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1. Introduction 

Let P be a properly supported pseudo-differential operator of  order m on a 
C ~ manifold X. We shall assume that the symbol of  P is a sum of  terms homoge- 
neous of degree m, m -  1 . . . .  and we denote the principal symbol by p. 

Definition I.I. P is said to satisfy condition (P) if there is no C ~ complex 
valued function q in T*X\O such that Im qp takes both positive and negative 
values on a bicharacteristic of  Re qp where q r  

By a bicharacteristic of  Re qp we mean an integral curve of  the Hamilton 
field Re Hqp on which Re qp vanishes. (Some authors call this a null-bicharac- 
teristic.) We say that P is of principal type if dpr when p = 0 .  For  operators of 
principal type satisfying condition (P) and with no bicharacteristics trapped over 
a point, Nirenberg and Treves [5] proved local solvability when the principal symbol 
is analytic. Beals and Fefferman [1] extended their result to the C ~ case. H6r- 
mander [3] proved semi-global solvability by studying the propagation of singularities 
for  the adjoint operator. In this paper we shall study the case which was left open 
in [3]. 

Definition 1.2. We denote by cgz the set of (x, ~)C T*X\O such that p(x, ~)--0 
and [m qp vanishes of  third order at (x, 4) for  some qC C ~ (T*X"x0) such that 
q(x, ~) ~o. 

Observe that cga contains the set cglz defined by H6rmander [3], for which there 
are also global conditions. The definition implies that a bicharacteristic ? of, say, 
Re p is a one dimensional bicharacteristic of p as long as it remains in (6'3, that is, 
p = 0  on ? and H p ~ 0  is proportional to the tangent vector. 

When studying the singularities we shall use the Sobolev spaces H(s ) of dis- 
tributions which are mapped into L 2 by any pseudo-differential operator of  order s. 
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When u is a distribution we define the regularity function s*~(x, 4) fol (x, r T * X \ O  
as the supremum of  all real s such that uEHc, ) at (x, ~), that is, u=ua+u2 where 

uaEH(s) and (x, 4)r  WF(u.~). 
Arbitrarily close to a one dimensional bicharacteristic in cga there may exist 

bicharacteristics on which d Re p and d Im p are linearly independent. There we 
know that s* is a superharmonic function with respect to a natural analytic structure 
if PuE C=(X).  When approaching the one dimensional bicharacteristic the super- 
harmonicity degenerates to the minimum principle with respect to constant func- 
tions, and we are led to the following theorem. 

Theorem 1.3. Let  P be a properly supported pseudo-differential operator o f  order 

m on a C ~ manifoM X,  satisfying condition (P). Let  J be a compact interval on a 

one dimensional bicharacteristic in ~3. I f  uE~'(X),  and s is a real constant such 

that s < = s ~ u + m - 1  on J a n d  < * < * s = s ,  at cgJ, then s=su  on J. 

Thus if s<-_s~u on J then rain (s*, s + m - 1 )  satisfies the minimum principle 
with respect to constant functions on J, that is, either it is monotonic or else it rises 
monotonically to a maximum value and falls monotonically afterwards. Note that 
Theorem 1.3 gives additional information on s u even in the cases of  Theorems 6.1 
and 6.6 in [3], which on embedded one dimensional bicharacteristics only give infor- 
mation on the infimum of  s*. 

In the proof  of  Theorem 1.3 we shall use the Weyl calculus developed by H6r- 
mander [4]. For  definitions, notations and calculus results we refer the reader to 
[4]. The plan of  the paper is as follows. In Section 2 we reduce the proof  of  Theo- 
rem 1.3 to the a priori estimates of  Proposition 2.7. We define a metric in Section 3 
which is a modification of  the one used by Beals and Fefferman [l] to prove the 
local solvability of  operators satisfying condition (P). In Section 4 we state and 
prove the a priori estimates we shall use in the proof  of  Proposition 2.7. When 
localizing these estimates we must have operators which approximately commute 
with P. In order to construct such operators we have to find uniformly bounded 
solutions to the Hamilton equations. This is done in Section 5 and the results are 
used in Section 6 to construct solutions with special properties. Finally we prove 
Proposition 2.7 in Section 7, thus finishing the proof  of  Theorem 1.3. 

I would like to thank my teacher Professor Lars H6rmander who suggested 
this problem to me and whose constant encouragement and advice have been of  
invaluable help. 
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2. Reduction to a priori estimates 

In this section we shall reduce the proof  of  Theorem 1.3 to certain a priori 
estimates (Proposition 2.7). For  simplicity we do this in several steps, where we 
microlocalize and prepare the symbol of  the operator. 

By multiplying with an elliptic pseudo-differential operator of  order 1 - m  we 
may assume that m ~-1. The symbol of P is then an asymptotic sum of homoge- 
neous terms 

p(x, ~)+po(x, ~)+p_~(x, ~)+... 

where the principal symbol p is homogeneous of degree 1 and pj is homogeneous 
of degree j in the r variables. 

To prove Theorem 1.3 it suffices to show that if J is a compact interval on a 
one dimensional bicharacteristic in ~3, and if s<s*+l /15 ,  s<s~, on J and s<s* 
on OJ, then s<=s * on J. In fact, since s*>  - N  on J f o r  some N, we obtain Theo- 
rem 1.3 by iterating this result with s < k / 1 5 - N .  Since conjugation by an elliptic 
operator of  order s does not change the principal symbol, it suffices to prove the 
case s=0 .  Thus, Theorem 1.3 will follow if we prove the following 

Proposition 2.1. Assume that P is of  order 1 and satisfies the condition (P). 
Asgume that J is a compact interval on a one dimensional bicharacteristic in ~a, and 
u is a distribution such that for some e > 0  

uEH(_m5 ) and PuEH(~) on J, 

uEH(,) at OJ. 

Then it follows that uEH(0 ) on J. 

We shall now prepare the operator so that microlocally it becomes a differential 
operator in the x0 variable and a pseudo-differential operator in the x" variables 
depending on. the parameter xo, ()Co, x')ER "+1. We shall use the symbol classes 
S(h~, go) in T 'R" ,  where go is the metric 

and 
g0(t, z) = Itl2+izl~/(l+lUI 2) at (x', ~') 

at (x', ~'). h~ -- sup go(t, z)/g~(t, z) : (1 + I~'l~) -1 
It, l: 

Assume that R ~ I ) t ~ 7 ( t ) E J  is a compact interval on a one dimensional 
bicharacteristic in cg a, which does not have the radial direction. (Proposition 2.1 
is empty if the direction is radial.) Then Proposition 2.5 in [3] gives that we can 
extend y to a homogeneous canonical transformation Z from a neighborhood of  
IX(0,  ~)~  T*R ~+1, 4--(0, ..., 0, 1), such that for some q homogeneous of  degree 0, 
the pullback Z* (qP) is of the form ~-0 + if(x, ~') in a conical neighborhood of  IX (0, 4). 
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Here fCC ~176 when ~'#0,  and f i s  homogeneous of degree 1 in the 4' variables. 
The assumptions imply that f does not change sign for fixed (x', 4') and that f 
vanishes of degree 3 on IX (0, ~). If we conjugate with a Fourier integral operator 
of order 0 corresponding to Z, and multiply by a suitable elliptic pseudo-differential 
operator, we can get the symbol equal to 40+/f(x, ~')+qo(x, 4) in a conical neigh- 
borhood of IX(0, ~) apart from terms homogeneous of degree - 1  and lower. 
Here q0 is homogeneous of degree 0, and we may now assume that qo is independent 
of 4o and vanishes on. IX(0, ~). In fact, by Malgrange's preparation theorem we 
can find e and r homogeneous of degree - 1 and 0 respectively such that 

qo(X, 4) = e(x, 4)(~o+if(x, 4'))+r(x, 4') 

in a conical neighborhood of IX(0, ~). Indeed, when ~,=1 we can do so locally, 
hence we get this decomposition in a neighborhood of IX (O, ~) by a partition of 
unity, and may then extend it by homogeneity. If we multiply by a pseudo-differen- 
tim operator with symbol 1 - e ( x ,  4) the term of degree 0 in the symbol becomes r. 
To show that we may assume that r(x, 4') vanishes on IX(0, ~), we take a(x, 4") 
elliptic and of degree 0 in the 4" variables, and conjugate the operator by a TM- We 
then get the symbol 

4o + if(x, ~')+ i(Hpa)(x, 4')/a(x, 4')+ r(x, ~') 

apart from terms of degree - 1 and lower. Here Hp is the Hamilton field of p(x, 4)= 
~o+if(x, 4"). The term of order 0 in this symbol is equal to 0 on I• ~) if 

iOxoa(x, ~')+r(x, ~')a(x, 4') ----- 0 

since Hp=O~, ~ then. This equation is satisfied by 

a(x, {') = exp(if~~ r(t, x', 4")dr} 

which is elliptic of order 0 and defined in a conical neighborhood of IX(0, 4). 
It is clear that in the same way we may successively make the lower order terms 

independent of 40 and vanishing on J. However, since it suffices to prove Proposi- 
tion 2.1 when ~_14/15, we may ignore these terms. Thus we obtain the following 

Lemma 2.2. In the proof of  Proposition 2.1 we may assume that 
a) J = I X  (0, ~), where I is a compact interval on the real axis and ~ =(0, ..., 0, 1), 
b) in a conical neighborhood of  J the symbol of P is of  the form 4o + if(x, 4") + 

r(x, ~'), where f and rEC ~ are homogeneous of  degree 1 and O, respectively, 
when I~'l>= l, 

c) f is real and does not change sign for fixed (x', ~'), 
d) f and r vanish on J of degree 3 and 1, respectively. 
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Having reduced the symbol microlocally, it is natural to use the spaces /-/~s) 
5#'(R "+1) with the norm 

II I1" ( ( 2 ) _ . _ i f  1~(~)1~ 0 + I~'1~) ~ d~) 1~2 U (s) ~ /~ .< oo 

to measure the regularity in the x' variables. We are going to localize these spaces 
by using operators in the x" variables, depending on the parameter xo. Then, if 
the symbol of P is of the form ~o+if(x, ~')+r(x, ~'), we can use the calculus in 
R" and consider x0 as a parameter. 

Let B=(R, S(I, go)) be the space of bounded C=functions on R with values 
in S(1, g0). Thus, if OEB~~ go)), ther~ 0EC=(R ~+t) and we have the 
estimate 

[D~D~, tp(x, ~')1 ~ C,,~(1 +[~'l) -Ipl 

for all cr ft. It is easy to see that if 0EB=(R, S(1, go)) then ~ is continuous in 
5~ 5~ "+~) and H~s) for all s. We shall now study the connection between 
H~) regularity and H(~) regularity. 

Lemma 2.3. a) Let (y, t/')CR 2n+t, t/ 'r and assume that 

~k(x, ~')EB~(R, S(1, go)) 

is homogeneous of degree 0 for large ~', O(y, r~')r for large r, and ~,'~uEH~), 
uE~'. Then uEH(~) at (y, ~o, tf) for all ~o. 

b) Assume that ~" ~0 in WF(u), u ~  e', and that uEH(s) at (y, tl o, tl') for all 
no. Then it follows that O"uEH~) if O(x, ~')EB~(R, S(1, g0)) has support in a 
sufficiently small conical neighborhood of (y, ~'). 

