On some classes of homogeneous ternary
cubic diophantine equations

Erik Dofs

1. Introduction

The general homogeneous cubic equation in three variables contains ten arbi-
trary coefficients. If it has a non-vanishing discriminant it can be transformed into
canonical form:

ax®+by* + c2* = dxyz; (1)

by means of a real transformation which in general is non-rational. The difficulty
of proving the non-solubility in (rational) integers of a canonical equation with
integral coefficients is easily seen when considering that this, in one of the seemingly
simplest cases:

x4+ 2% = nxyz; 2)

has been done only when n=—-6,0, 1.

When discussing (1) it is often convenient to work within K(V—3). However,
as Hans Riesel pointed out to me it might be delicate to work exclusively within
this quadratic field as for example x3+p3+2z8=2xyz has a solution x=2, x=2—¢
and z=2—¢ in K(]/—3) but lacks solutions in K(1), as is shown in part 4 of this
paper. Consequently I have chosen a method that predominantly works within
K(1), but at one crucial step uses theorems valid for K(}/—3).

Of greatest interest is to know which equations can be brought to canonical
form by means of rational transformations. A theorem stated by Sylvester concern-
ing equations, symmetric in x, y and z is generalized to equations invariant under
cyclic transformation of x, y and z.

The notion ‘non-trivial solution’ or simply ‘solution’ when no misunderstand-
ing may occur, refers to a solution where xyz=0. '
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2. On a(x*+y3429)+b(x?y+y2z 4 22x) +c(xy*+yz2+2x?)+dxyz = 0
Consider the equation:
a(x®+y*+ 28+ b(xy + 32z + 22x) + c (xy* + yz2 + zx¥) + dxyz = 0; - 3) ‘
\ It has the same number -of arbitrary coefficients as:
Ax*+ By*+ Cz* = Dxyz; @

Thus there might exist a rational transformation bringing (3) into (4), or conversely.
Sylvester [1] stated without a proof’:
If b=c, then (3) may always be transformed so as to ‘depend upon’ (Sylvesters
words) the equation:
S +gv® + hw® = (6a—d)uvw; )
where '
feh = ad® — (b*+3a?)d + 9a® — 3ab® + 2b°. 6)

Noting that the expression for fgh can be written:
fgh = % [(6a—d)*+(3a +d)® + (Bb)+(3b®*—33Ba+d)-3b-3b];

the generalization when bs=c¢ is plausible; namely replace one of the expressions
(3b) by (3¢) in two places.

Selmer [2] gave a proof of the theorem when b=c, but to see the connection
with the generalized theorem I give it with Sylvesters notation (Sylvester did not
state the limitations of the transformation).

Theorem 1,
a(x*+ ¥+ 2%+ b(x?y +y2z42%x + x)2 + ¥z +2x%) + dxyz = 0; )]
can be transformed into
Jeh(U+V+W) = (6a—d)PUVW,
where fgh is given by (6) above, provided that (6a—d) (36— 3b+d) 0.

Proof. Use the transformation

U= (—d+2b)x+CBa—b)y+(3a—1b)z;
V=0CBa—b)x+(—d+2b)y+(Ba—b)z; ®)
W= @a-b)x+QBa—b)y+(—d+2b)z;

having the determinant=(6a—d)(3a— 3b+d)>
Elementary but lenghty calculations give Theorem 1. QED
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If 6a—d=0, then the transformation

U=x+y+z; _
v=x+oy+oz;(, wo,weckK(lY=3) and o= %B 9
w = x+gy+gz; '
gives: ,
(Ba+2b)u®+(Ba—b)(®+w®) = 0;

In particular if b=0: u®+v3+w?=0, which means that x*+3%+2z3+6xyz=0 can
be transformed into #*+1®+w3=0 where u, v, we K (V:—_j) if x, y and z are rational.
This was known by Sylvester.
If 3a—3b+d=0, then-the Lh.s. can be factorized:
(x+y+2)alx+y+2) —Ba—-b)(xy+yz+zx)] =0

Furthermore, the Lh.s. of (7) can be factorized into three real linear factors (U, Vv
and W according to (8)) if fgh=0 but the determinant>0.

If 3a+6b+-d=0 then the curve represénted by (7) is unicursal with the singular
point (1, 1, 1).

1 now prove the more general:

Theorem 2. If
a(x*+y2+ 25+ b(x2y + 2z +22x) + c(xy® + yz° + zx*) + dxyz = 0;

then in general
X3+ Y3+CZ3 = (6a—d)XYZ; (10)

where X, Y and Z are cubics in x,y and z and

C= —%3— [(6a—d)y*+(3a+d)®+(3b* +(3c)* —3@Ba+d)-3b-3c];

Proof. First use the transformation (9) to get
W @Ba+d+3b+3c)+v*(Ba+d+3b3+ 3co) +wP(3a+d+ 3be +3cg)+

+ 3uvw(6a—d) = 0; ' an
1y, Uy and w, are defined by

up = 1 (3a+d-+3b+3c);
vy = v®*(3a+d+3bg+3ce); | where v, = Wy
wo = w3(3a+d+3bo+3¢a);
and (11) gives:

[(Ba+d)*+(3b)® 4+ (Bc)*— 3(3a+d) - 3b - 3c)(ug + vo + We)® + 33(6a — d)2ugvywo = 0.(12)
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Now calculate uy+vy-+wy, g+ 00y + 0wy and u+ gvg+ow,!

g+ vo+wo = 3Ba+d)(x*+y* +28) +27b (x*y + %z +2°x) +

+27c(xy? 4+ yz2 +zx®) + 18 Ba+ d)xyz = —3(6a—d) (x® +y° + 2° — 3xyz);

(After substitution from (3))

o+ BV + oWy = e (X®*+ 1%+ 28+ Ba+d) (xPy + y*z+ 28 x) +

+3b(xy?+yz? +zx%) + 6¢cxyzl;
uo+Quo+ owo = 9[b(X*+y*+2%) +3c(XPy +y*z +2°x) +
+Ba+d)(xy* + yz2 + zx?) + 6bxyz];

X, Y and Z are defined by

9X = uy+ 0vy + QWo;
9Y = uy+ 0vy + 0wy ; X, Y, ZeK(1)
3(6a—d)Z = uy+ve+we; )
which gives

Upewo = (3XY¥ +BY)P+(6a—d)P*Z2-3.3X-3Y.(6a—d)Z,
but (12) also gives

[Ba+d)P+ (36 + (3c)*~3Ba+d)-3b-3¢]1Z3 = —ugvew, =

= —[BX»®+BY)P+(6a—d)*Z*-3.3X-3Y-(6a—d)Z]; (13)
Finally (13) gives:
BX)*-+ (Y P+ [(6a — ) + (3a-+d)* + (3b)*+ (3P —
—3@Ba+d)-3b-3c]1Z? = 3*(6a—d)XYZ;

‘but the coefficient of Z* is divisible by 32.

X34+ YR+ CZ3 = (6a—d)XYZ;
‘where

1
C = 3 [(6a—d)® + (3a+d)® +(3b)*+ (3¢)* ~3(3a+d)-3b- 3c};
The condition that the Jacobian>0, gives when b>¢ (at points where x3+-y%+

28 —3xyz#0):
3a+d+3b4+3c %0, 6a—d=0.
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If x+y+2z=0, then (3) gives at once:
xlb—c, yb—c, (x,y)=1;

If x=y=z=1 is a point on the curve then 3a+d-+3b+3c=0, which means that
the corresponding cubic curve is unicursal. QED

Equation (10) can be written as:
BX)® +BY)+(6a—d)PZ*—33X)3Y)6a—d)Z =
= —Z¥(Ba+d)*+(3b)* + (3¢ —3(3a+d)-3b-3c),

i.e. it is of the form
X338 28— 3xyz = ¥ + 03+ WP —3uvw; (14)
discussed by Carmichael [3] who gave a solution of (14) in four parameters. Car-

michael [4] has also proved theorems that give a possibility when given C and D
(in X3+ Y34+ CZ3=DXYZ) to determine a, b, ¢ and d thus:

C= % ((6a—d)®+ (Ba+d)* + (36 +(3¢)*— 3(3a+d) - 3b- 3c);

D =6a—d,;

In fact, he discusses representation of natural numbers by x®+3)3+2z3—3xyz, of
which form D3—27C is. His theorems do not give all possible g, b, «, d which he
shows with counterexamples, but his results are easily extended so as to give these.

In part 5, I return to the question of conditions on 4, b, ¢, d to be able to de-
cide the solubility of (10).

3. On Ax34By’+4Cz? =Dxyz

Consider the equation:
ax®+by® +c¢z® = dxyz; (15
Mordell [5] writes in his excellent book:

‘It is very difficult to prove the non-existence of integer solutions of the general
equation (15). Sometimes progress can be made with the special case a=5 and
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in particular with
x*+ 8+ ez = dxyz’; (16)

He also gives an incomplete proof* that a descent arises if 3{d, ¢ a prime, d3—27¢
square-free and has only prime factors=2(mod3).

Sylvester [6, 7, 8, 9] stated several far-reaching theorems concerning (15) without
proof, the truth of which Mordell [10] partly.doubted. Sylvester in his last theses
[9] on this matter states that (16) is insoluble if

a) d®—27¢=43A" where A’ is cube-free and

b) 4" even and contains no factor of the form f%+3g? and

¢) c¢a prime number,

except in the cases when }Y—dJc is an integer.

I have found a counterexample to Sylvesters statement: x3+y3-+17z3=—9xyz
(4’ =22-11), which has the solution x=3, y=35 and z= —1. This proves that Sylves-
ter was lacking some conditions necessary to decide the solubility of (16).

Mordell [10] also doubts Sylvesters statement [7] concerning (15), that if a:b
is a rational cube then under certain conditions (15) can be made to ‘depend upon’

AX?+BY3*+CZ3*=dXYZ, where ABC=abc and XYZ]z.

