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1. Introduction and statement ol the main results 

The purpose of this paper is to construct parametrices and give solvability (hypo- 
ellipticity) and non-solvability results for some classes of pseudodifferential operators 
for which the characteristic set is a closed manifold in the cotangent space. Some 
of our results have been announced in [23, 24]. 

Moyer [18] has reformulated the condition of Nirenberg-Trgves [19] for local 
solvability in terms of the argument variation of the principal symbol along certain 
closed curves in the cotangent space. We shall use the notion of argument variation 
here to study invariant classes of pscudodifferential operators for which the char- 
acteristic manifold has codimension 2. For operators with double characteristics 
we shall also give a complementary result which is valid also when the codimension 
of the characteristic manifold is larger than 2. We want to point out that  Vi~ik and 
Gru~in [6--10, 26, 27], Radkevi5 [21] and Melin [16] have studied overlapping classes 
of operators. We have been influenced by these works and we shall use techniques 
developed by Melin, Vi~ik and Gru~in. We also note the interesting example by 
Trdves-Gilioli [5] and that  Boutet de Monvel and TrOves [1] recently have obtained 
independently a result which is contained in our Theorems 1.6 and 1.7.* 

We now start to formulate the precise results. Let :Q be a paracompact C + 
manifold of dimension n and let T*(~9) ~ 0 be the cotangent space minus the 
zero section. We adopt the notations Lm ~ L~x,0 and S ~ ~ S~l,0 for the spaces 
of pseudodifferential operators and symbols introduced by H5rmander [11, 13]. 

Definition 1.1. Let X C T*(Y2)~ 0 be a closed conic submanifold and let 
mC R, M E Z  +U{0}. Then we define Lm'M(D,~) to be the set of pseudo- 

*) Added in proof: More recently they  have improved their  results. In  part icular ,  Boutet  
de Monvel has shown tha t  ~he parametr ix  (in Theorem 1.6 here) is a pseudodifferential  operator 
of type 1/2, 1/2. 
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differential  opera tors  P E Lm(tg) which in every  local coordinate  system U c s 
has a symbol  of  the  form 

(1.1) p(x,r ~ p m _ j / 2 ( x , r  Pm_j/2eZ"~-J/2(Rn X ( R n ~ { 0 } ) )  
j = 0  

where the  Pm-j/: are posi t ively  homogeneous  of degree m - - j / 2  and satisfy: 

(1.2) For  eve ry  K C C  U there  exists a constant  C > 0, such t h a t  

(1.2a) Ip,~(x, ~)1/I~1 ~ ~ C-1(d(x, ~))M, 

(1.2b) Ip,,_j/2(x, ~)l/l~l ~-j/2 _< C(d(x, ~))M-j 0 <_j < M, 
for all (x,~) E K •  E~] > 1. 

Here  d(x, ~) = inf(x,~)ez (ix - -  y] + iu - -  ~/l~ll) is the  distance f rom (x, ~/1~1) to 
Z. 

We also in t roduce  the  set L~'M(X), Z ) C  L~'M(~9, Z) for which the  P,~-i/2 in 
(1.1) can be t a ken  to  be zero when j is odd. Note  t h a t  Pm is invar ian t ly  def ined 
on T * ( D ) ~  0 and  note  the  composi t ion formula  

(1.3) L'~"M' (#2, Z) o Lm"'M" ([2, 2) C L'~'+m"'~'F+M" (~, Z), 

where in the  left  hand  side we only  take  composit ions A o B, where one of the  
factors  is p roper ly  suppor ted .  The space L ~'M was essential ly in t roduced  in [23]. 

Now let a = ~ d~j A dxj be the symplect ic  form on T*(sg) and assume t h a t  
X C T * ( f 2 ) ~  0 is a closed conic non- involut ive  submanifold  of  codimension 2. 
T ha t  Z is non- involu t ive  means  t ha t  the  rest r ic t ion of a to Z is non-degenerate .  
Le t  o E Z. Since a is a non-degenera te  a l te rnat ing  form on T0(X ), the  t angen t  
space of  Z; a t  ~o, we have 

(1.4) Te(T*(s = T~(X) | N (Z) 

where /~r~(Z) denotes  the or thogonal  space of To(X ) wi th  respect  to a. I t  is clear 
t ha t  a is non-degenera te  also on No(X ) and  thus  induces an or ien ta t ion  there.  
More precisely, we can choose q ,  e 2 E N ( X )  ~ {0} such t h a t  a(el, e2) < 0 and we 
ident i fy  N~,(Z) wi th  the  complex plane linearly,  b y  pu t t ing  e 1 = 1, e 2 = i. I f  
is a closed curve in No(Z ) ~ ,  {0}, the a rgumen t  var ia t ion  var  a r g y  is t h en  
def ined and independen t  of  the  choice of % e 2 wi th  a(el, e 2 ) <  0. I f  
q~: Ne(X) ~ {0}-*  C ~ {0} is a cont inuous map,  we define the  index of ~, ind ~, 
by  the  equa t ion  

ind ~0 = (var arg ~0 o y)/ (var  arg y) 

where y is some closed curve in No(X ) ~ {0} wi th  var  arg y r 0. 
Now let  P E L m' M(D, X) and  let  p~  be the  posi t ively  homogeneous  principal  

symbol  in Def in i t ion  l . ] .  I f  t E T(T*(~(2)), ~ C X, let  v be some vector  f ield on 
T*(.C2) equal  to  t a t  ~ and pu t  
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a(t) = aQ(t) = (M!) ~(vMp,,) . 

By (1.2) a(t) is independent  of the choice of v and  a ( t ) ~  0 when 

t e To(T*(K2)) ~ T ( X ) .  

P u t  i n d ( p = ) = i n d ( p = , ~ )  = i n d , ,  where ~ is the map 

N(z)  \ {0} t a(t) e c \ {0}. 

Then i n d p ~  is one of the numbers  - - M , - - M ~ 2 , . . . , - ~ M .  In  fact,  if  we 
introduce some linear coordinates x, y in No(Z), we get 

M 

a(t) = ~ a jxJy  M - j ,  t = (x, y) 
0 

and since a(t) # O, when t CN~)(Z)~{0},  it  follows from the  fundamenta l  
theorem of algebra t ha t  

M 

(1.5) a(t) = a M ~ (x  - -  ~jy), t = (x, y) C N~,(2J), 
1=1 

where a M :~ 0 and Im  ~j. :~ 0 for all j .  Now our s t a tement  follows, since the  
index of the map (x, y) ~+ (x --  yjy) is ~: 1. 

Our first  result  can now be formula ted  exact ly  as Theorem 1.1 in Duis termaat-  
SjSstrand [4]. I f  A , B  are linear operators we write A-- - -B if  A -  B is an 
integral operator  wi th  C ~ kernel. Adjoints  will be t aken  with  respect to the L ~ 
inner product  on C~(T2) defined by  some str ict ly positive smooth densi ty  on tg. 
For  any  set V we write d i a g ( V ) = { ( ~ , ~ ) C  V•  Let  I always denote the 
ident i ty  operator in the appropriate space. We assume the reader is familiar wi th  
the notions W F  and W F '  in t roduced by  HSrmander  [11]. 

THEO~E~ 1.2. Let Y2 be a paracompact C ~ manifold of dimension n and let 
X c T * ( z g ) ~  0 be a closed conic non-iuvolutive submanifold of codimension 2. 
Let P E L  '~ 'M(f2 ,X) ,M ~ 0 and suppose that Z - - ~ Z  + U ~ - ,  where 

2: • = {~ e Z; ind (p~, ~) : • M}. 

Then there exist properly supported operators F,  F +, F- :  (JJ(f2)--~ ~ ' ( f2 )  with the 
following properties: 

(1.6) F is continuous H~~ loo H,+,~_M/e(~ ) and F • are continuous 
HJ~~ H~r for all s e R. 

(1.7) F + + F P  ~= I 

(1.8) F -  + P F = = - I  

(1.9) (F+) * ~- F +, (F-)* ~ F -  
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(1.t0) WF'(F)  = diag (T*(~9) \ 0) 

(1.11) WF'(F  • ~ diag (27• 

Finally i f  F, F ~ are also continuous linear ~'(D)--> ~ ' ( ~ )  and continuous: 

C~(~2)--> C~(~9), satisfying ( 1 . 7 ) -  (1.9) with F , F  • replaced by F , F  ~:, and 

wF'(~+) n wF ' (~ - )  = o, wF ' (~)  n ( z + •  = o 

then F ~ F, F ~ ~ F• 

As we shall see below, this result  is a generalization of Theorem 1.1 in [4] and  as 
in t h a t  paper we have the  in terpre ta t ion  t h a t  F + and  F -  are in an approximate  
sense the  orthogonal  projections onto the nullspace of P and  along the image 
of P respectively. In  fact,  from (1.6)--(1.11) it follows easily t h a t  

(1.12) PF+ ~_ .F-P ---- O, 

(1.13) (F+)~ ~ F+, (F-)  2 ~ F - ,  

(1.14) .F+F ~- F F -  ~- O. 

As in [4], section 5 one can prove, using Theorem 1.2 and functional  analysis, 
t h a t  when Y2 is compact  and 27+= O (or 2 : - =  0)  then  one can f ind  F , F  ~ 
such t h a t  (1.6)--(1.9) are valid wi th  equal i ty  instead of " ~ - "  and  such t h a t  F + (F-)  
has finite rank. As proved at  the end of section 2 of [4], if P is as in Theorem 1.2 
and F c 27+ is a closed cone, then  there exists u E H~0~176 such t h a t  Pu C C~(YP) 
and WF(u) = F, provided t h a t  P is properly supported or t h a t  /~ has a compact  
projection in the base. For  the proof of the uniqueness par t  of Theorem 1.2 we refer 
to [4]. 

To see t ha t  our Theorem 1.2 is a generalization of Theorem 1.1 in [4], it suffices 
to prove the following proposition, which is a special case of the  results of lVloyer 
[18]. 

PROPOSITIOX 1.3. Let P C Lm(D) be a classical pseudodifferential operator with 
principal symbol p,, positively homogeneous of degree m. Suppose that the Poisson 
bracket (Re p,~, Impm} is ~ 0 when p,, vanishes. I f  

27 = {(x, ~) e T * ( 9 )  \ o; pro(x, ~) = o}, 

then Z is a closed conic non-involutive submanifold of codimension 2. Moreover 
P C L~" I(D, X) and 

ind (pro, ~o) = --  sign ({Re p.~, I m  pro}) for all ~ C Z. 

_Proof. Recall the general iden t i ty  
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{u, v} = (r(H~, H,) = (H , ,  dv}, u, v C C~176163 

where H ,  and H~ are the  Hami l ton  fields of u and v. Le t  e,,e2 be the  
Hami l ton ian  vectors  of Re p= and Im  p= at  a point  ~ E X. Then  a(e~, e2) :~ 0 
so d(Repm) and  d ( Imp~)  are l inear ly  independent .  Thus  Z is a closed manifold  
of  codimension 2 and  (q, %) is a basis in N ( X ) .  a is clearly non-degenera te  on 
To(X ) since it  is non-degenera te  on Ne(Z) and  we have  thus  proved'  the  s t a tements  
about  Z. Wi th  t = x e , + y e  2, we get  

(1.15) a(t) = <t, dp,~> = (xel + ye2, d Rep,~ q- i d  I m p s }  = 

= ix{Re p~, Im p.,} + y{Im p~, Re  p,~} = / { R e  p,,, I m  p,~}(x + iy). 

F r o m  this it  is clear t h a t  ind (p,,, 0) = --  sign a(el, e2) = - -  sign {Re p~, Im  p~} 
and  the  proof  is complete.  

A na tu ra l  quest ion to ask is what  happens  when lindpm[ < M on X. In  this 
case the  s i tuat ion becomes more complicated and all the  t e rms  P,~-j/2 in (1.1) 
with j _< M p lay  an essential role. Howeve r  we still have  a non-hypoel l ip t ic i ty  
result  when M is a rb i t r a ry  and codim (Z) = 2, and  we have a r a the r  precise 
result  when M = 2 and eodim (X) is arbi tary .  

THEOREM 1.4. Let ~ C T*(Y2) ~ 0 be a closed 
codimension 2, and let P E Lm'M(O, X). I f  ~ C Z 
exists u e H~~ so that WF(u)  {~o; ~ ~ 0} 

conic non-invoIutive manifold of 
and ind (p,,, ~) ~ O, then there 
and P u  E C~~ 

A consequence of the theorem is t ha t  P is not  hypoell ipt ic.  W h en  M = 2 this 
resul t  is of course conta ined in Theorem 1.2. In  this case Theorem 1.4 also intersects  
wi th  the  result  of  Cardoso and Trgves [2]. 

We nex t  fo rmula te  our  addi t ional  resul t  for M = 2. In  the  rest  of this section 
we assume t h a t  Z is a closed conic non- involut ive  submanifold  of T * ( ~ 2 ) ~  0 
of  a ny  codimension. When  P C L : '  2(~Q, Z) then  %(t) becomes a quadra t ic  form, 
so we prefer  to wri te  %(t, t) instead.  The  following l emma is a consequence of 
L e m m a  3.1 in section 3. 

LEMMA 1.5. Let P C L"2(Y2, X) and suppose that ind(pm) = 0 on X i f  
codim (X) = 2. Then there exists a C ~ funct ion 

X ~ o, ~ z(o~) C C 

such that lz(o)l = 1 and such that Re  (z(~)ao(t, t)) is positive definite on No(2  ) for 
all ~ C ~.  

F or  every  real l inear space L we denote  b y  L its complexif icat ion.  We consider 

a and  % as bil inear forms on ~'o(T*('~2))XT~(T*(O)). Since a is non-degenerate ,  
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we can define for every ~ C 2/ a linear map A :  T~,(T*(.O))-+ To(T*(~9))~ by the 
equation 

(1.16) a(u, A~v) = ao(u , v), u, v e To(T*(s 

This definition is inspired by  Melin [16]. I t  is easy to verify that  A~ maps N o(2:) 

into itself and that  A is zero on T (27). We also note that  Ao is antisymmetric 
with respect to ~ and that  Imz(~o). 2 :~ 0 for every eigenvalue 2 of 

Ao: 2Vo(27)--~ 2Vo(27 ). (See Lemma 3.8.) For every 2. E C we denote by  ~(,t, 9) the 
multiplicity of A a s a z e r o o f  d e t ( A  -- 2.I). I t  is easy to see that  the set K = 
{2 E C; Im (~(2, ~)z(~)A) > 0} does  not depend on the choice of the function z(~) 
in Lemma 1.5. 

When P E Ly'2(D, X) we can define the subprincipal symbol Sp E Cr in 
local coordinates by  the equation 

a~p~(x, #) ~z 
Np(x, ~) = pm_~(x, ~) - -  (2i) -~ 

Oxj~i 1 

In section 6 we shall give a very easy proof of the fact that  Sp is invariantly defined 
on 27. Note that  5~ is invariantly defined on T*(D)"~ 0 if we consider P as 
operating on the densities of order 1/2 instead of the functions. This has been proved 
by  Duistermaat and H6rmander [3]. 

T~I~OZnM 1.6. Let P C L~'2(~?,2/) be such that ind ( p ~ ) =  0 on 27 when 
codim (X) = 2 and assume that 

(1.17) s.(Q) + (i) ~ ~ (~()~, ~o) + 2~)~ # 0 

for all ~o E 27 and integers k x > 0. Then there exists an operator F: ~'(f2)--> ~ ' ( D )  
such that F is continuous H~r lo~ Hs+m ~(D) for all s and P F ~ - F P ~ - I .  
Moreover W F ' ( F )  = diag (T*(~2) ~ 0). 

