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1. Introduction

Let P be a properly supported pseudo-differential operator of order m on a
C* manifold X. We shall assume that the symbol of P is a sum of terms homoge-
neous of degree m, m—1, ... and we denote the principal symbol by p.

Definition 1.1. P is said to satisfy condition (P) if there is no C™ complex
valued function g in T*X\0 such that Imgp takes both positive and negative
values on a bicharacteristic of Re gp where ¢520.

By a bicharacteristic of Regp we mean an integral curve of the Hamilton
field Re H,, on which Regp vanishes. (Some authors call this a null-bicharac-
teristic.) We say that P is of principal type if dp>0 when p=0. For operators of
principal type satisfying condition (P) and with no bicharacteristics trapped over
a point, Nirenberg and Treves {5} proved local solvability when the principal symbol
is analytic. Beals and Fefferman [I] extended their result to the C= case. Hér-
mander [3] proved semi-global solvability by studying the propagation of singularities
for the adjoint operator. In this paper we shall study the case which was left open
in [3].

Definition 1.2. We denote by %, the set of (x, £)€ T*X\0 such that p(x, £)=0
and Im gp vanishes of third order at (x, &) for some g€ C=(T*X\0) such that
gq(x, &) #0.

Observe that €, contains the set 4,5 defined by Hormander [3], for which there
are also global conditions. The definition implies that a bicharacteristic y of, say,
Re p is a one dimensional bicharacteristic of p as long as it remains in %, that is,
p=0 on yand H,=0 is proportional to the tangent vector.

When studying the singularities we shall use the Sobolev spaces H(,, of dis-
tributions which are mapped into L2 by any pseudo-differential operator of order s.
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When u is a distribution we define the regularity function s (x, &) for (x, ET*X\0
as the supremum of all real s such that u¢ Hj, at (x, &), thatis, u=uwu, +u, where
wm€Hy and (x, )¢ WF(uy).

Arbitrarily close to a one dimensional bicharacteristic in %; there may exist
bicharacteristics on which d Re p anddIm p are linearly independent. There we
know that s¥* is a superharmonic function with respect to a natural analytic structure
if Pu€C™(X). When approaching the one dimensional bicharacteristic the super-
harmonicity degenerates to the minimum principle with respect to constant func-
tions, and we are led to the following theorem.

Theorem 1.3. Let P be a properly supported pseudo-differential operator of order
m on a C= manifold X, satisfying condition (P). Let J be a compact interval on a
one dimensional bicharacteristic in €;. If u€2'(X), and s is a real constant such
that s=sy,+m—1 on Jand s=s} at J, then s=s; on J.

Thus if s=sp,on J then min (s}, s+m—1) satisfies the minimum principle
with respect to constant functions on J, that is, either it is monotonic or else it rises
monotonically to a maximum value and falls monotonically afterwards. Note that
Theorem 1.3 gives additional information on s} even in the cases of Theorems 6.1
and 6.6 in [3], which on embedded one dimensional bicharacteristics only give infor-
mation on the infimum of s}.

In the proof of Theorem 1.3 we shall use the Weyl calculus developed by Hor-
mander [4]. For definitions, notations and calculus results we refer the reader to
[4]. The plan of the paper is as follows. In Section 2 we reduce the proof of Theo-
rem 1.3 to the a priori estimates of Proposition 2.7. We define a metric in Section 3
which is a modification of the one used by Beals and Fefferman [I] to prove the
local solvability of operators satisfying condition (P). In Section 4 we state and
prove the a priori estimates we shall use in the proof of Proposition 2.7. When
localizing these estimates we must have operators which approximately commute
with P. In order to construct such operators we have to find uniformly bounded
solutions to the Hamilton equations. This is done in Section 5 and the results are
used in Section 6 to construct solutions with special properties. Finally we prove
Proposition 2.7 in Section 7, thus finishing the proof of Theorem 1.3.

I would like to thank my teacher Professor Lars Hormander who suggested
this problem to me and whose constant encouragement and advice have been of
invaluable help.
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2. Reduction to a priori estimates

In this section we shall reduce the proof of Theorem 1.3 to certain a priori
estimates (Proposition 2.7). For simplicity we do this in several steps, where we
microlocalize and prepare the symbol of the operator.

By multiplying with an elliptic pseudo-differential operator of order 1—m we
may assume that m=1. The symbol of P is then an asymptotic sum of homoge-
neous terms

px, O+ polx, H+py(x, O)+...

where the principal symbol p is homogeneous of degree 1 and p; is homogeneous
of degree j in the ¢ variables.

To prove Theorem 1.3 it suffices to show that if J is a compact interval on a
one dimensional bicharacteristic in %, and if s<s¥+1/15, s<sp, on J and s<s
on dJ, then s=s¥ on J. In fact, since sf=> —N on J for some N, we obtain Theo-
rem 1.3 by iterating this result with s<¥k/15—N. Since conjugation by an elliptic
operator of order s does not change the principal symbol, it suffices to prove the
case s=0. Thus, Theorem 1.3 will follow if we prove the following

Proposition 2.1. Assume that P is of order 1 and satisfies the condition (P).
Assume that J is a compact interval on a one dimensional bicharacteristic in €5, and
u is a distribution such that for some &=>0

u€H _y5 and PucHg onJ,
ucHgy at dJ.
Then it follows that ucH, on J.

We shall now prepare the operator so that microlocally it becomes a differential
operator in the x, variable and a pseudo-differential operator in the x” variables
depending on. the parameter x,, (x,, x)ER"1. We shall use the symbol classes
S(h, go) in T*R", where g, is the metric

gt 1) = [P+t +E®) at (¥, &)
and

b= sup go(t, /g (. D = (1+1EP 7 at (¥, &),

Assume that R2/3r—-y(t)¢J is a compact interval on a one dimensional
bicharacteristic in %,;, which does not have the radial direction. (Proposition 2.1
is empty if the direction is radial.) Then Proposition 2.5 in [3] gives that we can
extend y to a homogeneous canonical transformation y from a neighborhood of
I'X(0, S T*R* £=(0, ..., 0, 1), such that for some g homogeneous of degree 0,
the pullback x*(gp)is of the form &,+if(x, £') in a conical neighborhood of 7X(0, &).
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Here fcC™ when &30, and fis homogeneous of degree 1 in the £ variables.
The assumptions imply that f does not change sign for fixed (x’, &) and that f
vanishes of degree 3 on I'X(0, ). If we conjugate with a Fourier integral operator
of order 0 corresponding to y, and multiply by a suitable elliptic pseudo-differential
operator, we can get the symbol equal to &,+if(x, £)+qy(x, &) in a conical neigh-
borhood of IX(0, &) apart from terms homogeneous of degree —1 and lower.
Here ¢, is homogeneous of degree 0, and we may now assume that g, is independent
of &, and vanishes on  I'X(0, ). In fact, by Malgrange’s preparation theorem we
can find ¢ and r homogeneous of degree —1 and O respectively such that

o(x, &) = e(x, (& +if(x, £))+r(x, &)

in a conical neighborhood of IX(0, ). Indeed, when &,=1 we can do so locally,
hence we get this decomposition in a neighborhood of IX(0, &) by a partition of
unity, and may then extend it by homogeneity. If we multiply by a pseudo-differen-
tial operator with symbol 1—e(x, &) the term of degree O in the symbol becomes r.
To show that we may assume that r(x, &) vanishes on IX(0, &), we take a(x, &)
elliptic and of degree 0 in the & variables, and conjugate the operator by a”. We
then get the symbol

Eot+if(x, ) +i(H,a)(x, &)/ a(x, &) +r(x, &)

apart from terms of degree —1 and lower. Here H,,is the Hamilton field of p(x, &)=
&+ if(x, &). The term of order O in this symbol is equal to 0 on IX(0, &) if

i0ga(x, &)+r(x, &Na(x, &) =0

since H,=d, then. This equation is satisfied by

a(x, &) = exp (if:° r(t, x', &) dt]

which is elliptic of order 0 and defined in a conical neighborhood of I'X(0, &).