But this turns out to be correct with some limitations (Lemma 5, 8 and 9 below).
In this investigation I generally assume d>0 if not otherwise stated, as my methods
demand this. The case d=0 has been throughly discussed a. o. by Selmer [11], using
different methods. Hurwitz, in an elegant paper [12], has shown theorems concern-
ing the number of solutions of (15), but gives no advice if a particular equation
has solutions or not. Hurwitz made use of Desboves [13] formulae, which give
new solutions of (15) if some solution x,, y,, 2z, is known:

X' = xo(by§ —czp);

¥ = yolczg—axj);

2’ = zo(ax§—by});
or

7 2 2 .
X X1YoZo —Xo)V1215
’_ 2 2 .
Y = ViZoXo—YoZ1X1;
’ L 52 2 .
Z. = Z3XoYo— ZpX1 )15

* This is realized by testing the proof with x3+ y*+ 3z8=2xyz, which has the solution x= —4,
y=—11, z=9.
Also note the misprint d=0 (mod 3); should read d=0 (mod 3), p. 131.
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if x4, Yo, 2z and Xy, ¥, z, are known solutions. It seems as if the only (published)
strict proofs of nonsolubility of an equation of the type (15) (except for those proven
by congruences) having abc1. abed=0 are the proof for x®+y3+5z8=5xyz given
by Ward [14] and the proofs for

X3+y3+1322 = Txyz and x*+ %+ 9z° = 6xyz,

which can be dedticed from the proofs for x3+ y3+z3=xyz and x3+4y3+22=0 res-
pectively. (See Part 4 below.)

%

Assume that in equation (15):
abe=f°. fa prime. wz 0 (mod 3).
§ is defined by: f°|d;i.e. f°|d but fo71d.
Then if §=0, generally a reduction of (15) can be accomplished according to

Lemma 1. If w>30, then (15) can be reduced to

SOrx3Lfory8 4 f o528 = Dxyz; 17
where
0+ wy+wy = 0—30. D =df°.

If w=<36, then (15) can be reduced to the form (17) again, but now
0+ 0+ 0y = 0—3[w/3], D = djfte?];

i.e. 0, +ws+wy=1, 2 depending on w (mod3).

Proof. The lemma is shown by repeated inclusion of the factor f into x, y or
z. If @>6 then plainly ;, @, or w is greater than 3 and an inclusion can be made
if §=0 (if =0 there is nothing to prove). When making an inclusion, @; +w,;+wg
is subtracted by 3 and é by 1. i.e. w,=w—3n and 3,=0—n after n inclusions. The
process stops as soon as 4,=0 or (non-exclusive) w,=4, 5. Which of these cases
occurs first obviously depends on w—3620. If §,=0, then & inclusions have been
made and @,=w—30, i.e. the first case of the lemma has occured. If w,=4, 5 it is
easily shown that another inclusion can be made (if still §=0) and then [w/3] in-
clusions have been made and the second case occurs. QED

The condition w0 (mod3) implies the simple but important:

Lemma 2. If w,+w,+w;£0 (mod3), then (w;—wy)(wy—ws)(w3—w)=0
(mod3) and precisely one of these factors is divisible by 3.
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Proof. Assume on the contrary
0, — Wy =+1 (mod3);
a)g-—w;,,zil (mod 3);
Cw3—w, =+1  (mod 3).

An addition gives: 0=+1+141 (mod 3); i.e. upper/lower signs are valid simul-
taneously. However, this gives 0=(w,—w,)— (0, —w3z)=w,+w,+wg (Mmod 3), a
contradiction. Thus (w; —©;) (Ws— wy) (W3 — ;) =0 (mod3). Also, precisely one of
the factors is divisible by 3, as otherwise the same contradiction would occur. QED

Corollary. If a=f“1, b=f“? and c=f", where w;+ws+w,Z0 (mod3), then
precisely one of a:b, b:c or c:a can be written as S?:T3 where S or T=1.

*

If the equation f“ix3+f“2y34f“z3=dxyz has been reduced according to
Lemma 1, then it is possible to prove

Lemma 3. fx3+4f®)3 1 f9sz3=dxyz has a non-trivial solution if and only
if there is a non-trivial solution of at least one equation:

f“’1°x3 +fw20y’3 +f‘°3023 — dxyz;
where
O+ Wy + W3 = W19+ Wag+ Wy Z 0 (mod3).

Proof. Plainly for every M :
. f“’1°+Mx3 +fwzo+My3 +fw30+M 3 :fdeyz.

Put m; +my+mg=M. Then after inclusion

SO XP SOy +f () = d-fmxfry-f™;
where:
0y = 09— 2my +my+ Mg
Wy = Wag + My~ 2my + Mg} (18)
Wy = Waq+ 1Yy + 1ty — 211

Given @y, Wy and wy, it is sufficient to prove that m,, m, and m, can be chosen
so that the arbitrary combination ®,, @, and w; is given by (18) above. Accord-
ing to Lemma 2: (@;5—msg)* (@gg—W3) * (g0 — 010)=0 (mod3). Suppose w;;—
— g =0 (mod3).

The same is valid for ;, w,, w; and choose w;—w,=0 (mod3). Put 4,=
= — @1 and Ady=w,—wyy. Then 24;+4;,=4,+24,=0 (mod3). The three equa-
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tions for my, m, and my are linearly dependent, The first two give

— 241+A2 .

1= My}
4,424, (my, my and my integers).

m2 = m3———-——3———;

Now choose my big enough so that m;, m, and m, all =0. Thus the construction
of a non-trivial solution of f“1x®+f“2y3 +f*sx3=dxyz is complete. QED

The following theorem proved by Sylvester [7] is wellknown :

If there exists a solution of ax3--by3+cz3=dxyz, where a, b, ¢ arbitrary but
abc#0 then there generally exists a solution of X3+ Y3+abcZ3=dXYZ.

The ‘Theorem of Derivation’ given by Sylvester is deduced as follows:

Let ax®+ by +cz3=dxyz;

Write F=ax3, G=>5by3, H=z?3;

Define X, Y and Z by:

X = F*G+G*H + H*F—3FGH;
Y = FG* + GH? + HF®—3FGH,
Z = (F*+G*+ H*-3FGH)/d = }-xyz((F — G)* + (G — H)*+(H — F)%);

Then X3+ Y3+abeZ3=dXYZ;

However, a non-trivial solution x, y, z of ax3+by*+cz*=dxyz does not always
give a non-trivial solution of X34 Y3+ abcZ3=dXYZ. An example of this is given
by 4x*+2y3+-z3=—3xyz which has the solutions x,y,z=1,—1,1&1,2, —2&
1, —1, —2 but for this values XYZ=0. It is easily seen that this complication can
occur only if abc is a cube and the example above is in fact the only problematic
case of this kind when abc is a prime power (i.e. abc=f*. =0 (mod 3)), except
for the cases where F=G=H.

The converse theorem is not valid generally (See Selmer [11] for example),
but Lemma 3 in fact makes it valid if abc=/*. & #0 (mod3). f a prime.

The condition @ # 0 (mod3) is necessary

x*4+)®4+ 828 = 6xyz hasasolution x=1, y=1 and z=-—1,

but x3+42p3+4z3=6xyz has no solution (end of part 3).
Assume
SB[ Y3 f P03 =(dxyz (19

is reduced according to Lemma 1. F is defined by: F=d*—3%/° and G by:
G=(3%d? F). Also suppose ds0.

Lemma 4. 4/ values of -G are given by the classification below.
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G Case
3td 1 M,
o=1 M,
32td | 33
=3 w=2 My,
3td
w=1 34 M,
32| d
| w=2 35 M
3td . 1 N,
3BF 32 Ny
td
4 3ld 3YF 34 N,
35| F 35 N,
o=1 f Ny
3td
w=2 f? Noo
f#3
w=1 33f Ng
BF
! =2 33f2 N3,
fld
. = 34f N“
31d F
! . w=2 34f2 Ny
w=1 35f N;y
3BF
l w=2 35f2 N52

Proof. Obvious. The reason to separate the case f=3 will be seen below.
It is not absolutely necessary to distinguish the cases where f|G, but as Theorem
3 can be sharpened considerable in these cases I have chosen this classification. QED

Some further definitions:

H is defined by H=F/3" where 3"|F i.c. H is the ‘3-free’ part of F.

T is the set of t€Z (rational integers) such that |¢|=II,p% where Vi: (p;=2
(mod 3). p; prime). ,

U is a subset of T such that Vi: o;=1 (mod 2). i.e. all p;’s have an odd exponent.
Also let: =1€T and U. Note that U is wider than the set of square-free t¢T.

I have proved the following.

Theorem 3. If HET and the conditions for Lemma 1 are ﬁilﬁlled then in the
different cases (Lemma 4) the following can be stated:

M, and N,: The equation f“1x3+f“2y34f“s28=dxyz; has a non-trivial solu-
tion if and only if there exists a non-trivial solution U,, V,, W, of some equation
SO UBL [P0 Y34 fO0 WR=dUVW ; where wyq+ 39+ g9 =00. | Uy Vy| = 1. 001 W30 03 =
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=0. wy—Wwy=0(mod3). In particular if w=1, then (d=f%2) or (d=4f%1) is
necessary and sufficient for (19) to have a non-trivial solution.

If furthermore H€ U, then in the case M, there is a solution if and only if (w=4.
f=3. d=13) and in the case N, if and only if (w=2. f=7. d=11) or (w=2. f=2.
d=>5).

Ny, If 6 is odd and }Y—d]f? is a rational integer then (19) has a non-trivial
solution, otherwise there is a solution if and only if f=2. d=4. (w=1). This solu-
tion is solitary.

Ngo: If 6 is even and J—dJf? is a rational integer then (19) has a non-trivial
solution. Otherwise there is a solution if and only if f=2. d=2. (w=2). This solu-
tion is solitary.

My If d=3(mod9), then (19) has a non-trivial solution if and only if }—d/3
is a rational integer.

If d=—3 (mod9), then it is problematic to decide whether (19) has a solution
or not. For example, the equation x*+ 3%+ 3z3=33xyz has the solution (x=1.
v=>5. z=7) but no solution with [xy|=1, even though HeT.

M,,: There are only trivial solutions.

Ng: If (3lld. H=+£1 (mod9)) or (3%d. f £ 1 (mod9)) then the solubility of
(19) can be decided in the same way as for N,. ¥f H€ U, then there is a non-trivial
solution if and only if (w=2. f=5. d=9) or (w=4. f=2. d=9).

The extra conditions are necessary as x3+3y3+(D*—-3D—1)z3=3Dxyz has the
solution (x=D+1. Y=D. z=1) and would give counterexamples when putting
d=3D=15 in the first case and d=9 in the second case.

Ny : If 3)d. H=+1 (mod9), then there are only trivial solutions.
If 3?|d. f# +1 (mod9), then there is a non-trivial solution if and only if & is
odd and Y—d|f? is a rational integer.

Nyp: As in Ny, but § should be even in this case.
M,: There are only trivial solutions.

