Parametrices for pseudodifferential operators
with multiple characteristics

JOHANNES SJOSTRAND

1. Introduction and statement of the main results

The purpose of this paper is to construct parametrices and give solvability (hypo-
ellipticity) and non-solvability results for some classes of pseudodifferential operators
for which the characteristic set is a closed manifold in the cotangent space. Some
of our results have been announced in [23, 24].

Moyer [18] has reformulated the condition of Nirenberg-Tréves [19] for local
solvability in terms of the argument variation of the principal symbol along certain
closed curves in the cotangent space. We shall use the notion of argument variation
here to study invariant classes of pseudodifferential operators for which the char-
acteristic manifold has codimension 2. For operators with double characteristics
we shall also give a complementary result which is valid also when the codimension
of the characteristic manifold is larger than 2. We want to point out that Visik and
Grusin [6-—10, 26, 27], Radkevi¢ [21] and Melin [16] have studied overlapping classes
of operators. We have been influenced by these works and we shall use techniques
developed by Melin, Visik and Grusin. We also note the interesting example by
Tréves-Gilioli [5] and that Boutet de Monvel and Tréves [1] recently have obtained
independently a result which is contained in our Theorems 1.6 and 1.7.*

We now start to formulate the precise results. Let 2 be a paracompact C*
manifold of dimension 7 and let T%(2) \ 0 be the cotangent space minus the
zero section. We adopt the notations L™ = LT'y and 8™ = ST, for the spaces
of pseudodifferential operators and symbols introduced by Hérmander [11, 13].

Definition 1.1. Let X c T*(Q2)\ 0 be a closed conic submanifold and let
m € R, M €Z+U{0}. Then we define L™™(Q,%) to be the set of pseudo-

*) Added in proof: More recently they have improved their results. In particular, Boutet
de Monvel has shown that the parametrix (in Theorem 1.6 here) is a pseudodifferential operator
of type 1/2, 1/2.
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differential operators P € L™(£) which in every local coordinate system U C 2
has a symbol of the form

(1.1) p@, §) ~ Zopm—jﬂ(x: &), Pmjpz € Sm_j/2(Rn X (R* '\ {01)

where the p,_;, are positively homogeneous of degree m — j/2 and satisfy:
(1.2)  For every K cc U there exists a constant C > 0, such that

(1.2a) |p.(x, E)I/IE™ > C7Y(d(x, &)™,

(1.2b) [P _jule, E)I/IEIR < Cd(w, )M, 0 <j <M,
for all (x, &) € KX R", |&] > 1.

Here d(x, &) = inf(y,n)er (e — y| + |n — &/|&]]) is the distance from (x, &/|£]) to
2.

We also introduce the set L2, XZ)c L™™(2,2) for which the p, ;. in
(1.1) can be taken to be zero when j is odd. Note that p,, is invariantly defined
on T*(Q)\ 0 and note the composition formula

(13) Lm’,M’(Q’ 2) ° Lm”,M”(Q, 2) c Lm'+m”,]VI’+M"(‘Q’ 2)’

where in the left hand side we only take compositions 4 o B, where one of the
factors is properly supported. The space L™ was essentially introduced in [23].

Now let ¢ = > dE Adx; be the symplectic form on T*(Q2) and assume that
2 e T*2)N\ 0 is a closed conic non-involutive submanifold of codimension 2.
That X is non-involutive means that the restriction of ¢ to X' is non-degenerate.
Let o €X. Since ¢ is a non-degenerate alternating form on 7',(2), the tangent
space of X at p, we have

(1.4) T(T*(Q)) = T,(2) @ N,(2)

where N,(X) denotes the orthogonal space of 7,(X) with respect to o. It is clear
that o is non-degenerate also on N (X) and thus induces an orientation there.
More precisely, we can choose ey, e, EN AZ2)N {0} such that a(e;, e,) << 0 and we
identify N, (X) with the complex plane linearly, by putting e; =1, e, =14. If p
is a closed curve in N (X)\ {0}, the argument variation varargy is then
defined and independent of the choice of e, e, Wwith o(e, e) < 0. If
@: NV,(2) \ {0}— €\ {0} is a continuous map, we define the index of ¢, ind ¢,
by the equation

ind ¢ = (var arg ¢ o y)/(var arg y)

where y is some closed curve in N, (X) "\ {0} with varargy # 0.

Now let P € L™™(Q, %) and let p, be the positively homogeneous principal
symbol in Definition 1.1. If ¢ € T (T*(2)), ¢ € 2, let v be some vector field on
T*(Q) equal to ¢t at o and put
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a(t) = a,(t) = (M) (v"p,,),.
By (1.2) a(f) is independent of the choice of » and «a(f) % 0 when
t € T(T*(2)) \T,2).
Put ind (p,,) = ind (p,,, o) = ind ¢, where ¢ is the map
N2\ {0} dtr>a(t) € €\ {0}
Then indp, is one of the numbers — M, — M + 2, ..., 4+ M. In fact, if we
introduce some linear coordinates ,y in N, (), we get

M
alt) = >, a@ly™ I, t = (x,y)
Q

and since a(t) # 0, when t € N (2) \ {0}, it follows from the fundamental
theorem of algebra that

(@ = py), t=(z,y) €N,

.

Il
-

{1.5) a(t) = ay

J
where a, 7 0 and Imy; # 0 for all j. Now our statement follows, since the
index of the map (»,y) > (x —y) is £ 1.

Our first result can now be formulated exactly as Theorem 1.1 in Duistermaat-
Sjostrand [4]. If A4, B are linear operators we write A =B if 4 — B is an
integral operator with C® kernel. Adjoints will be taken with respect to the L2
inner product on CF(L2) defined by some strictly positive smooth density on 2.
For any set V we write diag (V) ={(¢, 0) € VX V}. Let I always denote the
identity operator in the appropriate space. We assume the reader is familiar with
the notions WF and WF’' introduced by Hérmander [11].

THEOREM 1.2. Let 2 be a paracompact C* manifold of dimension n and let
2CT*R)\ 0 be a closed conic mom-involutive submanifold of codimension 2.
Let PeL™™Q,%), M >0 and suppose that X = X+ U X~, where

Z* = {p € X;ind (p,, 0) = -+ M}.

Then there exist properly supported operators F, F+, F— D'(Q)— L'(Q) with the
Jollowing properties:

(1.6) F is continuous H(02)— Hi"jm‘_Mﬂ(Q) and F* are continuous
H(Q)— H*(Q) for oll s € R.

(1.7) F++FP=1I
(18) F-+PF=1I
(1.9) (FH* = F+, (F)* = F-
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(1.10) WF'(F) = diag (T*(2) \0)
(L.11) WF'(F*) = diag (X%)

Finally if 17~', F* are also continuous linear D'(Q)— D'(Q) and continuous:
0=(0)-> O°(Q), satisfying (1.7) — (1.9) with F,F* replaced by F,F*, and
WF/(FHONWE(F-) =@, WFFENETxZ)=0

then FEE’, FE = F,
As we shall see below, this result is a generalization of Theorem 1.1 in [4] and as
in that paper we have the interpretation that F+ and F— are in an approximate

sense the orthogonal projections onto the nullspace of P and along the image
of P respectively. In faet, from (1.6)—(1.11) it follows easily that

(1.12) PF+=F-P =0,
(1.13) (FH) = F+, (F-)% = F-,
(1.14) FtF = FF-=0.

As in [4], section 5 one can prove, using Theorem 1.2 and functional analysis,
that when Q is compact and X+ = @ (or X~ = O) then one can find F, F'*
such that (1.6)—(1.9) are valid with equality instead of “="" and such that F* (F-)
has finite rank. As proved at the end of section 2 of [4], if P is as in Theorem 1.2
and I'c X+ is a closed cone, then there exists u € Hy°(2) such that Pu € 0°(R)
and WF(u) = I', provided that P is properly supported or that /" has a compact
projection in the base. For the proof of the uniqueness part of Theorem 1.2 we refer
to [4].

To see that our Theorem 1.2 is a generalization of Theorem 1.1 in [4], it suffices
to prove the following proposition, which is a special case of the results of Moyer
[18].

ProrosrrioN 1.3. Let P € L™(2) be a classical pseudodifferential operator with
principal symbol p. positively homogeneous of degree m. Suppose that the Poisson
bracket {Re pm, Im pu} is #% 0 when p. vanishes. If

2 ={(x, &) €T*Q) \ 0; pmlx, &) =0},

then X is a closed conic mon-involutive submanifold of codimension 2. Moreover
PeL Q2% and

ind (pm, 0) = — sign ({Re pm, Im pu}) for all ¢ € X.

Proof. Recall the general identity
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(u, v} = o(Hy, H,) = (H,, dv>, u,v € C*(T*Q)),

where I, and H, are the Hamilton fields of % and ». Let e;, e, be the
Hamiltonian vectors of Re p» and Im p. at a point ¢ € 2. Then o(e, e;) 5% 0
80 d(Re pn) and d(Im p.) are linearly independent. Thus X is a closed manifold
of codimension 2 and (e;, ¢,) is a basis in N (X). ¢ is clearly non-degenerate on
T,(Z) since it is non-degenerate on N (X) and we have thus proved the statements
about 2. With ¢ = wze; + ye,, we get

(1.15) a(t) = &, dpmy = {xe1 4 yes, d Re pp, + 7d Im p,,> =
= (@{Re Pum, Im pn} + y{Im pn, Re pn} = {Re pn, Im p.Hz + ).

From this it is clear that ind (pm, o) = — sign o(e;, e2) = — sign {Re pn, Im .}
and the proof is complete.

A natural question to ask is what happens when |ind p.| << M on 2. In this
case the situation becomes more complicated and all the terms p, ;. in (1.1)
with j < M play an essential role. However we still have a non-hypoellipticity
result when M is arbitrary and codim (X) = 2, and we have a rather precise
result when M = 2 and codim (X) is arbitary.

TaeorEM 1.4. Let X C T*(Q)\_ 0 be a closed conic non-involutive manifold of
codimension 2, and let P € L™M(Q,2). If o €2 and ind (pm, 0) > 0, then there
exists u € H™(Q) so that WF(u) = {lo; 1 > 0} and Pu € C°(£2).

A consequence of the theorem is that P is not hypoelliptic. When M = 2 this
result is of course contained in Theorem 1.2. In this case Theorem 1.4 also intersects
with the result of Cardoso and Tréves [2].

We next formulate our additional result for M = 2. In the rest of this section
we assume that X is a closed conic non-involutive submanifold of 7*(2) \ 0
of any codimension. When P € L7"*(2, X) then a,(f) becomes a quadratic form,
so we prefer to write a,(f,{) instead. The following lemma is a consequence of
Lemma 3.1 in section 3.

LevMa 1.5. Let P € L*(2,%) and suppose that ind (pn.) =0 on 2 if
codim (X) = 2. Then there exists a C* function
23 0r>2(0) €EC
such that {2(9)| = 1 and such that Re (z(0)a,(t, t)) is positive definite on N (X) for
all o €2,

For every real linear space L we denote by L its complexification. We consider
o and a, as bilinear forms on 7' (T*(2))x T (T*(£)). Since o is non-degenerate,
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we can define for every o € X' a linear map A i’e(T*(.Q))—% f’Q(T*(Q)) by the
equation

(1.16) o(u, A ) = a,(u,v), u, v €T (THQ)).

This definition is inspired by Melin [16]. It is easy to verify that 4, maps Z%(Z)
into itself and that A4, is zero on f’Q(Z). We also note that A4, is antisymmetric
with respect to o and that Imz(p)- 130 for every eigenvalue 1 of

A4, ZVQ(Z')—> N, (2). (See Lemma 3.8.) For every 4 € C we denote by »(4, g) the
multiplicity of 1 as a zero of det (4, — AI). It is easy to see that the set K, =
{1 € C; Im (v(4, 9)2(0)4) > 0} .does not depend on the choice of the function 2z(p)
in Lemma 1.5.

When P € L™*£,X) we can define the subprincipal symbol Sp € C*(2) in
local coordinates by the equation

Sp(x, &) = 911 7 m(@, £)

P(xi ) — pm—l(xa 5) - ( Z) zl awjag_-] .

