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Introduction

In recent years there has been considerable activity in the study of hypoelliptic
but non-elliptic partial differential equations. (We recall that a differential operator
&£ on a manifold M is said to be hypoelliptic if for any open set U M and distribu-
tions £, g on U satisfying #f=g on U, fc%~(U) implies g€ %~(U).) One of the
major ideas in this field is that of obtaining control over the characteristic direc-
tions of a differential operator by conditions involving commutators of vector fields
or pseudodifferential operators. The prototype of such results is the following
theorem of Hoérmander [10]:

(0.1) Proposition. Let X, X, ..., X, be real vector fields on an open set UCRY,
and let ¥, be the linear span of the vector fields X [X,.I, X1 ... [[...[Xil, X ..
e X,.k_l], er] (0=i;=n, 1=j=k). Suppose there is an integer m such that ¥, spans
the tangent space at every point of U. Then the operator & =Xy+ >} X? is hypoelliptic
on U.

If the hypotheses of this theorem are satisfied, the more refined regularity
properties of % (in terms of L? estimates, say) depend strongly on the integer m:
roughly speaking, the larger m is, the “weaker” & is. We refer to Hormander [10]
for a precise interpretation of this statement.

Similar ideas occur in the study of the d Neumann problem and 5,, complex
in several variables (cf. Folland—Kohn [5]) and their analogues for more general
differential complexes (Guillemin—Sternberg [8]), and in the work of the Russian
school on hypoelliptic equations (see Oleinik—Radkevi¢ [22] and the references
given there). Operators of Hormander’s type are discussed from the point of view
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of potential theory in Bony [1], and some applications to infinite-dimensional group
representations have recently been given by Jergensen [12].

In the theory of elliptic operators the constant-coefficient operators serve as a
useful class of models for the general situation: constant-coefficient operators are
amenable to treatment by the techniques of Euclidean harmonic analysis (Fourier
transforms, convolution operators, etc.), and the results obtained thereby can usually
be extended to the variable-coefficient case by perturbation arguments. Now, a
constant-coefficient operator is nothing more than a translation-invariant operator
on the Abelian Lie group R¥. From this point of view, it is natural to attempt to
construct a class of models for non-elliptic operators of the sort discussed above
among the translation-invariant operators on certain non-Abelian Lie groups. The
Lie algebras of the groups involved should have a structure which reflects the behavior
of the commutators in the original problem and the groups themselves should
admit a “harmonic analysis” which will produce results similar to those of the
Euclidean case. A particular case of this program, has been carried out in consider-
able detail in Folland—Stein [6], [7], in which sharp L? and Lipschitz (or Holder)
estimates for the @, complex on the boundary of a complex domain with nondegener-
ate Levi form are obtained by using certain left-invariant operators on the Heisenberg
group as models.

The purpose of this paper is to construct a general theory of “subelliptic”
regularity on a class of Lie groups which should be sufficiently broad to admit a
wide variety of applications to more general problems, namely the class of “stratified
groups”. We call a Lie group G ssratified if it is nilpotent and simply connected and
its Lie algebra g admits a vector space decomposition g=V;D...@V,, such that
[V1is Vi]=Vi4q for 1=k<m and [V, V,]={0}. On such groups there is a natural
notion of homogeneity which enables one to duplicate many of the standard con-
structions of Euclidean space (for example, a theory of singular integral operators
.parallel to the Calderén—Zygmund theory). Also, if we choose a basis X3, ..., X,
for ¥, the operator ¢ =— 37 X? (which is hypoelliptic by Hormander’s theorem)
turns out to play much the same fundamental role on G as (minus) the ordinary
Laplacian — 37 (9/dx;)* does on R”. We call ¢ a sub-Laplacian for G.

The plan of the paper is as follows. In Section 1 we present the necessary back-
ground material concerning homogeneous structures on nilpotent Lie groups. Much
of this is not new, but we include most of the proofs in the interest of making the
exposition reasonably self-contained. In Section2 we prove that homogeneous
hypoelliptic operators on nilpotent groups have homogeneous fundamental solu-
tions, and we give some examples. The main theme of the paper begins its develop-
ment in Section 3, where we consider the diffusion semigroup generated by the
sub-Laplacian # on a stratified group and use it to define complex powers of #
in accordance with the general theory of fractional powers of operators due to
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Komatsu and others. In section 4 we define analogues of the classical LP Sobolev
or potential spaces in terms of fractional powers of # and extend several basic
theorems from the Euclidean theory of differentiability to these spaces: interpolation
properties, boundedness of singular integrals, representations in terms of deriva-
tives, localizability, and imbedding theorems. We also relate our new Sobolev spaces
to the classical ones. In Section 5 we define spaces of functions satisfying certain
Lipschitz (or Holder) conditions which are compatible with the homogeneous struc-
ture on the group. We prove boundedness theorems for homogeneous integral
operators in terms of these spaces, relate L? conditions to Lipschitz conditions
by an extension of the Sobolev imbedding theorem, and compare our new Lipschitz
spaces to the classical ones. Finally, in Section 6 we apply the preceding material
to derive sharp L”? and Lipschitz estimates for homogeneous hypoelliptic operators
on stratified groups.

Some of our results have been obtained independently by R. S. Strichartz
(personal communication).

This paper and its author both owe a great deal to Elias M. Stein. Most of
the basic ideas herein were developed through conversations with him (indeed, the
germ of these ideas was already present in his lecture at the Nice congress [26]),
and many of the results and techniques are extensions of those in our joint work
[7]. I also wish to thank Robert T. Moore for several helpful conversations.

1. Homogeneous structures on nilpotent groups

Let g be a real finite-dimensional Lie algebra. A family of dilations on g is a one-
parameter family {y,: 0<r< o} of automorphisms of g of the form y,=exp (4 log r)
where A is a diagonalizable linear transformation of g with positive eigenvalues. -
If {y,} is a family of dilations, then so is {§,} where §,=y,.=exp (24 log r) for any
o=>0. Hence, by adjusting « if necessary, we always assume that the smallest eigen-
value of 4 is 1.

It is easy to see that if g has a family of dilations then g is nilpotent. Otherwise,
one could find arbitrarily long sequences X7, ..., X,,€g such that X is an eigenvector
of A with eigenvalue o; and Y=[[...[X3, X3}, ..., X,,_4], X,,] 0. Since 7, is an
automorphism, y,Y=r&%Y, so Y is also an eigenvector of 4 with eigenvalue
2 o;=m. But this is possible only for finitely many m. On the other hand, it is
known (J. Dyer [4]) that not every nilpotent Lie algebra admits dilations.

Let g be a nilpotent Lie algebra with dilations {y,}, and let G be the correspond-
ing simply connected Lie group. Since g is nilpotent, the exponential map exp: g—~G
is a diffeomorphism (cf. Hochschild [9]), and the dilations y, lift via exp to give
a one-parameter group of automorphisms of G, which we still denote by y,. We fix
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once and for all a (bi-invariant) Haar measure dx on G (which is just the lift of
Lebesgue measure on g via exp). The number Q=trace (4) will be called the Aomo-
geneous dimension of G (with respect to the dilations {y,}). The reason for this is that

(1.1) d(y,x) = r? dx.

We note that the homogeneous dimension is generally greater than (and never less
than) the Euclidean dimension.

Some matters of notation: We shall denote the identity element of G by O,
even though we write the group law multiplicatively, in order to emphasize the
similarity to Euclidean space. We use the standard notations 2, &, 2’, and &’ for
the spaces of ¢~ functions with compact support, ¥~ functions, distributions, and
distributions with compact support on G, with the usual locally convex topologies
(cf. Schwartz [23]). (However, we often write ¥ instead of £.) The pairing of 1€ %’
with u€2 will be denoted (r, u); we shall use duality over R throughout, so that
this pairing is bilinear rather than sesquilinear. § will denote the Dirac distribution:
(8, uy=u(0) for uc 2. Also, %, will denote the space of continuous functions on
G vanishing at infinity, with the uniform topology, and L? (1=p=<) will denote
the standard L? space with respect to Haar measure. Finally, we identify the Lie
algebra g with the left-invariant vector fields on G.

A measurable function f on G will be called homogeneous of degree A (2€C)
if foy,=r*f for all r>0. Likewise, a distribution 1€ 2’ will be called homogeneous
of degree A if (t,uoy,y=r"2 %, u) for all uc% and r=0. In view of (1.1), these
definitions are consistent. A distribution which is ¥ away from 0 and homogeneous
of degree o — Q will be called a kernel of type a.

A differential operator D will be called homogeneous of degree A if D(uoy,)=
=r*(Du)oy, for all u€P, r=0. In particular, X¢g is homogeneous of degree A if
and only if X is an eigenvector of 4 with eigenvalue A. It is then clear that if K is
a kernel of type o and D is homogeneous of degree A, then DK is a kernel of type o — 4.

Let || - || denote a Euclidean norm on g with respect to which the eigenspaces
of A are mutually orthogonal; we may also regard || - || as a function on G. In addi-
tion, we shall need a “norm” on G which respects the homogeneous structure.
Namely, we define a homogeneous norm to be a continuous function from G to
[0, =) which is €= away from 0 and homogeneous of degree 1, and which satisfies
(a) |x|=0 if and only if x=0, (b) |x|=|x"1| for all x. Homogeneous norms always
exist. Indeed, any X¢€g can be written as X=X, +... + X, where each X is an eigen-
‘vector of A with eigenvalue o;, and since the X;’s are mutually orthogonal, [y, X | =
=(Zr*|X; [2)V2 is a strictly increasing function of r. Since moreover y,oexp=
=expo 7,, we may define |x| for x>0€G to be the unique r=>0 such that ||y, x| =1.
We assume henceforth that we have fixed a homogeneous norm on G.
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(1.2) Lemma. {x€G: |x|=1} is compact.

Proof. Since {x:|lx]| =1} is compact and disjoint from 0, || assumes a posi-
tive minimum M on it. Since {x: |x]=M} is connected (each such x is connected
to 0 by the arc {y,x:0=r=1}), {x: |x|=M}c{x: |x[|=1}. But then {x: |x|=1}C
c{x: |mexl|=1}, so {x: |x|=1} is closed and bounded, hence compact.

(1.3) Lemma. Let a be the largest eigenvalue of A. There exist Cy, C3>0 such
that Cy|x| =|x|=C,|x|"* whenever |x|=1.

Proof. As above, we can write x€G as x=exp (X;+...+X,,) where X; is an
eigenvector of 4 with eigenvalue a;, 1=a;=a, and |y, x| =(Zr*"|X jllz)l/z. Hence
for r=1 we have r?|x|=|y,x|=r|x}. By Lemma (1.2), | -] assumes a positive
maximum C;* and a positive minimum C;* on {x: [x|=1}. Any x with |x|=1 can
be written as x=y,,y with |y|=1, so that

%l = Ixl iyl = Crixls D]l = [x"lly] = Coelx].

(1.4) Proposition. There is a constant C=>0 such that |xy|=C(|x|+|y]) for all
x, y€d.

Proof. By Lemma (1.2), the set {(x, »)€GXG: |x|+|y|=1} is compact, so the
function (x, y)—|xy| assumes a finite maximum C on it. Then, given any x, y€G,
set r=I|x|+|y|. It follows that

[xy| = rlyGep)l = rl(37' ) (7 )| = Cr = C(x[+[y).

We now prove -a number of facts about homogeneous functions and distri-
butions.

(1.5) Proposition (Knapp—Stein [13]). Let f be a homogeneous function of
degree —Q which is locally integrable away from 0. There exists a constant M (f),
the “mean value” of f, such that

[r@egxhdx = M(f) [ rte)dr
Jor all functions g on (0, =) such that either side makes sense.
Proof. Define L:(0, =) ~ C by
L) = [1oe /@ dx if r=1
~ [ f@dx i r<1.

By using (1.1) one easily checks that L(rs)=L(r)+L(s) for all r, s>0. Since L is
continuous, it follows that L(r)=L(e) logr. We take M(f)=L(e); the assertion is
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then clear when g is the characteristic function of an interval, and it follows in
general by taking linear combinations and limits.

(1.6) Corollary. Let Cy=M(|+|9). Then if a€¢C and 0 <a<b <<,

Jesam W25 = G r—a) f a0,
C,log (bla) if a=0.
Proof. Take g(r)=r® times the characteristic function of [a, b].

(1.7) Corollary. Suppose f is a measurable function such that | f(x)|=0(|x*~9.
If a=0 then f is locally integrable at 0, and if a<O0 then f is locally integrable at in-

finity.
If fe €~ (G—{0}) is homogeneous of degree —Q, then f is not a distribution since

it is not locally integrable at 0. However, if M (f)=0 there is canonically associated
to f a kernel of type 0, denoted PV (f), which is defined by

(PY()uwy=1m [ f@u@)dx @ED).

To see that this is well defined, we note that
PV uy=1im f,_ i FEOl)—u@)dx+ [\, fOIu(x) dx

= [ fOBE) —uOlde+ [, FGu() dx.

The last integrals are absolutely convergent by Corollary (1.7), since u(x)—u(0)=
=0(|x[)=0(|x]) by Lemma (1.3). It is easy to check that PV (f) is homogeneous
of degree — Q.

(1.8) Proposition (Folland—Stein [7)). Let K be a kernel of type o which agrees
with f€€> (G—{0}) away from 0. Then

(a) f is homogeneous of degree o — Q.

(b) If Rea=0, then felL'(loc) and K=f.

(©) If a=0, then M(f)=0 and K=PV(f)+Cé
JSor some constant C.