N,: Decidable in the same way as N,. If Hc U then there are only trivial solu-
tions.

Ny If 6 is odd and ]/—d/f ? is a rational integer then there exists a non-trivial
solution, otherwise none.

Ny As in Ny, but J should be even in this case.
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Mg, N;, Ny;, Nss: Problematic cases, ‘fortunately’ it is rather unusual that
3%|ds 331,

If (d=3D. ¢=D3-9D+9. a=b=1), then d®—27¢=3°(D—1) and x*+y*+
+cz8=dxyz has the solution (x=D—1. y=D—2, z=1). Several d-values give:
(HET. ¢=f. f a prime) but still the equation has no solution with |xy|=

*

In the cases N3, N3, and N, problematic subcases occur; these can be summed
up with the conditions:

f= 11 (mod9). d=0 (mod3); or

f°=+4(mod9). d= T3 (mod9), where upper/lower signs belong together.

Put in this way, these conditions also include all cases where 3°|G' (and f3).

Using the same conditions as Mordell [5] did (see above) it is possible to make
a very strong statement, namely that (16) lacks solutions in all cases, except if c=2.
d=4, when there is a solitary solution.

*

In order to prove Theorem 3 I give the crucial
Lemma 5. Consider
ax3+by3+cz3=dxyz (20)

If (20) has a solution x,y, z and (abc=0. (d, abc)=1. d#0 (mod3). a:b a rational
cube HET), then it is possible to find an equation

a&+b P+ 3= dénl;

where a’b’ ¢’ =abc, which has a solution &, 4, { satisfying: &nllz.

Note. The conditions stated above are valid only for »,, the most general
case. Sylvester [6] states without proof a similar lemma, but he does not distinguish
the cases where 3|d, cases that need additional assumptions as seen from Theorem 3.

Proof. Extend both sides of (20) by ab(=0) to get
a?bx®+ab®y® + abez® = abdxyz; @1

a:b a rational cube —(implies) (a2b= S3. ab®>=T3. ab=ST).
(21) rewritten becomes:

(BSx)*+ BTy +(dz)*—3:38x-3Ty-dz = (d*—27abc) 2>, 22)
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Now apply the transformation:

Ao = 3Sx+3Ty-+dz;
A4 =—6Sx+3Ty+dz; (23)
Ay =3Sx—6Ty+dz;

where 4 is the g.c.d. of the right hand expressidns of (23) and («, B, y)=1. The
determinant=3*.d. §. T#0, as d=0. (22) transformed becomes:

B (B + By +9%) = (d°—2Tabe) (a+ f+9)°; @4

a0 if d®—27abc+#0 as otherwise a=0>a+f+y=0-z=0.

o and f%+ By y? cannot have a factor in common, which is also a factor in
a-+f+7, because if this factor existed, it would divide both f+7 and 82+ By-+y2=
=(f+7y)?—Py. i.e. also fy and consequently both f and y and the contradiction
(o, B, 7)1 would occur.

Thus

o =k, A%

B2+ By +y* = ke M?

Write ¢=(f, y). Then 3{¢ as 3j¢—>3|M—3|a+B+7y—3|a—~(a, B, y)#1: a contradic-

tion. Let g be an arbitrary prime factor of & Suppose g| M, this would again give

(o, B, y)#1. Thus &2k, i.e. ky=K,e? for some K,. Take a factor (3) in K,; it divides.

both f and y as this factor=2 (mod3) by assumption. Thus K,=1, 3 as otherwise
£#(p, v), contrary to definition of &.

1
SB=¢eB. y=ey. ﬂ%‘i“ﬁlh‘*")’% = {3}M3- Biy1) = 1.

Case A: B+ Pry,+7i=M>.
(Bi—071, B1—07)=1,0—@; but the latter case—>3|M—>33|/3§+ﬂ1y1+yi~>
—3|By. 3]y.—>(Bys y1)#1: clearly a contradiction. Thus we have

} where k,k, = 3(d*—27abc). (4, M) = 1.

Bi—oy1 = 0 (w—gv)®, where M=uw+uw+1®. j=0, +1.

It is easily shown: j=—1, otherwise the ‘usual’ contradiction (z, B, )1 would
occur.

(24) ~ 2dA W2+ uv + v?) = (d®— 27abc) A — (v + uv®) % 25)
(25) is transformed by: '
4,0 = dA+ev; (26)

AlR = dA—E(u"f‘v);

where 4 is the g.c.d. of the right hand expressions, into: abc(P+Q+ RP=d3POR,
where (P, O, R)=1and (d, abc)=1.
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Lemma 6 gives: P=a’&3, Q=b"y®, R=c"(3, where a’b’c’=abc and

a4+ P = déyl. 27
It is easily deduced that
3z
énl = m— 5

but Case A occurs only if z=0 (mod3) (seen from (23)). i.e.

34 and nf = ——2>

= A/3.
N where 4, = 4/

Case B: B2+ By, +yi=3M3.

In this case obviously: (8;— @7, f1—@y) =0 —8=2¢+1,ie. fy—on=0' Qe +1)
(u— gv)?, where M=u?+uv-+v? and j=0, + 1. It is a little bit trickier now to dispose
of j=0, 1 so I give details.

Assume j=0-f;=u—v*+6u2v+3ur?. y;=—2ud—1v®)—3ulv+3u?; ~ (via
(24)): .

32 dAu? +uv + 1) = (d®—27abc) A® + & (—u® + v® + 3u® v + 6uv®). (28)

Plainly: —ud34+v3+3utv+6uri=—(u—v)®=+1 (mod9) as u—v=0 (mod3)—
~(B1, y) #1. If 3|4 one gets 3ja but 3ja+f+y->3[f+7; as (By—r)*+3p1y,=3M?
also: 3|8, —7y,, but this would again give (a, §, y)=1.

The contradiction implies: 31 A.

A > (dAP+E(—®+ 3+ 3uPv+6m?) = +14+1  (mod9).

But (28) implies that this last expression is divisible by 3. i.e. it is also divisible by
9. (28) then also implies 3[u*+uv+0v2—3|u—v but this would give (B, y)=1: a
contradiction showing that j=0 is not valid.

J=1 is excluded by the same arguments.

j=—1-> B =uB—1®—3ulv—6u? 7y, = ud—0v®+6udv+3uv?;
(24) - 3edA (12 +uv +v%) = (d®—27abc) A% + & (2u® — 20® + 3uPv — 3uv?).  (29)
Now .use the transformation (where 4; has the same meaning as before):

A, P = dA—¢e(u+2v);
4,0 = dA—¢e(u—v),; ' (30)
AR = dA+eQQu+v);

(28), (30) — 4;(P+Q +R) = 3d4;
A3POR = 27abcA3;} where (P, Q, R) =1
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As A, P=A,Q=4,R (mod3) and 43PQR=0 (mod3) then A,=34,.
As before: abc(P+Q+RyPE=d* PQR—~P=a"3. Q=b"y®. R=c"(3

ab'c =abe - a8+ P+ = dénl.
Here '
zZ

&nl = m QED

A lemma used in Lemmas 5,7 and 8 is the

Lemma 6. If abc(P+Q+R}P=d*PQR, where (d,abc)=1 and (P, Q, R)=1,
then
P=a8 Q=bn’ R=c abc =abc

and
a b+ = dént.
Proof. Write V
gl = (Q? R)
g2 = (R’ P)
: 82 = (Pr Q)
where '

(81, 82) = (82, 83) = (83,80 = 13
>~ P =goggP’. Q0 =g38.0". R=ggR;
where (P’, Q") =(Q', R)=(R,P)=1 and (P, g)=(Q,¢8) =(R,g)=1;
The original equation becomes:
abc (8283 P’ +2:810" + 8152 R = d°(818:8)* P'Q'R’;

Congruencies (mod g;) (i=1, 2, 3) implies

P’ = t1€3§
abc = T(g18:8:)° ~ Q' = ton®;
R = t,0%

where t1t,t, = T
- 883118+ g1 to PP + 8122102 = dEn{;

Write
a’ = g83t;
b’ = gygits;

o = 818213;

and the lemma is proved. QED

The lemmas 1—6 and a descent now give Theorem 3 in the case N,, but it
is readily seen that also M, is proved.
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The condition @, w,w;=0 needs some explanation. Assume that the descent
has led to an equation

SR UG+ [y +f oo Ws = dUshoWo; (31
where ;owzws, 70, but the other conditions in Theorem 3 are fulfilled, i.e. also
|U,V,|=1. Then f|W, as fId and |U,V,|=1. But this gives f*|W,, where k=min
(w19, Wge) and (31) is converted into an equation where @@, Ws={(W39—k) (s —
— k) (59 +2K)=0.

I now prove the statement in Theorem 3 when HcU
V; ;=1 (mod2) ~e=1 (see Lemma 5).
Lemma 5, Case A, equation (25) —

dA = (d®—27f*) 43;
as it is necessary to have M=u?+uv+v>=1 to make the descent stop.
A% 0~d=(P-2If") 4% but (d,d*-27f*) =1~
(4* = +d. d®—27f* = +1). Now d®-27f® = +1 ~

(w=1. f=19,37)~d=8,10 which is a contradiction to A%*= +d.
Lemma 5, Case B, equation (29)—
3dA=(d®—27f°)A3+2; with solutions valid for M, N,:

Case | A o f d U, Vy W,
Ny —1. 2 2 5 U3 2V3 4203 = SUVW 1 1 1
Ny 2 2 7 11 TUR+TV3+ W3 = 1IUVW 1 1 2
M, -2 4 3 13 BRUP+3IV+WE = 13UVW 1 1 2

Lemma 5 can in fact also be used to prove the Theorem 3 in the cases Ny and Ny,.
H¢T in these cases implies: f=2 (mod3).
Lemma 4 gives w=1, 2 in these cases. i.e. abc=f, f2. (19) can be written:

X2+ +c® = f®Dxyz, where c=f f2-0=1

This is because fx3+fy®+z3=f°Dxyz in the case Ny, immediately implies x®+y*+
+f%28 =f° Dxyz,, where z; =z/f.

Ny : The condition for a non-trivial solution to exist is the existence of Uy, V,
and W,, such that

U3+ V3 +fW3 = f2DUVW,, where Uyl = 1.



On some classes of homogeneous ternary cubic diophantine equations 45

UyVy=—1~the solution Uy=1, Vy=~1, W,=-+tVD-fexp ((5—1/2)) provided
d is odd and D=—D}.
Uy Vy=1~f=2.d=4.(w=1).

