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0. Introduection

Hilbert algebras (for references and definitions see § 1) have been found to be
useful in various ways in analysis. Referring to them in his book [4], Dixmier states
»Elles constituent, on le verra, un puissant moyen d’étude des algebres de von
Neumann.» For other instances see the work of Godement [6] and Rieffel [15].

In this paper we present a rather systematic study of Hilbert algebras from the
point of view of the theory of topological algebras. This leads first (but not
exclusively) to an investigation of ideals in Hilbert algebras as well as to quotient
algebras formed by a Hilbert algebra modulo a closed ideal.

In several situations below properties of a Hilbert algebra A are obtained by
first embedding 4 in its fulfillment A4, (all the bounded elements in its completion,
see § 1 for notation), then working in 4, and finally dropping back to A. In this
way it is shown that if K is a closed ideal in 4 then K = K* so that K isa
Hilbert algebra. Also this procedure is used to show that 4/K is a Hilbert algebra
in the quotient algebra norm. Yet again we follow this route to see that any topo-
logically simple Hilbert algebra with a minimal one-sided ideal is equivalent to a
dense *-subalgebra of an H*-algebra and to see that a homomorphism of a Banach
algebra onto a Hilbert algebra must be continuous. The success of this program
is made possible by the theory of full Hilbert algebras (4 = 4;) as developed first
by Godement [6] and then furthered by Rieffel [15].

We consider some special classes of Hilbert algebras in § 2 as well as full Hilbert
algebras. Every full Hilbert algebra A is orthocomplemented (4 = J @ J* for
all closed right (left) ideals J). Every orthocomplemented Hilbert algebra is
a dual Hilbert algebra. The notions of dual Hilbert algebra and annihilator Hil-
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bert algebra turn out to be the same. For ‘K a closed ideal in 4 it is shown in
§ 2 that, if 4 is full or orthocomplemented or dual, then so are K and A/K.

The work of Rieffel [15] was also drawn upon to help develop in § 4 a theory
for Hilbert algebras with dense socle (see Corollary 4.7 and, for full Hilbert algebras,
Corollary 4.8). For a full Hilbert algebra A4 with dense socle its completion H is
the Hilbert space direct sum of the minimal closed ideals of A each of which is
equivalent to an H*-algebra. (It is stressed that the »simple components» of the
decomposition of A are complete (Banach algebras) while A is, in general, in-
complete.) As a by-product of this investigation we obtain a characterization of
H*-algebras. A Hilbert algebra A is equivalent to an H*-algebra if and only if
A is full and there exists ¢ > 0 such that ||p]| = ¢ for all non-zero projections p
in 4. Again note that 4 turns out to be complete from a set-up which is @ prior
incomplete.

In many examples of Hilbert algebras such as CO(&), where G is a compact
group, made into an algebra by convolution multiplication, multiplication is com-
pletely continuous [10, p. 700]. Every c.c. Hilbert algebra is the (Hilbert space)
direct sum of its minimal closed ideals each being a full finite-dimensional matrix
algebra. See Theorem 6.4.

In § 3 and § 4 we consider some more analytical aspects of the theory of Hilbert
algebras. A starting point is the discovery in Theorem 3.1. that the involution in a
full Hilbert algebra is symmetric. This avenue is explored for Hilbert algebras not
full. The relation of a Hilbert algebra to the natural C*-algebra in which it is
embedded is examined in detail there.

1. Notation

For convenience and to set forth notation we start with a definition for Hilbert
algebras. Our notation is that of [15] with some minor changes. For references to the
original papers on Hilbert algebras we refer the reader to [4] as well as to [15];
we call attention to [6].

A Hilbert algebra is an algebra A over the complex field with an involution
« —x* which is a pre-Hilbert space with inner product (x,y) where

() (2, y) = (y* «*) for all z, y € A4;

(b) (xy,z) = (y, x*z) for all x, ¥,z € 4;

(¢) for each « € 4 the linear operator L, defined by L.(x) = az, x € A,

is continuous;

(d) the set of elements of the form zy, where z,y € 4, is dense in A.

Let R. be the operation on A of right multiplication by « € A. We denote
the completion of 4 by H = H(A). The operators L, and R, extend to bounded
linear operators on H which are denoted by L. and R. respectively.
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It is known [6, p. 51] that, in the presence of (a), (b) and (¢), the condition (d)
is equivalent to the requirement that « lies in the closure of zd (4z) for each
x € A. This fact is used below. From this, or by the more elementary argument of
[3, p. 331], the mapping # — L. of A into the algebra B(H) of all bounded linear
operators on H is a *-isomorphism. Therefore, by [14, Theorem 4.1.19], 4 is
semisimple.

For a € A, ||Ld| = ||Las|| a8 La« is the adjoint of L.. Likewise ||Rd| = ||Ba.
It turns out that all four norms are equal. For

[Ba@)ll = l|(za)*| = [Las(@*)|| =< || La]ll2]l

Thus [[Rd| < ||Lesl| and similarly || Lad| < ||Rd.

For the theory of bounded elements for Hilbert algebras see [6] and [15]. An
element a in H = H(A) is left (right) bounded if the mapping L.(R.) defined on
A with values in H by Ldz) = R.(a) (Ri(z) = L.(a)) is bounded. Fortunately,
a is left bounded if and only if a is right bounded; we then call a bounded. We
denote the set of bounded elements of H(4) by A Asshown in [6], 4, is itself
a Hilbert algebra in the inner product of H with a multiplication and involution
extending that of A.

The Hilbert algebra 4 is called full if 4 = A;. We shall sometimes refer to
Ay as the fulfillment of A. This is the language used by Rieffel in [15]; in [6] and
elsewhere other terminology is adopted.

For asubset S in A4 weset S* ={x € 4:(x,8) = (0)}, L(S) ={wx €4: 28 =
{0)} and R(S) = {x € 4: Sz — (0)}. Arguments of Kaplansky [10, Theorem 12]
show that L(K)= K'*, RL(K)= K'*, R(J)=J** and LR(J)=J** for
every closed right ideal K (left ideal J). We shall consider Hilbert algebras which
are annihilator algebras and dual algebras in the sense of [14, Chapter 2].