Proof. (a) is obvious. For (b) we observe that fis locally integrable by Corollary
(1.7), so f€9’. K—f'is thus a distribution supported at 0, that is, a linear combina-
tion of é and its derivatives (cf. [23]). Every derivative at O is a sum of homogeneous
terms of positive degree, and hence for any uc 9,

<K—f; uo?r) = 0(1) as r -» oo,
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But K—fis homogeneous of degree a—Q, so

(K=f, uoyy = rK—f, u,
which is a contradiction for Rea>0 unless K—f=0.
As for (¢), if M(f)=0 then K—PV(f) is homogeneous of degree —Q and
supported at 0, hence is a multiple of §. To show M(f)=0, consider another dis-
tribution F which agrees with f away from 0, namely

Fouy= [ fOuE—uOldc+ [, fGuE)ds @),

which is well defined by the reasoning preceding this proposition. Hence, as above,
K—F is a linear combination of é and its derivatives, so since K is homogeneous
of degree — 0,

(F,uoy,y—{F,uy = (F—K,uoy,y—(F—K,uy = 0(l1) as r —oo,
But in fact

(Fuoyy—(F,uy = —u(0) [z xima () dx = u(0) M(f)logr,

which is a contradiction when #(0)>0 unless M (f)=0.

Kernels of type 0 are thus a natural generalization of the classical Calderén—
Zygmund singular integral kernels (cf. Stein [25]), and we have the following L?
boundedness theorem for the convolution operators defined by them.

(1.9) Proposition. Letr K=PV(f)+CS be a kernel of type 0. The mapping
T: u—ux K (uc D) extends to a bounded operator on I?, 1 <p-<-eo. In fact, set T,u=
=uxf,+ Cu where f,(x)=f(x) for |x|>¢ and =0 for |x|=¢. Then T, is bounded on
L? yniformly in &, and T is the strong L? limit of T, as ¢—~0. Likewise for the mapping
T:u—~Kxu.

Proof. See Knapp—-Stein [13] for the case p=2, and Coifman—Weiss [3] or
Koranyi—Vagi [21] for the extension to other values of p.

There is a corresponding result for kernels of type a«=0. We deduce it as a
corollary of the following generalization of Young’s inequality, which is implicitly
stated in Stein [25] and Folland—Stein [7]. We recall that if fis a measurable function
on G, its distribution function B;: (0, =) ~[0, <] is defined by B,(a)={x: | f(x)|>a}|,
where |E| is the measure of E. f is said to be in weak L' (1 =r—< ) if for some C=0,
B,(@)=(Cla) for all a>0. The smallest such C will be denoted by [ f],. [ ], does not
satisfy the triangle inequality; however, it defines a topology on weak L" which co-
incides with a Banach space topology in case r=1. Moreover, if f€ L" then fe weak L'
and [f].=|fl,, and we have

Il = (r [y @B, (a) da)'".
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For proofs of these facts, see Stein—Weiss [28].

(1.10) Propesition. Suppose 1=p=oo, l<r<oco, and g~ =p~14+r1—1=0, If
SfEL? and gcweak L7 then fxg exists a.e. and is in weak L%, and there exists
Ci=C,(p, r)=0 such that [ f*gl,=C\| fll,[gl,. Moreover, if p=1 then fxg¢cL? and
there exists Cy=Cy(p, r)=>0 such that || fxgl,=C.l fll,Lgl,. The same results hold
with fxg replaced by gxf.

Proof. We first observe that the strong result for p>1 follows from the weak
result by the Marcinkiewicz interpolation theorem with explicit bounds (cf. Zygmund
[31]). Suppose then that fC I and g€weak L"; we may assume | f]|,=1 and [g],=1.
Given a=0, set M=(a/2)¥" (r/q)¥""" where p’=p/(p—1) is the conjugate exponent
to p. Define g, (x) to be g(x) if |g(x)|>M and 0 otherwise, and set g,=g—g,. Since

Brxa(@) = Brxg, (a/2) + Pryeq, (@/2),

it suffices to estimate each term on the right. By Holder’s inequality, | f* g,(x)|=
=| fll, gl y =1 g2 ;- . However, since r "> —(p’)~*=¢~*>0, we have p’—r>0, hence
lealy = 2 fof o =By @) dn = p' [} a7 1"

=_P ror _.q_Mrp’/q = (a/2)¥
p/_r M r (a/ ) *

Thus f* g,(x) exists for every x and | f* g2(x)|=0a/2, s0 f;y, (a/2)=0. On the other
hand, since r=1,

gl = f;; By()da = f; a~rda=(1-r)-tM-".

Thus by Young’s inequality, f* g, exists a.e. and is in L?, and | f* g [, =] fll, | g1 =
=(1~—r)"IM'"". But then

_ |21/ *gdp 1’< 2Y%( 1 Yfa Pq(l—r)/r[r]pq(l—r)/rp’< i
ﬁf*!h(a/z) = ["'-“’a—] = [_] {l—r] [E] ? = Cl(p’ r)a q

a

and the proof is complete. (The proof is the same for g xf.)

(1.11) Proposition. Suppose O0<a<Q, l<p<Qfo, and q *=p~*—(o/Q), and
let K be a kernel of type a. If fELP then fx K and Kxf exist a.e. and are in L%, and
there is a constant C,=0 such that | f* K[, =C, [ fl, and | Kxf|,=C,| f],-

Proof. By Proposition (1.8), K is a function, so by Proposition (1.10) it suffices
to show that Keweak L' where r=0/(Q—«). But |K(x)| is dominated by [x[*~2,
s0 f(a) is dominated by the measure of {x:|x|<a'@~9}. By Corollary (1.6), this
number is Cya?/*~P=Cya™".

We recall some facts about convolution of distributions (see Schwartz [23] for
the case G=R"; the general case is argued similarly). The convolution 7,%7, of
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two distributions 1,, 7, is well defined as a distribution provided at most one of
them has noncompact support; moreover, the associative law (7; * 7o) % T, =1, % (T, % T3)
holds when at most one of the 7;’s has noncompact support. To define convolutions
of distributions with noncompact support one must impose additional regularity
assumptions, and the associative law need not hold even when all convolutions in
question are well defined. We shall therefore need to establish the absence of pathology
in certain situations concerning homogeneous kernels.

(1.12) Lemma. Suppose 0=oa<Q,p=1,g=>1,andr=p~*+q 1—(o/Q)—1=0.
If K is a kernel of type a, f€L?, and g€L? then f*(g* K) and (f*g)* K are well
defined as elements of L', and they are equal.

Proof. By Propositions (1.9) and (1.11) and Young’s inequality, the mappings
(f,2)~f*(gxK) and (f, g)~(f*xg)* K are continuous from L?XL? to L". They
coincide when f and g have compact support, and hence in general.

(1.13) Proposition. Suppose K, is a kernel of type o and Ky is a kernel of type
B where 0>0, B=0, and o+ p<Q. Then K, x Ky is well defined as a kernel of type
a+pB. Moreover, if fcL? where 1<p<Q/(a+p), then (fxK,)x K, and f*(K,* Ky)
belong to L%, g 1=p~1—(a+ B)/Q, and they are equal.

Proof. By Proposition (1.4), given x>0 we may choose ¢>0 so small that
{y:|¥|<e and |xy~1|<e} is empty. Then if f=0,

K“*Kﬁ(x) = UIYI<a+flxy'11<8+flyl>e, Ixy‘1i>8]K“(xy—l)Kﬂ(y) .
By Corollary (1.7), these integrals are absolutely convergent since the integrand is
O(|y/P~9) near 0, O(jxy~1*~9) near x, and O(|y|*"#~29) near infinity. Likewise,
if B=0, by Proposition (1.8) we may assume K, contains no delta function and
we have

K xKp(x) = [ _ K Gy — K, (3] K; () dy
+ [.[Ixy“i<e +fiy1>e, Ixy"I>s] K,y ™)K () dy

where the first integrand is O(|y['~9), and again the integrals are absolutely con-
vergent. Thus K, * K, (x) is well defined for x#0, and a simple change of variables
shows that K, K} is homogeneous of degree a+f— Q. Moreover, let us choose
¢,€92 with @;(y)=1 for |y|<¢/2 and ¢,(»)=0 for |y|>¢, and set @,(y)=@1(xy™).
Then ¢, and @, have disjoint support, and for f=>0 we can write K,* K,(z)=

=1+ 1+ 15, where
L = [ 0:0) K2y~ Ks () dy,
L= [ 0.0 Ky K»dy = [ 0.0 DK () K (y722) dy,
L= [11-0:0) — 9. MK, 2y~ ) Ky () dy,
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with a similar formula for §=0. If |xz~1|<¢/2, the factor of the integrand containing
z in each of these integrals is €. Also, every derivative is the sum of homogeneous
terms of positive degree, so the derived integrand in I, remains O(]y)**#—29), It
follows that K, % K is ¢~ away from 0, and hence is a kernel of type a+f.

Next, if f€L? where p=>1 and g '=p~'—(x+8)/Q=>0, we observe that
(f*K,)* Kz and f* (K, » Kp) are in L? by Propositions (1.9) and (1.11) and Young’s
inequality. To complete the proof, it suffices to show that ( f* K,) * K, and f* (K, * Kj)
are equal as distributions. Define KX(x)=K,(x) if [x|=1 and =0 otherwise, and
set K;°=K,—K?. By Corollary (1.7), if r=0/(Q—a), K}¢L"~* and K°€L"** for
any ¢>0. Taking & so small that r—g=1 and p~'+(r+e&)~1—(f/Q)—1=0, by
Lemma (1.12) we see that (f* K}) * K, and f* (K{ * K;) coincide as elements of L*
where s71=p~14(r—e) 1 +(B/Q)—1, and (f*K")* K; and f* (K" * Kj) coincide
as elements of L' where t~'=p~14(r+e)~1+(f/Q)—1. Thus (f*K,)*K,; and
JS* (K, * Kp) coincide as elements of L°+ L', and we are done.

We shall occasionally wish to use the additive structure on G defined by x4+ y=
=exp (exp~! x+exp~! y). We note that dilations distribute over addition: y,(x+y)=

=P X+ VY.

(1.14) Lemma. Given a fixed x¢G, define ¢:G—~G by o(y)=xy—x. Then
leMI=0Iyl) and llo (¥~ (») Y =0(yl?) as y-0.

Proof. Let x=exp X, y=exp Y. By the Campbell—Hausdorff formula (cf.
Hochschild [9]),

@ (y) = exp (Y+—;-[X, Y]+...)

where the dots indicate higher order commutators of X and Y, which are finite in
number by nilpotency. The assertions are then. clear, taking account of the fact
that (exp Z) t=exp(—2Z) for all Z¢g.

We now prove a mean-value theorem for homogeneous functions.

(1.15) Proposition. Let f be a homogeneous function of degree A (LE€R) which
is €* away from 0. There are constants C, >0 such that

) 109 = ClA= whenever [y] = -

lFON) +f ey~ Y —2f(x)] = C|y]2|x|*~2 whenever |y| = elx|.

Proof.. If x and y are replaced by y,x and y,y, both sides of both inequalities
are multiplied by r#, so it suffices to assume |x|=1 and |y|=% or |y|=e. If |x|=1
and |y|=% then xy is bounded away from 0, so since the mapping y—xy is smooth,

If ) —f) = Cliyl = Cliylx*—*
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‘with C independent of x, y in the given regions. The first assertion then follows
from Lemma (1.3). Moreover, if we set z=¢(») as in Lemma (1.14), we can choose
¢=0 small enough so that |z|=% whenever |y|=¢ and |x|=1. As above we have

[fx+2)+f(x—2)—2f(x)| = C|z|*
But then by Lemma (1.14),

fG) +f(xy~ ) =2/ ()| = | fl0 () +, (0 (y™) — 2/(%)|
= [f(x+2)+f(x—2) =2 @) + | fle D) - fle (D)
= Clz]*+Clo () o (I
= Clz|*+ClyI? = C'|ylF = C”|yP
= C" P

We shall occasionally need to consider right-invariant derivatives as well as
left-invariant ones. If X is a left-invariant vector field, we shall denote by X the
right-invariant vector field which agrees with X at 0:if J(x)=x~1, we have £ = —J, X.
Since J commutes with dilations, it is clear that X is homogeneous of degree A if
and only if X is.

In the later parts of this paper we will be concerned with an important class of
groups with dilations, the “stratified” groups. If g is a nilpotent Lie algebra, a stratifi-
cation of g is a decomposition of g as a vector space sum, g=V,®...®V,,, such
that [V;, V;}=V;,, for 1=j<m and [V, V,]={0}. We note that the stratification
is completely determined by V3, and that @} V; is the ideal of the k-th order com-
mutators. If g is stratified, it admits a canonical family of dilations, namely

(1.16) X+ X+ . 4+ X)) =X+ X+ L+ X, (XGEV).

We note that the homogeneous dimension of g is >7'j(dim V). Having chosen a
Euclidean norm | -|| on g with respect to which the ¥;’s are mutually orthogonal,
we define a homogeneous norm on the corresponding group G by

(1.17) |exp (S X)| = (S IX,2m e (X e V).

Henceforth, by a stratified group we shall mean a simply connected nilpotent group
G together with a stratification g=@7 V; of its Lie algebra and the dilations and
homogeneous norm defined by (1.16) and (1.17).

Here are some examples of Lie algebras with stratifications:

(a) g Abelian, m=1, V,=g.

(b) g any algebra of step two (i.e., [g, 6] {0} but [[g, g, ] = {0}), m=2, V;=any
subspace complementary to [g, g].

() g=the quotient of the free Lie algebra g, on n generators Xj, ..., X, by
the ideal [[...[g,, ), --- 8,), 8,] (m+1 factors), V;=the linear span of X, ..., X,.
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(d) g=the algebra of (m+1)X(m+1) real or complex matrices (a;;) such that
a;;=0 for i=j (with Lie product [4, B]=AB—BA), Vy={(a;;): a;;=0 for i=j—1}.

(¢) g=the nilpotent part of the Iwasawa decomposition of a semisimple Lie
algebra, V;=the linear span of the root spaces of the simple roots.

Let G be stratified. It is clear that X€g is homogeneous of degree j if and only
if X¢¥;. We choose once and for all a basis X;, ..., X, for ¥; and set # =— 37 X;.
J is a left-invariant second-order differential operator which is homogeneous of
degree 2; we call it the sub-Laplacian of G (relative to the stratification and the basis
Xy, ..., X,). As we shall see, # plays much the same role on G as (minus) the ordinary
Laplacian does on R".