The corresponding equation: x®+)3+2z°=4xyz has a solution x=y=z=1
and H=2-5¢U. This solution is solitary: Equation (30) in Case B, Lemma 5 gives
{(4,=34,and P, O, R=1, 1, 2)

34, = 44 —e(u+20);
My =4d—eu—v); { v =0." Ady=ceu—~ A = eu
64, = 44 +¢2u+v):

but (4, u)=1 if v=0, otherwise (f;, y)>1. Also (4,8)=1-A==1. eu=+1 and
this -implies. that an ascent cannot succeed as the same solution recurs.
Nog: US+VE+[*WE=f2 DUV, W,, where |U,V,|=1 implies as in case Ny,
when U, Vy=—1:
If § is even and D= — Dj then there is a non-trivial solution Uy=1, V= —1,
Wo=+ VD fexp ((6/2—1)).
Uy Vy=1-f=2.D=1.

x3+3®4+4z8=2xyz thus has the solution x, y,z=1, 1, —1 and H=—22.52¢T.
Using the same arguments as in Ny, this is a solitary solution.

%

The correspondence to Lemma 5 when 3|d and 33| F is now shown, omitting a
lot of details.

Lemma 7. Consider ax®+by®+cz®=dxyz; (20) again. If (20) has a solution
x, ¥,z and (abc0. (d, abc)=1. 33| F. a:b a rational cube. HET) and also (when
abe=f". w#0 (mod3))3|d. H= £ 1 (mod9) or 3%|d. f2 +1 (mod9), then there is an
equation a’ E3+b'n® +c’B=dénl; where a’b’¢’=abc, having a solution &, n, { satisfy-
ing: &nl|z.
Proof. Write d=3D. Apply the transformation (see Lemma 35)
Ao = Sx+Ty+ Dz;
A = —=28x+Ty+Dz; ¢, (0, B,9) =1, (33)
Ay = Sx—2Ty+ Dz,
on (20), resulting in
| BED(F By 1) = (D ~f) -+ f )
AsinlLemma5:
o = klAs;

—_ 3 __ fo — 8 ro
ﬂ2+ﬂy+y2:k2M3;} where kik =3(D°~f®). (4, M)=1. D*—fecT
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and v , 1
B=2¢Bi. y=¢ep- (B,v) =1 ﬁl+ﬂ1?1+'y%= 3 M3,

Casé A ﬁi+ﬁ171+yi=M3.
As in Lemma 5 (same notation & arguments)

&D- AW +uv+0%) = (D~ ) 4>~ & (v + ur’); (G4
A4,P = DA +eu;
4,0 = DA+ eu; where (P,Q,R) = 1.

AR = DA —¢e(u+v);
Finally P=ad’&3. Q=b}113. R=c'{3; and @' &+b'n*+c"3=3Dénl=dénl; where

z

énl = 'W;

Case B: B2+ Byy,+v3=3M>.

This is where difficulties occur and it is easily shown that the extra conditions
are necessary.

Asin Lemma 5 j=0implies

3D - AW +uv+1?) = (D®—f°) A%+ &3 (—ud + v® + 3uPv + 6uv?); (35)

Also here: 31¢e: 31 4. 3{u2-+uv+v2.
Suppose: 31 D. D3 —f“= 11 (mod9);

(35) >~ £3=£D°~f*)£1 (mod9) ~

D¥—f® =42, +4 (mod9).
A contradiction!
Suppose instead : 3|D. f# £ 1 (mod9)

(35) > 0+/°+1 (mod9) — f* = +1 (mod9) —
- f=+1 (mod9) (as 3fw).

A cantradiction again.
The case j=1 is excluded with the same conditions and arguments.

j=—1~pi = P—0®=3uPv—6uw?. 7y, = 1®— v+ 6utv+3uv?; —
362 DA (2 +uv +v%) = (D*—f9) A% + 2 Qu® — 20® + 3uPv— 3ur?); (36)

AP = DA —¢(u+2v);
4,0 = DA—¢e(u—v); [ —~
4;R = DA+eQu+v);

P=al. Q=0by R=c{ and
dELY R+ = 3D, where da'b’c’ = abe.
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Also z ED
&l = m, Q

Lemma 7 and a descent now proves Theorem 3 in the case N;. There remains

to investigate the subcase HcU. Equation (34) in Case A, Lemma 7—(¢e=M=1)

DA = (D*—f*)A%, - D= (D*—f)4% as A#0.

But f1D—-D=+A4% D*—f“=+£1, two equations having no consistent solutions.
Equation (35) in Case B, Lemma 7
3DA=(D3—f*)A%+2; with solutions valid in the case N; (and HeU):

A f ) d H U, Vo Wo |
-1 2 4 9 | 11 AUB+4AV3+ W32 = UV W 1 1 1
2 5 2 9 2 SUR+5V3+ We = UV W 1 1 2

M, and Mg, Lemma 7 can be used, just watch the extra conditions due to
JS=3.Putd=3D.

In the case My : H=D*-3=4+1-3=-2, —4 (mod9).

As 3||d, the case is undecidable (at least with above theorems) unless Case B
in Lemma 7 can be excluded.

This is in fact possible, if d=3 (mod9).

Proof. x3+y®+3z8=3Dxyz; where D=1 (mod3).
3|x34+)3 - 3|x+y ~ B|x3+ )8 > 32|3z(Dxy —22) - 3|z(Dxy —2).

Assume: 31z; Then 3|Dxy —z2>xy=z2 (mod3)
—»xy=1l(mod3)>x=y=+1 (mod3)-»x+y=TF1 (mod3).
Clearly a contradiction! Thus 3|z.

The first equation also gives:

x+y+2)(x+y+2?—3(xy+yz+2zx)) = z3(D—1)xy—2z%) = 0 (mod 3%);
x+y+z=0 (mod3) - 3|(x+y+z)?—3(xy+yz+2zx)

(because 3% |(x+y+2)2 3%|3z(x+y). 3[3xy)
—-x+y+z=0 (mod3?);
do=x+y+Dz=x+y+z+(D—1)z=0 (mod3?)
Ap=—2x+y+Dz=Aa—3xZ0 (mod3?)
Ay=x—-2y+Dz=Aa—3y#0 (mod3?)
The conclusion is: 3|4 but 3243« and only the Case A occurs. QED
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In the case M,,: H==D3-3%2=+1(mod9). i.e. the ‘correct’ condition when
3|id. Equation (19) has a non-trivial solution if and only if U3+ V3+9W3=3DUVW
has a non-trivial solution U,, V,, W, where |U, V,|=1.

U, V,=—1-3|D, a contradiction.

Uy Vy=1->2+9W3=3DW,, clearly impossible.

Nj;, Nyt Lemma 7 can be used also in these cases, with minor modifications.
Write d=3/°D, where §=1. f=3.
The extra conditions in Lemma 7 are:
3|D. f# 41 (mod9) or 3{D. (Df?)*—f“=+1 (mod9).
=1 U+VE+fW3 = 3°DU,V,W,, where |U V| = 1.
U, Vo= —1 gives the statement in Theorem 3.
U,V,=1 implies f=2. D=0, which is already excluded.
=2 US+Vi+ W3 = 3° DUV, W,, where |UV| = 1.

U, Vy=—1 gives the statement in Theorem 3.

UVy=1->W,=1. f=2 6=1 D=1, but H=4%41 (mod9)

thus the conditions for Lemma 7 are not fulfilled in this specific case.

To prove Theorem 3 in the cases where 3%|G, it is necessary to have a lemma,
corresponding to Lemma 5 and 7, namely

Lemma 8. Can be stated like Lemma 5, except for d 0 (mod3), which is replaced
by G=3" Also suppose: (abc=f*. w#0 (mod3)), even though a:b a rational cube
is a sufficient condition.

Asin Lemma 7:
3D*a(B?+ By + 7% = (D*—f )@+ B +7);

where now: 3| D3 —f, giving

3D+ By ) =gk 37

AsinLemma5:

o=k A3
B2+ By +9% = ky M®

Now H=(D?*—f*)/3 and three subcases occur:

31k,. 32k,

} where kik, = 3(D*—f%). (4, M)=1.
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Here: 3%|B*+ By+y*~3%|(B—y)*+3By~3[f—y~3|By—~(3|B. 3[y), but together
with 3]+ S+ we get («, B, y) #1, a contradiction.

3 k. 3|k,

318 +By+9* ~ 38—y, but 3latf+y—3|B+y

thus 3|8. 3|y and again (a, 8, y)=1.

32k,. 31k,.

Asin earlier lemmas (j= — 1 here too)

DA +uv +1%) = (D¥—f©) 43— (v + uv®).
Apply transformation (26) again, finally
@Y P+ = den;

and

_Z
A4,

The case N, of Theorem 3 is now readily shown. If HeU then the proof is
similar to that for N,.

The cases M,, Ny, and N, are shown after a slight modification of Lemma 8.

The difficulty to decide the solubility of (19) when 3°|G, lies therein that it is
not possible by means of elementary congruences to exclude asymmetrical (in u
and v) equations of the type:

énl = QED

D3 __fw
32

where 3%|D%—f©,

DA +uv+ %) = -A3+83(u3—03.+ 3uP0);

*

Theorem 3 now proves to be powerful within its restrictions. In Table 1 I have
marked cases of ‘non-solubility’ with a ‘—’ and cases where there exists at least
one non-trivial solution of x3+ )3+ abcz=dxyz; with a ‘+°. The density of decided
cases is good when abc=f®. w#0 (mod3) and |d|=27. Note in these cases that
a ‘4’ marks that every equation in the family: ax®+by*+cz3=dxyz has a non-
trivial solution.

