I (s -/Ik(t + t~)). (3.11) 

By Lemma 3.3 and the convexity of F(P¢, v(to)) 

Im s>~0, Im t~>0 and Im (s+t) > 0 = P ( ~ + t ~  +sv(to)) =~0, 

provided tha t  t is close to t0 and s, t small. Thus 

Im t > 0 ~ I m / ~ ( t + t ~ )  <0, 1 <k<~p. 

According to (3.4) this is only possible if rk-- 1 and % < 0. This gives 

~uk(t +t~) =pk(t) +c~t(1 +o(1)), c~<0, 1 ~</¢<p. 

Now the result follows from (3.11) with s = 0 and t = 0 respectively. 

Dua/cones and vector//e/ds. Before proceeding further, we shall summarize some 
general facts about conical algebraic hypersuffaces in @~. 

Let P be a homogeneous polynomial. The lineality Ac(P) of P is defined by 

Ac(P) = ('/6C~; P(~+t~) = P(¢), Yt, ~} 

The polynomial Pc, obtained by localizing P at } 6 C~, always has a non-empty 
lineality. In fact, due to the homogeneity of P, 

@(1 + st) m-p PC(~) + 0(s~+l) = 

= P ( t  +s t t  + s~) = 8~ Pc(tt + ~) + 0(~ +1) 

where p = me(P ). Identification of the coefficients of s p gives that  t EAc(Pc). 
' p  Now, if Z(P)={tECn; P(t)=O}, we define the normal Ac(¢)  of Z(P) at t by 

! n Ao(Pc)={xEC ; <x,71>=O, V~TEAc(Pc)}. 

Finally the dual Z'(P), of Z(P), is defined as the union of all Ac(Pc), when t EZ(P). 
The following result is proved in [2] (p. 153). 

Proposition 3.1. Z'(P) is contained in a proper conical subvariety o/C ~. 

Suppose now that  P is locally hyperbolic and let Z be a closed cone in R ". By 
C°°V(P, E) we mean the set of vEV(P) such that  vEC°°(A) for some open cone 
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containin.g ~ = Z~{0} .  Because of Lemma 3.1, the cone K(P¢, v(~)) is well defined for 
every $~R ~. Given v~C~(P, Z) we may thus define 

H(P, ~, v) = - O K(P~, v(t)). 

Examples 

1. If  P is an arbitrary homogeneous locally hyperbolic polynomial, v ~ V(P) and 
~0~R', then, because of (3.1), there is an open cone A containing $o, such that the 
constant vector field A9 t-+v(t0) may be extended to an element in C~V(P, A). 

2. Suppose that  P is as in example 2 in the beginning of this section and that  t0 
is a point in R" satisfying P(t0) =0. According to example 2 preceeding Lemma 3.1, 
Ac(P~°) consists of those nEC ~ such that (grad P(to), ~} =0. Thus Ac(P~,) is the 
complex line generated by grad P(to). Let v be the vector field t-+grad P(t) / ]grad 
P( t ) [ .  Then F(P~,, V(to))={~R~;  (grad P(~0), ~7}>0} and K(P~o,V(~o))~{t grad 
P(t0); t >i 0}. We observe that  K(P~o, V(to)) is half the real line Re Ac(P~.) =Ac(P~°) fl R 
Finally H(P, R ~, v)= U ( - t  grad P(t);  t>~0}, where the union is taken over those 
~1~"  which satisfies P(~)=0.  

We now collect all the information about homogeneous locally hyperbolic poly- 
nomails, that  will be needed later on, in a theorem. As usual, we denote the sum 

Theorem 3.1. Let P be a homogeneous locally hyperbolic polynomial, Z c R ~ a closed 
cone and suppose that v e C°~ Y (P, Z). Then 

H(P, Z, v) is contained in a proper conical subvariety o] RL (3.12). 

Furthermore, there is, to every x ~H(P, Z, v), an element vxEC°°V(P, Z) and a num- 
ber ~x>0, such that 

(x, %(t)} >~, when ~E~ (3.13) 

fEZ,  1 <<.s<~.~lt [ =~ [P(t + isv,(~)) I ~>~,P(~ +isv,(t)) (3.14) 

tEz ,  Itl ~>~;~, o<t~<l ~ IP(t +i(~v~(t)+(1-t)v(t)))l ~>~P(t+i(tv~(t)+(1-t)v(t))). 
(3.15) 

Proo[. Suppose ~ E F(P~, v(t)). Then ~ + 7  e F(P~, v(t)) for all ~ ERe Ac(P~). In fact 
P~(~+t~?)=P~(~) :~0 for all t, so $ and ~+~.mus t  belong to the same component of 
~0ER~; P~(O)~=0}. Thus (x, ~+~]} ~>0, when xEK(P~, v($)). By letting ~ tend to zero, 
we get that  (x, ~} >~0 and consequently, since Ac(P~) is a linear space, that  (x, 7} =0,  
for all ~ ERe Ac(P~). This gives that  K(P~, v(t))c (Re Ac(Pe))'. Since P~ is a pol- 
ynomial with real coefficients, modulo multiplication with a complex constant, 
Pe(~) =P~(~+t~), for real ~ and t, if and only if Pe(~) =P~(~+t(?). From this it follows 
that  (Re Ac(P~))' = R e  A~(P~). Thus K(P~, v(t))cA~(P~) and (3.12) follows from the 
proposition above. 