Henceforth, if G is a nilpotent group with dilations {y,}, we shall generally denote
. x simply by rx.

2. Fundamental solutions for homogeneous operators

In this section we assume G is a nilpotent group with dilations, of homogeneous
dimension Q. We recall that if D is a differential operator, its transpose D’ is defined
by [(D'u)v=fu(Dv) for all u, v€2Z. Our main result is the following:

(2.1) Theorem. Let ¥ be a homogeneous differential operator on G of degree «,
0<oa<Q, such that & and F* are both hypoelliptic. Then there is a unique kernel
K, of type a which is a fundamental solution for & at 0, i.e., which satisfies £ K,=9.

The main tool in the proof is the following theorem from functional analysis,
which combines Theorems 52.1 and 52.2 of Tréves [29]:

(2.2) Lemma. Let D be a differential operator on a Euclidean space RY such
that D and D' are both hypoelliptic. Then for each x<RY there is an open neighborhood
U of x and a distribution K€ 2'(U) which is €~ away from x such that DK())=
=d(y—x) on U. Moreover, the topologies of &(U) and 2'(U) coincide on
N ={feD’'(U): Df=0} and make N into a Fréchet space.

Proof of Theorem (2.1). We apply Lemma (2.2) with x=0 and D=2 to obtain
a neighborhood U of 0 and a distribution K¢ 2’(U) which is ¥ away from 0 such
that ZK=4 on U. By shrinking U if necessary, we may assume that U= {x:|x|<C},
so that x€ U implies rx(=y,x)c U for r=1. Then for 0<r=1 we define the distribu-
tion #,€2°(U) by
h, = K—r2-*(Koy,).

By the homogeneity of & we have
&Lh, =86—1r2(07)=6—6=0,



Subelliptic estimates and function spaces on nilpotent Lie groups 173

so that ,€ A& (U). Next, observe that if s=r,
2.3) hy(x) — b (x) = r2*K(rx) — s2-*K(sx)
= r2-*[K(rx) — (s/2~*K((s/r) rx)]

= r2=*h, (rx).
If we set s=r2 in (2.3), we obtain

4 hea(x) = re=*h,(rx) + h,(x).
Replacing » by r? in (2.4) and substituting (2.4) in the result,
ha () = P () + ()
= Q-2 (rPx)+r¥*2-D b, (r’x) + fQ'“h, (rx)+ b ().

Continuing inductively, we obtain

(2.5) Boan (X) = oot M@ 9 (P x).

If we set V,={x:[x[=C—¢}cU, (2.5) yields

2.6) sup |h,gn(x)| = (1—-r2=%~* sup |h, (x)|
xX€V, xeV,

for all n. Now r—h, is clearly continuous from (0, 1] to 2°(U), so {h,:i=r=1}
is compact in 2’(U), hence in & (U). But any s=% can be expressed as s=r?" for
some n and some r€[}, 4] so that by (2.6),

sup [hs(x)] = (1—-2°"9)* sup |h,(x)|+ sup |h,(x)| = C, < .
X€EV, xXEV, X€EV,
s=1 1=t 1=t
47 T2 2
Thus the 4,’s are uniformly bounded on ¥,. But if s<r and x¢V,, (2.3) implies
hs(x) — B (x)| = r2=%|hy, (rx)] = Cor¢™* -0 as r,s—~0.

Thus the A,’s are uniformly Cauchy on compact subsets of U as r—0, so they are
Cauchy in 2’(U), hence in & (U), and the limit 4, satisfies #h,=0. Now set

Ky = K—hy = limr®~*(Koy,).
On the one hand, ¥K,=%K—%h,=5, and on the other, if O<s<1,
2.7 Ky (sx) = lrm% re-*K(srx) = lin?). (r/s)2-*K(@rx) = s*~2K,(x).

But now we can extend K to the whole space by requiring (2.7) to hold for all s>0,
so that K is a kernel of type «, and the homogeneity of % guarantees that the equa-
tion £ K,=90 holds globally.
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Finally, if K; were another kernel of type « satisfying #K; =4, then K;—K;
would be €= even at 0 since . (K,— K;)=0. Since K,— K is homogeneous of degree
a—Q <0, we must have K,—K;=0. The proof is complete.

Remark. This theorem applies equally well to #?, and the corresponding kernel
K} is given by Kj(x)=K,(x™1).

(2.8) Corollary. Let £, %" be as in Theorem (2.1), and K, K their fundamental
solutions. If in addition & is left-invariant, then for any 1€8’,

LK) = L'(a%K) = (L)%K = (L1)* Ky = 1.

Proof. Since & and #* are left-invariant, & (t x K)) =1 £ K,=t* =7 and like-
wise £*(t ¥ K{)=1. On the other hand, the mappings u~< (u * K,) and u—~Z"*(u* Ky)
are a priori continuous from 2 to &, and their dual mappings from &’ to 2’ are
T>(FL*1) % K} and 1—+(L7) * K,, respectively.

(2.9) Corollary. Under the hypotheses of Corollary (2.8), for any t€8’ there
exists 0€9’ satisfying La=1, and there are no nontrivial solutions in &’ of £1=0.

We now give some examples of Theorem (2.1). The first three are applications
of Hoérmander’s theorem (0.1); we also use the fact that if X€qg then X*= — X, since
the translations generated by X are isometries.

(2.10) Let G be stratified. Then the sub-Laplacian _# is homogeneous of degree
2 and hypoelliptic, and #*=_¢, so Theorem (2.1) applies provided Q =>2. In particular,
if G=R", #=—237(0/0x;? and |x]=(3] x?)l/ 2, then the fundamental solution for
F is of course

_ I'(n2) 9
Ko(x) - 277:”/2(”—2) le (n 7“' 2)'
However, in case n=2, the fundamental solution for # is 2r)~! log (|x]~1), which
illustrates how Theorem (2.1) can break down when a=Q.

(2.11) Let G be stratified, and let G=G X R. We define dilations on G by y,(x, t)=
=(rx, r*t). Then the “heat operator” #+(0/0t) and its transpose ¢ —(9/0t) are
hypoelliptic and homogeneous of degree 2(<(). Again, in the case G=R", the
fundamental solution is well known to be

4np)=rize- =l (¢ >0
mea={o” T (2o

(2.12) Let G be stratified and non-Abelian. If Y is any element of V,cg, then
F+Y and its transpose # — Y are hypoelliptic and homogeneous of degree 2(< Q).
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(2.13) Let G be stratified and non-Abelian. Suppose T€V, is such that there
exists a basis Xj, ..., X,, Yy,...,Y,, Wi, ..., W, of V; with T=37[Y;, X|]. For
x€C, set

Lo == 21X} + )~ SIW +aT.

Then %, and its transpose Z_, are homogeneous of degree 2(<Q), and we claim %,
is hypoelliptic provided |[Im a]<1. Hérmander’s theorem does not apply unless
Im a=0, so we use the method of L2 estimates.

First we note that for any u€ 9,

(Lou, u) = STUXulE+1Y;ul3) + 25 IWul3,

so by a well-known estimate (cf. Theorem 5.4.7 of Folland—Kohn [5], or Oleinik—
Radkevi¢ [22]), of which we shall prove a sharper version later (Theorem (4.16)),
there exist C,e>0 such that

(2.14) [ullte, ey = Cl(Zou, w) + ulf] (u€9D),
where || |, is the L? Sobolev norm of order &. We next show that
(2.15 (iTu, u)| = (Lu, u).

Indeed, set Z;=2-2(X;—iY;) and Z;=2""3(X;+iY)). Then [Z;, Z;]=i[Y;, X]],
so that

(T, w)| = |Z: (Z;, Z;1u, “)| = S1U(Z;Zu, w)|+(Z; Z;u, u)))
= 21 (1Z;ul§ +1Z;ul) = ST X;ul3+ 1Y;ul}) = (Lou, u).
Thirdly, we note that
Re(Z,u, u) = (Lu, u) + (Re o) Re (Tu, u) — (Im o) Re (iTu, u).

But Re (Tu,u)=0 since T is skew-symmetric, so by (2.15),

@16) Re (Zu, u) = (1 —|Im o) (Lou, u).
(2.14, 15, 16) combined then yield (for |Im «|<1)

2.17) %, = C(1—[Im of)~*(Re (L,u, u) + |lu]
and

(2.18)  |Im (ZLu, w)| = |Rea|(iTu, )] = (1 —[Im a)~*|Re o| Re (Z,u, u).

But by the Kohn—Nirenberg regularity theorem [14], (2.17) and (2.18) imply that
Z, is hypoelliptic for [Imaj<l1.

A particular case of this construction is of interest in the theory of several
complex variables. Let G=H,XR*, where H, is the Heisenberg group of dimension
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2n+1.Let Xy, ..., X,, Vs, ..., ¥,, T beabasis for the Lie algebra of H, satisfying the
canonical commutation relations

[¥,,%1=T for j=1,....,n; all other brackets = 0,

and let W, ..., W, be a basis for the Lie algebra of R*. Given positive numbers
dys ..y, by, ..., b, and a complex number B, set

&y = - SHEX+BYY - S Wiy pT

Applying the above result with X;=a;X;, Y;=b,Y;,, W;=W,, and T=} a;b)T,
we see that % is hypoelliptic provided |[Im f|<>7 a;b;.

In case k=2m is even, G can be imbedded in a natural way in C**™+1 a5 a real
hypersurface whose Levi form has n non-zero eigenvalues at each point, and the
operators %, for various imaginary values of §, are closely related to the “Laplacian”
D,, of the tangential d complex on G C*+™*+1; ¢f. Folland—Stein [7]. In particular
if a;=b;=1 for all j and k=0, it is shown in [7] that %} is hypoelliptic unless tiff=
=n,n+2,n+4, ..., and the fundamental solution for %; is computed explicitly.

We conclude this section with a technical result that will be useful later.

(2.19) Proposition. Let G be stratified and of homogencous dimension Q=2,
and let § =—2 Xf be a sub-Laplacian on G. Then g (D) is dense in LP, 1 <p< co,

Proof. Since p< <o, it suffices to show that & is in the closure of #(2) in the
L? norm. Let K| be the fundamental solution for # given by Theorem (2.1), and
choose €2 such that @(x)=1 when |x|=1 and ¢(x)=0 when |x|=2. Given f€ 92,
set u=f*K, and u (x)=p (2" *x)u(x) (k=1,2,3,...). Then 4, €2, and we claim
that #u,—~fin the L? norm provided p=1. Indeed, by Corollary (2.8) and the homo-
geneity of ¢,

Fu (%) = 97 NF(X) +27*(Fp) QFD)u(x) —2 31 27X 0) @~ F DX @)

Since ¢ (2-*x)f(x)=f(x) for sufficiently large k, we must show that the other terms
tend to zero.

Since Ky(x)=0(|x[*~2) as x—oo, the same is true of u(x)=(f*K;)(x). Like-
wise, X;Ko(x)=0(|x['""?) and so X;u(x)=(f*X;K)(x)=0(|x|*"9). Thus by Cor-
ollary (1.6),

J 2 (o) @ Dutp dy = C2H2 1IN [y mgens PO~ D dx

= C'|lfp|n 2" -D
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which tends to zero as k- - since p>1. Likewise,

S 27X 0) @40 )P dx = CIXGOIL 2™ [y g XPE-D dx

= C'lX;pl2ree-Y,
and the proof is complete.

Remark. The same reasoning shows that #(2) is dense in %, in the uniform
norm. #(2) is not dense in L, however, for every f¢€ ¢ (P) satisfies f f(x)dx=0.

3. Analysis of the sub-Laplacian

Henceforth we assume that G is a stratified group of homogeneous dimension
Q=2. (The latter requirement excludes only R' and R2, for which our major results
are already well known.) The purpose of this section is to develop the theory of
complex powers of the sub-Laplacian ¢ 2—2,1. X? on G. The principal tool for
this purpose is the diffusion semigroup H, generated by — ¢, whose principal proper-
ties are summarized in the following theorem.

(3.1) Theorem. There is a unique semigroup {H,: 0<t=<o} of linear operators
on L+ L= satisfying the following conditions:

() H, f=f+h, where h,(x)=h(x, t) is €~ on GX(0, =), [h,(x)dx=1 for all t,
and for all x and t, h(x,1)=0 and

3.2) h(rx, r’t) = r=2h(x, ©).

(i) If ue@,lim, |t~ (Hu—u)+ full.. = 0.
Moreover, {H,} has the following properties:

(iiiy {H,} is a contraction semigroup on LP, 1=p=oco, which is strongly con-
tinuous for p=<-eo. Also, if 1 <p<es, {H,} can be extended to-a holomorphic contrac-
tion semigroup {H,:|argz|<3n(1—|1—(2/p))} on L*.

(iv) H, is self-adjoint, i.e., H,|L” is the dual of H,|L* where p~*+(p")'=1, p>1.

(V) f=0 implies H, f=0, and H,1=1.

Proof. Let & be the space of ¥ functions which are constant outside a compact
set, and let Y;, ..., Yy be a basis for the Lie algebra of G. Let €* (resp. €) be the
completion of & with respect to the norm

AN = 1 oo+ Z3os W f et 3N et 1YY S N

(resp. the uniform norm). According to a theorem of G. Hunt [11] there is a unique
strongly continuous semigroup {H,} on ¢ such that
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(a) for each ¢=0 there is a probability measure y, on G such that H, f(x)=
= [ fxy=)du, (); )

(b) the infinitesimal generator of {H,} is defined on %? and coincides with
— # there.

Moreover, lim,_q u,(E)=1 whenever 0¢ ECG, and (since ,# is symmetric)
du,(y)=du,(y~1). We also note that since ¢ annihilates constants and & is dense in
%2, the action of ¢ on & determines {H,).

Let & be the distribution on GX(0, ) defined by

hu@vy= [ [ou@v@du()dt (4€D(G), vE (O, =)).