When the assumptions of the theorem are satisfied we have local solvability and 
hypoellipticity for P.  Moreover, when P is properly supported we have an a 
priori estimate of the form 

(1.18) 1Ju]t,~_~ <_ CK(HPuHo -~ nuJP~_2), u e C~(K),  K C c  ~0. 

The condition (1.1 7) is certainly not necessary for hypoellipticity or local solvability. 
However we have the following converse of Theorem 1.6. 

T]~EO~]~ 1.7. Suppose that P E Lm'2(s 27) and that ind (Pro)= O on 2/, when 
codim (2/) = 2. I f  the condition (1.17) is not valid at the point  o E 27, then for every 

H 1~ (D~ ~ ,  H 1~176 ID~ such that e >  0 and O <  ~ < 1/2 there is a u E m--l--~ J m--l--~+~ J 
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H 1~ ([2~ for all W E ( u )  = {2~; 2 > 0} and P u  CH~~ Moreover Qu E m-~-a+~/2t J 
Q e L~ 2). 

I t  follows in particular tha t  when (1.17) is not valid at a point ~o E E, there 
can be no a priori estimate of the form 

(1 .19 )  ]]u[irn_ 5 ~ CK(IIPull 0 + Ilu]lm_l_d), ~/~ e C:(K) ,  K c(~. ~,  

when ~ < 3/2 and K contains the projection of ~o. Note the similarity of this 
result with the result of H6rmander [12], stating that  if P is a non-elliptic classical 
pseudodifferential operator of order m, then (1.19) can not be valid with 5 < 1/2. 
The study of (1.19) with d = 3/2 is certainly delicate. I t  is however possible to 
find implicit necessary and sufficient conditions for this estimate as well as for 
hypoellipticity and other properties. See Remark 5.11. 

Remark  1.8. Duistermaat has pointed out to the author that  when p,,~ is real 
valued then Ao can be given by the formula: 

Here ~t: T*(D) ~ 0-~ T*(f~) ~ .  0, t E tl, is the group of germs of diffeomorphisms 
at ~, generated by the Hamilton field of p~ and (dq~,)~, is the differential of 
.~, at ~. Note that  ~(~) = Q, since the Hamilton field is zero at ~o E 2:. 

Our main inspiration for Theorem 1.6 has been the work [16] by Melin. He 
studies half estimates for operators with non-negative principal part. His necessary 
and sufficient condition is expressed as an inequality which contains the sub- 
principal symbol and the quanti ty ~im~>0 ~(2, ~)2. In section 3 we shall use the 
idea of Melin to apply linear canonical transformations in the study of eertabl 
;second order differential operators with polynomial coefficients. We have also been 
influenced by a result of Radkevi6 [20] which concerns an operator with real principal 
par t  and purely imaginary subprineipal part. 

Vigik-Gru~in [26, 27] and Grugin [6--9] have studied operators on tl" for which 
the characteristic set is in a special position. In section 5 we shall apply a refinement 
of  their techniques which is based on the use of vector valued pseudodifferential 
operators. Such operators have been used before by Trgves [25] and more recently 
Joy Gru~in [10]. 

We also note tha t  in the ease when eodim (X) = 2, Boutet  de Monvel and 
Trgves [1] have recently (independently) given a necessary and sufficient condition 
for the a priori estimate (1.18). Their condition is of course equivalent to our con- 
dition (1.17). See I~emark 6.6. 

Remark  1.9. Theorem 1.2 has been announced in [23] in a less precise form. 
Theorems 1.6, 1.7 have been announced in [24]. We think it is possible with small 
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modifications of the proof to generalize Theorem 1.6 to the case when the restriction 
of ~ to Z has constant rank. I t  is also possible to extend the theorem to the case 
when P E Lm'2(~2, 2:) so that  Pro-l~2 in (1.1) may be non-zero. See Remark 3.14. 
We also want to point out that  the homogeneity assumption in Definition 1.1 for 
the terms Pm-i/s with j _~ M -~ 1 is introduced only for formal reasons and is 
not necessary in our results. 

The plan of the paper is the following: In section 2 we make some preliminaries 
about ordinary differential operators. In section 3 we ealeulate the spectrum of 
certain elliptic second order operators associated with quadratic forms. In section 
4, we give some preliminaries about vector valued pseudodifferentiM operators. In 
section 5 we combine the results of sections 2 and 4 to give microlocal versions of  
Theorems 1.2 and 1.4 when 2: is in a special position. Similarly the results of section 
3 and 4 give microlocal versions of Theorems 1.6 and 1.7. Finally in section 6 we 
apply H6rmander's theory of Fourier integral operators to complete the proofs. 
At the end of tha t  section we also give an example for Theorem 1.6. 

Finally we would like to thank L. H6rmander, who has read the manuscript and 
suggested many technical improvements. We would also like to thank M. Zerner, 
J. J. Duistermaat and B. Helffer for useful remarks. 

2. Preliminaries about dilferential operators with polynomial coefficients 

All the results in this section can be found in Gru~in [6]. We consider an operator 
o n  R n 

(2.1) P(x, D) = ~ a~x~D ~, 

where %z C C. Assume that  

(2.2) ~ a~x~$ z :/: 0 when 0 :fi (x, ~:) e Rn• R n. 

In particular P is elliptic in the usual sense. Let BM(R ") C 3 ' (R ~) be the space 
with the norm: 

(2.3) [[u]12 ~ = ~ Nx~D~ulli2(a,), 
Ia+~] _< M 

SO tha t  x~D;~: BM(R")--+L2(R") is a continuous operator when Ta q-fi[ ~< M. 
Gru~in has proved tha t  it is even a compact operator when I~ q- fil < M. 

Tm~O~E~ 2.1. (Gru~in). P: BM(Rn)-~ L:(R n) has finite index. I f  u C L:(R n} 
and P n E 3 ( R  n) then n E,S'(R~). 

Gru~in proves this theorem in a slightly more general form by constructing a 
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p a r a m e t r i x ,  which is a pseudodif ferent ia l  opera to r  for which the  symbo l  behaves  
well  for large x. 

I n  the  case when  n =  1 we also have  

L]~M~A 2.2. (Grugin). Let m • be the number of zeros of the equation 

(2.4) 0 
a+fl=M 

for  which I m  ~ > 0, so that M = m+ ~- m - .  Then the index of P: BM(R)--> LZ(R) 
is m + --  m- .  

The proof  of  this  l e m m a  is simple. We no te  t h a t  P is modu lo  a compac t  ope ra to r  
of  the  fo rm 

M 

P(x ,  D) -= aoM i - - [  (D --  7jx), I m  7i # 0. 
j = l  

Moreover  i t  is easy  to ver i fy  t h a t  the  index  of 

D - -  7 i x :  Bk(R)--> Bk-I(R) 

is • 1 when  I m y  i >0 ,  for  all k ~ _ l .  
The  l e m m a  is of  course a special  case of  the  At iyah-S inger  index formula .  

3. Second order operators with polynomial coefficients 

I n  this  sect ion we shall  calculate  the  s pec t rum of  opera tors  of  the  fo rm 

~. a~x~D ~, a~z C C. 

Fi r s t  we p rove  a well k n o w n  l emma,  f rom which L e m m a  1.5 follows. 

LEM•A 3.1. Let a(x, x) be a complex valued quadratic f o rm  on R n such that 
a(x, x) :/:0 when x # O. I n  the case n =  2 we assume that v a r a r g a ( x , x )  = 0 

along every closed curve in  R ~ ~ {0}. Then  there exists z E C ~ {0} such that 

l~e (za(x, x) ) is positive definite. 

Proof. The case n ---- 1 is t r ivial .  I n  the  case when  n = 2, we can f ind  coordinates  
xl, x~ so t h a t  

a(x, x) = (x 1 - -  ix2)(ax 1 @ fix2) 

for  some ~ , ~ E C .  P u t t i n g  ~ = x  1 @ i x  2 we can wri te  

a(x, x) = + 



94 J O 1-IAl~l~E S SJ  OSTI%AND 

for some z ~ E C ~ (0} and  y C C. The  condit ions in the  l e m m a  imp ly  t h a t  
]Yl ~ 1, so it  is clear t h a t  

Re (za(x,x)) = Re( ,~ ,2 (1-~  y ~))  ~ 0 

for x ~ 0  and  the  l e m m a  is p roved  in the  case n--~ 2. 
We  now consider the  case n ~ 3. We  have  to p rove  t h a t  I m  a -~ {a(x, x); x E R"} 

is a closed c o n v e x  p rope r  cone in C. Since I m  a is ev iden t ly  closed, i t  suffices to  
p rove  t h a t  for all x, y E R  ~ { 0 }  we have  a ( x , x ) r  Now R ~ { 0 }  
is s imply  connected,  so the  res t r ic t ion  of a to  a 2-dimensional  space,  conta in ing 
the  vec tors  x and  y, m u s t  sa t i s fy  the  condit ions in the  l e m m a  for  the  case n = 2. 
This  case has  a l r eady  been se t t led  so the  p roof  is complete .  

Now let  a((x, ~), (y, V)) be  a s y m m e t r i c  bi l inear  fo rm on (C n | (~) • (C n | C~). 

We  assume t h a t  

(3.1) a(x ,~ ,x ,~)  ~=0 for all 0 ~ (x,~) E R ~ | R n. 

W h e n  n = 1 we also m a k e  the  assumpt ion :  

(3.2) v a r  arg a(x, ~, x, ~) ~ 0 along eve ry  closed curve  in R ~ | 1~ n ~ {0}. 

B y  L e m m a  3.1 we k n o w  t h a t  there  exists  a n u m b e r  z ~ zo such t h a t  Iza[ z 1 and  

(3.3) R e z a ( x ~ , x , ~ )  ~ 0 for all 0 r (x,~) E 1~ ~ Q  R ~. 

Fol lowing Melin, we consider the  l inear  m a p  A: C ~ | C~-+ C n | r def ined  

b y  the  equa t ion  

~((x, ~), A(y ,  V)) = a((x, ~), (y, V)), (x, ~), (y, V) e C n | C ~, (3.4) 

where 

~((x, ~), (y, ~)) --~ (y, ~} -- (x, ~} 

is the  symplec t i c  bi l inear  form. No te  t h a t  A is a n t i s y m m e t r i c  wi th  respec t  to a. 
F o r  eve ry  ,1EC we let  V z E G  n |  C n be  the  larges t  sub@ace  where  A - - , 1 I  is 
n i lpo ten t  and  we p u t  ~(,1) --~ dim (V~,). I n  o ther  words,  V z is the  space of  general ized 
e igenvectors  wi th  e igenvalue  ,t. 

W e  recall  t h a t  a complex  subspace  A c G ~ | C ~ of  d imension n is called a 
L a g r a n g i a n  p lane  i f  a vanishes  ident ica l ly  on A. The  following def in i t ion is due 
to  H S r m a n d e r  [14, p. 153]. 

Definition 3.2. We  say  t h a t  a L a g r a n g i a n  p lane  A C C" | C n is pos i t ive  if  

- - i a ( ( x , ~ ) , ( x , ~ ) ) > O  for all 0 r  ( x , ~ ) E A .  
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Note that  if A is a positive Lagrangian plane then 

A n  (R- | R") -- 0. 

PROrOSITIO~T 3.3. We have ~(~) = ~(-- 4) for all ~ and 

Moreover 

c " |  | ( v , . |  
Im za)~ ~ 0 

V+~ = | V~ 
hn  Za~O 

is a positive Lagrangian plane. 

The proof will be given below. 

Remarlc 3.4. I t  follows in particular that  {).; v(2) r 0, Im z,2 > 0} is independent 
of the choice of Za satisfying (3.4). 

The fact that  V + is positive implies that  the projection ~ :  V + D (x, ~) ~ x C (? 
is surjective. Therefore 

(3.5) V~ + = {(x, B+x);  x e C"}, 

where B + is symmetric and I m B +  ~ 0. We put  

(3.6) b+(x, x) = ~x, B+x}, x C R". 

To the quadratic form a we associate the differential operator a(x, D, x, D), 
which is obtained by  replacing ~ in a(x ,~ ,x ,~)  by D =  ( D 1 , . . . , D , ) .  We do 
this symmetrically so that  the coefficient of xiD i is equal to the coefficient of  
Dix i. In particular when a is real, the operator a(x, D, x, D) is formally self- 
adjoint. 

Theorem 2.1 (by Gru~in) implies that  

(3.7) a(x, D, x, D): B2(R'~)--> L2(R ") has finite index, and 

(3.8) every generalized eigenfunction of a(x, D, x, D) which belongs to L~(R "} 
belongs to ~'(R"). 

(We say that  u is a generalized eigenfunction if there exists ~ E C and p E Z + 
such that  (a(x, D, x, D) -- )J)Pu = 0.) 

Our main result in this section is now: 

THEORE~ 3.5. 
(i) The index of a(x, D, x, D): B2--> L 2 is zero. 

(ii) The spectrum of a(x, D, x, D): L2--> L 2 is 

so = { -  ~ 7. (~(~) + 24.)~ ; ~ e z+ u {0}}. 
Im ~a~(~)~ > 0 
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(iii) The linear hull of the generalized eigenfunctions in L: is P(R~)e ~+(~'~)/2, 
where P ( R  n) denotes the space of complex polynomials in n variables, 
considered as functions on R ~. 

Remark 3.6. Le t  K be a compact  set and  suppose t h a t  a,(x, D, x, D) depends 
cont inuously  on t E K and satisfies the  conditions of the  theorem.  I f  K 9 t ~--~ +~t E C 
is a cont inuous funct ion  and  2t ~ S, t for all t, t hen  at(x, D, x, D) -- ~: B~-+ L 2 

has a un i formly  bounded  inverse E~, t E K. 

Melin [16] has considered the case when a(x, ~, x, ~) is posi t ive semidefinite.  
His resul t  is t ha t  for  /~ E R the  hal f  es t imate  

(u, u ) .  < C((a(x,  D,  x,  D)  - :  ~)u,  u ) . ,  u e C~(lt~ 

is v~lid for some cons tant  C if  and only if 

_< i-~ ~ ~(~)~. 
Im ~ ~ 0 

In  this  case all the  eigenvalues of A are pure ly  imaginary.  In  the  proof  Melin 
uses real  canonical  t rans format ions  to  reduce to  the  opera tor  ]xl 2 -+- ID] ~. In  our  
p roof  we will have  to use complex canonical t ransformat ions  and  we also have to  
consider the  fundamenta l  role of  V +. 

In  the  proof  of  Theorem 3.5 and Propos i t ion  3.3 it  is ao  res t r ic t ion to assume 
t h a t  R e a > 0  so t h a t  z~---- 1. Clearly the  index of a ( x , D , x , D ) : B ~ - + L  2 is 0 
in the  self-adjoint  case, t ha t  is, when  a is real. Now the  h o m o t o p y  a~(x, D, x, D) -~ 
( 1  - -  t)a(x, D, x, D) ~- t(Re a)(x, D, x, D) shows t h a t  (i) in Theorem 3.5 is t rue  in 
the general  case. 

N e x t  we shall analyze  the  s t ruc ture  of  A and a(x, ~, x, ~). 

LE~I~A 3.7. I f  ,~ :/: - - #  then V~. and V~ are orthogonal with respect to ~. 