It is clear that in the same way we may successively make the lower order terms
independent of &, and vanishing on J. However, since it suffices to prove Proposi-
tion 2.1 when &=14/15, we may ignore these terms. Thus we obtain the following

Lemma 2.2. In the proof of Proposition 2.1 we may assume that

a) J=IX(0, &), where I is a compact interval on the real axis and £=(0, ..., 0, 1),

b) in a conical neighborhood of J the symbol of P is of the form &y+if(x, &)+
r(x, &), where [ and r€ C* are homogeneous of degree 1 and 0, respectively,
when |&'|=1,

c) fis real and does not change sign for fixed (x’, &),

d) f and r vanish on J of degree 3 and 1, respectively.
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Having reduced the symbol microlocally, it is natural to use the spaces H('s)g
(R with the norm

by = (20" [ 120 +1E19 d2]® <o

to measure the regularity in the x” variables. We are going to localize these spaces
by using operators in the x” variables, depending on the parameter x,. Then, if
the symbol of P is of the form &,+if(x, £)+r(x, &), we can use the calculus in
R” and consider x, as a parameter.

Let B=(R, S(1, g;)) be the space of bounded C=functions on R with values
in S(1,g,). Thus, if YyeB=(R, S(1,g,), then YcC(R**!) and we have the
estimate

IDLDE Y (x, ) = C, y(1+1E]) =17

for all «, B. It is easy to see that if ¥ €B=(R, S(1, g,)) then y* is continuous in
LR, £ (R") and H{, for all s. We shall now study the connection between
H, regularity and H,, regularity.

Lemma 2.3. a) Let (y, n)eR®™ Y, /20, and assume that

¥ (x, £)EB(R, S(1, g0))

is homogeneous of degree O for large &, y(y, rn')#0 for large r, and Y*ucH,
uc”’. Then ucHyy at (y, 14, 1) for all n,.

b) Assume that &0 in WF(u), uc¥”’, and that u€H, at (y,ny,n’) for all
No. Then it follows that y*u€Hfy, if ¥ (x,&)EB™(R, S(1, go)) has support in a
sufficiently small conical neighborhood of (y,n').

Proof of Lemma 2.3. a) Choose x(£)6C=(R™") homogeneous of degree 0 for
large &, such that x(&)=1 when |&)|=c|¢’|+1, and x(£)=0 when |&|=C(|¢'|+1).
If Y(x, £)EB=(R, S(1, 8»)), then the composition x”y* is a pseudo-differential
operator, which, since |£|=C(|&’|+1) in supp y, can be computed by the stand-
ard calculus (see Sjostrand [6, Appendix]). If ¥“u€H(, then it is clear that
1Y ueHy, since 1=(14]¢]3)/(1+]¢'1%)=1+2C? in supp y and y is independ-
ent of the x variables. Thus, we find that u€H, at (y, 1o, 7") when |go|=cly’].
Since the constant ¢ can be chosen arbitrarily large, we obtain a).

b) After multiplication with a suitable cut-off function, we may assume that
u€&’. Then, since &'5£0 in WF(u), we find that |[&,|=C[&’| in WF(u). Choose
x(E)eC=(R"") homogeneous of degree O for large &, such that y=1 in a conical
neighborhood of WF(u) and x(¢)=0 when |&|=C'((¢|+1). If

¥ (x, &)EB (R, SU, o))

has support in a sufficiently small conical neighborhood of (y, n"), then y“y*ucH,.
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In fact, this follows since u€ H, at (y,n,,%") for all 5, and y*y™ is a pseudo-
differential operator which can be computed by the standard calculus. As before,
we find that x"y"u€Hy,, becanse 1=(1+[¢?)/(14]¢H=14+2(C")* in suppy
and y is independent of the x variables.

Now we are going to prove that (1—x*)y”ucH(, for all ¢. Since x=1 in
a conical neighborhood of WF(u), we can choose y,(£)€C”(R"™Y) homogeneous
of degree O for large &, such that y;=1 in a conical neighborhood of WF(u) and
%=1 on supp z;. Now (1—z" )W u=(1~"W"x u+1—x" " (1 —x)u, where,
as before, the symbol of (1—x™)¥™xy can be computed by the standard calculus.
Since y=1 on supp y; the calculus gives that (I—x")y”yyucH,yCS H(',) for all
positive £. Since y;=1 on WF(u), we find that (1—y})ucH, < Hy, for all posi-
tive £. This implies that " (1—yy)ucHy,, and since 1—y(¢) is bounded and
independent of the x variables, that (1—xy")¥*(1—yxy)ucHy, for all positive 7.
This completes the proof of the lemma.

Definition 2.4. When &0 in WF(u), uc%’, we say that uEH('s) at (y, %)
if YyYucH(, forsome ¥ (x,&)cB~(R, S(1, g)) homogeneous of degree O for large
&, such that Y (y, ry")=#0 for large r. )

Let WF,(w)={(x,&): u¢ H at (x, &)} and let

WFw) = {(x,&): ug Hy, at (x, &)},
if &0 in WF(u), uc%’. Then Lemma 2.3 gives

To(WF ) (u)) = W5 (u)
where my(x, &, &)=(x, &).

Proposition 2.5. Assume that P’(x, D)=Dy+iF"(x, D)+ R"(x, D), where F
and ReC(R™ ") are bounded functions of x, with values in S(hy?', go) and S(1, g)
respectively. Also assume that F is real, does not change sign for fixed (x', &) and
vanishes of order 3 on the rays through J=IX(0, &), where I=[-—1,1] and
E=(0,...,0,1), and that R vanishes on the rays trough J. If & =0 in WF(v),
v=0 when |x,|>1 and for some ¢=0 .

P'veHy, on mwy(J), v€EH{_1p5 and P'vEH{_;5),

then it follows that
vEHp, on m(J).

Proof that Proposition 2.5. implies Proposition 2.1. By Lemma 2.2 we may
assume that the symbol of P is equal to & +if(x, £)+r(x, &) in a conical neigh-
borhood of J=IX(0, &) where f and rcC=(R>*"Y) are bounded functions of x,
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with values in S(hy %, g,) and S(1,g,) respectively. After a change of scale in
the x, variable we may assume that /=[—1, 1]. Then Lemma 2.2 gives that

@.1) P'(x, D) = Dy+if*(x, D)+ 1 (x, D’)

fulfills the requirements in Proposition 2.5. We shall prove that Proposition 2.1
follows from Proposition 2.5 by microlocalizing in a conical neighborhood of J.

By multiplying with a suitable cut-off function we can assume that u€&”’. Choose
Y(x, £)€C=(R*™® homogeneous of degree O for large ¢, and with support so
close to the rays through J that the symbol of P—P’ (P’ defined by (2.1)) is equal
to 0 in supp ¥, u€ H_y15 and Pu€Hy, in supp ¥, and [§|=C|¢’[+1 in supp y.
We also want |x,]<1 in suppy, ¥ =1 on the part of the rays through J where
we do not already know that u€H, and finally u€H, where the support of
grad y meets the rays through J.

It is then clear that it suffices to prove that v=y"ucH, near J. The assump-
tions on ¥ imply that v€EH (115 and Po=y” Pu+[P,y"u€H ;5. Since
WF(Pv)S WF(v)Ssupp ¥, Lemma 2.3 gives that v and Pv€H_, ;).

Now we prove that PvEH(’B) on m,(J). Since u€Hy, on supp (grad Y)nJ,
we have [P,y*]u€H,, on J. It is also clear that [P, y*lu€ H, on my*(my(J)).
In fact, since P is of the form (2.1) in supp ¥, P is non-characteristic in supp ¥
where 0. Since PucH, in suppy, we obtain u€Hg., in suppy where
&o#0. Thus, [P, y*]u€H,, on ny*(m,(J)), and since y*PucH,, we get PvcH,
on 75 *(ny(J)). Lemma 2.3 then gives that Pv€ Hy, on my(J).

Now, the symbol of P—P’ is equal to O in supp, and the composition
(P—P’)Y™ can be computed by the standard calculus. Thus, (P—P")Y"ucH,<
H, for all positive ¢, so P'véH_y,;, and P'v€H, on m,(J). By multiplying
with a suitable cut-off function in x, we can obtain that v=0 when |x,|>1. Proposi-
tion 2.5 gives that v€ Hy, on 7,(J), so Lemma 2.3 implies that v€ H, on J. This
proves that Proposition 2.5 implies Proposition 2.1.

In the proof of Proposition 2.5 we shall make a change of scale in the x, variable
and cut off near n,(J). To get uniform estimates we must vary the metric. In what
follows, we shall denote by g any metric of the form g=m-g,, where m(&’) is
independent of the x” variables and 1=m=#h;'. This implies that g,=g and
sup g/g”=ht=(m-hg)*=1. Now, since g is conformal to g,, the following lemma
shows that g is ¢ temperate if it is slowly varying, and that we can get a bound on
the constants in the definition.

