Random linear functionals and subspaces
of probability one

Christer Borell

1. Introduction

We start with several definitions.

Let E be a real, locally convex Hausdorff vector space (l.c.s.) and (2, #, R)
a probability space. Denote by %’ the least o-algebra of subsets of the topological
dual E’ of E, which makes every weakly continuous linear functional on E’ meas-
urable. A measurable mapping X of (Q, %) into (E’, #’) will be called a random
continuous linear functional (r.c.1.f) over E. The distribution law of X is written
Py-or PX~1. It seems convenient to write

X(0), 9) = X,(0), w€R, @EcE.
The characteristic function % of X is defined by
Zx(9) = (%), ¢CE.
Here & denotes expectation, that is integration with respect to P.

Two r.c.Lf’s over E are said to be equivalent (abbr. =) if they have the same
characteristic function (or distribution law).

Suppose E and F are l.c.s.’s and A: E~F a linear continuous mapping. Then
for every r.c.l.f. ¥ over F we get an r.c.L.f. X over E by setting X="A40 ¥. For short,
we shall write X=AY.

The class of all (centred) Gaussian r.c.L.f.’s over E is denoted by %(E)(%(E)).

Anr.clf. X over E is said to belong to the class #,(E), if for every ¢, s O EE,
and every n€Z,, the distribution law Py, Y=(X, , s X, ), fulfils the inequality

(1.1 Py(A4+(1—2)B) = (AP§(A)+ (1 — ) Py (B))*
for every 0<A<1, and all Borel sets 4 and B in R". Here s€[— o, 0. An r.c.Lf.

belonging to the class #__ (E) is called a convex r.c.Lf. over E. Note that ¢ (E)&
S M,(E) [4, Th. 1.1].
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Now let E be an lLc.s. such that the weak dual E, of E is a Souslin space (I, p.
114]. Under this assumption it is known that #’=4%(E]), the Borel g-algebra gen-
erated by the weakly open subsets of E’ [1, p. 139]. Furthermore, let X be an r.c.Lf.
over E. We are interested in two, in general different, classes of affine subspaces
of E’. We denote by I(X) the family of all universally #(E,)-measurable affine
subspaces of E” of Py-probability one, and by I, (X) the subfamily of all Py-Lusin
measurable elements of 7(X). Thus GeI (X)if and only if G€I(X) and sup {Px(K)|K
weakly compact and convex S G}=1. The Lusin affine kernel &/ (X) of X is
defined by

#.(X) =N[GIGE L (X)),

If X€%,(E), the Lusin affine kernel is equal to the reproducing kernel Hilbert space
of X and is thus an extremely important object [2, Chap. 9]. It is also known that the
Lusin affine kernel plays an important role when E=limR" and Py reduces to a
product measure on E’=R™ [8]. In Section 2 we will give a simple characterization
of W (X) when X€.#,(F) and s> —1. We also show that s/ (X) is of probability
zero when X¢.#,(E), s>—1, and dim (supp Pyx) =+ . On the other hand, the
Lusin affine kernel is a large set in a topological sense. In fact, we prove that the
closure of & (X)isequalto E’ if supp Py=E’ and X¢ #,(E), s > —1. All the results
are known in the Gaussian case [2, Chap. 9]. Actually, we here all the time need a
mild extra condition on E, condition C(E) below.

Our next task will be to pick out elements of I(X). Suppose G is a subspace
of E’. It seems convenient to have the following representation of G; let F be another
Less. and A: E~F a linear continuous mapping. We can, of course, choose F and
A so that G="A(F’). The problem then is to give necessary and sufficient condi-
tions so that ‘A(F)€I(X). In Section 3 we point out that this question is closely
related to the solvability of a certain stochastic linear equation. In Section 4, we
give necessary and sufficient conditions so that ‘A(F)cI(X), when F is a separable
prehilbert space, and, in Section 5, when F is a nuclear LM space.

We include three simple examples.

