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O. Introduction 

Let G and G' be domains in the euclidean space R", n=~2, let f :  G~G" be 
a homeomorphism, and for xCG and rC(0, d(x, OG)) let L(x, r) =max  {[f(x)--f(y)]: 
]x-y[=r} and let l(x,r)=min {[f(x)-f(y)]: ]x-y[=r}. The mapping f is 
quasieonformal if there exists a finite constant K _  -> 1 such that 

L(x, r) 
lim sup ~ K 
~-o+ l(x, r) 

for every xE G. The smallest possible K ~  1 is called the dilatation of  the mapping f 
It measures the distortion of  small spheres under the mapping and hence indicates 
the amount of deviation of the mapping from a conformal mapping, whose dilata- 
tion is one. For  basic properties of quasi conformal mappings we refer the reader 
to the book of  V/iis/il/i [14]. 

An important boundary property of quasiconformal mappings is given in 
the following theorem of  F. W. Gehring [3, p. 21]: If  a quasiconformal mapping 
of the unit ball B" has an asymptotic value ~ at a point bEOB", then the mapping 
has the angular limit a at b. This result generalizes Lindel6f's classical theorem 
about angular limits of  conformal mappings of  the unit disc. The purpose of this 
paper is to show that actually much stronger Lindeldf-type theorems than Gehring' s 
theorem hold for quasiconformal mappings. 

The fundamental problem to be studied is the following. Let f :  B"~G" be 
a quasiconformal mapping, let bCOB", and let E be a subset of B" with bCE. Suppose 
that f (x)  tends to a limit a as x approaches b through the set E. How thick must 
the set E be at b in order that f have the angular limit ~ at b? By Gehring' s theorem 
this is the case if E is a curve converging to b. We shall give a substantially weaker 
sufficient density condition on E which only requires that the lower (conformal) 
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capacity density of  E be positive at b. We shall pIove the existence of angular limits 
by means of  a normal family argument. An important subclass of  two-dimensional 
quasiconformal mappings is the class of  conformal mappings, i.e. the class of uni- 
valent analytic functions. It is likely that our main results are new in this particular 
case, too. In any case, the main theorems, Theorems 4.4 and 5.5, seem to be among 
the best results also in the case of  univalent analytic functions. 

Some crucial tools, the capacity and radial densities , are introduced and studied 
in Sections 1 and 2. Section 3 contains a normal family criterion for the existence 
of  an angular limit. These three sections constitute the introductory part of the 
paper, on which the subsequent theory is based. 

In Section 4 we prove the result mentioned above, i.e. that a is an angular limit 
of  a quasieonformal mapping f of B" at bEOB ~ if  f ( x )  tends to a as x approaches 
b through a set E having positive lower capacity density at b. In Section 6 we shall 
show that the condition on E is, in a sense, best possible. One consequence of that 
result extends a Lindel6f-type theorem of  T. Hall [5, Thm. II] concernirtg bounded 
analytic functions. 

The main results of  the paper are given in Section 5. There we extend a very 
general Lindel6f-type theorem of  J. L. Doob [2, Thm. 4] to the case of quasicon- 
formal mappings. Finally, in Section 6 we consider the case where a quasiconformal 
mapping of B" tends to a constant limit function ~ through a sequence of points 
in B" converging to a point b~OB ~. With the aid of the hyperbolic metric we give 
a density condition on the sequence guaranteeing that ~ is the angular limit at b. 
As a corollary we obtain a quasiconformal analogue to a theorem of Bagemihl 
and Seidel [1, Thin. 1]. 

A sense-preserving mapping f :  Bn~R" is quasiconformal if and only if 
it is injective and quasiregular in the sense of  Martio, Rickman, and V~iis/il/i [7] 
and [8]. Hence it is of  interest to study whether the results of  this paper can be ex- 
tended to the case of  n-dimensional quasiregular mappings. With minor modi- 
fications in the proofs one can show that the main theorems, Theorems 4.4 and 5.5, 
hold for such a subclass of quasiregular mappings that each mapping in the sub- 
class is closed in the sense of  [15, Ch. II]. Such results were announced in [16]. The 
assumption that a quasiregular mapping be closed is very restrictive, however. 
Thus an important 1ecent example of  S. Rickman shows that not even Lemma 4.1, 
and a for t io r i  Theorems 4.4 and 5.5, need hold for bounded quasiregular mappings 
of  B 3. For  some positive results concerning angular limits of quasiregular mappings 
the reader is referred to [17], where also references to Rickman' s work can be found. 

Notation. We denote the n-dimensional euclidean space, n=>2, by R", and its 
one-point compactification by R"=R"w{~o}. The space R" is equipped with the 

X n inner product ( [Y)=~.i=x xiYi and with the metric given by the norm Ix[ =(x[x) 1/2. 
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All topological operations are performed with respect to R" if not otherwise in- 
dicated. Balls and spheres centered at xER" and with radius r > 0  are denoted by 
B"(x, r )={z~R" :  Iz-xl<r} and S'-l(x, r )={z~R" :  ]z-x[=r}. We employ the 
abbreviations: 

B"(r) = B"(O, r), B" ---- B"(1), 

s n - l ( r )  : s n - l ( 0 ,  r), S n - 1  -~- Sn-I(1) .  

The standard coordinate unit vectors are el, i=1 ,  ..., n. 

1. Density in the n-capacity 

We shall introduce in this section the lower and upper capacity densities of 
a set and study their properties. The results will usually be formulated for lower 
capacity densities only, since they will play an important role in Sections 4---6. 
Their  obvious analogues hold for upper capacity densities as well. 

First we give some preliminary definitions and remarks. 

Definition 1.1. The modulus of a path family. A path is a continuous nonconstant 
mapping ~: A~A, AcR", where A is an interval on the real axis. The point set 
7A is denoted by ]7]- The modulus of a path family F is defined by 

M ( F ) =  inf f o"dm,. 
Q E F ( F ) J  R ~ 

Here m, is n-dimensional Lebesgue measure arid F(F) is the family of all non-negative 
Borel functions ~: Rn-~R~u{oo} such that 

f ~ds > 1 

for every locally rectifiable path 7 in F. An important property of the modulus is 
that it is an outer measure on the collection of all path families of R". For  this and 
other properties of the modulus we refer the reader to the book of g~iis~il~i [14, Ch. 1]. 

Definition 1.2. Quasiconformul mappings. Instead of using directly the metric 
definition of  quasiconformality given in the Introduction, we shall employ an alter- 
native equivalent definition, involving moduli of path families. Accordingly, a homeo- 
morphism f :  G~G" of a domain G c R  ~ onto a domain G'cN" is called quasi- 
conformal if  there is a finite constant K ~  1 such that for every path family F whose 
elements lie in G 

(1.3) M(F). < M(fr)  ~ KM(F). 
K - -  
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Here f F = { f o y :  y~F}. The smallest possible K=>I for which (1.3) holds is de- 
noted by K ( f ) .  

Definition 1.4. Condensers and their capacity. A condenser is a pair (A, C) 
where A is open in R" and C is a compact non-empty subset of A. Given sets E, F, 
arid G in R" we let A (E, F; G) denote the family of all paths 7: [0, l]---P," with 
7(0)EE, 7(1)EF, and ?(t)~G for tC(0, I). The capacity, or (conformal) n-capacity, 
of a condenser (A, C) is defined by 

(1.5) cap (A, C) = M (  A ( C, 3A ; R")) = M (  A ( C, 3A ; A)). 