To prove the remaining statements of the theorem, we observe that, if to E ~, then 
F(Pf,  v(t)) ~U(P~, v(t0)) when t belongs to a conical neighborhood of to. In fact, be- 
cause of the continuity of v, v(t) varies in a compact subset of F(P~,, V(~o)) when t is 
close to ~o. Therefore, because of Lemma 3.4, v(t) EF(P~, v(~o) ) when ~ is close to ~o. 
From the definition of H(P, Z, v) it follows that  to every x ~H(P, Z, v) and to every 
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~0e~ there is an 7EF(Pgo, v(~0) ) with (x, 7 ) > 0 .  Again according to Lemma 3.4, 7 
belongs to F(P~, v(~0) ), and thus to F(P~, v(~)), when ~ belongs to some conical neigh- 
borhood of ~0. Cover now ~: with a finite number of such neighborhoods and glue the 
corresponding rh:s together with a partition of unity, subordinate to this covering, 
homogeneous of degree zero. Because the cones F(P~, v(~)) are convex we get in this 
way a vector field v~(~) such that  %(~) eF(P~, v(~)), V~e~.. Lemma 3.3 gives that,  if 
the 7~:s are chosen small enough, then the distance from {~ +ia%(~); ~ ~ Z ~ S '~-~} to 
Z(P) is bounded from below by C.a. (3.14) now follows from Lemma 4.1.1 in [5] and 
the homogeneity of P. I t  is obvious, from the construction of %, that  (3.13) is satisfied. 
(3.15) follows, exactly as (3.14), from Lemma 4.1.1 in [5], since, due to the con- 
vexity of F(P~, v(~)), the distance from ~+i(t%(~)+ (1-t)v(~o) ) to Z(P) is bounded 
from below if ~ e ~ and I~1 is large enough. 

Remarks about the non-homogeneaus case. If  P is a non-homogeneous polynomial of 
degree m, we define the localization of P at ~ as the first not identically vanishing 
coefficient Pg(~) in the expansion 

v'P(r-l~ + ¢) -- v~Pe(¢) + °(~+~) 

1o = m~(P) is called the multiplicity of P at ~. 
In the homogeneous case, this definition obviously coincides with the one we have 

given before. 
As usual, we call the polynomial Q weaker than P and write Q<P if (~(~) <<. C.-P(~) 

for all ~ E R ~. 

Lemma 3.5. I / the  10olynomial P is weaker than its principal part Pro, then the 10rin- 
ci10al10art o/ the localization P~ o/ P at ~ eR ~ is the localization (Pm)~ o/Pm at ~ and 
P e "< (Pm)e. 

Proo/. Write P=Pm+Pm-I+...,  where P~ is homogeneous of degree k, and put 
10k=me(Pk). Then 

v~P(T-I~ + 7) = ~ ~ -  ~+ ~'((Pk)¢(7) + 0(r)) 
k 

Since 

~P~(~-1¢ + 7) = ~'((P~)~(7) + o(~)) 

and P'<Pm it follows that  10m<<m--k+10k for all k. In fact 

]P(T-I~+7)I <constant ._P( , - l~+7) ,  V~,7.  

This proves that  (Pm)~ is the principal part of P~. The rest of the lemma follows by 
letting z tend to zero in 

• ~ - ~ P ( ~ - ~  + 7) ~< C ~ - ~ P ~ ( ~ - ~  + ~) 

Corollary 3.2. /1/P '<Pm, Pm E Hy101oc(V) and ~o E i~ '~, then P ~ is hyperbolic with respect 
to v(~o), when ~ is close to ~ o. 
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Proof. If  Q is a polynomial of degree k such that Q~ E Hyp (/V) and Q < Q~, then, ac- 
cording to Theorem 5.5.7 in [5], Q is hyperbolic with respect to h r. Now the corollary 
follows directly from the lemma and Corollary 3.1. 

Remark. For polynomials satisfying the hypothesis of this corollary one may thus 
define the local cones F(P~, v(~)) and their duals K(P v v(~)). 

We now formulate a theorem corresponding to Theorem 3.1. 

Theorem 3.1'. Let Z c R" be a closed cone and suppose that P is a polynomial such that 
P'<Pra and P~n is locally hyTerbolic. I / v  E C°°V(P,~, Z), then there is, to every x ~H(Pm, 
•, v), an element w~EC°°V(P,,, Z) and numbers r, ~x>0 such that 

I when (3.13') 

e z ,  1 I (3.14') 

~eZ,  ]~] >~;~, 0~<t<l  =~lP(~+i(tw~(~)+(1-t)rv(~)))] >~,. (3.15') 

Proo/. From Taylor's formula, it follows that, for any polynomial Q of degree k, 

Q(~ +v/)<(1 +Cl~? I)kQ(~), ~, V eC'. (3.16) 

Let  v~(}) be the vector field corresponding to P~ in Theorem 3.1. According to 
(3.14), with s = 1, we have 

~x/5~(~ +ivx(~))< ]Pm(~+ivx(~)) ] , ~ e Z  and 1 ~<Ox]~]. (3.17) 

Because of Lemma 5.5.2 in [5] P~'<Pr,, 0 <~k<m. Thus (3.16) and (3.17) imply that  

IPk(} +iv~(}))] <~C, IPm(} +iv~(}))], } e Z  and 1 ~<~,]}]. 

Finally, if we replace ~ by }/s and utilize the homogeneity of P~, P~ and v~, we get 

]Pg(~ + isv,(~) ) [ <~ C~s~-'~[Pm(~ + isv,(~)) ] , ~ e Z and s~<6,]~[. 
Thus 

]P~(~ +isrv~(~) [ <. C~r ~-~ ]P~(~ +isrv~(~)[, when ~ 6 Z and 1 < s <~ 6~r -~ [ ~ [. 

If  we choose r large enough, denote($~r -~ by6~ and put w~(~) =rv~(~), (3,14') is proved. 
(3.13') is obvious and (3.15') follows from (3.15) in exactly the same way as (3.14') 
follows from (3.14). 

Examples 

1. If P is a polynomial hyperbolic with respect/Y, then P m e H y p  (N) and P'<Pm" 
This was proved by Leif Svensson in [7]. 