2. The affine kernel of an r.c.Lf.
Let E be an Lc.s. and X an r.c.Lf. over E. We define the vector subspace o (X)
of E’ as the set of all ac E’ such that
@.1) lim {a, ¢;) =0
Jroo
for every denumerable sequence {;} in E such that

2.2 113.12 (U, 05 =0 as. [Pyl
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The purpose of this section is to find relations among the affine subspaces
1 (X), # (X), and supp Py. To this end we must assume that E fulfils the following
condition;

C(E): there exists a locally convex topology T on E’, compatible with the duality
(E’, E) such that E'(T") is a complete Souslin space.

This condition is, in particular, satisfied if E is the strict inductive limit of an increasing
denumerable sequence of separable Fréchet subspaces [7, Th. 1.5.1].
We shall first prove

Theorem 2.1. Let E be an l.c.s. which fulfils the condition C(E). Suppose that
X is an r.c.l. f. over E such that 0¢ 4, (X). Then

Ay (X) = #H(X).

Remark 2.1. There exists an r.c.L.f. X over C([0,.1]), the vector space of all
continuous functions on the unit interval, equipped with the sup-norm topology
such that &7 (X)=#0. (An example due to E. Alfsen; private communication.) Below
we will see that this pathology cannot occur when X¢€.#(E), s =—1, and E fulfils
the condition C(FE).

Recently, J. Hoffmann—Jergensen has given a better characterization of 7, (X)
in the special case when 0¢.27, (X), E=lim R", and Py is a product measure with
non-degenerated factors [8, Th. 4.4]. Our method of proof is similar to that in [8].

Proof. Suppose G€sZ;(X) and a4 G. Since G is a Py-Lusin affine space and
0€G, there are weakly compact, convex, and symmetric sets K;, jEN, such that

23) K SG, 2K S K, Py(K)=1-27

Now choose ¢;€E such that (@, ¢;)=1and [(u, ¢;)|=1 when u€K;. It is readily
seen that (u, ¢;)—0, as j—eo, for every u€|JK;. In particular, (2.2) is true. Since
(2.1) is not fulfilled, we have a¢ # (X). Hence o (X)<S # (X).
Conversely, assume that a¢ 5 (X). Then there is a sequence {¢;} in E so that
(a, ;y=1 for all j, and (2.2) is valid. We can thus find a subsequence {{,}={¢p i)
such that
PllX,,| =27 <27k

N@) = 2 [, yiol, ueE,

and let G={N < + «}. Clearly, G€I(X). We shall prove that G¢I,(X). Therefore,
let =0 be given and choose A¢R, such that

Set

Py[N=1]>1—¢
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Now observe that #(E'(7))=%(E]) [1, p. 121]. Since, by assumption, E'(7")
is a Souslin space there is a J’-compact subset K of {N=1} such that

Py(K) = 1—¢.

(See e.g. [1, p. 132].) Let K be the '-closed, convex hull of K. Then K is 7 "-compact
and, of course, also weakly compact. We also have that KS KS {N=1}<S G. Hence
Gl (X) and the theorem is proved.

The definition of the space #(X) can be simplified if X€.Z(E), s> — .

Theorem 2.2. Suppose X€M,(E), s=>—oo, and let p€]0, —1/s[.
Then ac #(X) if and only if there is a constant C=C(a)=0 such that

2.4 Ka, o) = CE(X,P), @€E.
Here —1/0 =+ .

Proof. Suppose a¢ # (X). Then there is a sequence {¢;}in E such that [{(a, ¢;)| =1
and (2.2) is valid.
Set

2.5) N(u) = sup Ku, 9l

Then N is an R, -valued seminorm which is finite a.s. [Py]. Hence N?€L1(Py) [4,
Th. 3.1]. From the Lebesgue dominated convergence theorem we now deduce that
the inequality (2.4) cannot be valid for any C=0.

Conversely, if the inequality (2.4) cannot be valid for any C, it is trivial to show
that a¢ 5 (X). This proves the theorem.