As in [15, Definition 7.1] by the C*-algebra C*(A) of A is meant the operator
norm closure of {L.:x € A} in the algebra B(H) of all bounded linear operators
on H = H(A). It is convenient to think of A as being algebraically embedded in
C*(A) via the algebraic *-isomorphism z — L..

2. Some basic theory for Hilbert algebras

We are mainly concerned here with closed ideals K in a Hilbert algebra A
and with the quotient algebras A4/K. These are studied also in special classes of
Hilbert algebras — full, dual and orthocomplemented (see Definition 2.3 for the
latter term).

As is well known [8] even for a semi-simple Banach algebra B, B can be an
annihilator algebra without being dual (the reverse implication is trivial). For
certain classes of topological algebras the two notions agree. This is the case for
B*-algebras [2] and, as we now see, for Hilbert algebras.
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THEOREM 2.1. The following statements about o Hilbert algebra A are equivalent.
(1) 4 is an annikilator algebra.

(2) Every right or left ideal K in A for which K* = (0) is dense in A.
(8) J + J*+ is dense in A for each right or left ideal J in A.

(4) A is a dual algebra.

Proof. It was shown in [22, Lemma 3.2] that (1) and (2) are equivalent. Clearly
(2) implies (3). Next assume (3). Consider a closed right ideal K in 4. As noted
in §1, RL(K) = K**. Let K° be the closure of K inthe Hilbert space completion
H of A4 and K°* be its orthogonal complement in H. We must show that
K+ c K. Let x € K** and write z — lim (%, -+ v».) where each u, € K and
v, € K-. Whereas also u, € K° and v, € K we see that {u.} and {v.} are
Cauchy sequences in the Hilbert space H. Then there exist @ € K¢, b € K°* where
Uy —0 and v,—b and x =« 4+ b. As xz € K** we have 0= (z, v.) — (2, b).
Thus (b, b) = (x,b) — (@, b) = 0. Therefore * =a € KN 4 = K. In the same
way LRI = I for a closed left ideal 7. Imasmuch ags A is semisimple, (4) implies
(1).

As shown by Kaplansky [10, Theorem 2] a closed ideal I in a semisimple dual
algebra is a dual algebra. This can fail if 7 is not closed. Again we have a contrast
with the situation for Hilbert algebras.

CoROLLARY 2.2. 4 *-ideal W (not necessarily closed) in a dual Hilbert algebra A
is a dual Hilbert algebra.

Proof. As shown by Dixmier [4, p. 72], W is a Hilbert algebra (in the involution
*). So also is its closure W. But by the result of Kaplansky cited just above W
is a dual algebra. Therefore, without loss of generality, we may assume that W
is dense in A.

We must distinguish between orthogonality in W and in A. As usual for
aset Sc A, St ={x€A:(x,8) = (0)} whereas for a set T in W welet 7% =
{fx € W: (x, T) = (0)}. Let J be a right ideal in W. By Theorem 2.1 our task is
to show that J is dense in W if J* = (0). Now J is a right ideal in 4 and
it suffices, by Theorem 2.1, to show that J* = (0).

Clearly J*Wc J*O W = J* = (0). As W is dense in 4, we get J"4 = (0)
so that J* = (0) (see § 1).

Definition 2.3. We say that the Hilbert algebra 4 is an orthocomplemented
Hilbert algebra if 4 = J @ J* for every closed right or left ideal J in 4.

Example 2.4. By Theorem 2.1, an orthocomplemented Hilbert algebra is a dual
algebra. A Hilbert algebra can be dual without being orthocomplemented. Consider
the algebra C(G) of all complex valued continuous functions on the compact topo-
logical group @. Here the multiplication operation is convolution
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u) = [ st
G

where u is normalized Haar measure on & and

(f’ g) = f(t)gﬁ;d;“
/

The involution is given by f*() = f(@).

C(@) is an *-ideal in the H*-algebra L,(G) (see [10, p. 700]) and hence dual
in the pre-Hilbert space topology by Corollary 2.2 (other arguments could be used
to see this).

Take the special case G = 7', the multiplicative group of all complex numbers
of absolute value one. Each f € C(T) has a Fourier expansion f ~ 3 a, exp (int).
Let I ={f€CT): a.=0,n < 0}. Then I is a closed ideal in C(7') in the pre-
Hilbert space topology, I* = {f € O(T): an = 0,n > 0}, I ® I* is dense in C(T)
and I @ I* + C(T).

TurorEM 2.5. A full Hilbert algebra A is an orthocomplemented Hilbert algebra
and is dual.

Proof. Let J be a closed right ideal in 4 and J° its closure in I = H(A4).
We show that J°¢ is a right-invariant subspace of H in the sense of [15, p. 272],
that is, R.(£) €J° for each a € A and £ €J°. Let &= limw,, w, €J. Then
R.(&) = lim Ro(w,) = lim w,a € J°. Tet P be the orthogonal projection of H
onto J° As shown in the proof of [15, Proposition 2.7], P(4) = A N (J°) = J.
For a set 8 in H, let 8% = {x € H: (x, 8) = (0)}. Then H = J° @ (J°)*. Given
x €A we can write ¥ = u + v,u €J°, v € (JV*. As u = P(z), we have u €J
and v € (J9)* N A =J*. That A is dual now follows from Theorem 2.1.

Bxample 2.6. At this point it is appropriate to point out that not every ortho-
complemented Hilbert algebra is full. Consider the algebras ¢,, 1 < p < 2, studied
by McCarthy [11] and others. This is the class of operators on a Hilbert space for
which the ¢, norm |T'|, = [trace (T*T)**]'? is finite. Let the Hilbert space be
infinite-dimensional. The algebra ¢; is the trace class algebra (z¢) in the notation
of Schatten’s book [16] while ¢, is the H*-algebra (oc¢), the Schmidt-class of
operators. For 1 =< p < 2,¢, is contained in ¢,. If ¢,,1 = p < 2, is given the
pre-Hilbert space topology inherited from ¢,, then it becomes an orthocomplemented
Hilbert algebra which is not full. The author is indebted to Professor James F. Smith
for pointing this out to him. See [18] where this author, in a manuscript just com-
pleted, has shown more general results. For another example obtained from different
considerations see Example 4.4 below.
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THEOREM 2.7. Suppose that K is a closed ideal in a Hilbert algebra A. Then
K = K* and K is a Hilbert algebra. If A s full or orthocomplemented or dual then
so is K.