Then because of (b) it is easily verified that

(h, (Fu)®@v) = (h, u® (dv/dt))

so that 4 is a distribution solution (¢ +(9/9¢))h=0. But by Hérmander’s theorem
(0.1), # +(9/0t) is hypoelliptic, so h€€~(GX (0, =)), and we have du(x)=h(x, t)dx.
Thus A{x, 1)=0, fh (x, )ydx=1, and H, is self-adjoint since h(x, t)=h(x"1, t).

Also, since ¢ is homogeneous of degree 2 we have (¢ (uo7,)) o yy;,=r? #u. There-
fore the semigroup {H,.,} generated by —r2 ¢ is given by H,.,(u)=(H, (o y,))o Y1
that is,

Suty™h, o dy = [u(xey=)h(, dy = [uGy=Yhe y, Hr-2dy.

Hence A(y, r2t)=r=2h(r-1y,t), so (3.2) holds.

(), (i), and (iv) are therefore established, and (v) follows from (i). By (i) and
Young’s inequality, then, {H,} is a contraction semigroup on L?, 1=p= o, which
is strongly continuous for p< o since 4,—~6 as t—~0. Finally, since H, is self-adjoint
on L2, we can write H,=[;~ e~* dE(2) by the spectral theorem. We then define
H,=[;> e"**dE(J) for |arg z|<m/2, which proves the second half of (iii) for p=2.
The cases p=1 and p=-o are trivial, and the general case now follows from the
Riesz—Thorin—Stein interpolation theorem. (For the details of this argument, see
Stein [24].)

(3.3) Proposition. Extend h to GXR by setting h(x,t)=0 for t=0. Then
heD'(GXR) and h is a fundamental solution for ¢ -+(8/0t)

Proof. Since [h(x, t)dx=1 for t=0, it follows from Fubini’s theorem that A
is integrable over any region which is bounded in ¢, so 4 defines a distribution.
Given any u€92(GXR), then, we must show that (£ +(9/01))(u*h)=u.

For ¢=0, set A°(x, t)=h(x, t) if t=¢ and =0 otherwise. Then

uxht(x, ) = f'__: fG u(y, )h(y~x, t—s)dyds.
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Therefore, if 0<d<e,

lus b —ux i), = Jullo f; [ 1y, 5)dyds = (6= ) ju]e

so that {ux#4?} is uniformly Cauchy as -0, and its limit is clearly u% 4. On the
other hand, since (£ +(9/9¢))h=0 for t=>0,

(F+ @D wx k) (x, 1) = [, u(y, t—)h(y~'x, &) dy
= [u(: t—8)—u(y, Dby %, O dy + [ u(y, Dh(y~'x, &) dy = E+ I3,

Now || If]|.=sup,,, [u(y, t—e)—u(y, t)|~0 as e-0, and I} converges uniformly in
x for each ¢ to u(x, t). Since u€P, the convergence is also uniform in ¢, so that
|lI5 — ]|, ~0. This completes the proof.

Remark. In view of (3.2), & is the fundamental solution for #-(9/dt) given
by Theorem (2.1); cf. (2.11).

(3.4) Corollary. % is € on (GXR)—{(0, 0)}. In particular, for each x#0, h(x, t)
vanishes to infinite order as t decreases to 0.

(3.5) Corollary. For each t,=0 and positive integer N there is a constant C=0
such that |h(x,t)|=C|x|™" for |x|=1 and t=t,.

Proof. Set y=|x|"1x. Then by (3.2), h(x,t)=|x{"2h(y, |x|2¢), and
SUPyy) 1, 11, (D5 |x|~26)|=0(|x|~") for all N by Corollary (3.4).

(3.6) Corollary. Let D be any left-invariant differential operator on G and k
any non-negative integer. Then Corollary (3.5) remains valid if h is replaced by

(8/0t)* Dh.

Proof. D is a sum of homogencous terms D; of degree 4;=0. Since
(D;h)(rx, r2t)=r 2% (D;h)(x, t) and (3/0t) h(rx, r2t)==r ~2~*(9/dr)* h(x, t) the ar-
gument of Corollary (3.5) still applies.

Let #, be minus the infinitesimal generator of {H,} on L*. #, is a closed operator
on L? whose domain is dense for p<-<o; we now wish to identify #, more precisely.

(3.7) Lemma. QcDom (Fp), 1=p=oo, and F,u=Fu for uc9.

Proof. The case p= oo is just Theorem (3.1 (ii)). Suppose p< < and u€ 2. Since
Hu—u and H, fu—~fu in L? as t—-0, and ¢, is closed, it suffices to show that
s1(H,, ,u— H,u) converges in L? to —H, fu as s—0. But s~1(h,,.—h,) converges
pointwise to (9/dt)A,; so by Corollary (3.6) and the Lebesgue convergence theorem,
s~Y(h,+s—h) converges in I' to (9/0t)h,. Hence by Young’s inequality,
lim s7(H, ;. su— H,u) exists in the L? norm, 1=p= . But the limit in the L™ norm
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is — . H,u, and since u¢Dom (£,.), general semigroup theory guarantees that
F. Hu=H,¢ u=H,fu.

(3.8) Theorem, 7, is the maximal restriction of ¢ to L? (1=p:=eo); that is,
Dom (#,) is the set of all f¢ L? such that the distribution derivative ff is in L, and
FpS=Ff. Also, if p<eo, £, is the smallest closed extension of |2 on L.

Proof. Let p’ be the conjugate exponent to p. By Theorem (3.1. (iv)) and Phil-
lips’ theorem (cf. Yosida [30]), 7, is the dual operator of g, for p<e<o, and 4 is
arestriction of the dual of £ . Hence if f¢ Dom (#,) and uc %, f(fpf)usz(jp, u)y=
= f S(#u) by Lemma (3.7), so ¢, f=#f in the distribution sense. Thus Dom (Z,)C
c{feL?: gfcLP}. On the other hand, suppose f€1” and #fcL?, and u€9. Since
H,u is smooth and rapidly decreasing at infinity for s=0 (Corollary (3.6)), by ap-
proximating H,u by elements of & it is easy to see that f(]f)(Hsu)= f JS(FHu).
An application of Fubini’s theorem then shows that

fG (féHsff(X) ds) u(x)dx = fG jf(x)(féHsu(x) ds) dx
= [ S (fy FHu ) ds) dx = [ f) (Hiu () —u()) dx
= —fc (H, f(x) = f(x))u(x) dx.

Therefore H,f—f = — [{ H, #fds, so lim,_ot*(H,f—f) exists in L? and equals
—~2f, le., f€Dom (#,). This proves the first assertion. For the second, we note
that if p<<o, the maximal restriction of ¢ to L? (namely F,) is clearly the dual
of the closure of |9 on L?, and it is also the dual of #,; hence the latter two operators
are equal.

(3.9) Proposition. If 1 <p<-co, the range of ¢, is dense in L? and the nullspace
of 7, is {0}.

Proof. The first assertion follows from Proposition (2.19) and Lemma (3.7), .
and the second is then true by duality.

We now pass to the study of complex powers of #. Our definitions are motivated
by the following formula, valid for s=0 and Re «=0:

. 1 =
3.10 ST = r*~le=stdy,
G190 r@ / .
Also, if s=>0, Re a>0, and k is an integer greater than Re «,

1 (=~}
3.11 R —— k—a—1ok ,—st :
(.11) F(k—a)/; FriTster dr
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If we formally set s=_, then e~ “=" H,, and

—x e __ % 1 ma—l (RTINS 1 mk—az—l k
F = F(oc)/ot H,dt, §#*“= I"(k—oc)/ot FrH, dt.

We proceed to make these notions precise by defining #7 and 7, as operators
on L? for each p, l <p<-. We exclude p=1 and p= < because of various technical
difficulties, and because most of the results we ultimately wish to prove are false in
these cases anyhow. We first note that by Corollary (3.6), #*h,¢L* and (#*h)(x, t)=
=t~k @R(g¥hy (1712 x, 1), whence | £k, =1="| #* ;. Thus if f€L?, #*H, f=
=f*(F*h)eL? and | F*H, fll,=C| fll, 27~

Definition. Suppose that 1 <p-< o, Re a=0, and k is the smallest integer greater
than Reo (i.e., k=[Rea]+1). The operator #; is defined by

(2 S k—a—1 gk
7 hlalgél’(k )/t J¥H, fdt

on the domain of all f¢L? such that the indicated limit exists in the L? norm. (By
the preceding remarks, the integral is absolutely convergent at infinity.) £, * is
defined by

-2 £ — i 1 "u—l
#5 f—”ljfelomfot H. fdt

on the domain of all f€ L? such that the indicated limit exists in the L? norm.

We shall also have occasion to consider complex powers of I+ ¢, where I is
the identity operator. To do this we simply replace ¢ by I+ ¢ and H, by the semi-
group generated by —([+ ¢), namely e~*H,. Thus if Re a=0 and k=[Re o] +1,
we define (I+ #,)* by

I+ Af = lim s f B (L S HLf) di

on the domain of all f€ L? such that the indicated limit exists in the I? norm. Also,
we define (I+_#,)"* for Rea=0 by

—-a l - a—1,—t
I+ 72, ———F(a)ﬁ t*~le~*H,dt.

Here the integral is obviously absolutely convergent, and (I+,4,)"* is a bounded
operator on L.

It remains to consider the case Re «=0. To handle this, we first give an alterna-
tive characterization of #7 and (I+4,)* for p=2. Namely, let 4= f0°° AdE(2)
be the spectral resolution of the self-adjoint operator #,. Then for Re a=0,

(3.12) B = [ adEQ), A+ 2y = [T (1 +2rdEWD).
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(The first integral is well defined at 1=0 since 0 is not an eigenvalue of %, cf. Proposi-
tion (3.9).) Indeed, the functional calculus provided by the spectral theorem quickly
reduces these equations to the formulas (3.10) and (3.11), and equality of domains
is easily checked. But (3.12) makes sense even for Re =0, and so we use it as a
definition of #F and (I+ #,)* for all a€C. To extend this definition to other values
of p, we invoke the following multiplier theorem, which is a consequence of Stein’s
generalized Littlewood-—Paley theory.

(3.13) Lemma. Let {T,},>, be a semigroup on L*+ L™ satisfying conditions (iii),
(iv), and (v) of Theorem (3.1). Let — A be the infinitesimal generator of {T,} on L2,
and let A= [;° AdE(J) be its spectral resolution. Moreover, let ¢(s) be a bounded
function on (0, =) and let m(A)=A [;” e *¢@(s)ds. Then for 1<p<oo there is a
constant C,, independent of @, such that |m(A4)f|,=C,(sups>o le (IS, for all
JELPNLP, where m(A)= [ m(A)dE(3).

This lemma is just Corollary 3 on p. 121 of Stein [24]. The dependence of the
bound of m(4) on ¢ is not stated explicitly there, but it follows from the proof.

The definition of #7 and (I+.4,)" for Re 2=0 is contained in the following
proposition.

(3.14) Proposition. If Re a=0, #; and (I+ #)" extend to bounded operators

F2 and (I+ 4, on L?, 1<p=<-oo. Moreover, there is a constant C,>0 such that for
all felL®,

1757 p = CIT L =07 f s T+ ZY Sl = Gl A=) 7S 1lp-

Proof. In the terminology of Lemma (3.13), #f=m,(#,) and (I+ £)*=m,( %)
where m,; (0)=A% and m,(A)=(+A)*. Thus we have merely to observe that

o . '1 = -8 o=
2= F(l—-cx)_/; e~ *ss=%ds,

& . A‘ ® L As | p—S q—& S —C p—t
1+ _mfo e [e s +foe o da]ds,

and that the absolute values of the integrals are bounded uniformly in o for Re ¢=0.

In the next theorem we summarize the fundamental properties of the operators
F5 which are derived from the general theory of fractional powers of operators.
We shall refer to the comprehensive treatment of this subject in the papers of
H. Komatsu ([15], [16], [17], [18], [19], [20]); the reader may consult these papers for
references to the related works of other authors.

(3.15) Theorem. Let M, denote either £, or I+ 4,, 1 <p<oo.
(@) A; is a closed operator on L* for all a€C.
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(i) If k is a positive integer, MY is the k-th iterate of M,; that is, Dom (M)
is defined inductively to be the set of all f¢ Dom (ME~Y) such that My~ f€Dom (A,),
and Mef=M, M7,

(iii) If fe Dom (A2)NDom (M2*F) then MPfeDom (M7) and MiMEf=M*F.
MiFE is the smallest closed extension of MIME. In particular, M;*=(M7)7 .

(iv) If Rea<Re f and feDom (4;) N Dom (J/i}f), then fcDom (M) whenever
Re a=Re y=Re B, and |4} f | ,=CllMf (% | MLS 1} ~° where 6=Re (y—a)/Re (B —a)
and C depends only on a, B, arg (y—«), and arg (8—y). Moreover, M} f is an analytic
LP-palued function of y on the strip Re a<Re y<Re B and is continous on the closure.

(V) M is the (real) dual operator of M, p’=p/(p—1).

(vi) If feDom (MHNL? then f¢Dom (M) if and only if My fEL, in which
case Myf=M.f.