2. If  P is an polyno.mial such that  P~(}) is real, when }ER n, and grad P~(~) 40,  
when Pro(}) = 0  and } ER n, then we know, from example 2 in the beginning of this sec- 
tion, that  P~EHyploo(V) for vectoffields v e V, arbitrary close to the vectorfield 

-+grad P~(})/]grad P~(}) I • Furthermore, it is obvious that P <P~.  
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4. Fundamental solutions and solutions with singularities concentrated 
o~ ~ loe~a ~ o ~  + K(P~,  v ( D )  

Let  P be a polynomial such that  P K P =  and P= is locally hyperbolic. Suppose we 
are given a covering ~0 = {Az}~=l of 1~ ~ with open cones and suppose that  we also have 
a set of vector fields ~¢= {v=}~_z, such that  v~EC=V(P=, A~). We then put  ~/(~0, ~9) = 
U z~<I~<~H(P~, A~, vZ). In  this section we are going to construct a fundamental solution 

of P(D) which is analytc outside//(~0, ~¢) by, roughly spealring, putting 

where {~bz}~=z is a partition d unity with ~bzEL(AZ), subordinate to the covering Z) 
and extended to C n by  (2.3). r = r  z is the number occurring in Theorem 3.1'. In fact, we 
will show tha t  the distributions 

are analytic outside H(Pm, ~z, v Z) by modifying the chain of integration. The presence 
of the non-holomorphic function ~t will not cause any problem, because of the pro- 
perties of cz listed in ie.mma 2.2 In particular (2.5) shows that  ~¢z(~) tends very 
rapidly to zero, when ~ tends to infinity in a complex cone around A t. 

We are also going to construct a distribution F with singularities on a single local 
cone K(P~, v(~)), such that  P(D)F is analytic outside the origin. As mentioned in the 
introduction, this will be done by  simple inserting a suitable factor e -g(~ in the inte- 
grand defining EZ(y). 

To sum up, we will study integrals, interpreted in the distribution sense, of the 
form 

where v E G°°(Pm, A), for some open cone A c R", ~ EL(A) and g belongs to any of the 
classes M(~, A), which we are now going to define. 

De/intion 4.1. Let  A c  R" be an open cone and Q a non-negative function, positively 
homogeneous of degree one and continuous on a neighborhood of A~(0} .  Then 
M(A, Q) is defined as the set of functions g, such that,  for some constant c, 

When IF] ~c, then ~ g ( ~ )  is holomorphic in some open cone A' in C ~ containing A 

and ] D=g(~) ] ~< c=(1 + [F] )i-I=l, V ~. (4.1) 

Re g(~) >/Q(~)kl~ I i -k_  c, for some k > 0, when ~ E A'fl R n. (4.2) 

Re g(~ q- iv/) >i - c l~ 7 ] ( I ~ ] ÷Q(~)) I ~ [ -1 _ c, when ~ + i  T E A', (4.3) 

Remark. If g(~) is real when ~ E A, then g automatically satisfies (4.3) ff it satisfies 
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the rest of the definition. In  fact, Taylor expansion gives 

g(~ +i7)  = g(~) + / (grad  g(~), 7)  + [71 ~r(~, 7), 

where, because of (4.1), Ir(~, 7)[ <c[~[ -1, if [U[ is less than some constant times [~[. 

Examples 

1.0 EM(A, 0), for any open cone A c 1~ ~. 
2. Let A be an open cone such that  / ~ { 0 }  is contained in the open half-space 

defined by  ~1>0. Put  ~=(0,  ~ ..... ~ )  and ~(~)--]5l. Then g(~)=(~, ~).~-1 is holo- 
morphic in an open cone A' in C = containing A ~ 0 ) .  (4.2) is satisfied with k = 2  so, 
according to the remark above, gEM(A, ~). 

3. Let g, ~, A and A' be as in Example 2 and suppose that ~o is a positively homo- 
geneous function of degree one, holomorphic in A'. If, in addition, ~0 is realvalued in 
A and grad ~0(~) =0, when ~'=0, then (g +i~0)EM(A, Q). Obviously, we only have to 
verify that  i~0 satisfies (4.3). This follows from the Taylor expansion of ~0 around a 
point ~EA: 

i~(~ +i7)  = i~(~) - (grad ~(~), 7)  + 17 [~r(~, 7). 

Since ~o is positively homogeneous of degree one and grad ~o(~)=0, when ~=0,  it 
foUows that l grad ~(~)1 -<c I~ I I~1-1 in A and that [r(~, 7) l ~< c I~l-~, when ~ + i7  e ±. 
Because ~o(~) is real in A, this proves (4.3). 

Suppose we are given a polynomial P ,  an open cone A ~ Rn and two functions ¢, g, 
such that ~EL(A) and gEM(A, ~), for some ~. If v: A->R n is a C °° vector field, homo- 
geneous of degree zero, such tht  for some ~ > 0  

~eA, I~1 ~>~-1~ IpC~+iv(~))l ~ (4.4) 
then we may define the following distribution 

ECP, A,v, ¢,g) (u) = f ~(~) P(~)-~ e-~¢~¢(~) d~, ] ~1 >~ ~ -~ . (4.5) 

Here  u e V~  (Rn), ~,(~')= (2~) - "  j 'a, e ~<~" ¢> u(z) dz and d~" = d~l A . .  A d~,. 

Lemma 4.1. Let v: [0, 1] × A ~ (t, ~) -+v(t, ~) ~R ~ be a C ~ vector field, homogeneous o/ 
degree zero with respezt to ~, such that/or some d > 0 

~eA, ]~] ~>d -1, 0~<t<l  :~P(~+iv(t, ~))>~d 

and put E~= E(P, A, v(k,.), ¢, g), b=0 ,  1. Then E o -  E ~ is an analytic/unction in all 
o/R". 

Proo/. Define, for large R, the following chains 

~(R): ~ = ~+i~(~, ~), d-~< I~1 <R, ~ A ,  ~=0,  ~. 

B(R): ~ = ~+iv(t, ~), 0<t. .<l,  d - l <  l~l ~<R, ~EA. 