The cases when d=0 have been taken from Selmer [11]. All combinations of
a, b, ¢ and d with |abc|=27 and |d|=27 have been tested to give solutions of ax3+
+by*+cz8=dxyz where a=b=c=1 and |x|=50. |y|=100. |z|=100. The solutions
with a minimal x are given in Table 4. Note that a solution of ax®+by®+cz¥=dxyz
generally gives a solution of x3+y®+abcz®=dxyz due to Sylvester’s ‘Theorem of
Derivation’, given at the beginning of Part 3.
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Table 1
x34- 38+ abcz® = dxyz
: non-trivial solution exists
E: no solution exists

d D:undecided
27 +-|-+ |+++] —-+]|- + o+ +| -4+ +
26 |+ I e e I e I I e I B
25 |——+|=++|- -] - | += = | ++ +
24 - +++|-—— - + + 4+ + 4+ -
23 | ==+ |+—+|= +|+- |+ o+ —H |+ o+
22 | ——+|++ el B e e I I Il I
20 {+ —=|—++|+ =] = |- + + e
20 |[+——|—+ |H+—|+= |—F++|+=+]|- F|+++|-++
19 [+-—|+++|=-F—|+++]+ 4+ ] - -+
18 [+=—|—=+ |+++]+=-+| ++|++ + -|-++
17 [+++|+++|- —|++ |+ +|=-— |+++| + [+ +
16 |+++|+— |(+-F|+—+|++ |+++|+++| +-|-++
15 | +—+]+- - - + + + |+ + -+ -++
14 |+—-|—-- + -+ -+ =-++|++ + ==+
13 |+++|+= |- =|++ |[+++|-++|++ |+- |- +
12 |—++|- el T e e I IR +l++-
11| —=+|=4+ |+++|+= |[++ |+++|+ +] —-+|+

10 [+++{+—F|+++] ++]|—-+ |—++]|++ A |+
9 |++—|—-— |+ +| HFH|+ F|H++ [FrH|F—F|+ +
8 |—+—|—-F+|+-—|+++]|+ +|+—F|— H|++-|+

7 |=+—|-+ |+++]| —+]|- e R IS
6 |+—+|+—+|—-+—| - + |- H|++F| - -
5 |4+—+|+— |+ —|++ |—F |F+-+|++ |++ |- +
4 |—+—=|==+|=-==| = |++ |-+ |= F|+-=+|++
3 l+—=—{=+ |- —| —+|- +|-++ + - -
2 |——+t++ |[+—=|+= |+ —— | — | -+
1 ——+ =+ —++ |+ + + +i—+ - + 444+
0 |—+—f—=+|+—+|-=+|+=+|++—|++—|+-—]| -+

123 456 789 101112131415161718192021 222324252627 abc

It is fairly easy to realize from the proof of Theorem 3 that it is effective even
if abc is not of the form f®,if you just succeed to exclude (e.g. by means of con-
gruences) all combinations of @, b, ¢ except @’=1. b’=1. ¢’=abc, when given abc.
The condition abc=f®. w20 (mod3) is used only to secure that a:b, b:c or c:a is
a rational cube at every factorization of abc into three factors.

Mordell [5] shows that

X2+ by +cz® = dxyz; (38)
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123 456 789 101112131415161718192021222324252627 abc

1 +—— |+ (+ F+ - +- (= A+ = ++T
2| =+ ==t |-+ F++|- — =+ |-+ + -+
=3 |-~ |+ fmm= A FHFF - [+ +-+ |+ +
4t ==ttt ++ |- F |+ ——1++
S| —=+]—-+ |+++| F+H|F+++|{-+ |+ |+ +
6| -——l—++|=—~=|+++]++ |-+ |+ +|F++|- -
=T l=F+—=|—=+1+ | =+|—F+|+= = +] + |- +
8 |—-+—|+= |=FF|+- | =F ||+ |+ -+
O +—=|F=-+|- F[++ |-+ P+ [ FFH| |+ -
—10(++—-(+— t—=—=1++ [+ +{—F++]|- + o+ o+
1| ++—|—FF|+ F|Ft+ | =t - || -+
12 +-+| - |=-—F|+-+|+ —++ |+ S Il e
—13 =+l =+ - +] o+ |+ F == | F =+ —-+
14—+ |+= |[F=F|t= | FEF|F- || A+
15y —+—|++ |—++]| —F|= F|-F+ |F+++| + |[—+-
-6 +—+|+++|-~+| - |+++|[+- |-+ [+~ |+++
~17{+-—1-+ 1++—=0 —+|++ [+++1 ++[++ [+ +
-18f ++|-+ {+++| - |++ |-++|++ ——= |+ -
19— —|++ |—++| ++|+ +j-— |++ [+- |-
—20{—+—-|~-+ |++-|F—F| +F+|++ [+ +— |-+
21 +—+| - |+ -] - +1 = +++ - -
=22 |h—F =+ |-+ S Il I
=23 =+ |=-+F|- | FH|-F+ |+-F}- ++ |+
24 |+ -+ |+ |-+ I e e ol i i il NS S IR o I
=254+ =4+~ |=FF|F++]| - H|[F++H |- H|E- |+
26 | =+~ |—F+|+~-+| ++}] FH[+++|- + +1-+
=27 | +++ - 4+ |+++ -+ |+ | -+ o+

lacks solutions if 5=2 (mod7). c=4 (mod7), d= —1 (mod7). So, it might be possible
to use Theorem 3 when abc=8 or abc=6%* for example, as the tricky combinations
of a, b and ¢ can be excluded in some cases.

However, suppose abc=p,p, where p, and p, are primes and p;=2 (mod7).
p=4 (mod7). Also suppose d=—1 (mod 7), then d*—27abc=0 (mod7) i.e. 7|d®~
—27abc and H ¢ T, which means that Theorem 3 cannot be used.

Suppose f= 14 (mod9) and f a prime. Then x3+2y*+fz3=9Dxyz has only
trivial solutions, which is easily shown by congruence (mod9).

Sylvester [9] probably made use of this fact when stating a theorem on the
non-solubility of ‘

x%+33 +2fz® = 9Dxyz. 39

Here 3%||G. i.e. to be able to use Theorem 3 we must have 2% +1 (mod9), but f= 4
(mod9) on the contrary gives 2f= T1 (mod9). As seen from the counterexample

* In the case abc =6 write (38): x*+2y*+(—3)(—2)*=(—d) xy(—z); where now d=1 (mod 7).
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given at the beginning of part 3, Sylvester lacked this condition in other statements
too. However, I have not found any counterexample to his statement about (39)
for f=5, 13, 23, 31 and max ([x|, [y}, |z]) =40. '

Sylvester [9] also made an analogous statement on x3+y3+4f.z8=18Dxyz
where f= 42 (mod9) and a prime. Also here there is no immediately found counter-
example.

Some further examples of the same kind :

X3+fy*+92z=9Dxyz; has no solution if f=+2, £4 (mod9), but here 3*G
and the equation

x34+y3+9f. 2% = 9Dxyz;
is problematic. ‘ '

Also x%+f+y*+7*23=T7Dxyz; where f= =12, +4 (mod7). a=1, 2 has no solu-
tion, a congruence (mod7) shows this. But H ¢ T as 7|H and it is not possible to use
Theorem 3.

Using Selmer’s [11] results on cubic residues, further examples are easily con-

structed.
*

To find parametric solutions of
x3+33 4 ez = dxyz; (40)

where ¢ and d are unrestricted, proceed as follows: Plainly shown by insertion is
that:
If x*+33+¢yz8=d,xyz has a solution x,, y,, z,, then the equation where

¢ = ¢yt 0%pYo

d = d+ oz }, 0 a rational integer

has the same solution.
x3+)3+9323=3yxyz; has (infinitely) many solutions satisfying:

x+y+yz =0;

x,y and z can be written parametrically

- R L — e
X = 2+r. y=— ot 2= - @n

where 7 is chosen so that x, y become integers. i.e.  is a rational integer or the half
an odd such.
Equation (40), where:

2,2
¢ = y3+5[—y4u —1:2];

d=3y+di?,
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thus has a solution given by (41). This is easily generalized so that ¢ changes into
cm®, d into dm and z into mu, but x and y in (41) remain unchanged.

These forms for ¢ and d are also necessary as shown by the surprisingly easy
proved:

Theorem 4. If x3+)*+cz*=dxyz; (40) where ¢ and d are unrestricted, has a
solution x,y, z satisfying xyz+#0 and x+y#0, then

4
dm = 3y+ 6u?;

2,2
cm® = y2 46 VU R
(42)

Jfor some values of the rational integers m, y, 6, u and the (half-) integer <.

If furthermore z=3%¢t, where t€T and «=0, then m=1, 3 and u is of the same
form as z and given ¢ and d it is possible to determine all values (if they exist) of
m, 7,8, u and 7 satisfying (42). Thus it is always possible to decide whether (40)
has any solution satisfying z=3%¢, and the number of such z-values is always finite.

Proof. Suppose x,y,z is a solution of (40). For simplicity also suppose
(x, »)=1. Write y/m=—(x+y)/z, where (y, m)=1, and u=z/m.
Then x4 y= —yu and for some (half-) integer

X = —y—zu—{—t;]
ym
Z = mu. ’

Inserting these expressions into (40), it is easily obtained:
1 (em®— %) = xy(dm--3y); but (2 xy) =1 gives (42).

Now (42) implies:
2
m3(d®—27c) = [[%—“er] +27‘c2]; 43)
As (y, m)=1 we must have (6, m)=1 by (42) and consequently d[d®—27c.
From (43) it is concluded that if the m-value is known (and ¢, d given), then
there is only a finite number of possibilities for &, y, #, T and z(=mu).
Suppose first a=0 i.e. z€T.

z= J[ip¥E. V,:p;=2 (mod3) -~ V,;:x*+3* = 0 (mod p¥)

but then V, pftlx+y as pj|x®—xy+y? would give x=y=0 (mod p;) because p;=2
(mod3).
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Thus z|x+y or x+y+yz=0 for some y and m=1.

Then suppose 3|z i.e. 3%|z and a=1.

If 3{d, then 3*~!|x+y—>3(x+y)+yz=0, where 3{y and m=3.

If 3|d, then 3**!|x3+ y3>3%x+y—>x+y+7yz=0 for some y and m=1. QED

Note. If x+y=0 in (40) then x=—y=1 and }Y—dJc must be an integer for
(40) to have non-trivial solutions. If (x, y)=r=>1 then y and = in (42) and (43) should
be replaced by ry and rt.

Theorem 4 gives an efficient way to find solutions of x3+y3+cz3=dxyz. If
there exists a solution z=3%¢#, where t¢T (62 of the natural numbers =100 satisfy
this) this can be found by putting m=1, 3 in (43) and try finite number of possible
values for 8, u and 7. If no solution is found, then continue to try with m=7, 13,
19, 21, 31, 37, 39, 43,49, ... i.e. the numbers containing only primes=1 (mod6) or
three times such a number if =0 (mod3). The theorem is used below (at the end
of part 4) to give parametric solutions of x3+y*+z3=nxyz. i.e. for special n-forms
it is always possible to find a non-trivial solution.

4. On f3x34+g3y3+-h3z3 = nxyz

Consider
[ix+ g3y 8z =nxyz (44)
where fgh=0.