Proof. If we show that K = K*, we have K a Hilbert algebra by [4, p. 72].

We suppose at first that 4 is a full Hilbert algebra. Let x € K. We claim that
xz* € K. Since A is full this follows from Theorem 2.5 if we show z* € K+, Let
w€A,z€K* Clearly xz= 0= (22, w) = (2, *w). Therefore z*4 c K** so
that x* € K**. Next we show that K is full.

Consider the completion H(K) of K; clearly H(K)c H(A). Let a € K; be
a bounded element for K. Then L. defined by L.(x) = E.(a) is a linear operator
on 4 and is bounded as a mapping of K into K(H) with operator bound M.
There is a sequence {v,} in K with @ = limv,. For y € K+ we have L.(y) =
lim v,y = 0 since each v,y € KN K+~ For z € 4 we can write, by Theorem 2.5,
z=ua+y with € K,y € K*. Then, as |j2|> = |jz]> + |ly|]’, we get

[La(2)]| = [La(@)| = Mja]] = M-

Consequently « € 4, = 4. Hence a = lim v, lies in K.

Now we turn to the case when A4 is an arbitrary Hilbert algebra. Let K* denote
the closure of K in the full Hilbert algebra A4;. The involution on 4; extends
that of A and moreover K° is a closed ideal in As. Then, by the above, if z € K,
we get 2* € KN A = K. Therefore K is a Hilbert algebra.

Since K = K* the statement on dual algebras is immediate by Corollary 2.2.
Suppose that 4 is orthocomplemented and let J be a closed right ideal in K.
As K is dual, J is a right ideal in A by [10, Theorem 2] and so 4 = J @ J*.
From this it is readily seen that K =J @ J* N K.

By contrast with Corollary 2.2, a *-ideal in a full (orthocomplemented) Hilbert
algebra need not be full (orthocomplemented). In the positive direction we have
the following result.

PROPOSITION 2.8. A *-ideal W in an orthocomplemented Hilbert algebra A with
wdentity 1 is an orthocomplemented Hilbert algebra.

Proof. Let J be a right ideal of W, J closed in W. Now J is not necessarily
a right ideal in 4 but its closure J in A is a right ideal in W and therefore, by
[10, Theorem 2] and Theorem 2.1, is a right ideal in 4. We can then write
l1=u-+2» where u€J and v €J*. For each z€ W we have z = uz - vz
where uz € JWcJ and nz€JNW.

We make a detailed study of the quotient algebra 4/K where A is a Hilbert
algebra and K is a closed ideal in A. First of all, by Theorem 2.7, A/K is a
*-algebra where the involution is given by

(x + K)* = 2% + K. (2.1)
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We consider the quotient algebra norm
|z + KJ| = inf fjz 4 gl (2.2)
y€EK

Elementary arguments show that, for each x,y € 4,

e+ 9+ K2+ o —y + KIP = 2(lz + KIP + lly + K|P).

Therefore, in the norm of (2.2), A/K becomes a pre-Hilbert space where the inner
product (x + K,y + K) is glven by the quantity

I +y 4 K| — e — y + K[P + il + iy + KIP — illo — iy + KI?)/4¢ (2.3)

TuroreM 2.9. Let K be a closed ideal in a Hilbert algebra A. Then A|K is
Hilbert algebra in terms of the involution (2.1) and the inner product (2.3). If A is
full or orthocomplemented or dual then so is A|K.

Proof. Since ||x* + K| = |lx + K| for each x € A we see immediately that

@+ K,y + K) = (y* + K, 2* + K)
for each z,y € 4. Also

@+ K)y + K| = ey + K| < igf{!l%(?/ + 2)l < Madlly + K]

so that left multiplication by x 4 K is a bounded linear operator on A/K. The
natural homomorphism of 4 onto A/K is continuous. This makes the set of
products {(x + K)(y + K): z, y € A} a continuous image of a dense set in 4 and
therefore dense in A/K. It remains for us to show that

(y 4+ K,z + K) = (y + K, 2%z + K) (2.4)

for each x,9,z € 4.

We demonstrate (2.4) first in the special case where 4 = K @ K*. Itisreadily
shown that the mapping Q(z) =« + K of K* onto A/K is an algebraic *-iso-
morphism and as seen above ) preserves inner products. By Theorem 2.7, we get
(2.4) and the fact that A/K and K* are equivalent as Hilbert algebras. Using
Theorem 2.5 and 2.7 we now see our statements in the full or orthocomplemented
cases.

Now we consider an arbitrary Hilbert algebra A. Let K° denote the closure
of K in the fulfillment A4, of A. By the above, 4;/K° is a Hilbert algebra in
terms of the quotient space norm. The mapping o defined by

olf + K) = [+ K°

for f € A is an algebraic *-isomorphism of 4/K into A,/K° since K°N A = K.
By the definition of the quotient algebra norms, |jo(f)|? = || f|>. Now we have already
seen that A/K is a pre-Hilbert space in the quotient algebra norm. Therefore
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(f + K, g + K) = (dof, og) (2.5)

for all f,g € A. Formula (2.4) for 4 follows directly from (2.5) and the validity
of (2.4) for Ai/K".

Finally suppose that A4 is dual. Let z be the natural homomorphism of 4
onto A/K andlet W Dbe a closed right ideal in A/K, W s+ A/K. Then n(W)
is a closed right ideal in A, #YW) ¢ A, (W) D K. Since, for some x € 4,
x £ 0 and xza~Y(W) = (0) we see that L(W) s (0} in A/K. By Theorem 2.1,
A/K is a dual Hilbert algebra.

This argument shows that if B is a topological algebra which is a continuous
homomorphic image of a dual Hilbert algebra A, then B is a semisimple annihilator
algebra.