Proof. I f  u is a generalized e igenvector  of  A wi th  eigenvalue 2, we let  m~ 
be the  smallest  n u m b e r  m such t h a t  (A - -  ~)~u ~ 0. Suppose t h a t  u E F~, v E V,, 
+ ~ + #  +~0. I f  m~----m~----- 1, we have  

~ ( u ,  v )  = ~ ( A u ,  v )  - -  - -  ~ (u ,  A v )  = - -  ~ ( u ,  v ) ,  

so a(u, v) ~ 0. B y  induct ion  over  m~-~ m~ one shows easily t h a t  a(u, v) ~ 0 
for a rb i t r a ry  u E V~, v E V,. 

LEMMA 3.8. V~ ~ 0 ~ I m  2 +~ 0. 

Proof. Le t  u E V~ be an eigenvector.  Then  

~ ( u ,  ~) --- (r(Au, ~) = - -  a(u, ~). 
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Since R e a > 0  and  -- is(u,(e)  is real  we obta in  I m 2  # 0 .  Note  also t h a t  
--is(u, ~) has the  same sign as Im  2. 

Since s is non-degenerate ,  Lemmas  3.7 and  3.8 imply  t h a t  V~. and  V_~ have  
the  same dimension and  t h a t  s is non-degenera te  as a bil inear form on V~ • V_~. 
Moreover  we have  

(3.9) (3" | (~---- | (V~ | V_~). 
I m a g o  

To complete  the  p roof  of  Propos i t ion  3.3 we must  p rove  t h a t  V + is a posi t ive 
Lagrangian  plane. Recal l  the  def ini t ion of  V+: 

(3.1o)  V~ + = | V~. 
I m 2 > O  

V + is clearly a Lagrangian  plane in view of  L e m m a  3.7. To prove  t h a t  it  is posi t ive 
we shall app ly  a deformat ion  a rgument .  F i rs t  no te  t h a t  V + ffl (R ~ @ R ~) = 0, 
since a(u,u) = s(u, A u ) =  0 on V + in view of  L e m m a  3.7. 

Suppose t h a t  [0, 1] 9 t ~> W, is a cont inuous fami ly  of  Lagrangian  planes such 
t h a t  Wt n (R" | R ") ~ 0. Then  all the  Wt are posi t ive or none is. I n  fact ,  suppose 
t h a t  Wto is posi t ive and t h a t  Wt, is not .  Then  there  is a t 2 be tween  t o and  t 1 
such t h a t  - - i s ( u ,  5) is posi t ive semidefini te  b u t  no t  posi t ive def ini te  on Wt. 
Take  0 r v 6 Wt such t h a t  s(v, V ) ~  0. The  Schwarz inequal i ty  

[ -  is(u, ~)12 <_ ( -  is(u, ~) ) ( -  is(v, ~)), u, v e W,=, 

implies t ha t  s(u, ~)--~ 0 for all u 6 W~. Since W, is Lagrangian  we conclude 
t h a t  ~ E W,; Thus  e i ther  v + V or iv is a non-zero real vec to r  in Wt~, which 
contradic ts  the  assumpt ion  t h a t  W,~ n ( R - |  R ~) ~--0. 

Now let ao(x, ~, x, ~) = ~.~=~ x~ + ~ and  let  A 0 be the  corresponding map,  
def ined by  (3.4). Then  

A ~  - -  I 

has the  eigenvalues + i and  --  i and  V + consists ent i re ly  of  eigenvectors.  Thus  
V + is posi t ive by  an observat ion  in the  p roof  of L e m m a  3.8. P u t  at = (1 - -  t)ao + ta, 
0 < t < 1 and let  A t and  V~ be the  corresponding opera tors  and Lagrangian  

planes def ined by  (3.4), (3.10). Then  V + A ( R  " |  R ~)-~ 0 and  [ 0 , 1 ] g t ~ - > V  + 

is a cont inuous family.  In  fact ,  Pt --~ (2~i) -1 f~ (At -- z) -ldz is a pro jec t ion  onto  
V + changing cont inuously  wi th  t if  y is the  b o u n d a r y  of a disc in the upper  ha l f  

plane containing all eigenvalues there.  Since V + is posi t ive we conclude t h a t  V +., 
is also posit ive and  the  proof  of  Propos i t ion  3.3 is complete.  

For  eve ry  2 wi th  I m  2 > 0 we choose a basis ul,~., . . . ,u(~.),x in V~. such 
t h a t  A takes +,he J o r d a n  form: 
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(3.11) Auj, z = 4uj,~. § 7(j, 4)uj+,,;~, 1 < j  < v(~) --  1, 

A%(;~), ~ = 4%(~), ~. 

Here y(j ,  4) is a funct ion with values 0, 1 and  we define 7(0, 4) ---- 7(v(4), 4) = 0. 
Le t  v~,~. . . . .  , v~(~),~, be the dual  basis in V;~ with respect to a, so t h a t  

~(~j,~, v~,.) = - ~ .  ~ ,  ~(u~,~, ~ , . )  = 0, ~ (v j , .  v~,.) : 0. 

~(%. . Av~ , . )  = - (~(Auj , .  vk,,. ) = - (r(4uj.~ § ~ ( j ,  4 )u j+ l , .  vk , . )  
= (4~ + ~(j, 4)~i§ 

The equations (3.12) express t h a t  (ui,~., vj,~) is a symplect ic  basis in C" | C". 
We let Xj ~. ~j,~ ;~ be the corresponding coordinates. (3.13) and  (3.4) imply: 

~(~) ~(~)- 1 
(3.14) ~(~,~)=2 y (~ 4x~,~,~+ y ~(j,4)x~,~+,,~), ~ = y x j , ~ , ~ +  = v ~j,~ j,~.. 

I m  )~>  0 1 1 

We relabel the s tandard  real symplectie coordinates xj, ~j and  write xj,~, ~j,~ 
instead, where 1 ~ j  ~ ( 4 ) , I m 4 >  0. Le t  a'  be the quadrat ic  form on C" Q C" 
defined in these coordinates by  

~(~) ~(~.)- 1 

(3.1~) .'(~, ~) = 2 ~ (~ 4~,~j,~ + ~ ~,(j, 4)xj,~§ 
I m  ,t > 0 I i 

Then a 'o  #}(~ a, where c)~ is the canonical transformation 

(3.16) C" Q C" D (x, ~) F-> (X, E) E C ~ �9 C". 

Defining Vj  = Qr~;~>0V_;~, we see t h a t  

(3.17) V~(V:)  = {(/, 0) e C ~ | Cn}; 

9 r  = {(0, ~) e c o | co}. 

We want  to reduce the s tudy  of a(x, D, x, D) to the s tudy  of a'(x, D, x, D). 
In  order to do tha t ,  we shall f irst  write 9 (  as a product  of e lementary  canonical 
t ransformations.  To each one of these we shall associate a "Four ie r  integral opera- 
to r" .  (Cf. Melin [16].) 

Le t  B+ be the symmetr ic  mat r ix  defined by  (3,5) and  let c)( 1 be the canonical 
t ransformation:  

(3.18) ()gl: (C" O C a) ~ (x, ~) ~-~ (x, ~e _ B+x) ~ Cn �9 C". 

Then 9(I (V  +) = {(x, 0) ~ C" G C "} and  since c)(~(V~) is t ransversal  to this space, 
we have c)(I(V~- ) = {(B-~, ~) ~ C" O C ~} where B -  is some symmetr ic  matr ix .  
Le t  0 (  2 be the canonical t ransformation:  

(3.19) 9(~: C ~ ~ C" ~ (x, ~) ~-> (x --  B-~, ~) ~ C ~ G C". 

(3.12) 

Then 

(3.13) 
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Then 

(3.20) 9(29(~(V +) ---- {(x, 0) e C ~ | C"}, 

9r162 _ {(0, ~) e c ~ | co}. 

P u t  9 (  8 = 9((c)(8c)~1)-1 so t h a t  

Then (3.17), (3.20) imply  tha t  9(8 is of the form 

9(8: C" | C ~ ~ (x, ~) ~ (C-~x, 'c~) c C" | C", 

for some invertible complex m~trix C. In  fact,  9(8 leaves the  sp~ces x = 0 
und ~ = 0 inv~riant.  

Recall t ha t  P ( R  '~) is the space of complex polynomials regarded ~s functions 

on R ~. To 9(  1 we associute the operator  KI: P(R~)elb+(x'~)/2-+ P(R~), defined by  

(3.22) K l u  = e ~b+(x'x)/Zu. 

To 9 (  2 we ~ssociate the operator  K2: P ( R  ~) -+ P ( R  ~) given by  

(3.23) Keu = ~-l(ei~-(~'~)/2~u), b-(~, ~) = <~, B-~>. 

Here ~ is the Fourier  t ransformat ion.  To 9(8 we associate Ka: P ( R  ~) --> P ( R  ~) 
given by  

K3u(x) = u(Cx).  (3.24) 

Final ly  we put  

(3.25) 

Note t ha t  K 
We write 

(3.26) 

where 

(3.27) 

K = K3K2KI: P (R" )e  ~+(~' ~)/~ _~ p(R~). 

is a bijeetion. 

a'(x, D, x, D) = al(x, D, x, D) 4:- a2(x, D, x, D), 

~(~) 
~l(x, D, x, D) = Z Z ~(xj.~Dj.~ + Dj,~xj,,), 

I m p > 0  1 

,,(;.)-i 

a2(x, D, x, D) = 2 Z ~ Y(J, a)xj,,.D~+~,x" 
I m  Z > 0 1 

PROPOSITION 3.9. a'(x, D, x, D) o K = K o a(x, D, x, D) on P (R" )e  ib+(*'x)/2. 

Proof. Let  (bj~) be the mat r ix  of B+. Then 

D~.KlU = D~ ue - i  b+(~. ~)/2 = e-+ b+(~,~)/2(D x u --  ~ bjkXkU). 
k = l  
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I f  we let  x 1 also denote  mul t ip l ica t ion  wi th  xi, our  equa t ion  t akes  the  s impler  
f o r m :  

D o K1 ---- K1 o (D - -  B+x), 

Moreover  we have  t r iv ia l ly  

I f  b 

(3.28) 

where  x =  (xl . . . . .  x=), D =  ( D 1 , . . . , D , ) .  

x o K 1 ~ K 1 o x. 

is an  a r b i t r a r y  quadra t i c  fo rm on C ~ | (P we therefore  have  

b(x, D ,  x ,  D)  o K 1 ~- K~ o b(x, D - -  B+x ,  x,  D - -  B+x)  

--~ K 1 o (b o 9 ~ l ) ( X  , D, x, D).  

Using the  identit ies:  

x o T = ~ 7 o D ,  ~ - l o x = D o ~  -1, ~ o x =  - - D o 7 ,  x o ~ - X =  - - ~ - l o D ,  

we get  

b(x, D ,  x,  D)  o ~-1  = ~-1  o b ( - -  D,  x,  - -  D ,  x) ,  

b ( - -  D ,  x,  - -  D ,  x) o e ~b-(x'x)12 e ~6-(''~)/2 o b ( - -  D - -  B - x ,  x ,  - -  D - -  B - x ,  x), 

b ( - -  D - -  B - x ,  x,  - -  D - -  B - x ,  x)  o ~ ~ ~ o b(x - -  B - D ,  D ,  x - -  B - D ,  D).  

Composing  these  th ree  equat ions ,  we get  

(3.29) b(x, D,  x ,  D)  o Ke  ~ K 2 o (b o 9(2)(x ,  D ,  x,  D) .  

Using t h a t  D o K a z K a o (tCD), x o K s = K s o ( C - i x )  we get  

(3.30) b(x, D,  x,  D)  o K s : K 3 o (b o 9 ( 3 ) ( x  , D, x, D) .  

Composi t ion  of (3.28)--(3.30) shows t h a t  

a' (x ,  D ,  x,  D)  o K = K o (a' o 9 t ) ( x ,  D,  x,  D)  = K o a(x,  D,  x ,  D)  

and  the  propos i t ion  is proved.  

I f  L is a complex  l inear  space,  F:  L - ~  L a l inear  ope ra to r  and  4 C C, we 
denote  b y  E ( F ,  L ,  4) the  space of general ized e igenvectors  wi th  e igenvalue  4. 

PRoPosiTioN 3.10. E v e r y  m o n o m i a l  is  a generalized eigenvector o f  

a ' (x ,  D ,  x ,  D): P ( R " ) - ~  P(R~).  

T h e  spec t rum o f  a' is  Sa (defined in T h e o r e m  3.5) and dim (E(a ' ,  P(Rn) ,  4)) ~ 

f o r  all ~ E C. 

Proof .  We recall  the  def ini t ion of a 1 and  a 2 in (3.27) and  we wri te  

al(x ,  D ,  x,  D)  = ~,  a;'(x, D ,  x,  D) ,  
I m Z ~ O  
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where 
~(~) 

aZ(x, D, x, D) ~- Z )~(~,zDi,~ ~- Dj, zxi, z)" 
1 

I f  pi(x) is a homogeneous  polynomia l  of degree k i in the  variables  

we have 

x~, z, . . . ,  x~(~.),;, Im  4 > O, 

a~(x, D ,  x, D ) p i ( x  ) = - -  i (v (4)a  q- 2kl2)px(x ). 

I f  p(x) = ~- [ i~ l>0pi (x)  is a p roduc t  of  such polynomials  t hen  

al(x,D,x, D)p(x)= - - i (  : v(4)4 + 2kl~lp(x ). 
\ I r a  v()~)i > 0 / 

Thus  the monomials  cons t i tu te  a basis of  eigenveetors  in P (R" )  of a i and we 
have an explici t  descript ion of  all the  E(ai, P(R") ,  4). Now it is easy to  check t h a t  
a2(x , D, x, D) is n i lpo ten t  on every  E(ai, P(R~), 4) and  since a '  = a 1 ~- a 2 the  
proposi t ion follows. Note  t h a t  the  re~l pa r t  of  the  eigenvalue tends  to  -~ ~ wi th  

Combinat ion  of Proposi t ion  3.9 and  3.10 gives: 

Plco~OSITIO~ 3.11. The operator a(x, D, x, D): P(R')e~+(~'~)/2-~ P(R')e ~b+(~'x)/2 
has a basis of generalized eigenvectors. The spectrum is Sa defined in Theorem 3.5 
and for every eigenvalue the corresponding space of generalized eigenfunctions is finite 
dimensional. 

(ii) and  (iii) of  Theorem 3.5 will follow from this proposi t ion and  the  following 
two simple lemmas.  

L:EM~A 3.12. I f  b(x, x) is a quadratic form with Im  b > 0, then P(Rn)e ib is 
dense in L2(R~). 

Proof. Suppose t ha t  f E Lz(R ") is or thogonal  to P(R")e  ib, t h a t  is 

f p(x)e~("*)f-(-x)dx = 0 

for all p EP(R~) .  Le t  F be the  Four ie r  t r ans form of  f(x)e ib(x'*). Then  F is 
an ent ire  funct ion and by  the  above equa t ion  all the  der iva t ives  of  F at  the origin 

.are zero. Thus  F--~ 0 and  therefore  f = 0. 

LEMM• 3.13. Let u ,v  C L2(R ~) be generalized eigenfunctions of a and a* 
respectively with the eigenvalues 4 and ft. Then if ~ # fi, we have (u, v) = O. 
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Proof. By Theorem 2.1, we know that  u, v E S(R =) and therefore the proof 
of Lemma 3.7 can be applied. 

Now let L~. be the closed linear hull in L2(R ") of [.J~#~E(a, P(R=)e ib+t2, #). 
Then by  Lemma 3.12 

La + E(a, P(R=)e ib+l~-, 4) = L2(R ~) 

since E(a, P(Rn)e ib+/2, 4) is finite dimensional. Thus 

codim L~. < dim E(a, P(R~)elb+12, 4). 