Proof. In [15] Komatsu considers a closed operator 4 on a Banach space for
which (— e, 0) is in the resolvent set and ||A(AI+A4)~1}} is bounded independently
of A for A>0. He defines closed fractional powers A% (Re a=>0), 4% (Re a<0), and
A%(x€C); however, in case A has dense domain and range, 4% =A% for Re a>0
and 4% = A4} for Re <0 ([15], Proposition 4.12), and the subscripts may be dropped.
We take 4=.#,, which has dense domain and satisfies || 1(Al+.#,)~"| =const. for
A=>0 by the Hille—Yosida theorem [30], and which has dense range (by Proposi-
tion (2.19) and Theorem (3.8) for .#,=¢,, and because —1 is in the resolvent set
of #, for #,=I1+ #,). For the moment, we denote the a-th power of M, as defined
in [15] by .47

Since {H,} is an analytic semigroup on L2, it follows from Proposition 4.12 of
[15], Theorem 5.4 of [16], and Theorem 6.3 of [17] that %;z./ip“ for Re a0, and
that (ii) is true. (i) is therefore also true (even for Re a=0, since then M, is bounded).
(v) is clear when Re a=0, and it is true for =1 by Phillips’ theorem [30] since H,
is self-adjoint; the general case then follows from Theorem 2.10 of [19]. (vi) is true
for =1 by Theorem (3.8); moreover, the semigroups generated by M, and A,
coincide on L?MNL% and therefore the resolvents (AI4.#,)~* and (AI+.#,)"* are
equal on LFNL? for O0<A<eo. (vi) then follows for Re a0 from Theorems 3.2
and 3.3 of [20], and it is obvious for Re a=0.

(iii) is true with % replaced by m’; by Theorems 7.2 and 7.3 of [15]. Also,
it follows from Theorems 8.1 and 8.2 of [15] that if Re «<Re f and f¢ Dom (Ji;)ﬂ
NDom (#f) then fcDom (.#}) for Rea<Rey<Ref and A1), =
Cll iz f1) #2115~ with C, 0 as in (iv); moreover, f is analytic in y in this
strip and M f~ M7 f (or M)f~MFf) as y—>u (y~P) in a region |arg (y—a)|=
=C=n/2 (larg (y—P)|=C=<n/2). If we show that .#*=.4? for all a, then, (iv)
will follow, since ;1 is clearly continuous in o along the line Re a=0.
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It therefore remains to prove that //{Ij‘z,/ip“ for Re «=0, and for this it suffices
to show that ﬂ;f=ﬂ;f for all fin a dense subspace V' L?. For .#,= ¢, we take
V=#(2), which is dense by Proposition (2.19), and for .#,=1+ ¢, we take V'=9.
In either case, ¥CDom (#,)\Dom (/") for all p; hence (since 4, ‘="
VeDom (A7) for [Rea|<1 and 1<p<-co. It is clear that .4g f=.; f for Re «=0
and f¢V, since both sides are analytic functions of o which agree for Re a#=0. But
then by the assertions proved above, if f€V, Re a=0, and 0<e<l,

My f = MMy f = M = Mf = MEf = M.
This completes the proof.
(3.16) Proposition. If Re «>0 and 1 <p< oo, Dom (#;)=Dom (04 +fp)“).
Proof. This is an instance of Theorem 6.4 of Komatsu [15].

By Theorem (3.15. (vi)), #y agrees with #7, and (I+#,)* with (I+4,))% on
their common domains for «€C and 1<p, g< . We shall therefore omit the sub-
scripts on these operators except when we wish to specify domains.

In certain cases we can express #* as an integral operator with homogeneous
kernel, as is shown by the next two propositions.

(3.17) Proposition. Suppose 0<Re a<Q. The integral

R,(x) = Wl/z)fomt(“/z)‘lh(x, 1) dt

converges absolutely for all x=0, and R, is a kernel of type o.

Proof. It follows from (3.2) that A(x, t)=0(t"%?) as t—>o for each x, and
by Corollary (3.4), k(x, t)=0(t") for all N as 10, for each x>¢0. Hence t“?~ 1/ (x, t)
is in L* as a function of ¢ for each x>0 provided Re a<Q, so R,(x) exists for x=0.
Likewise, if D is a homogeneous differential operator of degree k on G, Dh(x, t)=
=0~ @¥?) as t—>c and Dh(x, t)=0(") as t—0 for x#0. The integral

[t/ Dh(x, 1) dt

thus converges locally uniformly in x away from x=0, so we may differentiate
under the integral sign and conclude that R, is ¥~ on G—{0}. Finally, by (3.2),

1 - (2/2) =1 _ 1 - (2/2)-1,-Q -2
F(cx/2)_/o t h(rx, ) dt = @) /o t r=Ch(x, r %) dt

] -
= Tan) r“’Qfo sCD-1p(x, 5)ds = r*~2R,(%).

R,(rx) =

Thus by Proposition (1.8), R, is a kernel of type o, O0<Rea<Q.
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(3.18) Proposition. Suppose f€LP (1<p<-oo) and the integral

g(x) = [*R,(x) = [ foy YR, (»)dy (0 <Reax < Q)
converges absolutely for almost every x. If feDom (Z,*?) then g€ L? and #~*" f=g.

Proof. Set Ri(x) =[I'(¢/2)]~* [1 ¢/ ~h(x, f)dt. By Theorem (3.1.(1)), |Rll,=
=[[(/2)]7 [ 12 -1dt < o, s0 that if f€L?, g,=f* R} is defined almost every-
where and is in L?. Also by Fubini’s theorem we have

g =L@ [J 1 H, far.

Suppose f€Dom (£, *%). Then g,—~#~*2 f in the L? norm as #— e, so it will
suffice to show that for every sequence #;— e, 8,78 almost everywhere. Given
such a sequence, we can find a set E of measure zero such that for all x¢ E, the in-
tegrals defining g (x) and &, x) (j=1, 2,3, ...) are all absolutely convergent. That is,
the functions

B = T (OR300 ) = WO, 02,0

are in L'(G X (0, <)), where y; is the characteristic function of [0, n;]. But |y/;(y, 1)|=
=\ (y,t)|, so by Lebesgue’s theorem,

2, = [[v;, Ddydt ~ [[¥(r, 0y dydi = g(x),

and we are done.

The kernels R, are a generalization of the classical Riesz potentials (cf. Stein
[25]), which are obtained by taking G=R" and 4 to be the usual heat kernel as in
(2.11). The kernel R, is of course the fundamental solution for # given by Theo-
rem (2.1).

We can also define generalized Bessel potentials J,(x) for Re =0 by

1 oo
— (a/2) -1 ,—t
J,(x) = TeR) fo t e 'h(x, 1) dt.

'Arguments similar to the ones above then yield the following properties of J,,
although we shall not insist on the details:

(1) J,(x) is defined for all x>0, and even for x=0 in case Re a>Q. Moreover
J, is €> away from 0.

(2) Asx—~0, |J,(x)|=0(x[***"9)if Re a<Q, |J,(x)|=O(log (1/[x])) if Re a=0Q,
and J, is continuous at 0 if Re a>Q. As x— oo, |J,(x)|=0(|x|~") for all N. (Hence
J,eL* for all o, Rea=0.)

(3) If f€L?, 1<p=<eoo, then (I+ #) 2 f=fxJ,.
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4. Sobolev spaces

In this section we develop a theory of potential spaces of Sobolev type in terms
of the sub-Laplacian on the stratified group G.

Definition. For 1<p<<o and «=0, S? is the space Dom (#%%) equipped with
the graph norm [ £1,,.=I 1, +1.#%71,-

By Theorem (3.15. (i), S? is a Banach space. An alternative characterization of
SP which will often be convenient is the following.

(4.1) Proposition. S?=Dom ((I+#,)*?), and the norms|| f|,, , and |(I+ £)"f|,,
are equivalent.

Proof. The first assertion is just Proposition (3.16), and it then follows from
the closed graph theorem that the norms | f|, , and || f| ,+[(Z+ F 2kl p are equiv-
alent. But || /I, =C||(I+ #)**f], since (I+#)~*" is bounded.

Remark. This proposition, together with (iii) and (iv) of Theorem (3.15), shows
that for all a, =0, (I+ #)?”* is an isomorphism of S7,.p With S7. We can therefore
define S? for <0 to be the completion of L? with respect to the norm ||(Z+ #)*2f|| o
By Theorem (3.15. (v)), then, S? is the dual space of 7, where p’=p/(p—1). Theo-
rems about S? for a<0 can thus be derived from those about S? for a=0 by duality
arguments. In what follows we shall always assume «=0 and leave the extensions to
a<0 to the reader.

We now derive some basic properties of SZ.

(4.2) Proposition. If 0=y<p then S ST and || f|,,,=C, 4,1l f1l,5-
Proof. Obvious from Theorem (3.15. (iv)), taking a=0.

(4.3) Proposition. If a=Re B=b=0 then (I+ ¢) is bounded on S? for all p, o
with bound =C|I'(1—ilIm )|~ where C depends only on p, a, a, and b.

Proof. By Proposition (4.1), boundedness of (I+ #) on S? is equivalent with
boundedness of (I+.#)2(I+ #)f (I+ #)~**=(I+ #)f on L?. Moreovet, [|[(I+ #)f| =
=T+ LR T+ £) =P, so the assertion follows from Proposition (3.14) and
the smooth dependence of (I+ #)R%# on Re §.

(4.4) Proposition. If fCL” then H,f€ S} for all B=0, t=0. If also f€S; then
H, f—~fin the St norm as t—~0.

Proof. Suppose feLP. Since #*H,f=f« #*h, and #*h,c 1 by Corollary (3.6),
we have #*H,f¢L? for k=1,2,3,..., hence (by Theorems (3.8) and (3.15. (ii))
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H, fc S§, for all k. But then by Proposition (4.2), H, f¢ S} for all =0. If f€ S7 and
k=[o/2]1+1,

wIET = H[hmr(k (/2))f oo s

= _ (x/2)-1 gk — gul2
181—'0 F(k (a/z))-/. sk j Hs+tfds f Hf

since H, commutes with #* on Dom (j’;). Thus as 10, H,f—f and #%*H,f=
=H, #**f— #%2f in the L? norm, that is, H,f~fin S?.

(4.5) Theorem. 2 is a dense subspace of SE for all p, o

Proof. As in the preceding proof we have 2 cDom (j’;) for k=1,2,3, ... and
hence 2 S? for all p, «. By Propositions (4.2) and (4.4), in order to show that &
is dense in S? it will suffice to show that 9 is dense in {H,f f€ S?, t>0} in the S
norm, where k is an integer larger than «/2.

If f€S? and r=0 then H,f is a solution of the hypoelliptic equation
(F +©@/0))H,f=0 and hence is ¥=. Also, all left-invariant derivatives of H,f are
in L? being convolutions of f with L' functions by Corollary (3.6). Choose ¢€2
with ¢=1 on a neighborhood of 0, and set g,(x)=¢(ex) H, f(x) for ¢=0. Then g,€2
and g,~H,fin L? as ¢—~0. Also,

F48.(x) = ¢ () (F*H, 1)) + 2L, ¢ (D) 9) (ex) (D*~T H, ) ()

where D' is a homogeneous operator of degree i, 0=i=2k. The first term tends to
F*H,fin L? as ¢-~0, and the other terms tend to zero because of the factors of &’.
Thus g,~H, fin S%,, and we are done.

(4.6) Corollary. If f¢L® and gcD then f*gc SP for all o.

Proof. Choose a sequence {f;}C 9 with f;—fin L”. Then f;%g€2, fixg—~f*g
in I?, and #*(f;*g)=f;* F g~ * #*g in L”. Hence f* g€ St for all k, so f* g€ S?
for all «.

We now prove the fundamental interpolation theorem for operators on the S?
spaces. This result is due to Calderdn [2] in the Euclidean case, and our proof is an
adaptation of his.

(4.7) Theorem. Let G, and G, be stratified groups with sub-Laplacians $,, and
Fy- Let T be a linear mapping from Sf,’(;’(Gl)—l—Sfll (G)) to locally integrable functions
on Gy, and suppose T maps 532(Gy) and S7 (G,) boundedly into Sge (Gy) and S§(Gy),
respectively, Then T extends uniquely to a bounded mapping from Si(Gy) to S (Gy)
for 0=t=1, where

(“t’ ﬁh pt_19 4:_1) = t(“l, Bla pl—ls 4f1)+(1 _t)(%s »BO’ Po_l, q()_l)ER4
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Proof. Let B=L'(G,)(NL™(G,), which is a dense subspace of LP(G,) for p<eo
and includes all step functions. Choose @€ % with f(p(x) dx=:1, and set @,(x)=
=¢ %@ (e 'x) for e>0; by a standard argument, {p,} is an approximation to the
identity as e—~0. For each ¢>0 we define the family {T?: 0=Re z=1} of operators
on B by

T f = (I + o)’ -TA + F0) "= (f* 0.)

where 2o, =zu; +(1 —2) oy and 23, =z, + (1 —2) B,. T* is well defined on B by Proposi-
tion (4.3) and Corollary (4.6). For 0=Re z=1 let us set

A@) = |[F(1+i(Ime)) I (1—i(Im B,))

-1

1, 1, -
=r( += i(Im 2) (e —et)) (1 -5 i(Im 2) (B, — Bo))| ~%
Then, supposing for the sake of definiteness that f;=p8,, Proposition (4.3) implies
that 77 feL%(G,) for f€B and '
177 fllg, = CA@) I f* @ellp,e, (C independent of f and z).

Thus by Theorem (3.15. (iv)), for any f€B and gcL%(G,) (where g;=q,/(q; —1))
the mapping z—~ sz (T? f) g is analytic for 0<Re z<1 and continuous for 0=Re z=1
and satisfies

|6, TE)e| = Clf*@ully, gl AG).

Moreover, by the hypotheses of the theorem and Proposition (4.3), for any s€R,
T:feL(Gy) and T, f€L(G,) for all f€B, and we have the estimates

1T S llge = CoAG) /% @cllpy = Co @) L f 11,5

ITTsif gy = AL + i) [ f* @cllp, = CLAQ + i) (| /11,5
where C, and C, are independent of f, s, and &. Therefore, since A(z)=0(e
by Stirling’s formula, the Riesz—Thorin—Stein interpolation theorem (cf. [28] or
[31]) implies that for 0=¢=1, T/f€L%(G,) for all f€B and
(4.8) 17/ lla, = Cllf N5
where C, depends only on ¢, C,, C,, and the function A4.

