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uniform classes of functions 
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w 1. Introduction 

1. The notation is standard. N, Z, R, R +, C denote respectively the natural, 
integral, real, real positive, and complex numbers. Re ~ and Im ~ is the real and the 
imaginary part of ~EC". [1 is the usual norm in C". 

By g(t), tER + u {+ oo}, we denote the C = functions defined for Ix[<t, xER", 
and by Co(t ) the C ~ functions with support in IxI<t. g(t) is endowed with the 
usual topology. 

If I" is a linear topological space, then X' stands for its dual. The Fourier--Borel 
transform of u E d ' (C")  is denoted t~ or flu. Further, g '  [B], B < t is defined by 8 '  [B] = 
={uEg'(t); supp u c  {Ixt <B}}. Finally, 0 denotes the Cauchy--Riemann operator, 
and, for a multi-index ~, D" is the corresponding derivation. 

2. Consider q=(qj :  C'~R+)~cN a sequence of functions, and consider the 
following three properties: 

(i) qj(~) :> qj+x(~), VjEN, V~EC". 
(ii) [qj(~)--qj(q)l ~ (1/j)l~-ql, V~, V~cc". 

(iii) For every jEN and every z > O, there exist kEN and cj > 0 such that 
q~ (~) _-> zq~ (~ ) -  e~. 

The set of all sequences q which satisfy (i) and (ii) will be denoted Ma (and 
called decreasing sequences of majorant functions), and the subset in M d of those 
sequences which also satisfy (iii), will be denoted M~a (strongly decreasing sequences 
of majorant functions). 

Definition 1.1. For every qEMa and every tER + u {+oo} we define a space of 
C = functions, denoted d~ and called the weak analytically uniform (A.U.) space 
associated with q, in the following way: 
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fEgy( t )  if and only if, for every B<t  and every b~0,  there exist a Radon 
measure # and jEN such that: 

f dl l < 
and 

(1) f (x )  : f c  ~ exp i(x, ~) dl~ (~)/exp (qj (r + B lira ~l + b In (l + f[)), 

for Ixt <= B. 
A space X c g ( t )  is called a weak A.U. space in g(t), if it is the weak A.U. space 

associated with some qEM a. 

Examples of weak A.U. spaces are the Gevrey classes F a (in the notations 
from [6]), and they appear, more generally, in the local noncharacteristic Cauchy 
problem for constant coefficient partial differential operators, as the spaces of natural 
Cauchy data. 

Definition 1.2. A weak A.U. space Ca(t ) is called nonquasianalytic, if there 
exists a subspace ~q(t )  in gq(t) with the following properties: 

(a) (t) c (t) n Co = (t)). 
(b) For every compact K in Ixl<t and every neighborhood V of K in Ixl<t, 

there exists v E ~ ( t )  which is identically one in K, and which vanishes outside V. 
(e) The elements fi'om ~ ( t )  are multipliers for 8q(t). 

The main result of this paper is the following 

Theorem 1.3. Consider qE M~a and tER + u {+ ~}. The intersection of  all non- 
quasianalytic weak A.U. spaces in E(t) which contain Ca(t ) is C~(t). 

This theorem extends a result of T. Bang, which states that the intersection 
of all nonquasianalytic Denjoy--Carleman classes gives the real analytic functions. 

It is convenient to separate the proof of Theorem 1.3. in two distinct parts. 
In order to speak about the first, we need an order relation in Md. 

Definition 1.4. Consider ql, q2EMe. We say that q~>=q2, if for every j there 
exists j" such that q~(~)>=@(~). 

The arguments from the first step in the proof of Theorem 1.3. will then give 
the following abstract intersection theorem: 

Theorem 1.5. Consider q~ and suppose that K c M a  is a subset with the 
following properties: 

0v) q E K implies q <= q o, 
(v) every countable subset of K has a majorant in K, 

(vi) for every function I: K-+N there exists jEN such that 

sup qi(q) (~) => qO(~). 
qEK 
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Then 
e~o ( t )  = N 8Z(t). 

qEK 

Once Theorem 1.5. is proved, it remains to construct, for a given q~ a 
subset K c  Ma such that K has the properties (iv), (v), (vi), and such that the weak 
A.U. spaces associated with elements from K are nonquasianalytic. This gives then 
Theorem 1.3. 

The author is deeply indebted to Mats Neymark, who pointed out several 
inconsistencies in the original manuscript and made valuable remarks. 

w 2. 0-cohomology for Lipschitz continuous majorant functions 

1. Proposition 2.1. There are constants c and 7, such that, / fp :Rn-~R + satisfies 
-< 141--  1, then there is a plurisubharmonic function q: C"-+R such that 

p ( R e ~ ) < = q ( O + T l l m ~ l  and q(~) <= 2p(Re~)+ 7]Im~l+c. 

The proof of this proposition is based on the following lemma: 

Lemma 2.2. There exists a continuous function h(~, t): C"XR+-~R +, which is 
plurisubharmonic in ~ for every fixed t, such that for some constants C, A the following 
inequalities are satisfied: 

(a) h(~, t) <= C(1 +Allm~l) ,  

(b) h(~,t) <=,]ffl+AlIm~] for (1/2)t <= I~l <-- t, 

(c) h(~,t) <=-t+A!lm~l  for i~l >= t, 

(d) h(i4, t) ~ - A I 4 1  for 4~R". 

Moreover, for each t, h (~, t) = In I f(~)l, f E d  (C"). 