In section 6 we shall give a very easy proof of the fact that Sp is invariantly defined
on X. Note that Sp is invariantly defined on T*(Q)\ 0 if we consider P as
operating on the densities of order 1/2 instead of the functions. This has been proved
by Duistermaat and Hoérmander [3].

TaroREM 1.6, Let P € L™*Q,2) be such that ind (p,) =0 on X when
codim (X) = 2 and assume that

(1.17) Sp(e) + ()" 2> (v(4, 0) + 2k))A # 0

1EK,
for all o € X and integers k, > 0. Then there exists an operator F:5'(Q2)-—> D'(0)
such that F is continuous HY*(Q)— HY5 . (Q) for all s and PF =FP =1.
Moreover WF'(F) = diag (T*(£2) \_0).

When the assumptions of the theorem are satisfied we have local solvability and
hypoellipticity for P. Moreover, when P is properly supported we have an a
priori estimate of the form

(1.18) 1 < Ox(|[Pullo + lull,—2), v € CF(K), K cC Q.

The condition (1.17) is certainly not necessary for hypoellipticity or local solvability.
However we have the following converse of Theorem 1.6.

TurEorEM 1.7. Suppose that P € L™*(Q,X) and that ind (p,) = 0 on X, when
codim (X) = 2. If the condition (1.17) is not valid at the point o € X, then for every
e>0 and 0<8<<1/2 there is a u € H, (2)\ H (2) such that

m—1—d+4¢
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WF(u) = {2¢; 2> 0} and Pu € H*(2). Morecover Qu € H, , ,,(Q) for all
Q¢ L" 10, %),

It follows in particular that when (1.17) is not valid at a point ¢ € X, there
can be no a priori estimate of the form

(1.19) [Ullns < Ck((IPully + lull—i_y), »€CF(K), KCC L,
when 6 < 3/2 and K contains the projection of . Note the similarity of this

result with the result of Hormander [12], stating that if P is a non-elliptic classical
pseudodifferential operator of order m, then (1.19) can not be valid with ¢ << 1/2.
The study of (1.19) with 6 = 3/2 is certainly delicate. It is however possible to
find implicit necessary and sufficient conditions for this estlmate as well as for

hypoellipticity and other properties. See Remark 5.11.

Remark 1.8, Duistermaat has pointed out to the author that when p,. is real
valued then A, can be given by the formula:

d
24, = |5 (m),)

Here ¢ T*(2) N\ 0— T*(2) "\ 0, t € R, is the group of germs of diffeomorphisms
at o, generated by the Hamilton field of p. and (d¢,), is the differential of
g at . Note that ¢(g) = ¢, since the Hamilton field is zero at ¢ € 2.

Our main inspiration for Theorem 1.6 has been the work [16] by Melin. He
studies half estimates for operators with non-negative principal part. His necessary
and sufficient condition is expressed as an inequality which contains the sub-
principal symbol and the quantity >.,-07(4 @)2. In section 3 we shall use the
idea of Melin to apply linear canonical transformations in the study of certain
second order differential operators with polynomial coefficients. We have also been
influenced by a result of Radkevi¢ [20] which concerns an operator with real principal
part and purely imaginary subprincipal part.

Visik-Grusin [26, 27] and Grusin [6—9] have studied operators on R* for which
the characteristic set is in a special position. In section 5 we shall apply a refinement
of their techniques which is based on the use of vector valued pseudodifferential
operators. Such operators have been used before by Tréves [25] and more recently
by Grusin [10].

We also note that in the case when codim (2) = 2, Boutet de Monvel and
Tréves [1] have recently (independently) given a necessary and sufficient condition
for the a priori estimate (1.18). Their condition is of course equivalent to our con-
dition (1.17). See Remark 6.6.

Remark 1.9. Theorem 1.2 has been announced in [23] in a less precise form.
Theorems 1.6, 1.7 have been announced in [24]. We think it is possible with small
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modifications of the proof to generalize Theorem 1.6 to the case when the restriction
of o to X has constant rank. It is also possible to extend the theorem to the case
when P € L™*(Q2, ) so that p,_,, in (1.1) may be non-zero. See Remark 3.14.
We also want to point out that the homogeneity assumption in Definition 1.1 for
the terms p,, ;; with j > M + 1 is introduced only for formal reasons and is
not necessary in our results.

The plan of the paper is the following: In section 2 we make some preliminaries
about ordinary differential operators. In section 3 we calculate the spectrum of
certain elliptic second order operators associated with quadratic forms. In section
4, we give some preliminaries about vector valued pseudodifferential operators. In
section 5 we combine the results of sections 2 and 4 to give microlocal versions of
Theorems 1.2 and 1.4 when X' is in a special position. Similarly the results of section
3 and 4 give microlocal versions of Theorems 1.6 and 1.7. Finally in section 6 we
apply Hormander’s theory of Fourier integral operators to complete the proofs.
At the end of that section we also give an example for Theorem 1.6.

Finally we would like to thank L. Hérmander, who has read the manuscript and
suggested many technical improvements. We would also like to thank M. Zerner,
J. J. Duistermaat and B. Helffer for useful remarks.

2. Preliminaries about differential operators with polynomial coefficients

All the results in this section can be found in Gru$in [6]. We consider an operator
on R"

(2.1) P, D)= 3  auu*D’,

letBi <M

where a,, € C. Assume that

(2.2) > a4, #0 when 0+ (z,£) € R*X R".

Bl =M

In particular P is elliptic in the usual sense. Let BY(R") € S'(R™) be the space
with the norm:

(2.3) llag|[Bpr = Z HanﬁuHiZ(Rn),
la+gl <M

so that 2*Df: B¥(R")—> L*(R") is a continuous operator when | + pl <M.
Grusin has proved that it is even a compact operator when |x + 8| << M.

TrrorEM 2.1. (Grusin). P: BY(R")— L*R") has finite index. If w € L*(R")
and Pu € S(R") then u € S(R").

Grusin proves this theorem in a slightly more general form by constructing a
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parametrix, which is a pseudodifferential operator for which the symbol behaves
well for large «.
In the case when n =1 we also have

Lemma 2.2, (Grusin). Let m* be the number of zeros of the equation

(2.4) D> =10

at-f=M

for which Im £ =0, so that M = m* -+ m~. Then the index of P: B¥(R)— L*(R)
s mt — m~.

The proof of this lemma is simple. We note that P is modulo a compact operator
of the form

M
P(x, D) = aOMT-ll- (D — yx), Imy; # 0.
j=
Moreover it is easy to verify that the index of
D — yu: B5(R)— B*"Y(R)

is =1 when Imy;Z0, for all £ > 1.
The lemma is of course a special case of the Atiyah-Singer index formula.

3. Second order operators with polynomial coefficients

In this section we shall caleulate the spectrum of operators of the form
2D’ a,, € C.
jatpi=2

First we prove a well known lemma, from which Lemma 1.5 follows.

Levua 3.1. Let a(x, z) be a complex valued quadratic form on R™ such that
a(x, x) %= 0 when x 5= 0. In the case n = 2 we assume that var arg a(x,x) = 0
along every closed curve in REN\_{0}. Then there exists z € C \ {0} such that
Re (za(z, z)) is positive definite.

Proof. The case n = 1 is trivial. In the case when n = 2, we can find coordinates
&y, % S0 that
a(x, ¥) = (@, — i@,)(o, + frp)

for some «, p € C. Putting { = z; | ix, we can write

a(x, x) = 271 + y0)
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for some z 1€ €\ {0} and y €C. The conditions in the lemma imply that
lyl <1, so it is clear that

Re (za(x, z)) = Re([é‘]2 <1 + v g)) >0

for # # 0 and the lemma is proved in the case n = 2.

We now consider the case n > 8. We have to prove that Im o = {a(x, z); * € R*}
is a closed convex proper cone in C. Since Ima is evidently closed, it suffices to
prove that for all =,y € R*\_{0} we have a(x,z) # — a(y,y). Now R"\ {0}
is simply connected, so the restriction of @ to a 2-dimensional space, containing
the vectors « and y, must satisfy the conditions in the lemma for the case » = 2.
This case has already been settled so the proof is complete.

Now let a((z, £), (¥, 1)) be a symmetric bilinear form on (€ @ C*) < (C* & C*).
We assume that
(3.1) a(x, & x, &) #0 for all 0 £ (x,&) € R* @ R~
When n =1 we also make the assumption:
(8.2) var arg a(w, & x, &) = 0 along every closed curve in R* @ R* "\ {0}.
By Lemma 3.1 we know that there exists a number z = z, such that |2,/ = 1 and
(3.3) Reza(x, & 2, £) > 0 for all 0+ (z, &) € R* @ R~

Following Melin, we consider the linear map A4:C" @ C"— C* @ € defined
by the equation

(3.4) o((z, §), Ay, n)) = al(x, §), (v, M), (&, &), (y,n) €EC* D C",
where

O'((CI}, E)’ (?/, 7])) = <y5 §> - <9€, 77>

is the symplectic bilinear form. Note that A4 is antisymmetric with respect to o.
For every 2€C welet V, € C* @ C* be the largest subspace where 4 — Al is
nilpotent and we put »(A) = dim (V). In other words, V, isthe space of generalized
eigenvectors with eigenvalue A.

We recall that a complex subspace A C C* @ C* of dimension #» is called a
Lagrangian plane if ¢ vanishes identically on 4. The following definition is due
to Hormander [14, p. 153].

Definition 3.2. We say that a Lagrangian plane 4 C C" @ C* is positive if
— io((z, £), (x, &) > 0 for all 0 # (z, &) € A.
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Note that if /1 is a positive Lagrangian plane then
A0 (R*® R*) = 0.

Prorosition 3.3. We have y(1) = v(— 1) for all 2 and
creC= @ (V,oV.)
Im 2,7 >0
Moreover
V:_ — @ Vl
Im z,7 >0

18 a positive Lagrangian plane.
The proof will be given below.

Remark 3.4. It follows in particular that {4; »(1) = 0, Im 2,4 > 0} isindependent
of the choice of z, satisfying (3.4).

The fact that V; is positive implies that the projection =,: VJ} 3 (x, &) +>x € C*
is surjective. Therefore

(3.5) = {(x, B*x); = € C"},
where BT is symmetric and Im B+ > 0. We put
(3.6) b(x, x) = {x, Btx)>, x« € R~

To the quadratic form a we associate the differential operator a(x, D, z, D),
which is obtained by replacing & in a(x, & «,& by D = (D4, ..., D.). We do
this symmetrically so that the coefficient of x;D; is equal to the coefficient of
Djx;. In particular when « is real, the operator a(z, D, x, D) is formally self-
adjoint.

Theorem 2.1 (by Grusin) implies that

(3.7 a(x, D, z, D): BX(R") — L?(R") has finite index, and

(3.8) every generalized eigenfunction of a(x, D, z, D) which belongs to L*R")
belongs to S(R").

(We say that w is a generalized eigenfunction if there exists A € C and p €Zt
such that (a(x, D, x, D)y — APy = 0.)
Our main result in this section is now:

THEOREM 3.5.
(i) The index of a(x, D, z, D): Bz—> L2 4s zero.
(ii) The spectrum of a(x, D, z, D): L*— I? is
S,={—1 > (4 + 2k)A; k, €Z+ U {0}}.

Tm g 9(i)i >0
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(iti) The linear hull of the generalized eigenfunctions in L* is P(R")e ® &2
where P(R™) denotes the space of complex polynomials in n variables,
considered as functions on R".

Remark 3.6. Let K be a compact set and suppose that a.(x, D, x, D) depends
continuously on ¢ € K and satisfies the conditions of the theorem. If K 3¢+ 1, € C
is a continuous function and 4, ¢ Sa‘ for all ¢, then afz, D, z, D) — A: B2— L*

has a uniformly bounded inverse K, ¢ € K.

Melin [16] has considered the case when af(x, &, x, &) is positive semidefinite.
~ His result is that for x4 € R the half estimate

(u, u)5. < C((a(x, D, x, D) — pyu, u)., w € CF(R"),

is valid for some constant C if and only if
=it D> ()

Im 4 >0
In this case all the eigenvalues of A4 are purely imaginary. In the proof Melin
uses real canonical transformations to reduce to the operator |z|? - |Dj% In our
proof we will have to use complex canonical transformations and we also have to
consider the fundamental role of V.