A compact set F in R", F g R " ,  is said to be of capacity zero if the modulus of the 
family of all paths ? in R" with ~ c ~ F ~ 0 ,  is zero. An arbitrary set F c R "  is said 
to be of capacity zero if every compact subset of F is of capacity zero. Otherwise 
F is of positive capacity. We write cap F = 0  or cap F>O, respectively. 

Definition 1.6. Capacity densities. Given a subset E of R', a point x in R", 
and numbers t > r > 0 ,  we introduce the following abbreviations: 

Mr(E, r, x) = M ( A ( S " - I ( x ,  t), B"(x, r)c~E; II")), 

M(E,  r, x) = M2r (E, r, x). 

For t > s > r > O  the following estimates hold 

t I " - I  
log r [ 

(1.7) Mr(E, r, x) ~ M,(E, r, x) <- - -  �9 Mr(E, r, x). t,ogSl 
The first inequality is obvious (cf. [14, 6.4]) and the second one is due to Martio 
and Sarvas [9, 2.7]. The lower and upper capacity densities of E at x are defined, 
respectively, by 

cap dens (E, x) = lim inf M(E, r, x), 
r ~ 0  

cap dens (E, x) = lim sup M(E,  r, x). 

Both of these quantities are bounded and non-negative. In fact, cap dens (E, x ) ~  
co,_ 1 (log 2) 1-"  holds for every x~R'.  Here e),_ 1 is the ( n -  1)-dimensional surface 
area of S "-I. The upper bound follows from the useful estimate 

( b/1-~ 
( 1 . 8 )  M(F)  <= co._ I t l o g a J  , 

which holds if 0 < a < b  and F is a path family in R" such that, for some uCR", 
I?-- [ intersects both boundary components of B"(u ,b ) \B" (u ,a )  for all ?EF 
(cf. [14, 7.5]). 
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Remarks 1.9. 
(1) The n-capacity of  a condenser (A, C) is often defined as 

cap(A, C) = i n f f  IVuF"dm, 
u , I A  

where u runs through all C~-functions with compact support in A such that u (x),= > 1 
for xEC. It follows from the results of  Ziemer in [19] that this alternative definition 
is equivalent to (1.5). 

(2) Martio and Sarvas have studied in [9] the condition cap dens (E, x ) = 0  
and other related conditions for compact sets E. For  our purposes the condition 
cap dens (E, x ) > 0  will be of  interest. We refer the reader to Examples 2.5, where 
the properties of  capacity densities will be illustrated. 

In the sequel we shall need lower bounds for cap dens (E, 0) when E c R " .  
The following lemma, which is based on the spherical cap-inequality of  Gehring 
(cf. V/iis/il/i [14, 10.2, 10.9, 10.12]), is then often needed. Throughout the entire 
paper we denote by e, the positive constant in [14, 10.9], which depends only on 
the dimension n. We denote by d(A) the euclidean diameter of  a set A c R " .  

Lemma 1.10. Let E c R "  and t > r > 0 .  Suppose that there is a connected set 
ErcB"(r)nE. Then 

2t+d(Er) 
(i) M e (E, r, 0) -_> c, log z t _  d (Er)" 

If  ErnS"-l(r)r and E~nS"-l(s)r for some sE(0, r), then 

t - - s  
(ii) Mr(E, r, 0) => c, log t ' r  

Proof. To prove (i), fix u, vEE r with lu-vI=d(Er)=d and choose a line L 
through u and v. Let wES"-l(t)nL be such that p=[v-w]~Iu-w I and let y be 
the other point in S"-l(t)nL and write q =  [u-y[. If  we apply the spherical cap- 
inequality [14, 10.12] in the ring domains R(w,p+d,p) and R(y, q+d, q) we get 

P 

[Io p+d 2t -p  ~> 2t+d 
_-> c, max ] g---~--, log 2 t -  p -  dI = c, log 2t-d  

In the middle inequality we have used the estimate q<=2t-p--d. 
To prove the second lower bound fix uEErnS"-l(s) and vEE,nS"-l(r) and 

choose a line L through u and v. Let wELnSn-I(t) be such that Iv-w]<=Iu-w[. 
Let p and q denote the lengths of the projections of u - v  and v - w  on the line 
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through 0 and w By the spherical cap-inequality [14, 10.12] we obtain 

M~(E'r'O)>=c"l~ Iv-w{ = c ,  log +1 =>c, log t-rt-S" 

where we have used the estimate p/q>=(r-s)/(t-r). 
The next lemma is well known. Actually, it was a part of the proof of Lemma 

3.11 in the paper [8] of Martio, Rickman, and V~iisal~i, but it was not formulated 
explicitly there. In its present form it was given by N~ikki [11, 3.3], and following 
his terminology we shall call it the comparison principle for the modulus. 

I_~mma 1.11. Let F1, F2, and F 3 be three sets in R" and let FIj=A (Fi, Fj; R"), 
l <=i, j<=3. I f  there exist xER" and 0 < a < b  such that F1, F.2cB"(x, a) and F3c 
~" \B"(x ,  b), then 

M(F12) >= 3-"min{M(F13),M(F~3), c, logb} .  

Using Lemmas 1.10 and 1.11 we prove the following result. A continuum is 
a compact connected subset of R" containing at least two distinct points. 

Lemma 1.12. Let E c R "  be a set with OEE and let hr: R"~R" be the dilation 
hr(x)=x/r for xER" and rE(O, 1). Let FcB"(s) ,s>O, be a continuum and let 
Fr=A(F,B"(s)nh, E; R")for  rE(O, l). Then there is a constant ju>0 depending 
only on n and d(F)/s such that 

lira inf M(Fr) =>/~ cap dens (E, 0). 
r ~ 0  

Proof. Choose r0>0 so that M(hrE, s,O)=>6/2 for rE(0, r0] where 
6=cap dens (E, 0). This is possible by the definition of cap dens artd by [14, 8.1]. 
Fix rE(0, r0]. We shall now apply the comparison principle for the modulus, Lemma 
1.11, with F~=B"(s)c~h~E, F2=F, and F3=-S"-a(2s). Using the notation of 
Lemma 1.1 1 we get by Lemma 1.1 0 

M(F~3) , 4s + d 
=> c,,log 4s--d ' 

where d=d(F). Since M(F13)-=-M(h,E, s, 0)=>6/2, 
of (1.8) 

Lemma 1.1 1 yields in view 

M(F,) = M(FI~) = 3-" min {M(F18), M(F~3), c, log 2} 

=>3-"min{---62,m}>3-= ,6.~_min{ -~}1, 

where m=min {c, log ((4s+d)/(4s-d)), e, log 2}>0 and D=o~,_a (log 2) I-". 
Since rE(0, r0] was arbitrary, we may choose tt=(2.3") -1 rain {1, m/D}. 
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Definition 1.13. Conformal invariance of capacity densities. A Cl-homeomorph - 
ism f :  D-~D', where D and D'  are domains in fin, is conformal if for all 
xED~{c~, f-l(~)} and for all hER" 

If'(x)h[ = If '(x)l Ihl 

and the Jacobian determinant Jy(x) is non-zero for all x E D \ { ~ ,  f -~(~)} .  Here 

[ f ' ( x ) l = m a x  {[f'(x)e[: [el=l}. 
An important property of  the modulus of a path family is its invariance under 

conformal mappings. In the next lemma we shall see that the capacity density has 
a similar property as well. 