This lemma is standard, and its proof  is very easy. We consider q~E Co(R"), 
with fq) dx = i, q) =>0 and try to find ~, ]~ such that the inequalities above are satisfied 
for the function h(ff, t ) = ~  In l~(~/t)l.  Then (a) is a consequence of the Paley--  
Wiener theorem, and (d) follows from leo dx=l  and qg:>0. It then remains to find 
~,/~ for which we also have (b) and (c) (cf. almost every work concerning localiza- 
tions in quasianalytic classes). 

Proof of  proposition 2.1. Consider 40ER" and define a plurisubharmonic func- 
tion qr by qr (~) =P (40)+ 2h (~-40,  P (~0)), where h is the function from the preceding 
lemma. We then have qeo(~)<:2(p(Re~)+C(l+Allm~l)). Indeed, for 1~-401<= 
<=P(40)/2 we have [p(Re ~ ) - p  (4o) 1 =<P(40)/2 (in view of the Lipschitzness of p), 
and for [~-4o1>:P(4o)/2 we use (b) or (c). 
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We now define q(()=suPr qr Then q(~)<=2(p(Re()+C(l+Allm~])  ) 
(in particular q is  finite in every point). Finally it follows from (d), that p (Re ~)-<_ 
<=q(~)+A Jim ff[. 

2. From Proposition 2.1. we obtain the following le.rnma concerning the solv- 
ability of the system 0V = u. 

Lemma 2.3. Consider p(~): R " ~ R  + a function which satisfies Ip(~l) -p(~)[_-  < 
~1~1--~21, V~ 1, r ~ 1 .  Then there exist constants C, 7 such that the following 
is true: i f  u~ C = (C n) satisfies 

[0u(~)[ <= exp (p(Re ~)/2+BlIm if[ + b  In (1 + Iff])), 

then there exists v E C ~ (C") such that Ov =Ou and such that 

iv(~)[ <- C exp (p(Re if) + (B+c~)l lm ~1 + ( b + n + 2 )  In (1 + 1~1)). 

Here C does not depend on p, and y is the constant from Proposition 2. I. 

Proof. We apply Proposition 2.1. for the function (1/e)p, and obtain a pluri- 
subharmonic function q which satisfies the estimates p(Re ()Neq(~)+c~7 tim ~[ and 
~q(E)<-- 2P ( Re ~ ) + ~  I Im El +c~. 

From the estimate for 0u in the hypothesis of  Lemma 2.3., we now obtain that 
fr u(E)l exp (--~q(~)--(2B+~y)[Im E l - ( 2 b + 2 n +  1) In (1 + I~I))d~Ad~<=C" for some 
C'. Since ~q is plurisubharmonic, we can apply Theorem 4.4.2 in [7], and conclude 
that there exists v such that Ov=Ou and such that 

flv(E)l 2 exp ( - ~ q ( ~ ) - ( 2 B §  ~ ] - ( 2 b + 2 n + 3 )  In (1 + [~]))d~Ad~ ~ C", 

for some C", which depends only on C'. This is already an estimate of the desired 
type (if we use the estimate for aq from above), only that it involves L2-norms instead 
of  sup-norms. The passage to sup-norms for Lipschitz majorant functions is how- 
ever, by now standard; one may, e.g., use the following inequality, valid for C ~ 
functions (a proof can be found in [9]): 

]w(~)[ ~ C sup ]bw (~+ 0)1 + (fl01~l ]w(~ +O]2dOAdO) ~/~. 
io1_-<~ 

w 3. C ~ functions as funetionals on spaces o f  entire functions 

1. In the proof  of Theorem 1.5 we regard elements from 8q'~(t)-spaces essentially 
as functionals on some spaces of entire functions. Special care is required, however, 
to overcome the nonuniqueness in the representation (i). We start the section by 
introducing a (more or less) convenient terminology. 
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Consider a function p: C " + R  + such that p(g)~c~lgl+~' for some constants c~, 
e'. For B>0 ,  b=>0, We define a quasinorm I [p,n,b on ~r in the following way: 

[h[p,n,b = sup [h(~)[/exp(p(~) + BlIm ~[ + b In (1 + [~[)) 
~EC n 

and denote 

On SIp, B, b, [ [p,B,~ is now a norm, and we endow sr b with the corresponding 
norm-topology. 

Definition 3.1. Let t > 3 ~ + B  and consider fER(t) .  Then f defines a functional 
f o n  g (e ' ( t ) )  byf(a)=u(f). We say t h a t f i s  naturally defined on ~r if the func- 
tional f is continuous on o~(~ ' [3c~ + B]) m ~,,a=+B, b+n+a, the intersection being con- 
sidered with the topology induced from ~p,a~+~,b+,+a" 

The choice of the constants in this definition is justified by the following result: 

Proposition 3.2. Let p be a function as the above, consider h ~ d (C") such that 
thIp,~,b<~, and suppose that there is given a sequence o f  positive numbers ~ 0 .  
Then there exists a sequence of  distributions Uk, with supports concentrated in Ix I <= 3ct + B 
and such t ha t  Ih--lgklp,8~+B,b+n+3<Sk . 

In fact, this proposition shows that the Hahn--Banach extension of f to 
~r is uniquely defined on ~r 

Proposition 3.2 results from Theorem 3.1 in [8]. Since we shall use similar 
arguments later, we shall indicate the proof briefly, for the convenience of the reader. 

We first need an elementary lemma. 