We put  w(~)=a(~)P(~)-le-°¢)¢(~)d~. 
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Then, if the chains are suitably oriented, we have, according to (3.15') and Stokes' 
formula, 

f , , ~ ( c ) - f . , , ~ w ( c ) = f v ~ ( c ) ÷ f ~ , 2 ~ ( c ) ÷ f , , ~ o ( c ) ,  (4.6) 

where 7 is a compact chain, in C n, independent of R. Now ~2(~) tends to zero faster 
than any power of I ~l-x, when I ~1 tends to infinity and I Im ~1 remains bounded. 
Furthermore, it follows from (4.1) and (4.2), by means of Taylor's formula, that  Re g(~) 
is bounded from below when I Ira ¢1 is bounded. These remarks, together with (2.5), 
give that  we may let R tend to infinity in (4.6). We get 

Because of (2.5) and the compactness of ~, we may change the order of integration in 
the two integrals on the right-hand side, thus getting 

go(u) - E~(u) = .IR~ l(z) u(z) ~, 

where 

I t  now follows, again from (2.5) and the compactness of •, that  ](z) is holomorphic 
when Jim z I <1. 

We are now going to state the main theorem of this paper. Because it is fairly 
technical, we will deduce some corollaries from it before we give the proof and also 
give some examples, hoping that  this will facilate the reading. First of all we must, 
unfortunatey, introduce some more notation. 

Let P be a polynomial, such that  P < P m  and Pm is locally hyperbolic, and let A = R" 
be an open cone. Suppose further that  we are given vEC~*V(Pm, A), ~bEL(A) and 
gEM(A, ~), for some Q. Because of (3.15'), the distribution E(P, A, rv, ~b, g) is defined 
if r is large enough. We put 

H(Pm, A , v , O ) = -  U K(Pe, v(~)), where A(~)={~EA\(0};~(~)=0}. 

Obviously H(Pm, A, v, O)--H(Pm, ~, v). I f  T is a distribution, s.T, a.s.T and s.s.T 
denote the smallest closed set outside which T vanishes, is analytic or is an infinitely 
differentiable function, respectively. Finally, E(P¢, v(~)) is the unique fundamental 
solution of P~(D) with support in the half-space defined by (x, v(~)) <<. 0 (see Theorem 
5.6.1 in [5]). Note that  s.E(P~, v(~))c - K ( P I ,  v(~)). 

Theorem 4.1. a.s.E(P, A, rv, ~, g)=H(Pm,/~, v, ~) for large r. 

Corollary 4.1. Let D =  {Al}rffil be a covering o/ It n with open cones and let ~ =  {vl}z=l ~ 
be a set o/vector fields, such that v z E C ~ V (Pm, Az). Then there is a fundamental solution E 
o /P(D)  with 

a.s.E= ~/(D, Zo). 
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Fig. 1. The eonoid generated by all the bieharaeteristic lines for P(D) = D~ - o~(D~ + D~). There is a 
fundamental solution E of P(D) which is analytic outside the shaded pa~ts of the conoid. 

Example. If  P is hyperbolic with respect to N, then we may  take ~ = ( I t ' }  and 
~=(v} ,  where v is the constant vector field ~ - ~ -  N. Then Corollary 4.1 says that  
P has a fundamental solution, E, with a.s. E ~  W(P, N), where W(P, iV) is the wave 
front  surface of P with respect to N (see [2] for the definition). If  we cover R~ by two 
cones ~ = ( A  +, A-)  and choose v + to be ~-~ - N ,  in A+, and v-  to be ~-~2~ in A-, then 
~4(D, ~) becomes a subset of W(P, N) U W(P, - N ) .  If, for example, P(D) is the wave 
operator D ~ -  c2(D~ + ... + D~n), IV = (1, 0 ..... 0) and J1, J2c  W(P, N) are two relatively 
open cones covering W(P, N ) ~ ( 0 ) ,  then we may in this way construct a fundamental 
solution E of P(D), such that  a.s. E ~ J  1U ( - J ~ )  (see Fig. 1). Constructions of this 
type will be used in Section 5 for general operators P(D) of principal type, i.e. grad 
P~(~) ~=0 when P~(~) = 0  and ~ R ~ ,  with real coefficients in the principal part. 

Corollary 4.2. Let A c R n be an open cone containing ~o and suppose that v E C~° V (P,n, 
~). Then there is a distribution F(v(~0) ) such that 

a.s. P(D) F(v(~0) ) -- {0}, a.s. F(v(~o) ) c - K(P~°, v(~0)), s.E(P~°, v(~o)) c s.s. F(v(~0) ). 

Furthermore, there is a/unction/,  analytic in all o / R  ~, such that 

P(D) (F(v(~o)) - F ( - v ( ~ o )  ) - / )  = 0. 

Example. Suppose that  P(D) is of principal type, Pro(D) has real coefficients and 
that  v(~) = grad Pm(~)/I grad Pm(~) ] • Then K(P~, v!~)) = (0} if Pm(~) ~=0 and K(P~, v(~)) 
is the ha]f ray (t grad Pm(~); t >~0} if Pm(~) =0,  ~ GR ~. Such a ha] / ray  is called a bichar- 
acteristic ha] / ray  and the corresponding line a bicharacteristic line. If  bf is a bicharac- 
teristic half ray, and we denote by  x' coordinates on this line and by  x" coordinates 
in the hyperplane perpendicular to b~, then E(P~, v(~))=ceaX'O(x')®(~(x"), where 
O(x') =0 on bi, O(x ' )=-1 on - b i  and ~ is the Dirac measure. Thus, according to 
Corollary 4.2, there is a distribution F -  such that  a.s. lV-=s.s. F - = - b ~  and 
a.s. P(D) F -  = (0}. Furthermore, for any bieharacteristie line l, there is a solution F of 
P(D) lV=0 such tha t  a.s. ]~=s.s. F = l .  In  the special case treated in this example, 
the following corollary gives still more information. 