Lemma 1.14. Let f: D-+D" be conformal, let E be a subset of  D, let 0ED, and 
let f (O)~ ~o. Then 

cap dens (E, 0) = cap dens (fE, f(0)). 

Proof The proof  is a l'ather straightforward calculation, where one makes use 
of [14, 8.1], (1.7), and the differentiability of f and f - x .  The details are left to 
the reader. 

Remark 1.15. One can improve some lower bounds in Sections 1 and 2 by 
making use of estimates involving the capacity of the Gr6tzsch ring in place o f  
the spherical cap-inequality (cf. [14, Section 11]). 

2. The radial density 

In the present section we shall derive certain lower bounds for the lower capacity 
density of  a set. Clearly we may expect significant lower bounds only at points 
where the set is thick in some suitable sense. A relevant condition of  this kind, 
from the point of view of applications in Sections 4--6,  can be given in terms of 
the lower radial density, which will be introduced in this section. The estimates 
obtained in this way depend crucially on Gehring's spherical cap-inequality (cf. 
V~iis~il~i [14, 10.2, 10.9]), and on the fact that the capacity of a condenser decreases 
under symmetrization (cf. Sarvas [13]). 

Definition 2.1. Radial densities. Let m be Lebesgue measure on the real axis. 
Given a set E in R" and xER" let A~,={r:>0: S"-l(x ,  r)c~E~O}. If Ax is measur- 
able we define the lower and upper radial density of E at x respectively by 

rad dens (E, x) = l iminf  m(Ax n (0, r)) r-a, 

tad dens(E, x) = lira supm(Axn(O , r))r -1. 
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It is immediately seen that if E is open or compact then these densities are defined 
at every point of  E. Radial densities give information only about the radial distribu- 
tion of  the set E in small neighborhoods of  x. Therefore it is not possible to obtain 
upper bounds for capacity densities in terms of radial ones, as Example 2.5 (1) 
shows. The next lemma provides us with a lower bound of  this type. 

Lemma 2.2. Let E be an open or compact subset of R" with 0EE and let 
A = { r > 0 :  S"-l(r)nE~ZO}. Then for r > 0  

2r 
M(E, r, 0) ~ c, log 2r--m(A c~(O, r)) 

where e , > 0  is as in [14, 10.9]. In particular, i f  rad dens (E, 0)=6,  then 

2 
cap dens (E, 0) => c, log 2--6 " 

Proof Fix r>0 .  If  m(An(0,  r ) ) = 0  there is nothing to prove. Assume 
m(An(0,  r ) ) > 0  and let sE(0, m(An(0,  r))). Choose a compact set Fc{te~: O<=t<=r, 
tEA} with m(F)~=s. By symmetry it follows that M(E, r, O)>=M(F, r, 0); see 
Sarvas [13] and Ziemer [19], This combined with the cap-inequality [14, 10.9] yields 

2r 
M(E, r, O) ~ c, log 2 r -  s " 

Since sE(0, m(An(0,  r))) was arbitrary, the desired estimate follows. 

Definition 2.3. Lebesgue densities. In a k-dimensional, l<-k<=n, affme sub- 
space of  R" we employ k-dimensional Lebesgue measure ink. If  E is a measurable 
set in a k-dimensional affine subspace of R" and xER ", then we define the lower 
and upper Lebesgue density of  E at x respectively by 

Ok.(E, x) = lim inf mk(EnB"(X, r)) r-k~(k) -1, 
r ~ O  

Ok*(E, x) = lim sup mk(E n B"(x, r))r-k c~(k) -I, 
r ~ O  

where a(k)=mk(Bk). If  these densities are equal, then this common value is called 
the Lebesgue density of E at x, and it is denoted by Ok(E, x). The following lemma 
gives a relation between the Lebesgue and radial densities. 

Lemma 2.4. Let E be an open or compact subset of R" with 0EE, let V be the 
k-dimensional affine subspace through O, 1 <=k<=n, and let p: R"~  V be an orthogonal 
projection. I f  ok (pE, O) = c5 then 

k 

rad dens (pE, O) >= 1 - ~ 1 - 6 
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and 

cap dens (E, 0) _-> c, log 

where e,>O is as in [14, 10.9]. 

2 
m 

k 

Proof The proof  is a rather straightforward argument, where one makes use 
of  Fubini 's theorem, symmetrization, and Lemma 2.2. The details are left to 
the reader. 

Next we give some examples illustrating the interrelations between radial and 
capacity densities. The third example concerns the condition cap dens (E, 0 )>0  
and shows that there are very thin sets satisfying this condition. 

Examples 2.5. 

(1) Let Sk=S"-l(2-k)n{X: Xn~0 }, k = l , 2  . . . .  and let E={0}~(WSk). By 
Lemma 1.10 we get cap dens (E, 0)_->c, log 3 and cap dens (E, 0 )~c ,  log (5/3) while 
rad dens (E, 0)=0.  

(2) Let (Xk) be a sequence in R" \{0}  tending to 0 and let (rk) be a sequence 
of  positive real numbers such that lim sup rg/]Xg[>O. Write E =  {0}u(uB"(x, ,  rk) ). 
Then by the definition rad dens (E, 0 ) > 0  and hence cap itens (E, 0 ) > 0  by 
Lemma 2.2. 

(3) With the aid of  a theorem of H. Wallin [18] we shall now construct a com- 
pact set E with cap dens (E, 0 )>0  but such that E is of zero Hausdorff dimension. 
By Wallin's Theorem 4.4 there is a compact Cantor-type set E1 of positive capacity 
and of  zero Hausdorff dimension. We may choose E1cB"(2 ) \B" (1  ). Let h: 
Rn~R" be the mapping h(x)=x/4 and let Ek+l=hEk, k = l , 2 ,  .... The set 
E =  {0}u(UEk) is compact and of zero Hausdorff dimension. Since cap E l > 0  
also M(A(S "-1(8),E1; R") )=6>0 ,  see e.g. Ziemer [19]. This implies 
cap dens (E, 0)=~6. 

3. Normal functions and angular limits 

The concept of a normal meromorphic function was introduced by Lehto 
and Virtanen in [6], where they established several important properties of these 
functions. We shall extend here the definition of normality to the case of mappings 
defined on a ball or a half space of n-dimensional euclidean space. Following the 
ideas of [6] we shall show that a normal function has an angular limit if and only 
if certain normal families converge towards a constant mapping. This criterion 
will play a significant role in Sections 4--6. 
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Definition 3.1. Asymptotic values and angular limits. We let the notation 
f :  G~I~" include the assumption that f is continuous and G is a domain in R". 
The mapping f has an asymptotic value ~ at bEG if  there exists a path 7: [0, 1 )~G  
such that 7 ( t ) ~ b  and f (7 ( t ) ) -~7  as t ~ l .  For  bEOB" and ~oE(0, n/2) we let 
If(b, ~o) denote the cone {zER': (blb-z)>-[b-z  I cos ~p}. A mapping f :  B"-~R" 
has an angula r limit ~ at bEOB ~ if  for each qgE(0, n/2) f (x )  tends to a as x appro- 
aches b through the cone If(b, ~o). In an obvious way this definition is extended for 

" - { x :  x . > 0 } .  mappings defined on a half space R+--  

Remark 3.2. Let f :  B " ~ "  be a mapping, let bEOB", and let EcB"  be a set 
with bEE. Irt Section 4 we shall consider the situation where f ( x )  tends to a limit 

as x approaches b through the set E. The following observation is then sometimes 
useful: There is an open set F containing E~nB" such that f ( x )  tends to ~ as x ap- 
proaches b through F. The verification of this simple statement is left to the reader. 