Lemma 3.3. Let ek~O be a sequence of  strictly positive numbers. Then there 
exist functions cp~C=(C ") such that the following inequalities hoM uniformly for  
c~, 0<=~<= 1 : 

(2) I~ok(~)! ~ ~k(1 + I~1) exp (-I~1), 

(3) I~o~(ff)l <-- ek(1 + I~l) exp (--~1~1 + 3c~[Im (1), 

(4) [ 1 -  ~ok(~)[ <_- ek(i + I~[)- 

Proof. We denote for O>0:  
v~(~) = exp(-6(~,  ~)) = exp ( - 6 ( Z ( R e  ~ j ) 2 - Z ( I m  ~ j )2+2 iZ  Re ~ Im ~j)). 
u~ = { ~ c " ;  [Ina~l ~_-< 0 /2) lRe~l%l/a} .  
Ua, 1 = {r ~C"; distance from ~ to Ua is less then 1}. 
wa: a function in C=(C ") such that % ( 0 = 1  for {<U, wa(~)=0 for ~r U•. 1 and 

such that [wa (~)] + 10w~ (~)l <= C, for some constant C. 
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It is then easy to verify that, for a convenient sequence 6k, we may set q~k (if)= 
=w6 (~)%(~). 

Proof of proposition 3.2. Consider first the functions hk=~pkh, where the ~Pk 
are the functions constructed in Lemma 3.3. From (2) it follows that [hk(~)l <= 
<-Ihlp,~,b.e~(l+[~l)b+lexp(p(~)+BlIm~l-l~l)<-Ce~(l+[~l)~+XexpBllmffl, and 
from (3) that ]Ohk(ff)] <---- ]hip, s,b" e~(1 + I~l) ~+~ exp (p(~) +B  lIm ~ t -  ~ I~] +3~ ]Im ~l) <= 
<=Ce~(1 + I~[) ~+~ exp ((B+3~)lIm ~]). Then solve Og~=Oh~, with some g~ which sat- 
isfies the estimate ]g~(~)]<=C%k(1 + I~1) ~+1+ '+~  exp (3c~+B)lira ~1 (the existence of 
such a g~ follows, e.g., from Lemma 2.3.). It follows that h k-gk is the Fourier--Borel 
transform of some distribution with compact support, u~, and we have, in view of 
(4) and the inequality on g~, that 

Ih-a~l <- II-~o~llhl+tg~l--< 

<_- c~((1 + I~l) T M  exp (p(~) +Bl~m ffl)§ c '(1 + [CIP +~+~ exp ((3~ + B) lIm ~l)) 

<= C'%~(1 + l~l) ~+"+z exp (p(~) + (3~ + B)IIm ~l). 

The proposition now follows by passing to a convenient subsequence. 

2. The main result of this section is, that in sufficiently general situations, a 
function which is naturally defined on a family of spaces, is also defined on their 
"union" (precise statements are given below). 

Let p,: C " ~ R  +, zEI be a family of majorant functions (the index set I may, 
or may not, be countable), which satisfy for the same ~, 0~<_-1,  the conditions 
Ip,(~)-p,(~')l <-~ I~-~'l, and denote p(~) =sup, p,(~). 

Proposition 3.4. There exist constants z(=2-") ,  a ~ 3  and 6 >0 with the following 
property: 

Suppose that t>B+aa and that fEB(t)  is such that for all uES'(B+aa) and 
all tE I, lu(f)l <=Ctalp,,B+~.,~+n with C independent of uand t. Then f is naturally defined 
on ~p,n,b, i.e. for all vEd"(B+3~), Iv(f)l<-C'lOI,~.,+~=.b+,+~. 

The first remark which simplifies the expressions we have to estimate is, that 
we may suppose that the functions p, depend only on Re ~. This follows from the 
inequalities p,(Re ~) <=p,(~) + ~ lira ~1, P (~) <=P (Re ~) + c~ jim ~1 which are obvious con- 
sequences of the Lipschitzness of the p,. 

To ease the notations further, we will change the index set I to Z" in the fol- 
lowing way: for every 2EZ" there exists z(2) such that p(A)<=p,(a)(2)+l, and we 
define P~(~)=P,(a)(~)- In the sequel, we will work with the family p~, ,~EZ". This 
will not change the result, in view of the obvious inequality sup,~rp~(Re ~)~ 
~_supacz, p~(Re~)+c,  for some c. 
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For  the moment we will also suppose that ct = 1. 
Before embarking on the proof, we introduce some notations and make some 

constructions. 
Let us consider (A~)4~zn, the covering of R" with the cubes An= {4; [~-I~1-<-1, 

i=  1 . . . . .  n}. Further we denote for 2,6Z 

B~,.= U Aw,4.). 
4,6Z.-1 

Suppose now that we are given a function Z: R " ~ R +  such that IZ(41)--Z(4~)l =< 
=< 1~1-4~1. Starting from the function Z, we define functions )~a: R " ~ R  +, associated 
with )6 in the following way: 

z4.(~) = o 

)0..,(~) = Z(~', t . + 1 ) + 1 . + 1 - ~ .  

z4 . (~)  = z ( 4 )  

)Ca.(~) = Z(r 2 . - - 1 ) + ~ . +  I - - 2 .  

x 4 . ( 0  = o 

for  ~, -> 2 , +  1 +Z(U,  2 , +  1), 

for 2 , + 1  -< ~, <_- 2 ,+1+)~(~ ' ,  2 ,+1) ,  

for ~E B4., 

for 2 , - -  1 -)~(~', 2 , -  1) _-< ~, <_- 2 , -  1, 

for r <- 2 , , -  1 - Z(4', 2 . -  1). 

Here w e  h a v e  used the n o t a t i o n  4 " =  (41 . . . .  , ~ n - 1 )  if  r = (~1 . . . .  , ~ n - 1 ,  ~n)" 

The obtained functions are obviously Lipschitz continuous, with Lipschitz con- 
stant 1. Their main property is that, on a slab they are as great as Z, but outside 
that slab they decrease so rapidly that every Lipschitz continuous function, with 
Lipschitz constant 1, which is greater then zero, and which coincides with g on B 4 ,  
is greater then )~4. 