Corollary 4.3. I /P(D)  is o/principal type and Pro(D) has real coe//icients, then, to any 
closed interval I (/inite or in/inite) contained in a bicharacteristic line 1/or P(D),  there is 
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a distribution F such that a.s.F=s.s.F=I and P(D)F is analytic except at the (finite) 
end/points o / I .  

Proo/ o/ Corollary 4.1. Aceordlng to Lemma 2.1, there are functions ~t EL(AZ), such 
that  ~.f4~(~)=1, when It]/>1. Put  

F = ~. E z, where E z -= E(P, A t, rtv ~, Ct, 0). 
l - 1  

Theorem 4.1 now tells us that  a . s . F c  ~/(~, ~). We are going to show that  F only 
differs from a fundamental solution of P(D) by an analytic function. If the operator 
P(D) is applied to E t, we get 

Because {~,}y-~ is a partition of unity, when It[ >/1, we obtain, by means of 
Stokes' formula, 

+,- i  , a(C)4,,(C)dC+, , a(C)~@z(C) A tiC, 

where 7t is a compact chain in C n and Bt is the chain given by ~=t+itr~vt(t), when 
0~<t~<l and Itl 

The first term equals u(O), by the Fourier inversion formula, and, exactly as in the 
proof of Lemma 4.1, it follows, from (2.5) and the compactness of 7', that  the remain- 
ing terms correspond to a function h(z), holomorphic when ] Im z] < 1. In conclusion, 
we have P(D)F=8+h, where h is holomorphic when Jim z] <1. Solve P(D)f=h, 
with / holomorphic when lira z I <1 (see e.g. TrOves [9] p. 477). Then E = F - / i s  a 
fundamental solution of P(D) with the desired properties. 

Proo/ o] Corollary 4.2. By choosing coordinates suitably, we may suppose that  
t0 = (1, 0 ..... 0). We may also take A such that  A~{0}  is contained in the half space 
{~; <~, to> > 0}. Define ~ and g as in Example 2, following Definition 4.1, i.e. e(~) = ]~] 
and g(~)=<~, ~>.~1. Obviously H(P,,, ~, v, ~ ) = - K ( P ~ , ,  v(~o)). According to 
Lemma 2.1, there is a ~b EL(A) which equals 1 in an open cone containing t0- Put  

$'(v(~o)) -- E(P,  A, rv, @, g). 

Theorem 4.1 gives that  a .s .F(v(t0))c-K(P~, ,  V(to)). Furthermore, P(D)F(v(t0))= 
E(1, A, rv, ~, g). Since H(1, A, v, ~)={0}, it  also follows from Theorem 4.1 that  
a.s.P(D) P(v(to))c {0}. Next we define the following chains 

~ :  ~- =t+(_l)kirv(s~), ]~[ ~>~-1, k = l ,  2. 

B: ¢ = ~+(2t-1) i rv( t ) ,  0~<t~<l, Itl 
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If  the orientations are chosen properly, Stokes' formula gives 

(P(D) F(v(~o)))(u) - ( P ( D ) P ( - v ( ~ 0 ) ) )  (u) 

where 7 is a compact chain in C a. Just  as before in the proofs of Lemma 4.1 and 
Corollary 4.1, it  follows, from (2.5) and the compactness of 7, that  the right-hand side 
corresponds to a function h(z), holomorphie when I Ira z I < 1. As in the proof of 
Corollary 4.1, we solve P(D)[=h in order to find a function [(z), holomorphic when 
I Imzl  <1. I t  only remains to prove that  s.g(P¢,,v(~o))cs.s.F(V(~o)) and that  
OEs.s.P(D)F(V(~o) ). We will do this by utilizing a technique used by H6rmander 
in [6]. 

If  m is the degree of P and 1o =m~o(P), we put  

F ~ ( y )  = ~m-~ e-i~<~, ~'>F(v(~0)) (y). 

After a change of variables of integration, we have 

F,(u) = f ~2(¢) ¢ - ' P ( ¢  + x~0) -1 e-a'¢+~¢*)¢(¢ + x~0) d¢, [~ + x~01 ~> ~-1. 
j ¢_~e+trv($+x$o) 

Obviously, because g(¢) = (~, ~>- ¢i -~, 

.F,(u)-+f ~(¢)P¢,(¢)d¢, when ~ + oo. 
J¢ 

This, however, is just the definition of E(P~,, v(~0) ) (see the proof of Theorem 5.6.1 
in [5]). Now it only remains to observe that,  if 2'(v(~o) ) E C~(U) for some open set U, 
then P,-~0,  in the distribution sense, in U. That  0 E s.s.P(D)F(v(~o)) is proved in the 
same way. 

Proo] o~ Corollary 4.3. Let the bicharacteristic line l be generated by grad Pm(~o), 
where ~o ERn and satisfies Pm(~0) --0. We choose our coordinates so that  ~0 = (1, 0 ..... 0) 
and grad Pm(~o) is a positive multiple of en = (0 .. . .  ,0,  1). From the example preceding 
Corollary 4.3 it follows that  we only need to consider the case when I is a finite 
interval. Obviously, we may also suppose that  the endpoints are the origin and 
(0, ..., 0, a), for some a > 0. Pu t  ~' = (~1 .. . . .  ~-x,  0) and choose a conic neighborhood 
A c R~ of to so small t h a t / ~ { 0 }  is contained in the half space defined by ~ > 0 and 
so that,  for some open, complex cone A' containing A, the equation Pm(~' +~)(¢') e~) = 0 
has a unique solution v 2, holomorphic when ¢' ~A', with ~0(~o) =0. This is always pos. 
sible because (grad P~(~0), e~> =~0. The function ~0(¢) is homogeneous of degree 
one and grad ~P(~0) = 0. Since P~(~) is real when ~ G R ~ it  is clear tha t  ~(~) is real when 