Lemma 2.6. Assume that G=m- g, is uniformly slowly varying, that 1=m=h,",
and that M is uniformly G continuous satisfying 1=M=H 1=(m-+hy)™. Then G
is uniformly ¢ temperate and M is uniformly o, G temperate.
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Proof of Lemma 2.6. Since the triangle inequality gives

go,wl(t) = 2g0,w2(t)(1 +go,w1(W1—W2)), wjéT*R",
it suffices to prove that m and M are uniformly ¢, G temperate, that is,

m(wy) = Cm(wy)(14+G5, (wy—wp)¥
and
M(wy) = CM(wy)(1+ G5, (we—wp))Y.

Now, g,=G implies that m is G continuous, so it suffices to consider the case
G, (Wy—wy)=c,>0, j=1,2. Then we find

M@w) =H(w) = (G?vl (W —wa)/ co)l/2
which proves that M is o, G temperate.

To prove that m is 0, G temperate we note that if g, (w,—wy)=c, and ¢,
is small enough, then g,,,, =g, ,,/C. This implies that

M (Wa) 8o, (W1 —Wp) = Gy (W1 —wp)/C = c/C,
80 we obtain

m(wy) G5, (Wy— W) = m(Wy) 8o,y (W1 — W) /m (W) h3(wy) = com(wy)/C

since m=h;",
When g, ,, (w,—wy)=c, we find

m(wy) = hg'(wy) = G5, (w—wa)/c

since hy'g,=G° This proves that m is 6, G temperate and finishes the proof of
Lemma 2.6.

Remark. Note that in Lemma 2.6 we did not have to assume that m and M
were independent of the x variables.
We shall use the norm

lul Gy = (@)= [ 1#(©IRh(E)~*d&)™,

which depends on the metric g. This norm is well suited to the calculus with symbols
in S(#,g). Since m=1 we obtain

lullty = lullty,

when s is positive. For convenience we put ||ul| =/ ul|g-
Now we state the a priori estimates we are going to use in the proof of Proposi-
tion 2.5.

Proposition 2.7. Assume that P,=D,+iFy(x, DY+ R} (x, D’), where F, and
R,eC*(R*™*Y) are bounded functions of x, with values in S(h™, g) and S(l,g)
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respectively, Fy is real and does not change sign for fixed (x',&). Assume that ¢
and YyeS(,8) and that Y=1 on supp ¢. Then for every =0 there exists §=0
such that

22 lo™ul = CY™ Pyrully + el _yjns) +1Petell 16725

if uc#R"Y) and u=0 where |x,|>65. Here 6 and C do not depend on g and P,
if g is uniformly o temperate and if we have fixed bounds on the seminorms of the
symbol of P;.

Proof that Proposition 2.7 implies Proposition 2.5. Note that in Proposition 2.7
we do not need the assumption that F; and R, vanish on J. However, we need the
assumption that » vanishes when |x,|>0J, where é depends on ¢ and on the bounds
on the symbol and the metric. We are going to reduce the proof of Proposition 2.5
to the estimate (2.2) by making a change of scale in the x, variable. In order to
get a fixed bound on the symbol after the change of scale, we cut off the symbol
in a small neighborhood of Jand use the fact that Fand R vanish on J. This motivates
the following choice of metric. When T=1 we put

gy = min (7% hyt) g,
and
hery = (SUp 1)/ giry)""? = min (T'2hy, 1) = 1.

Since 4;* is g, continuous we find that min (72, h;Y) is uniformly g, continuous.
Now gy=g(, implies that g7, is uniformly slowly varying, so Lemma 2.6 gives
that g7y is uniformly ¢ temperate.

We shall now microlocalize the symbol in a g, neighborhood of 7y(/). Choose
Py Yoy and g€ S, gy, Wwith fixed bounds on each seminorm and homoge-
neous of degree 0 for large &', such that the symbols have support where T?=h;"*
and where the g r, distance to the ray through (0, £') is less than a fixed constant.
We also want ¢,=1 on the part of the ray through (0, &) where CT*=h; L
Y=1 on supp ¢y and xpn,=1 on supp V. Put

(23) Py=Dy+iFg+RY,

where

F(T)(xa &= TX(T)(X’, EYF(Tx,, %', &)
and

R(T)(xs &)= TX(T)(x,a EYR(Txy, X', &).
Then Riryand F,€ C=(R**Y),

Lemma 2.8. Fry and Ry are uniformly bounded functions of x, with values in
S(hzy> 8y) and S(1, g¢r)) respectively, when T=1 and |x|=T*(1+T7Y).
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Proof of Lemma 2.8. Since Fr, and R have support where gqy=T77g,, it
suffices to prove that

2.4) lxer FlEe = C,T*=3hst
and
2.5) xR = C,T*' when |x| =1+T7%

Since F¢ S(h;?, g,) uniformly in x, and F vanishes of order 3 on J, we obtain from
Taylor’s formula that

[Flfo = C,T*3hg' in suppyey when |x|=1+T7}

because y.r, has support where the g, distance to the ray through (0, &) is less
than C/T. Since R S(1,g,) uniformly in x, and vanishes on J, the same argument
gives

[Rifo = C;T*-' in suppyr, Wwhen [xo|=1+T7L
Now, xr) has fixed bounds in S(l, g,T)), thus
lxemlie = C'TX,
so Leibniz’ rule gives (2.4) and (2.5), which proves the lemma.

End of proof that Proposition 2.7 implies Proposition 2.5. Assume that u€ & (R**7)
and that u=0 when |x,|=1. Let ucp(x) =u(Tx,, ), 50 that u;)=0 when |x,|=1/T.
Proposition 2.7 and Lemma 2.8 give that for each £=>0 there exists 7,=1 such that

(2.6) llotryuml = CUVEn Py ir,» Hluml r, ~119 + 1 Pay el (r, -16n15);
if T=T,, where
Nz, = (@7)="2 [ 18(E)|2hery ()2 deJ™.
Now we have
@7 min(T7%, D)jul¢y = lully, s = max(T7,1) flulgy
so if we make a change of scale in the x, variable, writing Tx, instead of x,, we find

(2.8) lo¥trull = Cr(l¥ery Peryull 28)+llul|2-ms>+HP(T)uHE—wm)
if T=T,, where

P(T)(x’ D) = Do+i(X(T) Fy*(x, D’)+(X(T) R*(x, D").
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If we replace Py with P’(x, Dy=D,+iF*(x, D)+ R”(x, D’) we obtain, since
Xay=1 on supp ¥y, and P—P’ is of order 1,

(2.9 ”(P‘(VT)u” = C%(”‘V(VT) P’“”Es)‘*‘““”f—l/ls)‘*“”P’””E—l/ls)),

when T=T, and u€¥ (R"") has support where |x,|=1.

To prove Proposition 2.5 we must extend (2.9) to all u€H{_,;;, satisfying
the hypotheses made on v in the proposition. It is clear that by continuity we may
extend (2.9) to those u€H(, ., with support where |x,|=1, such that D,ucHy,.
Let i

C(&)=(A+e[gHt

when O<¢=1. It is then easy to see that C, is a weight for g, which is uniformly
o, g, temperate and that the seminorms of C, in S(C,, g,) have fixed bounds.
Put u,=C}u and
lule, sy = 1Cull(y.

This norm is equivalent to |ull;,_, when ¢>0 and tends to |ull, when ¢-0.
If u€H_ 5 and P'u€H{ 5 then Dou€H{ 5. This implies that u€H,,
and Dyu=C;D,u,cH}, if t=0 and £=14/15, which we have assumed.

Let P,=C}P’(C;Y)*. Then the symbol of P, is equal to

ot iF(x, &) —({F, C}/CY(x, &)+ R(x, &)

apart from terms with fixed bounds in S(%,, g,), when O<¢=1. Ignoring these
terms for a moment, we find that P, fulfills the requirements in Proposition 2.5,
since F vanishes of degree 3 on J. Hence

(2.10) l o) ul = C/T’(n‘//‘(vr) Ptutli’(aﬁll ”t”z—ms)‘f‘n Pturn,(—l/w))

if T is large enough, since the terms with symbols bounded in S(h,, g,) can be
estimated with [Ju,[l{_,y5,-

Now, the symbols of [¢(), C;'] and [y, C}'] are uniformly bounded in
S(hcry, gry) wWhen O<t=1, so we find that

(2.11) “(p‘(vT)u“’(t,O) = Cf”(“lp‘(vr)P,”“’(c,e)'f‘“u“’(—1/15)+“P/U“’(—uls;),

if T is large enough, v and P’u¢ H|_,;;, and u has support where |x,|=1.