The construction above can be effectuated in any other variable, and in doing 
this in the variable 4,-1,  starting from the functions Z4 we obtain functions 
(Z4)4 _1. Continuing this procedure, we obtain inductively systems of  functions 
(...0~4.h _1...)4,§ 1, such that the following properties are satisfied: 

I f  g is in a system, then lg(~l)--g(~Z)l <-- ]~1-~2 I. 

sup ((... ( ~ ) 4 . ,  . . .)4,+& = (... (z j 4 . ,  ... h , , .  
4~s 

If  # : R" ~ R + is a function such that 1#(~1)--#(~2)[ -< 1~1--~21, and if 

--> (...(x4.h._~ ...)4, 
o n  

B4,,4,§ ..... 4. = U A(41 ..... 4,_~,4, ..... 4.), then ( . . .0~4.)a ._l . . . )a ,<-/ t+C on R". 
41, "" ", 4 f  - 1 

The proof  of  Proposition 3.4 now follows in a finite number of steps, from the 
following proposition, for convenient choices of  B' and b' (and Z=p).  
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Proposition 3.5, Suppose 1 <= i <= n, 21+IEZ, ..., 2 ,EZ and consider constants B', 
b', t > 2  -"+i(3 + y) + B" "(7 is the constant from Lemma 2.3). Suppose further that for 
all 2iEZ and all uEg'(B" +[3+ 7]2 -"+i) we have 

]u(f)[ =< C]~tIZ-.+~-I(...(Z,,(RcO)~,_I...)~,W +Z-,+,(a+7),b,+Z,+ 7 

where C does not depend on u and 2~, 2~+1, ..., 4,. 
Then we have for all vEg'[B'] :  

I (f)l c ' l [  V =< V 2 -  n + i ( . . . (Za~(Re ~)),~.n_ I "")a* .~ 1, B ' , b "  

for some constant C', which does not depend on v and 2i+~ . . . . .  2,. 

It is enough to prove Proposition 3.5 for i=n, since the argument is similar 
in the general case. For i=n  we obtain it from the following technical lemma. 

Lemma 3.6. a) There exists a constant C such that i f  hEal(C") satisfies the 
inequaBty 

(5) ]h(0 [ =< exp (z(Re ()/2 +B ' [ Im ([ + b ' l n  (1 + I~l)), 

then there exist functions hz.E ag(C") such that h = ~ z . < z  h~.. and such that 

(6) (1 + ]2.1) ~ ]h,~,,(O] <= C exp (Z.~,, (Re ~) + (7 + B')Ilm ~l + (b' + n + 4) In (1 + ]ffl))- 

b) Suppose that we are given entire fimctions hx which satisfy the inequalities 
(6), that ~h.~, = 0  and suppose that ek-+O. Then there exists a sequence of  systems of  
distributions U~ ,k E g" [B" + 3 + ~] such that 

(7) ~ ,  ua,, k = 0, 

(8) Ih I < 2 n - -  U2n,,~ = 

ek(1 + 12,[)-2 exp (Za, (Re if) + (3 + y + B')IIm r + (b '+ 2n + 7) In (1 + ]if])), 

(9) ~l&l<_~ u~,,k, rEN, 

is a bounded set in ~," for every k. 

We will admit the lemma for a moment and prove Proposition 3.5 (for i=n). 
To do so, it is sufficient to take vEg ' [B ' ]  of order not greater than b' which 

satisfies [~(0[-<exp (1/2z(Re O + B '  [Im~[ +b" In (1 + [(D) and to prove that Iv(f)[ = C' 
(in fact, we can regularize a general v). In view of Lemma 3.6 we may write ~ in 
the form 

= Z t c z  h,, 
where 

[ht (Of <= C(1 + [tl)-2 exp (Zt (Re 0 + (7 + B')[Im ([ + (b' + n + 4) In (1 + I~1)) 
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with ht entire functions. In view of the assumption on f ,  the expression f(ht) has, 
for every t~Z, a welldefined meaning, and we have [f(ht)]<=t2(1 + It[) -2. It follows 
that [~tf (ht )  l <= C', and the proposition is proved, if we can show that v( f )  = Y~,f(ht). 
This assertion now follows from Lemma 3.6.b): v satisfies for some constant D 
the estimate [~(~)[~D(I+ l~[) b' exp B'[Im([.  Let us then apply Lemma 3.6. b), in 
which we take as h t those from before, with the exception of h0, which we change 
to h0-~/. We can then approximate these functions, in the indicated way, with 
Fourier--Borel transforms of distributions with compact support, Ut, k. For every 
fixed k we now have Z t  Ut,k(f)=0. Indeed, we may change the order of summation 
in ( ~ t  Ut, k)(f) in view of (9), and we obtain 0 in view of (7). 

Proof of Lemma 3.6. a) Let us denote by ~ a family of C = (C") functions with 
the following properties 

supp ~s cBs  X {iR'}, 

~ks= l  for [ReC,-s[ ~1 /3 ,  

IG(~)I+[SG(~)I <-- c, f or  a c o n s t a n t  c >  0, 

X ~ G =  t. 

It is then clear that the functions.f~ =6~ h could play the role of functions h~, 
if only they were entire. We will obtain from them suitable entire functions, by adding 
small corrections, with the aid of some O-argument. 

To do so, consider the functions 

{ O~ for Re~ .=>s  

0~= 1 for R e ~ . < s  
and ga. = ffx, h. 