Proof of Lemma 2.3. a) Choose X(~)EC~(R ~+~) homogeneous of degree 0 for 
large ~,suchthat X(~)=I when I~01<=el~'l+l, and Z(~)=0 when l~01=~C(l~']+l). 
If 0(x, ~')EB~(R, S(1, g0)), then the composition Z'~O TM is a pseudo-differential 
operator, which, since [~o[=<C([~'[+l) in supp X, can be computed by the stand- 
ard calculus (see Sj6strand [6, Appendix]). If OWuEH~l then it is clear that 

)~, '~uEH(~,  since 1~_(1+1~1~)/(1+]~'12)<=1+2C 2 in suppz and Z is independ- 
ent of the x variables. Thus, we find that uEH~) at (y, ~0, ~') when I~ol<=cI~'[. 
Since the constant e can be chosen arbitrarily large, we obtain a). 

b) After multiplication with a suitable cut-off function, we may assume that 
uEg'. Then, since ~ '#0 in WF(u), we find that I~ol<=cI~'l in WF(u). Choose 
)~({)EC~(R "+~) homogeneous of degree 0 for large 4, such that g = l  in a conical 
neighborhood of WF(u) and Z(~)=0 when [~o[~_C'([~'[+1). If 

~(x, ~')EB=(R, S(1, go)) 

has support in a sufficiently small conical neighborhood of (y, r/'), then ~ ~k w uE H~,). 
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In fact, this follows since uEH(s) at (y, t/0, t/') for all t/0, and xw~o TM is a pseudo- 
differential operator which can be computed by the standard calculus. As before, 
we find that ZW~WuEH(~), because 1~(1+]r162 2 in suppz 
and X is independent of  the x variables. 

Now we are going to prove that (1-Zw)r for all t. Since Z = I  in 
a conical neighborhood of WF(u), we can choose XI(~)EC=(R "+1) homogeneous 
of degree 0 for large 4, such that Z1 = 1 in a conical neighborhood of WF(u) and 

"1 . . . .  u "1 . . . . .  u + q  . . . . .  1 z = l  on suppzz. Now ( --Z )qJ =1, - Z  )V Z~ t - Z  )qJ t -X~')u, where, 
as before, the symbol of" (1-gw)~wX~ can be computed by the standard calculus. 
Since Z = l  on suppz~ the calculus gives that (1-Zw)tp~Z~uEH(oC=H;o for all 
positive t, Since Z~=I on WF(u), we find that ( 1 -7~ )uEH t CH;t  for all posi- ( )=  () 
tive t. This implies that ~' w , (1-7~I)UEH~0, and since 1-Z(~) is bounded and 
independent of  the x variables, that (1-Zw)~b~'(1-X'~)uEH~" o for all positive t. 
This completes the proof of  the lemma. 

Definition 2.4. When r  in WF(u), uE5 ~ we say that uEH~) at (y, t/') 
if O~uEH~) for some ~b(x, ~')EB=(R, S(1, go)) homogeneous of degree 0 for large 
r such that O(y, r~/')#0 for large r. 

Let WF~,) (u) = {(x, ~): u ~ H(,) at (x, ~)} and let 

WF~4(u) = {(x, ~'): u e H ~  at (x, U)}, 

if r  in WF(u), uESr Then Lemma 2.3 gives 

~z o (WF(~) (u)) = WF~s) (u) 

where no(x, ~o, ~ ')=(x,  ~'). 

Proposition 2.5. Assume that P'(x, D)=Do+iF~(x, D')+ RW(x, D'), where F 
and RE C ~ (R 2"+~) are bounded functions of  x o with values in S(ho z, go) and S(1, go) 
respectively. Also assume that F is' real, does not change sign for fixed (x', 4") and 
vanishes of  order 3 on the rays through J=IX(O, ~), where I = [ - 1 ,  1] and 
~=(0 . . . .  ,0, 1), and that R vanishes on the rays trough or. I f  ~ '#0  in WF(v), 
v=0  when IXol>l and for some ~>0 

on ~o(d), v~H~_I/15 ) and P'vEH~_~/~), P" vEH(" o 

then it follows that 
vE H('o) on =o(J). 

Proof that Proposition 2.5. implies Proposition 2.1. By Lemma 2.2 we may 
assume that the symbol of  P is equal to ~o+if(x, r ~') in a conical neigh- 
borhood of J = I X ( 0 ,  ~) where f and rEC=~ 2"+1) are bounded functions of x 0 
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with values in S(ho 1, go) and S(1, go) respectively. After a change of scale in 
the Xo variable we may assume that I = [ - 1 ,  1]. Then Lemma 2.2 gives that 

(2.1) P'(x, D) ---- Do+ifW(x, D')+rW(x, D') 

fulfills the requirements in Proposition 2.5. We shall prove that Proposition 2.1 
follows from Proposition 2.5 by microlocalizing in a conical neighborhood of J. 

By multiplying with a suitable cut-offfunction we can assume that uEg'. Choose 
O(x, ~)EC=(R 2"+2) homogeneous of degree 0 for large 4, and with support so 
close to the rays through d that the symbol of P - P '  (P" defined by (2.1)) is equal 
to 0 in supp tp, uEH(-1/15) and PuEH~) in supp ~b, and [~o[-<_Cl~'[+l in supp ~b. 
We also want [x01<l in supp ~b, ~b=l on the part of the rays through J where 
we do not already know that uEH(o), and finally uEH(o where the support of 
grad ~ meets the rays through J. 

It is then clear that it suffices to prove that v=~WuEH(o) near J. The assump- 
tions on ~b imply that v~H(_I/15 ) and Pv=~bwPu+[P,$W]uEH(_I/15). Since 
WF(Pv)C= WF(v)C=supp ~k, Lemma 2.3 gives that v and PvEH~_m5 ). 

Now we prove that PvEH~,) on n0(J ). Since uEH(~) on supp(grad~b)nJ,  
we have [P, ~b~']uEHr on J. It is also clear that [P, ~bWluEH(,) on ~Zoa(~0(J)). 
In fact, since P is of the form (2.1) in supp ~b, P is non-characteristic in supp ~k 
where ~0~0. Since PuEH(o in supp~k, we obtain uEHr in supp$  where 
~0#0. Thus, [P, ~k~]uEH(~) on rCol(rc0(J)), and since ~b~'PuEH(,), we get PvEHr 
on rCo~(rc0(J)). Lemma 2.3 then gives that PvEH~) on ~zo(J). 

Now, the symbol of P - P "  is equal to 0 in supp 0, and the composition 
(P-P')$~'  can be computed by the standard calculus. Thus, (P--P')~k~uEH(t)c 
H~0 for all positive t, so P'vEH~_lns), and P'vEH~) on rc0(J). By multiplying 
with a suitable cut-offfunction in x0 we can obtain that v =0  when Ix01 > 1. Proposi- 
tion 2.5 gives that vEH~0 ) on ~0(J), so Lemma 2.3 implies that vEH<0 ) on J. This 
proves that Proposition 2.5 implies Proposition 2.1. 

In the proof of Proposition 2.5 we shall make a change of scale in the x 0 variable 
and cut off near ZOo(J). To get uniform estimates we must vary the metric. In what 
follows, we shall denote by g any metric of the form g=m "go, where m(~') is 
independent of the x" variables and l<=m<=ho 1. This implies that go~_g and 
sup g/g*=h2=(m �9 ho)Z<= 1. Now, since g is conformal to go, the following lemma 
shows that g is a temperate if it is slowly varying, and that we can get a bound on 
the constants in the definition. 

Lemma 2.6. Assume that G = m . go is uniformly slowly varying, that 1 <: m <= h o 1, 
and that M is uniJbrmly G continuous satisfying l~_M<=H-l=(m.ho) -a. Then G 
is uniformly a temperate and M is uniformly a, G temperate. 
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Proof ofLemma 2.6. Since the triangle inequality gives 

g0,wx(t) <-- 2g0,w,(t)(1 +go, wl(Wl--W2)), wiET*R", 

it suffices to prove that m and M are uniformly tr, G temperate, that is, 

re(w1) <= Cm(w2)(1 +G~l (w~-wl)) s 
and 

M(w~) <= CM(w~) (1 + G~I (w~ - wl)) N. 

Now, go<-G implies that m is G continuous, so it suffices to consider the case 

G~,~(Wl-W~)>=co>O, j = l ,  2. Then we find 

M(Wx) <-- H-I(wO ~= (G~I(Wl-w~)lco) 

which proves that M is a, G temperate. 
To prove that m is a, G temperate we note that if go, w~(W~-W~)<=c~ and c 1 

is small enough, then go,wl~go,wJC. This implies that 

m (w2) go, wl (wl-- w2) >= G~ (wl -  w~)/C >-_ co~C, 
so we obtain 

re(w2) G~I (wI-- w2) = re(w2) go,  wx (Wl-- w~)/m(wl) h~(Wl) ~- com(w3/C 

since m<=ho 1. 
When go, wl(Wl-W2)>=cl we find 

re(w1) <- hgl(wO <= G~I(WI-W~)/c 1 

since ho~go<=GL This proves that m is a, G temperate and finishes the proof  of  
Lemma 2.6. 

Remark. Note that in Lemma 2.6 we did not  have to assume that m and M 
were independent of  the x variables. 

We shall use the norm 

U tt ]1 [](o = ( ( 2 r c ) - " - l f  ]~(O]~h(~t)-~dr xl~, 

which depends on the metric g. This norm is well suited to the calculus with symbols 
in S(hk, g). Since m=>l we obtain 

Ilu[l{%) ~-Ilullb), 

when s is positive. For  convenience we put llull =[lull('o~. 
Now we state the a priori estimates we are going to use in the proof  of  Proposi- 

tion 2.5. 

Proposition 2.7. A~sume that Pl = D o + iF~ (x, Dt) + R'~ (x, D'), where F 1 and 
R1EC=(R ~"+1) are bounded functions of Xo with values in S(h-X,g) and S(1, g) 



On the propagation of singularities for pseudo-differential operators of principal type 31 

respectively, F 1 is real and does not change sign for fixed (x', r Assume that go 
and ~ES(1, g) and that ~ = 1  on suppgo. Then for every e>0  there exists 6>0  
such that 

(2.2) , w ~ . . . . . . .  ,{~o ull-C([{~ P~ull(~)+llull(_x:~5)+llPxull(-m~) 

i f  uESP(R "+1) and u = 0  where lXo] >5. Here 5 and C do not depend on g and Px 
i f  g is uniformly a temperate and if we have fixed bounds on the seminorms of the 
symbol of P1. 

Proof that Proposition 2.7 implies Proposition 2.5. Note that in Proposition 2.7 
we do not need the assumption that F1 and R~ vanish on J. However, we need the 
assumption that u vanishes when Ix01 >6,  where 6 depends on ~ and on the bounds 
on the symbol and the metric. We are going to reduce the proof of Proposition 2.5 
to the estimate (2.2) by making a change of scale in the x o variable. In order to 
get a fixed bound on the symbol after the change of scale, we cut off the symbol 
in a small neighborhood of J and use the fact that F and R vanish on J. This motivates 
the following choice of  metric. When T ~  1 we put 

g(r) = min (T ~, ho 1) go 
and 

h(T) = (sup g(r)/g{T)) ~/~ = rain (T2ho, 1) =< 1. 

Since ho 1 is go continuous we find that rain (T 2, ho ~) is uniformly go continuous. 
Now go<=g(r) implies that g(r) is uniformly slowly varying, so Lemma 2.6 gives 
that g(r) is uniformly a temperate. 

We shall now microlocalize the symbol in a g(T) neighborhood of n0(J). Choose 
g~ ~(r) and X(T)~S(1, g(T)), with fixed bounds on each seminorm and homoge- 
neous of degree 0 for large ~', such that the symbols have support where T2~_ho ~ 
and where the g(r) distance to the ray through (0, ~') is less than a fixed constant. 
We also want Cp(T)=I on the part of  the ray through (0, ~') where CT2<=ho ~, 
O(r)=l on supp go(r) and Z(~)=I on supp I]/(T ). Pu t  

(2.3) P(o = Do + iF~T) + R(~ 

where 
F(T)(X, ~') = TZ(T)(X', ~')F(Txo, x', r 

and 
R<r)(x, ~') = Txm(x', ~')R(rxo, x', r 

Then R(r) and F(T)EC~(R2"+I). 

Lemraa 2.8. 
S(h~ ,  g(T)) and 

F(r) and R(r) are uniformly bounded functions of  xo with values in 
S(1, g(T)) respectively, when T~=I and ]Xol<=T-l(l + T-1). 