3. Hilbert algebras in the Rieffel norm

For an element x in the Hilbert algebra 4 we set
lelly = e -+ (1Ll (3.1)

We refer to (3.1) as the Rieffel norm for x. Asnoted in [15, p. 270] A is a normed
algebra in this norm and, if 4 is full, A is complete in this norm. Let 4, denote
the completion of A in the Rieffel norm and call A replete if 4 = A,. Clearly
A, is a *-subalgebra of the fulfillment A4, of A. In general A, = A, (see Example
4.4 below). The Rieffel norm is especially useful to us in discussing spectral properties
for A and the connection between A and its C*-algebra C*(4).

A straight-forward computation yields

eyl = Lyl (3:2)
for all =,y € 4.

Levma 3.1. If A is replete, A is a *-ideal in C*(A) and the involution on A
18 symmetric.

Proof. Let y € A and W € 0*(d) where W =lm L , 2. €4, n=1,2,...
Using (3.2) we see that

leny — zagflle < IL:, — Ls [yl — 0

as m,n —> 0. Therefore there exists v € A where |[v — 2.4/ — 0. Then also
Lo — L. = 0. On the other hand

WL, — ZznyH =W — Ezn”HZyH — 0.
We see then that WI, = L, and A is a left ideal in 0*(4), indeed a two-sided
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ideal as A is a *-subalgebra of C*(4). The symmetry of the involution on C*(A4)
forces the involution to be symmetric on its ideal A.

It is obvious that not all Hilbert algebras have the symmetry property. We next
seek a larger class of Hilbert algebras (see Corollary 3.5) than the replete ones
where we can be sure of having a hermitian involution (sp(4) real for % self-adjoint,
where sp(h) is the spectrum of 7).

We shall use the notation ,(x) = lim [jz"|}™.

Lemma 3.2. If x is normal in A then v(2) = || L] and v(zx*) = (v.(x))2.

Proof. Since L. is a normal operator on H, we get
ILall = Lo < [l

for each positive integer n. Then [LJ| =< ».(x).
We have also
"l == |\ Len-1(2)]| 4 || Lanll = | Lol Y]

Taking n™ roots and letting = — o we see that »(z) < ||LJ. We also have
(@) = |[Lusel| = ILJE = ()2

By a @Q-algebra [9] is meant a topological algebra whose quasiregular elements
form an open set. Obviously every Banach algebra is a (-algebra. We consider a
normed @-algebra B and use the notation »(z) = lim [jz"|'" and p(x) for the
spectral radius of x € B. We use the fact [20, Lemma 2.1] that the normed -
algebras are just those normed algebras B for which »(x) == ¢(z) for all = € B.

THEOREM 8.3. Let B be a complex normed @Q-algebra with an involultion x — x*.
Then v(xx*) = (v(x))? for all normal x € B if and only if the involution is hermitian.

Proof. Assume the condition on normal elements and let % be self-adjoint. If
% has a complex number a -+ b¢,a, b real, b £ 0, in its spectrum, there is a self-
adjoint element w = ch + dh? c,d real, such that 7 €sp (w). We now modify
an argument of Arens [1] (see also [14, p. 190]) for our purposes. Consider the normal
element
2 = (w 4 n)"w

where n,m are positive integers. Then
— (1 + n)I™™ € sp (2%).

Therefore, using the remarks on @-algebras given above, and the rules of [14,
p. 10] we get
1+ )™ = 0(z") = PR = v(z*) = +[(w® + »*)"w"]

= éo (7,):) v(w) IR = [(w?) - 27w (w?).
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th

If we fix », take m™ roots and let m — co, we get

(1 + n)? < »(u?) 4 n2

for all » =1, 2,... Clearly this is impossible for » sufficiently large. Therefore
sp (k) is real. ’

Suppose the condition on the spectra and let z € B be normal. We consider B
as embedded in its Banach algebra completion B°. The involution on B need
not extend to an involution on B° but in any case there is a maximal commutative
subalgebra £ of B° containing x and «*. E is a commutative Banach algebra
with space of modular maximal ideals “/. Consider z € E. By [14, Theorem 1.6.14]
we have sp (2|E) = sp (2[B°) C sp (2|B). It then follows from our hypothesis that,
for each M € M, (x + x*)(M), i(x — z*)(M) are real numbers. Therefore x*(M) =
xM for each M € M. Consequently p(xx*) = (v(z))

CorOLLARY 3.4. Let B be a complex Banach algebra with an involution x—- x*.
The involution is symmetric if and only if v(za*) = (v(x))? for all normal elements x.

Proof. This is immediate from Theorem 3.3 and the work of Shirali and Ford
[17].

In [13] Ptak made an interesting and detailed study of the function p(x) =
o(x*z)"”® on a Banach *-algebra with hermitian involution (and identity). Theorem
3.3 shows that a normed *-@)-algebra has hermitian involution if and only if p(x) =
o(z) for all normal =x.

CoroLLARY 3.5. The snvolution is hermition in a Hilbert algebra which is a
@Q-algebra in its Rieffel norm.

Proof. This is immediate from Theorem 3.3 and Lemma 3.2.

Instances of Hilbert algebras which are incomplete @-algebras in the Rieffel
norm occur quite naturally. Consider the Hilbert algebra C(¢) of Example 2.4.
The norm |f| = sup {f(¢)] is a Banach algebra norm related to the Hilbert algebra
norm by the inequalities |[f|| < |f] and |[fg] <|/flllgll for all f, g € C(G). If C(G)
were complete in the Rieffel norm we would have, for some K >0, |f| =< K||f||
for all f € C(G) and C(G) would be complete in the norm [|f|]. But the completion
of C(@) in that normis L,(G). To see that C(G) is a @Q-algebra in the Rieffel norm
take any f € O(Q) with |fll- << 1. Then [f?| << 1 sothat f? and hence also f is
quasi-regular. By [9, Lemma 2] C(#) is a @-algebra in the norm (g}

By a minimal idempotent we mean an idempotent generator for a minimal one-
gided ideal. For a minimal idempotent e in a Hilbert algebra A4 we have ede =
{ce: ¢ complex}. This follows from the fact that A is a normed algebra in the Rieffel
norm so that the Gelfand-Mazur theorem applies to the normed division algebra
ede.
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We return to the study of the relation of a replete Hilbert algebra to its
O*-algebra. When convenient we consider 4 as embedded in C*(4) (see § 1).