In the following discussion of  equicontinuity and normal families of continuous 
functions we employ the same terminology as in the book of  V/iis/il~i [14, w167 19--20]. 
In particular, a sequence f j :  G~R" ,  j = l ,  2 . . . .  is said to converge e-uniformly 
to a mapping g: G ~ R "  if it converges uniformly on every compact subset of G. 
A mapping f :  G ~ "  of  an open half space or an open ball G in ~" is said to be 
normal if, for every sequence (hi) of conformal self-mappings of G, the family 
( fohj)  is a normal family i.e. contains a c-uniformly converging subsequence. The 
main lemma of this section follows. We introduce the notation C(e, ~o)= 
K( -e ,~ )+{e} ,  when eES "-a and cpE(0, zc/2). 

Lemma 3.3. A normal mapping f: R"+ ~ "  has the angular limit o~ at 0 if and 
only i f  the following eondition is satisfied: 

I f  (rj) is a sequence of real numbers in (0, 1) tending to zero and if hi: R" ~R"  + + 

is the dilation h~(x)=x/rj, j = l , 2 ,  . . . ,  then every e-uniformly converging sub- 
sequence of ( f oh-f 1) converges to the constant ~. 

Proof Suppose first that f has the angular limit ~ at 0, Since f is normal, 
there is a subsequence of  (foh-f~), denoted again by (foh-fl), which converges 
e-uniformly to g: R~_ ~R". To show that g-=~ fix xoER + . Let q3E(0, ~/2) be such 
that xoEC(e,, q~). The sequence (h)-a(x0)) tends to the origin through the cone 
C(e,, cp) and therefore foh-]~(Xo) tends to 0~ as j~oo .  Hence g(xo)=o~ and since 
x0(R% was arbitrary, g is the constant ~. 

To prove sufficiency assume that there is cpE(0, z~/2) and a sequence (xj) in 
C(e,,~o)c~B" with x j ~ 0  and f(xj)~fl#o~ as j . . . .  Define hi: R~-~R~_ by 
hj(x)=x/lxi}, j = l ,  2 . . . . .  Since f is normal, there is a subsequence of (foh71), 
denoted again by (foh-f~), which converges c-uniformly to a limit mapping g:  

R~. ~I~". By hypothesis, g must be the constant a. Set I f=C(e, ,  q~)nS "-~. Then 
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hj(xj)EK for all j and ( foh f l ) (h j ( x j ) )~ f l  as j - ~ o .  This contradicts the con- 
vergence of  ( f o h f  1) to c~ on K. The proof  is complete. 

The next result follows immediately from the well known equicontinuity pro- 
perties of  quasiconformal mappings and from Ascoli's theorem (cf. [14, 19.2, 20.4]). 

Corollary 3.4. A quasiconformal mapping f:  R+ ~R" is normal and hence has 
the angular limit a at 0 i f  and only i f  the criterion of Lemma 3.3 is satisfied. 

4. Lindeli)f-type theorems 

In the case of  bounded analytic functions of the unit disc there exist various 
results guaranteeing the existence of an angular limit at a given boundary point. 
The fundamental result of this kind, due to Lindel6f, states that the existence of 
an asymptotic value implies the existence of  an angular limit. Subsequently the 
hypothesis of the existence of  an asymptotic value has been weakened by J. L. Doob 
[2, Thm. 4], T. Hall [5, Thm. II], and by others. 

For  quasiconformal mappings in n-space the only well known result of this 
sort is the following theorem of Gehring [3, p. 21]. The original proof  was given 
in the case n = 3 and the general case can be proved in the same way. For alternative 
proofs we refer the reader to N~ikki [12] and to [15, 6.4]. 

Lemma 4.1. Let a quasieonformal mapping f:  Bn~G" have an asymptotic 
value ~ at bCOB". Then f has the angular limit ~ at b. 

In the hypothesis of Lemma 4.1, the assumption of  the existence of an asymptotic 
value will be weakened to the requirement that f ( x )  tend to a limit a as x appro- 
aches bCOB" through a set EcB".  In order to conclude that ~ is then the angular 
limit of  f at b, it is obviously necessary to require that the set E not be too thin 
at b. Theorem 4.4 shows that such a condition can be expressed in terms of the 
lower capacity density by requiring cap dens (E, b)>0.  Then we use this result 
to deduce Theorem 4.7, the quasiconformal analogue of  T. Hall 's theorem. First 
we give some auxiliary results. 

Lemma 4.2. Let D be an open half space or an open ball in R" and let E and F 
be subsets of  D. Then 

M(A (E, F; D)) >--_ M(A (E, F; R")) 
2 

Proof In view of the conformal invariance of  the modulus (cf. [14, 8.1]) we 
may assume that D=R~_. Write F+=A(E, F; R"+) and F=A(E,  F; R"). Let 
Q+EF(F+) and let ~p: R"-~{0, 1} be the characteristic function of /). Then 
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~ + : ~ 0 . ~ + E F ( F + )  and we define Q: R"~R1u{r by Q]R~_=~+ and 
~((xl, ..., x,_~, --x,))=-~ + ((xl . . . .  , x,_~, x,)) for x,>=0. Then we see that ~E F(F) 
and obtain 

M ( F ) < L . o " d m , = 2  ,~+~" d m , ~ 2  L _  .Q+" din,. 

Since O+~F(T+) was arbitrary, these estimates show that M(F)<=2M(F+), as 
desired. 

The next lemma yields a particular type of symmetry property for the modulus. 
For  related results we refer the reader to Gehring [4, Lemma 1] and to the references 
given in [4]. 

Lemma 4.3. Let D be an open half space or an open ball in R" and let E and 
F be subsets of  D. Then 

m(n (E, F; R")) 
M(A (E, F; D)) > 

2 

Proof By [14, 8.1] we may assume that D=B =. Let Ej=EnB"(1--1/j),  
Fj=Fc~B"(1--1/j), F=A(E, F; B"), Fj=A(Ej, Fj; B"(1--1/j)),  A =A(E, F; R"), 
and Aj=A(Ej,  Fj; R")) for j = 2 ,  3 . . . . .  With this notation we get by Lemma 4.2 

lira M(Aj) M(A) 
M(F) >= M(uFj )  ~ lim M(Fj) >= 

2 2 

In the last step we have used the obvious equality A = uzlj  and a result of  Ziemer 
[19, Lemma 2.3] for the moduli of  increasing path families. 

Now we shall prove the main result of this section. 

Theorem 4.4. Let f:  B"~G" be a quasiconformal mapping and let f ( x )  tend 
to a li'mit ~ as x approaches bEOB" through a set E in B" with cap dens (E, b)>0.  
Then f has the angular limit c~ at b. 

Proof By performing preliminary M6bius transformations we may, in view 
of Lemma 1.14, replace B" and b by R~_ and 0 and make ~ finite. Let (rj) be a se- 
quence of  real numbers in (0, 1) tending to 0 and foi j =  1, 2 . . . .  let hj: R~_ ~R+ 
be the dilation hj(x)=x/rj. According to Corollary 3.4 it will be enough to show 
that every c-uniformly converging subsequence of  ( foh7  ~) tends to the constant ~. 