If we also assume that ¢'0 in WF(u) and that P’ucH(, on m,(J), then
we find that ¢, P'uc H, for large 7. Thus, for large enough T, the right-hand
side of (2.11) is bounded when ¢-0, which implies that qoZVT)uEH('O) then. This
means that u€Hg, on m,(J), which proves that Proposition 2.7 implies Proposi-
tion 2.5.

Proposition 2.7 will be proved in Section 7.
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3. The metric of Beals and Fefferman

In this section we shall define a metric which is a modification of the one used
by Beals and Fefferman [1] to prove local solvability for operators satisfying the
condition (P). The results in this section were essentially proved by Beals and
Fefferman [2].

Assume that g=m-g, is o temperate, where 1=m=#h;", then g,=g and
sup g/g°=h*=1. Assume that F(t, w)¢C”(RXT*R") is a bounded function of
téR with values in S(h™L, g). By normalizing we may assume that |F|=h"!
and |F|g=h"" for all t and w. Now we want to know for which other metrics
G=Hg/h, where h=H=h"", we have that F(t, -)¢S(H~!, G) uniformly in z.
The reason for taking H=Ah%" is that sup G/G°=H?=h"" then, so we obtain
a good calculus in this metric. Now F(¢, -)¢ S(H !, G) uniformly in 7 means that

|FI§ = (W HY?|FI§ = C;H™,
that is,
|Fl¢ = C;(H/hy?-1h~1.

Since we want H=h, this condition is automatically fulfilled if j=2, so it suf-
fices that
|F|l=H™!
and
(Flf = (hH) 72
If we choose

3.1 H™=max(h~%, sup | F), (sgp |F|9)%h)

we find that F is a bounded function of ¢ with values in S(H™Y G) where
H?=sup G/G° satisfies h=H=h%"". This metric has the property that, if F does
not change sign for fixed w, we can localize with respect to G so that each localiza-
tion of F either can be factored, is semibounded or is of lower order.

Proposition 3.1. Assume that g=m-.g, is uniformly o temperate, and that
l=m=h;", which implies sup g/g°=h*=1. Assume that F has fixed bounds in
S(h™Y g) for all tcR, and that |F|=h~' and |F{=h™'. Let G=Hglh, where
H is defined by (3.1). Then G is uniformly o temperate and sup G/G°=H?=1.

Proof. Tt is clear that H=h*"=1. Now G=Hg/h=Hg,/h, is conformal to
goand 1=hlhy=H/hy=hy", so Lemma 2.6 gives that it suffices to prove that G is
uniformly slowly varying. Since g=G we find that 4 is G continuous, so it remains
to prove that H is G continuous.
Let hy=h(w,) and h/H(w,)=r. Choose orthonormal coordinates z with
respect to g, with the origin at w; and let f(z,z)=h F(z, w). Since F(, +) is
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uniformly bounded in S{A#~1. g). we find that fis a bounded function of ¢ with values
in C=(U), where U={z¢R®: |z|<C}. The neighborhood {z: |z]<cr'®} in R*
corresponds to the G neighborhood {wcT*R": G, (w—w,)<c"} of wy, so it suffices
to prove that

E(z) = max (hi"", sup | f(z, 2)], sup [grad, (2, 2)|*)
only varies with a fixed factor when |z|<cr'®. We need the following elementary

Lemma 3.2, Assume that f€C=(R™) has a fixed bound on the second derivatives
when |z|<C. If
max (| f(0)], |grad f(0)2) = s = r = C’,

then it follows that there exist ¢, and C, such that
max (|/(2)], lgrad f(2)|?) = C,r
when |z|<c,r*?, and

max (| /(z)|, |grad f(2)I?) = s/C;

when |z|<c, sV

Proof of Lemma 3.2. The upper bound is an immediate consequence of Taylor’s
formula, since

|£(2)] = 1£(0)] +|(grad £(0), 2)| + Clz]? = Cyr
|grad f(2)] = lgrad f(0)| +2C}z| = Cyr'?

if |z|=c;r'®. To get the lower bound we observe that in the case s=|f(0)|=
lerad f(0)]2, we obtain

If(2)] = | £ —|(grad (0), 2)| = C|z* = 5/C,

if |z]=c,s"% The corresponding argument works in the case s=|grad f(0)|?, which
proves the lemma.

and

1/2

End of proof of Proposition 3.1. Since
max (| f(z, 0)|, |grad, f(z, 0)|*) = E(0) = r for all ¢,

Lemma 3.2 gives that

max (lf(t, Z)|9 |gradzf(ta Z)lz) = Clr

if |z]=c,r'% Now h{"=r so we obtain E(z)=C, E(0).
To get the lower bound, we note that in the case r=#h" it follows that E(z)=

h"=E(0). In the case
max (sup | /(¢, )], sup [grad, f(t, 0)I%) = r
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there exists £,¢R such that

max (lf(t0> O)L |gradzf(t09 0)12) = 7‘/2
Lemma 3.2 then gives

r/C = max (f(to, 2)l, lgrad, £(to, 2)I%) = E(2)

when |z|=cr'?, which gives the lower bound and finishes the proof of Proposi-
tion 3.1.

Proposition 3.3. The assumptions in Proposition 3.1 imply that F is a bounded
Sfunction of t€R with values.in S(H~Y, G). If F is real and does not change sign
for fixed w, and 6>0 is small enough, then in each G neighborhood Q, ;=
{(z, w): G,, (w—wy)=<0%} we have one of the following cases:

i) AIC=H=h",

i) F has constant sign,
i) F(t, wy=a(t, wb(w), where 0=acC* is a uniformly bounded function of t
with values in S(1,G), b has fixed bounds in S(H™',G) and H|bli=c=>0 in

Wy, 6 °

Proof. If H Y(wy)=h=%"(w,) then we get the case i) for sufficiently small
d, because G varies slowly and % is G continuous. Thus we may assume that

3.2) H-1 = max (sutp |F|, (sutp |F|9?h) when w=w,.

Choose G, orthonormal coordinates z with the origin at w,. Let f(1,2)=
HyF(t,w), where Hy=H(w). Then fis a bounded function of ¢ with values in
C=(U), U={z: |z|]<C}. Now, (3.2) implies

(3.3) 1 = max (sup | f(z, 0)|, sup |grad, f(z, )[*).

If 1=sup, |f(z,0)|, then we can find #{€R such that |f(z, 0)|=1/2. Since
f is real-valued and f(¢,, -) has fixed bounds in C*(U), we can find é so small
that either f(#y,z2)=>0 or f(¢,,2)<0 when |z]<4. Now f does not change sign
for fixed z, which gives us the case ii).

If 1=sup, |grad, f(z,0)[%, we can find ¢, such that |grad, f(¢,, 0)|=1/2. Since
f(#y, +) has fixed bounds in C>=(U), the implicit function theorem gives that we
can choose f(4,,z)={, as a local coordinate when |z[<25. Then f must have
the same sign as {;, since f does not change sign for fixed z, thus f=0 when (;=0.
Taylor’s formula gives

4 f(t,2) = e(t,2){; when |z| <26,

where e=0 is a bounded function of ¢ with values in C*(U,), Uy={z: |z|<26}.
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If we differentiate the equation (3.4) we find that D¥ec*C=(U,) for all k. Choose
a cut-off function x€CZ(U,) such that y=0 and yx(z)=1 when |z|<§. Let
at, w)=yx(2)e(t,z) in U, and equal to 0 otherwise, then we obtain the case iii)
with b(w)=F(¢,, w). This completes the proof of Proposition 3.3.

4. Estimates for the localized operators

We shall now state and prove the estimates which will be used in the proof
of Proposition 2.7. The estimates are adapted to the localizations of the operator
corresponding to the Beals—Fefferman metric defined in Section 3. Therefore we
shall use symbols with values in ¢2 and # (/2 ¢?). The results are refinements
of the estimates in Hérmander [3], including the estimate of Beals and Fefferman
(Proposition 4.3).

Assume that G is a ¢ temperate metric in 7*R”, such that sup G/G°=H?=1.
To begin with we do not make any further restrictions on G. In what follows, the
estimates will not depend on the metric G, as long as G fulfills the requirements
stated and is uniformly ¢ temperate.