By  Lemma 3.13 we have 

E(a*, L~(Rn), ).) • L~. 
so that  

dim E(a*, L2(R"), ~) < dim E(a, P(R~)e ib+/2, 4) <_ dim E(a, L2(R"), 4). 

By symmetry we also have 

dim E(a, L2(R"), 4) < dim E(a*, L2(R~), ~), 

so it follows that  

E(a, P(R~)e ~b+/2, 4) = E(a, L2(R~), 4). 

This equality and Proposition 3.11 imply (ii) and (iii) of Theorem 3.6, which is 
therefore completely proved. 

Remark 3.14. With the same methods we can determine the spectrum of 
a(x, D, x, D ) +  f(x, D), where f is an arbitrary complex linear form. In fact, 
a(x, ~, x, ~) is non-degenerate in view of Lemma 3.8 so there exists (x0, ~0) E E " O E" 
and 4 oCC,  such that  

a(x, ~, x, ~) + f(x, ~) = a(x -- x o, ~ -- ~o, x -- x o, ~ -- ~o) + 4o. 

Moreover to the affine canonical transformation 9(a: (x, ~) ~-> (x + x 0, ~ + ~o) we 
can associate the operator Ka defined by  

( K # ) ( x )  = u ( x  - -  x0)e '<'~' ~~ 

We omit the details. I f  one likes to extend Theorem 1.6 to the case when P E L ~'z 
instead of L: "~ 2, then one has to s tudy an operator of the form a(x, D, x, D) + f(x, D) 
instead Of a(x, D, x, D). The reader will see this in section 5. 

4. Preliminaries about vector valued pseudodifierential operators 

Vector valued pseudodifferential operators have been used before by TrOves 
[25] and more recently by  Grugin [10]. See also Sj6strand [22]. Assume that  V 1 
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and V~ are complex Hi lber t  spaces and let q~(V1, g2) be  the  g a n a c h  space of 
bounded  linear operators  VI--~ V 2. We define So~a(R"• Rk; V1, V2) as the  space 
of C ~ functions p on R=X R k with values in qs V2) s u e h t h a t  fora l l  K C C  1t" 
and multi indiees ~, fi there  is a constant  C, depending on K, ~, fi such tha t  

(4.1) HD:D~P( x, ~)[tx(v,,7~) --< C(1 @ I~l) ~+~l~l-~~ for all (x, ~) e K X  R k. 

Wi th  such symbols  we define Lo~(R~; V1, V2) to be the  space of  pseudo- 
differential operators  C~(R ' ;  V ~ ) ~  C~(R ' ;  V2), given b y  one of the  usual  integral 
formulas.  I t  is easy  to check tha t  all the  calculus for scalar operators  extends  to 
the  vector  va lued  case. In  par t icular  we have the usual  composi t ion formula and 
the results  abou t  H~-continuity.  When  ~ = 1 ~nd 6 = 0 we sometimes wri te  
L T or L"  for L ~ 1, 0" 

We shall have  to consider the  ease when V 1 or V 2 is equal to the  space B~(Rk),  
given b y  the norm: 

(4.2) IluIl~B~u = ~ (1 + [~])M+[~I--Ir 

In  this case the  norm in (4.1) depends on ~, bu t  all the calculus remains val id 
because we have the inequal i ty  

(4.3) IIu]IBM < IlUI[B~ < (1 § l~t)Ml[u!]~, 

~' L"  /~,~. V1 ' BM). Note  tha t  there  so if for instance P E L~a(Ro. , V1, B~)  then P C ,z,,~.. , 
is a Hi lber t  space s t ruc ture  on B M given b y  the scalar product  

(4.4) (u, v ) . .  = ~ (x~D~u, x~D~v)~. 

Now let  1 < / c < n  and for x E  R ~ wri te  x (x' ,x") with x ' C  R " - k , x ' C  R k. 
We define H(~,.~)(R ~) as usual  with the  norm 

f 
Then the injection 

(4.5) C ~ ( R  ~) ~ u ~ (x' ~-  u(x', -)) E C~(R"-k;  L~(R~)) 

extends  to an isomorphism: 

(4.6) H(0, ~)(R")-~ H~(R"-~; L2(R~)). 

< X "~  L E ~  4.1. Let P(x,  D) = ~l~+~l- M %~(X, D)D~,, where 

a~(x,  D) ~ L ~+(M+ 1~I-I~!)/2(R,,) 

and a~r ~) = 0 in the domain Ix"l @ l~"/[~'ll >~ C for some constant C > O. 
Then we can regard P as an element of L~ BM(R~), L:(R~)). 
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Proof. The D:/D~;P(x, ~', Dx,, ) are of  the  same type  as P ,  so it suffices to 
prove tha t  

(1 + I~'])-"P(x, ~', Dx.): B~,(Rk)-~ L2(R k) 

is uni formly bounded  when x' E K c C  R n-k, ~' E R n-k. After  commuting x "~ and 
a~,  we can write 

P(x,  ~', D~.) ~- ~ b~a(x, ~', Dx.)x"~D~., 

where the b~a have the same propert ies  as the  a~a. I t  therefore suffices to prove 
that, 

(1 + y[)-~-(~+J~l-leF)/Zb~(x, ~', D,.): LZ(R k) --~ L2(R k) 

is uni formly  bounded  for (x', ~ ' )C K •  R ~-~. This is however  a consequence of  
Theorem 3.5 in H6rmande r  [13], since 

b~(x', z", $', ~")0 § f l) -~ 

belongs to a bounded  subset  of  S~215 R ~) when (x', ~') E K •  R ~-k and is = 0 
when ix"t >_ C. 

Note  tha t  the  conclusion in the  lemma remains tr ivial ly val id if we replace 
the a~(x,  D) b y  some new a~z(x', D') C L~+(M+I~I-I~I)/2(R=-k). 

L ~ M A  4.2. Let P ~- ~l~+zl <_M x"~a~z( x, D)D~. with a~  E L(M+ta]-lt~l)/2(Rn) 
and suppose that a~z(x', O, ~', O) ~- O. Let (0, (~:'o, 0)) E T * ( R  =) ~ 0 and let 
V c T * ( R  n-k) \ 0 be a conic neighbourhood of (0, ~'o) with compact projection on 
the base. Then for every s > 0 there exists 

P.(x, D) e LM(R ~) FI L~ B~, (R~), L2(Rk)) 

such that 

(i) WF(P~(x, D)) n {(x, ~) r T * ( R  ~ \ 0; ~' = 0} --  O, 
(ii) P~(x, ~) ~ P(x,  ~) in a conic neighbourhood of x" = ~" -= O, 

(iii) lIP (x, ~', D,.,)IIz(BM, L2) < e when (x', ~') C V and ~' is large enough. 

Proof. I t  is no restrict ion to ~ssume tha t  a~z(x, ~) ~-- 0 when Ix"] ~- f ' / [ ~ ' t !  ~ 1. 
Commuting the x" with the a~(x,  D) and applying L e m m a  4.1 we get  

P = ~ a~(x, ~)x"~D~. + Q, 
la+~l -< M 

where Q ~ LM-~(R~) N L-~/:(R~-~; B~,(R~), L:(R~)) and 

WE(Q) fl {(x, ~)[3 T*(R") \ O; ~' = O} = O. 

Using Taylor 's  formula,  we can write 
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a~(x, D) = ~ x"rb~(x,  D) ~- %~r(x, D)D~, 
iri=~ 

where ba~ r ~ L(M+I~I-I~I)/2(R"), ca~ r ~ L(M+IaI-1~I)/2-~(R=) and b ~(x, ~) ~- c ~(x, ~) ~ 0 
when x" ~- l~"/l~'[I --> 1. (Here we use t h a t  a~z(x', 0, ~', 0) = 0.) 

Now we see as in the proof of the preceding lemma tha t  if  Z ~ C~(R~) is = 1 
near  the origin, then  

and  

' " " ~ "x"aD ~ I fix ~z(x /~)b~(x ,  ~', ~ ~" z ( .~ ,  ~)  

Ile~,(x, ~ , Dx.)D~x..Z(D~./at~ {)x D~.II Z(B~. ' L 2 ) 

are uniformly as small as we like in V for large ~', when 5 > 0 is small enough. 
Thus the operator 

, ,,r "x ..... b " D) D)D~.z(D./(~ID~,I))x"~D~. (4.7) P~ = Q + ~ tx Zt /o~ ~ x ,  + c ~ ( x ,  
L~+~i < M 

irl =1 
has the required properties if 6 is small enough. 

We shall now est imate  the wave front  sets of  some classes of vector  valued 
pseudodifferentiat  operators. The following lemma is an easy consequence of Theorem 
2.6 in HSrmander  [13] which can be extended to vector  valued pseudodifferential  
operators. 

L~MMA 4.3. Let P e L~(R"; [/1, V2), K~ ~ c  R ~ ~ {0}, K c ~  R ~ and let K~ be 
a bounded subset of C~(K; V1). For u e C~(R~; V1) we put  

v~.~, ~(x) = ;~-me-~<~' ~>t'(x, D O(u(x)d ~<~' ~>), 

so that vz ~, ~ e C~(R~; V2). Then 

{v~., ~.,; ~ >_ 1, ~ e K 1, u C K2} 

is a bounded subset of C~(R~; V2) and for every N > 0 the set 

{AXv~,,,~; A > 1, ~ e K1, u e K2} 

defines by restriction a bounded subset of C~(C K; Ve). 

Of course we could have given a complete asymptot ic  formula for v~. ~.~ with 
est imates for the remainder  terms. However  L e m m a  4.3 is all t h a t  we need in the 
following. 

PI~0P0SITI0~ 4.4. Let P e Lm(R"-k; V1, V2) , where V 1 and V~ are equal to 
B~.(R ~) or LZ(Rk). Then, considering P as an operator C~(R'~) - -~ ' (R '~) ,  we 
have (x', ~') = (y', V') i f  (x, ~, y, ~) E WF' (P)  and ]~'] ~- IV'I =/= O. 
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(4.~) 

where  

Proof.  For  s implici ty  we assume tha t  V 1 = V 2 = L2(Rk). Suppose tha t  
(Xo, ~o, Yo, ~o) C ( R ' •  R ~) • ( R " •  R") and tha t  (xo, ~:'o) # (Y'o, ~]'o), l~'ol + JV'o] # 0. 
We shall show tha t  (xo, ~o, Yo, Vo) ~ WF' (P) .  B y  passing to the adjoint  if necessary, 

t 
we can assume t h a t  ~]o # 0. 

Le t  ~ , ~ E C ~ ( R " )  be such tha t  ~ (x o )=F(yo )  ~- 1 and 

! t 
(4.8) The project ions of supp ~ and supp F along R k do not  intersect  if x o # Yo- 

ed(x)e i<~''~'> and ~(x)e i<~'~"> can be regarded as elements of C~(R~zk; Lz(R~,,)) 
depending on the pa ramete r  ~". We denote these elements b y  ~'(x',  ~"), V/(x', ~"). 
Clearly they  belong to a bounded  subset  of  Cy(R"-k;  L2(Rk)) when ~" varies in R ~. 

P u t  qh(x, y) q~(x)vo(y ) and let P(x ,  y) be the dis t r ibut ion kernel  of P .  I f  
( , )L2(Rk) is the scalar p roduc t  in L2(R k) we see tha t  the  Fourier  t ransform of ~ P  
at  ( ~ , -  ~ )  is 

f (4.9) ~5P(2~, - -  ~ )  = (P(x' ,  D')(V/(x' ,  ),~")e~<~";'"'>), q/(x',  ) ~ " ) ) L 2 ( R k ) e  - i < x ' '  )'~'>dX'. 

! ! 
Let  K~ C R "-~, K2 c R" ~ ~ {0} be compact  neighbourhoods of ~0 and V0 

respect ive ly  such tha t  K~ ~ K~, = 0 if ~'0 :A *l'0. I f  ($, r]) e (K, • R ~) • (K~ • R ~) 
it follows from the preceding temma tha~ 

(4. ~ 0) P(x ' ,  D')(W'(x' ,  a~")e  ~<~', ~.','> ) = ,'~ e ~<~" ~"'> v~.,,,(x ' ), 

where  %.,~ belongs to a bounded  subset  of C~(R"-~; L2(R~)) for ), > 1 and 
[Ivx,,~(x')]]LZ(a~ ) is uni formly  rapidly  decreasing as ~--> q- m when x' belongs to 
a compact  set, not  intersecting the project ion of supp ~o along R ~. In  the case 

! ! 

when x 0 v< Y0 it follows from (4.8) tha t  

(P(x' ,  D')(y/(x ' ,  ~V')ee<~";'~'>), ~'(x', 2~"))~2(u~ ) 
/ \  

is uni formly  rapidly  decreasing when ~ -~  + m. Thus in  this case q~P()~, - -  )~) 
is uniformly rapid ly  decreasing for (~, V ) e  (K~ • R t) • (K~ • Rt). 

t 
In  the  case when ~0 # Vo we use (4.10) and write 

f ~P(2~,  --  2ri) = w~., ~, ,~ �9 ,~mei<~'" ;'(';-~')>dx', 

w~., ~, , ,(x')  = ( %  , (x ' ) ,  ~ ' (x ' ,  ~"))L2(Rk ) 

belongs to a bound ed  subset  of  C ~ ( R  n k) when ~ > 1, (~, ~) C (K 1 • R k) • (K 2 • Rk). 
In  this case ~ ' - - v ' C K , - - K  2C R n - x ~ { 0 }  and by  using suitable part ial  
:integrations, we see tha t  the  integral (4.11) is uniformly rapidly decreasing when 

! ! ! 

We have thus  shown tha t  (xo, ~o, Yo, Vo) ~ W F ' ( P )  if (Xo, ~'o) # (Yo,~o), 
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12'ol + I~'ol | 0 and the proposition is proved. 
In exactly the same way one can prove 

PI~OPOSlTIO~r 4.5. Let P E LZ(R~-k; C, BM{ ~,.Rk)). Then, considering P as an 
operator C~(R ~ k)__> ~,(R~), we have (x', 2') = (y', ri') i f  (x, 2, y', V') E WF'(P) 
and 12'1 4-]~]'[ # O. 

Before ending this section, we review the results in the appendix in [22]. With 
a fixed k; 1 < k < n, we define T~(R ~) to be the space of pseudodffferentml 
operators" a(x, D'), where a(x, 2') E S~(R"X I1" k). These are not pseudo- 
differential operators in the usual sence. However we have 

LEMMA 4.6. Suppose that P E Tm'(R =) and Z C L" ' (R  ~) are properly supported 
and that WF(z  ) fl {(x, 2) e T * ( R  " ) ~ 0 ; 2 ' =  0 } ~  O. Then PZ and z P  belong 
to L~'+~"(R') and the usual composition formula is valid for the symbols. 

LEMMA 4.7. Suppose that Z EL~ 
2' = 0} = O. Then Z is continuous 
7fib H ~ -  8 t~. 

and that WF(Z ) VI {(x, 2) e T*(R') ~ 0; 
Hcomp [ l~n~ ~ / loc  /, ]Drt,i ~Vyr St 

5. Microloeal results when 2: is in a special position 

In this section we shall apply techniques, influenced by  Vi~ik-Grugin [26, 27] 
and Grugin [6--9]. Tile main difference is that  we use vector valued pseudo- 
differential operators instead of freezing coefficients and taking partial Fourier 
transform. This gives sharper results, in particular we can estimate the wave front 
sets of the parametrices. Our method can be considered as a generalization of the 
method in [22]. Note that  Gru~in [10] has more recently applied vector valued 
pseudodifferential operators in a similar context. 