32 

Proof of Lemma 2.8. 
suffices to prove that 

(2.4) 

and 

(2.5) 

Nils Dencker 

Since F(r) and R(r) have support where g(r)= T~go, 

[Z FI~ ~ < CkTk-nhg ~ (T) -~- 

IX(T)R[~ ~ <= Ck Tk-1 when IXo[ ~ I + T - L  

it 

Since F< S(ho ~, go) uniformly in x o and F vanishes of  order 3 on J, we obtain from 
Taylor's formula that 

IFI~ ~ < C k T k - a h o  1 in suppz(T) when ]Xo[ <= I + T  -1, 

because XtT) has support where the go distance to the ray through (0, ~') is less 
than C/T. Since R6 S(1, go) uniformly in Xo and vanishes on J, the same argument 
gives 

IR}~ o ~ C~,Z k-~ in suppz(r) when [Xol ~ I + T - L  

Now, Xtr) has fixed bounds in S(1, &T)), thus 

IX(T)I~, ~ ~ Cs k, 

so Leibniz' rule gives (2.4) and (2.5), which proves the lemma. 

End of proof that Proposition 2.7 implies Proposition 2.5. Assume that uC5 a (R "+~) 
and that u = 0  when Ix0[--> 1. Let U~T)(X)=U(TXo, x'), so that U(r)=0 when Ix01 ~I /T .  
Proposition 2.7 and Lemma 2.8 give that for each ~>0 there exists T , ~ I  such that 

w H (2 .6)  l[ q2(r) U{T)[{ <- C(][ ~k (r)  P(T) U(T)[I (T, e) q-l} U(T)}} I(IT, - 1/15) -11-l} P(T)U(T)II {iT, - 16[15)), 

if T>=T~, where 

II Jl;T,,, = 

Now we have 

(27). rain (T -=* , 1)][ u [[ (,)" <= ][ u I1 (r,,)" ~ max (T-~*,I) ]1 u I1"(,) 

so if we make a change of scale in the xo variable, writing Txo instead of Xo, we find 

(2.8) IIq~'(r) uH <= Cr(llr P(r)ull'~+llu{l{-x/x5)+ElP(r)Ull'~-,./15)) 
if T>=T,, where 

Pro(x, D) = Do+i(zmF)W(x, D')+(Zm R)~(x, 1)'). 
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If  we replace -P(T) with P'(x, D)=Do+iFW(x, D')+RW(x, D') we obtain, since 
Z(T/=I on supp~(r) and P(r)--P" is of  order 1, 

P W ! I t P P (2.9) II qg~) ul[ <= CT (]tr Pull ( ,)+ Hull (-1/15)-1 lip nil (-a/xs)), 

when T>=T~ and uE6~(R n+~) has support where ]x0]<_-l. 
To prove Proposition 2.5 we must extend (2.9) to all uEH~_xj15 ~ satisfying 

the hypotheses made on v in the proposition. It is clear that by continuity we may 
extend (2.9) to those uEH~I+, I with support where ]x0f<_-l, such that DouEH~, }. 
Let 

C,(U) = (1 +tJUl~) -1 

when 0 < t <_-1. It is then easy to see that Ct is a weight for go which is uniformly 
a, go temperate and that the seminorms of  Ct in S(Ct, go) have fixed bounds. 

Put u t = C t u and 
Ilull (,,,) ~ ' �9 ' = I I C ,  u l l { , )  

l / 
This norm is equivalent to llull{,_2) when t > 0  and tends to Ilull(=) when t-+0. 
If  uE//(' ~/~5 ) and P'uEH~_~I~5 } then DouEH~_~6/~5). This implies that utEH~I+, } 
and Dou=C~'DoutEH~ } if t > 0  and g~14/15, which we have assumed. 

Let Pt=C~'P'(C~-I) ~. Then the symbol of Pt is equal to 

4o + iF(x, ~')-- ({F, C,}/C,) (x, ~') + R(x, ~') 

apart from terms with fixed bounds in S(ho, gD, when 0 < t < - l .  Ignoring these 
terms for a moment, we find that Pt fulfills the requirements in Proposition 2.5, 
since F vanishes of degree 3 on J. Hence 

I t  W �9 P �9 

(2.1{3) li ~~ utll <= CT (ll ~b (T) Ptutll (o § II utll (- 1/15) + l] Pt utl] ( -  1/15)) 

if T is large enough, since the terms with symbols bounded in S(ho, go) can be 
estimated with IIu, ll~_x/~). 

Now, the symbols of [~o{T/, C~'] and [~r) ,  C~'] are uniformly bounded in 
S(h(r},g{T}) when 0 < t ~ l ,  so we find that 

1 < I I I  "d2 I �9 I l I (2.11) II~a}ull(,.o} = Cr (l l~(~)P uIl{,,,)+ttuIl(-1/,~l+IIP ull(-x/,~}), 

if T i s  large enough, u and P'uEH~_m8 } and u has support where [x0[_-<l. 
I f  we also assume that 4 ' # 0  in WF(u) and that P'uEH~,) on a0(J), then 

we find that ,t,~ O,uC r-r' for large T. Thus, for large enough T, the right-hand ~/" ( r ) - -  v- a * ( e )  

w �9 side of (2.11) is bounded when t-+0, which implies that ~o(r)uEH~o ) then. This 
means that uEH~o ) on n0(J ), which proves that Proposition 2.7 implies Proposi- 
tion 2.5. 

Proposition 2.7 will be proved in Section 7. 
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3. The metric of  Beals and Fefferman 

In this section we shall define a metric which is a modification of  the one used 
by Beals and Fefferman [1] to prove local solvability for operators satisfying the 
condition (P). The results in this section were essentially proved by Beals and 
Fefferman [2]. 

Assume that  g = m . g  o is a temperate, where l<=m<=ho ~, then gong and 
supg/g'=F<=l. Assume that F(t, w)~C~(R•  ") is a bounded function of  
tCR with values in S(h-l ,g).  By normalizing we may assume that  [ F i s h  -1 
and IFl~<=h -~ for all t and w. Now we want to know for which other metrics 
G=Hg/h, where h<=H<=h 6/7, we have that  F(t, . )~S(H-1,  G) uniformly in t. 
The reason fo r  taking H<=h 6/7 is that  sup G/G'=HZ<=h 1~/7 then, so we obtain 
a good calculus in this metric. Now F(t, .)~ S(H -~, G) uniformly in t means that  

IFl~ = (h/H)J/ZlFI} <= CjH -~, 
that is, 

IFI~ <-- C.i(H/h)J/2-~h-L 

Since we want H~=h, this condition is automatically fulfilled if j ~ 2 ,  so it suf- 
rices that  

IFI ~ H -1 
and 

IFI~ <= (hH)-I/L 
I f  we choose 

(3./) H -~ = max(h  -e/7, sup IFI, (sup IFl~)2h) 

we find that F is a bounded function of  t with values in S(H -1, G) where 
H Z = s u p  GIG '~ satisfies h<-H<=h ~/7. This metric has the property that, if  F does 
not change sign for fixed w, we can localize with respect to G so that  each localiza- 
tion of  F either can be factored, is semibounded or is of  lower order. 

Proposition 3.1. Assume that g=m'go  & uniformly a temperate, and that 
l<=m<-ho ~, which implies sup g/g~=h2<=l. Assume that F has fixed bounds in 
S(h-l ,g)  for all t~R, and that [F[<=h -1 and IF[~<=h -~. Let G=Hg/h, where 
H is defined by (3.1). Then G is uniformly ~r temperate and sup G/G~=H 2<- 1. 

Proof. I t  is clear that  H<=h6/7<= 1. Now G=Hg/h=Hgo/h o is conformal  to 

g o  and l<=h/ho<=H/ho<=ho 1, so Lemma 2.6 gives that  it suffices to prove that  G is 
uniformly slowly varying. Since g<=G we find that  h is G continuous, so it remains 

to prove that H is G continuous. 
Let hl=h(wO and hx/H(wx)=r. Choose or thonormal  coordinates z with 

respect to gwl with the origin at wl and let f( t ,  z)=hlF(t,  w). Since F(t, .) is 
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uniformly bounded in S(h -~, g), we find t h a t f i s  a bounded function of  t with values 
in C=(U), where U={zCR2": Iz[<C}. The neighborhood {z: [zl<cr at2} in R "  
corresponds to the G neighborhood {wE T ' R " :  Gwl(w-wl)<c 2} of  w 1, so it suffices 
to prove that  

E(z) = max (h~/7, sup If(t, z)[, sup ]grad, f ( t ,  z)[ 2) 

only varies with a fixed factor when Iz]<cr ~/2. We need the following elementary 

Lemma 3.2. Assume that fE C ~ (R e") has a fixed bound on the second derivatives 
when ]zl<C. I f  

max ([f(0)[, ]grad f(0)[ 2) = s ~ r ~ C ' ,  

then it follows that there exist el and C1 such that 

when ]zI<cl rl12, and 

max(If(z)[ ,  [gradf(z)[ 2) ~ Car 

max (If(z)[, [gradf(z)l ~) => s/C1 
when tzl <c~s lz2. 

Proof of Lemma 3.2. The upper bound is an immediate consequence of  Taylor's 
formula,  since 

[f(z)[ --<= ]f(0)[ + [(grad f(0),  z)[ + C [zl 2 <= Cx r 
and 

[gradf(z)] <--[grad f(0)] +2Clz]  <= C~r ~/2 

if  [z]<--Cx ral2. To get the lower bound  we observe that  in the case s = [ f ( 0 ) [ =  > 
[gradf(0)l 2, we obtain 

]f(z)l => If(0)[-[(grad f(0), z ) [ -  C I z[ 2 => s/C~ 

if  [z I ~cas ~12. The corresponding argument  works in the case s =  [grad f(0)[ 2, which 
proves the lemma. 

End of proof of Proposition 3.1. Since 

max (If(t, 0)[, lgradzf(t,  0)12) <-- E(0) = r for all t, 

Lemma 3.2 gives that  

max(I f ( t ,  z)[, [g radJ ( t ,  z)[ 2) <= Clr 

if Izl<-clr 12. Now hl/7<=r so we obtain E(z)<-CxE(O). 
To get the lower bound,  we note that  in the case r=h~/7 it follows that  E(z)>_ - 

hX/7=E(O). In the case 

max (sup [f(t, 0)[, sup Igrad~ f( t ,  0)[ 2) = r 
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there exists toUR such that 

max (If(to, 0)1, IgradJ(to,  0)13) => r/2. 

Lemma 3.2 then gives 

r/C <= max (If(to, z)l, Igrad, f(to, z)[ ~) <= E(z) 

when Izl<=cr ~12, which gives the lower bound and finishes the proof of  Proposi- 
tion 3.1. 

Proposition 3.3. The assumptions in Proposition 3.1 imply that F is a bounded 
function of t~R with values in S(H -~, G). I f  F is real and does not change sign 

is small enough, then in each G neighborhood I2Wo,~= 
we have one of  the following cases: 

for fixed w, and 6 > 0  
((t, w): Gwo(W-Wo)<6 } 
i) h6/V/C~H~h6/7, 

ii) F has constant sign, 
iii) F(t, w)=a(t, w)b(w), where O<=aCC ~176 is a uniformly bounded function o f t  
with values in S(1, G), b has fixed bounds in S(H-1, G) and Hlbl~>-c>O in 

Proof. If  H-l(wo)=h-6/7(Wo) then we get the case i) for sufficiently small 
6, because G varies slowly and h is G continuous. Thus we may assume that 

(3.2) H -1 -- max(sup IFh (sup IFl~)2h) when w -- Wo. 

Choose Gw0 orthonormal coordinates z with the origin at w 0. Let f(t ,  z)=  
HoF(t, w), where Ho=H(wo). Then f is a bounded function of  t with values in 
C~(U), U={z:  Iz]<C}. Now, (3.2)implies 

(3.3) 1 = max (sup If(t, 0)l, sup [gradzf(t, 0)12). 

If  l=sup t  [f(t, 0)l, then we can find t0ER such that ]f(to, O)[>=l/2. Since 
f is real-valued and f(to, ") has fixed bounds in C~(U), we can find 6 so small 
that either f ( t  o, z )>0  or f ( t  o, z)<0  when [z]<6. Now f does not change sign 
for fixed z, which gives us the case ii). 