The functions 0gao then have their support in 2 .+1 /3~Re~n<=2.+ l ,  and 
therefore we have 

Ibg~.(()l -<- (1 + 12.[)-2 exp (Za.(Re 0/2 + B' tim r + (b + 2) In (1 + [(l)). 

It is therefore possible to find wz. with Owz=Oga, such that 

jwz.(~)[ =< C(1 + 12.1) -2 exp (Za.(Re 0 + ( y + B ' ) l l m  gl +(b'  + n + 4 )  In (1 + 1~1)). 

We now denote h~ =f~. , ,+wz._~-w,,  and it is easy to see that these functions h t 
satisfy all the requirements in Lemma 3.6 a). 

b) The second part of the lemma is proved by repeating the arguments from the 
proof of Proposition 3.2, in which we now perform the arguments simultaneously 
for all the functions h. 
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In fact we denote h~.,k=q~khz, ~o k those from Lemma 3.3, solve, with Paley--  
Wiener estimates, the systems Ow~.,k=Ocpkha. for 2 , r  and set, in order to maintain 
.~ Ux.,k=O, W 0 , k = - - ~ . e 0  Wa.,k. Finally we define l~12.,k=hz.,k--W;~., k. 

We have now proved Proposition 3.4 for the case e =  1, and it remains to see, 
what changes must be performed, in order to obtain it in the general case. Apart 
from the "loss" of  a term exp (2e IIm (I) in estimates which occurs when we change 
from the functions p,(O to the functions p,(Re ~), we see that we only have a loss 
of  terms exp Jim( I when we apply Lemma 2.3. The amount of terms [Im([ which 
we loose in the exponent hereby depends linearly on the constant of Lipschitzness 
of  the respective majorant functions. It is therefore sufficient to construct a system 
(...(Pa.)~._~.--)~, consisting of functions which are Lipschitz with Lipschitz con- 
stant 0~. This is possible by an obvious modification of the construction preceding 
Proposition 3.5. 

w 4. Proof of Theorem 1.5 

1. Lemma 4.1. Suppose qE M a and fEB(t). The following two assertions are then 
equivalent: 

(I) fE  •ff(t), 
(II) for all B, O < B < t ,  and all b>O, there exists j, B+ 3/j<t, such that f is 

naturally defined on dqj, B,b. 

Proof a) Suppose f i r s t fEo~( t )  and choose B, B', B", O<B<B'<B"<t,  b>O, 
b'=b+n+3, b " = b + l .  By definition there exist a Radon measure # and a J0, 
fdlgl<oo such that 

f (x)  = ft. exp i(x, ~) dlt (~)/exp (q]o (~) + B"llm ~l + b" In (1 + 1ff1)), for Ix[ <- B", 

and from this it follows that 

v ( f )  = f e (r d/t (r (qio(O + B" I Im ff[-t-b" In (1 + [if I)) 
for 

vEe'[Bq, telq,o.~..b. <oo.  

(Choose g,E Cg" (BO--B ') such that l 1 -~ , (01  ~ 5(1 + I~l) exp (B"--B)IIm ~[. Then 

(g . .  v) ( f )  = f e~(r e (0  d#/exp (qjo (0 + B" IIm ~1 + b" In (1 + I0) 
and 

I f (  1 --g.(O)O(Odt~/exp(qjo(O+B"lIm~l+b"ln( 1 + I~l)) I =< 

C~f (1 + I~1) exp ((B"-B')IIm ffl) exp (qjo(O + B' IIm ~l + b' In (1 + 1~1)) 
exp (qJ0(O + B" IIm ~1 + b" In (1 + IO) dr -~ 0 

when s ~ 0.) 
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We now choose j such that 

(10) j >=Jo, B + 3 / j  < B',  

and prove that f is naturally defined on dqj, B,b. 

Since Iqj(~ 1) -- qj(~)[ <= (I/j)I~ 1 -  ff21, this amounts to 

Iv(f)l  <-- Clel,,,B+ZO, b+.+~, eE d~fqj, B+3/j.b+n+3t% o~'(S'[B'~- 3/j]). 

To prove this we have only to observe that 

f exp (q j (~ )+ (B+3 / j ) l lm  ~ l+b ' ln  (1 +1~1)) 
= qj, B+31Y, b+n+3 al/t(~)l = 

<-I~l~,,.+,H,b+.+~fctl~(r 
in view of the inequalities qj(~)<=qjo(~) and (B+3/j)IIm~I<=B" IIm~] which are con- 
sequences of  (10). 

b) Let us, conversely, suppose that for all B, b, there is some j ,  B + 3 / j < t  such 
that f is naturally defined on d%,  n,b. In view of the Hahn--Banach theorem, there 
exists a Radon measure v such that f <v(r co and such that 

v ( f )  = f e (r dv (~)/exp (qj (if) + (B + 3/j)IIm ffl + (b + n + 3) In (1 + Iffl)), 
for 

vE 8"[B+3/ j ] ,  < ~ .  
In particular 

f ( x )  = 6, , ( f )  = 

= (2=)-" f exp i (x,  ~) clv (ff)/exp (qj (~) + (B + 3/j)lira r + (b + n + 3) In (1 + Iffl)), 
ix I <= B + 3/j, 

and this gives immediately, fE  8~' (t). 

2. The proof  of the theorem is now very short, since we have put enough con- 
ditions on K in order to assure an easy reduction to Proposition 3.4. 