We shall first prove microlocal versions of Theorems 1.2 and 1.4 when Z is 
given by xn ~ 2~ = 0 and P E LM(R ~) belongs microlocally to  LM'M(R ~, X) in 
a conic neighbourhood of a point @0 = (0, (2'0, 0))E T*(R ~) ~ 0, 12'0] = 1. Applying 
Taylor's formula we obtain that  

(5.1) P(x, D) -~ ~ x~a~(x, D)D~ 
a+f l  < M 

in a conic neighbourhood of @0, where a~CL(M+~-tOi2(I:ln) have positively 
homogeneous principal parts a~.~ Here we use the terminology introduced in [4]: 
I f  A, B: C~(R~)--~ %'(1t n) are continuous linear operators with 

WF'(A) O WF'(B) c diag (T*(R n) ~ 0) 
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and V c T * ( R " ) ~ 0  is a conic open set, w e s a y t h a t  A ~ B  in V if 

W F ' ( A  -- B) Cl diag (V) = 0. 

Let  PM be the principal symbol of P which is positively homogeneous of  
degree M and put  

(5.2) Lo(x, D) ---- ~ x,a~(x~ o ', O, D', O)D~ e L~ ~; B M, L2). 
a+fl < M 

Suppose that. ind ( p ~ ) =  5r at 2/ near ~o. Then it follows from Lemma 2.2 
that  the index of 

Lo(x', ~') = Lo(x, ~', D,~): B~.(R)-+ L2(R), ~' =A 0, 

is N in a conic neighbourhood of (0, ~'o). Let ul (x~) , . . . ,  um+(x~)C~5"(II) and 
v l (x~) , . . . ,  v~-(x,,)C ~(R) be orthogonal bases for the kernel and the cokernel 

r 

of L0(0, x,,,~o,D~). Note that  m +_< M , m - _ < M , m  + -  m- = N. Let  

R+(x ', ~'): B~/(R)-+ C ~+ and R-(x ' ,  ~'): (Jm--+ L2(R) be defined by 

(R+(x', ~')u )j = (u(x~), I~' I'/: + '/%j( I~' IU2X~) )L2(I~,~,~) , 
m - -  

R-(x', ~')(z~ . . . .  , z~-) = Z + I~' I~/~vj(l~' l~/~x.). 
j = l  

Then 

R§ ~') e s~215 ~-1 ;  B~. (R), C=+), 

R-(x ' ,  ~') C S~215 R n 1; (1~-, L2(R)) 

after having been suitably modified for small ~'. We shall consider 

o tX,~ ' )e  • | G ,L2(R) | G ~+) 

given by the matrix 

(Lo(X', Q R-(x',  ~') ) 
~ o ( X ' ,  ~') = \ R + ( x ' ,  ~ ) 0 " 

Proof. ~-~o(X', ~') has evidently an inverse in a small neighbourhood of (0, ~'0)- 
To see that  this is true also in a conic neighbourhood, we make a change of variables 
due to Vi~ik-Gru~in and use the homogeneit).  We put  

t =  x~l~'[ li2, ~ ( t ) =  F~'lMI2-~14u(xn), ~ ( t )=  l~'l-'l%(x,). 

LEM:~rA 5.1. There exists ~o, , ~otX, ~') e S~215 Rn-1; L 2 | C m+, B~, | C m-) so 
that o , go(X,  ~') is the inverse of c~o(x', ~') in a conic neighbourhood of (0, ~'o) for 
l~'l > 1 .  
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t ransforms into 
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Lo(x, ~', D,~)u + ~ , ~12 z~vz(t~ ) x21~'l ~/~ = v 
j = l  

f u(x~)l~Pl~/~+~/~uj(I~'l~/~x~)clx. = y~, ~_j 1 <_ m + 

rn-- 

Lo(x', t, ~'/I~' ], Dt)~ Jr ~ zjvj(t) = To(t) 
1 

f u(tf'uj(t)dt : yj, ~_ j ~_ 1 m § . 

Moreover []u(t)[IBM ~- (1 -~- O(1))][UHBM, for large ~' and  [Iv(t)]]L~ ---- ][V(Xn)]]L~, SO 

~-~" ' ~0(X, ~') in a conic we see t ha t  o(x, ~') has a uniformly bounded inverse ce0, , 
C ~ O /  t neighbourhood of (0, ~'o) when I~'1 ~ 1. To show t h a t  o0[x, ~') is actual ly  a 

f l ~ 0  , symbol,  we can est imate  ]ID~,,D~, ~-~o(X, ~')ll by  taking successively higher and  
%o(X, ~') o ~=~0(x', ~') ---- I and using the relation higher derivatives of the relat ion ,0 , 

~ 0 ( x ,  ~') 0 , ' o S0(x ,  ~ ' ) =  I .  We omit  the details since this is the same argument  
as in HSrmander  [13] p. 166. The proof is complete. 

I f  we write ~ in mat r ix  form: 

otX, ~') = \Eo(x, ' ~') Eo+(X ', ~')] 

it follows from the change of variables in the proof above t h a t  

Eo+(x  ', ~') C S~ • R~-~; C ~+, C ~-)  

is posit ively homogeneous of degree 0 in ~' for ]~'[ _~ 1 and (x', ~') in a conic 
neighbourhood of  (0, ~0)- Moreover 

(5.3) (E + (x', ~')y)(xn) = [~'l-M/2+~/~(E+o (x', ~'/I~'l)y)(xn It' [~/2) 

for all y E C  ~+, x , C  R, and  (x' ,~')  in the same domain. 
F rom Theorem 2.1 and the ident i ty  

Lo(x', ~')E+(x ', ~') ~- R-(x ' ,  ~')Eo+(x ', ~') = 0 

(which is valid in a conic neighbourhood of (0, ~'0) when I~'1 ~_ 1 by  L e m m a  5.1) 
it  follows t h a t  the  range of  E+(x ', ~') is contained in (?(R) when (x', ~') is in 
conic neighbourhood of (0, ~'0) and  I~'1 ~ 1. We also note t h a t  

(5.4) E o  ~ (0, ~'0) = 0. 

In  fact, for all y = (y~, . . . ,  y,,+) ~ C ~+ the  system 
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5~0(0, ~'0)(u, z) --  (0, y) e Lz(R) | C ~+ 

has the  mlique solution (u ,z)  = (~TT yjuj, 0) (where the  funct ions uj are 

in t roduced above).  Thus z = Eo+(0,  ~'0)Y = 0 for all y C t3 =+. 
Applying L e m m a  4.2 to P --  L 0 and adding L o t o  the opera tor  obtained,  we 

can for every ~ > 0 f ind an operator  

L(x,  D) = L (x, D) E L~ B~/, (R), L2(R)) 

such tha t  

(5.5) [ILo(x, ~', D )  --  L (x, ~', D )  I .z(B~ L 2) ~ s in a conic neighbourhood of  (0, ~'0) 
for ~' sufficiently large. 

(5.6) L - - L  0 C L M ( R  ") and W F ( L  - - L o )  gl{(x ,~)  E T * ( R  " ) ~ 0 ; ~ ' =  0 } =  O. 

(5.7) L ( x ,  ~) ~. P(x,  ~) in a conic neighbourhood of  ~0- 
Ill order to s t udy  P we shall first  consider the operator  

v,) R (x', v')) 
~/~(x', D')  = ?~(x ' ,  D')  = \R+( x , D')  0 E L~ B~. | {3 ~- ,  L 2 | E ~+) 

PROrOSlTIO~ 5.2. I f  e > 0 is small enough, there exists 

~g(x', D')  = ~g (x', D')  E L~ L 2 G C m+, B y  | C'~-), 

properly supported such that in a conic neighbourhood of (0, ~'0): 

5g(x ' ,  D')  o %(; (x', D')  ~ I rood L - ~ ( R = - I ;  L 2 | (Y"+, L 2 | C ~+) 

c ~  ^ t c~:~(X', D')  o . ~(x, D') =_ I mod L - ~ ( R ' - ~ ;  B~, | C ~- ,  B~, | C~-). 

Here  we have applied the following terminology: When  A, B C L=(Rn; V1, V2) 
and e C T * ( R  n ) ~ 0 ,  we say tha t  A ~ B  near Q if a A - - a B E S  - ~  in a conic 
neighbourhood of  ~ and aA and aB are the  symbols  of  A and B respectively.  
This agrees with the  terminology for scalar operators.  

Proof. I f  e > 0 is small enough, it follows from L e m m a  5.1 and (5.5) tha t  
~ (x', ~') has an inverse (g~ ~')C S o for large ~' in a conic neighbourhood 
of (0, ~'0)- The construct ion of  ~ ( x ' ,  D')  is therefore formal ly  the  same as the  
construct ion of a paramet r ix  of  an elliptic operator  in the  scalar case, so we omit  
the  details. 

F rom now on we drop the subscr ipt  e. For  the  p roof  of  Theorem 1.7 we shall 
need the following proposition. 

PROPOSITION 5.3. I f  we write 
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- E - +  

then E-+  EL~ C ' '+, C ~ ) has modulo S -j/2 a symbol Eo+(X ' ,~  ') which is 
positively homogeneous of degree 0 in a conic neighbourhood of (0, 2'0) and moreover 
Eo+(O, 2'o) = O. 

Proof. We shall s imply examine the construction of ~5~. Le t  

c~O~ t M 0~x , ~') E S~215  ,-1. L 2 R , | C~+,B~, | C ~-) 

be us in L c m m a  5.1 so t h a t  .0(x , ~') is an inverse of ~s ~') in a conic neigh- 
bourhood of (0, 2'0) for It'[ ~ 1. By  the proof of Proposit ion 5.2, c/; has a principal 
symbol ~~ 2') which is an inverse of ?s 2') (--  ~s 2')) in a conic neigh- 
bourhood of (0, ~'o) for large 2'. We restrict our computat ions  below to this domain.  
We can assume tha t  e > 0 above was chosen so small t h a t  the norm in 

*:s 2 | C '~+, L 2 | C ~+) of ~ ( x ' ,  ~') = (ts ~') -- ~ ( x ' ,  $'))~](x',  ~') is < 1/2. 
Then 

~.~(x', ~')*#~(x' ,  ~') - I - ~ ( x ' ,  ~'), 

so therefore 

,~o = ,:#0(i + ~)~ + ~x~ + . . . )  

where we have dropped (x', ~') to avoid heavy  notat ions.  (The calculations below 
deal with symbols and not  wi th  the corresponding operators.) Now 

0 O) \E  o Eo  +] 0 

so we get 

(['0 - ~  1 " 

0 0 

The en t ry  in the lower right hand corner of ,-c,:o is therefore 

E o  + + ~ Eo((Lo --  L)EoY(L o --  L ) E  +. 
o 

Since cg~ 2') is a principal symbol of c3~(x', D') it  suffices to prove t h a t  

(L o -- L )E~  E S-1/2(R'-1 • Rn-1; C m+, L 2) 

for then  

E o ( ( L  o --  L )Eo)~ (Lo-  L ) E  + E S- t2 (R"-x  • R"-~; C "+, C "~-) 
0 
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and the proposition follows from the properties of Eo + noted after the proof 
of Lemma 5.1. (Recall that  the norm of (L  - -  Lo)Eo(x', ~') is < 1/2.) 

Using (5.2)-- (5.5) and Taylor expanding o 0 , , a~(x ,  ~) - -  a~p(x , 0, ~, 0) we can write 

(Lo - -  L) (x ' ,  ~') = A(x ' ,  $')xn 4- B(x ' ,  ~')Dn 4- C(x',  $'), 

where A E S~ Rn-1; B~,, L 2) and B, C e S - I ( R " - I x  Rn-1; B~,, L 2) in view 
of Lemma 4.1. From (5.3) and the fact that  the finite dimensional range of E + 
is contained in ~(R) it follows that  

C , ~ M I~' 11/2xnE+( x',  ~') e S~ ~-~ • R"-I; m~- B~,), 

I~'I-1/2D,,E+(x ', ~') e S~ "-~ x R"-~; C m+, B~,). 

Thus (L  o - -  L ) E  + ~- (Ax,, 4- B D  n 4- C)E  o E S-1/2(R"-Ix R ' - I ;  C ~+, L s) and the 
proof is complete. 

We shall now use Proposition 5.2 to prove a similar result (Proposition 5.4) for 
the operator 

(p(z, D) R-(~', D')) 
= \R+(x', D') 0 : C~(R") | C~(R" ]; C m-) -~ C~(~  ~) | C| C~+). 

That proposition will be the main result of this section and the microlocal versions 
of Theorems 1.2, 1.4, 1.6, 1.7 will follow rather easily. Considering R + and R -  

as operators C~(R n) -+ C~(R"-I;  C ~+) and C~(R=-I; C ~-) -~ C~(R') ,  it is easy 
to verify that  

W F ' ( R - )  c {((x', 0, ~', 0), (x', ~')) e (T*(R =) ~ 0) x (T*(R ~-') ~ 0)}, 
(5.s) 

WE'(R+) c {((x', ~'), (x', 0, ~', 0)) c (T*(lt  ~-~) \ 0)x  (T*(R ~) \ 0)}. 

Using (5.7) we note that  if g E L~ ~) is properly supported and W F ( g )  is contained 
in a sufficiently small conic neighbourhood of ~o 0 ---- (0, (8'0, 0)), then 

(5.9) P z  ~ L z ,  Z L ~ Z P" 

Now take X E L~ properly supported so that  

(5.10) X ~ - I  in a conic neighbourhood of ~0 

and W F ( z  ) is in a small conic neighbourhood ~o. Using that  P is elliptic outside 
2; in a small conic neighbourhood of Q0, we see that  there exists ~ C L~ ") with 
the same properties as Z and such that: 

(5.11) The projection ~long the x~ --  ~-plane of W F ( ~ P  - -  PZ)  does not coat , in  
e~ = (0, ~'0) e T*(R "-~) \ o. 

Moreover we have 

(5.9') ~P --~ ~L, P ~  ~ L~. 
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We write the "parametr ix"  ~(x' ,  D') in Propositior~ 5.2 as u matr ix 

~, , (E(x',,D'), E+(x', D') ~ 

~(x  , D ' )  = \ E - ( x  , D ) E -+(x ' ,  D ' ) ]  

and we put  

= k E--~ E-+/  - 
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(5.12) 

(5.1a) 

(5.~4) 

PRoPosrrloN 5.4. We have 

WF'(G) c diag (T*(R") ~ o), 

~+) 
:C~(R ~ | C=(R"-a; C ,-+) G-+ 

C~(R ") | C~(R"-~; c~-). 

WF'(G+) c {((x', o, ~', 0), (x', ~')) e (T*(R ~) \ 0) • (T*(R "-*) \ 0)), 

WF'(G-)  c {((x', ~'), (x', 0, ~', 0)) e (T*(R ~-~) \ 0) • (T*(R") ~ 0)}. 

For all yJ ~ L~ yJ+ E L~ G "~+, C'~+), y~- 6 L~ C "<, (Y"-) with their 
wavefront sets sufficiently close to ~o and ~'o respectively, we have 

Moreover, for all s C R, G is continuous H~r ~) ~ T4~or t~"~ G + is continuous ~ s T M ] 2 \  ~L 1~ 
]U[lov {][~n~ loc n loc a - - 1  G + H ~ ( R  "-1) --> ~,+~]~\.,  j, G- is continuous H, (1R ) and is H, ( R ) - +  

continuous H ~ ( R  "-~) --+ H~~ 

Proof. We shall first prove the continuity properties. We have 

E e L~ L2(R), B~(R)) c L-M/:(R"-~; L2(R), L2(R)), 

E + e L~ C ~+, B~(R)) ~ L-MJ2(Rn-~; ~+ C , L~(R)), 

E-  E L~ L~(R), G~-), E -+ e L~ G ~+, {F*-), 

so it is clear tha t  E, E +, E- ,  E -+ have the anulogous continuity properties if we 
everywhere replace the spaces H~(R ~) by H(0,~)(R % (C.f. (4.6).} The fact tha t  
WF(Z) and WF(z )  do not intersect the normMs of the pla~es x~ = eonst, there- 
fore gives us the stronger continuity properties for G, G +, G-, G-* in view of 
Lemma  4.7. 