If  1 =supt Igradzf(t, 0)12, we can find to such that ]gradj( to,  0)[_->1/2. Since 
f(to, .) has fixed bounds in C~(U), the implicit function theorem gives that we 
can choose f(to, z)---(1 as a local coordinate when ]z[<26. Then f must have 
the same sign as (1, since f d o e s  not change sign for fixed z, thus f = 0  when (1--0. 
Taylor's formula gives 

(3.4) f(t ,  z) = e(t, z)(1 when Izl < 26, 

where e=>0 is a bounded function of t with values in C=(U1), Ul={z: Izl<26}. 
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If  we differentiate the equation (3.4) we find that DkeEkC~(UI) for all k. Choose 
a Cut-off function ZECo(U 0 such that X=>0 and g (z )= l  when lzl<6. Let 
a(t, w)=x(z )e ( t ,  z) in Ut and equal to 0 otherwise, then we obtain the case iii) 
with b (w)= F(to, w). This completes the proof of Proposition 3.3. 

4. Estimates for the localized operators 

We shall now state and prove the estimates which will be used in the proof 
of Proposition 2.7. The estimates are adapted to the localizations of the operator 
corresponding to the Beals--Fefferman metric defined in Section 3. Therefore we 
shall use symbols with values in f2 and ~r ~, r The results are refinements 
of the estimates in H6rmander [3], including the estimate of Beals and Fefferman 
(Proposition 4.3). 

Assume that G is a a temperate metric in T*R n, such that sup G/G~ 
To begin with we do not make any further restrictions on G. In what follows, the 
estimates will not depend on the metric G, as long as G fulfills the requirements 
stated and is uniformly a temperate. 

Proposition 4.1. Assume that O<_-a(x ', ~')E S(H -6/5, G). Then there exists a 
constant C such that 

(4.1) (aWu, u) >=-CIluJI 2, 
when uE 5r (R"). 

Proof. By regularizing we may assume that HE S(H,  G)" Put 

b = aH1/SE S ( H  -1, G). 

Then b=>0, so Theorem 6.2 in [4] gives bl(x' , ~ ' )ES(H 1/~, G) such that 

(4.2) (bW u, u) ~ (b'~ u, u) 

when uE~(R"). Put v=e~u,  where c = H  -x/l~ Since (cW).b'~C ' has symbol in 
S(1, G) we obtain 

(4.3) ](b~v, v)l ~-- C011ulI ~. 

The calculus gives that the symbol for (cW)~bWc '~ is in S~I, G) apart from 
the first terms given by 

bc2 +(1/2i)c {b, c}+ l/2i {c, be} = a 

so we obtain (c'~).b'~c'~=aW+R'~, where RES(I,  G). This implies 

(4.4) (aW u, u) = (bW v, v ) - ( i W  u, u) >-- --Clllull z 

when uE~(R"),  which proves the proposition. 
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In what follows we assume, as in Section 3, that G=Hg/h, where h~=H<=h ~17, 
g = m . g  o is uniformly a temperate and 1-<m(~')~hol(~ ') is independent of the 
x' variables. Since 1 ~h-6/7<-H -1, Lemma 2.6 gives that h -el7, hence h, is a weight 
for G, for it is obviously G continuous. 

For convenience, we change notations and put 

(4.5) It ul[(~) = ((27z)-"-1f l a (~)1 ' h (4')- 2~ d{)l:2, 

when uESe(R'+~). This norm corresponds to the norm I1. ll<~) in Section 2. Since 
S(H ~, G) is uniformly bounded in S(h s'~17, G) when s is positive, we find that 

(4.6) [I RWult <- fit ull~-h. 6/7) 

if RES('H', G) and s~0.  As noted in H6rmander [4, p. 393] we also have the 
estimate (4.6) when R takes values in a Hilbert space. For example, 

Z [IRTull 2 <-- ClIull~-,) 

when {Rj}E S(h ~, G) with values in t '2. It is easy to see that 

I(RWu, u)l ~- Cllull~,/2~ 
when RE S(h-',  G). In fact, by choosing cE S(h "12, g), independent of the x" vari- 
ables such that c(~')~=h~/2(U) we obtain 

= R u, < -  

Let G~=H-~IeG and H~=sup GJG[=(HSI6)2<=I. It is clear that G, is uni- 
formly slowly varying, for G~>=G. Since G~ is conformal to the homogeneous 
metric go and go~_Ga<=G[, Lemma 2.6 gives that G1 is uniformly a temperate. 

The purpose of the metric G~ is that, since S(H -a, G~)=S(H[ 6In, G~), we may 
localize a symbol in S(H -~, G) with symbols in S(1, G1) and then apply Proposi- 
tion 4.1 if the localized symbol is non-negative. 

Proposition 4.2. Assume that P (x, D ) = Do + iq W ( x, D') + rW (x, D'), where q and 
rEC~(R ~"+1) are bounded functions of x0ER with values in S(H -1, G) and S(1, G) 
respectively, and q is real. Agsume that e>0  and {q~}ES(h -~, Gx) is real with 
values in gz, where GI=H-1/eG. I f  one can find Cj uniformly bounded in S(1, G1), 
such that r  "on supp ~0j and Cjq>=O, then for sufficiently small ~ and 6 we 
obtain that 

(4.7) ~ IIq~yull ~ <= C6 Z 11~oT Pull2 + Cllul[~-x/4), 

if UE~(R n+a) has support where Ix0[-<6. 

Proof We shall regard {q}, {r} and {r as symbols with diagonal elements 
in s 2, fz) as values, and {q)j} as having values in ~q,(g2, C) or 5e(C, g2). In 
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what follows, we shall often identify s C) and ~e(C, r with t "2. For example, 
when computing the symbol of the commutator {[ff;, ~o}~]}, one term has values 
in ~ ( C ,  f2) and the other in ~ ( t% C) but  we shall consider the symbol as having 
values in E 2. 

Now, the estimate (4.7) is stable for bounded perturbations so it suffices to 
prove the case r=0 .  In fact, if we have the estimate (4.7) for P'---Do+iq ~' then 
we obtain 

Z ll~~ 2 <-- 6 c z  1l~oyP' ul12+ Cllull~-a/4) 
---- a c ' ( z  l]~07Pull2+ Z II~0yullZ+ ~ IlRyuLl2)+fl[ull~_l/,). 

Here Ry=[qg} ~, r ~] so {Rj}~ S(Hlh -~, G O c= S(h5/7-~, G1), which implies that 

Z IIRTuII ~ ~- Cllull~-v,) 

if e is small enough. For small 6 we obtain the estimate for the perturbated operator. 
Thus we assume that P(x, D) =Do + iq TM (x, D') in what follows. Put ~j  (x, {') = 

exp (k.xo)Cpj(x', ~'). Then {~j}CS(h -~, G,) uniformly when IXo]<=l/k. Since we 
use the calculus in R", there is no difficulty in defining ~ = e x p  (k.  xo)q~} ~. 

In what follows, we assume that uCre(R "+~) has support where IXol<-l/k. 
Now we have 

(~7eu, ~7u) = ([~7, P]u, ,~7u)+(e~Tu, ~';u), 
which implies that 

(4.8) I m ( ~ y e u ,  #y'u) = Re ([~y', q~']u, #7u)+Im([q~y, Do]u, #Tu) 

+(qW~Tu, ~7u), 
because q(x, ~') is real, which makes (q'%, v) real. 

Now O<-~kjqCS(H -1, GO=S(H16/5, G1) so Proposition 4.1 gives 

((~/jq)Wv, V) ~ -Cl lv ] [  ~ when v ~ ( R n + l ) .  

The calculus gives that if -w . . . .  Rj=(~kjq) ~ i - q  ~j,  then  {Rj}~S(H~H-Xh -e, G1) ~ 
S(h 4/r-`, G1), since H~H-I=H4/8<=h a/7. Thus we get 

(4.9) ~(q~qbyu, q~,fu)~_C~_,[i w = -w ~jull - -Z(Rju ,  ~7u) 
=> - c" ( z  ll ~'; ull2 + llull~ -v,~) 

if e is small enough. 
The calculus with symbols with values in g= and s t,2) gives that the symbol 

~w of  _,Y (~}~), [ j ,  qW] is equal to - i  ~ '  ~ j  { ~ ,  q} apart from an error term in 
S(h 417-2~, GI). (Here {~j, q} is the Poisson bracket of  ~ j  and q.) Since this symbol 
is imaginary, we find that 

(4.10) Re ~ ([~y', qW]u, q~yu) = (R~'u, u) 
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where 

(4.11) 

if e is 

(4.12) 
Now, 

(4.13) 

RE S(h 4/7-2", G~). As mentioned before, this implies 

I(R~u, u)l <- c [lull~-l/~) 
small enough. Since [~)~, Do] =ik~7, we find that 

]m ([~7, Do]u, ~T u) :- kfl~y ufl 2. 
(4.8)--(4.12) imply 

( k - C ' - 1 )  Z I[~Tu[I 2 ~ zS [l~Teu[12+C"llul[~-i/4) 

if 8 is small enough and u=0  when IXo]>l/k. 
We have ~f(x,D')=exp(k.xo)gO~f(x',D ") so if k is large enough and 

u66a(R "+1) has support where txo[<= 1/k=6, then we get the estimate (4.7). This 
completes the proof of the proposition. 

Note that, by writing - x  0 instead of x0, we get the same estimate if ~bjq is 
non-positive instead of non-negative. 

Proposition 4.3. Assume that 

P(x, D) = Do+iqW(x, D')+rW(x, D') 

where q(x, 4") and r(x, ~')EC~(R2n+x), q(x, ~') is real and does not change sign 
for fixed (x', ~'), and for some constants a and b we have 

[D~x,D~,q[ <: C~,aal-I~l b~-I~l, 

IDx,De,r I <-- C~,pa-I~l b-Igl, 
where a. b >= 1. 

Then it follows that for sufficiently small 6 we have the estimate 

(4.14) [lull <- 6Co[leul[ 

/f uCSa(R"+X) and u=0  where Ixol>~, 

Proof. As in the proof of Proposition 4.2, the estimate (4.14) is stable for 
bounded perturbations. Since the theorem of Calder6n and Vaillancourt gives that 
r ~ is bounded in L 2, it suffices to prove the proposition when r=0.  By making a 
linear symplectic transformation, we can assume that a = l ,  and then the proof 
is given by Beals and Fefferman [1]. 

5. Uniform local solvability of the Hamilton operator 

When it is possible to factor the imaginary part of the principal symbol, that 
is, case iii) in Proposition 3.3, then in order to localize the estimate of Beals-- 
Fefferman (Proposition 4.3) we have to construct operators which approximately 
commute with P. This means that the corresponding symbol m must satisfy the 
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equation 

(5.1) H p m = O  when p = 0 ,  

where Hp is the Hamilton field of the principal symbol p. In the case 

p(x, 3) = ~o+ia(x, ~')b(x', ~'), (Xo, x')ER "+1, 

where a(x,~')>=O, we obtain Hp=Oo+iaHb when b=0.  We shall construct 
symbols m satisfying (5.1) when b=O. It will then be possible to estimate the cor- 
responding commutator by cutting off near b-l(0) and using Proposition 4.2. 

Since the purpose is to construct symbols, it is important to obtain non-trivial 
solutions to (5.1) which are defined in a fixed neighborhood of the origin and have 
fixed bounds on every x', 3' derivative (in suitable coordinates). H6rmander [3, 
Section 4] has proved the existence of m satisfying (5.1) when b=0.  In this section, 
we are going to make his results uniform. 

Let B = (R k) be the Fr6chet space of functions in C = (R k) with uniform bound 
in R k for each derivative. 

Definition 5.1. We say that QE W if 

Qu = Oou+ia(x)Olu 

where O<=a(x)EC=(R k+l) and {a(x 0, .), x0ER} is bounded in B~(Rk). A set M i n  
W is called bounded if we have uniform bounds in B=(R k) on {a(x0, .), x0ER} 
when 00 + ia01 = QE M. 