~ A. If, as before, we put  g(~) = (~, ~>. ~ and ~(~) = [~ [, it follows from Example 3 
above tha t  (g+ia~)eM(A, ~). Since Pm(~', ~P(~'))=0 and (grad P~(~'), en> =~0, when 
~' e A', we have 
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P(~' + (~((') + s) e,) = ~ M~') ~, (4.7) 
k = 0  

where 1o(¢') = 0(I ¢' I"- i ) , /~(~')  = 0(I~'  I m-~) when 0 < k < m, I11(~') I >~ oi I¢'I ~ - ~ -  ~ and 
/~(~') =P~(e~) =~0. Now it follows from the connection between zeros and coefficients 
of a polynomial that  there are constants c a and % such that,  when [ ~' I ~> c~, there is a 
unique zero s =~(~') of (4.7) with Iv/z(~')l <%. In fact, because £(~') =0(1~'[ ~-~) and 
]~(~') =P=(e~) =~0, it is obvious that  the zeros are bounded from above by csl~ I +%, 
for some constants % and %. This together with the fact that  [/1(~')] ~ cl I~ I ' ' -~-  ca 
gives the uniqueness of a bounded zero. Finally, the existence results from the esti- 
mates/o(~')--0([~'[ ~-~) and [h(~'] ~>c~[~']~-l-c~ • Since (grad P(~'), e~} 40,  when 
~' is large, it follows that  ~(~') is holomorphic. Furthermore, by differentiating 
P(~', (~{~') +~(~'))  e~), one verifies tha t  ] D~(~ + ~ )  (~') [ ~ c~(1 + [ ¢'[ )~-~1. Because 
(g +/a~) eM(A, 0), we conclude that  gl =g+ia(y~ + ~ )  eM(A, ~). 

We choose v(~) =grad P~(~)/Igrad P~(~) 1 and take a ~b eL(A), which equals 1 in an 
open cone containing ~ .  Put  F o --E(P, A, rv, ~, g) and F 1 = E(P, A, rv, ¢, g~). From 
Theorem 4.1 we know that  a.s.F 0 and a.s.F 1 are contained in the bicharacteristic 
half ray -bgo = {(0, ..., 0, t); t < 0}. Furthermore, F0 is the distribution F(v(~o)) oc- 
curring in Corollary 4.2 (see the proof of that  corollary). Thus a.s.Fo-- -b~0. We now 
define ~ by F(y)=Fo(y-aen)-F~(y), i.e. 

• '(,~) -- f:_~+,,~,~ ~(~) l(c) 4,(c) d~, l~l >i a - I  

where / ( ( 3  = ( e -  ( " ( : ) + ~ " )  - e - " ¢ ) ) / P ( ~ ) .  

From the remarks above about the analyticity of F o and F1, we conclude that  F is 
analytic except possibly at points of the form (0, ..., 0, t) with t~<a. We also know 
that  I--{(0 ... . .  0, 0; 0~<t~<a} is contained in a.s.F. I t  remains to show that  E is 
analytic on -b$0~(0}. To do this, we put Go=E(P, A, -rv,  ¢, g), GI=E(P,  A, - rv ,  
~, gl) and G(y) ~- Go(y -hen) - Gl(y ). Again, it follows from Theorem 4.1 that  a.s .Gc b~0. 
We are now going to show that  F - G is an analytic function in all of R ~. This will, of 
course, prove that  a . s .F- - I .  Once more, we define the chains 

B: ¢ =}+(2t -1) i rv(}) ,  0~<t~<l, I~1 ~>a-1. 

If  6 is small enough, then B o A '  and .f(~) is holomorphic on B. In fact, if ~EA' and 
I~1 is large enough, then P(~) vanishes if and only if ~ =~' +i(~(~')+Y)I(~'))e~. Thus, 
when P(~) vanishes, we have g(~) +/a~n--g(~) +/a(~(~') +~1(~')) =gl(~). Since P(~) 
only vanishes to the first order in A', if ] ~ I is large, this proves tha t  ](~) is holomor- 
phic on B. Stokes' formula gives now 
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where y is a compact chain. Again, (2.5) together with the compactness of 7 implies 
tha t  this corresponds to a function h(z), holomorphie when 11m z [ < 1. This finishes 
the proof of Corollary 4.3. 

Proo/of Theorem 4.1. Since v~C~(Pm, 2(), there is an open cone A~ containing A, 
such that  v e C~(Pm, ~ ) .  Suppose that  x $H(P~, ~, v, 0). Then, because of the semi- 
continuity of the local cones F(Pg, v(~)), proved in Lemma 3.4, there is an open cone 
A2, such that  A(e)={~eS~{0};  e(~)=0}~A2~A~ and x~H(Pm, 52, v). According 
to Theorem 3.1' there is an element w~C~°V(P~, ~n) satisfying (3.13'), (3.14) and 
(3.15'). Let ~ < I be a constant corresponding to w~ in Theorem 3.1' and denote by c' 
the constant c corresponding to ¢ in Lemma 2.2. Take v so large that  

5c' 2-~ < ~ .  (4.8) 

When v is chosen we take another constant ~ < 1 such that  

< m i .  (~.15c =, 2-~/M) (4.9) 

where c" is the constant c corresponding to g in Definition 4.1 and M is the constant 
in Lemma 2.2. Let now A 3 and A 4 be open cones such that  

and e(~) ~<~[~I, when ~eAa. (4.10) 

Fm'thermore, let ~ E C°°(R ~) be a function homogeneous of degree zero such tha t  
0 <~p(~) ~< 1 for all ~, ~p(~) -- 1 when ~ E A~ and ~(~) vanishes outside A~. When ~: E A and 
0 ~<t ~< 1, we define the vector field %(t, ~) by 

v~(t, ~) = (1 -t~(~))rv(~) +t~(~)%(~). 