In the proof of Theorem 3.5 and Proposition 3.3 it is no restriction to assume
that Rea > 0 so that z, = 1. Clearly the index of a(x, D, z, D): B>— L* is 0
in the self-adjoint case, that is, when « is real. Now the homotopy afz, D, xz, D) =
(1 — Ha(x, D, z, D) + t(Re a)(x, D, x, D} shows that (i) in Theorem 3.5 is true in
the general case.

Next we shall analyze the structure of 4 and a(z, &, z, &).

Lemma 3.7. If A< —u then V, and V, are orthogonal with respect to o.

Proof. If w is a generalized eigenvector of 4 with eigenvalue 1, we let m.,
be the smallest number m such that (4 — A)"u = 0. Supposethat u € V,,v €V,
A+ p#0. If my=m,=1, we have

Ao(u, v) = o(Au, v) = — o(u, Av) = — po(u, v),
so o(u,v) = 0. By induction over m. -+ m, one shows easily that o(u,v) =0
for arbitrary w €V, v€V,.
Lemma 3.8. V, 220 =Im A £ 0.

Proof. Let u €V, be an eigenvector. Then

Ao(u, @) = o(du, 4) = — a(u, 4).
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Since Rea > 0 and - io(u, %) is real we obtain Im A #£ 0. Note also that
— tg(u, %) has the same sign as Im A.

Since o is non-degenerate, Lemmas 3.7 and 3.8 imply that ¥V, and V_, have
the same dimension and that ¢ is non-degenerate as a bilinear form on V, XV _,.
Moreover we have
(3.9) cCac= o (V,0oV_)

Imi>0

To complete the proof of Proposition 3.3 we must prove that V] is a positive
Lagrangian plane. Recall the definition of V}:

(3.10) Vr= @ 7V,

ImAi>0

V¥ is clearly a Lagrangian plane in view of Lemma 3.7. To prove that it is positive
we shall apply a deformation argument. First note that Vi N (R @ R*) = 0,
since a(u, u) = o(u, Au) = 0 on V] in view of Lemma 3.7.

Suppose that [0, 1] ¢t+> W, is a continuous family of Lagrangian planes such
that W, N (R* @ R*) = 0. Then all the W, are positive or none is. In fact, suppose
that W, is positive and that W, is not. Then there is a ¢, between {, and ¢,
such that — io(u, #) is positive semidefinite but not positive definite on W,.
Take 0 v € W, such that o(v, %) = 0. The Schwarz inequality

[— to(u, 7)1* < (— io(u, @))(— io(v, 9)), u,v € W,,

implies that o(u, %) = 0 for all w € W,. Since W, is Lagrangian we conclude
that ¢ € W,Z. Thus either » + @ or v is a non-zero real vector in W,g, which
contradicts the assumption that W, N (R* @ R*) = 0.

Now let ag(x, &, &) = >7 a + & and let 4, be the corresponding map,

defined by (3.4). Then
0 I
=1

has the eigenvalues -+ ¢ and — ¢ and V[ consists entirely of eigenvectors. Thus
V;’; is positive by an observation in the proof of Lemma 3.8. Put a, = (1 — #)as -I- fa,
0<t<1 and let 4, and V;: be the corresponding operators and Lagrangian
planes defined by (3.4), (3.10). Then VI N (R"® R") =0 and [0,1]3¢— VF
is a continuous family. In fact, P, = (2m)~* f , (4, — z)7'dz is a projection onto
V;: changing continuously with ¢ if y is the boundary of a disc in the upper half
plane containing all eigenvalues there. Since V is positive we conclude that VZ
is also positive and the proof of Proposition 3.3 is complete.

For every 24 with Im 2> 0 we choose a basis %, ;,..., %, , in V, such
that A4 takes the Jordan form:
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(3.11) Aw; ;= 2w, + y (G Ny, 1 <7 <»@4)— 1L
Awu,

Wi), A }%(a),i-

Here y(j, A) is a function with values 0, 1 and we define (0, 2) = y(»(4), 4) = 0.

Let v ,, ..., v, be the dual basis in V_, with respect to o, so that
(3.12) ol ;v ) = — 8f - ok, o(u; 4w ,) = 0, o(v;;, 0, ) = 0.
Then

(3.13) G(uj,p Avk,u) = (Au o Uk ) = — a(Au; ; + y(J, Au i+1,40 Uk, )

= (0} + y(J, )5’“)<Sl

The equations (3.12) express that (u; ;, v; ;) is a symplectic basis in C* @ C".
We let X, £, be the corresponding coordinates. (3.13) and (3.4) imply:

v(1) "(;) 1

(B.14) au,u)=2 > (> 1X;,5,, Z v NX,  Ea ), w=2 X, o, + E

Imji>01

We relabel the standard real symplectic coordinates x;, & and write «;,,¢§;;
instead, where 1 <{j < (1), Im 2 > 0. Let o' be the quadratlc form on C" ® c
defined in these coordinates by
) »(3) -1
(3.15) a’(u, u) = 2 Z ZZ ;5 it z y(Js Z’)xj,lfj-}—l,l)'
1 1

Im >0
Then &' o 9¢ = a, where 9¢ is the canonical transformation
(3.16) CC@®C 3 (x, &> (X, 5)EC" P C
Defining V; = @pa;-0V_;, We see that
(3.17) AWV ={(», 0) €C" @ C"},
A (V) = {(0,&) €C" @ C"}.
We want to reduce the study of a(x, D, z, D) to the study of a'(x, D, x, D).

In order to do that, we shall first write 9( as a product of elementary canonical
transformations. To each one of these we shall associate a “Fourier integral opera-
or”’. (Cf. Melin [16].)
Let B+ be the symmetric matrix defined by (3.5) and let 9¢; be the canonical
transformation:

(3.18) My (C @ CY)D (x, &) — (2, & — Btr) €C* @ C.
Then ¢ (VJr = { x, 0) € C" @ €} and since Y((V,") is transversal to this space,
we have 90 (V.) = {(B7& & €C* @ C*} where B~ is some symmetric matrix.

Let ¢, be the canomcal transformation:

(3.19) Uy G @ €D (2, &) > (v — B£,£) €C" @ C™.
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Then
(3.20) (V) = {(x, 0) € C* @ C},
(Vo) ={(0,8) €C @ €.
Put 9, = V(L) so that
(3.21) VW = U,
Then (3.17), (3.20) imply that 9¢; is of the form
Wy €@ C"3 (2, 8) = (C'2,'CE) €C @ Cr,

for some invertible complex matrix C. In fact, 9¢, leaves the spaces x = 0
and & = 0 invariant.
Recall that P(R®) is the space of complex polynomials regarded as functions

on R To 9(, we associate the operator K,: P(R™e® =92 _ P(R"), defined by
(3.22) Ko = ¢ ¥ a2y,

To ¢, we associate the operator K,: P(R*)— P(R") given by

(3.23) Ko = T-Y TEITy), b(&, &) = (&, B-&).

Here 7 is the Fourier transformation. To 9¢; we associate K ; P(R")— P(R")
given by

(3.24) Kau(x) = w(Cx).
Finally we put
(3.25) K = K,K,K;: P(R")e* =22, P(R".
Note that K is a bijection.

We write
(3.26) a'(x, D, x, D) = a,(x, D, %, D) + ay(x, D, x, D),
where

»(3)

(3.27) ay(x, D, x, D) = > > Mz ;D;; + D, ),

Imi>0 1

»(A)—1
ax(x, D, x, D) = 2 z z v )L)xj,l,Dj—}—l,l'

Imai>0 1
ProrosritioN 3.9. a'(x, D, x, D)o K = K o a(x, D, z, D) on P(Rn)ei“(x’x)/ﬂ_

Proof. Let (bjr) be the matrix of B+. Then

ijKlu _ ijue~ib+(x,x)/2 _ evib“f'(x,x)/z(iju . 2 bjkxku)-
k=1
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If we let a; also denote multiplication with x;, our equation takes the simpler
form:

Do Ky= Kyo (D — Btz), where z = (21,..., ), D= (D1,..., D).
Moreover we have trivially
xo K, =K, ouw.
If b is an arbitrary quadratic form on €* @ €C* we therefore have
(3.28) bz, D, z, D)o Ky = K;oblx, D — Btx,z, D — Btx) =
= K, o (bo9)(x, D, z, D).
Using the identities:
xoF =D, Flog=DoF, Fox=—DcF goFt=_—F1oD,
b(x, D, x, D) o ¥ 1 = FLob(— D, x, — D, 2),
b(— D, x, — D, x) o &2 — =2 b(— D — B~x,x, — D — Bz, %),
b(—D — B=x,2, — D — Bx,z)0oF =Foblx — B-D,D,x — B~D, D).

Composing these three equations, we get

(3.29) b(x, D, x, D) o Ky = Ky o (b o ) (x, D, x, D).
Using that Do Ky = K o0 (0D), 0 K;= K,0 (Clx) we get
(3.30) b(x, D, 2, D)o Ky = K0 (bo 9(3)(56, D, x, D).

Composition of (3.28)—(3.30) shows that
a'(x,D,z, D)o K = K o (a' o )z, D, z, D) = K o a(x, D, z, D)

and the proposition is proved.

If L is a complex linear space, F: L — L a linear operator and 1€ C, we
denote by H(F, L, 1) the space of generalized eigenvectors with eigenvalue A.

ProrosiTioN 3.10. Every monomial is a generalized eigenvector of

a'(x, D, z, D): P(R")— P(R").

The spectrum of o' is S. (defined in Theorem 3.5) and dim (H(a’, P(R"), 1)) <
for all 24 €0C.

Proof. We recall the definition of ¢, and a, in (3.27) and we write

ay(x, D, 2, D) = > d'w, D,x, D),

Im 4 >0
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where
) »(%)
a*(x, D, @, D) = > M ;D; ; + Dy ;)
1

If p,(x) is a homogeneous polynomial of degree k, in the variables

Ty,00 o Ty, o0 Im 2> 0,
we have
a*(x, D, z, D)p,(x) = — i(w(A)A + 2k, )p, ().

If p(@)=Tmizo(*) is a product of such polynomials then

ay(, D, x, D)p(x) = — i( w(A)A -+ 21«,11) p().

Im »(2)A >0

Thus the monomials constitute a basis of eigenvectors in P(R*) of a; and we
have an explicit description of all the E(a,;, P(R"), ). Now it is easy to check that
ay(x, D, x, D) is nilpotent on every KE(a,, P(R"), ) and since ' = a; + a, the
proposition follows. Note that the real part of the eigenvalue tends to 4+ oo with

> v(A)k;.
Combination of Proposition 3.9 and 3.10 gives:

PropostrioN 3.11. The operator a(x, D, x, D): P(R")e®™ =92 _ p(R™)e®" (972
has a basis of generalized eigenvectors. The spectrum is S, defined in Theorem 3.5
and for every eigenvalue the corresponding space of generalized eigenfunctions is finite
dimensional.

(ii) and (iii) of Theorem 3.5 will follow from this proposition and the following
two simple lemmas.

Lemma 3.12. If b(x, z) is a quadratic form with Im b > 0, then P(R")e® is
dense in L*(R").

Proof. Suppose that f € L*(R") is orthogonal to P(R™)e®, that is
[ #e)ere s = o
for all p € P(R"). Let F be the Fourier transform of f_(_x—)eib("””). Then F is
an entire function and by the above equation all the derivatives of F at the origin

.are zero. Thus F = 0 and therefore f= 0.

Lrevma 3.13. Let w,v € L*(R") be generalized eigenfunctions of a and a*
respectively with the eigenvalues A and u. Then if A £, we have (u,w) = 0.
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Proof. By Theorem 2.1, we know that u,» € S(R*) and therefore the proof
of Lemma 3.7 can be applied.