In the case iii) in Proposition 3.3, it is clear that, in suitable G orthonormal 
coordinates, the Hamilton field on the bicharacteristics is bounded in W. 

Since we are going to construct solutions which generate the analytic structure 
in the (reduced) bicharacteristics (see H6rmander [3, Section 4]) it is necessary to 
solve the inhomogeneous equation. 

Proposition 5.2. For each bounded set M in W, we can find a neighborhood f2 
of the origin in R k+l, such that for each bounded set F1 in B ~ (R k) there exists a bounded 
set F2 in B~(Rk), such that i f  QCM, fEC=(R k+l) and f(xo, ")EF1 when xoER, 
then the equation 

Qu = f in (2, 

has a solution uEC=(R k+a) with the property that U(Xo, -)EF2 when x0ER. 

The proposition will be proved by using suitable a priori estimates and the 
Hahn--Banach theorem. To begin with we need the following L ~ estimate. 
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/_,emma 5.3. For each bounded set M in W there exists 6 >0 and a neighborhood 
U of the origin in R k such that 

(5.2) Ilull <---- foliO*nil 
when QEM and u E C o ( ( - 6 , 6 ) X U  ). 

Proof of Lemma 5.3. First we observe that if x"=(x~ .. . . .  Xk) then 

{a(x0, -, x"), (x0, x")ER k} 

is uniformly bounded in B=(R) when Q=Oo+iaO~s Thus it suffices to prove 
the estimate (5.2) when k =  1. In that case we put 

Ilu][{,) = (27c) -~ {f 1~({)12(1 + {~)s d{)l/] 
if uE 6e (R=). 

Choose q~j(t)ECO~ j = 0 ,  1, 2, such that z ~ q ~ = l ,  ~pj has support when 
(-1)Jt>=l/2, j#O, and [tl<=l in suppq~ o. It is obvious that q~j({,)ES(1, go) , 
where go is the following metric in T ' R ,  

go,~,,r z) = It]2+ IvlZ/(1 + ~ ) .  
It follows that 

(5.3) 

and 

(5.4) 

if uE C o (R~). 

Z 11~Tull ~ CIlull ~ c ' ( Z  11~07ull +llull~_l)) 

II~o~ull <= cII u Ilk-~) 

Now we note that iQ* fulfills the requirements on P in the case n = 1 in Proposi- 
tion 4.2. In addition, we have uniform bounds on the symbols when QEM, because 
a(xo, .) is uniformly bounded in B=(R) then. Since cpj(~l) has support when 
(-1)J~1->1/2, j r  Proposition 4.2 gives, if 6 > 0  is small enough, that 

(5.5) ll~oyuII -<- Cd(ll~oTQ*ull +11u11{-1/4)) 

if uESe(R 2) and u = 0  where ]x0[>6. 
If  we combine (5.3)--(5.5), we obtain 

(5.6) Ilull ~- CL(lla*ull +llull{-1/4)) 

if uE6a(R z) and u = 0  where Ix0[>6. Now, if c > 0  is small enough, we have 

(5.7) Ilull{-~/a) ~ (2c~) -lllull, 

if uECo(R 2) has support where Ix~I<c. In fact, 

(llull{-1/a)) 2 = f F(xI-- yl)u(Xo, x1)U(Xo, Ya) dxo dx 1 dyl, 
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where F(xOCL~o ~ (R) is the inverse Fourier transform of (1 + ~ ) - 1 / 4 .  If  we choose 
c small enough, we get 

f'~ -2~ If(t)]  dt <- (2C~) -z, 

which proves (5.7). Now, by combining (5.6) and (5.7) we obtain (5.2), which proves 
Lemma 5.3. 

Proof of Proposition 5.2. We shall use the H~s)-norms I]" I]~s), which were 
defined in Section 2. Now it is clear that, after multiplication with a suitable cut- 
off function, we may assume t h a t f h a s  compact support. Since {f(x0, "), x0~R} 
is contained in F1, which is bounded in B=(Rk), we find tha t fbe longs  to a bounded 
set EC=H~)=c~H~,), that is, 

(5.8) Ilflf~) <= C;, sER. 

Now, Lemma 5.3 gives 5>0  and a neighborhood U of the origin in R k, 
such that 

(5.9) llull -<- CollQ*ull, when u~Cg'((-5, 5)•  

Choose an open neighborhood V of  the origin in R k, such that V c  U, and choose 
a fundamental decreasing system of neighborhoods of V in U, 

V C . . .  C~C U 2 ~ Q  U 1 Q~. U 0 = U. 

Let 
= / / I N  (1 = 

and m0=E0=l .  By induction we are going to prove that we can choose ejq(O, 1), 
such that for every N 

(5.10) Ilf[I,,, ~ ][m~fl] <= Co/ /~ (1  +2-J),  when fEE, 
and 

(5.11) liutl~, = llE~ull <= Co//~(1 +2-J)l lO*ull~,  

when uECo ((-6,  5)• Us). 
When N = 0  these estimates follow from (5.8) and (5.9). Now, if (5.10) is ful- 

filled for some N, then 
2 82 t 2 llfilE,,+l <-- lifIl,,,,+ N+x ([ifl[ (N+~)) 

-J  ( c; ,  =C0 +2  ) +  eN+l +1) 2 , 

so by choosing s/~+l small enough we obtain (5.10) with N replaced by N +  1. To 
prove (5.11) we need the following lemma which will be proved later in this section. 

Lemma 5.4. Assume that for some N 

Ilull~ <= KNIIQ*ulIE,,, when uEC~((-5, 5)XUN). 
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Then.for every 0 > 0  there exists e>O, such that 

IlullE~§ -<- KN(I+~)IIQ*ulIE~,+,, 
when uCCo((--6, fi)XUN+I) , if es+l<=e. 

End of proof of Proposition 5.2. By induction we obtain ejE(0, 1), such that 
(5.10) and (5.11) are fulfilled for every N. With this choice of ej, let FC=H[~) be 
the Banach space with the following norm: 

Ilull~ = (2=)-k-lfla(~)12m(~')2d~, 
where 

m2(~ ') = H 7  (1 +e~l~'12), 

which is then convergent for all 4'- Then F is the dual space of Co(R TM) with 
the norm 

Ilvll~/m = (2n) -k-1 f 10(r -2 d~. 

Letting N ~ o  in (5.10) and (5.11) we find 

(5.12) Ilfllm <= eCg, when f~E, 
and 

(5.13) Ilvllv~--< eCollO*vllx/~, when vCCg~ 

where 0 = ( - ( 5 ,  6)X V. 
If  we apply the Hahn--Banach theorem to the mapping 

L)a*v ~(v , f )  

where L={Q*v, vCCo(O)}, we get ug.F such that 

(5.14) Ilullm <= eCollfllm <= e~CoC~, 
and 

(5.15) Qu = J in f2. 

This implies that u belongs to a bounded set in H ~ ) ,  since 

Ilull}N) <- (~a...~N)-~llull~, N >  0. 

The equation (5.15) gives that Oou has fixed bounds in H~oo)(f2), that is, locally in f2. 
It is then clear that we get fixed bounds for each x' derivative of u locally in f2. 
I f  we differentiate the equation (5.15), we successively find that each derivative of 
u is in L~(f2), which implies that uEC=(f2). If  we multiply u with a suitable cut- 
off function and choose a smaller f2, we get uCCO~ k+~) satisfying (5.15), such 
that U(Xo, .)~F2, a fixed bounded set in B~(Rk), when x0~R. This completes 
the proof of  Proposition 5.2. 
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Proof of Lemma 5.4. We are going to use a metric g~ in T* R k, which depends 
on the parameter 5, 

g,(t, z) = ltl2+e~lvl~/(l+e~lC'l 2) at (x', ~'). 

We assume that 0<5<= 1. It is then easy to see that g, is uniformly a temperate. 
We find 

supgJgy = h~ = e2/(l+e21ff'lZ) ~ e 2 at (x', ~'). 

It is easy to see that h e is uniformly cr, g~ temperate when e~7,  which implies that 
EN=H~ (h~Jej) is a weight for gl. 

Choose O(x')6Co(UN)suchthat 0<_-0<_-I and 0 ( x ' ) = l  when x'CUN+ 1. Let 

F~(~') = (1 +~21~'12)-~/2 = h,(r 

and v=OF~u, when u~Co((-6, 5)XUN+~). Then vECo((-5, 6)XUN), and, if 
EN+I=EN'F~, 

Eftv = EY[O, Fy]u+Eft+~u, 

since 0----I on suppu. The symbol of [0, F~] is bounded in S(h~F~,g~), uni- 
formly in 5, which implies that the symbol of E~v[0, ~ -i  F~](E~+I) is bounded in 
S(h~, g~) uniformly with respect to 5. Since h~<_-~ it follows that 

(5.16) Ilu]I~N+~ ~ I[vll~,+~Cl[u[]eN+~ when ~ ~ 1. 

Since vECo((-6, 5)• UN) the hypothesis of the lemma gives 

(5.17) IlvllE,, <-- gNlla*vl[~. 

We are now going to estimate the right-hand side of  (5.17). Since 0--1 on supp u 
we f i n d  

(5.18) E~ Q* v = Eft Q*[O, F2'l u + Eft [Q*, F2'] u + Eft+ lQ* u. 

The first term on the right-hand side of (5.18) is 

(5.19) EftQ*[O, F~] u = Eft [Q*, [0, F~']] u +Ef t  [~k, F~] Q*u. 

Since the symbol of [0, F~'] is uniformly bounded in S(h~F,, g,), and ~1 ~ S(he -1, gt~) 
uniformly in 5, we obtain that the symbol of E~ [Q*, [0, F~']] is uniformly bounded 
in S(h, EN+I, gl). This implies 

(5.20) [IEft[Q *, to,  CltuN  + . 

As before, we find 

(5.21) [lEft[0, FU] Q*ul[ <= eC [IQ*ulIE,,+~. 

The second term on the right-hand side of (5.18) is 

(5.22) E~v[Q*, r~]u = [Eft, [Q*, r~l]  u+[Q*, F~'I(FZ~)WE~+lu. 
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(5 .27)  

If 5<_-1 

The symbol of [Q*, F~] is in S(h~F,, g~) apart from the first term, which is 
i{a(x), F,(r162 ~')r where b~ S(h~F,, g,) uniformly in 5 and x0. Then 
the symbol of 

[E l ,  [Q*, FY]]-  [El, bT] D: 

is uniformly bounded in S(h~EN+:, gl) when 5<_ -1 .  Since the symbol of [E~r b~] 
is uniformly bounded in S(h:ENh~Fr g:), the symbol of [E~, [Q*, F~]] is uni- 
formly bounded in S(h, EN+I, g:), which implies 

(5.23) [][Eft, [O*, Fr]]u!l <= 5C[[uIIE~,+,. 

To estimate the second term on the right-hand side of (5.22) we need the following 

Lemma 5.5. Assume that M is a bounded set in W. Then 

(5.24) II[Q*, F~]( Fz:)W vI[ <- Cd/4(llQ* vll +llvll) 

{f VESa(Rk+I), QE M and F,(r162 -:/~ 

End of proof of Lemma 5.4. The estimate (5.24) implies 

(5.25) II[a*, F~](F;-:)~Ef+lU[I <- C" d/4([IQ* u[IEN§ +IlulIEN+O 

since the symbol of the commutator [Q*, E~+I] is uniformly bounded in S(EN+ :, gl)" 
If we combine the estimates above, we obtain for some constant C 

(5.26) I[a* vll~,, <-- (1 + Cd/a) Ila* uU ~ +,+ Cd/4 I[u [l~,+~- 

Together with (5.16) and (5.17), this implies 

I[uIIE~,+, <---- KN(I+Cd/4)IIQ*uIIEN+~+C'#alIulIE,,+~. 

is sufficiently small, then 

IIuIIEN+: <-- KN(1 +C"d/4)IIa* ullE,,+,, 

which proves Lemma 5.4. 