From (3.15') it  follows that  

[P(~+ivx(t,~))l>~con~tant>o, when ~ A ,  [ ~ l > ~  -1 and 0~<t<L (4.11) 

Finally, we define the distribution F ,  by 

= a:~ +~,~.~f(C)P(C) -1 e -~(¢) ¢(C)dC, [~[ >1 ~;1. F~(u) 

Because of (4.11), it  follows from Lemma 4.1 that  E - F x  is analytic in all of R ~. I t  
only remains to prove that  Fx is analytic in a neighborhood of x. Define the vector- 
field Wx(S, ~) by 

wx(s, ~) = (1 -v2(~))rv(~ ) ÷sy)(~)wx(~) 

and form the following chains 

~(R): C = ~+iwz(~, ~), ~;1< I~l <R ,  ~ =~1~I Iwx(~)1-1, ~e~2  
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~'(.R): ~ ffi ~ "F'b~./Jz(8, ~), I ~ I = .R, I ~< 8 ~<~ ~.R ] ~z(~) ] -1, ~ ~ A2 

~(R): ~ = ~+~w,(1, ~), ~;1<< I~[ < R , ~ A ~ .  

Since wx(s, ~)=rv(~) near the boundary of A2, when [~[ ~>~l, we define the chains 
also when ~ ~As by simply replacing wx(s, ~) by rv(~). 

If  we put  ](~)=~(~)P(~)-le-g<~), then Stokes' formula gives 

[ I(~) ~(~)d~ =I x +I2(R) +Is(R ) +I4(R) + 
J~ (R) 

provided tha t  the orientations are suitably chosen. Here 7 is a compact chain, 
independent of R. Since Fx(u)=S~<.o)/(~)~(~)d~, we are going to study the four 
integrals on the right-hand side, as R tends to infinity. 

,Study o] I x. 11 is independent of R, and, since 7 is compact, we may change the 
order of integration. We get I x = Sr,~ hl(z ) u(z)dz, where 

Obviously, h x is an entire function. 
Before studying the other integrals, we notice that,  if u E C~ (Rn), then 

l~(~)l < cj,(1 + ]~'l)-Ve -h°" :), (4.12) 

where p is any integer and h(Im ~) =min  (y, Im ~ ,  when y belongs to the support of 
u. We denote by (I) the set of points ~ ~ C ~, such that  ~ lies on any of the four chains 
above. Since we are only interested in F~(u) when the support of u is located close to 
x, we may suppose that  I x - y [  ~<6~/5 when y~supp u. (3.13') and the fact that  Im 
is bounded when ~ E ~ and Re ~ ~ A~ implies then that  

h(~) >/4 [ ~ I~J5 - some constant, when ~ +i~ e @. (4.13) 

Because of (4.10), it follows from (4.3) that  

Re g(~+i~7)>1 -c~l~71 ([~/[. [~l-x + ~ ) - c  ~, when ~eA~. 

Since 1'71 < ~ I ~= I + some constant, when ~ + ~,~ e ¢ ,  we get 

Re 9(~+i~7)>~ -2c~u[~[ -cons tant ,  when ~+i~7~P and ~ A ~ .  (4.14) 

Now u<O~/hc ~, so it follows from (4.14) that  

Re g(~+i~7) ~> -28~1~7[/5 - constant, when ~ + i ~ @  and ~GA3. (4.15) 

Because u < 2-~/M, (2.6) together with (4.8) give that  

[¢(~+i~)[<<.M[~l~e ~d~l~, when ~ + i y ~ ¢ .  (4.16) 
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From (4.12), (4.13), (4.15), (4.16) and (3.14') it  follows that  

]](~)~(~)l ~%(1+1~]) -~e-~=lnn~l/5, when ~E~P and Re~EA3. (4.17) 

Here the % :s are new constants. We now examine the remaining three integrals. 
Study o/I~(R). Since Im ~ is bounded on ap, when Re ~ ~A3, it follows from (4.12) 

and (4.17) that  

[1(~)¢(~)1 ~<%(1 +R)  -~, when $ lies on 7(R). 

Here p is arbitrary, so it follows that  I~(R) ~0, when R tends to infinity. 

Study o~ Is(R ). Because g(2+iT)=g(2)+ IT It(2, 7), where r(2, 7) is bounded, (4.2) 
gives that  Re g(~ +iT) is bounded from below, when 2 + iT E ¢ and 2 ¢ Aa. In fact, I T I 
is bounded on this set. When 2+iTEaP and 2EA3, it follows from (4.14), since 
I T I <~  121 +s°me constant on ¢,  that 

Re g(2 +/~) I> - 2c"~ ~ [21 - constant. 

Because ~ ,  x < 1, it follows from (4.9) that  ~ <~ ~< 1/4c". In conclusion, we thus have 

Re g(2 +iT)/> - ]2]/2 - constant, when 2 + iT E ~P. (4.18) 

This, together with (4.12), (4.13), (3.14') and (2.5), gives that  

11(~) ~¢(~) I -< constant, e -I~1/2, when ~ E ¢.  

Thus La(R ) converges, when R tends to infinity. Furthermore, we may change the 
order of integration and get 

I3(°° ) = fR ~(z) u(z) dz, 

where ha(z ) = (2=)-'f,(=)+<z, ¢>p(C)-~ e-°+ ~+($) d~. 

Again, it follows from (4.13), (4.18), (3.14') and (2.5) that  ha(z) is holomorphic in a 
neighborhood of the support of u. 

Study o/I4(R ). (4.17) implies that  

[/(2+i~/)~(~+i~/) l ~<constant.e -~v(~)~l/5, when 2 + i  T lies on fl(R). (4.19) 

Since g(2 + iT) = g(2) + ] ~ ] r(2, T), where r(2, T) is bounded and A(~) = A4, it follows 
from (4.2) that, for some positive constant c 1 

Reg(2+iT)>--.(cx-e27~(2))121 -cons tant ,  when 2+i~  E(I) and 2~Aa. (4.20) 
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(4.19) and (4.20), together with (4.12), (4.13), (4.16) and (3.14'), give that,  for some 
constant c > 0, 

[/(~)~(~) I ~< constant-e -~1¢1, when ~ lies on fl(R). 