The case fgh=1. n=0 is ‘Fermats last theorem’ for cubes and there are no
solutions even in K(}/=3).

Mordell [10] proved that (44) has essentially one (solitary) solution when fgh=1.
n=—1, 5. This was long an outstanding question from Hurwitz’ paper [12].

The case fgh=1. n=3is trivial since (44) then can be written: (x+y+z)((x—y)*+
+(r— 2P~ x))=0.

Rather famous became the case, where fgh=1. n=1 as it remained undecided
for several years. However Cassels [15] and Sansone, Cassels [16] proved that the
corresponding equation has no solutions. The method in the last paper is elemen-
tary, but cannot be used for other n-values.

The problem to deal with (44) using the method in part 3 is obvious:

F=d?*—2Tabc=n®*—(3fgh)*¢ T, as F contains at least one pair of conjugated
primes in K (]/—hS) unless n=13fgh. Therefore (44) should be transformed to a form,
more suitable for Theorem 3.

Sylvester [6] stated without proof: (44) can be made to ‘depend upon’

Au?+ Bv® + Cw® = Duvw; 45)

where ABC=(n—6fgh)®—(n—3fgh)® and D=3(n-+6fgh). He concludes from this
that x34y3+2z3= —6xyz has no solutions, for example.
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A proof is easily obtained from Theorem 1 by changing x—fx. y—>gx. z—~hz
and putting a=fgh. b=0. d= —n. The result is

Jeh(n® + 3nfgh+9(fghfF)(U+V+W) = (n-+6fghy UVW. (46)

But fgh(n*+ 3nfgh+9(f2h?)=1/3% (n+6/gh)®—(n—3fgh)®) and the statement is
proved.

The condition for the transformation to be permitted is (n+ 6fgh) (n—3fgh) 0,
so Sylvesters conclusion was proved is some other way.

One should use the transformation :

p=x+y+tz;
q=—~2x+y+z;
r=x—2y+z;

to bring x4 y%+23=—6xyz into P*+ Q%+ R*=0 (via an intermediate step). Here
P, 0 and R are all rational integers, cf. the transformation in part 2, where u, v
and we K (Y =3).

In (44), (n, fgh)=1 can be assumed, as otherwise the common factors certainly
could be included into x, y or z. Equation (44) then in general leads to a difficult
equation

au® 4+ bv® + ew® = (n+ 6fghyuvw; 47

where abc=fgh(n®+3nfgh+9(fgh)?) (if 3{n). To make any progress, suppose fgh=
=1, 2. (46) in the first case becomes:

P+3n+NU+V+W)P = (n+ 62 UVW, (48)

where n= —6 and n>=3, but these n-values have already been discussed.
Four distinct subcases occur:

Case #| n(mod9) |(n*+3n+9, (n+6)%)

1 11,2,4,5,7,8 1

2 0 32
3 3 30
4 6 32

Case 1. If n2+3n+9=f*. @20 (mod3). f a prime, then Theorem 3 can be used
immediately, provided that d®*—27abc=(n+6)*—27(m2+3n+9)=mn—3)3¢T. ie.
n—3€T. n? +3n+ 9=/ has many solutions, especially for small n-values, when w=1.

When w=2 it has only the solutions f=7. n=—38,5.

When w =3 there are probably no solutions, but in fact one could safely state
only that it has a finite number of solutions for each w [17].
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Necessary and sufficient for x3+3®+z3=nxyz; to have at least one non-trivial
solution if #2+3rn+9=f. n—3€T is thus that

W+ -+ @2+ 3+ Nt = (n+ 6)uow

has a non-trivial solution satisfying [uv|=1.
This is possible only when n= -1, and the solution is u=1. v=1. w=—1.
If w=2, there is only need to investigate if

W+ 0*+49® = 1luvw,
or n=>5
TR+ T+ wd = lluvw;}
B+ 08 - 49%® = — 2uvw;
or } n=-—38

T+ 7% +w® = —2uvw;

has a solution, satisfying |uv|=1.

Only the second equation has such a solution u, v, w=1, 1, 2, which gives the
(solitary) solution 1,1,2 of x®+)%+z3=5xyz. The other equation x3+y3+23—
= —8xyz consequently has no solution.

Case 2 Here n=0 (mod9). Write n=9N.
(48) -~ ONZ+3N+D(U+V+ W)3 = 3(@N+2B2UVW, 49)

To get forward suppose N=0(n=0). (49) turns into 23+ v3+9wi=6uvw; Then
d3—27c= —3% and the case M,, of Theorem 3 is applicable, and no solution exists.

Case 3. Here n=3 (mod9). Write n=3(3N+1).

48) ~ BN>+ 3N+ D(U+V+WP = BN+ 1) UVW; (50)
Suppose 3N2+3N+1=f“. =0 (mod3). f a prime.
(50) - au® + b®+ ew?® = 3(N+ Duvw; €1))
where
abc = f® = 3N2+3N+1
and '

F = d°—2labc = B(N+1P—33@N*+3N+1) = BN

To use Theorem 3 we have to demand: NeT.

If 3|deN+1#0 (mod3), then N; of Theorem 3 presupposes H= +1 (mod9),
and this is fulfilled if N=1 (mod3)<nr=12 (mod27).

If 32|d< N+ 1=0 (mod3), then we must have fZ +1 (mod9). However N=—1
(mod3)—>N=2,5,8 (mod9)—>3N'2+-3N +1=1 (mod9) and because wz0 (mod3)
this implies f=41 (mod9). The contradiction shows that no cases when n=21
(mod27) can be decided by means of Theorem 3.
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3N2+3N+1=f* has solutions satisfying: /' a prime. w0 (mod3); for w=1,2
there are perhaps infinitely many, but probably none if w=3.
Equation (51), when w=1, 2 becomes:

WP+ +fw? = 3N+ Duwww; (0= 1)
W+ 2w = 3(N+ Duow;
S+ P4+ w® = 3(N+ Duvw;

Only if N=0(f=1), then these equations have a non-trivial solution satisfying
[uv|=1, but N=0<«n=3, which is excluded.

Case 4. Here n=6 (mod9). Write n=3(3N—1).
(48) ~ ON* 3N+ 1)(U+V+W) = 3@N+12UVW;

o =2)

Only N=0(r=—3) gives a decidable case:
W0+ 9? = Suvw;
F=d*-2labc =—3°.22 - H=—-2%cU.

Thus we have the case M, and no solution exists.
Summary of the results for
X+ + 28 = nxyz; (52)

a) If n?43n+9 is a prime and n—3€7T, then there is no solution except if
n=—1, when there is one solitary solution.

b) If n®+3n+9=f*(f a prime) and n—3€ T (this occurs only when n= —38,5),
then there is one solitary solution when n=35, but no solution when n=—8.

¢) If n=0 (mod9), then Theorem 3 can be used only when n=0 and (52)
has no solution, as well known.

d) If n=12 (mod27), write N=(n—3)/9. Then if N=1 (mod3), N¢T and
3N24-3N+1=f or 3N24+3N+1=f2 (f a prime), then (52) has no solu-
tion.

e) If n=6 (mod9), then Theorem 3 can be used only when #=—3 and no

solution exists.
*

These results have been marked in Table 2(—3*=n=3*-1). According to
Hurwitz [12] and Mordell [10] there exist an infinite number of solutions of (52)
if there exists at least one, except if n=—1, 5. The n-values, for which there is
a solution have mostly been found by trial. All x, y, z satisfying max (|x|, ||, |z)=
=1200 have been tested to give n-values and eq. (47) with fgh=1 has been tested
for solutions when —3*=n=3*—1 and a=b>c=1 and [u|=75. |v|=150. |w|=150.
When b=c=1 then the search limits were |u|=75. |v]=100. |w|=100.
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Table 2
x8+y3+ 2% = nxyz

Same notation as in Table 1
@ : solitary solution

—81 | + + + + +
=72 | + - |+ + +
- 63 [+ |+ + +
—54 - + + +
—45 1 + |+ - |- + o
360+ |+ +1+ - + +
=27 + | — +| + ++ |- -
—18 + A+ == =+ |+ +
-9+ |-~ —-|-+|-|-®

nmod® | 0 |1 23 14 5|6 |7 8

O~ |- -]+ |-®] +]~- -
9l + |+ ||+ +|+ ]|+ +
B+ |+ +| + - -+
27 o B +
36+ | = |~ |+ + -+
45 + - —| + +
54 | + -+ |- +
63| + | — + |+ + +
72 + +

It is notable that there exist non-trivial parametric solutions of (52). Be-
sides the simple n,x,y,z=—A42 A,1, =1 we have n,x,p,z=—(4A2+4+4),
—(A*+A4+1), —(4—1), A+2; where (4—1)(4+2)»0, which can be deduced
from (42) in Theorem 4 by puttingm=1and = —1.
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If fgh=2 then I have found only one decidable case, namely when n=—3
in (46).

Solubility of (46) then implies the solubility of u#®+1®+2w3=3uvw; which
equation however has only trivial solutions by Theorem 3, Case N,. Cf. the example
given in connection with the ‘Theorem of Derivation’.

5. Miscellaneous results
In part 2 it was proved that
a(xP+ 3 +22) + by + 32z +22x) + () + y2t + z2x%) + dxyz = 0;

can be transformed into
X34+Y34+CZ® = DXYZ;
where :

C= t,}g((6a—d)3+(3a+d)3+(3b)3+(3c)3—3(3a+d)-3b-3c);

and D=6a—d,;

Now the question is: What conditions should be laid down upon g, b, ¢, d to
make Theorem 3 useful?

Clearly such q, b, ¢, d exist, for example:

a b c d C D Case
1 1 1 1 5 5 Ny
1 -3 — 4 13 -1 N,
2 3 3 0 9 6 M,
2 -2 -2 3 2 9 N3
2 3 0 3 3 3 M;,
-2 4 2 3 2 3 N,

(See Ward [14].) (cf. Part 4. Case 2).

From the form of D3—27C it is seen that b=c is necessary to make D3—27C¢T.
Also necessary is then 3a+4-6b-+d € Tand 3a—3bCT.

Necessary to make D3—27C=¢-3% where t€7. «=3,4 is of course 3|d, but
also one of the conditions b=c, 3a+d=3b or 3a-+d=3c¢ should be fulfilled. Even
if a=>4, it is sometimes possible to use Theorem 3, namely if 33/C and 3{D when
an inclusion of the factor 3 into z can be done.
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A minor problem, which has not been solved above, is: Has the equation
x%+33+ cz*=dxyz a non-trivial solution when ¢=07 i.e. given d, does x, y, z exist
so that:

x3+3% = dxyz; where (x, y,z)=1 and xyz=0?