LremMMa 3.6. For a replete Hilbert algebra A, A and C*(A4) have the same minimal
one-sided ideals. '

Proof. For convenience set B = U*(A). Let p be a minimal idempotent in A.
Then {cI,: ¢ complex} = {L,L.L,: « € A}. As this set is closed in B it coincides
with L,BL,. Thus p is a minimal idempotent in B. Take a minimal idempotent
W in B. Then WAW = {cW:c complex} as 4 is dense in B. Inasmuch as
WAW c A by Lemma 3.1, W is a minimal idempotent of A.

Let p be a minimal idempotent. Using Lemma 3.1 we get pB C A. Then
obviously pB = pA.

A fact relating a closed right ideal I in A4 to its closure I° in C*(4) is the
following. If j is an idempotent in A and j €I then j¢I° For otherwise
|L; — L. || - 0 for some sequence {x.} in I. Then L, (j)— Li(j) or aj—>j
This is impossible as each x,j € I.

THEOREM 3.7. Let A be a replete Hilbert algebra where C*(A) is dual. Then A
is dual if and only if A has dense socle.

Proof. Suppose that 4 has dense socle. Let I be a closed right ideal in
A,I # A. There exists a minimal idempotent » not in I. By the above remark,
p &l As C0*(4) is dual, there exists a minimal idempotent ¢ of C*(4) with
ql° = (0). By Lemma 3.6, ¢ € A so that L(I) +# (0). Apply Theorem 2.1.

The converse follows with the aid of [14, Corollary 2.8.16]. For more on the
question of when C*(A4) is dual see Theorem 4.3 below.

4. Projections in Hilbert algebras

We first use projections (self-adjoint idempotents) to continue our study of the
relation of 4 to C*(4). However our main interest here is to discuss the theory
of Hilbert algebras with dense socle.

Following Rieffel [15, p. 272] we use K = E(4) to denote the set of all non-zero
projections in A;. Note that we consider the projections in A, rather than A4.
By [15, Theorem 2.3], 4, can be rich in projections whereas 4 has no non-zero
projections. An example of this is the Hilbert algebra of all complex continuous
functions f(f) on [0,1] with f(0) = 0 with the inner product
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o) = f FgmaL

and the usual pointwise operations.

Definition 4.1. We say that A is projection bounded from above (below) if there
exists ¢ > 0 such that [|p] Zc ([p]| =¢c) for all p € X,

By standard Hilbert space theory, E is a partially ordered space if we define
P =p; tomean p; =p,p, and |py| = [[psll if py = p,. Consequently 4 is
projection bounded from above if A has an identity.

THEOREM 4.2. The following statements about a Hilbert algebra A are equivalent.

(1) A 1is projection bounded from above.

(2) There exists K > 0 such that ||z|| < K||L| for all x € A.

(8) There exists K > 0 such that ||b)| = K|Lil| for oll self-adjoint clements h
n A.

4) A, is equivalent, in its Rieffel morm, to a B*-algebra.

(4)

(6) A, = C*(4,), where A, s viewed as a Hilbert algebra.
(6) Ay is equivalent, in its Rieffel norm, to o B*-algebra.
(7) 4y = C*(4,).

Proof. Assume (1). By [15, Proposition 2.12] 4; has an approximate identity
{p,}. Here the set of norms {||p,||} is bounded above by some K < co. Then, as
wp,—~x in A, |L(p)l < K|LJ and [IL(p,)l— |l This yields (2).

Assume (3). Let a be any self-adjoint element in 4,. It is clear that there
exist self-adjoint elements A, in A4 such that || — A/l — 0. But then |l — 4./|— 0
and ||Le — L || = 0. Therefore (3) gives |ja|| =< K||LdJ. From this and Lemma 3.1

and 3.2 we see that sp (a) is real and 2v,(a) = min (1, K—')[al,. Then (4) follows
from [23, Corollary 11.

Assume (4). The embedding mapping of 4, (in its Rieffel norm) into C*(4,)
is bicontinuous by [14, Theorem 4.8.5]. Therefore A, = C*(4,).

Note that (5) implies (4) by the uniqueness of norm property for B*-algebras.
From (4) and (5) there is some M > 0 such that |jof| + ||LJ < M| LJ for all
x € A,. This gives (2).

Now suppose (2) and a € 4;. By [15, Proposition 1.17] there exists a sequence
{an} in A such that [ja, — a0 and [L.| < ||LJ for n=1,2,... Then (2)
allows us to conelude that ||a| < K||L.j| and so the inequality of (2) persists on 4.
The above argument that (2) implies (5), now applied to 4,, gives (6). From (6)
we deduce (7) by [14, Theorem 4.8.5] again.

Next suppose that (7) holds. Arguments above give (2) valid on A, for some
K > 0. For p € E we then have ||p| =< K|L,|| =< K. This completes the proof.

For the notion of modular annihilator algebra see [21].
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TerOREM 4.3. Let A be a replete Hilbert algebra which is projection bounded from
above. Then C*(A4) is dual if and only if A is a modular annibilator algebra. In that
case A is orthocomplemented and has the same closed right and left ideals as C*(A4).

Proof. Suppose that C*(4) is dual. Then the socle § is dense in C*(4) by
[14, Corollary 2.8.16]. By Theorem 4.2, 4 = C*(A) and the identity mapping of
C*(A4) onto A is continuous. Therefore S is dense in 4. It follows from Theorem
3.7 that A4 is dual. Since I = RL(I) for closed right ideals in A (or C*(4)) the
continuity of multiplication shows that a closed right ideal in either topology is
closed in the other topology. Therefore A is clearly a modular annihilator algebra.
For a closed right ideal K we have, as C*(4) is a dual B*-algebra, the
rule 0*(4) = K ® L(K)* via [2, Theorem 3]. However (see § 1) L(K)* = K*.
Thus A4 is orthocomplemented.