Now, for 1 <p< oo, let
Yy ={g =/ *@.:f€B, e=0, and |f], = 2[f*@.ll,}-

We note that for any f€B and 1<p<eo, f¢,€¥, for ¢ sufficiently small, since
f*@,~f in L*. In particular, ¥, is dense in L? for all p. (4.8) then says that if
g=f*@.£7,,0=1=1,

I+ Z)' T+ Fa) =gl p. = Cllf I, = 2Cligl .-

7/Im z])
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Hence (I+ j{z))”t T(I+ #;)~* extends uniquely to a bounded mapping from L?«(G;)
to L%(G,). But by Proposition (4.1), this means that T extends uniquely to a bounded
mapping from S7*(G,) to S;ﬁ (G»), and the proof is complete.

We return to the case of a single stratified group G. Let K be a kernel of type 0;
we recall (Proposition (1.9)) that the mapping T : f—~f* K is bounded on L?, 1 <p <=,
Our next objective is to extend this result to S? for all «2=0. This is easy in the Abelian
case, since then T, commutes with constant-coefficient differential operators, but
the 'general situation requires a more substantial argument.

(4.9) Theorem. Let K be any kernel of type 0, and let T f—f* K be the associated
operator on L, 1<p<oo. If f€SE («=0) then Ty f€SE and |Txfll, . =C, | fll,, -

Proof. Tt suffices to prove that for any kernel K of type 0, T is a bounded
operator on. S? for a=0,2,4,6,... and 1<p<ee, as Theorem (4.7) then implies
the general result. Moreover, by Theorem (4.5) it is enough to show that if u€%
then TxucS? for ¢=0,2,4,6,... and 1<p<ee, and that [Txull, ,=C,  lul, .-

We proceed by induction, the initial step a=0 being Proposition (1.9). Assume
then that the theorem is proved for «=0, 2, 4, ..., 2j, and suppose K is a kernel
of type 0 and u€9. Then fuc S;,NDom (£, "), and by Proposition (1.11), Fux R,
exists a.e. Thus by Proposition (3.18), u=_#~1 fu= fux R,, and then by Proposi-
tion (1.13), Tyu=(Ffu* R,) * K= _Fux* (R, % K). Now R, * K is a kernel of type 2, so
K,=_# (R, % K) is a kernel of type 0, and we have

FTgu = Txux 6 = Fux((Ro*K)* £8) = Fux Ky = Ty, (Fu),
since #fu and #6 have compact support. By inductive hypothesis, then, Tru¢S%;,
and we already know T uc L?. Therefore Txu€ S%;,, and
1Txulpej42 = CUTxul, + 1T ullp,2) = CUTxul, + 1T, Fullp,0)
= C'(lul,+ 1 2ullp,2) = Clullp, 2542

The proof is complete.

The next theorem provides a characterization of S? in terms of left-invariant
derivatives. We recall that ¢ = —>7 X7 where X, ..., X, is a basis for ¥;, and
that X denotes the right-invariant vector field agreeing with the left-invariant vector
field X at 0.

(4.10) Theorem. If 1<p<-oo and a=0, then fCSP,, if and only if f and the
distribution derivatives Xf are in S% for all X€ V. The norms | f|, o+1 and | f1 , o+
+ 7 1X; fll,,. are equivalent.

Before proceeding to the proof, we need two technical lemmas.

(4.11) Lemma, If uc P and O<o=2 then F*u=_g(uxR,_,).
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Proof. The proof.of Proposition (2.19) shows that if €2 there is a sequence
{w,}c 2 such that w,—~ux R, pointwise, |1, (x)|=0(|x[*"?) uniformly in &, and
Fu,—u in [P, 1<p<oo, The first two conditions imply that #,—~u* R, in L? for
p=Q/(Q—2); hence ucRange (£,)=Dom (fp‘l) for p=Q/(Q—2). By Theorem
(3.15. (iv)), then, u¢ Dom (£&¥1) for p>Q/(Q—2) and 0=u=2, and by Propositi-
on (3.18), #“Py=uxR,_,. But then #*?u=_¢ #CPly=gu*R,_,).

(4.12) Lemma. There exist kernels Ky, ..., K, of type 1 such that for all 1€,
T=Z; (XJ‘C) *K].

Proof. Since R, is a fundamental solution for #, by Corollary (2.8) we have
T=1% 0% Ry = — J11xX;0%xX;0% Ry = — 31 (X;7)*(X;Ry).

Thus we take K;=—X;R;.

Proof of Theorem (4.10). By Theorem (4.5), it suffices to show that the norms
lleell . w41 and [lull, o+ 37 [ X;ull, . are equivalent for u€ 9. First, if u€2 then FVuc
€Dom (#,"?) for all p, in particular for p<Q/(Q~1), so by Propositions (1.11) and
(3.18), u=_¢# 12 g2y g2y x R,. Then for XV,

Xu = (FY2ux R)* X6 = FY2ux(Ryx X8) = FY2ux XR,,

the associativity being justified by approximating #Yu in L7 (p<Q/(Q—1)) by
elements of 2. But XR, is a kernel of type 0, so by Theorem (4.9) and Proposi-
tion (4.2),

1Xutllp,a = Cp,ull 2 ullp,a = Cp, o (1F 20l + 17D Rullp) = Cpulltllpasa

On the other hand, by Proposition (1.13) and Lemmas (4.11) and (4.12),
Py = FusR) =~ F 31 (X;u) ¢ (K% Ry) = — S5 (X;6) % F(K;* Ry).

Now K * R, is a kernel of type 2, so # (K;* R,) is a kernel of type 0. Thus by Theo-
rem (4.9),
”u”p,a+1 = ”u”p,a+ ”jllzu"p,a = |Iu”p,¢+cp,a 2’1' "Xju"p,a’

and we are done.

This theorem has several important corollaries. Before stating them we need to in-
troduce a multi-index notation for non-commuting derivatives. Namely, I=(j, ..., i)
will denote a k-tuple with k arbitrary and 1=i;=n for j=1, ..., k, and we set [I|=k.
We then define X; to be X, X, ...X; (where X, ..., X, is the chosen basis for V7),
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which is a homogeneous differential operator of degree |I|. We note that every left-
invariant differential operator is a linear combination of X,’s and in particular that
V, is in the span of the X;’s with |I|=k.

(4.13). Corollary. If k is a positive integer,
St ={feLr: X, feL? for \I| =k},

and the norms || fll , ,+ 2= 1 X f1l, are equivalent.

(4.14) Corollary. S? is independent of the choice of sub-Laplacian, for 1<p-<eo
and 0 =0.

Proof. LetXy, ..., X,and Yy, ..., Y, be two bases for ¥y, and let 4,,=—>7 ij,
Foy=—21 Y} It is evident from Corollary (4.13) that if o is an integer, the identity
mapping S% ()~ S7 (#) is an isomorphism. The general case now follows from
Theorem (4.7).

(4.15) Corollary. If ¢€D, multiplication by ¢ is a bounded operator on St for
all p, a.

Proof. This is clear by Corollary (4.13) if « is an integer and Theorem (4.7)
then yields the general case.
If UcG is an open set, ] <p< o, and «=0, we define

SPU, loc) = {fc 2’ (U): of ¢ S? for all @€ QU)}.

We abbreviate S?(G, loc) as SZ(loc). Corollary (4.15) says that S? is localizable,
ie. that S?cS2(U, loc) for all UcG.

We now compare the spaces S? with the classical Sobolev spaces. We consider
the Lie algebra g as an Abelian Lie group under addition, fix a linear coordinate
system {x;} on g, and set 4 =— 37 (0/0x;)? The spaces LZ=S2(4) are then the
standard L? Sobolev spaces on g, cf. Stein [25]. Since exp: g—G is a diffeomorphism,
we can also regard L? as a space of functions on G.

(4.16) Theorem. LZ(loc)c SE(loc)c LE, (loc) for 1<p<oo and a=0, where m

afm

is the number of steps in the stratification of G.

Proof. It suffices to show that for any €9, T,: f—¢f is bounded from L? to
S? and from S7 to Lf, . Any constant-coefficient differential operator of order k

can be expressed as a linear combination of X’s with |[I|=mk and smooth coefficients,
and conversely any X; with [I|=k is a linear combination of constant-coefficient
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operators of order =k with smooth coefficients. In particular, the coefficients are
bounded on supp ¢, so it follows easily from Corollary (4.13) that T,,: L2~ S? when
o is an integer, and T,: S?—~L2, when a/m is an integer. The proof is concluded
by applying Theorem (4.7) with Gy=g and G,=G or vice versa.

Several remarks are in order concerning this theorem:

(1) Theorem (4.16) is essentially local in character. The coefficients of the vector
fields X; with respect to the coordinates {x;oexp~'} are in fact polynomials, hence
unbounded at infinity, so we have no control over integrability conditions at in-
finity.

(2) Tt is easy to convince oneself that Theorem (4.16) cannot be improved.
For example, it is clear that LZ(loc)d- S§(loc) when f<a and o is an integer. On
the other hand, given a positive integer k and 1<p=<oo, choose p€Z with =1
on a neighborhood of 0 and set f(x)=¢ (x) |x*"*~©@/?), Then #™f is homogeneous
of degree —Q/p near 0, smooth away from 0, and compactly supported, hence
(by Corollary (1.7)) in L? for g<p. Thus f€ S, for g=p. Also, if f>0 is small and
a=2mk—f, by Proposition (1.11) and (3.18) we have

Frf = grk=GID f — (Fmkfyx R,.

It is then easy to check that #£**fis O(|x|’~@/P) near 0, O(|x|~2%#) near oo, and
smooth in between, so that (for f small), #*2fcL”. Since fcL?, we have f€S?
for all a<2mk. But if Y€V, then Y?£is homogeneous of degree —Q/p near 0 and
does not vanish identically there (by homogeneity considerations, ¥*~'f cannot be
constant along trajectories of Y). Thus Y%*/¢ L?, so /¢ LZ,.
~ (3) In the case p=2 and a=1, weaker versions of Theorem (4.16) — which,
however, are valid in more general situations — have been obtained by Hérmander
[10], Kohn (see [5], Theorem 5.4.7), and Radkevi& (see [22]). We conjecture that our
sharper result should also be valid more generally.

We conclude this section with a theorem related to the classical fractional
integration theorems of Hardy—Littlewood and Sobolev (see [25] and [31]).

(4.17) Theorem. S?cS§, and ||, =Cl . for some C=C(p,q,%)>0
provided 1<p<q<oo and f=0—Q(p~'—q ) =0.

Proof. Suppose f¢SP. Then g@-P2fcSPcl? since a=f, also
F@PLfcDom (F#-*/?). By Propositions (1.11) and (3.18) we see that
f=(FEPRf) R, €L, and [, = ClFPRS, = CIfl,,. Likewise,
F2feLPNDom (FP~977), so fIf=(F2f)*x R, ,€L¢ and | fFP1f], =
= C| A3 ]I, = Ciflp,e By Theorem (3.15.(vi)), then, f¢Dom (f,f’z) = S§,
and ||f g, = Cllfllp,a-



Subelliptic estimates and function spaces on nilpotent Lie groups 193

5. Lipschitz spaces

We recall the definition of the classical Lipschitz spaces 4, (x=-0) on the stratified
group G, cf. Stein [25]. Here we identify G with the Euclidean space g with Euclidean
norm || | and linear coordinates {x;} via the exponential map.

Let #% be the space of bounded continuous functions on G. For O<ua<1

we define
A, = {f€B%: S:lf [fGe+p) =N yl* < =}

For a=1,
Ay = {f€BE: sup|f(x+y) +f(x—y) = 2fx)|/Iyl < =}.

X5y

Finally, if a=k+o where k=1,2,3, ... and 0<o'=1,
Ay = {f€Ay:0' f]0x;, ... dx;,€ A, Whenever j = k}.

For our purposes it is better to use a different family of Lipschitz spaces which
are more closely related to the homogeneous structure on G, following the ideas
in Koranyi—Vagi [21], Stein [27], and Folland—Stein [7]. (Most of the results
in this section are proved in [7] for the case where G is a Heisenberg group.) Here
we use the group structure and homogeneous norm on G. For O0<oa—<1 we define

I, = {f€B%:|fl. = sup|f(x) — S|yl < ).
For a=1, \¥

Then I',, 0<a=1, is a Banach space with norm | fll; =|fllo+|/ls. If a=k+o’
with k=1,2,3,... and O0<a'=1,

I,={fel,:X;feI', whenever [I| = k}.
(Here we are using the notation for derivatives introduced after Theorem (4.10).)

I, is a Banach space with norm || f”r,,:”f”ra""Zu(ék ||X,f”r“,. For feI', we also
set |f’a=lf]a'+2[}'l§k IX!fla"

To study the spaces I', we need to draw some consequences from the Campbell—
Hausdorff formula (cf. Hochschild [9]).

(5.1) Lemma. There is a constant A=0 and an integer N such that any x€G
can be written x=[[’ x; with x;€exp (Vy) and |x;|=A4|x|, j=1, ..., N.

Proof. Let B={Y€V,:|exp Y|=1}. In terms of the stratification g=@" ¥;
and the basis X3, ..., X, for V; we define maps ¢°, (0}1= <P,?1i2 5 eers go;;‘j},m_l (I=i;=n)
of Binto G by

¥°(Y) = exp?y,
@l,..;,@) = [..[lexpY, exp X, ], exp X, ], ... exp X; ],
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where [x, y]=xyx~1y~l. By the Campbell—-Hausdorff formula, the differential
Dy} .yt V1~g of @..;, at the origin is given by

Dyp°(Y) = Y,
Do(p'iil...ij(Y) -~ [[[K Xi1]7 Xig]) *X;j]

Now consider the map
- vd n—1 : i
(2 Yil...ij > 1l j—o H1§ik§n, 1§k§j(/’i’1... ij(Yil...i_,)

from the (3} ~!n/)-fold product of B with itself into G. The preceding remarks,
together with another application of Campbell—Hausdorff, show that the differential
D, ¢ is surjective onto g. Consequently, the range of ¢ includes a ball {x: |x|=ry}
of positive radius about the origin in G. Since a commutator of j+1 elements of
G is the product of 3-2/—2 elements, any x€G with |x|=r, can be written as the
product of N= ;.':01 n/(3-2/—2) elements of exp (V;) whose norms are at most
1. By dilation, then, an arbitrary x can be written as the product of N elements of
exp (V,) whose norms are at most 7, |x|.