Since the inclusion g~' (t)D ~ (t) is clear, we have only to prove that 

N eg(t)C~go(t). 
qEK 

Let us then suppose f E  nq~K #~'(t) and fix B < t and b. We choose J0 such 
that, for B ' =  B+tr/jo, B'+3/jo < t and set b ' =  b + 6 ,  o', 6 the constants from 
Proposition 3.4. From the assumption fENq<~g~'(t)  we obtain (in view of  
Lemma 4.1.) a function I :  K-+ N such that f is naturally defined on the spaces 
ag~{q), B', b'. We may of course suppose that for all q, l(q) ~ jo. In particular 

Iv(f)l ~- C(I(q))lel,,~,B.,b, for  VEe'[g'],leb~,),B,,b,<Oo. 
If  we could prove that, for a convenient choice o f / ,  the preceding inequalities 

are satisfied for some C'which does not depend on q, then the theorem would follow. 
Indeed, we could apply Proposition 3.4 and obtain that f were naturally defined on 
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d ,  rt, B, b, with z from Proposition 3.4. and ?/(~)=supqr q ,  ql((). Since ?/(O->q~ 
for some r, in view of condition (vi) on K, and since o> o zqr = qr'-c,  in view of (iii), f 
were then naturally defined on dd,,B,b and it remains to apply Lemma 4.1 again. 

The last thing to do is therefore to prove the existence of a function I: K ~ N  
such that [v(f)l<=C if  I~ll(q),B,,b, N l  for some qEK, vEg'[B']. I f  there is no such 
function I then the following is true: 

for every kEN, there exists qkEK such that the norms of f as functionals on 
~r  jEN are all greater then k (for a finite number of j it may 
happen that f(~(,~Cq~,e,,b,n~r(8'[B']))'). We now apply (v) for the sequence qk 
and denote by q the element associated with qk by this condition. It follows that 
the norm of f i n  any space (~r n,,b,C~o~(E'[B']))" is greater then any k. This con- 
tradicts the assumption fEgy ( t )  and this contradiction proves the theorem. 

w 5. Nonquasianalytic Denjoy--Carleman classes 

1. The nonquasianalytic weak A.U. spaces which we construct in order to 
prove Theorem 1.3 are associated with nonquasianalytic Denjoy--Carleman classes 
of  functions. We first introduce and study the sequences of integers for which we 
will consider the corresponding Denjoy--Carleman class. 

Definition 5.1. We denote by ,4~, c>3 ,  the set of sequences d =  {dj} of numbers, 
which satisfy the following condit ions:  

(11) d s =>j, 

(12) dj+l => dj, 

(13) dj+l <_- cdj, 

(14) ,~ 1/dj < oo. 

In ~ we have a natural order relation: we say that d ~ d  ~, if there exists a 
constant C such that d)<~ Cd~., Vj. 

For dE~4/~ we consider the following two, essentially equivalent, "associated" 
functions: 

k(z) = ln ~j(z /dj)  j, k'(z) = supln(z/dk) k, z 6 R  +. 
k 

Note that these expressions make sense, due to (i). 

Lemma 5.2. k'(z) -< k (z) <=/a" (2z). 

Indeed 

sup (2*/d,) k = • (1/2 0 sup (2z/dk) k ~ Z (1/2J)(2z/dY = • (z /dy .  
k j k j j 
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In view of this lemma, the functions k and/a '  play the same role in most of 
the problems concerning Denjoy--Carleman classes. In the sequel, we will prefer 
to work with/~. 

Proposition 5.3. /a(v): R+ ~ R + satisfies [/a(z)-k(v')l <= [v-z '[  and is increasing. 

Proof For ~ >0  we may differentiate and obtain 

d~(~)/d~ = ( Z j  J~J-1/(dY)/Z (~/dy <= 1, 
since 

XJ~J-V(dY -<- Z (~/dY -1 --< Z (~/dJ-1) ~-1 = Z (~/@~, 

in view of (1 l) and (12). 

2. The following two propositions essentially correspond to properties (v) 
and (vi). 

Proposition 5.4. Suppose r~d(r) is a sequence of elements in ~ .  Then there 
exists dE~4~ such that d~_d(r), V r. 

Proof By hypothesis ~ ;  1/dj(r)<=e, for some constants e,, which we may 
suppose =>1. Define dj=inf ,  r2c, dj(r). It is then easy to see that dj satisfies (11), 
(12), (13) and 

Z 1~at = Z .  (1/e.r ~) ZjEJ. (1/aAr)) -<_ 1. 
where 

Jr = {j; aj = r2Ga;(r)}, 
since 

Z j ~  O/6(r)) <= Z j  (1/6(r)) <= , .  

The order relations d-<d(r) are trivial. 

Proposition 5.5. Suppose qE M~d and let I: ~ N  be a function. Then there exists 
r~N and a constant C such that 

(15) sup In Z~ (qm)(~)/dj) j + C >= q~(~). 
d E JV'~ 

Proof We will reason by contradiction. The first thing to note is, that if the 
proposition is not true, then there exists a sequence of points ~k such that 

(16) sup in Z (q,(.~ (~3/aj)f + ~ <= 0 / ~ )  q~ (~). 

Indeed, if (15) were false for any choice of C and r, then we first obtain a sequence 
of points ~k such that 

sup In Z (q,(.)(~)/dj)J + e~ + k <- qj(~(~) 
d E-g'c 

where j(k) and ek are chosen such that qj(k)<=(1/k~)qk+ek, and (16) then follows 
immediately. 
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(16) implies in particular that qk((k)>-kn. 
We want to show that this remark, together with (16) leads to a contradiction. 