Now suppose that A is a modular annihilator algebra. This notion is purely
algebraic so that C*(4) is a modular annihilator B*-algebra. But then (*(4)
must be a dual algebra by {21, Theorem 4.1].

Example 4.4. Theorem 4.3 shows how to find orthocomplemented Hilbert algebras
which are not full yet are replete. Let A be the set of all sequences ¢ = {ca},
n=1,2 ..., of complex numbers such that

Z lex2/k? << 0 and lime, = 0
E=1

made into an algebra by defining the algebraic operations componentwise. If ¢, d € 4
we set ¢* = {¢.} and

=23

(¢, d) = > (cad)/k?

k=1
4 is a commutative Hilbert algebra. Simple computations show that 4 = A,
but that A, is the larger algebra of all sequences {a.} such that

D lmP/k? < oo and sup |ax| < oo.
k=1

Thus A is replete but not full. As any projection in 4, must be a sequence {a,}
where each a, =0 or a, =1, 4 is projection bounded from above. If M is
modular maximal ideal in 4 it is the null space of a multiplicative linear functional
G since A is a Banach algebra in the Rieffel norm. Standard arguments show that
there is an integer n, such that G(c) = ¢, for each ¢ € A. Therefore A is a
modular annihilator algebra. Theorem 4.3 shows that A is orthocomplemented.

By a trivial renorming of a Hilbert algebra A is meant the introduction of a
new inner product (z, y); where, for some ¢ > 0, (z, ), = ¢(x, y) forall z,y € 4.
If 4 is equivalent, as a normed linear space, to a normed algebra then, as is easily
seen, there is a trivial renorming in terms of which it is a normed algebra.

Itis convenient to have at hand a slightly expanded version of {15, Theorem 1.16].
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Lemma 4.5. The following statements about the Hilbert algebra A are equivalent.
(a) zy 1is a continuwous function of the two variables x and y simultaneously.
(b) The mapping x — L. is a bounded linear mapping of A into B(H).

(c) There exists K >0 such that |jxy] < Kl|a|llyll for all z,y € A.

(d) The Rieffel norm is equivalent to the given morm on A.
(e) Ab = H.
(£) As s trivially renormable to be an H*-algebra.

This is an immediate consequence of [15, § 1].

The involution in the Hilbert algebra A is proper (va* = 0 implies x = 0)
by [3, p. 331]. By a lemma of Rickart [14, Lemma 4.10.1], every minimal one-sided
idealin A4 is generated by a projection (we call such a projection a minimal projection
of A). For a minimal projection p, pAp = {cp: ¢ complex} (see § 3). Completeness
in the Rieffel norm is not required. Thus the arguments of Rieffel [15, Lemma 5.4]
show that

[Lapll = llapll /il | Rpall = [l pali/lp] (4.1)
for each « € 4.

THEOREM 4.6. Let A be a topologically simple Hilbert algebra with a minimal
idempotent. Then A, is trivially renormable to be an H*-algebra.

Proof. As just noted, 4 has a minimal projection p. Let W be the (two-sided)
ideal of A which is algebraically generated by p. Then, in the language of [15],
W is contained in the minimal bi-invariant subspace I of H(A) containing p.
By [15, Theorem 5.14], we get I C A,. But as W is dense in A we see that
I = A;. Another appeal to [15, Theorem 5.14] gives the desired result.

As a consequence of Theorem 4.6 we see that any full topologically simple
Hilbert algebra with a minimal idempotent is automatically complete and in fact
equivalent to an I *-algebra. For the question of when a Hilbert algebra is equivalent
to an M *-algebra see Theorem 4.9.

For the notion of direct topological sum see [14, p. 46].

CoROLLARY 4.7. Let A be a Hilbert algebra with dense socle. Then A is the direct
topological sum of its minimal closed ideals each of which is trivially renormable to be
a dense *-subalgebra of an H*-algebra.

Proof. By [21, Lemma 3.11], A is the direct topological sum of its minimal
closed ideals. Arguments of [7, p. 65] show readily that each minimal closed ideal
N is topologically simple. Let § be the socle of A. The socle of N is SN ([21,
Lemma 3.10]) which is dense in N. Moreover N is a Hilbert algebra by Theorem
2.7. We apply Theorem 4.6 to complete the proof.

We can give a more detailed analysis for full Hilbert algebras.



HILBERT ALGEBRAS AS TOPOLOGICAL ALGEBRAS 145

CorROLLARY 4.8. Let A be a full Hilbert algebra. Then A has dense socle if and
only if the completion H of A is the Hilbert space direct sum of the minimal closed
tdeals of A each of which is trivially renormable to be a topologically simple H*-
algebra.

Proof. Suppose that the socle § is dense. Then A is the direct topological sum
of its minimal closed ideals by Corollary 4.7. If N; # N, are two distinet minimal
closed ideals then, NN, = N,N, = (0) and each N = N;, we get (N, N,) = (0).
Moreover each minimal closed ideal is complete and of the required form by Theorem
4.6. We then get the Hilbert space decomposition of H.

The converse follows readily from the facts that the socle of each minimal closed
ideal N is dense in N and is included in the socle of the algebra A.

TrEOREM 4.9. A full Hilbert algebra A is equivalent to an H*-algebra if and
only if A is projection bounded from below.

Proof. The forward implication is trivial. Assume that A4 is full and that
lpll = ¢ > 0 for all non-zero projections in 4. We show next that a non-zero right
ideal I must contain a minimal projection. First of all, by [15, Theorem 2.3],
I contains a non-zero projection p;. If p; is not a minimal projection then there
is arightideal J, (0) = J € p, 4, J # p,A. Now J contains a non-zero projection
g. Since p,¢ = ¢q, (py — ¢, q) = 0. Also p, — ¢ is a projection == 0 and |p,|2 =
gl + lp: — gl®. Lot p, be one of g, p, —q with [|p,] < [|pJ/2"% If p is not
a minimal projection we can find a non-zero projection p, in I with ||p,)| < |p,///2".
If we continue this process for n stages without reaching a minimal projection,
o <ilpyl/2"~ V2. Hence this process cannot continue indefinitely.