Proposition 4.1. Assume that 0=a(x’, £)ES(H-%°, G). Then there exists a
constant C such that

4.1 (@ u,u) =—C|ull?
when u€ % (R").

Proof. By regularizing we may assume that H¢ S(H, G). Put
b = aHYSc S(H, G).
Then b=0, so Theorem 6.2 in [4] gives b,(x’, £)€ S(H5, G) such that
4.2) (b*u,u) = (bYu, u)

when u€#(R"). Put v=c*u, where c=H Y Since (c*)*b}c” has symbol in
S(1, G) we obtain
(4.3) [(by'v, v)| = Coflull®

The calculus gives that the symbol for (c*)*b¥c* is in S{I, G) apart from
the first terms given by
ber+(1/2i)c{b, c}+1/2i{c, bc} = a

so we obtain (¢*)*b"c¢¥=a"+R", where RcS(1, G). This implies
4.9 (a¥u,u) = (b¥v, v) —(R"u, u) = — Cy||ul?

when u€¥ (R"), which proves the proposition.
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In what follows we assume, as in Section 3, that G=Hg/h, where h=H=h"",
g=m-+g, is uniformly ¢ temperate and 1=m(¢)=hy'(¢") is independent of the
x’ variables. Since 1=h-%"=H~1 Lemma 2.6 gives that 4=°%/, hence 4, is a weight
for G, for it is obviously G continuous.

For convenience, we change notations and put

(4.5) lullsy = (@)= [ (a(@)Ph(&)~> d&)”,

when u€ % (R"*1). This norm corresponds to the norm || - “E’s) in Section 2. Since
S(H®, G) is uniformly bounded in S(#*°°, G) when s is positive, we find that

(4.6) IR ul| =Cllull(-4.6/7)

if RES(H®, G) and s=0. As noted in Hérmander [4, p. 393] we also have the
estimate (4.6) when R takes values in a Hilbert space. For example,

2R ul? = Clulit-y
when {R;}€S(#°, G) with values in /% It is easy to see that
(R u, u)l = Cllul¥ys

when RES(h75, G). In fact, by choosing c€ S(h*? g), independent of the x” vari-
ables such that ¢(&)=A"*(¢") we obtain

IR u, w)| = [((c) * R¥u, (c™)"u)| = Cllulfys-

Let G,=H G and H:=sup G,/G{=(H*®)?=1. It is clear that G, is uni-
formly slowly varying, for G;=G. Since G, is conformal to the homogeneous
metric g, and g,=G,=G{, Lemma 2.6 gives that G, is uniformly ¢ temperate.

The purpose of the metric G, is that, since S(H™Y, G,)=S(H;**, G,), we may
localize a symbol in S(H ~*, G) with symbols in S(1, Gy) and then apply Proposi-
tion 4.1 if the localized symbol is non-negative.

Proposition 4.2, Assume that P(x, D)=Dy+ig”(x, D"Y+r¥(x, D"), where q and
re C=(R**Y) are bounded functions of x,€R with values in S(H™*, G) and S(1, G)
respectively, and q is real. Assume that ¢=>0 and {@;}¢S(h™°, G,) is real with
values in £, where Gy=H~"*G. If one can find \; uniformly bounded in S(1, Gy),
such that ;=1 ‘on supp ¢; and Y,q=0, then for sufficiently small & and & we
obtain that

(4.7 2 lloyullz = Cé 2 o} Pul*+ Cllulf-1a,
if ucLR"Y) has support where |x,|=9.

Proof. We shall regard {g}, {r} and {y;} as symbols with diagonal elements
in Z(£? ¢?) as values, and {p,} as having values in £(?, C) or Z(C,¢?). In
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what follows, we shall often identify #(¢2, C) and 2Z(C, #?) with ¢% For example,
when computing the symbol of the commutator {[/}, ¢}]}, one term has values
in Z(C, ¢?) and the other in £(¢2, C) but we shall consider the symbol as having
values in /2.

Now, the estimate (4.7) is stable for bounded perturbations so it suffices to
prove the case r=0. In fact, if we have the estimate (4.7) for P’=Dy+iq"” then
we obtain

2 loyul®=6C o} P ul®+Cllul}-1
= 6C’( S lloy Pull+ 3 @y ull2+ S| RY ull®)+C lult- 1.
Here R}Y=[p},r*] so {R;}€S(H,h~*%, G)S S(h*"~* G,), which implies that

SRy ul? = Cllullf-ye

if € is small enough. For small § we obtain the estimate for the perturbated operator.

Thus we assume that P(x, D)=D,+ig”(x, D’) in what follows. Put &;(x, &)=
exp (k- x)@;(x", &). Then {®;}¢S(h™% G;) uniformly when [xo|=1/k. Since we
use the calculus in R”, there is no difficulty in defining @} =exp (k- xo) 0.

In what follows we assume that uc. ¥ (R"™!) has support where |xo|=1/k.
Now we have

(DY Pu, Yu) = ([P}, Plu, ®¥u)+(PPYu, P} u),
which implies that
(4.8) Im (@Y Pu, &} u) = Re ([8Y, ¢*)u, &7 u)+1Im (@}, Dolu, DYu)
+(q% &} u, oY u),

because ¢g(x, &") is real, which makes (¢*v,v) real.

Now 0=y,qc S(H™*, G)=S(H;*?, G,) so Proposition 4.1 gives

(¥;9)*v,0) =—C|p|> when veF(R™D).

The calculus gives that if RY=();q)*®}—¢"®}, then {R}eSH;H 'h~*, G)&
S(h"7%, G)), since HXH '=H*¢=p*". Thus we get

4.9 2 (g7 ®Yu, PYu)y=—C 3 [ ®Yull*— > (R} u, PTu)

=—C/ (2N ullz+lullt-1s)
if & is small enough.

The calculus with symbols with values in £2 and Z(¢2, £2) gives that the symbol
of >(®})*[P}, q"] is equal to —i 3 &,;{®,;,q} apart from an error term in
S(h*"~%, G,). (Here {®,,q} is the P01sson bracket of ®; and ¢.) Since this symbol
is imaginary, we find that

(4.10) Re 2> (97, g*1u, ®Fu) = (R u, u)
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where RES(h*'~%, G,). As mentioned before, this implies
(4.11) (R u, w)| = Cllul|i-ys

if & is small enough. Since [®Y, Dy]=ik®}, we find that
(4.12) Im (B, Dolu, DY) = k| &Y ul.
Now, (4.8)—(4.12) imply

(4.13) (k=C’=1) Z|| @7 ul* = Z |9} Pul®+C” [ull{-10

if ¢ is small enough and =0 when |x,|=1/k.

We have &7 (x, D’)=exp(k-x)o}(x’,D") so if k is large enough and
u€ (R has support where |x,|=1/k=4, then we get the estimate (4.7). This
completes the proof of the proposition.

Note that, by writing —Xx, instead of x,, we get the same estimate if y;q is
non-positive instead of non-negative.

Proposition 4.3. Assume that
P(x, D) = Dy+iqg*(x, D)+r"(x, D)
where q(x, &) and r(x, E)eC=R®Y), g(x, &) is real and does not change sign
for fixed (x', "), and for some constants a and b we have
|D%,Df,q| = C, zat~!= b~ 14,

|D%,DE,r| = C; ga~""1p-1F],
where a-b=1.
Then it follows that for sufficiently small 6 we have the estimate

(4.149 lull = 6Cy | Pul|
if uc# R and u=0 where |x,|>$.

Proof. As in the proof of Proposition 4.2, the estimate (4.14) is stable for
bounded perturbations. Since the theorem of Calderén and Vaillancourt gives that
r* is bounded in L2, it suffices to prove the proposition when r=0. By making a
linear symplectic transformation, we can assume that a=1, and then the proof
is given by Beals and Fefferman [1].

5. Uniform local solvability of the Hamilton operator

When it is possible to factor the imaginary part of the principal symbol, that
is, case iii) in Proposition 3.3, then in order to localize the estimate of Beals—
Fefferman (Proposition 4.3) we have to construct operators which approximately
commute with P. This means that the corresponding symbol m must satisfy the
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equation
5.1 H,m=0 when p=0,

where H), is the Hamilton field of the principal symbol p. In the case
Px, &) = &+ia(x, EVb(X, &), (xo, X)ER™Y,

where a(x, £)=0, we obtain H,=d,+iaH, when b=0. We shall construct
symbols m satisfying (5.1) when 5=0. It will then be possible to estimate the cor-
responding commutator by cutting off near 5~1(0) and using Proposition 4.2.