Proof of Lemma 5.5. We shall use the norms 

Ilull(s.o = II(hFS)Wull, s~R. 

flulI(-s,o <-- 5~llull, if s ~ 0. 

Then we have 

We shall prove the estimate 

(5,28) U[Q*, Fy](F;-1)Wv[I <= c([IQ* vL[(-:/,,o + [IvL[(-:/,,~)) 

when v~SP(Rk+l). This will give us (5.24). 
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The symbol of  [Q*, FeW](Fe-1) TM is in S(h~, g,) apart from the first term, which is 

A~(x, {') = i{a(x), V,({')}{x/r~(~') 

= i ~ k  Oxk a (x) ~k ~1 h~ (3'). 
Thus, we find 

(5.29) [I[Q*, F~l(FT1)wvl[ ~ IIAwvll +C[Ivl](-1,~). 

Since O<=a~C and lc)~,alNC, it follows that 

[grad al ~ 2C1/2a 1/2. 

We are going to prove (5.28) by estimating an approximate square root of  a(x)~a. 
The motivation for this is that, since 

Re (Q'u, u) = - (aDlu ,  u)--(1/2)((Dla)u, u) 
we obtain 

(5.30) [(aOlu, u)l <- C(llQ* ullZ +[lul]Z). 

We can choose Oj(r h7a/~g,), j = 0 ,  1, 2, such that ~ ( r  ~,j has 
support where (-1)J~>-_c.h[ 3/4 and ~0 has support where ]~l~_C.hU ~/a. In 
fact, with ~pjEC=(R) as in the proof  of  Lemma 5.3, one may use Oj(~ ')= 
q~j(~lh~/'(~')). It is easy to see that h~-~/2g, is uniformly a temperate when 0 < e =  < 1. 
Note that h~l/2g,=h[l/2ldx'12+h~/2ld~'12 so the quotient with the dual metric is 
(h~/2) 2. 

We now partition the symbol 

A7 = Z (A~O~)". 

It is clear that ~tp~(~')CS(h~3/4, h-1/*~,~ since ]~a]<-C.h~ 3/4 in suppr  and 
8 O ~ 1 ,  

differentiation cannot lead to loss of  more than one such favorable factor. Thus, 
A ,/, 2c vrt,1/4 h-~/~, ~ which implies 

(5.31) II(A~0o~)~vl[ <- C[Ivll~-v,,~). 

Now we factor A , ~  when j # 0 .  We have 

Bj(~') = ( ( -  1)J ~l)l/2r S(h~ a/~, h~l/Zge) 

since (-1)J~>=ch~-a/~>=c in s u p p r  Let 

Cj,~(~') = Bj(~')~kh~,(~')~S(hl/~, hTa/293, j r O. 
Then 

i Z k  (Oxka)aj Cj, k = (-- 1)JA~O 2, 

a ~' TM ( I~A ~/~ and the symbol of  i~k(Ox~ )Bi Cj, k is equal to , - -  , ,~ j ,  j # 0 ,  apart from 
terms in S(h~/~, h-~ll2g,). Thus 

(5.32) [{ATvll <-- X j , o  I[(O~k a) B~'C~,~V[[ + C[[vfl(-x/4, ~). 
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Now, we have [Oxka]<=2Ca/2a 112, and 

[]al/2 BTu[I 2 = (aB'f u, B~ u) = ([B~', a]B~ u, u) 

+ ( -  1) j (([a, 071011[17 u, u) + (aO 1 ip7 u, ~ly u)), 

where the symbols of  [By, a] and [a, •y] are in S(1, h[l/2g,) and S(h~ 12, h~-ll2g,) 
respectively. If  we use the estimate (5.30) we find 

[]al/~ B}~ ull <= c(]lQ* ~'y ull + llullo/4,,)) 

< C'(llQ*ull +llull(,/4 )) 

since the commutator [Q*, ~Y] is in S(1, h~-a/2g~) apart from the first term, which 
is i (a, ~'j}r S(h~ -1/', -1/3 h~ g~). This implies 

(5.33) [l(O~k a) BTC~,kV][ <= C([]Q*C~,kvll + ]1C~,kVl] o/4,~)) 

C'(llQ*vll(_l/~,~)+llvll(_l/~,o). 
In fact, Cj kE S(h~ I~, -a/2 �9 h~ g~) so the symbol of  the commutator [Q*, C~,j is in 
S(h~/L -~/~ h~ g~) apart from the first term, which is i{a, Cj, k}~l~S(h~/4, -112 h~ g~). 

Combining (5.29), (5.32) and (5.33), we get (5.28), which proves Lemma 5.5. 
We shall now state the result, which we are going to use in later sections. 

Corollary 5.6. For each bounded set M in W, we can f ind a neighborhood f2 
of  the origin in R k+l and a boundedset F in B= (RR), so that i f  QE M then there exigts 
a solution uC C ~ (R k+l) to the equation 

(5.34) Qu = Oou+ia01 u = 0 in f2, 

such that 01u=exp (w) in 12, where lw[<n/6, and U(Xo, . )EF  for  all Xo. We 
also get a f ixed bound on grad u and grad (01 u) in f2. 

Proof  First we note that if u solves (5.34) and 01u=exp (w), where Iw]<n/6, 
then we get a fixed bound on Oou in f2. If  we differentiate the equation (5.34) with 
respect to x~, letting v=Olu, then we get the equation 

(5.35) Qv = Oov+iaOlv = - i ( 0 ! a ) v  in f2, 

which we want to solve with v=exp  (w)~C=(Rk+I), where [wI<zt/6 in f2 and 
w(xo, .)  is contained in a bounded set in B=(Rk). As before, we also get a bound 
on O0 v then. 

If  this is possible, then by integrating (5.35) with respect to xl in a smaller neigh- 
borhood g2 putting 

u(x) = f o  V(Xo, t, x'Odt, 

we get 
Qu = Oou+iaOlu = f in 12, 
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where f (x)=i(av)(xo,  O,x")EC=(R k+l) is independent of  xl ,  and 
bounded in B=(R k) when x0ER. Then 

X 0 

u (x ) - f~  f(t, x'3 at, 

f(xo, " ) is 

multiplied by a suitable cut-off function, is a solution to (5.34) with the desired pro- 
perties if we take a smaller f2. 

Thus, it suffices to solve (5.35) with v =exp (w). Then we obtain the following 
equation for w 

(5.36) Qw = Oow+iaOlw = - i 0 1 a  in O, 

and we want to find a solution wE C = (Rk+a), such that Iw[<zt/6 in f2 and w(x0, .) 
is contained in a bounded set in B =(Rk). 

Now, since QCM, O~a(xo,, .) is contained in a bounded set in B~(Rk), so 
Proposition 5.2 gives a neighborhood f2 of  the origin in R k+l and a solution 
w(x)CC=(R k+~) to (5.36) such that w(xo, .)  is contained in a bounded set in 
B = (Rk). As before, we get a bound on grad w in t2. By subtracting w(0) and taking 
a smaller t'2, we obtain Iwl<~/6 in s Then v=exp  (w) is a solution to (5.35) 
with the desired properties. This completes the proof  of  Corollary 5.6. 

6. The construction of a local weight function 

In this section, we continue the work in Section 5 to construct special solutions 
to the equation 

(6.1) Qv = Oov+ iaOlv = 0 

when Q is in a bounded set in W (see Definition 5.1). According to H6rmander 
[3, Theorem 4.6], such a solution must be an analytic function of  the solution u to 
(6.1) given by Corollary 5.6. Thus, we have to construct analytic functions with 

certain properties in varying domains. 

Proposition 6.1. For each bounded set M in W and constants e, c > 0  there 
exist positive constants 6, ~, C~, Co<C1<C2<C, a neighborhood 

Q = { x E R  ~+1" lXo] < ~, Ixll < c~, [x"l < ~}  

of the origin, and for each QEM a solution rECk(f2) to the equation 

Qv = 3ov+iaOlv = 0 in f2, 
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such that 
(6.2) 

(6.3) 

(6.4) 

and 

(6.6) 

(6.7) 

(6.8) 

and 
(6.9) 

Rev>=0 in I2, 

Rev ~ ~ in {xEg2: Ix1[ ~ Co}, 

Rev ~ 1 in {xEI2: Ixll -> cx}, 

[D~f[ <= Ck in Nx(o~) for all k >= O. 

Proof that Proposition 6.2 implies Proposition 6.1. Let v(x)=f(u(x)). Then v 
is defined in f2 if 0 is small enough. Since we have a fixed bound on grad u we can 
choose 0 independent on QEM so that u(x)ENx(o~c,) when xE~2, u(x)ENx(%o) 
if xEf2 and [xl]-<c0 and u(x)ENa(c%~\% ) if  xEf2 and lxl]>=cl. Then (6.6)-- 
(6.9) imply (6.2)--(6.5), which proves that Proposition 6.2 implies Proposition 6.1. 

(6.5) ID~,vl <= C~ in 12 for all ~, 

which implies that IDov]<=C in f2. 

When we prove Proposition 6.1 it is no restriction to assume that f2 is con- 
tained in the neighborhood given by Corollary 5.6. Thus we may assume that 
for each QEM we can find uEC~(R k+l) satisfying (6.1) in f2, such that 01u= 
exp (w) in O, where ]w[<zr/6, and we have a fixed bound for each x" derivative 
of u. We choose ~ c  so small that u is defined in the set 

{xERk+l: max (Ix01, Ix~l, Ix"I) <-- ~}. 

When QEM we take this solution u=u e to (6.1) and let 

,o~ -- (u (x )EC:  Ixol -< a, Ix1[ <- d and x" = 0}, 

which is defined when 6 and d are less than ,x. When K ~  C we denote by N a (K) 
the set of  points in C having euclidean distance to K, dist (z, K), less than 2. 

We shall prove Proposition 6.1 by constructing the solution v when x " = 0  
and then perturb with the parameters x". As indicated before we shall do this by 
constructing analytic functions in N a (coo). 

Proposition 6.2. For each bounded set M in W and constant e>0  there exist 
positive constants 6<~, 2, Ck and co<cl<c2<x such that for each QEM there 
exists an analytic function f(z) in Na (coc~) such that 

R e f ~ 0  in N~(ogc~), 

Re f<= e in Na(a~o), 

R e f ~  1 in N~(o~\cor 
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Proof of Proposition 6.2. Let 

yj = {u(x)EC: Ix01 <=6, xl---- ( -1)J•  x" = 0}, j -- 1,2, 

and ?=7~u72.  At first sight it seems natural to take R e f  equal to the harmonic 
measure of  y. However, since we have no lower bound on the arc length of ?, we 
must modify the construction. 

Let F=FlwF~, where Fj is the union of  7j and the line segment 
{u(6, ( - 1 ) Jx ,  0 )+ i f t :  tE(0, 1)} of  length 6. We need the following geometrical 
result. 

Lenlma 6.3. With the definitions above, we have 
i) 6<-IFj[<~C6, where [Fjl is the arc length of Fj, 

i i ) , (z -d) /2e<-dis t  (z, F)<=dist (z, ? ) < - e ( x - d )  when z=u(xo,  xl, O) where 
l~ol_~6 and ]~l]=d_-<z. 

Proof of the lemma. If  we parametrize 7j with [ - 6 ,  3]3t-*u(t, ( - 1 ) Jg ,  O)E?j, 
we obtain that [7j[<=C6, since Oou has a fixed bound then. Now we have [Fj[= 
[?j]+6, which gives i). 

Let wj=u(~0,  ( - 1 ) i x ,  O)E?j, j =  1, 2. Then the arc length of  the curve between 
z and wj, 

(6.10) [0, 119s ~ u(~0, x~+s((-1)Jg-Y~l), 0), j -- 1, 2, 

is bounded by e ] ~ l - ( - 1 ) J z [  since 101ul<e then. Now, the distance between z 
and 7 must be shorter, which proves the upper bound in ii). 