Choose a c-uniformly converging subsequence, denoted again by ( foh f l ) ,  
which tends to a limit mapping g: R~_~R n. From [14, 21.3] it follows that g is 
a homeomorphism or a constant. Assume that g is not the constant c~. Then we 
may fix a continuum F~R"+c~B" and choose r > 0  such that gFcFt"\B"(a, 2r). 
Since the convergence of foh-f  ~ to g is c-tmiform, we may choose art integer J0 
such that foh- fXFc~"\B"(a ,  r) for all J>--Jo. Let Ej=Ec~"(rj) and F j =  
A (F, hj Ej; R+) for j =>J0. Since hj Ej = B"c~hj E we see that M(A (F, B"c~hiE; R~)) = 
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M(Ffl  for J>-Jo. Hence there exists by Lemmas 1.12 and 4.3 a constant /~>0 
depending only on F and n such that 

lira inf M(Ff l  ~ Iz cap dens (E, 0) > 0. 

Let f~=foh21 for J>-Jo. Since ~ . F c R " \ B " ( e , r )  for J>-Jo and fj(h~Ej)-*~ 
as j - * ~ ,  it follows from (1.8) that M ( f j F f l ~ O  as j ~ .  By the modulus in- 
equality (1.3) we get 

u ( G )  -<_- I((I j )M(fSj) .  

For sufficiently large j this inequality contradicts the inequality just obtained for 
lim infM(Ff l ,  since the conformality of  the mappings hj implies that K ( f / ) =  
K( f )E[ I ,  ~o) is independent of j. We see that g must be the constant e, and the 
proof  is complete. 

Remarks 4.5. 
(1) Example 6.6 shows that in Theorem 4.4 the condition cap dens (E, b )>0  

cannot be replaced by cap dens (E, b )>  0. However, the condition can be weakened, 
as we shall show in Theorem 5.5. 

(2) We shall show in 6.14 that, in the particular case when E is non-tangential 
in the sense of 6.14, Theorem 4.4 follows from Corollary 6.5. 

We shall now give some consequences of Theorem 4.4. For further consequences 
we refer the reader to Section 6. First we recall that by Remark 3.2 there is no loss 
of  generality in assuming that the set E be open. Observe that the densities in ques- 
tion are defined, since E is open. 

Corollary 4.6. Let f :  B"-~G" be a quasiconformal mapping and let f ( x )  tend 
to a limit ct as x approaches bCOB n through an open set E in B ~. Then f has the angular 
limit o~ at b i f  one of  the following conditions is satisfied: 

(i) rad dens (E, b)>0,  
(ii) For some k, 1 ~=k~n, there is a k-dimensional affine subspaee V through 

b and an orthogonal projection p: R " ~ V  such that Ok(pE, b)>O. 

Proof. The proof  follows from Theorem 4.4 and Lemmas 2.2 and 2.4. 
The next theorem is a quasiconformal version of  T. Hall' s theorem [5, Thm. II]. 

Theorem 4.7. Let f :  R"+ ~G" be a quasiconformal mapping and let f ( x )  tend 
to a limit ~ as x approaches ~ through an open set EcR '+ with 

l iminf  m (A n (0, r)) r -~ > 0 

where A = { r > 0 :  Ec~S"-I(r)r  Then for each q)C(0 ,~ /2) f (x )  tends to ~ as 
x approaches ~o through the cone C(e,, ~o). 
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Proof. Let h: R'-~R" be the inversion h(x)=x/]xl 2 for xER" \{0}  and 
h(0)=oo,  h ( ~ ) = 0 .  Then hR+=R~_. It is left to the reader to show that 
rad dens (hE, 0)>0.  The proof  now follows from Corollary 4.6 (i). 

Remark 4.8. As is seen by Example 2.5 (3) the assumption rad dens (E, b )>0  
of Corollary 4.6 (i) is much stronger than the assumption cap dens (E, b )>0  of  
Theorem 4.4 (cf. also Example 6.9 (3)). Hence, in the very special case when f is 
conformal and n = 2 ,  one obtains from Theorem 4.4 a stronger result than what 
T. Hall 's theorem [5, Thm. II] gives for f conformal. Even this special case of  
Theorem 4.4 seems to be new. 

5. Counterparts of  a theorem of  J .  L. Doob  

Given a continuous mapping f :  B"~R",  aER", and e > 0  we let E~ denote 
the set {xEB": [ f (x ) -c~ l<~  } for c ~  and the set {xEB": [ f  (x)[> l/5} for a=oo.  
Clearly, the sets E~ are open for all 5>0. The cluster set C(f,  b) of f at bEOB" 
is the set of all such values of ~ for which bEE~ for all 5>0.  From the definition 
it follows ~that aEC( f ,  b) if and only if there is a sequence (bk) in B" with bk~b 
and f (bk)~a  as k~oo .  

In the present section we shall improve Theorem 4.4 by giving a rather general 
sufficient condition for the fact that aEC(f ,  b) is the angular limit of a quasicon- 
formal mapping f :  B"~G'cRn at bEOB". In this discussion the sets E~, 5>0,  
will play a role similar to that of the set E in Theorem 4.4 and the condition 
cap dens (E, b ) >0  of 4.4 will be replaced by the more general condition that 
cap dens (E~, b) do not tend too rapidly to 0 as 5 tends to 0. In [2] J. L. Doob proved 
results of this kind for bounded analytic functions. Our methods are quite different 
from those of Doob and are based on the results of Sections 1--3. Following the 
ideas of Doob ' s  paper we introduce now some terminology. 

Let f :  B"~R"  be continuous, let bEOB", ~E C(f,  b), and let fi t=cap dens (E~, b). 
Then f has a capacity cluster value ~ at b if 

(5.1) l im 8c~ )d = 0 
~ 0  

for some d>0 .  The mapping f has a metric cluster value ~ at b if condition (5.1) 
holds with 3~=rad dens (E~, b). It follows from Lemma 2.2 that a metric cluster 
value is a capacity cluster value as well. The least upper bound of numbers d > 0  
for which (5.1) holds is called the order of the cluster value ~. Observe that if the 
order is greater than d',  then condition (5.1) holds with d replaced by d'. We also 
define the capacity and metric cluster values of f at b oil a straight line L by requir- 
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ing that (5.1) holds with 6~=cap dens (E,c~L, b) and = rad  dens (E~nL,  b), 

respectively. 
J. L. Doob has proved the following theorem in [2, Thm. 4]. 

Lemma 5.2. Let a bounded analytic function f :  B ~ ~ R  2 have a finite complex 
value ~ as a metric cluster value on a straight line at bEOB ~. I f  the order o f  c~ is greater 

than 2 then f has an angular Bmit ~ at b. 

We are going to prove a quasiconformal analogue of Lemma 5.2. But first, 
it is useful to study the connection between capacity cluster values and approximate 
limits. A mapping f :  B"~R"  has an approximate limit ~ at bEOB" if for every 5>0  

~im ~ m , ( (B" \E~)n  B"(b, r))r-" --- 0 

where the set E~ has the meaning explained at the beginning of  the section. 

Remarks 5.3. 