Since the purpose is to construct symbols, it is important to obtain non-trivial
solutions to (5.1) which are defined in a fixed neighborhood of the origin and have
fixed bounds on every x’, ¢ derivative (in suitable coordinates). Hormander [3,
Section 4] has proved the existence of m satisfying (5.1) when b=0. In this section,
we are going to make his results uniform. )

Let B~ (R¥ be the Fréchet space of functions in C=(R¥) with uniform bound
in R* for each derivative.

Definition 5.1. We say that Q< W if
Qu = dgu+ia(x)0,u

where 0=a(x)€C=R**?) and {a(x,, +), x,€R} is bounded in B~ (R¥). A set M in
W is called bounded if we have uniform bounds in B~(R¥) on {a(xy, +), x€R}
when 0dy+iad,=Q¢cM.

In the case iii) in Proposition 3.3, it is clear that, in suitable G orthonormal
coordinates, the Hamilton field on the bicharacteristics is bounded in W.

Since we are going to construct solutions which generate the analytic structure
in the (reduced) bicharacteristics (see Hormander [3, Section 4]) it is necessary to
solve the inhomogeneous equation.

Proposition 5.2. For each bounded set M in W, we can find a neighborhood Q
of the origin in R**Y, such that for each bounded set F, in B~ (R¥) there exists a bounded
set Fy in B=(RY), such that if QcM, feC=(R*Y) and f(x,, -)EF; when x,€R,
then the equation

Qu=f in Q,
has a solution uc C=(R**Y) with the property that u(x,, -)€F, when xo€R.

The proposition will be proved by using suitable a priori estimates and the
Hahn—Banach theorem. To begin with we need the following L2 estimate.
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Lemma 5.3. For each bounded set M in W there exists 6=>0 and a neighborhood
U of the origin in R* such that

(5.2) lul = GollQ*ull
when Q€M and ucCy((—9,8)XU).
Proof of Lemma 5.3. First we observe that if x”=(x,, ..., x;) then
{a(xy, =, x7), (%0, x")ERY}
is uniformly bounded in B<(R) when Q=4d,+iad,¢ M. Thus it suffices to prove
the estimate (5.2) when k=1. In that case we put

Clully = @or(f 1@+ &y )
if ue s (RY). ,
Choose ¢;(1)€C™(R), j=0, 1,2, such that 3 ¢3=1, ¢, has support when
(—1)t=1/2, j»0, and [t|=1 in supp ¢,. It is obvious that ¢;(&)€S(1, g),
where g, is the following metric in T*R,

80,51, (1 T) = |2+ |21+ &D).
It follows that

(5.3) 2leyul = Cllul = C'(Z o} ul +lull¢-y)
and
(5-4) logull = Clullt-y

if ueCy (R2).

Now we note that iQ* fulfills the requirements on P in the case n=1 in Proposi-
tion 4.2. In addition, we have uniform bounds on the symbols when Q€ M, because
a(x,, +) 1s uniformly bounded in B~(R) then. Since ¢;(¢,) has support when
(—=1y¢,=1/2, j>0, Proposition 4.2 gives, if 6=0 is small enough, that

(5.5 loFul = Ci(loy Q" ull +llulli-1/0)

if uc#(R% and u=0 where |x,|>4.
If we combine (5.3)—(5.5), we obtain

(5.6) ‘ lull = U@ ull +lull <1/

if ue#(R?» and u=0 where |xo|>0. Now, if c¢>0 is small enough, we have
(5.7 lullt-ym = QC) 7 ull,

if ucCy (R?) has support where |x;|<c. In fact,

Uultcam)? = [ FOo—y)uCxe, %) (xo, y1) d dx, dyy,
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where F(x;)¢L} (R) is the inverse Fourier transform of (1+¢&2)~4, If we choose

loc

¢ small enough, we get
SO IF@idr= e,

which proves (5.7). Now, by combining (5.6) and (5.7) we obtain (5.2), which proves
Lemma 5.3.

Proof of Proposition 5.2. We shall use the H('s)-norms I -HES), which were
defined in Section 2. Now it is clear that, after multiplication with a suitable cut-
off function, we may assume that f has compact support. Since {f(xy, +), X€R}
is contained in F,;, which is bounded in B~ (R*), we find that f belongs to a bounded
set EC H(. =nHy,, thatis,

(5.8) I/l = Ci, seR.

Now, Lemma 5.3 gives >0 and a neighborhood U of the origin in R,
such that
(5.9) lul = CollQ*ull, when u€Cy((~6,8)XU).
Choose an open neighborhood ¥ of the origin in R*, such that V< U, and choose
a fundamental decreasing system of neighborhoods of ¥V in U,

Vo..ccUyco Uy Uy =U.
Let
my (&) = JI7 A +3|E[DV2 = (Ey(E)) ™

and my=FE,=1. By induction we are going to prove that we can choose &;€(0, 1),
such that for every N

(5.10) [/ lmy = Im¥fl = Cq [IY 14+277), when f€E,
and
(5.11) lulley = NENul = Co [T} (1427 Q% ul g, »

when u€ Cg*((—9, )X Uy).
When N=0 these estimates follow from (5.8) and (5.9). Now, if (5.10) is ful-
filled for some N, then
L Wy ss = WUy + R ea (1 1y + 1))

=C; H;v(l +27 )+ (ey+1Cni1)?

so by choosing &y, small enough we obtain (5.10) with N replaced by N+1. To
prove (5.11) we need the following lemma which will be proved later in this section.

Lemma 5.4. Assume that for some N

[ulley = KyllQ ullpy, when ucCq™((—8, )X Uy).
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Then for every ¢=0 there exists ¢=0, such that

luley,, = Kn(1+ Q" gy,
when u€Cy ((—96, )X Uy,,), if eyp1=e.
End of proof of Proposition 5.2. By induction we obtain ¢;€(0, 1), such that

(5.10) and (5.11) are fulfilled for every N. With this choice of ¢;, let FSH(,, be
the Banach space with the following norm:

luls, = @)=+ [ @) Pm (&) dg,

where

m*(&) = [IT (L+€51EP),

which is then convergent for all &. Then F is the dual space of Cy(R**%) with
the norm

lol2m = @m)~*-2 [1B(O)1Pm (&) ~2de.
Letting N—e in (5.10) and (5.11) we find

(5.12) 1flle =eCs, when fEE,
and
(5.13) I0ly/m = eCollQ* vlly/m> When v€C5(Q),

where Q=(—4,8)XV.
If we apply the Hahn—Banach theorem to the mapping

L300 ~ (v,.f)
where L={Q%v, v€Cy (Q)}, we get ucF such that

(5.19 lullm = eColl flln = € CoCy,s
and
(5.15) Qu=f in Q.

This implies that u belongs to a bounded set in H_.,, since
lultwy = (&1-..en) M uln, N=>0.

The equation (5.15) gives that d,u has fixed bounds in H(’m)(Q), that is, locally in Q.
It is then clear that we get fixed bounds for each x” derivative of u locally in Q.
If we differentiate the equation (5.15), we successively find that each derivative of
u is in L*(Q), which implies that u€C=(Q). If we multiply » with a suitable cut-
off function and choose a smaller Q, we get u€C=(R*™Y) satisfying (5.15), such
that u(x,, +)€F,, a fixed bounded set in B~(R*), when x,€R. This completes
the proof of Proposition 5.2.
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Proof of Lemma 5.4. We are going to use a metric g, in 7*R¥, which depends
on the parameter ¢,

g.(t, ) = [P+t /(1+|1%) at (X, &).

We assume that O<e=1. It is then easy to see that g, is uniformly ¢ temperate.
We find
sup g,/g¢ = hi = (1+&&|I'P) =& at (X, ).