Now let L, be the closed linear hull in L*R") of U, ., E(a, P(R"EE, ).
Then by Lemma 3.12

L, + E(a, P(R)e® 2, 1) = L*R")
since E(a, P(R")e® 7, 1) is finite dimensional. Thus
codim L, < dim E(a, P(R")e" 2, 1).
By Lemma 3.13 we have
E(a*, LYR™, 1) L L,
s0 that
dim E(a*, LX(R"), 7) < dim E(a, P(R")e® 2, 2) < dim E(a, L(R"), A).

By symmetry we also have

dim E(a, L*(R"), 1) < dim E(a*, L*(R"), 2),
so it follows that
E(a, P(R")e 2, 2) = E(a, L*(R™), ).

This equality and Proposition 3.11 imply (i) and (iii) of Theorem 3.6, which is
therefore completely proved.

Remark 3.14. With the same methods we can determine the spectrum of
a(x, D, z, D) -+ f(x, D), where f is an arbitrary complex linear form. In fact,
alx, & x, &) is non-degenerate in view of Lemma 3.8 so there exists (x,, &) € C* ® C*
and 1, € C, such that

a(x> E: .’E, S) +f(xa E) - a(ﬂf-“ x07§~ 50,$— xo,g'— 50) + Z’O'

Moreover to the affine canonical transformation 9(: (z, &) > (x + 2y, & -+ &) we
can associate the operator K, defined by

(Bu)(x) = ulx — xg)e "%,

We omit the details. If one likes to extend Theorem 1.6 to the case when P € L™
instead of L™?, then one has to study an operator of the form a(z, D, x, D) + f(x, D)
instead of a(x, D, xz, D). The reader will see this in section 5.

4, Preliminaries about vector valued pseudodifferential operators

Vector valued pseudodifferential operators have been used before by Tréves
[25] and more recently by Grusin [10]. See also Sjostrand [22]. Assume that V,
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and V, are complex Hilbert spaces and let <£(V,, V,) be the Banach space of
bounded linear operators V,— V,. We define S7,(R"*x R V,, V,) as the space
of C* functions p on R"x R* with valuesin S£(V,, V,) such that for all K cc R"
and multiindices «, § there is a constant C, depending on K, «,§ such that

(A1) IDDEp(a, &)l g, vy < C(L + |EYmHIX2B for all (x, £) € K X R,

With such symbols we define L7 (R™ V), V,) to be the space of pseudo-
differential operators CZ(R™ V,)— C*(R™ V,), given by one of the usual integral
formulas. It is easy to check that all the calculus for scalar operators extends to
the vector valued case. In particular we have the usual composition formula and
the results about H,-continuity. When ¢ =1 and ¢ = 0 we sometimes write
Ly or L™ for LT,

We shall have to consider the case when V; or V, isequal to the space BY(R"),
given by the norm:

(4.2) HuH;M = [ +ﬂzl M(l + ig])M+[zx!—]ﬁ]HanﬂuHig(Rk).
& atfl=<

In this case the norm in (4.1) depends on £, but all the caleulus remains valid
because we have the inequality

(4.3) o] << Nl e < (U €M

so if for instance P € L7 s(R™; V,, BY') then P € L (R"; V;, BM). Note that there

0,9

is a Hilbert space structure on B given by the scalar product

(4.4) (w, 0)pm = > (2*DPu, 2*DPp),2.
ot BT < M

Now let 1 <k < n and for x € R* write » — (x, z") with 2’ € R"™*, 2" € R".
We define H, ,(R") as usual with the norm

ol = f AEEL + [ER(1L + € Pyde.

Then the injection
(4.5) CF(R™) 3 u > (' > u(2/, 1)) € OF (R L*(R")
extends to an isomorphism:

(4.6) H, o(R")— H(R*"; L*(RY).

Levma 4.1. Let Pz, D) = EIMMSM%”“ e, DYDY, where
a’aﬁ(x: D) € L6+(M+!°‘iH\5J)/2(Rn)

and a4z, &) = 0 in the domain [£"] 4+ |&"[1E"|] = C for some constant C > 0.
Then we can regard P as an element of L°(R"*; BY(R*), L*(R¥)).
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Proof. The DY DYP(x, &, D,) are of the same type as P, so it suffices to
prove that

(1 + &))" °P(x, &, D,): BY(R*) — L*(R")

is uniformly bounded when 2’ € K cc R*% & € R**. After commuting z"* and
@5, We can write

P, &, D)= > by & D™Dl

la+8l=M

where the b,, have the same properties as the a.s. It therefore suffices to prove
that

(1 |g))~o- =1ty (x, &, D) I*(R*)— L*RF)

is uniformly bounded for (z', &) € K x R** This is however a consequence of
Theorem 3.5 in Hérmander [13], since

buga, ", &, &) (1 - |&[)7 o (reiei=Ione

belongs to a bounded subset of S°(R*x RF) when (¢, &) € KX R** andis = 0
when (x| > C.

Note that the conclusion in the lemma remains trivially valid if we replace
the a,(x, D) by some new ay(x’, D’) € LotM+I=IFD2(Rr—k)

LeMMA 4.2, Let P =3, 5 <@ 0@, D)DL  with a,, € LMH-P)2(R")
and suppose that au@’,0,&,0)=0. Let (0,(&,0) €ET*R")\0 and let
VcT*R**) N\ 0 be a conic neighbourhood of (0, &) with compact projection on
the base. Then for every ¢ > 0 there exists

P,(x, D) € LM(R™) N L(R*%; BY(R*), L*(R"))
such that
i) WEFP(x, D))N {(x, &) ET*R") \ 0;& = 0} = O,
(i) Pz, &) ~ Pz, &) in o conic neighbourhood of 2" =& =0,
i) [P, (z, &, Dx")!IJ(Bé‘?, 12 <€ when (2',&E)YEV and & is large enough.

Proof. It is no restriction to assume that a,,(x, §) = 0 when |2"| + [£"/|E']] = 1.
Commuting the »” with the au(», D) and applying Lemma 4.1 we get

P= 3 ayl DDl + q,

lat+Bl=M

where @ € LM Y(R") N L~} R""* BY(R"), L*(R")) and
WF@Q) N {(», & N T*R") \ 0; & = 0} = O.

Using Taylor’s formula, we can write
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o, D) = 3 &by (@, D) + ¢y (®, DYDY,
frl=1
where b, € LMH=ED2(R"), ¢0 € LMT=IBNE=YR™) and b, (v, §) = ¢, (x, &) = 0
when 2" 4 [£§"/|&'|| > 1. (Here we use that (%', 0, &, 0) = 0.)
Now we see as in the proof of the preceding lemma that if y € CP(RF) is = 1
near the origin, then

250" [8)Dg @, &, D) D2

(s, )
and

lewp, (@, & D) DY gD, 818 "™ D2

afy (Bgll’ L2)

are uniformly as small as we like in V' for large &, when 6 > 0 is small enough.
Thus the operator

4.7) P = -+ Z (x'/yx(x”/é)baﬂy(x, Dy + caﬂy(x, D)Diﬁx(Dy/é|Dx,[))x”°‘Dﬁy
jat-pl =M
irl=1

has the required properties if ¢ is small enough.

We shall now estimate the wave front sets of some classes of vector valued
pseudodifferential operators. The following lemma, is an easy consequence of Theorem
2.6 in Hormander [13] which can be extended to vector valued pseudodifferential
operators.

Lemya 4.3. Let P € L™(R™ V,, V,), K, cc R" N\ {0}, K cc R" and let K, be
a bounded subset of CF(K; V)). For uw € CF(R™ V,) we put
Vg W) = AT E P, D)) (u(w)et<),
so that v, . € C°(R" V,). Then
{vewri=1,E€K,u€K,}
15 @ bounded subset of C*(R"™ V,) and for every N > 0 the set
(M, . sd>1,6€K,u€K,}
defines by restriction a bounded subset of C®(C K; V,).
Of course we could have given a complete asymptotic formula for v, ., with

estimates for the remainder terms. However Lemma 4.3 is all that we need in the
following.

Prorosirion 4.4. Let P € L™(R"* V,, V,), where V, and V, are equal to
BY(RY) or LR*. Then, considering P as an operator OF(R")—> D'(R"), we
have (@', &) = (y'. %) if (@, & y,m) € WF'(P) and &)+ In'| # 0.
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Proof. For simplicity we assume that V;= V, = L*R*). Suppose that
(‘7507 §0> Yos 770) € (Rnx Rn) X(Rnx R") and that (x3> 5(/)) #* (:’/(/)7 77(11)7 JS&(,)! + M(,)] = 0.
We shall show that (x, &, ¥y, o) € WE'(P). By passing to the adjoint if necessary,
we can assume that gz, # 0.

Let ¢, p € O (R™ be such that ¢(x,) = p(y,) =1 and

(4.8) The projections of supp ¢ and suppw along R* do not intersect if x, # ¥,

@(x)et=*" > and p(x)e"*"> can be regarded as elements of OP(RL™*; L*(RL))
depending on the parameter &. We denote these elements by ¢'(x', &), v'(2’, £&).
Clearly they belong to a bounded subset of C@°(R""*; L*(R*)) when £” variesin R*.

Put D(x,y) = g(x)p(y) and let P(x,y) be the distribution kernel of P. If
(» )r2mk is the scalar product in L*(R*) we see that the Fourier transform of ®P
ab (AF, — Jn) s

N i<<a’, hay 1ot 1 —i<a, A& ’
(4_9) @P(},& i )”7) — /(P(x/,D/)(wf(x’, ;'77")61<x""”>), @ (06 , AE ))Lz([{k)e <l At

Let K, c R K,c R"*\ {0} be compact neighbourhoods of £ and 7,
respectively such that K, N K, = @ if & . If (£ ) € (K, X R")x (K,x R
it follows from the preceding lemma that

(4.10) P, DYy (@, An")el=x"4>) = jmel<+ 2>y (g'),

Ay iy

where v, , belongs to a bounded subset of C*(R** L(R") for 2>1 and
01, (@ )2y 1s uniformly rapidly decreasing as A-—> 4 co when 2’ belongs to
a compact set, not intersecting the projection of suppy along R*. In the case
when w, 7y, it follows from (4.8) that

(P, D)W (@, I e 7>), (2, 1))y
N
is uniformly rapidly decreasing when A-- -+ oo. Thus in this case @P(1£, — An)
is uniformly rapidly decreasing for (&, #) € (K;x R¥)x (K,x RY.
In the case when &; # 7, we use (4.10) and write

(4.11) BP(AE, — i) — f )
where
wﬂ., &, 7](x/) = (/U}., 77(‘%",)> (pl(x,7 25”))L2(Rk)

belongs to a bounded subset of OF(R"™*) when 4 > 1, (£, ) € (K; X R*) x (K, x R¥).
In this case & — 5 €K, — K, R"'\ {0} and by using suitable partial
integrations, we see that the integral (4.11) is uniformly rapidly decreasing when
A— -} co.

We have thus shown that (2, &, ¥ 7o) € WE'(P) if (x5, &) # (Y0, 70)s
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|&! + |o] # 0 and the proposition is proved.
In exactly the same way one can prove

ProposirioN 4.5. Let P € L™(R™ % C, BY( ")). Tken considering P as an
operator CF(R™ *)— D(R™), we have (2, &) = if (x, &y',n') € WF'(P)
and |&') + [n'] # 0.

Before ending this section, we review the results in the appendix in [22]. With
a fixed k1 <k <<n, we define T™(R") to be the space of “pseudodifferential
operators” a{x, D’), where a(x, &) €S (R*"XR"*). These are not pseudo-
differential operators in the usual sence. However we have

Lewa 4.6. Suppose that P € T™(R") and x € L™ (R") are properly supported
and that WF(x) N{(x, &) €T*(R*) \ 0;& =0} = . Then Py and yP belong
to L™*™(R™) omd the usual composition formula is valid for the symbols.

LemMa 4.7. Suppose that y € L%(R™) and that WF(x) N {(z, §) € T*(R") \0;
& =0}=0. Then yx is continuous H®\(R")— Ht?,f AR if m' 4§ =
m// + 8”.