A similar (but easier) argument yields:

(5.2) Lemma. For 1=k=m, the mapping (yx, ..., ym)—~[Ii ;s a diffeomorphism
from (exp Vi)X...X(exp V,,) onto exp (D V), and there is a constant A=0 such
that if y=][." y; with y;€exp V; then |y;|=A|y|.

If x€ G, we can write x uniquely as x=exp (X+ Y) where X¢ V; and YED] V;.
We define the “partial inverse of x with respect to V;”, denoted %, to be
F=exp(—X+71).

(5.3) Lemma. For any x€G, xX and %x are in exp (Dg V).

Proof. By Campbell—Hausdorff,  if x=exp(X+Y) as above, x%=
=exp (2Y +commutators)€exp (P V), and likewise for %x.
We now derive some important properties of the spaces I'.

(5.4) Proposition. There is a constant C=>0 such that if gCBE and X,g€ BE
Jor j=1,...,n, then

sup |g(xy) —g@)|/Iyl = C Z1 X8l -

X ¥

Proof. First suppose y=exp Y with Y€V,. Then Yg€ %%, so

g —g ()] = |f; Ye(x exp (¢Y)) df] = |¥g]...
Moreover, ry=exp (rY) for r=0, so

1Yl = |yl sup {| Xg|l.: X€ V3, [exp X| = 1} = Cly| 37 IX;8]
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Thus the assertion is true when y is restricted to exp ;. Next, given any y€G, write
y=]IY y; as in Lemma (5.1). Then

g(xy)—g(x) = [g(xyy - yn) —8(xyy .- yn-DI+ ... +[g(xy1y2) — g eyl +
+g(xy) —g(x)]
so that
lg() —g ()] = C(Z7 13]) (271X 8ll) = NAC|Y| 33 1X;8ll

and the proof is complete.
In what follows it will sometimes be convenient to denote f(xy) +f(xy~1) —2f(x)
by 43 f(x).

(5.5) Proposition. Given O<o<2, there is a constant C>0 such that if f€I',, then

@ sup LfCey) +fGxy™) = 2fX)/|yI* = Clfa
(i) sup [fCey) +fep) = 2/ /1y = Clf -

Proof. We first consider (i), which is trivial for a=1. Suppose then that f€r,,
1 <ua<2, and assume for the moment that f has compact support. By Lemma (4.12),
f=21 g;*K; where g;=X, feI',_, and K; is a kernel of type 1. Then

(5.6) A1) = 3} [ 80z 43K, (2) d.

By Proposition (1.15), there exists £>0 such that [42K;(z)| =C|y|?|z| 271 if |y|=elz],
and in particular Af,KjELl. We claim fAfKJ=0. Indeed, if x, is the characteristic
function of the set {z: |z|=r}, we have Ky, €L, so clearly [4%(K;y,)=0. 4%(K;y,)
converges pointwise and boundedly to Af,K ; as r— oo, 's0 by the Lebesgue convergence
theorem [A3K;=0. Thus (5.6) can be rewritten as

G.7) £fx) = 3 [ (g (xz™) —g; () 43K, @) dz.

Now by Corollary (1.6) and Proposition (1.15),

Lotz (€2 —g;(0) 42K; (2 dz| = Clgjlams [, i 121 VRI2I =222
= Clgjlaa VP2 = Clg famslyl®

On the other hand,

St @2 =g, A2K, @) | = lglams I [y 2K @)1

and since (by Proposition (1.4)) ¢|z|=|y| implies |zy|=B|y| and |zy~!|=B|y| for
some B=¢"1,

Sovizm K@l dz = 4 [ g, K@) dz = C [y, | ~2dz = C'(BIy).
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Combining these results with (5.7), we have
sup |45 f()|/|y* = C Z118la-1 = Clf lo-
X,y

We now remove the restriction that f have compact support. If feI', (1<a<2)
and €9, it is easily verified that |of|,=C,|¢l,|fl.. Therefore, let {p;}7 2 be
a partition of unity with the following properties: (a) sup; |@;|,=Ci<<, (b) if
U;={x: x=zy with z€supp ¢; and |y[=4| Flo/1f1)Y, there is an integer N such
that each x€G is contained in at most N U;’s. (We assume f>constant, so | f|,0.)
Then |43 f(x)|= 25" |45(@; f)(x)|. For each x€G, the sum on the right contains at
most N non-vanishing terms if |y|=4| f]./|fl)" so

sup (|45 /7 X €G, Y] = @IS 1V = NG G S -
But A2 f/1M* = 41S e (fl/41f]e) = 1l for 1y = @1fl/f DY

so (i) is established.
Fi_nally, we deduce (ii) from (i). If Y€V, and x€G, the function f; y: R—~C
defined by f,, y(1)=f(x exp (1)) satisfies

Sy +8) + oy (t =)~ 2,y D] = Clf lulexp GV = C|fLlexp Y]*s.

If j=2, then «/j<1, so classical Lipschitzr theory (cf. Stein [25]) implies that
[fex ¢ +5) = f,x O = CIflJexp Y[s™) = C|f s Jexp (sT)P"
Moreover, these estimates hold uniformly in x. Thus

IfC) =@ = ClFLIIE (veexpV;, j = 2).

By Lemma (5.2) and the collapsing-sum argument in the proof -of Proposition
(5.4), then,

[fGey) )] = Clf LIyl (v€exp @ V).
In particular, by Lemma (5.3) and Proposition (1.4), |
|f Gy =fGp) = CLfulps = C ISl
since [p|=1y| Thus’r
|fGep) +f(x9) — 2/ ()] = |43 f )+, xp~) =S = C7 | falyI™
The proof is complete:

(5.8) Proposition. Suppose 0<f<1 and fc BE. Then fcI'y if and only if there
exist Co=0 and, for each ©>0, functions f,€T1 ., and f*€I'y_p such that | £ili+p=Cor,
| fili=p=Cot™Y, and f=f,+f7. Moreover, Cy~|fl;.
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Proof. Suppose that f=f,+f" as above for all 7=0. Then [43/7.=
=2C,|y['"? 17, while by Proposition (5.5), |42 £,||..=CC,|y|*** 1. Hence for all t>0,

”Agfllw = C'Co(]yll‘ﬁr—1+lyll+pr)'

Taking t=|y|™#, we conclude that ||42f]..=C’C,|y|. Thus f€I; and | f[,;=C’C,.

Conversely, suppose f€I'y. Choose ¢,€2 supported in' {x: |x|=1} and sat-
isfying 9, =0, @¢(x)=¢e(x™), and [p,=1. For k=1 set ¢, (x)=2%¢ (2*x), so that
foi=1 for all k, and {¢,} is an approximation to the identity. Also, set f, =f* ¢
and gy =f,—fi-1. Since f is continuous, we can write f=f,+ >; g, the sum con-
verging uniformly on compact sets. We claim that for some C=0 independent of
k and f, :

(5.9) lgile = ClfL27%  1Xj8ille = Clfl,  1X: X gl = CIf12F
Gj=1,..,n).

It suffices to estimate g, and X,X;g,, as an elementary argument then yields the
estimate for X;g,. Since ¢, is even and fqosz(pk_l,

& = [fer o) dy—f foy ) pui () dy

= %/ LGy ™) +£09) — 21 [04 () — a1 (] A,

whence

lgull. = %If b [z [060) = s ()] dy = 22411y [ 00 = QIFID27*

On the other hand, the function ¥, =X, X;(¢; — ¢, ,) satisfies ¥, (x) =y, (%) since the
derivatives X; reverse parity in the V; directions. Moreover, f ¥, =0 since ¥, is the
derivative of a function in 2. Thus

XX, = 5 [ ) /5 2/ () .

Then by Proposition (5.5) and the fact that [[y|=2% f|ys|,

1X: X8l = %!fll Simae Ve dy = 27511 [ Wl = (Wl 1125

Thus (5.9) is established.
From (5.9) and Proposition (5.4), then,

sup [ge(0)) g ()| = C|flmin 27 [y)) = Clf 27|y,

sup |4 (%) — X;84(9)] = Clflymin (1, 2|y]) = CIfL 2% yP.
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Thus |gdi—p = C27¥|fl; and |[g;,s = C2*¥|f];, so that
|[fo+ 21 &slaes = ClfL 372 = CIfL2Y,
|Z;+1 gkll—p = Clflh 2;-4—1 2-% = C|f|, 27

Therefore, given =1 we take f,=f,+ 1 g, and f*=x,, & Where 28 ~"DP=7<2V
and given t<1 we take ;=0 and f"=f=f,+ > g, and we are done.

(5.10) Proposition. If a=p then I',CT.

Proof. It is clear that I',C I'; when the interval [a, ] does not contain an integer.
Proposition (5.4) shows that I',cI'; when f=1 and 1<a<2, and this combined
with Proposition (5.8) shows that I'y I’y for 0<p<1. The assertion is thus proved
for 0<B<a<2, and the general case follows by applying these arguments to de-
rivatives.

(5.11) Proposition. If 1=p<< and O<a=1, there is a constant C=C, >0
such that || fl.=C fll,+1fl for all fELPNT,.

Proof. We may assume o<1, since by Proposition (5.10) (and its proof), ' T,
and | f],=C]| fl, for a<1. For any x€G we have | f(y)|=%|f(x)| for all y such that
by~ =(1 f()|/2] f|)"*=A. Thus

1132 frryonma SNy = (5 /P~ CAR = Cl1RYIP @0 pI 0,
or, with y=Q/ap,
171 = sup 1G] = LA I = COS Ty +AD.

We now come to the main topic of this section: the effect of convolution with
kernels of type A (0=1<(Q) on the spaces I',. Actually, if k<a=k+1 where k
is an integer, we shall consider not I, itself but SZNI, (1<p<-<s), the space of
functions f such that fand X fare in L\TI',_, for |I|=k, in order to guarantee that
the integrals in- question converge. We note that by Proposition (5.11), SENT, is
a Banach space with norm [ f1l, ;+|fl.-

(5.12) Theorem. Let K be a kernel of type 0, k=0,1,2, ..., k<a=k+1, and
1<p=<oo, Then the mapping T: f—~f*K is bounded on S{(\I,.

Proof. The case O<a<1 is due to Kordnyi—Vagi [21], and their argument
shows that |7f],=C|f|, for f€I',, O<a<1. We refer to their paper for the dem-
onstration.

Suppose 1<a<2. If f€S?NT,, we know by Theorem (4.9) and the result for
a<1 that TfeS?Nr,_, and

Ile”p.l'l"Tfla-l = C(”f”p,l"—lf[a—l)'
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On the other hand, if f€ 2 we can write f=>7 X,/ K; where K; is a kernel of type 1,
by Lemma (4.12). Then by Proposition (1.13),

X, Tf = X; 2, Xif»(KixK) = J_| Xif*K;

where K;;=X;(K;xK) is a kernel of type 0. Since & is dense in ST and g—g* K;
is bounded on L7, this equation remains valid for all f¢€ S?. In particular, if f€¢ STNT,,
l<a<2, then X;f€L*NTI,_,; therefore X;Tfc L*(I,_, and

lXijla—l = CZ: IA,ifla:-—l = lelu

The theorem is thus established for O<a<1 and 1<a=<2. Next, if feI';NL%,
by Proposition (5.8) we can write f=£,+f* with | £,]5,=C| fl,7and | f*];,=C It
for every 7=0. Moreover, the proof of Proposition (5.8) shows that we can take
Jf.=f*¢ for some €9, so that f,€ S? and f¢L”. By the preceding results, then,
|Tf|se=C’| fli7 and |Tf"|; .= C’| f|; 77, so by the converse part of Proposition (5.8)
Iferl, and |If[,=C"| fl;.

The theorem is therefore true for O<a<2, and the general case now follows
easily by induction on k by using the kernels K;; as in the proof for 1 <a<2.

As a consequence, we deduce the following boundedness theorem for kernels
of higher type.

(5.13) Theorem. Let K be a kernel of type A, A=1,2, ..., Q—1, and suppose
l<p<g=o and g '=p~1—(A/Q). If k=0,1,2, ... and k<a=k+1, the mapping
T:f—~f*K is bounded from S{NI, to S7,,NITy4;.

Proof. First suppose A=1. If f€ S?NTI', with p, g, k, a as above, then TfcL?
and | If | ,=C| fll, by Proposition (1.11). Also, if we set K,(x)=K(x) when |x|=1
and =0 otherwise, gnd K_.=K—K,, we have K,c L' and K_ € L* where p’=p/(p—1),
so by Proposition (5.11),

1Tf e = If o 1Kolls + 111, 1Kl = CUSN, +1f L

This shows that Tf is bounded, and also that it is continuous since & is dense in
SPNT,. Moreover, X;Tf=f*X;K, and since X;K is a kernel of type 0, by Theo-
rem (5.12) we have X;Tfe SNI',cSINT, since L’(L~cL?, and

1XGTf g +1X; Tf o = CUX; Tf W6+ XIS = C (1S llpr +1f1)-
By Proposition (5.4), Tf€I'y for 0<p=1; therefore Tf€S{, ;NI and
1T Mg ks1 +1Tf lawn = WIS llg + 1 Tf i+ 23 UK Tf g+ 1X5 T 1)
= C(I/f llp,x+ 1S

The theorem now follows by induction on A. If K is a kernel of type A
(A=2,3,...,0-1) and fe S!NT,, we have X;Tf=f* X;K where XK is a kernel of
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type A—1. By inductive hypothesis, X;Tf€ S, ; N4 1C S, ;3N ,4 ;-1 Where
r~l=p~'—(A—1)/Q, and by the preceding argument 7Tfc L'(\I; for 0<p=1, hence
IfeS7, ;NI .4 ;. (The norm inequalities are easily checked.)