The answer is affirmative and the general solution given by Hans Riesel is:

x = ep*q;
¥y = epq?; where d=-¢f and (p,q)=1.
z =P+ a)f;

Here p®+4® should be divisible by f and (e, (p*+¢3)/f)=1. It is always possible
to find such p, ¢, ¢ and f as seen from the example: p=d—v, g=2d+v, e=1, f=d
and v=+1 is chosen so that 3{d—uv. QED

6. Summary

In part 2 of this paper the connection between
a(P+P )+ b(XPy+ 1y z+22x) +c(xpE+yz2 -+ 2x®) + dxyz = 0

band
AX3+BY®+CZ? = DXYZ

is discussed. A theorem stated by Sylvester and valid when b=c is generalized to
the case b~c.

The equation ax3+ by3+ cz3=dxyz, when abc=f* (f a prime and w=0 (mod3))
is discussed in part 3. A lemma used for reduction of ‘the degree’  is given, as
well as a theorem for simultaneous solutions of all equations belonging to the set
with a given abc=f*. Necessary conditions for the method given here are:

D) d3—3%abc0 (mod3%)

II) d®-—3%abc contains no rational prime factor=1 (mod3).

A classification of ax®+by*+cz8=dxyz into 16 classes is made, out of which
12 satisfy the first condition. The conditions are sharpened in the different classes
and the problem to decide if there any integer solutions (apart from those with
xyz=0) is reduced to a simple test. The criteria prove to be powerful (within the
restricitons) and it was relatively easy to find solutions in most of the remaining
cases when |d|=27.

Some types of equations, where progress can be made by means of congruences
are given. However, the conditions imposed upon the coefficients make the main
theorem non-applicable in these cases.
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Another theorem in part 3 gives the most general forms for ¢ and 4 (in x3+ 38+
+cz3=dxyz) in five parameters. These forms can be used to give specific and para-

metric solutions, as shown.
In part 4, x3+y3+z8=nxyz is transformed so that the earlier results of this

paper become applicable.. Simple criteria for non-existence of solutions are given
when 3{n and n=12 (mod27). It is also shown that some quadratic n-forms always
permit non-trivial solutions of x3+ y*+z3=nxyz.
Finally in part 5 some necessary conditions on a, b, ¢, d of
a(G3+ P+ +b(x2y +y iz +22x) e ()P + y22 +2xN) + dxyz = O
are given, so as to be able to use the results in part 3.

%
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Table 3
Solutions of x3+ 1%+ 2% = nxyz
-3 =n=3-1

n X, ¥,z —n X, ¥,z

3 (1, 1,)orx+y+z=0 1 (—1,1, 1) (solitary)

5 (1, 1, 2) (solitary) 4 (-1,1,2)

6 1,2,3) 9 (-1,1,3)

9 237 10 (-4,1,7)

10 (5,7, 18) 11 (—4,9,19

13 (9, 13, 38) 12 (-3, 14, 19)

14 (2,7,13) 16 (=1,1,4),(=5,2,13)
15 (-7,1,3) 17 (-1,7,9)

16 (—70,9, 31) 21 (—37,7,78)

17 (5,18, 37) 22 (—1,4,9)

18 (13, 42, 95) 24 (=2,1,7)

19 {1,5,9 25 (-1, 1,5),(-1,2,7
20 (—61,13,14) 27 (—28, 109, 279) .
21 2,13, 21) 28 (—325, 362, 1813)
26 9, 38,91) 29 (—9,74, 127)
29 (27, 43, 182) 33 (—3,13,35)

30 (2,21, 31) 34 (-7, 4,31)

31 (—37,1,27) 35 (—1333, 14220, 23233)
35 (—97, 14, 19) 36 (-1,1,6)
36 (—151,7,78) 37 (—52,19,193)
38 (70, 151, 629) 38 (— 1581475, 28251, 1934524)
40 (—9,1,2) 40 (—217, 2692, 4345)
41 (1,2,9), (1,5, 14) 44 (—19, 67, 234)
44 (—819, 19, 554) 45 (—52,21, 223)
47 (—845, 38, 367) 46 (-8, 5,43)
51 9, 13,77) 47 (-9, 196, 221)
53 2,7,27) 49 (-1,1,7,(—1,7,18)
54 (2,43,57) 55 (—7,76, 163)
57 (19, 91, 310) 57 (—1,3,13)
62 (— 13559153, 1513300, 1950953) 59 (— 6244, 817, 17739)
63 (—3775, 247, 903) 60 (—3,2,19), (5,117, 158)
66 (1,3,14) 64 (—-1,1,8)
67 (1133, 7525, 23517) 66 (— 127, 3423, 4432)
69 2, 57, 73), (42, 95, 523) 68 (— 35, 914, 1251)
71 (—67,7,9) 72 (-9, 1,26), (—19,6,91)
74 (133, 2502, 4607) 73 (—715, 13483, 24577)
76 (—45,2,13) 76 (—10,7,73)
77 (—52,5,7) 77 (—2394, 853, 12581)

79 (—823, 43, 1764)
81 (-1,1,9) |

has not been possible to generate all found solutions with one basic solution.

Note. For some n-values, there are two solutions given, as in these cases it
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Table 4
Solutions of ax®+ by? +¢2®

= dxyz

A4,B,C=2,21

A,B,C=21,1

zZ

Y=

X=

D

10
11
12
13
15
16
17
22
23

Z=

Y=

X=

-1

-23

14
13

-27
—26
—20
—18
—15
—14
—-13
—11

—10

11 =71 —-42
—11

—24
-22

11

(o]

-3l

—11.

~14

-5

-10

1
-17

11

18

10
17

25

A, B, C=41,1

zZ

Y=

X=

-25
24
-22

10
13

71 11
1 -

21

15
16
17
19
22

-19

12
13
16
17
27

— 18

11

- 10

A

11

75

38

14
-19

47

15

23.

23

24
26

A, B, C=3,1,1

Z=

Y=

X=

A, B, C=5,1,1

—41
—17

—40

3

—27
—24
—23
-22
—21
-18
—16
-13
-12

~4

-13

- 11

-8

—26
-23
—-20
-19
—18
—-17
—16
—-15
—11

10
13

—44

-20

27

10

17

49

15
16
17
19
22
23

-6 —53
-29

19
21

11

29

18

-5t

—-26

7

15
-10

47

~6

19

24
26
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Z=

Y=

A4,B,C=5,1,1
X=

D=

56 —38

13

56 —62

13

10
17

11

10.
12
18

24

26

10
36
76

19
20
26
27

A, B, C=171,1

—46

-11

17
18
19
20

11

26
—~13

Z =

Y=

X=

—46

31

—26
—-22

Z=

Y=

A, B, C=14,2,1
X=

—33 —64

3
7
2

-21
-20
—-18
—17
—-14

-11

11

21
22
24
25

11

—19

13

—-17

-60

13

27

Z=

Y=

A,B,C=6,1,1
X=

D=

11

—26
-2

7=

Y
—83 —100

A, B, C=9,1,1
X=

—-23 35
-37
-37

4
1
13

~13
6
-4

7

—27
-26
-25

23
)

-1
-17

19
21

-3
—64

10

11

—61

11

12

—~15 -—-48

7

14
16
18

12

19 —-19
—18
—16
—-15

80

27

—~17

19
21

-10

23

21

25

27

26

—13
—-12

—11

A,B,C=8,1,1

A, B, C=3,2,1

Z=

Y=

X=

~13

- 38
—-19

27
—28

2

—-25
—~24
—-22
—-20

-23° 31 —4 —65

—-22
-16

—11

-9
14
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-22
-19
—-13
—11

A,B,C=10,1,1

A, B, C=911

—69

—-25

14

ZzZ

Y=

X=

-19
1

5

—-10 .

-12
—~10

-5
-2
-3

9
10

1

—~73
-79

1
11
—-37

37

-2
-2
3

1
-1

43

14
16

12
18

22

18
23

27

i0
13
15
17
19
26

16

23

A,B,C=331

16

—-16

-25

37

13

—26
—-25
~23
—22
—~19
—18
—~16
-~15
—14
—~13
—~12

—11

~11

-5

—1
-2

16
—4

A, B C=121,1

19

—13

—~10 -

Z=

Y=

X=

23

1
—-17

—-27
—-22
—-12

-3

—4

—59 —79
—94

21

26

49

-85

11
13
16
17

37

-2
-89

-2
—-19

-3

-1

39

0

19
26

25

20
L22

46

21

10
14

23

26

A,B,C=6,21

4,8, C=111,1

21

Z =

X= Y=

D=

Z=

Y=

X=

14
16
18
23

11

3 —17 =32

~26
—25
-4

—27
—26
—25
-23

—-32
-17

-5
96

21

22

-10

-7

43

27
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A'B,C=3,22 A, B C=14,1,1

A,B,C=6,2,1

Z=

Y=

X=

y4

Y=

D= X=

Z =

Y=

X=

—23
-17
—14

—-20
-~19
-17
—15

-13

-5

-22
-12

—-13
-59

—55
-79
—47

37
42

-7
-6
-3

—-13

13

49

37

67

31

10
12
14
16
20
22
25

19 25

13

14
21

13

23

10
14

—-13

14

16 -
18
19
22

A,B,C=17,2,1

A, B, C=13,1,1

z

Y=

D= X=

Z=

Y=

X=

—24
19
—18

27

-1

—24
—-20

—10
—-29

-7
-7

it

-3
-1

=5
-3

—18
—16
—11

—-17
-16

A,B,C=4,3,1

-10
7

-14
-13

4

3

Y

X=

-1

-12
-10

14

-25
—-24
-23
—20
—-19
-17
—15

-1

-2

3 —-10 —-11

-6

14

-1

-3

—4

10
11
12
13
18
24

-30

13

11
13
15
16
17.
19
22
23

11

A,B,C=151,1

60 17

19

14
16
18
19
22

Z=

Y=

X=

—-25

—-22

15

—~22 .
-16

25

24

26

27
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A, B, C=16,1,1

A4,B,C=151,1

62

49

Z=

11

D= X= Y

Z=

Y=

X=

10

-26
—25
—23
—-22
-20
-17
—16
—-14

~15
~14

—11

12 —-10

13

11

—=17 =29

7

14
15
16
18
19
20
21

- 10

-6

-31

13

11

12
13
17
18
20
22
26

23

10
22

24
25

26
27

17

11

A, B, C=4,4,1

14
15
16
18
19
20
21

Z= .