We shall now try to give a better description of the affine kernel <7 (X) when
Xc M (E)and s >—1.
We first need a preliminary result.

Theorem 2.3. Suppose X€M(E), s=>—1, and assume that E fulfils the con-
dition C(E).
Then for any h€ L=(Q, #, P) the linear mapping

Dy(h):E390—~8(hX,)ER
belongs to E’.

Proof. First note that every sequentially continuous linear functional on E is
continuous. In fact, E'(J’) is both complete and separable and the statement
follows from [13, p. 150]. Using [4, Th. 3.1] again it is readily seen that @, (k) is
sequentially continuous, which proves the theorem.
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Under the same assumptions as in Theorem 2.3, let us write @x(1)=~&(X)

and define
X, (@) = X, (0)—(6(X), ), ¢EE, weQ.

Note that X¢.#,(E). Theorem 2.2 also gives that
(2.6) &4 (L= (92, F, P)) = #(X).

We now have

Theorem 2.4, Suppose X< M(E), s>—1, and assume that E fulfils the con-
dition C(E).

Then

a) A (X) = &(X)+H#(X).

b) AL(X) = supp Py, if supp Px, = singleton set or R for all p€E.

©) Px(#, (X)) =0 or 1 according as dim (# (X)) =+ or <+teo.

Theorem 2.4 is well known in the Gaussian case. (See e.g. [10], [11], and [2,

Chap. 91.) Our methods of proof seem to be rather different from those in the quoted
papers.

Proof of a). First note that o/ (X)=4, (X)+&(X). In view of Theorem 2.1,
we thus only have to prove that 0€.7, (X). Now choose H¢sZ, (X) arbitrarily, and
write H=a+ G, where G is a Pg_,-Lusin linear space. Suppose a¢ G, and let us
choose the K; as in (2.3) with X replaced by X —a. Furthermore, we choose the
@; exactly as in the proof of Theorem 2.1. Defining N as in (2.5), we have N¢ L (P;_,).
Hence

Jim [, 0 ) dPg_o(0) = 0.
On the other hand

S, ol dPs_, @) = [Kus 0,9 —(a 9 dPx ) = | [ (. 0,0 —(as 9,)) dPg ()] =1.

This contradiction shows that a€G. Hence 0€¢ H and part a) is proved.

Proof of b). We know that supp Py is equal to the intersection of all closed
affine subspaces of E/ of probability one [4, Th. 5.1]. In particular,

S (X) & supp Py.

To prove the opposite inclusion choose a¢ &/(X) arbitrarily. By part a) we have
that a—&(X) ¢ #(X). Now choose ¢, € E such that (a—&(X), poy=1 and (u, o) =0
for all u¢ # (X).
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Using (2.6), we get
fl<u7 (P()>I de{(u) = <¢)?(Slgn A7(p0)’ (Po> = 0

From this it follows that {u—&(X), @,)=0 for every u€supp Py. In particular, we
have that a¢supp Py, which concludes the proof of part b).

Proof of ©). Suppose first that dim (# (X)) = +co. It is then obvious that the
vector subspace {X,|p€E} of L'(Q, #, P) is of infinite dimension. From the Dvo-
retsky—Rogers theorem [6, Th. 3] we now deduce that there exists a sequence {¢;}
in E such that

and

for every he L=(Q, &, P).
Set
N(u) = 3 Ku, )|, ucE"
From the definition of #(X) we have
@7 H(X) S {uc E')N) < + =}
The function N is an R, -valued seminorm and

SNdPy = 571 =+,

We know from the zero-one law [4, Th. 4,1] that P3[N <+ ]=0 or 1, and this
probability is equal to. one only if N¢I'(Py) [4, Th.3.1]. The inclusion (2.7)
and part a) of Theorem 2.4 thus prove that Px(s7,(X))=0. On the other hand,
if dim (£ (X)) <+ e, then #(X) is closed. The proof of part b) above then shows
that =/ (X)2supp Py. Hence Py(&/(X))=1. This proves part c¢) and concludes
the proof of Theorem 2.4.