It follows from this that L(S) = (0) where § is the socle of 4. Inasmuch
as A is an annihilator algebra by Theorem 2.5, we see that S is dense in 4.
Now Corollary 4.8 applies to show A is the direct topological sum of its minimal
closed ideals each equivalent to an H*-algebra. A minimal closed ideal N is full
by Theorem 2.7. Theorem 4.6 and [15, Theorem 5.14] show that |jzyl]| < c~Yz|llyll
for all z,y €N. \ ‘

Let H be the completion of A4, {N,} be the set of all minimal closed ideals in
A and let P, be the orthogonal projection of H onto its closed subspace N .
Arguing as in the proof of Corollary 4.8 we see that each a € A is the Hilbert
space sum @ = ZPa(a). If also b€ 4,

ab = 3P (a) > P (b) = > P (a)P(b) = > P (ab)
Therefore P (ab) = P (a)P(b). Then, for z,y € 4
eyl = DIP (@) P )2 = 2 3IP ()P, W)IF = ¢ 23| Py ()P 2P ()R = c2i]lly]2.

An application of Lemma 4.5 shows that 4 is equivalent to an H*-algebra.
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We now relate the socle § of A4 to the intersection D, (D)) of the closed
modular maximal right (left) ideals.

Prorostrion 4.10. For a dual Hilbert algebra A we have D, = D,= S*.

Proof. Let I be any minimal right ideal. As noted above I = e4 where e is
a projection. A simple computation shows that (1 —e)4d € I+. Since 4 =
ed @ (1 — e)A it follows that I+ = (1 — e)A. If M is a closed modular maximal
right ideal, M~ 5 (0) by Theorem 2.1. But M+ must be a minimal right ideal
soas A =M @ M*+ we see that M = (M*)'. Consequently every closed modular
maximal right ideal has the form (1 — ¢)4 for a minimal projection 4. We see
that « € S+ if and only if 2 lies in every closed modular maximal right ideal.
Likewise S+ = D,

Consequently, for the dual Hilbert algebra A,S is dense if and only if
D, = D, = (0).

It seems to us unlikely that Proposition 4.10 is valid for all Hilbert algebras
but we have no example at hand. In any case, D, = D,

Prorosrrion 4.11. For any Hilbert algebra A we have D, = D,

Proof. By [12, Lemma 9.1], D, is a left as well as a right ideal. From Theorem
2.7 we have D, = D}. But obviously D¥* = D,

5. Homomorphisms and Hilbert algebras

We tie up the theory of Hilbert algebras with that of Banach algebras through
a study of homomorphisms.

ProrosiTiON 5.1. Let T be a homomorphism of a Banach algebra B onto o
Hilbert algebra A. Then T is continuous whether the given or the Rieffel norm is
used for A.

Proof. We can consider A as a *-subalgebra of the Hilbert algebra A4,. Inasmuch
as A, is complete in the Rieffel norm [15, p. 270] it is an A*-algebra [14, p. 181].
By [14, Theorem 4.1.20] there exists K > 0 such that

T@) = T @), < K|, z€B.

Easy examples show that a homomorphism 7' of a Hilbert algebra onto a
Banach algebra can be discontinuous. If 7' is continuous it has some strong
properties.
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THEOREM 5.2. Let T be a continuous homomorphism of a Hilbert algebra A
onto a Banach algebra B. Then T is an open mapping and B is equivalent to an
H*-qlgebra.

Proof. Let 7 denote the natural homomorphism of A onto A/7-*(0) which
is a Hilbert algebra in the quotient algebra norm by Theorem 2.9. We have
a naturally defined isomorphism 7', of 4/T-%(0) onto B. Since T} ' is continuous
by Proposition 5.1, and =z is an open mapping we see readily that 7' is an open
mapping.

Consider 4 € Ay, H = H(A). T extends to a bounded linear mapping 7"
of H onto B. We show that 7" restricted to 4, is a homomorphism. Let f, g € A,
f=lima, ¢g=Ilimy, where each «,, y. lies in A. Then

T'(fyr) = lim T'(@ays) = T (/)T (ys)-

But clearly fyi.— fg. Then T'(fg) = T'(f)T'(g). Now we restrict the domain of
definition of 7’ to 4,. By Theorem 2.9, A4,/K is a full Hilbert algebra in the
quotient algebra norm where K is the Kernel of 7. We have a naturally defined
continuous isomorphism 7'; of A,/K onto B which is bi-continuous as it is open.
Let p be a non-zero projection on A4,/K. Then T;(p) is a non-zero idempotent
in B. Therefore

1= ITyp) < T3l

Then A4,/K is projection bounded from below. Theorem 4.9 shows that A,/K is
equivalent to an H*-algebra and, therefore, so is B.

Consider a homomorphism 7' of a Hilbert algebra 4 into a Hilbert algebra
A;. We may think of 4 (4;) as embedded in C*(4) (0*(4;)) and ask about
extending 7'. A homomorphism ¢ of C*(4) into C*(4,) is said to extend T
if Ly, = o(L,) for all x € 4. Under certain conditions we can obtain such an
extension.

THEOREM 5.3. Suppose there is an *-homomorphism T of a replete Hilbert algebra
A onto a Hilbert algebra A,. Then there is o continuous *-homomorphism of C*(A4)
onto C*(A4,) which extends T.

Proof. We let |z|,, |[L,] and y(z) be the Rieffel norm on A,, the operator
norm on H(A,) and lim |2"|/" respectively. We can use Proposition 5.1 to see that,
for some M > 0, we have |T(x)|. =< M|jz|, for all z € 4. By replacing = by
a” we are led to the rule »(T'(x)) <w»(x), x € 4. We use Lemma 3.2 to obtain

for all € A. The desired homomorphism o when restricted to A4 is given by
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o(L,) = LT(x)

and is, by (5.1), a continuous *-isomorphism there in the C*-algebra norms. It
extends to a *-homomorphism o of C*(4) into C*(4,). The mapping o
determines a *-isomorphism 7 of the C*-algebra C*(A)/c~1(0) into C*(4,). By
[14, Theorem 4.8.5], v is an isometry. But its range contains A; which is dense
in O*(4,). Therefore the range of o is all of C*(4,).