5. Microlocal results when X is in a special position

In this section we shall apply techniques, influenced by Vigik-Grusin [26, 27]
and Grusin [6—9]. The main difference is that we use vector valued pseudo-
differential operators instead of freezing coefficients and taking partial Fourier
transform. This gives sharper results, in particular we can estimate the wave front
sets of the parametrices. Our method can be considered as a generalization of the
method in [22]. Note that Grusin [10] has more recently applied vector valued
pseudodifferential operators in a similar context.

We shall first prove microlocal versions of Theorems 1.2 and 1.4 when X is
given by a, = & =0 and P € L*(R") belongs microlocally to L ™(R" X) in
a conie neighbourhood of a point g, = (0, (&, 0)) € T*(R™) "\ 0, |&| = 1. Applying
Taylor’s formula we obtain that

(5.1) P, D)= 3 2, q(x, D)D?

at+f<M

in a conic neighbourhood of g, where a,, € LM**#%(R") have positively
homogeneous principal parts ag,. Here we use the terminology introduced in [4]:
If A, B: O3 (R")— $'(R") are continuous linear operators with

WEF'(A) U WEF'(B) € diag (T*(R") \_ 0)
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and V c T*R" 0 is a conic open set, we say that A =B in V if
WF'(A — B)Ndiag (V) = 4.
Let p, be the principal symbol of P which is positively homogeneous of
degree- M and put

(5.2) Lz D)= 3 afaly,0, D', 00D € LR Y BY, L?).
at+-pEM

Suppose that ind (py) = N at X near g, Then it follows from Lemma 2.2
that the index of

Ly@', &) = Ly(x, &, D,): BY(R)— L*R), &' # 0,

is N in a conic neighbourhood of (0, &). Let wu(x,), .. ., %,+(x,) €S5(R) and
(%), -+ Vm—(@,) € S(R) be orthogonal bases for the kernel and the cokernel
of L0, x,, &, D,). Note that m+ < M, m~ <M, m+ — m— = N. Let

R, &): BYR)— €™ and Rz, &): C* — L¥R) be defined by

(B, Eyw)y = (@), 181 (181 ) s,y

R, &) - mz 518 Vo (18,

Then
R, &) € SAR"x R} BY(R), ¢"),
R-(2', &) € SR 'XR* Y, €™, L*(R))
after having been suitably modified for small &. We shall consider
Ly, &) € SRR BY(R) @ €, LAR) ® €")
given by the matrix
Lo(@', &) B, E’))

gg()(x,: E’) == (_R“X"(x" 5/) O

Lumma 5.1, There exists €', &) € SR X R"LL* @ ¢, BY ® C") so
that EYx', &) is the inverse of L', &) in a conic neighbourhood of (0, &) for
1€ =1

Proof. Lyx’, &) has evidently an inverse in a small neighbourhood of (0, &y).
To see that this is true also in a conic neighbourhood, we make a change of variables
due to ViSik-Grusin and use the homogeneity. We put

b=, |&' ", alt) = &1 (), o) = 1817 (,).
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Then the system Ly(x', &)(u, z) = (v, ¥):
Loz, &, D,)u + Agzjvj(l{-"]”zxn)lf']m =
<
[ wtwie P P, = 3y, 1< <
transforms into
Lya',t, &'[|8'], D)u 4 mz_zjvj(t) = o(t)
f by E)dt = y;, 1 <j < m*,

Moreover |ju(t){pm = (1 + o)z for large & and [W(t)ll = (@), sO

we see that Ly(a, &) has a uniformly bounded inverse EY(z, &) in a conic
neighbourhood of (0,&;) when |&| > 1. To show that Ejx’, &) is actually a
symbol, we can estimate [DXDEEN’, &) by taking successively higher and
higher derivatives of the relation E€j(x’, &) o Ly(a’, &) = I and using the relation
L@, &) o Eya’, &)y = I. We omit the details since this is the same argument
as in Hormander {18} p. 166. The proof is complete.

If we write €j in matrix form:
, E xl, E’ E-J,— .7(:', él
(—ég(x,’ (E’) _ ( 0( ) 0( ) >,
Ey @, &) Byt @, &)
it follows from the change of variables in the proof above that
By @, &) e (R R €™, €™)

is positively homogeneous of degree 0 in & for |£'| > 1 and (&, &) in a conic
neighbourhood of (0, &). Moreover

(5.3) (B (@, ENy),) = [E17"PHET @, & 118 Dy elE 1)

for all y € ¢"", 2, €R, and (#’, &) in the same domain.
From Theorem 2.1 and the identity

Lo@', VB (2, &) + B~ (2, ) By (2, &) = 0

(which is valid in a conic neighbourhood of (0, &) when |&'| > 1 by Lemma 5.1)
it follows that the range of Ef(xz’, &) is contained in S(R) when (z’, &) isin a
conic neighbourhood of (0, &) and |&| > 1. We also note that

(5.4) Ey+(0, &) = 0.

In fact, for all y = {yy, ..., y,.+) € ¢ the system
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Ly(0, E)(u, 2) = (0, y) € LAR) ® €™

mT

has the unique solution (u,z)= (21" yu;, 0) (where the functions w; are
introduced above). Thus z = E; (0, &)y = 0 for all y € ¢™".
Applying Lemma 4.2 to P — L, and adding L, “to the operator obtained, we
can for every ¢ > 0 find an operator
L(x, D)y = Lz, D) € LR"""; BY(R), L*(R))
such that

(5.5) [[Lo(x, &, D,) — L (x, &, Dn)HI(B% ) <e in a conic neighbourhood of (0, &)
for & sufficiently large. :
(5.6) L, — L, € L™(R") and WF(L, — L) N {(x, &) € T*(R") \_0; & — 0} = 0.
(6.7} L(x, &) ~ P(x, &) in a conic neighbourhood of pg,.
In order to study P we shall first consider the operator
L(x', D) R~(z', D)\

gg /’ D/ _ gg /, D/ — GLO Rn—-l; B]\ll Cm"’L2 Cm+
@, D) = L@, D) (RW’ ) ) ( Yo ® ¢

Prorosrrion 5.2. If ¢ > 0 is small enough, there exists
E@', D) =S @, D)e LR L*® ¢, BY @ ¢™),
properly supported such that in a conic neighbourhood of (0, &):
L (', D)o E (', D) =Imod L"*(R" S L* ® ¢, L’ ® ¢")
G (@', D)o L', D') =T mod L~"(R";; BY ® C",BY @ €™).
Here we have applied the following terminology: When A, B € L™(R" V,, V,)
and o € T*(R") \ 0, we say that 4 = B near p if 6, — 03 €S~ in a conic

neighbourhood of ¢ and ¢, and oy are the symbols of 4 and B respectively.
This agrees with the terminology for scalar operators.

Proof. If &> 0 is small enough, it follows from Lemma 5.1 and (5.5) that
L.(x', &) has an inverse Gz, &) €S® for large & in a conic neighbourhood
of (0,&,). The construction of & (', D) is therefore formally the same as the
construction of a parametrix of an elliptic operator in the scalar case, so we omit
the details.

From now on we drop the subscript ¢. For the proof of Theorem 1.7 we shall
need the following proposition.

ProrosiTiON 5.3. If we write
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, E B+
E =
(E‘ E-+>

then E—+ € LYR™™ €, C™ ) has modulo S a symbol Ey*(x',&) which is
positively homogencous of degree 0 in a conic neighbourhood of (0, &) and moreover

B0, &) = 0.
Proof. We shall simply examine the construction of €. Let
', &) SRR L@ ¢, BY @ )

be as in Lemma 5.1 so that ‘€j(z’, &) is an inverse of <£,(x’, &) in a conic neigh-
bourhood of (0, &) for |&'| > 1. By the proof of Proposition 5.2, € has a principal
symbol E°%ax’, &) which is an inverse of £(a’, &) (= £ (2, &) in a conic neigh-
bourhood of (0, &) forlarge &'. We restrict our computations below to this domain.
We can assume that ¢ >0 above was chosen so small that the norm in

L@ C, L @ ) of K@, &) = (L', &) — Lo, &) By, &) is < 1/2.
Then
L, EYE, &) = I — K, &),
so therefore
B = EYT + K+ K24 .. )

where we have dropped (¢, &'} to avoid heavy notations. (The calculations below
deal with symbols and not with the corresponding operators.) Now

0 Ey E;+ 0 0

so we get

Sy (zl (o~ DB 3 (Lo — LYy — L)ES
0 0

AN

The entry in the lower right hand corner of ‘€° is therefore
By~ + ; By (Ly — L)Eoy(Ly — L)ES .

Since €°x’, &) is a principal symbol of €(x', D') it suffices to prove that

(L, — L)E{ € 7R x R ¢, L?)
for then

> By (Ly — L)E)(Lg — L)ES € 7R R™; €™, €")

0
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and the proposition follows from the properties of E; ™ noted after the proof
of Lemma 5.1. (Recall that the norm of (L — Lg)E,(z’, &) is << 1/2.)
Using (5.2)— (5.5) and Taylor expanding ag(x, &) — agg(@’, 0, &, 0) we can write
(Lo — L)', &) = A(x', &)z, + B(', &)Dn + O, &),

where 4 € SR 'x R4 B}, L*) and B,C €S YRR BY, L*) in view
of Lemma 4.1. From (5.3) and the fact that the finite dimensional range of E{
is contained in S(R) it follows that

I§/|1/2an3-(x/’ E/) € SO(Rn;IX Rn—l; Cm+, BQ/I),

& 7D, B¢ (2, &) € SR x R ¢, BY).
Thus (L, — L)E} = (Az, + BD, + C)Ef € "R 'x R* % €', L?) and the
proof is complete.

We shall now use Proposition 5.2 to prove a similar result (Proposition 5.4) for
the operator

P(x, D) RB-~(z',D’)
(R+(9c', D) 0

): OSO(Rn) @ O;o(Rnfl; Cm'—) — OOO(RH) (_B OOO(RnAI; cm+)'

That proposition will be the main result of this section and the microlocal versions
of Theorems 1.2, 1.4, 1.6, 1.7 will follow rather easily. Considering R* and R~

as operators CP(R") — C®(R™ % €™") and CP(R"Y; €™ ) — C°(R", it is easy
to verify that
(5.8) WEF(R™) € {((", 0, &, 0), (&', &)) € (T*(R") \L 0)x (T*(R"™") \L 0)},

‘ WF'(R+) € {((', &), (&, 0, &, 0)) € (T*(R"™7) \\ 0) X (T"*(R") \, 0)}.

Using (5.7) we note that if y € L%(R™) is properly supported and WF(y) is contained
in a sufficiently small conic neighbourhood of g, = (0, (&, 0)), then

(5.9) Py= Ly, yL=yP.
Now take y € L°(R"), properly supported so that
(5.10) y=1 in a conic neighbourhood of g,

and WF(y) is in a small conic neighbourhood g, Using that P is elliptic outside
2 in a small conic neighbourhood of g,, we see that there exists y € L%(R") with
the same properties as y and such that:

(6.11) The projection along the z, — &_-plane of WF(yP — Py) does not contain
00 = (0, &) € T*R"1) '\ 0.

Moreover we have

(5.9') 7P =L, Py=Ljy.
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We write the “parametrix” €(z’, D’) in Proposition 5.2 as a matrix
E@,D) E+xa',D
E@', D) = ( ( ) ( ) )
E~(x', D"y E-*@a', D)

and we put
2By aBY

O%):(Ej} E-

G- G
e an(Rn) @ Cw(Rn—l; Cm“) .

d G+ N
+) — ( ): Ooo(Rn) @ Ooo(Rn—l; Cm )

Prorosrrion 5.4. We have
(5.12) WF'(G) < diag (T*(R") \_0),
(8.13) WF(G*) c{((2',0,&,0), (&, &) € (T*R") "\ 0)x (T*R") \ 0)},
(3.14) WF(G) C{(', &), @, 0,8, 0)) € (T*R") \ 0) < (T*R") L 0)}.

For all ye€LYRY,p* € LB, C™, €)= € LAYR; C",C™) with their
wavefront sefs sufficiently close to o, and o, respectively, we have

0 0 0 0
15 peg (¥ =(? ¥ 0P — (¥ .
¢ 7 (0 w*) (0 w+>’ (0 v) 7o
Moreover, for all s € R, G is continuous H(R™) — HyF yo(R™), G is continuous

Hls°”(R"‘l)—>H’;i§M,2(R"), G~ is continuous H(R") — H*(R*™') and G+ is
continuous HY(R*') — H°(R™1).