(1) Condition (5.1) restricts the rapidity of approach of 5~ to 0 with 5. An im- 
portant special case is 5~=capdens(E~,  b)_->5>0 for all 5>0,  in which ca~e 
condition (5.1) is satisfied for every d>0 .  

(2) The condition in the above definition of the approximate limit can be 
expressed in terms of the Lebesgue density by 

1 6)" (E~, b) = O" (B", b) = -~ 

for every 5>0.  From Lemma 2.4 it follows that when this equality holds 
raddens(E~,b)~=6>O for every a > 0  with 6 depending only on n. Condition 
(5.1i is therefore fulfilled in view of  (1) and Lemma 2.2. Hence we have seen that 
an approximate limit is a metric cluster value as well. 

The next lemma gives a characterization for the existence of an approximate 
limit. However, it is not  necessary for what follows and is given mainly for com- 
pleteness. The proof of the lemma is left to the reader. 

Lemma 5.4. A mapping f:  B n ~ R  ~ has an approximate limit ~ at bEOB ~ if  

and only i f  there is an open set E in B ~ with 6)"(B"\E,  b )=0  and such that f ( x )  

tends to ~ as x approaches b through the set E. 

Throughout  the remaining part of this section we let the notation f :  B"-*G ' 

include the assumption that G ' c R  ~, whence the sets E~ 5>0,  introduced at 
the begilming of  this section, are defined for such a mapping f .  

We are now in a position to prove the main result of the paper, which is a far- 
reaching generalization of  Gehring's result in Lemma 4.1. 
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Theorem 5.5. Let f:  B"~G" be a quasiconformal mapping, let bEOB", and let 
E~=f - l  B"(~), 6~=cap dens (E~, b) for e>0.  I f  

( 7 -1 lim sup 6~ log = ~o, 
~ 0  

then f has angular limit 0 at b. 

Proof. By performing a preliminary M6bius transformation we may, in view 
of Lemma 1. t4, replace B" by R~ and b by 0. Let (rj) be a sequence of  real numbers 
in (0, 1) tending to 0 and for j = l ,  2 . . . .  let hi: R ~ R +  be the dilation hi (x)= 
x/rj. According to Corollary 3.4 it will be enough to show that every e-uniformly 
converging subsequence of ( f o h ;  1) tends to the constant 0. 

Choose a c-uniformly converging subsequence, denoted again by ( foh f l ) ,  
which tends to a limit mapping g: R~ ~FI". By [14, 21.3] g is a homeomorphism 
or a constant. Assume that g is not the constant 0. Then we may fix a continuum 
FcR~c~B" and choose r0>0 such that gFcR"\B"(2ro). Since the convergence 
of f o h f  1 to g is c-uniform, there is an integer J0 such that foh- f lFcR"\B"(ro)  
for every J>=Jo. For rE(O, ro)write E,={xER~_: [f(x)[<r} and 6 ,=capdens  
(E,, 0). For J~Jo and rE(O, r0) let F}=A(F, hjE,; R~_). Let # > 0  be the cons- 
tant of Lemma 1.12 depending only on F and n. From Lemmas 1,12 and 4.3 it 
follows that for each rE(0, ro) there is an integer ar>-jo such that 

M(F5 ) > #6, = 3 

for j>=a r. Write f j = f o h ;  ~, Since for J~=Jo and rE(O, to) f~FcR"\B"(ro) and 
fj(hjE,)CB"(r) we get by (1.8) 

M(fS~.) ~- o~._1 log 

for rE(O, r0) and j>=a,. The conformality of the mappings hj implies that K ( f j ) =  
K(f)E[1,  o~) is independent of j. From the modulus inequality (1.3) and the above 
inequalities we get 

0 <  (3~o,_~K(f)#)-~ <= 67 ~ (log (_~)}l--n 

for rE(0, r0), where the left hand side is independent of r. Letting r-*0 yields a con- 
tradiction. 

We shall now give some corollaries to Theorem 5.5. The first corollary is 
a quasiconformal counterpart of J. L. Doob's  theorem (cf. Lemma 5.2). 

Corollary 5.6. Let a quasiconformal mapping f:  B"~G" have a capacitY cluster 
value ~ of order greater than 1/(n--l) at bEOB ~. Then f has the angular limit ~ at b. 
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Proof Since the order of  ~ is greater than 1 / (n - l ) ,  condition (5.1) holds with 
d = l / ( n - l ) .  Hence also the condition of Theorem 5.5 is satisfied. 

Corollary 5.7. Let a quasiconformal mapping f: Bn~G" have a metric cluster 
value ~ at b~OB ~. I f  the order of ~ is greater than 1/(n- 1), then f has the angular 
limit ~ at b. 

Proof. From the definitions it follows that condition (5.1) is satisfied with 
6 , = ra d  dens (E,, b) and d=l / (n-1) .  Then, by Lemma 2.2, it is also satisfied 
with 6,=cap dens (E,, b) and d=l / (n-1) .  The proof  now follows from Cor- 
ollary 5.6. 

Remarks 5.8. 
(1) Theorem 5.5 seems to be new even in the particular case when n = 2  and 

f is a conformal mapping, i.e. a univalent analytic fur.ction (cf. Remark 4.8). 

(2) The author does not  know, whether the power n - 1  in Theorem 5.5 is 
the best possible. 

(3) For  n = 2  and f conformal one obtains from Corollary 5.7 a stronger 
result than from Doob ' s  theorem (Lemma 5.2 above), since the assumptions on 

are weaker in Corollary 5.7 (cf. Example 2.5 (3) and Remark 4.8). 

Corollary 5.9. A quasiconformal mapping f: B"~ G" has an approximate limit 
at bEOB ~ if and only i f  it has an angular limit c~ at b. 

Proof The necessity follows from Theorem 5.5 and Remark 5.3 (2) or alternat- 
ively from Lemma 5.4 and Corollary 4.6 (ii). The sufficiency holds even for a con- 
tinuous mapping. In fact, suppose that f :  Bn~G" has an angular limit at b. If  
we apply the definition of  an angular limit to the cones K(b, q)k), q)k=nk/(2(k+ 1)) 
k = l ,  2 . . . . .  we see that there is an open set E c B  ~ with O"(B"\E, b ) : 0  and 
f ( x ) ~  as x ~ b  through E. The proof  follows from Lemma 5.4. 

6. Sequential limits and the hyperbolic metric 

In this final section we shall complete our study of angular limits. We begin 
by showing that a quasiconformal mapping of B n tending to a limit through a se- 
quence of points (bk) in B n with bk-*bEOB ~ tends to the same limit through a larger 
set E consisting of hyperbolic balls centered at bk, k = l ,  2 . . . .  and having a con- 
stant hyperbolic radius. This observation has some interesting consequences. Firstly, 
it enables us to show that in the results of Sections 4 and 5 the lower capacity den- 
sities cannot be replaced by the upper ones. Secondly, some corollaries to our earlier 
results can be obtained. In particular, we extend a result of Bagemihl and Seidel [1] 
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on normal meromorphic functions to the case of quasiconformal mappings of 
n-space. 