Y=

X=

-36

-11

—26
25
-23
~22
—20

—26

—6

A4,B,C=5,3,1

—17
-16
-14
-1

—-10

23

10
44

24
25

11

—26
—~21
-20
~19
~14
~13
=10

12

26

10

27

A, B, C=28,2,1

Z=

Y=

~36

X=

—-22

5

—26

13

-23
—-22
—-20
-17

‘11
14
15
16
18
19
20
21

10
10

14
15
18
22
25

—14

=11

10

20
22

~14
-16
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—-12
—10
8

A, B, C=18,1,1
X

Z=

4,4,1
Y=

A, B, C =
D= X=

11

15

—25
-18

23

24
25

11

26
.27

10
12
13
15
22

39

69

19

10

11

23

16
20
24

26

27

A,B,C=17,11

A, B, C =332

Z=

Y=

X=

Z =

Y=

X

A,B,C=921

5
-1

— v

—-25
—18

Z=

Y=

X

-27
—26

-2

~1

-8

-21

-3

15

~24
~20

55 —67

13

30 —41

37

[\

—17
—12
—10

—17
—15
—12
—10

—

-1

—54

—53

7

13 23

10

11

—~15

21

4

16
20
24
27

-2
~-10
2

11

-20

23

12
13
15

-25

zZ

Y=
9

A, B, C=19,1,1
X=
19

-27
—21
—-19
—18
—~15
-13
—-12

D

22

—18
-5
-3
-2

~21

12

23

-10
-97

-9
~24

26

10
11

19

10

12
13
14
15
16
18
19

24

~34
~22

75

31

29 -31

14

-3

—-26
—-25

11

-23
-17

36

73
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A, B C=191,1 —11 1 1 -1 -5 1 -1
, -9 1 -3 -4 0 14 —-19 -1
D= X= Y= 2= 8 1 -1 2 1 1 =1 -1
5 -1 -2 2 1 1 -2 2 2 -3 1
6 13 —-10- =27 0 1 -t -2 9 1 1 1
9 1 3 2 5 1 1 -3 10 26 49 61
10 5 16 9 6 1 -3 2 13 4 -7 1
1 1 I -4 7 1 -1t 12 16 2 1 3
12 1 6 5 10 1 1 2 18 2 —~1 -1
13 1 5 -9 i2 1 3 2 22 2 1 1
14 1 2 L 13 i -9 8 23 4 311
15 13 29 12 17 3 -1 —4
6 7 50 27 19 1 1 4 4,B,C=21,1,1
17 O 24 1 3 8
19 13 18 11 26 3 17 8 = X= Y= Z=
21 1 -5 21 1 =10 -—11
23 N 34 11 A B,C =541 —15 3 2 _5
24 49 69 32 —14 1 2 —1
26 7 2 =25 D= X= Y= Z= —11 1 —-1 —4
—21 2 -1 6 -9 3 -5 —13
A, B, C=20,1,1 —~18 1 2 -1 -7 1 1 -2
—I5 2 -1 -6 -5 19 17 —-43
D= X= Y= Zz= 14 1 -2 1 —2 14 —11 -4t
—24 3 -1 -1 -11 2 L1 2 2 1 4 -5
—20 1 =1 -9 1 -2 -3 3 21 —13- =53
—19 1 6 -2 -8 1 1 -1 6 1 -1 =2
—17 1 -2 =6 -2 1 -1 1 11 7 25 13
—16 L7 -3 0 1 =2 3 15 1 2 1
-9 13 14 -2 5 2 =3 2 16 1 8 —13
-5 1 2 -2 6 1 1 -3 19 1 -1 -1
0 7 -1 =19 7 1 6 —11 23 ] 1 1
1 -2 =2 10 1 1 1 26 7 13 4
2 1 r -3 12 1 1 3
o 122 1B -2 A4,B,C =131
10 13 61 49 17 3 -2 -1
13 2 |- 19 1 5 i D= X= Y= Z=
16 1 3 1 24 1 4 3 —27 2 -1 1
18 e 26 3 4 17 —26 5 —29 —22
22 1 1 1 —25 1 -3 —~1
23 2 11 3 A, B C=5272 —~22 1 -5 -8
-17 1 -1 4
A4,B,C=10,2,1 D= X= Y= 2Z= ~15 1 ~1 -4
—24 6 —11 —1 -9 1 -2 -1
D= X= Y= Z= —~20 2 -1 i -6 1 ~1 2
-21 1 3 —1 -19 1 -1 3 -5 1 —1 1
—~18 1 —t 4 —~17 1 -3 -1 -2 1 -1 -2
—~15 1 =3 -1 —-16 2 —3 7 —~1 1 1 -2
—14 1 -1 -4 -9 13 —11 7 3 1 -4 5



14
10
85
10
59

64

Z

54
—-13
—11
-83
-31

Y

19
22

A, B C=12,2,1
X=

10
11
12
20
22
24
26
-27
—23
—13
—11
11
15
23
25
27
—26
-10
-5

13
—12
—11
-17
-1
—31
-37
17
15

z

—-12
—10
Y=
20
-3
16
-3
40
17

—11
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i3
9
14
14

A,B,C=23,1,1
X=

14
22
—-23
-20
—-17
—-15
—14
—11
10
14
16
17
20
21
22
25
26

Z=
—~11
—16
Z=
—47

Y=
-5
Y=

17
2
14

X=

X=
A, B, C=11,2,1

13
14
20
22
24

A, B, C=22,1,1
26

A,B,C=131

11
16
17
20
22
23
25
26
27
—-25
-22
—16
—-13
—12

70

zZ

Y=

il

X

61
47
-10

—43
19

20
16

10
11
12
20
22
24
26

—-10

A

10

Y
—4

A,B,C=241,1
X=

—26
—24
~10

D

—15
23
- 13

43

11

—24
-19
—-17
—-13
—-12
-10
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26,1,1

A4,B,C

—40

—15

7

~14
~10
9

A,B,C=6,4,1

7=

Y=

X=

Z=.

Y=

X=

~11

__54

—26
—-20
—15
-14
—13
—-12

-5
~10

5
-5

-27
—-23
—-13
-11

-15 =29

4

2

-19
~11
~11

45

14

—-10 -15

7

-9

10

1

12
i4
18
24

-19

-5

10

12
17
22
23

~65

18

~11

15
23

4,8 C=13,2,1

~20

24
27

25

Z=

Y

X=

27

—-22

A,B,C=4,32

-16
~14
—12

A, B, C=35,5,1

Z=

Y=

X=

z

Y=

X=

-27
—23
—-13
—11

-27

-22

70

-39

17
-16
—14
-10

15

-14

10
14
15
16
19
20
22

11
15
23

11

~12

23

11

19

~11

25

27

Z=

Y=

~13

A, B,C=21,1,1
X=

D=

Z=

Y=

A,B,C=25,1,1
X=

D=

—14

—27
-17
—16
—-12
-11

—-10

11

10
-12

—27
-25
-23
-22
—18
—17
—16

12
17
22
23

—13

77 38

9

15
-5

18

~13

-10

—-537

81

10

24
27
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A, B, C=27,1,1 23 1 4 1 -8 1 -3 6
25 1 —1 -1 -7 1 -2 -3

D= X= Y= Z= 27 1 7 2 -2 1 =2 3
-3 1 -3 -3 —1 1 -1 =2
5 7 81 ~—93 5 1 —-5. 6

9 1. -1 =2 7 1 -2 1
10 27 91 62 A, B, C=931 10 1 —-12 15
13 5 13 7 13 1 —4 3
15 1 6 3 - b= X= Y= Z= 17 1 2 1
16 1 5 2 —16 1 -3 -6 19 1 1 4
18 1 2 1 —~14 1 =2 =5 20 1 5 6
22 1 2 -7 ~11 -3 -3 26 215 33

References

1. SYLVESTER, J. J. Phil. Mag. XXXI (1847), pp. 467—471 or Collected Works (1909), vol 1, p. 118.
(Note the misprints!)
2. SELMER, E. S. The exceptional points of a cubic curve which is symmetric in the homogeneous
variables. Math. Scand. 2 (1954), pp. 227—236.
3. CARMICHAEL, R. D. Analyse Indeterminée. Les Presses Universitaires, Paris (1929), pp. 65—69.
Also: Diophantine Analysis. Mathematical Monographs NO 13. N.Y. (1913).
4. CARMICHAEL, R. D. On the representation of numbers in the form x®+-y® -+ z* —3xyz. Bull. Amer.
Math. Soc. 22 (1915), pp. 111—117,
5. MoRDELL, L. J. Diophantine Equations. Academic Press. London and New York 1969. .
6,7, 8,9. SYLVESTER, J. J. Collected Works (1909). Vol 1, pp. 106—109, 110—113, 114—118, Vol 2,
pp. 63—64.
10. MorpELL, L. J. The Diophantine equation x*+y*+ z*+kxyz=0. Collogue sur la Théorie des
Nombres. Brussels, December, 1955. '
11. SELMER, E. S. The diophantine equation ax®+ by®+ ¢z®=0. Acta Math. 85 (1951), pp. 203—362.
12. Hurwrtz, A. Uber terndre diophantische Gleichungen dritten Grades. Vierteljahrsschrift Naturf.
Ges. Ziirich. 62 (1917), pp. 207—229. Also Math. Werke (Birkhiuser Cie, Basel) Vol 2,
(1933), pp. 446—468.
13. DesBovEs, A. Résolution en nombres entiers et sous sa forme la plus générale, de I’équation
cubique, homogene, & trois inconnues. Nouv. Ann. de Math. Ser 111, 5, (1886),
pp. 545—579.
14. WARD, M. The vanishing of the homogeneous product sum of the roots of a cubic. Duke Math.
J. 26 (1959), pp. 553—562.
15. CasseLs, J. W. S. On a diophantine equation. Acta Arithm. 6 (1960—61), pp. 47—52.
16. SANSONE, G. and CASsELS, J. W. S, Sur le probléme de M Werner Mnich. Acta Arithm. 7 (1962),
pp. 187—190.
17. Taug, A. Uber die unlosbarkeit der Gleichung ax?+ bx+c=dy" in grossen Zahlen x und y.
Arch. Math. Naturv. Kristiania Nr 16, 34 (1917).

Received October 29, 1973 Erik Dofs

38 Rue de Longchamp
92200 Neuilly
France