Proof. We shall first prove the continuity properties. We have

E € LY(R"'; L*(R), BY(R)) ¢ L~™*R"~";, L*(R), L*(R)),

B+ € L(R™Y; ¢, BY(R)) € L™™*R"%; ¢, IA(R)),

E- € LXR*Y LAR), C"7), E—+ e LR, C", C™),
0 it is clear that K, B+, E—, E—* have the analogous continuity properties if we
everywhere replace the spaces H,(R") by Hg ,(R"). (Cf. (4.6).) The fact that
WE(y) and WF(y) do not intersect the normals of the planes x, = const. there-
fore gives us the stronger continuity properties for &, G+, G-, G@—+ in view of

Lemma 4.7.
We next proceed to the proof of (5.15). We write

g={3 1) )

With v, y* as in the proposition we obtain
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cic)‘PO_—XOc?;CO’PO
yé’(*? w*)*gp(O I) O(‘) I)<0 vt

(5.11), (5.9") and (5.8) imply that
pep[v O :(;E 0\ peg (X O\(v O
J)J(o «,ﬁ)*\o 1) e\ 1)lo v

Proposition 5.2 and Lemma 4.7 give then:

7 ('(’j f}) = (ff 2) (?; 3+) N (?f 3+)

which proves the first part of (5.15). The second part is proved similarly and we
omit the details.
We next prove (5.13). From (5.15), we get in particular that

(5.16) (PG+ 4+ R-G—*)yp+ = 0.
We know from Proposition 4.5 that
(5.17)  WE(G) C{(( ), @ n))a =y, & =n #0, (& € WF(x)}.

Now suppose that ((z, &), (¢, %')) € WF'(G+ypt) and that |x.| -+ [£.] 7 0. Then,
since P is elliptic in WF(y) "\ 2, we know that ((z, &), (¥, %)) € WF'(PG+y™).
This is however in contradiction with (5.16), since

WE'(R-G~ry+) € {((@', 0, &, 0), (', &) € (T*(R") \L )X (T*(R"™) \ 0)}.

Thus we conclude that if ((x, &), (v, ")) € WF'(GHy*) then z, = & = 0 and we
have therefore proved (5.13) with G+ replaced by G*y*. Similarly one can prove
(5.14) with G~ replaced by y=G-.

To prove (5.12) we write the following equations, which are consequences of
(5.15):

(5.18) (PG + R-G )y =y,
(5.19) p(GP + G+R) = yp.

The same argument as above shows now that (5.12) holds with ¢ replaced by
ypGy. Thus if we replace the y and 7 in the construction of ¢ by some new
x and y with the same properties but with smaller wavefront sets, we see that
(5.12)—(5.14) hold and that the other statements in the proposition remain true.
This completes the proof.

We shall now use Proposition 5.4 to prove a microlocal version of Theorem 1.2,
when X C T#%R*) \ 0 is given by x, = &, = 0. Thus we assume P € LM(R")
is as above and that ind (py) = M on 2 in a neighbourhood of g,. Then the
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index of Lz, &, D,): B?(R) — L*(R) is M so we have mt* =M and m~— =0
in the construction of Rt and R~ above and the operators G—, ¢—F, B~ disappear.

Lemma 5.5, (GHa', D')*GH«', D'y € L=™(R"Y; ¢¥, ¢™) is elliptic in a conic
neighbourhood of 0q = (0, &).

Proof. It is clear that (G+(z', D'))*G+(x', D') € L~™(R"* ¢¥, C¥) because

G+, D') € 'R ¢%, BY(R)) ¢ L~Y*R""; ¢¥, L*(R)) and thus
G+, D')* € L-M*R"; L*(R), CY).
(5.15) gives us the identity:
Rz, DG+, D'ypt(a', D) = pt(2’, D).

If G, &) is the symbol of G+(x', D’) we then have in a conic neighbourhood
of oy |
(5.20) R, £)GH(@', &) = I mod SR 'x R ¢¥, ¢¥).

From the construction of R+ we see that R+(z, &) € SM¥(R*'x R"™Y; L?, ¢¥)
80 we get from (5.20) the inequality:

(5.21) yllgm < CIE PPICHE, &)yl ¥ € €

with some constant C in a conic neighbourhcod of g, for large &'. (5.21) implies
that

lyllgr < C*E MG+, £)* G, £ )yllem, y € €7
and the lemma follows since GH(x', &)*G+(x', &) is a principal symbol of
G+, D"y*GHx', D).

THEOREM 5.6. Let X be given by x, = &, = 0 and let P € L*(R™) belong fo
LM MR, X) in a conic neighbourhood of oo If ind (py) = + M at o, then there
exist operators F, F+: D' (R") — D'(R") with the following properties
(5.22) F is continuous HY(R")-—> Hl"jM/z R") for all s € R,
(5.23) F+ is continuous HY(R")— H*(R™) for all s € R,
(5.24) (o, 00) € WF'(F) C diag (T*(R") \ 0),

(5:25) (g0, 00) € WF'(F*) c diag (2),
)

(5.26) Near 9, we have PF =1 F+ 4+ FP =1, F+ = (F)*

Proof. Put
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(5.27) Ft — G+A4'(GH*,

where A’ € LM(R"™%; €™, €M) is a properly supported parametrix of (G+)*G+
near g,. We can assume that

(5.28) (A')* = A’
Put
(5.29) F = (- FHa.

Then (5.22), (5.23) and the inclusion parts of (5.24), (5.25) follow from the
construction. (5.26) also follows easily if we write (5.15) more explicitly in the form:

(5.30) PG =1,RG =0, PG+ =0, R*G+ = I, G*R+ + GP =1,
oll near o, and g, respectively.

" We omit the details.

That (g, 0o) € WF'(F) follows since PF =1 mnear o, To prove that
(00, 00) € WE'(F+), we take u € B'(R™ €M) so that WF(u) = {Agy A > 0}.
Then WF(GHu) = {lgy; A > 0}, because R*G* =1 near g,  On the other hand
we have PGtuw € C* and from (5.26) we therefore get: F+(G*u) = G*u mod C*.
This implies that (g,, 0,) € WF'(F*), and Theorem 5.6 is proved.

We shall next use Proposition 5.4 to prove a microlocal version of Theorem 1.4
when X is given by ¥, = &, = 0. For that purpose we need a lemma, which we
suppose is well known, but which we have not found in the litterature.

Lemma 5.7. Let @ € L°(R™; C™, C*) and let o € T*(R") \ 0. If m >k then
there exists u € HE™(R™ C™) such that Qu € C* and WF(u) = {ig; A > 0}.

The proof of this lemma is rather long, so we have put it in an appendix.

We now assume that P € LM(R") satisfies the conditions of Theorem 1.4 in a
conic neighbourhood of g, = (0, (£, 0)), and we also assume that X is given by
2, = £, = 0. The fact that ind (p,) > 0 at o implies that the numbers m*
and m~ in the definition of R+(z’, &) and R—(2', &) satisfy the inequality

(5.31) mt > mT.

Thus we can apply Lemma 5.7 to see that there exists » € Hy™®(R"™; C'"+) such
that WF(u) = {lgs 2 > 0} and
(5.32) G—u € C™.

We put v = Gu € HyiP(R"). It follows from (5.13) that WF(v) C {4g; A > 0}
On the other hand, as a consequence of (5.15), we have the identity R+v =« mod C*,
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so WE(v) can not be empty. Thus WF(v) = {dgy; A > 0}. Moreover Py € C*(R")
because of (5.32) and the identity

(PGt + R—G—+)u = 0 mod C*,

which is also a consequence of (5.15). We have thus proved

THEOREM 5.8. Suppose that P € L™(R") satisfies the conditions of Theorem 1.4
i a conic neighbourhood of o, and that X is given by =z, = &, = 0. Then there
exists v € HypP(R™) such that WF(v) = {loy; A > 0} and Pv € C*(R").

We shall next prove microlocal versions of Theorems 1.6, 1.7 when
= {(x & €T*R)\ 0;2" = & = 0}, R"d o = (', 2") € R"*x R,
and P € Li(R") belongs to L>»*R" X) in a conic neighbourhood of
2 = (0, (&, 0)) € T*(R") \\ 0.
Applying Taylor’s formula, we get

(5.33) P= 3 a"aylx, D)D" + A, D) near g,

joet+B|=2
where a,, € LCTM-IE)2(R™), 7 € L(R") and the a,x, &) are positively homo-
geneous of degree (2 + || — |])/2 for & > 1.

TurorEM 5.9. Suppose that P € Li(R") satisfies the conditions of Theorem 1.6
m a conic neighbourhood of o,, with X given by " = & = 0. Then there exists a
linear operator E: D' (R") — B'(R") such that B is continuous HX(R™) — H (R
for all s € R, WF(E)cC diag (T*(R")\ 0) and PE = EP =1 near o,

The technique of the proof is identical to the proofs above. The only difference
is that we now consider vector valued pseudodifferential operators on R * instead
of R* ', and that we have no “interior boundary” operators to worry about. We
shall not repeat all the details. What we actually have to verify, is that

Ly, &, D) = 5 a"au, 0,8, 0D + A, 0, &, 0): BL(RY) — LA(R¥)

o =2
has a uniformly bounded inverse for (z', &) in a conic neighbourhood of (0, &)
when [&'| > 1. Here 1, is the positively homogeneous principal symbol of A(x, D).
To prove this, we want to apply Theorem 3.5 or rather Remark 3.6 (with » replaced
by k), so we write L, on a symmetric form:

Ly, &, D) = § > (a™a,',0,&, 0) D" 4 D", 0, &, 0)x") +
o8] =2

1
+ (ll(x’, 0,£,0) — T Z @y (', 0, &, O)).

Y=
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Now we note:

1
1° A2, 0, &,0) — % D (', 0, &, 0) is the subprincipal symbol of P at X.
joe| =1
2° Zx"“aaﬂ(x’, 0,&,0)" is precisely the quadratic form a(f,t) in the
introduction.

Thus the conditions of Theorem 1.6 imply that the conditions of Remark 3.6 are
satisfied for the operator Lg(x, &', D"), so this operator has a uniformly bounded
inverse. Thus Theorem 5.9 is proved modulo details.

We shall finally give a mierolocal version of Theorem 1.7. Thus assume that
P € L{R™ belongs to L>*R™ X) in a conic neighbourhood of

20 = (0, (&, 0)) € T*(R") ™\ 0

and that ind p,, = 0 on X when codim X = 2. X is here given by " = & =
We assume that the condition (1.17) is not satisfied at g;. In view of Theorem 3.5
this means that the kernel and the cokernel of

Ly(0, a", &, D"): B¥(R") — L*(R")
have the same dimension r # 0. As before we construct
R+(2’, D') € L"(R"™% BiL(R"), C),
R-(x', D') € L(R" % €, L*(R%),

so that Proposition 5.4 remains valid. More precisely there exists a map

G 4G+ .
G = (G’* g_+) :C%(R") @ O°(R"™ ) — O%(R") ® C“(R" €)

so that Proposition 5.4 is valid with m+ = m~ = r and with R"™' and R every-
where replaced by R"* and R* in the formulas. The construction and the proofs
remain unchanged, so in particular G+ = yE+, where y € L°(R") has its wave-
front set close to g, and y=1I near g, and E+€ LYR"% (, Bg,(R")). Pro-
position 5.3 remains valid, so G—+ (= E-*) belongs to L°(R**; ¢, ¢") and has
modulo S~ a symbol Gy *(z’, &) which is positively homogeneous of degree 0.
Moreover G *(0, &) = 0. This non-ellipticity property implies that for all ¢ > 0
and 0 <<d < 1/2, there exists »€H (R \ HF?(R"™ such that
WF(v) = {(0, Ag,); A > 0} and G+, D')v € HP™(R"*). This has been proved
essentially by Hormander [12] although the wavefront sets did not exist at that
time.