Corollary 2.1. Let E be an l.c.s. satisfying the condition C(E) and let X, Y€ M(E),
s=>—1.
Then Px and Py are singular if

EX)+H#(X) = X))+ #(Y).
Corollary 2.1 follows at once from Theorem 2.4, a) and the zero-one law.
We shall conclude this section by giving a few examples.

Example 2.1. Let X¢ M, (RS), s>~1, where R =lim R", and suppose that
&(X)=0. In view of the Kolmogorov zero-one law it can be interesting to know
when

(2.8) Ry C A (X).
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Note that a set GESR™=(R;’) is a tail event if and only if Ry +GE G. Let us write

X, =2 0;X;, ¢ ={p}CRS,

where the X; are real-valued random variables. Denote by M, the closure in
LY(Q, #, P) of the vector space spanned by the X, j#k. Let e,=(1,0,0, ...)¢R™.
From Theorems 2.2 and 2.4 we now deduce that e, €2/ (X) if and only if there is a
constant C=0 such that

1= Ce(| X+ 37 0;X))

for all {¢;}€R. Equivalently, ‘this means that X; ¢ M,. Hence (2.8) is valid if and
only if X;¢ M, for all j. Note that this condition is fulfilled if the X; are independent
and non-zero.

Example 2.2. Let E be a separable Hilbert space and suppose that X €. (E),
s =—1/2. Then, since the norm in E belongs to L?(Py) [4, Th. 3.1], there is a sym-
metric non-negative Hilbert—Schmidt operator S on E such that

S|t = £(X2), ¢€E.
Hence
1 (X) = &(X)+ range (S).

3. A comnection between /(X) and a certain linear stochastic equation

We now turn to the problem of picking out elements of 7(X). The following
theorem, which is an immediate consequence of a measurable selection theorem, will
play an important role later on.

Theorem 3.1. Let E and F be l.c.s.’s and A: E~F a linear continuous mapping.
Furthermore, assume that the weak duals of E and F, respectively, are Souslin spaces.

Then,

a) if X is an r.cl. f. over E, it is true that A(F)cI(X) if and only if there exists
an r.cl.f. Y over F such that

(3.1 X =4y

b) the equation (3.1) has an r.c.lf. solution Y over F for every r.c.l.f. X over E
if and only if ‘A is surjective.

Before the proof we introduce a new notation. If (2, #) is a measurable space,
we denote by & the g-algebra of all %-universally measurable subsets of €.
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Proof. a). Note first that (3.1) is equivalent to the identity
PX = PY (1/1)—1.

Note also that A(F’), under the given assumptions, is universally measurable
[1, p. 123, p. 129, p. 132]. Therefore, if (3.1) is valid it follows at once that
A(F)eI(X). We now prove the “only if  part of part a). There is no loss of gen-
erality to assume that X is the identity mapping on E’. Note that the transpose
mapping A is a continuous mapping of F, onto G="(F’) equipped with the
relative o (E’, E)-topology, here denoted by 7. In particular, the surjective mapping

U (F', B(F,) ~ (G, B(G(T))

is measurable. We also know that the c-algebra #(G(7 ")) is countably generated
since G(J ') is a Souslin space [1, p. 138, p. 124]. We recall that F, is a Souslin
space. Under these circumstances it is known that there exists a measurable mapping

y: (G, #G(T ) ~ (F. B(E)
so that
u = Ay(u), ucG.

(See [12, Cor. 2, p. 121] or [9, Cor. 7, p. 150].) Let us now define Y(u)=y ), u€G,
and Y(u)=0, u€¢ E"\G. This gives us an r.c.Lf.

Y :(E, B(E,), Px) ~ (F', Z(F))

so that (3.1) is valid. This proves part a) of Theorem 3.1.

It only remains to be proved the “only if” part of part b). To this end choose
ucE’ arbitrarily. Suppose X is an r.c.l.f. over E which equals u with probability
one and choose Y so that (3.1) is valid. It is obvious that there exists a v¢€ F so that
u="v. The mapping Y is thus surjective. This proves part b) and concludes the
proof of Theorem 3.1.