To get the lower bound we observe that since the argument Arg (31u) of  
01u has absolute value less than 7z/6 and I01ul>e -1, we obtain Re (01u)>31/~/2e. 
By projecting the curves (6.10) on the real axis, we find 

(6.11) Re( ( - -1 )J (wj -z ) )  > 31/212~-(--1)~zl/2e, j = 1, 2. 

Since ]Arg (01u)l<rc/6 we have 

(6.12) 

We also obtain 

(6.13) 

when wEFj\wj,  

IArg((-1)l(wj-z))] < zc/6, j = 1, 2. 

zr/3 ~ Imrg(w-wj)l ~ 2zr/3 

since OoU=-iaOlu, where a=>0. 
If  we combine (6.11)--(6.13) we find that 

dist (z, w) - >  ( 3 1 / 2 ( ~  - 1~11)/2e)tan (~/6) = (~-d)/2e 

when w~_F, which proves Lemma 6.3. 
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End of proof of Proposition 6.2. Put 

f ( z ) =  23/26-x/2[ f (z-w(s))-a/~ds+L (w(s)-z)-~/Zds) 
"~ 1" 1 

where we have chosen the branch of the square root in C \ R -  which is real on 
R + and we have integrated with respect to the arc length. We find t h a t f i s  analytic 
in a neighborhood of m e, if d < e .  If  zEo)%, c0<n, then dist (z, F)>=(e-Co)/2e>O. 
Thus we obtain that dist (z, F)>=(e-Co)/3e if zENz(r and 2 is small enough, 
This implies 

Ref(z)  ~ C6-1/z(e-Co)-l/26 ~-- C ( ~ l / 2 ( e - C o )  -112,  

when zENz(a~Co). For fixed c0<e this can be made smaller than e by choosing 
6 small enough. We fix Code and 6 < e  so that this is the case. 

Choose Cl and c~ so that max (Co, e--6/e)<qdC~de. Since 

[Arg ((-- 1)J(w--z)) I < 2z~/3 

and I w - z l > = ( e - c 2 ) / 2 e  when zE~oc~ and wEFj, we find that Ref=>O in N~(~o~) 
if 2 is small enough. As above we can estimate 

ID~f(z)l < = Ck6~/~r -I/2-k when dist(z, F) => r, 

so it is clear that we get (6.9) for sufficiently small 2. It remains to prove (6.8) for 
small 2. If  zEcoc~\r then Lemma 6.3 gives that dist (z, 7 ) < e ( e - q ) d 6 .  Thus, 
for sufficiently small 2 we find that dist (z, 7)<6 if zEN~(O~c~\~Ocl). So to prove 
(6.8) it suffices to show that R e f ( z ) ~ l  if dist (z, ? )<6 and IArg ( ( -  1)~(w-z))l< 
2~r/3 for all wEFj. 

In this case we can find WoE ? such that Iz-wol<_-6. Assume for example 
that woE 71; the same argument works if woE 72. Let ?o be the component of F I \  {Wo} 
which has arc length at least 6. Since tArg (Olu)l<n/6 and OoU= -iaOlu, we can 
parametrize 7o with the distance to Wo. 

Since when WETo, we find 

2 Re ((z-w) -1/2) >-Iz-wl -~/~ >- (Iz-wol + Iw-woI )  -~/2 

when wE?o. This implies 

Ref(z)  => 28/~6-1/2 f Re ((z--w(t)) -112) dt 
"~ 70 

>- (2/6)1/~ f~ (~q-t) -1/2 dt >= 1 

since IZ-Wol <-& This completes the proof of Proposition 6.2. 
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7. Proof of Proposition 2.7 

Let P(x,D)=Do+iFW(x,D')+RW(x,D'), where F and REC=(R 2"+1) are 

bounded functions of x0ER with values in S(h-l,g) and S(1, g) respectively, 
F i s  real and does not change sign for fixed (x', ~'). Here the metric g is a temperate, 
conformal to the metric ]dx'lZ+ ]d~'lz/(1 + WI 2) in T 'R" ,  which we denote by go, 
so that g=m.go, 
Then we find that 

where l~m2(~')<-(1 + ]~'12) is independent of  the x" variables. 
h 2 =sup  gig"<- 1. As in Sections 2 and 4, we shall use the norms 

I1 11(,, = ((2=) f lz~(g')12 h(g ' )  -e* d~) ~/~ 

when uESa(R"+I). Assume that q )and  0ES(1,  g) and that 0 = I  on suppq~. 
Then we shall prove that for every e > 0  there exists 5 >0  such that 

(7.1) II ~o ~ u fl <= C (ll 0 TM eu [I (~) + II u I1(- 1/15) ~- II Pu I1(- x~/15)) 

if uESe(R ") has support where IXo[<-5. We shall do this by localizing in the Beals-- 
Fefferman metric defined in Section 3 and using the estimates in Section 4. It will 
follow from the proof  that 5 and C do not  depend on P and g as long as the symbol 
of  P has a fixed bound on every seminorm and g is uniformly ~ temperate. 

Since F(x, ~') E S (h- 1, g) uniformly in x0, we may normalize F so that IF I <- h-  1 
and IFl~ -1. We define the Beals--Fefferman metric G=Hg/h, where H is 
defined by 

n -~ = max (h -s/v, sup [F[, (sup IFl~)Zh). 
x o X o 

Then h<-H<-he/7<=l so g<=G<-h-~17g and sup G/G~'=H2<=l. Proposition 3.1 
gives that G is uniformly a temperate if this is the case for g, and F has a fixed bound 
on every seminorm in S(h -~, g). Then we also obtain that F has a fixed bound on 
every seminorm in S(H -~, G), and since g<-G we find that a bounded set in 
S(1, g) is uniformly bounded in S(1, G). 

Choose a symbol {q~k}ES(1, G) with values in f~ so that ~,  (pk~=l on supp q~. 
We can choose the support of  (Ok SO close to (Xk, r that G only varies with a fixed 
factor in supp ~0 k. If  we put G k--Gg,,r and compose suitable cut-off functions 
with the G k distance to (Xk, ~k), it follows from [4, Lemma 2.5] that we can con- 
struct symbols {Ok} and {Zk}E S(1, G) with values in g2, such that Ok = 1 on supp q~, 
and ~(k= 1 on supp ~k" 

It is clear that we can choose these symbols non-negative and with support 
so small that G and g only vary with a fixed factor in supp Xk and that we have 
one of the cases i)--iii) in Proposition 3.3 there. By shrinking the supports we may 
assume that 0_- > 1/2 on supp )~k, for all k. Later in the proof  (see case HI) below) 
we shall pose additional restrictions on supp ~0k, but this will only change the 
seminorms of the symbols (see [4, Lemma 2.5]). 
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Let Pk(X,D)=Do+iF~(x,D')+R~(x,D" ) where Fk=zkF and Rk----xkR. 
Then it is clear that Fk~ S(H -1, G) and RkC S(1, G) uniformly in Xo and k. In 
what follows, we shall often consider {Pk} as an operator with symbol having dia- 
gonal elements in ~(~2, ~2) as values. 

Since the metric G is conformal to the metric go, it follows that the operators 
Pk satisfy the conditions in Proposition 4.3. In fact, we can take a=(Gk(e , 0)) -1/2 
and b=(Gk(O, e)) -1/2, where e is an arbitrary unit vector in R", since then a .b= 
HkI=H-I(Xk,  ' > ~k) = 1. 

Now, the choice of  Xk and Proposition 3.3 imply that we have one of  the follow- 
ing cases 

I) he/~/C<-H<-h el7 in supp Fk, 
H) Fk has constant sign, 

III) Fk(X , ~')=ak(X , ~')bk(X', ~'), where O<=akEC~(R ~"+1) is uniformly 
bounded in S(1, G) when x0CR, bk is uniformly bounded in S(H -1, G) and 
Hklbk]~>=c>O in supp a k. 

Since ~,  ~p~ = 1 o n  supp ~0, the calculus gives as in the proof  of Proposi- 
tion 4.1 that 

(7.2) II~oWull ~ = ~ Ilq~qr u) 

where r~ S(H 2, G) c= S(h12/7, G), so we obtain 

(7.3) [(rWu, u)[ ~_ CIlul[~_,/7). 
Thus it suffices to prove that for every e > 0  there exists 6 > 0  such that 

(7.4) Z [[q~'q~Wu[12 ~_ C([[~lwpu[]~e)-[-[lul[~_x/xs)...l-l[Pull~_16/15)-l-f~2[]fpWu[[2) 
if u~SP(R "+1) has support where [xo]=<fi. In fact, for sufficiently small fi the esti- 
mates (7.2)---(7.4) imply (7.1). We shall prove (7.4) by estimating the terms in the 
cases I )~I I I ) .  

I) Let /s be the set of  all k for which hnlT/C~_H<=h 8/7 in supp Fk. Then 
{Fk}KCS(h -6/7, G) uniformly in Xo. Proposition 4.3 gives for sufficiently small 
~, that 

(7.5) I[~o~,~o~ul[ =< 6Cl[Pkq)ff~oWul[ 

if u E ~ ( R  ~+1) and u = 0  where Ixol>~, for ~o~'~o~'u~6O(R ~+1) has support where 
[xol=<8 then. Now we have 

(7.6) IlP~o~'~oWull <= [l[ek, ~o~']~o~ull +Ilion'IRk, ~o~]ull 

+ [[~~ + II q)ff~o~'Pull. 

The calculus with symbols with values in ~'~ and .s176 ~2) (see Section 4) gives 
that [Pk, ~0~'] =E~', where {Ek}~ S(1, G) uniformly in Xo with values in ~'~. Thus 
we find 

(7.7) .~' I][P~, ~o~']~o~'ul[~ <- - CIl~oWull ~. 
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(7.9) 

Since ~ = 1 
implies that 

(7.10) 

We also obtain [Pk,~OW]=A~+B~, where Ak={Fk,~O} and {Bk}~S(H,G) uni- 
formly in x 0. Since {F~}K~ S(h -el7, G) uniformly in x 0 and ~o~ S(1, g) we find 
that {Ak}K~ S(h 111~, G) uniformly in Xo. This implies 

(7.8) ~K~ [IcP~'EP~, ~0~]ull ~ <---- C 2~K~ IIEP~, ~0~]ull ~ <- C '  I l u l l ~ - , ) .  

If  we consider {(P~-P)} as an operator with diagonal elements in ~(gz,  yz) as 
symbol values we find, since ;~=1 on suppcp~, that q~'~cp~(P~-P)=r'[, where 
{r~}~S(H, G) uniformly in xo, with values in ~z. Thus we obtain 

[IcP'f ~ow (P~-  P )u[I ~ ~ C llu[l~-~/7) . 

on suppcp we find that cp'~=cp'~b'~+r w, where r~S(H ~, G). This 

Z light'Pull  2 ~ cIlq~weull m ~ C'(II~wPuI[2+ Ileull~-xem)). 

If  we combine the estimates (7.5)--(7.10) we obtain 

(7.11) ~Klll~0~'~o~ull 2<_- cS2C(ll~WPul12+llPull~_lo/15)+llull~_1/15)+ll~oWull m) 

if uEre(R "+1) has support where Ix01<=0, and 6 is small enough. This gives the 
desired estimate in case I). 