It is easy to see that 4, is uniformly o, g, temperate when ¢=yp, which implies that
Ey=]IY (hsj/aj) is a weight for g;.
Choose ¥ (x" )€ C;°(Uy) such that O0=y=1 and ¥ (x")=1 when x’¢Uy,,. Let
F (&) = +e|g B2 = h()e,

and v=yFu, when u€Cy((—5,8)XUy,,). Then ve€Cy((—4, 6)X Uy), and, if
Ey ,=Ey-F,
Eyv=EyY, Flu+Ef1u,

since Yy=1 on suppu. The symbol of [\, FY] is bounded in S(k,F,, g,), uni-
formly in e, which implies that the symbol of EX[¥, FyI(Ex1,)"” is bounded in
S(h,, g1) uvniformly with respect to e. Since h,=¢ it follows that

(5.16) lulgy,, = lvle, +eCllullg,,, when e=1.
Since v€Cg7((—98, 8)X Uy) the hypothesis of the lemma gives
(5.17) Ivley = Kn Q" vlgy -

We are now going to estimate the right-hand side of (5.17). Since =1 on suppu
we find

(5.18) EYQ*v = EYQ* Y, FXlu+ER[Q", FYlu+Ey,;10%u.
The first term on the right-hand side of (5.18) is
(5.19) ERQ*lY, FXlu= EY[O* Iy, FYT]u+E¥ Y, F'1Q"u.

Since the symbol of [\, F] is uniformly boundedin S(%,F,, g,), and &,€S(h;Y, g)
uniformly in &, we obtain that the symbol of EY[Q*, [, F,’]] is uniformly bounded
in S(h,Ey,q, g)- This implies

(5.20) IEX [0 ¥, F!T]u| = eCllul gy, -
As before, we find
(52D IEX Y, FX1Q*u| = eClQ* ullg,,,-

The second term on the right-hand side of (5.18) is

(5.22) EY[Q*, Flu = [EY,[Q%, FX1Ju+[Q", FXI(F ) EXs1u.
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The symbol of [Q* F)] is in S(hF,,g,) apart from the first term, which is
if{a(x), F,(&)}¢,=b,(x, &), where b,cS(hF,,g) uniformly in ¢ and x,. Then
the symbol of

[E]V, [Q*, Fw]]_[EI“ya b;v]Dl
is uniformly bounded in S(h,Ey,,,g,) when e¢=1. Since the symbol of [EY, b!]
is uniformly bounded in S(h EyhF,, g,), the symbol of [Ey,[Q* FY]] is uni-
formly bounded in S(4,Ey,,, g), which implies

(5.23) I[Ex. [Q*, FX1]u|| = eCllullg,,,-

To estimate the second term on the right-hand side of (5.22) we need the following
Lemma 5.5. Assume that M is a bounded set in W. Then

(5.24) IQ*, FXI(F Yol = Ce*(1Q* ol +]v])

if €S (REY, QEM and F(&)=(1+8&' 51"
End of proof of Lemma 5.4. The estimate (5.24) implies

(5.25) Q" FI(F D" Esqul = C’el"“(liQ*ullsNﬂ-l-IIuIIEN“)

since the symbol of the commutator [Q*, Ey, ,] is uniformly boundedin S(Ey,,, &)
If we combine the estimates above, we obtain for some constant C

(5.26) 1% lley = (1+ Ce¥)Q* ullgy,, + Ce¥4 gy,
Together with (5.16) and (5.17), this implies '
(5.27) lullgy,, = Ky(1+Ce) Q% ul gy, ,+ C e ull gy, -
If e=1 is sufficiently small, then
lullgy,, = Kn(1+C7¢) Q" ullgy ,,»
which proves Lemma 5.4.
Proof of Lemma 5.5. We shall use the norms

lulls,ey = (B 5)*ull, sER.
Then we have
Null(-s,0p = &fufl, if s=0.

We shall prove the estimate
(5.28) lR*, FXIEFEY" vl = CUQ* vl (-1a, 5+ 0l (-1/8,0)
when v€ ¥ (R*Y). This will give us (5.24).
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The symbol of [Q*, F](F,Y)* isin S(h,, g,) apart from the first term, which is
A,(x, &) = i{a(x), F.(£)}&/F.(£)

=i 2k 0y, a(x) &)
Thus, we find

(5.29) Q" FFIF "ol = 47 vl + Clloll(<1,0)-
Since 0=a4=C and |9%,4|=C, it follows that
|grad a| = 2C12g1/2,
We are going to prove (5.28) by estimating an approximate square root of a(x)¢,.

The motivation for this is that, since

Re (Q*u,u) = —(aDyu, u)—(1/2)((D,a)u, u)
we obtain

(5.30) [(@Dyu, w)| = C(1Q%ull*+ ] ull®).

We can choose ¥;(£)€S(1, h7?g), j=0,1,2, such that > y3(&)=1, ¢, has
support where (—1)/¢,=c-h;** and ¥, has support where |&|=C-h7%% In
fact, with ¢;€C~(R) as in the proof of Lemma 5.3, one may use ¥;(¢)=
@;(&,h¥4(&"). It is easy to see that A" 2g, is uniformly ¢ temperate when O<g=1.
Note that A7 Y2g, =h7Y?|dx’|*+h2?|d¢’|> so the quotient with the dual metric is
(h1/2)2.
We now partition the symbol
Ay = 2 (AND"

It is clear that & y2(&)eS(h7¥% h7Y2g), since |¢,|=C-h7** in suppy, and
differentiation cannot lead to loss of more than one such favorable factor. Thus,
A S(hY4, h7Y2g), which implies

(5.3 (498" vl = Cloll-1/a,)-
Now we factor 4,3 when j>=0. We have
B;(&) = ((—1) &) V2¥;(ENeS (RS, by g,
since (—1)¢,=ch;**=c in suppy,. Let
C;.1 (&) = Bi(&) &R (E)eS(h?, b 2 g, j #0.

iZk (8xka)Bj Cj,k = (— l)jAel//?’

and the symbol of i 3, (9, a) By C}, is equal to (—1)y4,y%, j=0, apart from
terms in  S(hY?%, h7Y%g). Thus

Then

(5.32) [A¥v| = Zj;eo [[(3xka)B]‘~"C}:’kv[[ +C“v”(—l/4, BE
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Now, we have |9, a|=2C"*a'?, and

la*?B}u||? = (aB}u, BYu) = ([BY, al BY u, u)

+ (=1 (([a, YY1D1 Yy u, w)+(aDy iy u, ¥y u)),
where the symbols of [BY, a] and [a, Y] are in S(1, h7*?g,) and S(h'% b Y?g,)
respectively. If we use the estimate (5.30) we find

la2Byull = CUQ* ¥} ull +ulla/a,e)
= C'(| Q% ull +1ull (1/a, s
since the commutator [Q*, Y] isin S(1, A, Y?g,) apart from the first term, which
is i{a, ¥;}&,€S(h7Y4, BT V?g,). This implies
(5.33) 105, @) BY CPxvll = CUIQ*Cravll +1 CHavll aya, )
= C(1Q% 0l -14,6p H 10l (- 1/,2)-

In fact, C;,€S(hY? h;'2g,) so the symbol of the commutator [Q* C},] is in

S(hY?, h7"%g,) apart from the first term, which is i{a, C; }&,€ S, b 2g,).
Combining (5.29), (5.32) and (5.33), we get (5.28), which proves Lemma 5.5.
We shall now state the result, which we are going to use in later sections.

Corollary 5.6. For each bounded set M in W, we can find a neighborhood Q
of the origin in R*™ and a bounded set F in B~ (R¥), so that if Q€M then there exists
a solution uc C=(R**Y) to the equation

(5.39 Qu = Qyu+iadu =0 in Q,

such that 9 u=exp (W) in Q, where |\w|<mn/6, and u(xy, «)6¢F for all x,. We
also get a fixed bound on grad u and grad (9 u) in Q.

Proof. First we note that if u solves (5.34) and 9,u=exp (W), where |w|<n/6,
then we get a fixed bound on dyu in Q. If we differentiate the equation (5.34) with
respect to x;, letting v=0,u, then we get the equation

(5.35) Ov = dyv+iad,v =—i(0,a)v in Q,

which we want to solve with v=exp (W)eC=(R**?"), where |[w|<n/6 in Q and
w(x,, +) is contained in a bounded set in B~ (R¥). As before, we also get a bound
on gdyv then.

If this is possible, then by integrating (5.35) with respect to x; in a smaller neigh-
borhood £ putting

u(®) = [ o(x, 1, ¥ d,
we get
Qu = dyu+iadu =f in L,
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where f(x)=i(av)(x,, 0, x")€C™ (R**1) is independent of x,, and f(x,, <) is
bounded in B~(R¥) when x,6R. Then

u(x)— [ 0 @, x7) dt,

multiplied by a suitable cut-off function, is a solution to (5.34) with the desired pro-
perties if we take a smaller Q.