The hyperbolic metric O in B n is defined by the element of length 

Idx[ 
(6.1) d 0 -  l_lxl~ 

If  a and b are in B" then 0 (a, b) denotes the geodesic distance between a and b 
corresponding to this element of  length. We shall exploit the invariance of e with 
respect to conformal self-mappings of B n. If  b~ B ~ and M >  0 we denote by D (b, M) 
the hyperbolic ball {xcBn: 0(b, x )<M}.  The relations between the euclidean and 
hyperbolic metric will be of importance in the sequel. For our purposes it will be 
enough to observe that one obtains from (6.1) the following formulas for the quan- 
tities Rb and rb: 

(1- ]b[~) tanhM Rb max{[z-b l :  zEOD(b, M)}, 
(6.2) Rb-- 1- - [b] tanhM ; = 

(1 --[b] 2) tanh M 
rb= l + ] b l t a n h M  ; rb=min{Iz--b]:  zCOD(b,M)}. 

The second equality gives a sufficient condition for xCD(b, M)  expressed by means 
of the euclidean metric as follows: ]b-x[ < tanhM(1--lbD. 

Theorem 6.3. Let f:  B" ~ R" be a discrete open (of. [7]) normal mapping with the 
property that i f  (hj) is a sequence of eonformal self-mappings of  B" and foh-f  1 tends 
e-uniformly to a limit mapping g: B"~R", then the limit mapping g is either discrete 
open or constant. Let (bk) be a sequence in B" with bk~bCOB" and f ( b k ) - ~  when 
k ~ co and let MC(O, ~o). I f  ~EOfB" then f (x) tends to o~ as x approaches b through the 
set u D (b~, M). 

Proof. Let hk: B"~B" be a conformal self-mapping of B" with hk(bk)=0. 
By the conformal invariance of 0, hkD(bk, M ) = D ( 0 ,  M) for k = l ,  2 . . . . .  Assume 
that there is a sequence (ak) in wD(bk, M)  converging to b such that f(ak)-~fl#~. 
Since f is normal there is a subsequence of ( foh~l ) ,  which we also denote by 

( f o h ~ ) ,  converging e-tmiformly to a limit mapping g: B " ~ f B  n. Since foh~-l(0)= 
f(bk)~O~ as k-+oo, g(0)=~. Since o~EOfB", it follows from [7, 2.12], the properties 
of the local topological index, and from the c-uniform convergence, that g-0~. 
After relabeling we may assume that akED(bk, M), k = l ,  2, ... and that hk(au) 
converges to a limit point uED(O, M ) c B " .  Moreover, 

( f  oh;  1) (hk(ak)) ~ fl # g(u) = ~. 

This conclusion contradicts the convergence of ( f o h ~  1) to ~ on the set D(0, M). 
The proof is now complete. 
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Remark 6.4. Theorem 6.3 generalizes the reasoning in the proof  of a result 
of  Bagemihl and Seidel [1, Thm. 1]. The assumption that eEOfB" can be replaced, 
as in [1, p. 5], by the requirement that f - ~  (e) be finite. We show that this last assump- 
tion cannot be dropped. For  this purpose we consider the normal analytic function 
f : B ~ B 2 \ { O }  defined by f ( z ) = e x p ( ( z + l ) / ( z - 1 ) )  when zEB 2. Then 
C( f ,  1 )=B 2 and f - l (c t )  is infinite for all ~EB~\{0}. We fix ~EB~\{0} and choose 
a sequence (bk) in B" with bk~l  and f (bk)=a for all k = l ,  2 . . . . .  It is easy to 
verify that the conclusion of  Theorem 6.3 fails to hold for this mapping f and the 
sequence (bk). 

Coronary 6.5. Let f:  B" ~ G" be a quasiconformal mapping, let (bk) be a sequence 

in B" such that bk~bEOB", and let f (bk )~a  when k ~ .  l f  ME(O, ~o), then 
f (x) tends to ~ as x approaches b through the set t3 D(b,, M). 

Proof Since f is injective C(f ,  b)c~fB" ar, d hence the condition aEOfB" 
in Theorem 6.3 is satisfied. The proof  now follows from Theorem 6.3, since a quasi- 
conformal mapping of B" satisfies by [14, 21.3] also the other conditions in 6.3. 

We are now in a position to show by an example that the lower radial and 
capacity densities in Corollary 4.6 (i) and Theorem 4.4 respectively, cannot be 
replaced by the corresponding upper densities. Since these results are particular 
cases of  Theorem 5.5, the same statement is true of  Theorem 5.5. 

Example 6.6. Let f :  B=~G ' be a conformal mapping having no angular limit 
at elEOB ~. Fix ME(O, ~) and choose aECra~(f, eO, where C,~a(f, el) is the cluster 
set of  f on the radius (0, e0. Then there is a sequence (bk) on (0, e0 with bk+e, 
and f(bk)~Ct as k ~ o .  By Corollary 6.5 f ( x )  tends to a as x approaches ea 
through the set E = w D ( b , ,  M). Let 

rk = min {lZ--bkl: zEOD(b,, M)}, 

By (6.2) we get for all k 

k =  1 , 2 , . . . .  

rk (1 + I bk[) tanh M 
1 -- ' lbk[ l+[bk[tanhM = tanh M > 0. 

Thus radd--e-ff~(E, e l )>0  (cf. Example 2.5 (2)). Since f ( x )  tends to the limit 
as x approaches ex through the set E with rad dens (E, e 0 > 0 ,  but f has no angular 
limit at e~, we see that the condition rad dens (E, b ) > 0  in Corollary 4.6 (i) cannot 
be replaced by r a d d e n s ( E , b ) > 0 .  A corresponding statement concerning the 
lower capacity density clearly holds in regard to Theorem 4.4. 

By combining Corollary 6.5 with Theorem 4.4 and with Gehring's result in 
Lemma 4.1 above, we obtain some new results. The first result is a quasiconformal 
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version of  a theorem of Bagemihl and Seidel [1, Thin. 1] concerning normal mero- 
morphic functions. 

Corollary 6.7. Let f :  B"~G" be a quasieonformal mapping, let (bk) be a sequence 
in B" converging to b~OB" and satisfying the condition 

~(bk, bk+ l )<M,  k - -  1,2, ... 

for some MC(O, o~), and let f (bk)-~ as k-~ ~o. Then f has the angular limit ~ at b. 

V. P. Mi6i6 [10] proved a result related to Corollary 6.7 concerning quasi- 
conformal mappings of R~_. However, he considered only the case where the se- 
quence (bk) lies in a cone with the vertex at a boundary point, and one can show 
by modifying the calculations of 6.12 to the case of R~_ that his result follows from 
Corollary 6.7. Mi6i6 proved his theorem by using Gehring's distortion result 
given in [3]. 

Corollary 6.8. Let f :  B"~G" be a quasiconformal mapping and let f ( x )  tend 
to a limit ~ as x approaches bEOB" through a set E c B "  with bEE. I f  there is ME(O, ~o) 
such that cap dens (EM, b)>0,  where EM denotes the open set {xC B": o(E, x ) < M } ,  
then f has the angular limit ~ at b. 

The sequence (bk) of  Corollary 6.7 has a role similar to that of the set E in 
Section 4 (cf. Theorem 4.4 and Corollary 4.6) and it may therefore be of  some 
interest to compare the condition of Corollary 6.7 with those in Section 4. Here 
we shall show that the condition rad dens (E, b ) > 0  of  Corollary 4.6 (i) permits 
the set E to be very sparse in the sense of the hyperbolic metric. 

Examples 6.9. 
(1) Construction of  a set ECBn with rad. dens (E, e l )>0  such that 

lim sup Q (bk, b, + 1) = oo for every sequence (bk) in E tending to e I. 