With such a » we put u = G*v € H™P(R"). Clearly WF(u) C {igyp; 4 > 0}.
By (5.15) we have



PARAMETRICES FOR PSEUDODIFFERENTIAL OPERATORS WITH MULTIPLE CHARACTERISTICS 119

PGty + BR-G—tp € C*, R*Gtv = v mod C*,

From the second equation we see that u = Gtv € H{™P N\ HP"f, ., and that
WF(u) = {10y, A > 0}. From the first equation we get Pu € Hy°(R"). To complete
the proof of our microlocal Theorem 1.7 we have to prove that Qu € Hy?, .(R")
for all @ € L°(R™) with positively homogeneous principal symbol, vanishing on X.
Since WF(u) = {dp,; A > 0} we can assume that WF(Q) is close to p, Since
2 =1 near ¢, we then have

Qu = QGTv = QyE+v = yQE+v mod C®.
By Taylor’s formula:
@z, D) = 2 (A, D)™ + Bz, D)D) + C(z, D)

=1
where A € I0, B€ L1, C € L', Using the fact that E+€ L' (R* % (€, Bz,), we
obtain that Qu € HY°, ,,(R").

Summing up, we have proved

TueoreM 5.10. Suppose that P € L}(R™) belongs to L>*(R*, Y) in a conic
neighbourhood of o, = (0, (&, 0)), where X is given by »” — & = 0. If (1.17) is
not valid at gy, then for every 0 << 6 << 1/2 and &> 0 there exists

w € HPp(R) \ H™F, (R7)

such that WZF(u) = {lgy; 2 > 0}, Pu € Hy*(R") and Qu € HY, ,,(R") for all
Q € I*Y(R", 5).

Remark 5.11. The idea to reduce the study of P to the study of G+ is due to
Grusin [9]. He has shown that the hypoellipticity of an operator on R", of the type
studied in this section, is sometimes equivalent to the hypoellipticity of another
operator on R"™*. His general implicit results can be refined by working with
wavefront sets. We let the reader verify (using Proposition 5.4) that several properties
for P and G—F are valid simultaneously; such as hypoellipticity, existence of
parametrices or of a priori estimates. The problem of propagation of singularities
for P can also be reduced to the same problem for G—*. Everything is here micro-
local of course.

6. Application of Fourier integral operators
We shall first prove Theorem 1.2. On many essential points the proof will be

the same as in [4]. It is well known and easy to prove that a submanifold
2 T*2)\ 0 of codimension 2 is non-involutive if and only if X can be locally
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given by p;(x, §) = p,(x, &) = 0 where p, and p, are smooth real valued functions
such that {p;, p,} # 0. In the case when X is conic, we can choose p; and p,
positively homogeneous of degree 0. It is also well known that if X is such a surface,
then locally there exists a homogeneous canonical transformation

D T*(2) \ 0 — T*R" \ 0

such that 2 is mapped into the plane z, = & = 0. See for instance [4]. This
observation makes it possible to apply Fourier integral operators and Theorem 1.2
will follow from Theorem 5.6. As the main step we shall prove the following micro-
local result.

Prorosition 6.1. Let P € L™Y(Q,%) be as in Theorem 1.2. Then for every
0 €ET*(R)\\ 0, there exists a conic open neighbourhood V,cT*(2)\ 0 and
properly supported operators F,, F¥, F . D'(Q) — D'(Q) satisfying (1.7)—(1.9) in
V, and satisfying (1.6). Moreover

(6.1) (0,0) € WF'(F ) C diag (T*(2) \ 0),
(6.2) WEF(F¥)c diag (X*) and if ¢ €ZF we have (o, 9) € WF'(F*).

Proof. If ¢ ¢, we can take F_ € L ™() being a microlocal parametrix of
P and we can take FF = 0. Since the result for o0 € 2~ can be obtained by
duality, once we have settled the case ¢ € 2+, we see that it suffices to study the
case o €2%. Then of course we shall take F, — 0 and after multiplying P to
the left by an elliptic operator of suitable order we can assume that m = M.

We now let 9C: T#(2) \ 0 —T*(R") \ 0 be a homogeneous canonical trans-
formation, defined in a conic neighbourhood of ¢ and mapping X into

5= {(x, &) € T*(R") \_0; 2, = £, = O

Put o, = “((¢) andlet I' be a closed comnic subset of the graph of 9(, containing
(00, 0) as an interior point. Put

— (s — % () € T},
To 9C we associate a properly supported Fourier integral operator
A €I R"xQ; I')

with positively homogeneous principal symbol of degree 0 non-vanishing at
(00, — 0). (Here we use Hormander’s notations [11].) Then A*A4 € L) is non-
characteristic at ¢ and applying Proposition 2.2.2 in Hérmander [11] we see that
there exists B € L’(2) non-characteristic at o such that B*B = A*A4 near o.
Let B’ € L°(©2) be a properly supported parametrix of B near o and put

(6.3) U= AB € I"(R"x 2, I').
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Then
(6.4) U*U =1 mnear o, UU* =1 near o,

One of the fundamental results of [11] now tells us that for every @ € L¥Q)
with principal symbol ¢ we have UQU* € L*(R") and the principal symbol is
g o P in a neighbourhood of g, = 9¢(p). It also follows from the proofs in [11],
that if 4 (and U) are choosen with symbols which are asymptotic sums of
positively homogeneous symbols of suitable orders, for every admissible choice of
phase functions and local coordinates, then UQU* is a classical pseudodifferential
operator if @ is. (¢ is called a classical pseudodifferential operator of order k
if the symbol is an asymptotic sum of positively homogeneous symbols of orders
LEkE—1Ek—2..)

LeMMA 6.2. P = UPU* € L™(R") belongs to L™™(R" %) in a conic neigh-
bourhood of o, and ind p,, = M at o, if Py 18 the positively homogeneous principal
symbol of P.

Proof. Since Py = pyro Y01 near g, it is clear that p,, satisfies (1.2a) near
0o With respect to Y and that ind Py = M at g, The problem is to handle the
lower order terms. Take ¢, g, € C°(T*(2) \_0) positively homogeneous of degree
0 so that X is given by ¢i(x, &) = gy(z, & = 0 in a neighbourhood of ¢ and
{q1, %} # 0 mear o. Let @, Q, € L°(LQ) be classical properly supported operators
with principal symbols ¢, ¢, Then using Taylor’s formula, (1.2b) and (1.3) it is
easy to see that

(6.5) P= > Aulx, DYQIQY + B near o,

where Aj(x, D) € LMVR2(Q)  and B(z, D) € LM~D2(Q) are classical pseudo-
dlfferentlal operators. Conversely if (6.5) is valid with such A; and B, we see
that (1.2b) is valid. Putting A]k = UA,U*, Q = UQU¥*, B = UBU* and using
(6.4), we see that

(6.6) P= > &lk@{Q~’2‘+J§ near g,

j+k<M

Hence P € L™Y(R", ) near o,

We now apply Theorem 5.6 to P and let F F+ be the correspondmg para-

metrix operators, satisfying (5.20)—(5.24). Putting F, = U*FU Fi = U*F+U it
is immediate that ¥, F have all the properties stabed in Pr0p0s1t10n 6.1 if we
note that WF'(U) and WF'(U*) are contained in the graphs of 9¢ and (-1
respectively.
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Prorosrrion 6.3. Let V, F, F> be as in Proposition 6.1. Then F,=F,
and F:=TF% in V,NV, forall o, o €T*2)\ 0.

We refer to [4, Section 2] for the proof.

Now let y; € L(£2),j €J be a locally finite collection of properly supported
pseudodifferential operators such that for corresponding o, € 7#(2) \\ 0 we have

(6.7) WF(y)c V >u=1
j€J

Define

(6.8) F =25, F*=72F;

Clearly WF'(F) C diag (T'*(2) \ 0), WF'(F*) c diag (2=), so after adding
operators with C® kernels, we can assume that F, F* are properly supported and
have the H,-continuity properties as in Theorem 1.2. 1t follows from Proposition
6.3 that F = F,, F* = F* in V, for all ¢ € T*(2)\ 0. Thus all the properties
in Theorem 1.2 follow from Proposition 6.1. Apart from Lemma 6.2 the proof
above has been taken from [4]. (Similar partitions of unity and applications of
Fourier integral operators have been made by Duistermaat and Hormander [3].)

Theorem 1.4 follows from Theorem 5.8 by a much simpler application of Fourier
integral operators and we omit the details.

We next want to prove Theorems 1.6 and 1.7. First a more or less wellknown
lemma;:

Levma 6.4, Let X cCT*Q)\ 0 be a closed conic non-involutive submani-
Jold and let o €2, Then there exists a homogeneous canonical transformation
D T*(2) 0 T*(R™) 0 defined in a conic neighbourhood of o and mapping X
into X = {(x, &) €T*(R") \ 0; 2" = & = 0}. Here ", & € R, 2k = codim (X).

Proof. We know already that this is true when codim 2 = 2 and we shall
make an induction over codim 2. In a neighbourhood of ¢ we take a real valued
g, € 0%, positively homogeneous of degree 1/2 such. that ¢, = 0 on X and dg, = 0.
Since X' is non-involutive, the Hamilton field H, is not tangential to X' and
there exists therefore a real valued €% function ¢,, positively homogeneous of
degree 1/2 such that H,g, = {q;, ¢;} = 1 near ¢ and ¢, =0 on X

2, defined by g, (, §) = ¢y(x, &) = 0 is then a non-involutive submanifold of
codimension 2 so there exists a homogeneous canonical transformation

Dy T*(R2) N0 — T*(R") \_0,

defined in a conic neighbourhood of ¢ and mapping X, into the plane z, = &, = 0.
Since X C X, near o, we see that
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Vo Z) = 2" %0 < (TR ) \ 0)x (T*(R)),

where X' ¢ T*(R"') \ 0 is non-involutive, conic and codim X’ = codim (X) — 2.
Thus if the lemma is true for 2’, it must be true for X and the lemma follows
by induction.

The lemma gives us the existence of a suitable canonical transformation in order
to apply the Fourier integral operators. We must also check that the condition
(1.17) is stable under conjugation with such operators:

Luamma 6.5. Suppose that P = AQQ, + B, where A € L™(Q), @y, Qs € L°(2),
BE€L™NQ) are properly supported classical pseudodifferential operators with
principal symbols @, qy, ¢, b. Let g € T*(Q)\ 0 be a point where ¢ = g, = 0.
If we write the symbol of P in local coordinates as

P, &) = po(a, &) + Pp_y(@, &) mod §™*

where p,. and p,, . are positively homogencous of degree m and m — 1, then
the subprincipal symbol

n p,(x, )
. . N1 _smyc7
SP(x: ‘S) - _pm—l(xif E) (27’) z} 6961351

18 tnvariantly defined at o and is in fact given by the formula

Sp(e) = b(e) + ale)(21) {4y, ¢a3(0)-

The proof is evident. We now let P € L™*(2,Y) satisfy the assumptions of
Theorem 1.6. Let ¢ € 2. Near o, X isgivenby ¢, = ¢, = ... = ¢y, = 0 where
g are real valued positively homogeneous C* functions of degree 0 and
dqy, dqs, - . ., dgy, are linearly independent. If @, € L°(Q2) are properly supported
classical pseudodifferential operators with principal symbols ¢, we can apply
Taylor’s formula and write

(6.9) P=>% 4,00, + B near o,

where A, € L™, B € L™, are classical pseudodifferential operators. We denote
the principal symbols by @; and b. It follows from Lemma 6.5 that Sp is in-
variantly defined on 2 and given by the formula

(6.10) Sp = (20)7" zz s 4t + b

It follows from (6.9}, (6.10) that the condition (1.17) is invariant under multiplication
of P with elliptic operators. Thus we can assume from now on that P € L**(Q, X).