We next  proceed to the proof of (5.15). We write 

(o 
With % ~+ ~s in the proposition we obtain 
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~(0 ~ o+) :~(0, ~) 
(5.11), (5.9') and (5.8) imply tha t  

Proposit ion 5.2 and Lemm~ 4.7 give then: 

(0 ~ ~)(0 ~ o+) 

(~ 0,)(0~ ;+) 

~(~o ;+):(~ o ~ o  0 ,~0 ~+): (0 ~ ~+) 
which proves the first  par t  of (5.15). The second par t  is proved similarly and we 
omit  the details. 

We next  prove (5.13). F rom (5.15), we get in part icular  t ha t  

(5.16) (PG + ~ R-G +)~+ --  O. 

We know from Proposit ion 4.5 t ha t  

(5.17) WF'(G +) c {((x, ~), (y', ~')); x' --~ y',  ~' = ~' r 0, (x, ~) 6 WF(•)}. 

Now suppose t ha t  ((x, ~), (y', ~')) 6 WF'(G+v +) and t h a t  Ixnl ~- l~nl r 0. Then, 
since P is elliptic in WF(z  ) "~ Z, we know tha t  ((x, ~), (y', ~')) 6 WF'(PG+v+). 
This is however in contradict ion with (5.16), since 

WF'(R-G-+yJ +) c {((x', 0, ~', 0), (x', ~')) 6 (T*(R ~) ~ 0) • (T*(R ~-~) ~ 0)}. 

Thus we conclude tha t  if  ((x, ~), (y', ~')) 6 WF'(G+v +) then  x~ ~-- ~ ~-- 0 and  we 
have therefore proved (5.13) wi th  G + replaced by G+F +. Similarly one can prove 
(5.14) wi th  G- replaced by  ~ - G .  

To prove (5.12) we write the  following equations, which ~re consequences of 
(5.15): 
(5.1s) (PG + R - G - ) W  - -  ~ ,  

(5.19) yJ(GP + G+R +) ~ V. 

The same argument  as above shows now tha t  (5.12) holds with G replaced by  
~GyJ. Thus if  we replace the Z and  ~ in the construction of c(~ by  some new 
Z and ~ with the same properties but  wi th  sm~ller wavefront  sets, we see t h a t  
(5.12)--(5.14) hold and tha t  the other s ta tements  in the proposit ion remain true.  
This completes the proof. 

We shall now use Proposit ion 5.4 to prove a microlocal version of Theorem 1.2, 
when Z c T*(R =) ~ 0 is given by  x~ = ~, = 0. Thus we assume P E LM(R n) 
is as above and tha t  ind (pv) = M on X in a neighbourhood of P0. Then the 
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index of L0(x, ~',D,):B~.,(R)---~L:(R) is M so we have m + ~--M and  m - z  0 
in the  construction of R + and  R -  above and the operators G-, G -+, R -  disappear. 

LEMMA 5.5. (G+(x ', D'))*G+(x ', D') C L-M(I:["-I; C M, C M) is elliptic in a conic 
neighbourhood of 9'0 = (0, ~).  

Proof. I t  is clear t ha t  (G+(x ', D'))*G+(x ', D') E L-M(R"-I ;  C M, C M) because 
G+(x ', D') e L~ C M, B~,(R)) c L-M/2(R"-~; r L~(R)) a~d thus  

G+(x ', D')* e L-M/2(R"-I; L2(R), CM). 

(5.15) gives us the identi ty:  

R+(x ', D')G+(x ', D')~f+(x ', D') ~- yJ+(x', D'). 

I f  G+(x ', ~') is the  symbol of G+(x ', D') we then  have in a conic neighbourhood 
of  9'0: 

(5.20) R+(x ', ~')G+(x ', ~') ~ I mod S-a(R ~ ~• R"-~; C M, cM). 

From the construction of R + we see tha t  R+(x ', ~') E S~/2(R"-1• R"-I; L 2, C M) 
so we get  f rom (5.20) the  inequality: 

(5.21) [lYilc ~ --~ C[~'IM/211G+(x', ~')Y]]L~(m, Y e C M, 

with some constant  C in a conic neighbourhood of 9'0 for large ~'. (5.21) implies 
tha t  

]]y]]c M ~ C21~'IMI[G+(x ', ~')*G+(x ', ~')y]lc M, y e C M 

and  the  lemma follows since G+(x ', ~')*G+(x ', $') is a principal symbol of 

G+(x ', D')*G+(x ', D'). 

THEOREM 5.6. Let Z be given by x ,  ~ ~, ~ 0 and let P E LM(R ") belong to 
L M, M( I~", ~) in a conic neighbourhood of 90. I f  ind (PM) ~ + M at 9o then there 
exist operators F, F+: ~ ' (R" )  -+ ~ ' (R" )  with the following properties 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

r41oc ~"~ for all s E R, F is continuous HI,~176 + 

F+ is continuous H]~ ") for all s 6 R, 

(~o, ~o) E WF'(F)  = diag (T*(R") ~ 0), 

(90, 0o) E W F ' ( F  +) C diag (X), 

Near 9o we have P F  - -  I ,  F+ + F P  ---- I ,  F+ ~ (F+)*. 

Proof. Pu t  
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(5.27) F + ---- G+A'(G+) *, 

where A '  E L ~ ( R " - I ;  ( ~ ,  C ~) is a p rope r ly  suppor t ed  p a r a m e t r i x  of  
r 

near  ~0. We  can assume t h a t  

(5.28) (A')* = A' .  

P u t  

(5.29) F = ( I  - -  F+)G. 

(G+)*G + 

Then  (5.22), (5.23) and  the  inclusion pa r t s  of  (5.24), (5.25) follow f rom the  
const ruct ion.  (5.26) also follows easily if  we wri te  (5.15) more  expl ic i t ly  in the  form: 

(5.30) PG ~--- I ,  R+G ~ O, P G  + ~-- 0, R+G + ~ I ,  G+R + 4- G P  ~ I ,  
t 

all near ~o and ~o respectively. 

�9 We  omi t  the  details.  
T h a t  (e0, ~0) E W F ' ( F )  follows since _PF _ I nea r  ~o. To p rove  t h a t  

(~o, ~o) E WE'(F+) ,  we t a k e  u E ~ ' ( R " - t ;  ( ~ )  so t h a t  WF(u)  = {2~'0; 2 > 0}. 
t 

Then  WF(G+u) = {2~0; 2 > 0}, because R+G + ~-- I near  ~0. On the  o ther  hand  
we have  PG+u C C ~176 and  f rom (5.26) we therefore  get: F+(G+u) -~-- G+u m o d  C ~. 
This  implies  t h a t  (~o, ~o) E WF'(F+) ,  and  T heo rem 5.6 is proved.  

W e  shall  n e x t  use Propos i t ion  5.4 to p rove  a microlocal  vers ion of  Theo rem 1.4 
when  X is g iven b y  x ,  = $~ - -  0. F o r  t h a t  purpose  we need ~ l emma,  which we 
suppose  is well known,  bu t  which we have  not  found in the  l i t te ra ture .  

LEMMA 5.7. Let Q E L~ C ~, C k) and let e E T*(R")  ~ 0. I f  m > k then 
rr~~ (~) such that Qu E C ~ and WF(u)  ~ { ~ ;  2 > 0}. there exists u E ~ 0  ~-,,, 

The  p roof  of  th is  l e m m a  is r a t he r  long, so we have  p u t  it  in an appendix .  

W e  now assume t h a t  P C LM(R ~) satisfies the  condit ions of  T h e o r e m  1.4 in a 
conic ne ighbourhood  of  Qo = (0, (~,  0)), and  we also assume t h a t  S is g iven b y  
x ,  = ~, = O. The  fac t  t h a t  ind (P~I) > 0 a t  ~o implies  t h a t  the  n u m b e r s  m + 
and  m -  in the  def ini t ion of R+(x ', ~') and R - ( x ' ,  ~') sat isfy  the  inequa l i ty  

(5.31) m + > m - .  

~ c o m p  ( A n - -  1. 'Thus we can a p p l y  L e m m a  5.7 to see t h a t  there  exis ts  u E ~0  ~-- , C ~+) such 

t h a t  W F ( u )  = {2Q~; 2 > 0} and  

{5.32) G-+u C C ~ 

/qrcomp [ "l~n~ W e  pu t  v = G+u E *~M/2 ~-, J. I t  follows f rom (5.13) t h a t  WF(v)  C {2~0; 2 > 0}. 
On the  o ther  hand,  as a consequenc e of  (5.15), we have  the  iden t i ty  R+v ~ u rood C ~, 
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so WF(v) can not  be empty .  Thus WE(v) = {2q0; 2 > 0}. Moreover  Pv ~ C ~ ( R  =) 
because of (5.32) and the ident i ty  

(PG + ~- R-G-+)u ~ 0 mod C +, 

which is also a consequence of (5.15). We  have thus proved  

TttEOI~EM 5.8. Suppose that P ~ L ~ ( R  ~) satisfies the conditions of Theorem 1.4 
in a conic neighbourhood of ~o and that X is given by x ,  = ~ ~ O. Then there 

~[oomp/ exists v ~ ~ZM/2 kI~ n) such that WF(v)  ~- {2po; 2 > O} and Pv ~ C~(R~). 

We shall next  prove microlocal versions of Theorems 1.6, 1.7 when 

2 = {(x, ~) e T * ( R  ~) \ 0; x" = ~" = o}, 1t ~ ~ x = (x ' ,  x")  e l ~ - k •  R ~, 

and P E L~(R ~) belongs to L2'2(R~, X) in a conic ne ighbourhood of 

Oo = (o, (~'o, o)) e Y*(n  ~) \ O. 

Applying Taylor 's  formula, we get  

(5.33) P ~-~ ~ x"~a~(x, D)D "~ ~- 2(x, D) near 
la+~l =2 

where a ~  E L(2+1~1-[/3[)/2(1:1~), ~ E L~(R ~) and the a~(x,  ~) 
geneous of  degree (2 -r 1~t --  lfll)/2 for I~[ >~ 1. 

~0~ 

are posi t ively homo- 

T~EORE~ 5.9. Suppose that P E L~(R ~) satisfies the conditions of Theorem 1.6 
in a conic neighbourhood of o~o, with X given by x" ~ ~" ~ O. Then there exists a 
linear operator E: % ' ( R  ~) -+ % ' ( R  ~) such that E is continuous H~~ ~) -+ ~=~+1~--~1~ 
for all s e R, WF(E)  c diag (T*(R  ~ ) ~ 0 )  and P E  ~ E P  ~ I near Qo. 

The technique of the  proof  is identical to the proofs above.  The only difference 
is t ha t  we now consider vector  va lued  pseudodifferential  operators  on R ~ k instead 
of  R n 1, and tha t  we have no "interior  b o u n d a r y "  operators  to worry  about .  We 
shall not  repeat  all the details. W h a t  we actual ly  have to verify,  is tha t  

Lo(x , ~', D") = ~ x"~a~(x ', O, ~', O)D "~ -~ 21(x', O, ~', 0): B~,(R k) -+ L2(R k) 

has a uniformly bounded  inverse f o r  (x', ~') in a conic ne ighbourhood of (0, ~'0) 
when I$'l _> 1. Here  21 is the  posi t ively homogeneous principal symbol  of 2(x, D). 
To prove this, we want  to app ly  Theorem 3.5 or ra ther  R e m a r k  3.6 (with n replaced 
b y  k), so we write  L 0 on a symmetr ic  form: 

L o ( x ,  ~ ' ,  D " )  = 1 ~ . . . . . . .  ~ , , , (x a~p(x , 0, ~', 0)D "~ + ~ a~tx  , O, ~ , O)x "~) + 

+ 2 , ( x ' , 0 , ~ ' , 0 ) -  ~ ~ a ~ ( x ' , O , ~ ' , o )  . 
:~}=1 
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Now we note: 

1 
1 ~ 21@', 0, $', 0) - -  ~ ~ %~(x', 0, ~', 0) is the subprineipal  symbol  of P at  22 

i~i-1 

2 ~ ~x"~a~(x ', 0, ~', 0)~ "~ is precisely the quadra t ic  form a(t, t) in the  
in t roduct ion.  

Thus  the  condit ions of Theorem 1.6 imply  t h a t  the  conditions of  R e m a r k  3.6 are 
sat isfied for the  opera tor  Lo(x, ~', D"), so this opera tor  has a un i formly  bounded  
inverse. Thus  Theorem 5.9 is p roved  modulo details. 

We shall f inal ly  give a microtocal version of Theorem 1.7. Thus  assume t h a t  
P E L~(tl  n) belongs to L~'2(tl~, Z) in a conic ne ighbourhood of  

p 
50 = (0, (~0, o)) e T*(R ~ \ 0 

and  t h a t  i n d p m z  0 on 22 when codim 22 ---- 2. 22 is here given b y  x "= -  ~" = 0. 
We assume t h a t  the  condit ion (I .IT) is no t  sat isfied a t  ~o 0. I n  view of  Theorem 3.5 
this means  t h a t  the  kernel  and the  cokernel of 

/ Lo(O, x", ~o, D"): B2(R k) -+  L2(R k) 

have the  same dimension r @ 0. As before we construct  

R+(x', D') e L~ B~,(R~), C'), 

R-(x' ,  D') e L~ 13", LZ(Rk)), 

so t h a t  Propos i t ion  5.4 remains valid. More precisely there  exists a map  

(: = - a - +  : c~(R~)  | U~(R~-~; c ' ) - ' ~ ( R ~ )  | ~ ( R " - ~ ;  or) 

so t ha t  Propos i t ion  5.4 is val id with m + = m -  = r and wi th  II ~-1 and R every-  
where replaced by  t l  "-k and  Itk in the  formulas.  The  const ruct ion and the  proofs 
remain  unchanged,  so in par t icu lar  G + = zE +, where Z E L~ ~) has its wave- 
f ront  set close to 50 and Z ~ I near  50 and E + E L~ C ~, B~,(Rk)). Pro-  
posi t ion 5.3 remains valid, so G -+ ( =  E -+) belongs to L~ G ~, lY) and has 
modulo  S -~/2 a symbol  Go+(X ', ~') which is posi t ively  homogeneous  of degree 0. 
Moreover  Go+(0, ~'o) = 0. This non-el l ipt ic i ty  p ro p e r ty  implies t h a t  for all s > 0 
and 0 < d < 1/2, there  exists v E H r \ H ~176 tl~-k~ such t h a t  _(~ ~ L  l - - ~ + e ~ .  ~ / 

WF(v) {(0, ~5'o); ~ > 0} and G +(x', D')v E H~~ This has been p roved  
essential ly by  H 6 r m a n d e r  [12] a l though the  wavef ron t  sets did no t  exist  a t  t h a t  
t ime. 

Wi th  such a v we pu t  u G§ E H~~ Clearly WF(u) c {250; ~ > 0}. 
B y  (5.15) we have 
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PG+v 4- R - G - + v  C C ~, R+G+v ~ v mod C ~. 