First observe that for bEB" and M > 0  we obtain from (6.2) 

(6.10) ~ R  b ~ 2 tanh M = e T M -  1. 
1-[b[  - 1 - t a n h M  

Let t2k = 1 --e-Vk and write for k = 1, 2 . . . .  

E2k = {x: [x[ = t2k, 2 -2k <- ]x--el[ ~= 2-2k+1}. 

Since by (6.10) Rb<=e2M (1-- [b[), it follows that the sets {z~B": o(E2k, z)<2k} 
are disjoint, and thus o(E2k,E2k+2)>4k, k = 1 , 2 ,  .... The construction shows 
that the set E =  uE2k has the desired properties. 

(2) In order to illustrate the difference between Corollaries 6.7 and 6.8 we 
shall construct with the aid of  Example (1) a set F={bk:  k = l ,  2 . . . .  } in Bn with 
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cap dens (FM, el)>0,  FM=UD(bk, M), for some M > 0  and with 

lira sup 0 ( b, , b, + 1) = ~o . 

To this end, fix ME(0, ~). For  each k = l ,  2 . . . .  choose a finite set Ask = 
.... Xp~}cE2k such that 

Pk 

(6.11) E2k c U D(x~ ~, g ) .  

Let (bk) be a sequence such that (b,: k = l ,  2 . . . .  }=UA2k=F and bk--~el as k-~oo. 
Write FM=uD(bk, M). By (6.11) and by Example (1) F satisfies the condition 
cap dens (FM, e l )>0  and by Example (1) lim sup O(bg, bk+l) = co. Thus the set 
F has the desired properties. 

(3) When we compare Theorem 4.4 and Corollary 6.8 it may be of some in- 
terest to know in which way the size of  a set EM= {xEB": Q(E, x ) < M } ,  M ~ 0 ,  
is related to the size of a set E c B "  i f  cap (tens (E, b )>0  for some bEOB". We 
shall now construct a set E c B  ~ with cap dens (E, e l )>0  and rad dens (EM, el)=O 
for all M ~ 0 ,  provided that the dimension n->3. 

Fix n ~ 3 .  Let tk=l--2-~]k, k = l ,  2 . . . .  and E=(_)~=l(S"-a(e~,2-k)n 
S"--l(tk)). Since n-->3, it follows from Lemma 1.10 that cap dens (E, e 0 > 0 .  
To show that rad d--e-ffS(Eg, el)~-0 for all ME(0, ~), fix ME(0, oo). Choose an 
integer k 0 so that 2e~M/ko<=l/4. Let A = { r > 0 :  S"-~(e~,r)nEM~O }. Using the 
inequality d(D(b, M))<-_2e~M(a-lbl) (cf. (6.10)) we can estimate the lengths of 
the components of A~(0, 2-k"). Fix rE(0, 2 -k0) and choose k,>=ko such that 
rE[2 -k.-1, 2-k~). Then 

m(An(O,'r))r-l< ( ~_k 2e~M2-k ) k_ k 2k'+1 < 8eM 
= = k---~- 

which tends to zero as r-*0. 
In the remaining part of the paper we shall show that art essential feature of  

Example 6.9 (1) is the tangential approach of  the set E to OB". For this purpose, 
a finite upper bound for the hyperbolic diameter of a set is needed. 

6.12. An upper hound for the hyperbolic diameter. Fix goE(0, n/2), uE(O, 1), 
bEOB ~, and tE(0, cos go). We shall consider the set 

A(u, go, t) = K(b, go)c~ (B"(b, t ) \B"(b,  ut)) 

and shall give an upper bound for the hyperbolic diameter of A (u, go, t ) independent  
of  t and depending only on u and. go. From (6.1) it follows that 

Ix-yl 
(6.13) Q(x, y) ~ min{1-Ix[ S, 1-1y?} 
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for x, y in B". Since tE(O, cos r we observe that 

d(A, OB") = d (AnS" - l (b ,  ut), OB") = 1 -  l/sin2~o+(cos q~-ut)  2 

where A =  A(u, q~, t). Hence 1 -[xl  >-d(A, OB") for all xE.4. Therefore 

1 - I x l  ~ = (1 +lxl)(1  - I x l )  => ut(2 cos q~-ut) >-_ ut cos ~p. 

Because d(A)<-2t we obtain in view of (6.13) the upper bound 2/(u cos q0 for the 
hyperbolic diameter of  A (u, tp, t). 

6.14. Non-tangential sets. Recall that we constructed in Example 6.9 (1) a set 
E=B" with rad dens (E, e 0 > 0  and with the property that lim sup 0(bk, bk+l) = ~o 
for every sequence (bk) in E tending to bl. The above upper bound for the hyperbolic 
diameter will now be applied to prove that this is possible only for sets approaching 
OB" tangentially. It should be observed that this reasoning shows, in particular, 
that for non-tangential sets E Theorem 4.4 follows from Corollary 6.5. 

For this purpose let bEOB" and let EcBn be a set which is non-tangential 
a t  b, i.e. EcK(b ,  r for some q~E(0, re/2) and let cap dens (E, b ) = 6 > 0 .  This 
last assumption together with (1.8) implies the existence of a sequence (bk) in E 
such that bk~b and such that for some number uE(0, 1) depending only on 6 
and n 

bk+lEA(u,~o, Ibk-bD, k = 1, 2 . . . . .  

Hence 6.12 implies that lira sup Q(bk, bk+l)<M(u, ~o)<oo, proving thus the as- 
serted fact. 

We end the paper with a quasiconformal version of  a constancy criterion, 
which, for normal meromorphic functions, is due to Bagemihl and Seidel [1]. 

Theorem 6.15, Let f:  Bn~G" be a quasieonformal mapping, let (bk) be a se- 
quence in B" with [bk]~l when k~oo, having at least two distinct limit points on 
OB", and such that 

(6.16) O(bk, bk+x) < M, k = 1, 2, ... 

for some ME(0, oo). I f  f (bk)-+a as k ~ o ,  then f reduees to the constant ~. 

Proof. Suppose, on the contrary, that f is not the constant 0~. Then we may 
fix a continuum F=B" with nefF. Choose two distinct limit points a, bEOB" 
of the sequence (bk), and write 3r=la,  b[>0. Pick out two subsequences (bip) 
and (bjp) of (bk) such that t'p<jp<ip+ 1 and [b i -a l<r /p  , ]b j -b l<r /p ,  for 
p = l ,  2 ,  Let CpcB ~ be a continuum joining bi, and bj~ consisting of the 
geodesic segments (with respect to the hyperbolic metric) from b k to bk+l for each 
k, i~<=k<-jp-1. Since d(Cp)>-r for every p, there is by Lemmas 1.10, 1.11, and 
4.3 a J>O such that M(Fp)>=fi for everyp, where Fp=A(F, Cp; B"). It follows 
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f rom (6.16) a n d  Coro l l a ry  6.5 tha t  f C p ~  as p ~ o ~ .  

M ( f F p ) ~ O ,  since ~ q f F .  By (1.3) we ob ta in  

<= M(Fp)  ~ K ( f ) M ( f F p )  

for  all p.  Le t t ing  p - * ~  yields a cont rad ic t ion .  The  p r o o f  is complete.  

179 

Hence  (1.8) impl ies  tha t  
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