In fact we will construct dCA~r such that, at least for k in a subsequence {k~}, 

(17) In ,~  (qk((k)/dj) j >- qk((k)/k ]/-k, 

k in the subsequence, and this is a contradiction, since then also (in view of the fact 
that the sequence qk is decreasing and that the function k associated with d is 
increasing) 

In Z (qi(a) ((k)/dj) j => qk (~k)/k ]/-k 

for large values of k in the subsequence. 
Therefore the proposition follows, if we can prove the following assertion: 

Suppose Zk is a sequence of  points in R + such that Zk=>k 3. Then there exists d C ~  
and a subsequence {ks} for which 

(18) In ~ j  (-Ck/dj)J >-- Zk/k ~ for k~ {ks}. 

Now (18) is equivalent with 

2 j  (zk/dJ) j :> exp 

and to have this, it is sufficient to have dj <- Zk/e for some j => zk/kl/Tc. (In this case 

(~k/dj )  j => ("Ck/dj) "klklf'~ .= exp ~k/k 
We would therefore like to find {dj} such that, at least on some subsequenee, 

d[,dk~<=Vk]e ([.4] is the integral part of A). Denoting [Zk/kl/k]-=ak it is therefore 
sufficient to have ~k<=kak, and we can apply the following 

Lemma 5.6. Given an increasing sequence ak there exists dC~4/~ such that das~ =- 
=S2as 2. 

Proof. Define d%~ = s~a~ for s natural and 

d%~+i = rain (da(,+~)~, ed%~+i_~) for 1 <= i < a(s+x)~-a~. 

It is then clear that d satisfies (11) and (12). To see that (13) is satisfied, we have 
only to observe that 

(s+ 1)2ae+~)~ <- e~(~+~)~-~s2as2, 

for s=>2 in view of the fact that the function e~/2 2 is increasing for 2=>2. It remains 
to check (14). This follows from 

1 ae+~),-as~ q_ l____~ C 
Zo~--i<a(s+l)2--as2 das. q_ i da(s+l)2 das2 Z i2o e-i'~= S'~, 

whence Z 1/dj <- C ~ 1/s z < oo. 
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3. For every dEJV~ we now consider the associated Denjoy--Carleman class, 
which is defined in the following way: we first introduce quasinorms on C=(t), 
setting, for dEJV~, h > 0  and B < t  

[D=f(x) l 
[f[a,h,n : lx l  ~-Bsup ht=l(dl~l)l= I 

and then we define 

f#~(t) = { f E C ~ ( t ) ;  VB < t, 3h > 0 such that I f l  a'h'~ < o~}. 

The properties of the elements from ~ then correspond to the following properties 
of f#~ (t): 

(11) implies: f ~ ( t )  contains the real analytic functions from C~176 
(12) implies that fg~(t) is stable under multiplication. 
(13) implies that faa~(t) is stable under derivation. 
According to the famous Denjoy--Cademan theorem (cf. e.g. [12]) (14) implies 

(and is in fact equivalent to) the fact that fg~(t) is nonquasianalytic. 
The relevance of the function/~ associated with d to the corresponding Denjoy--  

Carleman class fq~(t) stems from the following trivial 

Proposition 5.7. Consider ~o E Co (t). Then the following two assertions are equiv- 
alent: 

(a) ~p E fa~'(t), 
(b) there exist B < t  and ~ > 0  such that for every b 

exp k (c~ I~1) I~ (~)1 ~ Cb exp (B Jim if[ -- b In (1 + Iffl)). 

(Since we do not allow the dj to b e +  0% the term - b  In (1 + [~l) in the exponent is 
not relevant;/e dominates b In (1 § ]~[) at infinity for any b. We have inserted it here 
for later convenience.) 

Let us note in conclusion of the section that we also have the following result: 

Proposition 5.8. Consider dE,life and denote by lz the associated function. Then 
{kj}, kj(~):k([~l/ j)  defines an element in M a and fa~ (t) is the weak A.U. space asso- 
ciated with this element. 

The first assertion is an easy consequence of Proposition 5.3. In view of Proposi- 
tion 5.7, the Fourier inversion formula gives for elements in ~a~(t)n Co(t  ) a rep- 
resentation of type (1). This is already enough, in view of the fact that ffa~(t) is 
nonquasianalytic. 
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w 6. Proof of Theorem 1.3. 

1. Consider qCMa and  dE~d/~. We define (q(d))j=ln Z,k(qj(()/dk)k-=/a(qj). It 
is immediately seen from Proposition 5.3 that q(d)CMa. This gives sense to the 
following proposition: 

Proposition 6.1. Suppose q E M~a and dE ~ .  Then g~a) (t) is quasianalytic. 

In some way g~a)(t) is as close to 8~(t) as is the corresponding Denjoy--Carle- 
man class to the real analytic functions. 

Proof of Proposition 6.1 (standard). It is clear that C~a)(t)Dfg~(t)c~Co(t), 
which gives the first two properties in Definition 1.2. It is therefore enough to prove 
that the elements from fg~(t)C~Co(t) are multipliers for E~a)(t ). Suppose then 
that go E ff~ (t) c~ C o (t), and fE Eq~a) (t). We want to prove that gofE 6~a) (t). 

From goEfg~(t)nCo(t ) it follows, for some small 6, which we may suppose 
smaller than 1/2, that for all b 

(19) IO(tt)[exp/~(26[t/I) <_- Cexp(BlImtll-btn(l+lttl))  for some B < t, 

and fromfE gg(~a)(t) it results that f can be written in the form f(x) =fexp i(x, ~) dv (0, 
[x]<=B, for some Radon measure v such that 

v =/~/exp (k(q,(~)) +Bt Im ~[ + b  In (1 + f d l n [  < ~ ,  

for some (great) r. 
We now define ~(~)=(2rc)-"f~o(q)dv(~-tl) and we want to prove that 

(A) [• (~)[ ~ C exp ( -  le. (6qr (~)),  b In (1 + ]~])), 

(B) gof(~) = ,/~ (~). 