Before continuing with the other cases we observe that since 

~o~' ~p~ u = ~o TM q~' u + [q~', ~o w] u, 

where {[~o~', ~o~]} has symbol in S(H, G) with values in f2, we obtain 

Z IlcP~'~o~ull 2 <-- c ( Z  Ilcp~'ult~+ Ilull~-6/7)) �9 

Thus it suffices to estimate Y II~o~ull 2 in what follows. 
II) Let Kz be the set of  all k for which Fk has constant sign. Since Fk=gkF 

and Zk= 1 on supp cp k Proposition 4.2 gives, if 6 is small enough, that 

(7.12) ~_L'K~ II~~ ~ <-- cSCZK~ [l~o'feull~+fltull~-~/,) 

if  uCrP(R "+1) and u = 0  where ix01>6. Now t/~_->l/2 on suppcp k, so 

q~' = (q~k/~b -- (2i) --1 {(~k, ~}/~t2) TM ~/w + ~v, 

where {~k}E S(H 2, G) with values in f~. This implies 

(7.13) ~ 11~oTeull ~ ~-- C(ll~'Weu[l~+ Ileull~-xr/15)) 

which combined with (7.12) give the desired estimate in case II). 
III) Let Ks be the set of  all k for which F~=a~b~, where 0 -<_ a~E C= (R ~"+~) 

is uniformly bounded in S(1, G) when xoER, b~ is uniformly bounded in S(H -1, G) 
and / /~lb~]~=~c>0 in supp a~. In this case we shall localize the estimate of  Beals 
and Fefferman (Proposition 4.3) by using symbols which are elliptic in supp cp~ 
and which approximately commute with P~. 
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Lemma 7.1. For every e>0  there exist positive constants 6 o, 4o so that i f  
kE K 3 there exists mk(X, ~')ES(h- ' ,  G) uniformly when tx0[<cSo, with support where 
~k = 1, such that 

a) Oomk+iakHb mk=A~ES(h 1-~, G) uniformly when Ix01<60, 
b) ~'< I1/mkl j _=Cj where the G k distance to (x k, ~) is less than 4o and ]x01<6o . 

Proof of Lemma 7.1. Choose Gk orthonormal coordinates z '=(z  1, z") with the 
origin at (x~,~)  and let z=(zo,Z')=(Xo, Z'). Now cH~_lbk[~<=CHf ~ in 
supp ak and 

a~(Hb~ ) = sup [a(Hb~, w)12/ak(w) = sup [(dbk, w)[2/ak(w) = (Ibkl~) 2. 

Since Gk=H~G~ we find that the Hamilton field//b~ transforms to a vector field 
with fixed upper and lower bounds in a fixed neighborhood of the origin. Since 
3~Hb=H~b~ we also get fixed bounds for all derivatives of the vector field. 

Let ~k(z)=ak(X, 4'). Then it is clear that O-<~kEC~(R 2~+~) with fixed bounds 
for each z' derivative. By a change of z' variables we may transform Hb~ to ~ in 
supp ~k" Observe that G k remains uniformly equivalent to the euclidean metric 

in these coordinates. It is also clear that ~Pk=l where Iz'l<_-~,~, for some fixed 
positive constant 2. 

Let Qk=OO+i~k31. Then it is obvious that Qk is bounded in W when kEK3 
(see Definition 5.1). Thus Proposition 6.1 gives positive constants ~5 o, ~o and co< 
e l<cz<2 ,  a neighborhood f2={z: ]z0[<60, [z~[<c2, [z"l<O} of the origin and a 
solution vkE C = (f2) to the equation 

(7.14) Qkvk = 0 in f2, 

such that Vk has a fixed bound for each z" derivative, 

(7.15) Re v k _~ 0 in f2, 

(7.16) Revk =< e/3 in {zEf2: Izll --< co}, 
and 

(7.17) Rev k _~ 1 in {zEfZ: Izal => cx}. 

By choosing a smaller 0 we obtain 0<2,  thus ~k---~l in f2. Choose ~( t )ECo(R ) 
with support where [tl<c2 such that ~ ( t ) = l  where ]t[<=Cl, and let 

m~ (x, r = @ (zl) @ (Iz"l cde) h~,C,)-,12 

where hk=h(x'k, r Then m k has support where ~k = 1 and is uniformly bounded 
in S(h-*,G) when [x01<6o. Infact ,  Re Vk=>O in suppmk when [x0]<~0, which 
implies that Imk[<=Ch~ ~/2, and differentiation with respect to zj, j>-l, can only 
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produce factors bounded by ]log hkl. Since ~b'(t) has support where Cl~ [t!<cz 
and Vk satisfies (7.14) in supp m k when [Xo1<6o, we obtain a) with 

A k (x, ~') = idk (z) ~'(zl) fb (1 z'] %/0) h~ k(~)- ~/~. 

Now Re vk~l  in suppA k which, as before, gives that AkES(h 1-~, G) uniformly 
when [x01<6 o. From (7.16) it follows that I1/mk]<=h~/e when the G k distance to 
(x~, ~ )  is less than a fixed constant 00. Since differentiation of m~ -~ can only give 
factors bounded by [log hg[, we obtain b), which finishes the proof  of Lemma 7.1. 

When e > 0  and kEK3 we choose mg as in Lemma 7.1. Since Ok=l  on 
supp mg we have a bound on the number of overlapping supports. Thus we obtain 

that {mk}~ES(h -~, G) and {Ak}r~ES(h 1-~, G) with values in E 2, when lxol<6o. 
Now we pose the additional condition that ~Pk shall have support where the 

G k distance to (x k, ~k) is less than e0, so that I1/mkl]<=Cj in supp ~o k if kEK 3 
and ]Xol<6o. This we could have required from the beginning, but it would have 
been difficult to motivate then. With this condition we obtain that CPk/mkES(1, G) 
uniformly when ]x0I<60. Thus we find 

(7.18) ~'K~ II ~o7 u I13 <_- c (ZK, II m7 u II 3 + II u II ~ -  ~/~)). 

if uESe(R "+~) and IXo[<6o in suppu. It r emains to  estimate Y~r~]lm~u]l 3 if u 
has support where ]Xo1<=6<60, which we assume in what follows. 

Proposition 4.3 gives that if 6 is small enough then 

(7.19) IImL~ull ~ 6CIIPkm~ull 

if uESe(R "+1) has support where Ixol<=6. Now we have 

(7.20) IlPkmf utl <= II[ek, mg]ul[ +Llmg(Pk--P)uiJ +llm'~ eul]. 

Since @~1/2 in supp mk we obtain as in the proof  of (7.13) that m'[=T~'tpW+r'~, 
where {Tk}rES(h -~, G) and {rk}~3ES(H~h-~ , G) with values in f3 when [Xol<6o. 
This implies 

(7.21) ~ ]lm'~Pul[ 2 <= C([I@'~Pull~) + Ileu[]~-ln/la)) 

if e is small enough. Since Zk = 1 on supp mk we obtain as in the proof  of (7.9) 

(7.22) ~ Iim'~ (ek-- P )ull 3 <= ClIul[~- l/le). 

The calculus with symbols with values in E 2 and s g3) gives that the symbol 
of  the commutator  [Pk, m'[] is equal to --iH~mk+C k, where {Ck}ES(h-'H, G), 
when [x0]<60, with values in ~3. Now H~mk=OOmk+i{Fk, mk}=Oomk+ 
iakHb mk+ibk{a k, mk}=Ak+B k. Here we know that {Ak}K E S(h ~-~, G) with values 
in t '2, and since Bk=ibk{ak, rnk} we find that {Bk}rES(h -~, G) uniformly, when 
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Ix0[<60, with values in r Thus we obtain 

(7.23) II[P~, m~]ull 2 <= 3 ~ (lla~ull2 +lln~ull2 +lIC~ull ~) 

<= 3 ~ IIgTul[2+ Crlull~.-t/7). 
Thus it suffices to estimate z~[In~'ull ~, This will be possible since the symbol B k 
vanishes on the zero set of  bk. First we make a factorization so that we get a symbol 
which does not depend on x0. 

Since ~k-~l on suppm k we canwrite  Bk=Ek.Mk, where Ek=l'h~{ak, mk}/H k 
and Mk=~kkbkhk~Hk, so that {Ek}ES(1, G ) uniformly when IXol<6o and 
{Mk}E S(h -~, G). Then we obtain 

(7.24) ~ IfB~ull ~ <-- C ( 2  IIM~ull2+Ilull~-e/7)). 
To estimate Z IIM~ull ~ we need the following lemma which will be proved later. 

Lemma 7.2. Under the assumptions above there exists t5 >0  so that for e small 
enough we have the estimate 

(7.25) ZKsIIM~ull 2 <-- C(llOWPull~.) +Jlul[~_vln)+llPull~_16/15~) 

/ f  u~Sa(R "+x) has support where Ix0/-<fi. 

I f  we combine the estimates (7.18)--(7.25), using Lemma 7.2, we obtain for 
sufficiently small e and t5 

(7.26) ~gsll(ogull 2 ~_ C(~ll~Pull~,)+llull~_v15)+Neull~_x6/~5)) 

if  uESa(R "+1) and ]x0l<_-fi in supp u. This gives the desired estimate in case III) 
and finishes the proof  of  Proposition 2.7. 

Proof of Lemma 7.2. We shall prove the estimate (7.25) by cutting off 
Mk=OkHkbkhk ~ near the zero set and use the estimate of  Proposition 4.2. Choose 
�9 ( t )~Co(R ) with support where Itl<-i such that ~(t)_<-I with equality where 
[ t l< l /2 ,  and let 

Ok = �9 (n~ ~/~2 hg Ms) = #) (n~ ~/1~ Ok bk). 

Then we obtain that OgES(1, G~) uniformly, where Gt=H-~/"G, since differen- 
tiation with respect to unit vectors in the G metric can only produce factors bounded 
by H~ -ltl~. 

Let Mk, o=OgM k. Then Mk, o~S(H~/I~h-~,G1) uniformly, since ]Mkl <- 
H~/l~h; ~ in supp 0k and 

Inkl~'  = H j/x~ [gkl~ <- CjH1/~2h -~ 

if  j > 0 .  Now (1--Ok)Mk=Mk,~+Mk, 2 where Mk, iES(h-~,GO uniformly a n d h a s  
support where (-1)~F_->0, because Ok=l in a neighborhood of  the zero set of  
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bk and F=ak .b  k in supp Mk. Since Xk-~l o n  supp M k and {Zk}ES(1, G), we 
have a bound on the number of  overlapping suppMk, which gives that 
{Mk, o}ES(HVa~h -~, G 0 and {Mk,~}(S(h -~, GO with values in y2. 

Now we have 

(7.27) Z k  [IM~' ull z ~ 3 ~k. i  IlMU,,iu[I z. 

Since {Mk, o}E S(HI/~2h-~, G~) and HII12<=h 1114 we obtain 

(7.28) Z IIM~,0ul? ~- Cllull2(-lnS) 

if e is small enough. We shall now estimate the remaining terms by using Proposi- 
tiorL 4.2. To do this we need to know that F has constant sign in a G~ neighborhood 
of  supp Mk, i. Let 

Ok = ~ (2H/~n2 hi, Mk). 

Then, as before, we obtain that 0kC S(1, G1) uniformly. Now 0k~ 1 with equality 
in a neighborhood of the zeros of  b k and O k= 1 on supp O k. Thus we obtain that 
(1- -0k)=l  on supp(1--0k) and (1--0k)=>0 with equality in a neighborhood of  
the zeros Ofbk. Since Xk=l on s u p p M  k we find 

(1 --Ok)Zk = Zt,,l +,Zk,2 

where Zk,~has support where (--1)ibk~O and Zk, i=l  on suppMk, i. Now Zk>=O 
and F = a . b  k in supp)~k, where a ~ 0 ,  so we find that (--lfZk,~F>--_O. Since 
Xk and (1--0k) are uniformly bounded in S(1, GO we obtain that :tk,1 and Zk,2 
are uniformly bounded in S(1, (71) because they have disjoint support. 

Proposition 4.2 then gives for sufficiently small e and 6 that 

(7.29) Z i , o  Z k  [IM~,,iul} ~ <- 6C Z IIMF, iPu}lZ + Cllull~-l/a) 

i f  uESZ(R "+1) has support where IXo[~J. Since ~/=>1/2 on suppMk, ~, the cal- 
culus gives as in the proof  of  (7.13) that 

M~,i = Sg~,i~W + REi 

where {Sk,i}C S(h -~, G1) and {Rk, i}ES(H~h -~, GO~=S(h 2, G O for  small e because 
HI=HS/6<--h 5/7. Thus we obtain 

(7.30) ,~k }}M~,,iPul] ~ <= C(II~'PuII~) +1}Pu11~-~6/I5)), i ~ 0, 

for small e. I f  we combine the estimates (7.27)--(7.30) we obtain (7.25), which 
finishes the proof  of Lemma 7.2. 
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