This implies that  I g R )  converges, when R tends to infinity. In a similar way as for 
I3(R), we conclude that  

I,(oo ) = ~ hgz) u(z) dz, 
j R  ~ t  

where ha(z ) = (2zt)-"fp(~)e'<z'~P(~)-le-°(~¢(~)d~ 

he(z) is holomorphic in a neighborhood of the support of u. This completes the proof 
of Theorem 4.1. 

5. Application to the problem of propagation of analytleity 

We are now going to use Corollary 4.1 and Corollary 4.3 to prove a counterpart of 
Theorem 1.3 in the analytic case. Of course, by using the more general Corollary 4.2 
instead of Corollary 4.3, we could obtain similar results for any differential operator 
P(D), such that  P ~ P m  and Pm is locally hyperbolic. However, since the results are 
only complete for operators of principal type with real principal part, we restrict 
ourselves to that  case. Once again, we are going to use functions defined as in (2.1). 
More specifically, we will use functions satisfying (2.2) for ~ =0  and some constants M 
and c. I t  follows from Leibniz' formula that  these functions form an algebra. The 
existence of suitable cut-off functions belonging to this algebra was proved in Section 
2. For the sake of convenience, we start  by formulating the following very simple 
lemma. 

Lemma 5.1. Let 0 be an open bounded set in R" and suppose that the/unctions/~ E Co(O ) 
and 9k e C~(O) satisfy 

(5.1) 

I D~g.(~)l ~<M(ck) I~1, < k  (5.2) 

Then, with some new constants M and c, 

I D"(/,,, * g,~l) (~)t <M(c la l )  [~j, >~l. (5.3) 

Proof. [ D~(fi~ I ~-gl~l) (x) i = ] Sfi~l(x-y) D~gl~t(y)dy] ~<Ml(c i ~ I) I~I+~ ~<'MI(C1 [~] )l~t[ 

Lemma 5.2. Let J be a closed cone in R ~, such that P(D) has a [undamental solution E 
w/th a . s .Ec  - J .  I f  UED'(~),  P(D) U is analytic in ~ and xEa.s.U, then x does not 
belon 9 to a compact component of (a.s.U)N ({x} +J) .  

Proof. I f  x belongs to a compact component of (a.s.U)N ({x}+J), then there is an 
open set o~ with xEeoc~,  such that  K=oJ fl (a.s.U) fl ({x} + J )  is compact in oJ. Take 
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¢~ ~ C~¢(co) such that  ¢~ = 1 in an open e-neighborhood K~ of K and the derivatives of 
~ satisfy (5.2). If m is the degree of P(D), we denote P(D) (~+~ U) by T~. Obviously 

¢~+m U = E~e Tk. (5.4) 

Furthermore, Tk satisfies (5.2) locally in K~ U C~(a.s. U). 
If R and S are two distributions, one of which has compact support, then s.(R~eS) 

c s. R + s.S. Thus (5.4) implies that ,  if y;~ E C~ ° (R ~) is 1 on a large open set and E~ =~vk E 

U(y) = (Ek~e Tk) (y), when y is in a fixed neighborhood of x. 

For the same reason it follows from the fact that  x~(w~K,)N ( a . s . U ) - J  tha t  
x~s.(~kE~exkTk), provided that  ak, gkEC°°(R ~) have their supports in fixed small 
neighborhoods of - J  and (co~K~) N (a.s.U) respectively. This gives that,  when y is 
close to x, 

U(y) = (1 -ak) Ek ~e Tk(y) +a~E~-)e (1 -Zk) Tk(y). (5.5) 

Suppose now that  ak and g~ are 1 in fixed small neighborhoods of - J  and (~o~K,) fl 
(a.s.U) respectively and that  the derivatives of ~vk, ak and 2~k satisfy (5.2). Then also 
the derivatives of (1-a~)Ek and (1--Zk) Tk satisfy (5.2). We may suppose that  the 
functions Ck and ~vk vanishes outside a fixed compact set. Since, on a bounded set, 
any distribution is a finite linear combination of derivatives of a continuous function, 
the functions Tk =P(D) (¢k+m U) and akEk =ak~vkE may be written as finite sums of 
distributions of the form D~h~ • Dr/, where h~ satisfies (5.2) and ] is continuous. 
"Integrating by  parts" one may, in (5.5), remove the derivatives from / and write 
U(y) as a finite sum of terms of the form (JD~'hk./)~eDY'j~(y), where ~'k is one of the 
functions (1-a~)E~, (1-gk)Tk. If  we put  /k=D~'hk+lr,l./and gk=]k+lv,l, then the 
assumptions of Lemma 5.1 are fulfilled. In particular p equals ]fl']. Thus, according 
to (5.3), 

I 
However, this means that  U is analytic in a neighborhood of x. 

Theorem 5.1. Let P(D) be o/ principal type with real principal part and let X~, X~, 
be two relatively closed subsets o/the open set ~. Then the set X has the ]ollowing property 

a.s.U~X~, a.s.P(D) U~X~=~a.s.U~X, U~D'(~) (5.6) 

i/ and only i/ 

X ~ X~ ~ X~ and,/or every bicharacteristic line l, the set X contains any component I o/ 
l ~ (g2~Xx~ X~) such that I~X~.  (5.7) 

Proo]. The necessity of (5.7) follows directly from Corollary 4.3. To prove the suffi- 
ciency, we note that  if a bicharacteristic half ray connects x~X~ with a point in 
~ X ~ ,  while remaining in ~ X ~  ~ X~ then this is true for all neighbouring half 
rays from x. Thus, if for every bicharacteristie line l through x, x does not belong to a 
component of l N ( ~ X ~  X~) lying entirely in X~, then we may cover R ~ with two 
open cones ~O = (A +, A-}, such that,  if V = (v+, v-}, where v ~ (~)= __+grad Pm(~)/]grad 
Pm(~)], then x belongs to a compact component of X~ 0 ( ( x } -  ~4(O, ~)). Since 
a.s. U~  X~, the theorem follows from Corollary 4.1 and Lemma 5.2. 
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