(5.14) Theorem. Suppose A, p, r are numbers satisfying 0<A<Q, l<p<(Q/A)<
<r=oo, Define q, « by g7 1=p 1—(1J0) and a=A—(Q]r), s0 p<g<< and O<a=4.
If K is a kernel of type A, the mapping T: f—f* K is bounded from I?(\L" to L*NT,.
Moreover, for 0<a=1 there is a constant C=>0 such that |If|,=C| fl,.

Proof. We know by Proposition (1.11) that T is bounded from L? to L% To
prove the theorem for the case O<a=1, then, it suffices to show that [Zf],=C| fI,.
First suppose O0<o<1. We have

Tf(xp)— Tf () = [f(xz"HIK () — K(@)] dz.

We shall estimate the integral over the regions |z|=2|y| and |z|=2]|y| separately.
For the first one, we note that if r'=r/(r—1), then A—Q+(Q/r')=i—(Q/r)=q.
In particular, A—Q—1)¢r'=(—1)r'—Q <—0Q, so by Proposition (1.15) and Hél-
der’s inequality,

|52, @2 DK @) — K@l dz| = CULN(f g gy 1112127271 )
= C'If 1Ly @)= 2 1+ @ = | £ Iy

On the other hand, by Proposition (1.4) there is a constant B=2 such that |z|=2|y|
implies |zy|=Bly|, so by Holder again,

| ftme FO7 K@)~ K@) de| 5 1S 11 (2 [ za KON )

= CIf 1 (f iy (2197 2 = CIf LB -0+@) = C| flL P

Therefore |7f|,=C| fl, for 0<a<]1.
Next suppose a=1. Here we have

Tf (o) + Tf ey ™) = 2Tf(x) = [ f(xz ) [K(zp) + K (zp ™) — 2K ()] dz.

The estimate |7f],=C| f|, then follows by the same argument as above, using the
estimate for second differences in Proposition (1.15).

For the general case, write a=k-+a” where k=0, 1,2, ... and O<o’=1. The
theorem is proved for k=0; we assume k=1 and proceed by induction. Noting that
X;Tf=f*X;K and X;K is a kernel of type A—1=0, we have X;TfcL°(\I,_, where
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s~1=p-1—(A—1)/Q by inductive hypothesis. Hence
XTfe(LNL)NT,ycLANT,_y, and  [X;Tfr,_, = CUfll,+ 111

But, setting K=K,+K_ as in the proof of Theorem (5.13), we conclude by the
argument given there that 7f€ #% and

1Zf oo = 1£ 1o 1Kol + 1 f U 1Kl = CULS N+ 1S 1)-

Hence, in view of Proposition (5.4),
1T lr, = 1T Iry + 210X s, = 1 Tf o + C 21X T NI, -y
= C U 1+ 171,

and we are done.
The following theorem generalizes the famous Sobolev imbedding theorem (the

classical version being the case G=R").

(5.15) Theorem. Suppose 1<p<-<o and a=>Q[p. Then SEC Iy and | HrﬁéC[l Ip,a
where B=a—(Q/p).

Proof. First consider the case where p>Q/(Q0—1) and B=1, which implies
a<Q. Since 9 is dense in S? (Theorem (4.5)), it suffices to prove the estimate ||| r,=
=Clull,, for uc 2. Now 2 S?for all g, so foruc 2, Fuc L for all g. By Proposi-
tions (1.11) and (3.18), then, u= g~ *2g*2y=(g*%y)x R,. Therefore, by Theo-
rem (5.14) (with r replaced by p and p replaced by some g<Q/x), we have |u[=
=C| #**u|l,. Then by Proposition (5.11),

lellr, = € (ulg+ lul,) = C"(LFull, + lull,) = C” ullp,a-

Next, suppose f=1 and p=Q/(Q—1). Choose a number g with @/(Q—1)<
<g<oo, and set y=a—Q(p~1—g71). Clearly y=8+(Q/q)=0. By the preceding
remarks together with Theorem (4.17), therefore, ST STy and | | r,,éc =
=C| s |

Finally, suppose f>1; we write f=k+p’ where k=1,2,3, ... and O<f’'=1.
By Theorem (4.10), if € S? then f and X f are in S?_, for |I|=k, hence in I';.. Thus
f€I'y, and the norm estimate is obvious.

(5.16) Corollary. S?c%* provided a=>mk+(Q/p), where m is the number of steps
in the stratification of G.

We note that this result is sharper than the one obtained by combining Theorem
(4.16) with the ordinary Sobolev theorem, namely SfcL?, (loc)c€* provided
a=m(k+(N/p)), where N is the Euclidean dimension of G.
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Our last objective in this chapter is to compare the spaces I', with the classical
spaces A,. To begin with, suppose f¢I', has compact support and O<a-<1. By
Lemma (1.3),

fx2)—fx)] = O(z]*) = O(lz|*'™) as z -0,

where m is the number of steps in the stratification. Thus if we set z=x"1(x+y),

fx+1)—fR)] = 1fx2)=f()]| = O(lz|™) = O(IyI*™) as y 0.

Moreover, these estimates are uniform in x as x ranges over supp f, so we conclude
that f€A,,,. Hence I,(loc)c Aym(loc) for O<a=<1 (where, as usual, I',(loc)=
={f: ofcrl, for all €D} and likewise for 4, /m (loc)). Similarly, we see that 4, (loc)c
cT',(loc) for 0<a—<1. These inclusions are best possible, as |y|=|y| for ycexp V;
and |y|=|y|¥™ for ycexp ¥, by (1.17).

We shall show that in fact A,(loc)c T, (loc)< 4, (loc) for all «=>0 and thus
provide a result for I', parallel to Theorem (4.16) for S?. We assume throughout
that m=>1, as the Abelian case is trivial. The following line of proof was suggested
to us by E. M. Stein.

(5.17) Lemma. Suppose O<o<2 and that f€ BE satisfies

JEp)+ Gy~ =2f(x) = O(ly|") as y -0
Jor x in any bounded set. Then f¢ A,(loc).

Proof. By a well-known characterization of A,, O0<a<2 (cf. Stein [25]), it
suffices to show that

JE+P+fx—y)—2f(x) = O(Iyl|*) as y~0.

If Y¢g, the hypothesis implies that the function f, y: R—~C defined by f, y(f)=
=f(xexp (1Y )) is in 4, (R, loc) for each x, hence in Ay (R, loc), and the Lipschitz
constants involved vary continuously with x and Y. Since «/2<1, by taking
Y=exp~1(x~1y) we see that ‘

(5.18) ) —f)| = O(Ix~1y|*"%) = O(lx—~ |

as x—y—0 and x, y range over a bounded set.

Now, for fixed x€G, define y(y)=x"1(x+y). ¥ is the inverse of the diffeo-
morphism ¢ of Lemma (1.14), which says that y—~¢(y~?) has the same differential
at 0 as y—+¢(»)~1. Hence y—~(y~1) has the same differential at 0 as y—y ()73,
and so

WOl =O0dy) and Y=H—¥ ) =0
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Thus, in view of (5.18),
S+ +F =) —2f(x) = [f0 () + (b () ) — 2/ )]
+ LA (=) —f (v (1) 7Y)]
= O(IW I+ oI B~ —yY ()~
= 0(IylI.
(5.19) Lemma. If 0<a<2 and f€I, has compact support, then f€A,,.

Proof. This is clear from Proposition (5.5) and Lemmas (1.3) and (5.17).

(5.20) Lemma. Ler K be a kernel of type 1. There is a constant C=0
such that for all x€G and y€exp V; (j=1, ..., m) with |y|=%|x|, |K(xy)—K(x)|=
=Clyl |x[2.

Proof. Since ||ry|=r’||y| for y€exp V;, both sides of the inequality are multi-

plied by #*~2 when x and y are replaced by rx and ry. It therefore suffices to assume
Ix|=1and |y|=1%, in which case the assertion is evident from the mean value theorem.

(5.21) Lemma. If K is a kernel of type 1 and U is any bounded subset of G,
[o K@) — K@) dx = O(lylV™) as y ~0.

Proof. By Lemma (5.2), any y€G can be written y=J]" y;, with y;€exp V;,
and || y;| =0(||y|l) as y—~0 since the mapping (»,, ..., )~ [I;" »; is a diffeomorphism.
We then have

K(xp)—K(x) = [K(xp1 .- Ym) =K (Xp1 oo YD)+ oo +
+[K(xy1 y2) — K(xyp] + [K(xy) — K(2)].

If x€U and y is small, the points xy;...y; range over a bounded set, so it suffices to
prove the estimate for y€exp V;, j=1, ..., m.
We write

fo IKGey) — K@)\ dx = I+ 1,

where I, is the integral over UM {x:|x|=2|y|} and I, is the integral over
UN{x: |x]=2|y]}. By Proposition (1.4), |x|=2|y| implies |xy|=B|y| for some
B=2, so

L= 2f|x1§Blyl K (x)| dx = Cflxlémyllxll-de = 0(»)-

However, by (1.17) |y|=|yI* for yeexp V;, so L=0(|y|*)=0(|y]"™.
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To estimate I, we use Lemma (5.20):
1, = Cllyl -/Uﬂ(x:le>2lyl)lx[1_Q_jdx’

L= O(ylly=9) = olyI™) if j=1,
I, = O(lyllog (1¥79) = O(Iyllog (IyI~Y) if j=1.

In any event, I,=0(||y|"™) (since we are assuming m=1), so we are done.

so that

(5.22) Lemma. Suppose O0<f<1 and f€ Ay has compact support. If K is a kernel
of type 1 then F=f%K is in Agy qm(loc).

Proof. Since ‘ B+(1/m)<2, by Lemma (5.17) it-suffices to show that
A3F(x) = F(xp)+F(xy~™)—2F(x) = O(Iy|f**™) as y—0.
In fact, we have
A3F(x) = f [fGeyz=") —f(xz"H][K(2) — K(zy )] dz.

For ||yl =1 and |lx]| bounded, the set U={z: f(xyz~1)—f(xz71) 0} is bounded, so
by Lemma (5.21),

| AZF ()| = sup |fGeyz=1) —f (xz-Y)| /. U';K(z)_ K@ydz
= Csup [zpz= P [y [/ = C )+,

(5.23) Lemma. If O<a=m and f€I', has compact support, then f€ A, .

Proof. By Lemma (5.19) we may assume that «>1, hence that a=k-+o’ where
k=1,2,...,m—1, and O<oa’=1. By Lemma (4.12), if feI', has compact support,
we have

f=2,(X)*K

(5.24) X,f = 3,06X,/)nK
Xy o Xy oS = 3,(0%;, . X, %Ky

where Kj, ..., K, are kernels of type 1. Now X.X; ...Xjk_ifis in I',., hence in 4,.,
by Lemma (5.19). Therefore by Lemma (5.22), X G0 X J€A G 11ym (globally,
since it has compact support). Applying Lemma (5.22) repeatedly to the sequence of
equations (5.24), we conclude that X Gy X; J€A@ 1pm, and finally — since
(@ +k—1)/m<1 — that f€ A +iym= Aujm-

(5.25) Theorem. A,(loc)CI,(loc)C A, (loc) for all a=0.
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Proof. Tt suffices to show that if f€ A, has compact support then f€TI',, and if
Sf€r, has compact support then f€A4,,,. The first assertion is obvious in view of
the fact that | x|| = O (|x|) as x >0. For the second, write o =mk 4« where k=0,.1, 2, ...
and O<o«'=m. By Lemma (5.23), the theorem is proved for k=0. If k=1, then f
and X; f are in I',, for |I|=mk, so that all k-th order derivatives of f are in I,
hence in A, ,. Therefore f€ Ay (4 /my=Aym> and the proof is complete.

It would be of interest to generalize some of the other aspects of the theory of
differentiability on Euclidean spaces (e.g., Besov spaces, Poisson integrals, relation-
ship between Bessel potentials and Lipschitz conditions: see Stein [25]) to the setting
of stratified groups. However, these questions are beyond the scope of the present

paper.
6. Regularity of homogeneous hypoelliptic operators

We conclude by applying the preceding material to obtain sharp L? and Lipschitz
regularity properties for homogeneous hypoelliptic operators on stratified groups.
This theorem should be a prototype for regularity results for a much wider class of
differential operators: see, for example, Folland—Stein [6], [7] where some special
cases of this theorem are extended to non-homogeneous situations.

(6.1) Theorem. Let G be a stratified group of homogeneous dimension Q=2,
and let & be a left-invariant homogeneous differential operator of degree k, 0<k<Q
(k is necessarily an integer) which is hypoelliptic together with its transpose Z°*.
Suppose UC.G is an open set, and suppose f,gcD'(U) satisfy Lf=g on U. If
g€St(U,loc) (1<p=ee, a=0) then f€S?,,.(U,loc), and if gcI',(U,loc) then
JeI'e 41 (U, loc).

Proof. Let K, be the fundamental solution for & given by Theorem (2.1).
Given -any compact set WcC U, choose ¢€Z(U) with ¢=1 on a neighborhood
of W and set u=(pg)*K,. Then £ (f—u)=(1—¢)g, so by hypoellipticity of Z,
f—u is €= on a neighborhood of W. It therefore suffices to show that u has the
required regularity properties.

First, if g€l (U, loc), it follows from Theorem (5.13) that u€l ;. On the
other hand, suppose g€ SZ(U, loc). We have X;u=(pg) * X; K,, and X, K, is a kernel
of type k— |I|. Since pg€ L1 SZ, we see from Proposition (1.11) and Theorem (4.9)
that ¥ and X;u(|l/|=k) are in various L? spaces with ¢=p, hence in L7 (loc), and
moreover that X;uc S? for |I|=k. In view of Theorem (4.10), we have u€S?(loc)
and X;u€ S? for |I|=k, and thus u€S?,,(loc). The proof is complete. '

One can obtain other regularity results for & in terms of S? and I, or the classical
spaces L?, A,, and €* by combining this theorem with Theorems (4.16), (4.17),
(5.15), (5.25), and Corollary (5.16).
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