In applications it is, of course, in general, very hard to decide whether the
equation (3.1) has a solution Y or not. In the following sections we shall see that
this question is closely related to continuity of the characteristic function %y with
respect to a suitable topology. In general, however, it is easier to decide whether a
certain moment

m§(¢) = éa(qu’lP)’ pEE, (p= 0)

is continuous or not. Before proceeding the following result can therefore be worth
pointing out.
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Theorem 3.2. Let X€ MA(E), s=—oo, and let T be a locally convex topology
on E.

Then the following assertions are equivalent;

a) Yy is J-continuous.

b) there exists a p€]0, —1/s[ so that m¥% is J-continuous.

c) my is J-continuous for all p€l0, —1/s[.

Proof, a)=>c). Choose ¢=0. It can be assumed that — co<s5<0. Let p€]0, —1/s]
be fixed. Since X is continuous in probability [7, Th. II. 2.3, p. 37] there is a convex
J-neighborhood V of the origin so that

P[]Xq,! = 1/4] < 1/4, @€V
Set 6=1—~P[\X,|>1/4]. From [4, Lemma 3.1] we then have, for all pcV,

Is

1
P[IX,| >t/4]§{%[(1—9)s——0‘]+03} 1=,
where the right-hand side decreases in 6. Hence, for all g€V,

mg (@) =p [T PX,| = fdt =

1/s
R e {% [(1/4)3—(3/4)S]+(1/4)s} &t =C,

where C < + oo, From this it follows that
mi(p) <e if @€ (e/(1+C))V.

Since m% is continuous at the origin, it is easy to show the continuity at each point
of E.
The implications ¢)=b) and b)=>a) are both trivial.

4. F a separable prehilbert space

Let F be a separable prehilbert space. A positive senudefinite quadratic form
B on F is said to be of finite trace class if there exists a C¢R, so that

2B,y =C

for every orthonormal sequence {i,} in F. The seminorms F SY—~VBW, ¥)ER,
where B varies over all positive semidefinite quadratic forms on F of finite trace
class, determine a locally convex topology #%(F) on F. By Sazonov’s theorem
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[7, Th. IL. 3.4, p. 46], a positive semi-definite function f on F is the characteristic
function of an r.c.l.f. over F if and only if f(0)=1 and f is 3% (F)-continuous.
Observe here that F is a Souslin space.

Theorem 4.1. Let E be an l.c.s. such that E] is a Souslin space and let F be a
separable prehilbert space. Furthermore, assume that A: E—~F is a linear continuous
mapping and denote by T the weakest topology on E which makes the mapping
A: E~F(#F(F)) continuous.

Then,

a) if Xisanr.c.l f. over E, it is true that 'A(F)cI(X) if and only if ¥y is T-con-
tinuous.

b) if X€ME), s=— oo, it is true that A(F')eI(X) if and only if the equation
3.1) has a solution Y€ M(F).

¢) if XEY(E), it is true that A(F'YCI(X) if and only if the equation (3.1) has a
solution YE%(F).

Proof of a). Suppose first that A(F’)cI(X). By Theorem 3.1, a) there is an
r.c.l.f. Y over F such that (3.1) holds. Hence #y=%y0 A and Sazonov’s theorem
implies that %y is J-continuous. Conversely, let us assume that %y is J-con-
tinuous. Since ¥y is a positive semi-definite function and % (0)=1, we have the
inequality

@4.1) [Zx(@o) — Zx (01" = 2|1 —Re Zx (9o~ @),

valid for all @,, ¢,€E. It is therefore possible to define a positive semi-definite func-
tion f on the vector space A(F) by setting f()=Zy(p), when y=A4¢ and @€E.
Since the topology #% (F) induces a weaker topology on A (E) than the #¥(A (B))-
topology (these topologies are in fact identical) we deduce that f is %”y(/l(E))-
continuous.. By Sazonov’s theorem there is an r.cl.f. Z over A(F) so that f=2%,.
Let £ be the completion of F and denote by A(E) the closure of A(E) in F. It is
obvious that Z can be considered an r.c.Lf. over A(E). Let p: F-~ A(E) be the can-
onical projection. By setting ¥="pZ we have an r.c.Lf. over F such that Zy=%0 4,
that is X="4Y. Since ¥ can be regarded as an r.c.L.f. over F, part a) is proved.