~/comp Hco mp  and t h a t  F rom the second equat ion we see t h a t  u = G+v E . . l _ 6  ~ 1-~+~ 

WF(u )  = {X~0, 2 > 0}. F rom the first  equat ion we get  P u  E H~0~162 To complete 
the proof of our microloeal Theorem 1.7 we have to prove t h a t  Qu E H~_c6+I/Z(R ~) 
for all Q e L~ ~) with posit ively homogeneous principal symbol,  vanishing on 2:. 
Since WF(u) = {/~0o;/~ > 0} we can assume tha t  WF(Q)  is close to Co- Since 
Z ~ - I  near Qo, we then have 

Qu = QG+v ~_ QxE+v ~ xQE+v rood C ~. 

By  Taylor 's  formula: 

Q(x, D) = ~, (A~(x, D)x  "~ 4- B~(x, D ) D  "~) + C(x, D) 
[~1 =1 

where A E L ~ B C L -1, C (3. L -1. Using the  fact  t h a t  E+ E L~ C r, B~,), we 
/4  lor ( l~n'~ obtain t ha t  Qu E ~-~+~/2~-.  J. 

Summing up, we have proved 

THEOREM 5.10. Suppose that P E L~(R") belongs to ~ 2 L c" ( R , X )  in a conic 
neighbourhood of 6o = (0, (~'o, 0)), where r is given by x" = ~" = O. I f  (1.17) is 
not valid at ~o, then for every 0 <  c~ < 1/2 and s >  0 there exists 

u E H ~~ \ H c~ ~ 1-- ,~  't "u" ] \ 1 - - ~ + ~ ,  J'L / 

H l~ (1~"~ for  all such that W F ( u )  = {2e0; 2 > 0}, P u  E H~~162 and Qu E ~-,~+~/2,-- , 
(2 e L ~ ~(tl ~, 2). 

Remark  5.11. The idea to reduce the s tudy  of P to the s tudy  of G -+ is due to 
Gru~in [9]. He  has shown t h a t  the hypoel l ipt ie i ty  of an operator  on R ", of the type  
studied in this section, is sometimes equivalent  to the  hypoel l ipt ie i ty  of another  
operator on R "-k. His general implicit  results can be refined by  working with  
wavefront  sets. We let the reader  verify (using Proposit ion 5.4) t h a t  several properties 
for P and G + are valid simultaneously;  such as hypoel l ip t ic i ty ,  existence of 
parametriees or of a priori estimates. The problem of propagat ion of singularities 
for P can also be reduced to the same problem for G -+. Every th ing  is here micro- 
local of course. 

6. Application of Fourier integral operators 

We shall f irst  prove Theorem 1.2. On m a n y  essential points the proof will be 
th~ same as in [4]. I t  is well known and easy to prove t h a t  a submanifold 
X C T*(~9) ~ 0 of eodimension 2 is non-involutive if  and only if  27 can be locally 



120 JOHAlq:NE S SJOSTRA~qD 

given b y  pl(x, ~) -- p2(x, ~) = 0 where Pl  and  P2 are smooth  real va lued  funct ions 
such t ha t  {Pl, P2} =~ 0. In  the  case when X is conic, we can choose Pl and P2 
posi t ively homogeneous  of  degree 0. I t  is also well known  t h a t  if  2: is such a surface, 
t hen  locally there  exists a homogeneous  canonical  t r ans format ion  

9~: T*(t2) ~ 0 --> T * ( R  ~) ~ 0 

such t h a t  X is mapped  into the  plane x,  ~-- ~ = 0. See for instance [4]. This 
observat ion  makes  it  possible to  app ly  Four ie r  integral  opera tors  and Theorem 1.2 
will follow from Theorem 5.6. As the  main  step we shall p rove  the  following micro- 
local result.  

PROI~OSITIOI~ 6.1. Let P C Lm'M(~, X) be as in Theorem 1.2. Then for every 
E T*(~) ~ O, there exists a conic open neighbourhood Ve ~ T*(D) ~ 0 and 

properly supported operators F ,  F +, F[:  ~'(s --> ~'(t~) satisfying (1.7)--(1.9) in 
Ve and satisfying (1.6). Moreover 

(6.1) (0, ~)) E WF'(Fo) c diag @*(.(2) "~ 0), 

(6.2) WF'(F~) C diag (X • and i f  ~ C Z • we have (0, ~) E WF'(FJ=). 

Proof. I f  ~ ~ X, we can take  F o E L-~(f2)  being a microlocal  pa rame t r ix  of  
P and  we can take  F~= ~- 0. Since the  resul t  for  0 E X-  can be ob ta ined  b y  
dual i ty ,  once we have  se t t led  the  case 0 E X +, we see t h a t  it  suffices to  s tudy  the  
case 0 E 2/+. Then  of course we shall t ake  F ~  ~ 0 and  af ter  mul t ip ly ing P to 
the  left  b y  an elliptic opera to r  of suitable order  we can assume th a t  m z M. 

We now let 9(: T*(~2) ~ 0 -+  T * ( R  n) ~ 0 be a homogeneous  canonical  t rans-  
format ion,  def ined in a conic ne ighbourhood of  Q and  mapping  X into 

= {(x, ~) e Y * ( m )  \ 0; x .  = ~o = 0}. 

P u t  ~0 ---- 9((~) and let  2 ~ be a closed conic subset  of the  graph  of 9( ,  containing 
(~0, ~) as an inter ior  point .  P u t  

r '  = {(~, - -  v); (~, ~) e F}. 

To 9d we associate a p roper ly  suppor ted  Four ie r  integral  opera tor  

A E/~215 F') 

with  posi t ively homogeneous  principal  symbol  of  degree 0 non-vanishing a t  
(~0, - -  0). (Here we use H6rmander ' s  nota t ions  [11].) Then  A*A E L~163 is non- 
character is t ic  at  0 and applying Proposi t ion  2.2.2 in H S rm an d e r  [11] we see t h a t  
there  exists B E L~ non-character is t ic  a t  ~ such t h a t  B*B ~ A*A near  Q. 
Le t  B '  C L~163 be a p roper ly  suppor ted  pa rame t r ix  of  B near  0 and  p u t  

(6.3) U = AB' E I~215 s F'). 
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Then 

(6.4) U * U ~ I  near 9, U U * - ~ I  near 90. 

One of the fundamental results of [11] now tells us that  for every Q E Lk(Y2) , 
with principal symbol q we have UQU* E Lk(R ~) and the principal symbol is 
q o c)~-1 in a neighbourhood of 00 = c)~(~). I t  also follows from the proofs in [11], 
that  if A (and U) are choosen with symbols which are asymptotic sums of  
positively homogeneous symbols of suitable orders, for every admissible choice of  
phase functions and local coordinates, then UQU* is a classical pseudodifferential 
operator if Q is. (~ is called a classical pseudodifferential operator of order ]c 
if the symbol is an asymptotic sum of positively homogeneous symbols of orders 
/~ ,k--  1,/~ -- 2 , . . . )  

LEM~. 6.2. / ~ - -  UPU* C LM(R '~) belongs to .LM'M(R'~, ~) in a conic neigh- 
bourhood of 9o and ind~M ~- M at 9o i f  PM is the positively homogeneous principal 

symbol of P. 

Proof. Since PM = PM ~ 9~-1 near ~o 0 it is clear that  PM satisfies (1.2a) near  

90 with respect to ~ and that  ind/OM M at ~0. The problem is to handle the 
lower order terms. Take ql, qa E C~(T*(~2) ~ 0) positively homogeneous of degree 
0 so that  X is given by  q l ( x , ~ ) = q 2 ( x , ~ ) =  0 in a neighbourhood of 9 and 
{ql, qe} v a 0 near 9. Let Q1, Q~ c L~ be classical properly supported operators 
with principal symbols qx, q2. Then using Taylor's formula, (1.2b) and (1.3) it is 
easy to see that  

D)Q1Q 2 @ B near 9, (6.5) P -  Aj (x, 
j -{-k~ M 

where Ajk(x, D) C L(M+i+k)/z(s and B(x, D) C L(~-~)/2(D) are classical pseudo- 
differential operators. Conversely if (6.5) is valid with such Ajk and B, we see 

that  (1.2b) is valid. Putt ing Aik = UAjkU*, Q~-- UQU*,  B = UBU* and using 
(6.4), we see that  

(6.6) P Z J AjkQ1Q 2 ~- near 90. 
j 4 - k ~  M 

Hence ] h C L  M'M(R",~) near o 0. 

We now apply Theorem 5.6 to /~ and let F, F+ be the corresponding para- 

metrix operators, satisfying (5.20)--(5.24). Putt ing Fo ~-- U*tvTU, F + = U*IT+U i t  
is immediate that  F~,, F + have all the properties stated in Proposition 6.1 if we 
note that  WE'(U) and WF'(U*) are contained in the graphs of 9~ and c)g_l 
respectively. 
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PROPOSITIO~ 6.3. Let V~,F~),F[ be as in Proposition 6.1. Then F ~ Fr 
and F~ ~- F~ in Ve N V,~,, for all ~, ~' E T*(~) ~ O. 

We refer  to [4, Section 2] for the proof. 

Now let ~r C L~ j C J be a locally f ini te  collection of  proper ly  suppor ted  
pseudodi f ferent ia l  operators  such t ha t  for corresponding ~j E T*(tg) ~ 0 we have  

w F ( z )  c v~,j, ~. zj ~ I. 
jEJ  

(6.) 

Def ine  

(6.8) 

Clearly 

F = ~ z j F j ,  F• =~,Xj" "F• 

WF'(F) C diag (T*(Y2) ~ 0), WF'(F • C diag (Z-) ,  so af ter  adding 
opera tors  with C ~ kernels, we can assume th a t  F ,  F ~ are proper ly  suppor ted  and 
have  the  H~-continui ty propert ies  as in Theorem 1.2. I t  follows f rom Proposi t ion  
6.3 t h a t  F ~ F Q ,  F + ~ F  • in V o for all ~ E T * ( ~ ) ~ 0 .  Thus  all the  propert ies  
in Theorem 1.2 follow from Proposi t ion  6.1. Apar t  f rom Lemma 6.2 the  proof  
above  has been t aken  f rom [4]. (Similar par t i t ions  of un i ty  and applicat ions of  
Four i e r  integral  operators  have  been made  b y  Du i s t e rmaa t  and H 6 r m a n d e r  [3].) 

T h e o r e m  1.4 follows fl'om Theorem 5.8 by  a much  simpler appl icat ion of Four ie r  
integral  opera tors  and we omit  the details. 

We  ne x t  wan t  to  prove  Theorems 1.6 and 1.7. F i rs t  a more or less wellknown 
lemma: 

LEM~A 6.4. Let 2:C T*(f2) ~ 0 be a closed conic non-involutive submani- 
fold and let ~ E Z. Then there exists a homogeneous canonical transformation 
9g: T*(~2) ~ 0 --~ T * ( R  n) ~ 0 defined in a conic neighbourhood of e and mapping Z 

into Z = {(x, ~) E T * ( R  ~) ~ 0; x" ~" = 0}. Here x", ~" E R k, 2/c = codim (Z). 

Proof. We know al ready t h a t  this is t rue  when codim Z -  2 and we shall 
make  an induct ion over  codim Z. In  a ne ighbourhood of  ~ we take  a real va lued  
ql C C ~, posi t ively  homogeneous  of degree 1/2 such t h a t  ql ---- 0 on 2: and dql :/: O. 
Since 2: is non-involut ive,  the  Hami l ton  field Hql is not  tangent ia l  to Z and 
there  exists therefore  a real va lued C ~ funct ion q2, posi t ively  homogeneous of  
degree 1/2 such t ha t  Hqlq2={ql, q2}- -1  near  Q and q ~ =  0 on Z. 

2:0 def ined by  ql(x, ~) = q2(x, ~) = 0 is then  a non- involut ive  submanifold of  
eodimension 2 so there  exists a homogeneous  canonical  t r ans format ion  

9(0: T*(tg) ~ 0 -+ T * ( R  n) \ o, 

def ined  in a conic ne ighbourhood of  ~ and mapping Z o into the plane xn = ~,~ -~ 0. 
Since 2 : C  Z 0 near  ~, we see t ha t  
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9~0(X ) - -  Z'  • 0 c ( T * ( R  n ~) ~ 0) • ( T * ( R ) ) ,  

where Z'  C T*(R ~-1) ~ 0 is non-involutive, conic and codlin 2:' ~ codlin (Z) -- 2. 
Thus if the lemma is true for Z', it must be true for 27 and the lemma follows 
b y  induction. 

The lemma gives us the existence of a suitable canonical transformation in order 
to apply the Fourier integral operators. We must also check that  the condition 
(1.17) is stable under  conjugation with such operators: 

L ~ M A  6.5. Suppose that P = AQ1Q2 -~ B, where A E Lm(y2), Q1, Q2 E L~ 
B C Lm-I(#2) are properly supported classical pseudodifferential operators with 
principal symbols a, ql, q2, b. Let QCT*(Y2) ~ O be a point where q l = q 2 =  O. 
I f  we write the symbol of P in local coordinates as 

p(x, ~) = p,~(x, ~) @ pm_l(x, ~) rood S m-2 

where Pm and Pro-1 are positively homogeneous of degree m and m - -  1, then 
the subprincipal symbol 

o ~ p , ~ ( x ,  ~) 
Sp(X, ~) =- pm_~(x, ~) -- (2i) ~ 

OxjO~j 

is invariantly defined at ~ and is in fact given by the formula 

SP(e) --- b(e) @ a(e)(2i)-l{ql, q~}(e). 

m 2 The proof is evident. We now let P q L c ' ($2, 27) satisfy the assumptions of 
Theorem 1.6. Let  ~ E Z .  Near ~, Z is given by q l = q 2  . . . . .  qzk= 0 where 
q are real valued positively homogeneous C ~ functions of degree 0 and 
dql, dq2 . . . . .  dq2~ are linearly independent. I f  Q, E L~ are properly supported 
classical pseudodifferential operators with principal symbols q,, we can apply 
Taylor's formula and write 

(6.9) P ~-- ~ AjkQjQk + B near o~, 

where Ajk C L m, B C L ~-t, are classical pseudodifferential operators. We denote 
the principal symbols by  ajk and b. I t  follows from Lemma 6.5 that  Sp is in- 
variantly defined on 2: and given by  the formula 

(6.10) Sp -- (2i) -~ ~ ajk{gj, qk} + b. 

I t  follows from (6.9), (6.10) that  the condition (1.17) is invariant under multiplication 
of P with elliptic operators. Thus we can assume from now on that  P E L 2' 2(s9, Z). 

Let 9~: T*(D) ~ 0 --> T*(R ") ~ 0 be the homogeneous canonical trans- 

formation in Lemma 6.4, mapping Z into ~, given by  x " =  ~ " - - 0 .  Let 
U C I~215 D, F ' )  be an associated Fourier integral operator, properly supported 
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which is non-characteristic at (9((~), ~) = (~0, ~). Take U' E I~ X lt", (/.-1),) 

such tha t  U'U --  I near ~ and UU' ~ I near ~0. Put  /5 = UPU'  E L2(ll=). 

Then /5 C L2'2(I1", ~) in a conic neighbourhood of Q0 in view of (6.9) if U is 
suitably chosen so tha t  the homogeneity in the lower order symbols is preserved. 
Moreover S? o 9~ -- Sp at X in a conic neighbourhood of ~, in view of (6.10). 

I f  p2,/5 2 are the positively homogeneous principal symbols of P and ~5 

respectively, then 252 ~ 9g = P2 near Q. I f  A~, ~iQ0 are the corresponding matrices 

defined by (1.16), we obtain therefore tha t  A~, = (dg~)-~Avodc)( so A o and Arc 
have the same eigenvalues with the same algebraic multiplicities. 