This would bring the proof of the proposition to an end, in view of the fact 
that k (6qr (~)) >=k.(qr, (4) - er) >=la (qr, (~))- cr for some r" and cr (which come out from 
Off)). Indeed, we could write (gof)(x)=(Zrc)-"fexp i(x, ~)~p(~)d~. 

a) To prove (A) we first note that 

(20) 

Indeed 

k (6q~ (~ + r/)) -<_ k (q. (~)) + k (26 I r/l). 

le(6q~(~+q)) <-- k(6q~(~)-t- 61rt[) ~ k(2fiq~(~)) +k(26[r/I) <~ k(q~(~))-V-~(2~lrtl). 

Here we have used Proposition 5.3. 
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We can now estimate 0 (~). 

e xp (la(cSqr (4)) + b In (1 +141)) f r av(r - ~ )  <= 

<= exp (k(cSqr(r b In (1 + I~1)). 

�9 f I~ (,7) 1 exp ( -  (k (q, (4 - ~/)) + B jim ~[ + b In (1 + [4 - i/D)) dip (4 - t/)[ <_- 

<_- sup I ( l)l exp l(4, n)fdl l, 
with l denoting some obvious exponent. Using (19), it is sufficient to prove that 
1(4, ~/)-/a(2/SllTl)+BlIm ttI-b In (1 +1~t) is bounded, and this results from (20) and 
the subadditivity of the function ln. 

b) It is easy to see that 0 is in fact an entire function. Moreover, estimates 
similar to those above show also that 0 (4) satisfies inequalities which are sufficient 
to write 0(~) as the Fourier--Borel transform of a C o function, concentrated in 
lxl<=B. To prove (B) it is therefore sufficient to show that for Ix[<-B, ~ - - l ~ / ( X ) =  

= ~o (x) f(x).  
Now 

f e x p  i(x, ~) f $(n) dv(4 - n )  d4 = f f e x p  i(x, 4)$(tl) dv(~ -~1) d~ = 

= f f  exp i(x, 4 - ~  + it) ~ (~ - ~) dr dv (~1) = 

= f f  exp i(x, t/) (exp i(x, 4 - it) ~9 (4 - ~1) d~) dv = (2~)'f(x) ~o (x) for lxl <-- B, 

by the definition of v. 

2. It is now clear that Theorem 1.3 follows from Theorem 1.5 in view of the 
following two lemmas: 

Lemma 6.2. Suppose that q E M~a satisfies q~ (~) >= 2qj + z (~). Then K~ = {q (d) ; dE J~} 
satisfies (v). 

Lemma 6.3. For every qE M, d, there exists q' E M~d which satisfies 

q~(~) > 2q~ (~) +1 �9 

V r, V C, 3 r" such that max (q; (~) - C, 0) => q;, (if). 

= 

In fact, given qEM~a, we first consider q' given in Lemma 6.3 and then we define 
Kq, for this q'. K~, then satisfies (v) in view of Lemma 6.2 and (vi) for q" in view of 
Proposition 5.5 and the second property of q'. 

The first lemma is an easy consequence of Proposition 5.4. 
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Proof of Lemma 6.3. Consider qEM~d and let i(j) be an increasing sequence 
of integers. Define ~/={7/j}, ~j=q,(j). It is then clear that g~ ( t )=g~( t ) .  Choosing 
i(j) suitably, it is easy to see that we may suppose that 7/j(0=>27/~+l(0-cj, tbr 
some cj. We now define 

q~ = max ($j -- Zk<j Ck --j, 0). 

Obviously q'EM~d , and it is immediately seen that q'  has the stated properties. 

w 7. Comments and remarks 

Remark 7.1. The results from this paper should be compared with the results 
from [3] and [2, Theorem 1.5.12]. It is not possible to derive the results from [3] 
as corollaries of  Theorem 1.5. One reason is, that if dj is an increasing sequence 
of integers which satisfy dj>=j, then qk=ln (l(l/kdj) j is not necessarily in M~d (take, 
e.g., d j=exp j) .  The main difference with respect to [3] is that we obtain intersection 
theorems for spaces far from Denjoy--Carleman classes. 

Remark 7.2. Proposition 5.7. remains valid also for quasianalytic Denjoy-- 
Carleman classes. This was pointed out to the author by Mats Neymark. In fact, 
one uses arguments from the proof of Lemma 4.1 and the characterization of the 
dual of  left(t) spaces given in [10], [11]. 

Remark 7.3. Weak A.U. spaces are closely related to A.U. spaces (cf. [1], [4], 
[5]) and the two classes of spaces have many properties in common. One main 
difference is that whereas weak A.U. spaces are local (this is elementary, and follows 
also from Theorem 1.3.), A.U. spaces are not (nonlocal A.U. spaces appear in the 
study of the Cauchy problem for P.D.O.). 

Remark 7.4. Being local, weak A.U. spaces make sense also for nonconvex 
domains, and we immediately obtain the analogues of Theorems 1.3 and 1.5. More- 
over, these theorems remain true even for germs. 

We have used here the following terminology: A function space X c g ( t )  is 
called local, if all the functions which belong locally to X are in X. A function fEB(t) 
is said to belong locally to AT, if for every {x01<t, there exists a neighborhood V of 
Xo and gEX such that f = g  in V. 

Remark 7.5. The arguments in this paper are essentially microlocal. 
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