Proof of b). The “if” part is clear. To prove the other direction assume that
A(F")eI(X). By part a) %y is J-continuous. We can thus define Z as in the proof
of part a) above and observe that X="Z. Since the map A: E~ A(E) is sutjective,
it follows that Z¢.#,(A(E)) [4, Sect. 2]. Using the same convention as above we
also have Z€.#,(A(E)). Defining Y as above and using [4, Th. 2.1] again, it is readily
seen that Y¢.# (F), thus proving part c).

Proof of ¢). The proof is “exactly’” the same as the proof of part b).
This concludes the proof of Theorem 4.1.
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5. F'a nuclear LM space

Anl.c.s. Fissaid to be an LM space if Fis the strict inductive limit of an increas-
ing denumerable sequence of metrizable subspaces. If, in addition, F is nuclear it
follows that F is separable and the weak dual of F is a Souslin space ({13, Cor. 2,
p. 101}, [7, Section 5]).

The main tool in this section is Minlos’ theorem. The following variant seems
convenient to us.

Theorem 5.1. ([7, Th. 11. 3.3, p. 43].) Let F be a separable nuclear space.

Then

(i) every continuous positive semi-definite function f on F such that f(0)=1 is the
characteristic function of an r.c.l.f. over F.

(i) if, in addition, F is an LM space, the characteristic function of every r.c.l.f.
over F is continuous.

Theorem 3.1 now gives us the following extension theorem for positive semi-
definite functions. Actually, we have no need for it here, but it can be worth pointing
out since it seems to be of independent interest.

Theorem S5.2. Let F be a nuclear LM space and E a subspace of F.
Then every continuous positive semi-definite function on E can be extended to a
continuous positive semi-definite function on F.

Proof. Suppose f is a continuous positive semi-definite function on E and f(0)=1.
Then, by Theorem 5.1(i), there is an r.c.l.f. X over E such that #y=f. Here it shall
be observed that E, equipped with the relative topology, is separable. In fact, there
is an obvious stronger inductive limit topology on E, which makes E into a nuclear
LM space. Let A: E— F be the canonical injection and note that A(F’)=E’. Hence
AF)EI(X) and Theorem 3.1 implies that there exists an r.c.l.f. ¥ over F such that
Zy=Lyo0 A. In virtue of Theorem 5.1(ii), %y is a continuous positive semi-definite
function on F, which extends f.

We shall now prove.

Theorem 5.3. Let E be an l.c.s. such that E] is a Souslin space and let F be a
nuclear LM space. Suppose A: E—F is a continuous linear mapping and denote by I
the weakest topology on E which makes A continuous.

Then,

a) if Xis anr.c.l.f. over E, it is true that ‘A(F’)¢I(X) if and only if %y is F-con-
tinuous.

b) if X€%,(E), it is true that ‘AF")eI(X) if and only if the equation (3.1) has
a solution YE€%,(F).
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Proof of a). Suppose first that A(F’)€I(X). Then Theorem 3.1 gives us an
r.cl.f. Y over F so that Zy=%y 0 A. By Minlos’ theorem (ii), % is continuous. This
proves the “only if” part. Conversely, assume that %y is 7 -continuous. The inequality
(4.1) then makes it possible to define a continuous positive semi-definite function f
on A(E) such that fo A=%%. By Minlos’ theorem (i) there is an r.c.l.f. ¥ over
A(E) (or F) so that HoA=%s. Hence Py=Py(A)"! and it follows that
AF)HeI(X).