6. Hilbert algebras with completely continuous multiplication

In many of the standard examples of Hilbert algebras such as Example 2.4,
multiplication is completely continuous. Here a Hilbert algebra is considered as
a normed linear space, in general not complete. We use as the definition of complete
continuity that given for normed linear spaces, for example, in [24, p. 274]. Accord-
ingly we say that the multiplication in a Hilbert algebra A is completely continuous
if, given a bounded sequence {z.} and y € 4, there exists a subsequence {w,}
and w €A such that yz, — w.

We verify this property for the Hilbert algebra 4 = C(G) of Example 2.4.
For x € 4, let |jz]| denote the Hilbert algebra norm and |#| denote the supremum
norm of x. Clearly |jzf] < |o| for all € A. Also, with convolution multiplication
xy we have |xy| <|aflly]| for all x,y € A. Moreover [10] multiplication is com-
pletely continuous if the complete norm |x| is used. Now let {x.} be a sequence
where each ||z, < 1. Let a,b € A. Then |bx.| < |b|| for each m. Then the set
{abx,} is totally bounded in the [z| norm.

Let y € A. There are sequences {a,} and {b,} in 4 where [y — ab,/]— 0.
There is a subsequence {x,,} of {x,} with {ab;x, ,} a Cauchy sequence in the
|#| norm. Likewise there is a subsequence {x,,} of {x;,} with {ab, .} a
Cauchy sequence in the |z| norm. Continuing in this way we see that the sequence
{z,,} has the property that {ab.x, .} is Cauchy in the || norm for each .
Take ¢ >0 and choose m so large that lly — a,.b,)] < é&/4. Now choose N
where |a,b,.(x,, —x, ) <e/2 for r,s>N. For such r,s we see that
Wy, , — 2,0 <2y — bl < ladbn(x,, — 2, )] <e  Therefore there exists
w€A with |yx,, — w}— 0. Then also |lyz,, — w|— 0.

LemMa 6.1. If multiplication in the Hilbert algebra A is completely continuous
then A is a *-ideal in As.

Proof. Let a € Ay, and x,~> @ where each xz, € 4. Take any y € A. There
exists a subsequence {a,} and an element z € 4 with ya., — 2. As ya., — ya

in A; we see that ya =z € A, that is 4 is a right ideal in A,.
This simple result suggests a definition.
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Definition 6.2. We call a Hilbert algebra A almost full if A is an ideal in A,.
Such algebras are dual by Corollary 2.2.

Consider next a dense *-subalgebra W of a full Hilbert algebra F. By [4, p. 72]
W is itself a Hilbert algebra. A tedious exercise on the definition of W, shows that
Wiy = F. This allows us to recast Definition 6.2 to say that 4 is almost full if
(and only if) A is a *-ideal in some full Hilbert algebra B. For then the closure

A of A in B is full by Theorem 2.7 and A = 4,.

THEOREM 6.3. Let A be an almost full Hilbert algebra.
(1) For a closed ideal K in A, K and AJK are almost full.
(2) Any one-sided ideal = (0) in A contains a non-zero projection.

Proof. From Theorem 2.7, K = K* is a Hilbert algebra. Let xz € K. There
exists a sequence {y,} in K with xy,— x. Now let z € 4;. We show xz € K.
For xz = lim %(y.2) and each #.z€ A4 as A is almost full. Then x(y.z) € K.
This argument shows that K is a *-ideal in the full Hilbert algebra A, Next let
K¢ denote the closure of K in A4,. As noted in the proof of Theorem 2.9, there
is an algebraic *-isomorphism ¢ of A4/K into A,/K° which preserves inner
products. Thus A/K is identifiable as a Hilbert algebra with its image in A4;/K".
Let x 4+ K°, « € A, be a typical element in that image and let w + K°, w € 4,,
be any element of A,/K°. Then (x + K%)(w -} K°) = 2w + K° lies in o(4/K)
as aw € A. Thus o(4/K) is almost full being a *-ideal of the full Hilbert algebra
Ay/K° (see Theorem 2.9).

We turn to (2). Let ¥ be a full Hilbert algebra. Arguments of Rieffel [15,
Theorem 2.3] show that if x % 0 in F there exists y € F with yx a non-zero
projection in F. Consider a non-zero left ideal J in A. We can take w 4 0 in
J and v € 4, such that vw is a non-zero projection in A;. As vuwwv € A we see
that sw = (vww)w lies in J.

THEOREM 6.4. Ifthe multiplication in the Hilbert algebra A is completely continuous
then H = H(A) 1is the Hilbert space direct sum of the minimal closed ideals of A
each of which is, for some positive integer n, the algebra of all nxXn matrices over the
complex field.

Proof. It is to be understood that the integer n can vary from one minimal
closed ideal to another.

For each idempotent ¢, eA and Ae are finite-dimensional by the Riesz-
Schauder theory. Let J = (0) be a left ideal in 4. Lemma 6.1 and Theorem 6.3
show that there is a non-zero projection p, in J. If p, is not a minimal projection
there is a left ideal I, (0) %2 I € Ap,, I # Ap,. In that case there is a non-zero
projection p, in I where the dimension of Ap, is smaller than that of Ap,. If
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P, 1s not a minimal projection we can continue this process. This process must
terminate at some stage with a minimal projection in J.

Let § denote the socle of A. If St 3£ (0) then S would contain a minimal
projection which is clearly impossible. As A is dual, by Theorem 2.1 we see that
8 is densein A. Corollary 4.7 gives 4 as the direct topological sum of its minimal
closed ideals. Let N be such an ideal and ¢ be a minimal projection in N. Clearly
AeA is finite-dimensional so that Aed = N. Moreover N is, say by Theorem 4.6,
an H*-algebra and so is the algebra of all n X% matrices over the complex field
for some N. Aseach such N is complete we argue as in the proof of Corollary 4.8
to obtain the H as the Hilbert space direct sum of these ideals N.
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