Let 9CT*Q)\ 0—T*R")\ 0 be the homogeneous canonical trans-
formation in Lemma 6.4, mapping X into f, given by 2" =& = 0. Let
U€eI'(R"x 2, I'") be an associated Fourier integral operator, properly supported
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which is non-characteristic at (9¢(g), 0) = (0, 0). Take U’ € I(QxR", ([))
such that U'U =1 near ¢ and UU’ =1 near g, Put P = UPU’ € L*(R").
Then P € L**(R", f) in a conic neighbourhood of g, in view of (6.9) if U is
suitably chosen so that the homogeneity in the lower order symbols is preserved.
Moreover Spo P = Sp at X in a conic neighbourhood of ¢, in view of (6.10).
If p,, p, are the positively homogeneous principal symbols of P and P
respectively, then p,o 9C = p, near o. If 4, 1 4, are the correspondlng matrices
defined by (1.16), we obtain therefore that A = (dC)C)‘lA d so A, and A o
have the same eigenvalues with the same algebralc multlphcltles

We have now shown that the condition (1.17) is satisfied for P at o if and
only if it is satisfied for P at 0o- Thus an application of Fourier integral operators
and Theorem 5.9 gives us a microlocal version of Theorem 1.6 analogous to Propo-
sition 6.1. By a partition of unity as above we obtain Theorem 1.6 globally. In the
same way we get Theorem 1.7 from Theorem 5.10.

We shall end this section by giving an example of Theorems 1.6 and 1.7. Let
P,Q € L"*(Q) be classical pseudodifferential operators, with principal symbols
P, ¢, positively homogeneous of degree m/2. Suppose that P and ¢ have the
same characteristic set @ X cCT*Q)\ 0 and that — i{p, p} > 0,
—#{g,§} << 0 on 2. Then it is well known that QP is neither locally solvable nor
hypoelliptic so it can not satisfy the conditions of Theorem 1.6. (See for instance
[4].) However PQ does and we are going to verify that.

First of all we see that 2~ must be a closed conic non-involutive submanifold
of codimension 2, since X is given by the equations Rep =Imp =0 and
{Rep,Imp} #0 on X. It is easy to see that Po@Q € L™*Q,Z) and that
ind (pg) = 0 on 2. (See Proposition 1.3.) By Lemma 6.5 we have

(6.11) Sp.g = (2)) {p, ¢} at 2.

For o €2, let a,(tt) be the quadratic form defined in the introduction, so
that in our case we have

a,(t, 1) = <1, dp><t, dg>, t € T(THR)).

Let A4, be defined by (1.16). It is natural to guess that the complex Hamilton
vectors H, and H, are the eigenvectors of 4 with non-zero eigenvalues. An
easy check shows that this is true and that the corresponding eigenvalues are
3p ¢} and — 3{p, ¢}

It is easy to verify that K, defined in the introduction, is the set of eigenvalues
of A, for which the corresponding eigenvectors v satisfy —i o(v, 7) > 0. (Cf.
Lemma 3.8 and its proof.) In particular in our example K, contains 3{p, q} as
its only element and the condition (1.17) takes the form
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1 1
5 o+ 7 G{p gt + klp, ) # 0, k€ZTU{0}, at 2

which is trivially satisfied. On the other hand we see that for the operator @ o P
the condition (1.17) is not satisfied anywhere on 2.

Remark 6.6. Boutet de Monvel and Tréves [1] have independently studied the
case when codim (X) = 2, M = 2. In this case it is always possible to write the
operator in the form Po@Q 4 R with P and @ as above and with R € L™ '(Q)
having a positively homogeneous principal symbol r of degree m — 1. The con-
dition (1.17) takes the form:

. :
(6.12) r{o) + Tk{p, gio) %0 for all k€Z+ and o €2

Boutet de Monvel-Tréves have shown the equivalence between (6.12) and the

estimate (1.18).
We now generalize our example and take k couples (P, @,), 1 <v» <k as
above. Let the principal symbols be p,,¢,, and let X' be defined by

PrL=Pr=...=7p, =0
We assume that

1° dRep, dImp,, ..., dRep,dImp, are linearly independent on 2,

2° {p,p.}=14¢,9}=0 on X for all » pu,
3° {p,q,=0 on X when v # pu.

The manifold X is then non-involutive of codimension 2k and it may happen that
SYP,0Q, € L™*Q2, %) (for instance if the ¢, do not differ too much from the
7,)- In that case the condition (1.17) takes the form:

v (1 1
Z(Q—Z-{pw 9} + < G{p, ¢} + afp, q,})) #0 on X for all o, €Z+U {0}.
1

This condition is trivially satisfied, because the 1{p,, ¢} belong to some common
open half-plane in €. On the other hand the operator z; @, P, does not satisfy
(1.17).

Appendix

In order to prove Lemma 5.7, we shall prove that any p € L"(R"; ¢™, C*) can
be multiplied to the left and to the right by elliptic factors, so that the symbol
becomes asymptotically equal to a matrix (¢;) with ay =0 for j # £k and
a3 =0 or 1 when j=k. This can hold of course only in a suitable subset of

T*(R")\\ 0 which we now define.
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Definition A.1. Let 6 > 0, 0 << U < 1/2 and suppose that
K={x,8)eT*RY)\0;, »=1,2,...}
where {x,} is bounded and 2 <2|¢| <& | for all y. We write
V=MK,DZ0C,?)

for the disjoint union:

{(z, & €THR) N0 |z — x| < Ol§,17% |§ — §] < Olg "7

Cs

V::

It

r=1

and we say that V is a d-set. If W = M(K, C’, §) is another J-set, we write
W = (C']C)V. For any subset 2 of V, we write 2 < V if Qc oV for scme
o with 0<<p < 1.

If >8>0 and V is a d-set we define ST (V) to be the space
of restrictions to ¥ of elements in 87 (R*x R"). We define 87 (V) as the
projective limit of all 87 ,(o¥) with 0 < ¢ < 1. It is easy to verify that S7"_ (V)
is the set of p(x, &) € C*(V) satisfying the usual estimates for the DDIp uni-
formly in all the oV,0 < p < 1. The notion of asymptotic convergence is im-
mediately defined in S7 4(V) and in ST 4(V). In particular if »; €87 V),
j=1,2, 0<6<¢ <1/2 we can define p, o py, € S725™(V) modulo S™*(V)
by the usual composition formula

Pro Py ~ 2 Ppyylilal, p, = plox* p® = g¥pjos*.

THEOREM A.2. Let 0 <0 <<d' <1/2, m€R and let p €8T _4(V;C™ C™)
where V is a 6-set. Then there existsa 6'-set W < V and p;, pj' € SM (W; €™, C™i)
j=1,2 for some M € R such that

; °Z7J{ Np]{ o p; ~ tdentity in C", j=1,2
and

mn W

m.
my

PzoPopr~ (ay)

1
1

INIA

J
k

INIA

where a; =0 for j#k and ap =0 or 1 for j=k.

In general, if p,q €87 (W;C™ €¢™) and pyopop, ~gq in W with
W, py, p, as in the theorem, we shall say that p and ¢ are equivalent in W.
For the proof of the theorem we need a definition and two lemmas.

Definition A.3. Let V be a d-set and let p € S}~ (V). Then we write degy p
for the infimum of all m € R such that sup, yep [p(x, §)[/(1 + [§]") < 4 oo.
For p €8Y (V) we define deg, p = SUpy ., ~; deggy p. Clearly deg, p < M.
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Lemma A4, Let V bea S-set and let p € SY 4 (V), where 6" > 6 > 0. Then
deg, (DxDip) < deg, (p) + |x|6" — |B|(1 — &) for all multiindices x and B. In
particular p € SIEPT(V) for all &> 0.

Proof. Suppose that V = {J° V, as in Definition A.1, where AV,, A > 0 (and
V,=1-V) are given by
r— x| < OMEIT, I — & < ORE [

with some positive constant C << 1/2. As in the proof of Theorem 2.9 in Hérmander
[13], we use the elementary inequality

[0'(0)] < (2sup |o| - sup ') 4 2a ' sup |, v € C*([— a, a]).
For given A, 4 with 0 << A <Cpu <1 we obtain with some constant C
(A.1) sup [D,p| < C((sup |p|sup [Dp)"” + [, sup [p}).
v,

uv, uv, uv,

In fact, for every (x, &) € AV, it suffices to consider the restriction of p to the
straight line through (z, &) parallel to the a;-axis. From (A.1) we obtain

deg (D,;p) < max (deg (p)/2 + deg (D;p)[2, 6 4 deg (p)),

where the degrees are taken in V. In this inequality we can of course replace p
by D;;lp for any » > 1. Thus if we put ¢, — deg (D;jp) — v8, we obtain

(A.2) a, < max ((a, ;, + a,.,)/2,a, ;).

The fact that p € S¥ (V) implies

(A.3) a, <M + »(6" — 9).

With a simple geometric (convexity) argument we obtain from (A.2) and (A.3) that
a, < deg (p) + »(8' — ),

and in particular that deg (I)x]_p) < deg (p) + ¢, 1 <j <m. Similarly we have
deg (DEJ;p) <deg(p)+ 6 —1, 1 <j<n and by iteration we get our lemma.

Lemma A.5. Suppose that p € S\ ,(V), where V is a &-set, 0 <o < 1/2.
If degyp =0 and 6 < 8 < 1/2, there exists a 0'-set W <V and a symbol
p €SV IIRWY such that pop ~p op~1 in W. /
Proof. Since deg, p = 0, there is a set
K={@,&;v=12..3<V
such that 2 < 21§ < [£, ;]| for all » and such that
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(A4) D2, &) = 218,707

Put W= M(K,1/3,9"). After having taken away finitely many (z,&,) from
K, we may assume that W < V. Using that p € 8Y593%(V) by Lemma A4,
we see that there is a constant C such that

(A.5) Ip(, &) — p(x,, &) < C\fv{‘a'“"'*f’)/ﬂ(’ — |-
for all (z, &) satisfying
o — | < g7V, 18— &) < &3,

After having taken away finitely many (z,, &) from K we get from (A.4) and
(A.5) that

(A.6) I, &) = (£ in W,

This inequality and the fact that p € S¢5%*(V) implies that 1/p € S¥52(W).
(Cf. Hormander [13] p. 166.) The usual construction of a pseudodifferential para-
metrix of an elliptic operator, now gives the desired p’ € S 77%(W), having
1/p as a principal part.

The proof of Theorem A.2 is now easy. Let p and ¥ be as in the theorem.
1If deg,p = — oo there is nothing to prove. After multiplication with a suitable
elliptic factor, we can assume that degy p = 0. Permuting the columns or the rows
of p does not change the equivalence class. We can therefore assume that
degy pyy = 0 where p is written in matrix form: p = (py). Let 6 and ¢" be as
in the theorem and take ¢ such that § < §” < ¢’. By Lemma A.5, there exists
a 8"-set V' < V and a q € 8 7Y%(V") suchthat q o p;; ~py 0 ¢ ~ 1. Composing
p to the right with the m,; Xm,;-matrix

9 — 9Pz — qP13 - - - — 9Pim,
0 q o ... 0
0 0 0 ... q

we see that p is equivalent in V” to a matrix where the first row is of the form
(1,0,...,0). A similar multiplication of the obtained matrix to the left shows that
p is equivalent to a matrix of the form

1 0
0 4
‘where A4 € ST o (V"; €™~ 1, €™ 1) for some m. Iterating this process we get the

desired equivalent form after at most min (m, m,) steps.
We can now prove Lemma 5.7. Let @ € L%(R™ C", C*,m >k and let
0 €ET*(R")\ 0. Let V = M(K,1/3,6), where 0 <6 << 1/2 and K is a subset
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of the half ray through p, satisfying the assumptions of Definition A.1. Take ¢
8o that § << & << 1/2. By Theorem A.2 there exists a &’-set W < V such that
Q(x, &) is equivalent in W to a matrix symbol, having only zeros in the last m — k
columns. This implies that there exists a symbol ¢ € 8} ,(W; €™, €™) such that
) o g ~ 0 and such that the degree of ¢ in (1/2)W is > — co. Now it is easy
to construct a symbol y € 8Y_, (W) with support in (2/3)W and equal to 1 in
1/2)W. If 4 €L'R% €™ C" has symbol ~gqoy and is properly supported
it follows that QA4 = 0 and WZF(A) = {Ap; 1 > 0}. It is clear that there is some
u € HY™(R") with WF(u) = {lg; 1 > 0} in the image of 4 and since Qu € C®,
the lemma is proved.
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