Proof of b). The “if” part is clear. Conversely, assume that A(F")cI(X). From
Theorem 3.1 we have that there exists an r.cl.f. ¥ over F such that (3.1) is valid.
In particular,

[, @) dPy(w) = [ (v, Ap)*dPy(v), @€E.
Since X<€%,(F), we also have

Lx(@) = exp(—1/2 [ (u, 9)*dPy (), @€ E.

Part a) of Theorem 5.3 implies that %y is  -continuous. We can therefore find a
continuous seminorm ¢ on F such that

(5.1 [0 0)2dPy(0) = (W), Ve AE).

Since F is nuclear, the positive semi-definite continuous quadratic form on the left-
hand side of (5.1) can be extended to a positive semi-definite continuous quadratic
form B on F [13, Cor. 2, p. 102]. Using the Minlos theorem (i) again, we conclude
that there exists a Y,€%,(F) such that

Zy, () = exp(—1)2B(Y, ¥)), YEF.

Hence X='4Y,, which was to be proved. This concludes the proof of Theorem 5.3,
In connection with Theorem 5.3 we have not been able to prove a complete
analogue to Theorem 4.1, b) but the following can be said; assume £ is a nuclear
LM space and let X¢ M (E), s>—1/2. Since the second order moment m% is con-
tinuous there is a linear functional H on Es E, equipped with the projective topology
Tp(E), so that
g(Xqu * X(al) - <H9 (P0®(pl>> Po,> O1€ E.

As we see H is symmetric and positive semi-definite. A continuous linear func-
tional on (EsE)(Jp(E)) with these properties is said to be a covariance.
We now have

Theorem 5.4. Suppose E and F are nuclear LM spaces and let A: E~F be a
continuous linear mapping. Assume X ¢ MAE), s > —1/2, and denote by H the covariance
of X.
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Then A(F'YEKX) if and only if there exists a covariance K on (Fo F)(Z)(F))
such that H=(AsA)K.

Proof. From Theorems 3.2 and 5.3, a) we have that A(F)€I(X) if and only
if H is continuous on EsE, equipped with that projective topology % as we get
by giving E the J-topology defined in Theorem 5.3. Let us now define X" €%, (E)
by setting

Py (@) = exp (—1/2(H, 929)), ¢€E,
which is possible in view of Minlos’ theorem (i). From Theorem 5.3 we deduce
that H is %-continuous if and only if there exists a Y%, (F) such that X'=UY.
Hence H is %-continuous if and only if there exists a covariance K on (Fe F)(7,(F))
such that (H, pe@)={(K, Ape Ap), pcE. This proves the theorem.

Example 5.1. Let M be an open subset of R” and Q(x, D) a linear partial dif-
ferential operator in M with real C* (M)-coefficients. Furthermore, assume that p
is a given Borel probability measure on (2'(M)), and denote by /i the Fourier trans-
form of u, that is

a) = [ du(), peD(M).

Then, in particular, Theorem 5.3, a) gives a necessary and sufficient condition so
that the equation

(5.2) u = Q(x, D)v

has a distribution solution v€2'(M) for p-almost all uc¢2’(M). The condition is
as follows;

Jor every =0 there exists a continuous seminorm p on @(M) such that
p(Q(x, D)) < 1= |l —f(p) <=
In view of Theorem 5.4 this condition can be much simplified if uc.#,((2'(M)),),
that is if the identity mapping
7D (M), BUD (M)),), 1) ~ (2" (M), BULD' (M)),))

belongs to 4, (2(M ), and s > —1/2. In fact, let H be the covariance of j and note
that Hc @' (M X M) by the kernel theorem [14, Th. 51.7]. We thus have that the
equation (5.2) has a distribution solution v€ 2’(M) for p-almost all uc 2'(M) if
and only if there exists a covariance K€ 2'(M X M) such that

H = Q(x, D)Q(y, D)K.

Furthermore, if this condition violates, the set of all u¢€ 2’(M) such that the equation
(5.2) has a solution v€ 2’ (M), is of u-measure zero.
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