We have now shown that  the condition (1.17) is satisfied for P at Q if and 

only if it is satisfied for /3 at ~0. Thus an application of Fourier integral operators 
and Theorem 5.9 gives us a microlocal version of Theorem 1.6 analogous to Propo- 
sition 6.1. By a partition of unity as above we obtain Theorem 1.6 globally. In the 
same way we get Theorem 1.7 from Theorem 5.10. 

We shall end this section by giving an example of Theorems 1.6 and 1.7. Let 
P, Q c Lm/2(~9) be classical pseudodifferential operators, with principal symbols 
p, q, positively homogeneous of degree m/2. Suppose tha t  P and Q have the 
same characteristic set 0 # X c T*(D) ~ 0 and tha t  --  i{p, ~} > O, 

- -  i{q, ~} < 0 on ~. Then it is well known tha t  QP is neither locally solvable nor 
hypoeIliptic so it can not satisfy the conditions of Theorem 1.6. (See for instance 
[4].) However PQ does and we are going to verify that.  

First of all we see tha t  Z must be a closed conic non-involutive submanifold 
of eodimension 2, since Z is given by the equations Re p - - I m p  = 0 and 
{Rep,  I m p } # O  on 2. I t  is easy to see tha t  P o Q E L ' ~ ' 2 ( D , X )  and tha t  
ind (pq) = 0 on ~. (See Proposition 1.3.) :By Lemma 6.5 we have 

(6.11) SpoQ--(2i ) -~[p,q}  at 2:. 

For ~ E X, let %(t, t) be the quadratic form defined in the introduction, so 
that  in our case we have 

a~,(t, t) = (t, dp><t, dq>, t E To(T*(Y2)). 

Let A o be defined by (1.16). I t  is natural to guess tha t  the complex Hamilton 
vectors Hp and Hq are the eigenveetors of A~ with non-zero eigenvalues. An 
easy check shows tha t  this is true and tha t  the corresponding eigenvalues are 

q} and - �89 q}  
I t  is easy to verify that  K~j, defined in the introduction, is the set of eigenvalues 

of A~ for which the corresponding eigenvectors v satisfy --i  a(v, 9) > 0. (Cf. 
Lemma 3.8 and its proof.) In particular in our example Ko contains l{p, q} as 
its only element and the condition (1.17) takes the form 
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1 1 
2-/{p' q} + T (�89 q} + k{p, q}) r 0, ~ e z+  u {0}, at 22, 

which is t r ivial ly  satisfied. On the  o ther  hand  we see t h a t  for the  opera tor  Q o P 
the  condit ion (1.17) is no t  satisfied anywhere  on 22. 

Remark 6.6. Bou t e t  de Monvel and  TrOves [1] have  independen t ly  s tudied the 
case when  codim (X) = 2, M = 2. Il l  this case i t  is a lways possible to  wri te  the  
opera to r  in the  form P o Q + R wi th  P and  Q as above and  wi th  R ~ Lm-a(t9) 
having a posi t ively  homogeneous  principal  symbol  r of degree m --  1. The  con- 
di t ion (1.17) takes  the  form: 

1 
(6.12) r ( e ) +  i-k{p,q}(q) # 0  for all k e Z  + and e e Z .  

B o u t e t  de Monvel-Trgves have  shown the  equivalence be tween (6.12) and  the  
es t imate  (1.18). 

We now generalize our  example  and  t ake  k couples (Pv, Q~), 1 < v < k as 
above.  Le t  the  principal  symbols  be p~, q~, and  let  22 be def ined b y  

Pl --=- P2 . . . . .  Pk = O. 

~Te assume t h a t  

1 ~ d Re Pl, d I m  Pl . . . .  , d Re  Pk, d l m  Pk are l inearly independent  on Z, 

2~ {P~,P~} : {q~, G} = O on X for all ~, #, 

3 ~ { p ~ , q . } = O  on 2: when v # # .  

The  manifold 2: is t hen  non- involut ive  of codimension 2k and it  m a y  happen  t h a t  
k p  ~ ~ o Q~ e L ~' 2(~2, X) (for instance if  the  q~ do no t  differ too  much  f rom the  

~ ) .  I n  that. case the  condit ion (1.17) takes  the  form: 

1 ) 
GtP~, on G {0}. T (~{P~' q~} + q3) # o 22 for all e z+  o l 2ii {-~v' qv} -~ 1 r 

This  condit ion is t r ivial ly  satisfied, because the  �89 q~} belong to  some common 
open  half-plane in C. On the  other  hand  the  opera tor  ~ Q,P~ does no t  sat isfy 
(1.1~). 

Appendix 

In  order  to  p rove  L e m m a  5.7, we shall prove  t h a t  any  p C LM(Rn; C, '~, C k) can 
be mult ipl ied to  the  left  and to the r ight  by  elliptic factors,  so t h a t  the  symbol  
becomes asympto t ica l ly  equal  to  a ma t r ix  (a/k) wi th  ajk = 0 for j # k and  
ajk --  0 or 1 when j = k. This can hold of  course only  in a sui table subset  of  
T * ( R  n) ~ 0 which we now define. 
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Definition A.1. Let  d ~ 0, 0 < C < 1/2 and  suppose t h a t  

K = { ( x ,  ~ )  r T * ( R  ~) \ o; ~ = ~, 2 . . . .  },  

where {x,} is bounded  and  

for the  disjoint union: 

co 

2 < 21~] < ] f f v + l ]  for all v. We write 

V = M(K,  C, (3) 

v - -  U {(x, ~) E T * ( R  '~) ~ o; Ix - -  ~1 < C1~.1-% ]~: - -  ~1 ~ CI~:~I '-'~} 

and we say t h a t  V is a d-set. I f  W---- M(K,  C', 5) is ano ther  d-set, we wr i te  
W =  (C'/C) V. For  any  subset  t9 of V, we write Y2M V if D ~  eV for some 

wi th  0 < ~ < 1 .  

I f  5 ' > d  > 0  and V is a &set we define s to be the  space 
of  restr ict ions to  F of  e lements  in S~ z,(R'~• We define ST_z,(V) as t h e  

SI_~,(~V) with  0 < ~ < 1. I t  is easy to ver i fy  t h a t  S~_~,(V) projec t ive  limit of all m - -  rn  

is the  set of p(x, ~) E C~(V) satisfying the  usual es t imates  for the  D~D~p uni- 
tb rmly  in all the  ~l 7, 0 < ~ < 1. The not ion  of  a sympto t i c  convergence is im- 

media te ly  def ined in S~_x(I7 ) and  in gjm_~,(V). In par t icu lar  if Pi C Sin1 IV~ 
j = 1, 2, 0 < d < 5' < 1/2 we can define P~~ E S~'i+"~(V) modulo S - ~ ( V )  
by  the  usual composi t ion formula  

p , o  p~ ~ Y_, p?)~+liI~i~!, p(~) = O~plO~ g~) = a ~ p l ~ .  

m ~ T~EO~EM A.2. Let 0 < d < 5' < 1/2, m E R and let P ~ SI_~(V ' ~m, ~mz) 
where V is a d-set. Then thereexistsa (~'-set W-~  V and pj, p~ C sM~,(W; C'?, C'~i) 
j = 1, 2 for some M E R such that 

and 

t r 
Pi ~ PJ ~'~ PJ o p~ ~ identity in C"L j =- 1, 2 

P2 ~ P o p~ ~ (ajk)~ <_ j <_,~o in W 
I < k < r n ~  

where a j k= O for j :/:k and ajk= 0 or 1 for j = k .  

m r~  t ~ J  I n  general,  i f  p, q E S I _ ~ , ( I ~ , C " , C  m~) and  p z o p o p l  q in W with 
W, Pl,  P~ as in the theorem,  we shall say  t h a t  io and q are equivalent  ill W. 
Fo r  the  p roof  of  the  theorem we need a defini t ion and  two lemmas.  

Definition A.3. Le t  V be a d-set and  let  p E SM_~,(17). Then  we write d e g ~ p  
for the  in f imum of  all m E R such t h a t  sup(x,~)e~ ]p(x, ~)[/(1 -t- ]~l ~) < + ~ .  
F o r  p E sM~,(V) we define d e g v p  = sup0<~<i d e g ~ p .  Clearly d e g v p  < M. 
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LEM•AA.4. Let V be a b-set and let p c sM_~,( V), where (Y ~ (~ ~ O. Then 
deg v (D~D~p) ~_ deg v (p) + ]~1/1' -- Ifi[(1 -- 8') for all multiindices ~ and ft. I n  
particular p E .zdeg(p)+~t V) for all e > O. ~1- -6"  \ 

Proof. Suppose that  V = UP V~ as in Definition A.1, where 2V~, 2 ~ 0 (and 
V~---- 1. V) are given by 

Ix - x,I <_ C~l~l  -~, I~ - ~t  <- C21~[ ~-~ 

with some positive constant C < 1/2. As in the proof of Theorem 2.9 in HSrmander  
[13], we use the elementary inequality 

Iv'(O)l _< (2 sup Iv[" sup ]v"l) 1/~ § 2a -~ sup [vl, v e C ~ ( [ -  a, a]). 

For given 2 ,#  with 0 <  2 < / ~  < 1 we obtain with some constant C 

D 2 ,1/2 i ~ (A.1) sup lD,jp[ ~_ C((sup iPl sup ,jP ) + I~ sup Ipl). 

In fact, for every (x, ~) C 2V~ it suffices to consider the restriction of p to the  
straight line through (x, ~) parallel to the xj-axis. From (A.1) we obtain 

deg (Dvp) ~_ max (deg (p)/2 + deg (D~ip)/2, (5 + deg (p)), 

where the degrees are taken in V. In this inequality we can of course replace p 
by  "i p for any v ~_ 1. Thus if we put a~ deg D" : ( ~ i p )  -- vS, we obtain 

(A.2) a ~ max ((a 1 ~- a~+l)/2, av-i). 

The fact that  p E SMi,(V) impl ies  

(A.3) a ~ M  + v (b ' - -  8). 

With a simple geometric (convexity) argument we obtain from (A.2) and (A.3) tha t  

a ~_ deg (p) + v(~' -- ~), 

and in particular that  deg (D~ip) < deg (p) + b', 1 ~ j _< n. Similarly we have 

deg(D~jp) < d e g ( p ) +  8 ' - -  1, 1 ~ j ~ n  and by  iteration we get our lemma. 

LEMMX A.5. Suppose that p E SM_~(V), where V is a 8-set, 0 ~ b < 1/2. 
I f  degvp---- 0 and (~< ($' < 1/2, there exists a b'-set W ~( V and a symbol 
p" ES~'~f)/2(W) such that p o p '  <~p 'op  ~ 1 in W. 

Proof. Since degvp  ---- 0, there is a set 

K z { ( x , ~ ) ; v ~ -  1,2, . } <  V 

such that  2 _~ 21~,1 ~ l~+~] for all v and such that  
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~(A.4) lP(X~, ~)1 >-- 21~1 --(~'-~)/2. 

P u t  W -= M(K, 1/3, d'). Af ter  having t aken  away fini tely m a n y  (x~, 8~) f rom 
K ,  we ma y  assume tha t  W <: V. Using t h a t  p ES~-~)/3(V) b y  L e m m a  A.4, 
we see t h a t  there  is a constant  C such t h a t  

(A.5) Ip(x, ~) --  p(x~, ~)1 <-- Cl~! -~'+(~'-~)n+~ = O1~1-2('~'-~)/3 

for all (x, ~) sat isfying 

Ix --  x,l < [$~[-~'/3, I$ - -  ~,.I < i~,ll-~'/3" 

A f t e r  having t aken  away f in i te ly  m a n y  (x,, ~) f rom K we get  f rom (A.4) and  
(A.5) t h a t  

(A.6) IP( x, ~)1 >--[~i -('r-~)/2 in W. 

Th i s  inequal i ty  and  the  fac t  t h a t  p e S~-~)I2(V) implies t h a t  1/p e S~'-~f)/2(W). 
(Cf. H t r m a n d e r  [13] p. 166.) The  usual const ruct ion of a pseudodifferentiM para-  
m e t r i x  of  an elliptic operator ,  now gives the  desired p ' e  S~'-~,~)I2(W), having 
1/19 as a principal  par t .  

The  proof  of  Theorem A.2 is now easy. Le t  p and V be as in the  theorem.  
I f  d e g v p  ----- - -  oo there  is no th ing  to prove.  After  mul t ip l icat ion wi th  a sui table 
el l ipt ic  factor,  we can assume t h a t  deg r p = 0. Pe rmut ing  the  columns or the  rows 
o f  p does n o t  change the  equivalence class. We can therefore  assume t h a t  
d e g v p l l -  0 where p is wr i t ten  in ma t r ix  form: p = (pj~). Le t  5 and  d' be as 
in the  theorem and take  5" such t ha t  6 < 5" < d'. B y  L e m m a  A.5, there  exists 
a d"-set V" ~ V and  a q ~_ S~J)/~(V ") s u e h t h a t  q op~ 1 ~ P ~ I  o q ~-~ 1 .  Composing 
5o to the  r ight  wi th  the m I • m~-matrix 

i l  -- qP12 
q 

0 

0 0 

-we see t h a t  p is equivalent  in V" to  a ma t r ix  where the  first  row is of the  form 
(1, 0 . . . .  ,0) .  A similar mul t ip l ica t ion of the  ob ta ined  ma t r ix  to  the  left  shows t h a t  
p is equiva len t  to  a ma t r ix  of  the  form 

m / f  where A E S t _ ~ ( V  , C m'-l, C m~-l) for some m. I t e r a t ing  this process we get the  
�9 desired equivalent  form af ter  a t  most  min (ra 1, m2) steps. 

We can now prove  L e m m a  5.7. Le t  Q E L ~  m , C k ) , m >  k and let  
. ~ o E T * ( R " ) ~ 0 .  Le t  V = M ( K ,  1/3,3),  where 0 <  d <  1/2 and  K i s a s u b s e t  
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o f  t h e  h a l f  r a y  t h r o u g h  @, s a t i s f y i n g  t h e  a s s u m p t i o n s  o f  D e f i n i t i o n  A.1.  T a k e  d' 

so t h a t  d < ~' ~ 1/2. B y  T h e o r e m  A.2  t h e r e  e x i s t s  a d ' - s e t  W M V such  t h a t  

Q(x, ~) is e q u i v a l e n t  in W t o  a m a t r i x  s y m b o l ,  h a v i n g  o n l y  ze ros  in  t h e  l a s t  m - -  k 
0 . c o l u m n s .  Th i s  i m p l i e s  t h a t  t h e r e  ex i s t s  a s y m b o l  q E S I_~ , (W,  C , C ~) such  t h a t  

Q o q  ~ 0  a n d  such  t h a t  t h e  d e g r e e  o f  q in  (1 /2 )W is > - -  oe. N o w  i t  is e a s y  

t o  c o n s t r u c t  a s y m b o l  X E S~_~,(W) w i t h  s u p p o r t  in  (2 /3 )W a n d  e q u a l  t o  1 in  

(1 /2 )W.  I f  A E L~ C ~, C ~) has  s y m b o l  ~ q o Z a n d  is p r o p e r l y  s u p p o r t e d  

i t  fo l lows  t h a t  Q A  ~ 0 a n d  W F ( A )  = {A@; A > 0}. I t  is c l ea r  t h a t  t h e r e  is s o m e  

u C H ; ~  ~) w i t h  W F ( u ) = { A @ ; A >  0} in t h e  i m a g e  o f  A a n d  s ince  Q u E C  ~~ 

t h e  l e m m a  is p r o v e d .  
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