Thus, it suffices to solve (5.35) with v=exp (w). Then we obtain the following
equation for w

(5.36) Ow = dyw+iad,w =—idya in Q,

and we want to find a solution we C=(R**%), such that |w|<n/6 in Qand w(x,, *)
is contained in a bounded set in B=(R¥).

Now, since Q€M, d,a(x,, +) is contained in a bounded set in B~ (R¥), so
Proposition 5.2 gives a neighborhood @ of the origin in R**! and a solution
w(x)€C=(R*™) to (5.36) such that w(x,, -) is contained in a bounded set in
B>~ (R¥). As before, we get a bound on grad w in Q. By subtracting w(0) and taking
a smaller Q, we obtain |w|<n/6 in Q. Then v=exp (w) is a solution to (5.35)
with the desired properties. This completes the proof of Corollary 5.6.

6. The construction of a local weight function

In this section, we continue the work in Section 5 to construct special solutions
to the equation

(6.1) Qv = g¢v+iad,v =0

when Q is in a bounded set in W (see Definition 5.1). According to Hormander
[3, Theorem 4.6], such a solution must be an analytic function of the solution u to
(6.1) given by Corollary 5.6. Thus, we have to construct analytic functions with
certain properties in varying domains.

Proposition 6.1. For each bounded set M in W and constants &,c=>0 there
exist positive constants 8, 0, C,, Co=<Cy<Cp=<c¢, a neighborhood

Q = {xeR*™: x| < 6, |x1] < o, [¥7] < 0}

of the origin, and for each Q¢M a solution v€C™(Q) to the equation

Qv = dgv+iad,v =0 in Q,
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such that

(6.2) Rev=0 in Q,

(6.3) Rev=g¢ in {x€Q: [x1] = ¢},
6.9 Rev=1 in {x€Q: x| = ¢},
and

6.5) |D%o| = C, in Q for all a,

which implies that |Dyv|=C in Q.

When we prove Proposition 6.1 it is no restriction to assume that Q is con-
tained in the neighborhood given by Corollary 5.6. Thus we may assume that
for each Q€M we can find ucC=(R¥™Y) satisfying (6.1) in Q, such that 9,u=
exp (w) in Q, where |w|<=n/6, and we have a fixed bound for each x’ derivative
of u. We choose x=c so small that u is defined in the set

{x€R* 1 max (|xol, [xy], [x"]) = %}
When Q€M we take this solution u=u, to (6.1) and let
w; = {u(x)€C: [x| =6, x| =d and x” = 0},

which is defined when 6 and d are less than x. When KSC we denote by N, (K)
the set of points in C having euclidean distance to K, dist (z, K), less than A.

We shall prove Proposition 6.1 by constructing the solution v when x”=0
and then perturb with the parameters x”. As indicated before we shall do this by
constructing analytic functions in N, (w,)-

Proposition 6.2. For each bounded set M in W and constant €=0 there exist
positive constants d<xu, A, C, and co<c,<cy<x such that for each Q€M there
exists an analytic function f(z) in N, (w,,) such that

(6.6) Ref=0 in N,(w.,),

6.7 . Ref=e in N(o,),

(6.8) Ref=1 in N(o,\0.,)

and

6.9) Difl=C, in Ny(w,) foral k=0.

Proof that Proposition 6.2 implies Proposition 6.1. Let v(x)=f(u(x)). Then v
is defined in Q if ¢ is small enough. Since we have a fixed bound on grad u we can
choose ¢ independent on Q€M so that u(x)éN (@) when x€Q, u(x)EN, (v, )
if x€Q and |x)|=c, and u(x)eN,(0.\@,) if x€Q and |x,|=c,. Then (6.6)—
(6.9) imply (6.2)—(6.5), which proves that Proposition 6.2 implies Proposition 6.1.
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Proof of Proposition 6.2. Let
7; = {ux)EC: x| =68, x, =(—1x, x"=0}, j=1,2,

and y=y,U9y,. At first sight it seems natural to take Re f equal to the harmonic
measure of y. However, since we have no lower bound on the arc length of y, we
must modify the construction.

Let I'=IyuTl,, where I'; is the union of y; and the line segment
{u(d, (—1) %, 0)+idt: 1€(0, 1)} of length 5. We need the following geometrical
result.

Lemma 6.3. With the definitions above, we have

1) 0=|I;|=Cé, where |I';| is the arc length of T';,

ii) (x—d)[2e=dist (z, [)=dist (z, y)=e(x—d) when z=u(X,,%,,0) where
|Xo|=6 and |%|=d=s.

Proof of the lemma. If we parametrize y; with [—8, 8]>¢—u(z, (—1)'x, 0)€y;,
we obtain that |y;|=C9, since dyu has a fixed bound then. Now we have [I';|=
|y;1+8, which gives i).

Let w;=u(X,, (—1)’%,0)€y;, j=1, 2. Then the arc length of the curve between
z and w;,

(6'10) [O’ llas g u(k-'h x1+s((— l)j%—fl)a O)a J = 1’ 23
is bounded by e|X;—(—1)’x| since |d,u/<e then. Now, the distance between z
and y must be shorter, which proves the upper bound in ii).

To get the lower bound we observe that since the argument Arg(d,#) of

d,u has absolute value less than /6 and |9,u|>e~1, we obtain Re (9,u)=31%/2e.
By projecting the curves (6.10) on the real axis, we find

(6.11) Re ((— 1)) (w;— 2)) = 312|%,— (= 1) xl/2e, j=1,2.
Since |Arg (9, u)|<n/6 we have

(6.12) |Arg (— 1Y (w;—2))| <m/6, j=1,2

We also obtain

(6.13) 73 = |Arg (w—w,)| = 2n/3

when wel';\w;, since dyu=—iad,u, where a=0.
If we combine (6.11)—(6.13) we find that

dist (z, w) = (3Y2(x —|%,])/2e) tan (7/6) = (x —d)/2e

when werl, which proves Lemma 6.3.
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End of proof of Proposition 6.2. Put
f@)= 23/25—1/2(frl(z—w(s))—l/z ds+~/r2 (w(s)—z)=12 ds)

where we have chosen the branch of the square root in C\R™ which is real on
R+ and we have integrated with respect to the arc length. We find that fis analytic
in a neighborhood of w,, if d<x. If z€w, , cp<%, then dist (z, I =(x—c,)/2e=0.
Thus we obtain that dist (z, [=(x— co)/3e if zeN,(w,) and 1 is small enough.
This implies

Re f(2) = CO~12(se—cp)~1/25 = CHV2(x—co) 12,

when zEN,(w, ). For fixed c,<x this can be made smaller than & by choosing
6 small enough. We fix ¢,<x and d<x so that this is the case.
Choose ¢, and ¢, so that max (c,, ¥ —d/e)<cy<cy<x. Since

|Arg ((— 1)/ (w—2))| < 27/3

and |w—z|=(x—c,)/2¢ when z€w, and wel;, we find that Re f=0 in N,(w,.)
if A is small enough. As above we can estimate

|Dkf(2)| = C 6Y2r-12-% when dist(z,T) =,

so it is clear that we get (6.9) for sufficiently small 4. It remains to prove (6.8) for
small 2. If z€w,\w, then Lemma 6.3 gives that dist (z, y)<e(x—c)<d. Thus,
for sufficiently small ). 'we find that dist (z,p)<6 if zEN, (0 \w,). So to prove
(6.8) it suffices to show that Re f(z)=1 if dist (z, 7)< and |Arg ((— Yy (w—2))|<
2n/3 for all werl;.

In this case we can find wy,Cy such that |z—w,|=J. Assume for example
that we€y,; the same argument works if w,€7,. Let y, be the component of I'y\ {wo}
which has arc length at least 6. Since |Arg(9,u)|<n/6 and dyu=—iad,u, we can
parametrize y, with the distance to wy.

Since |Arg ((z—w)™")|<n/3 when w€y,, we find

2Re((z—w)~12) = |z—w| V2 = (|z—wo| +|w—w) /2
when w¢y,. This implies

Re f(z) = 2%25-2 [ . Re((@—w(e)~#)dr

= oy [ @+n)rdr=1

since |z—wy|=8. This completes the proof of Proposition 6.2.
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7. Proof of Proposition 2.7

Let P(x, D)=D,+iF"(x, D’)+R"(x, D’), where F and REC=(R**1) are
bounded functions of x,¢R with values in S(h~%, g) and S(I,g) respectively,
Fis real and does not change sign for fixed (x’, &’). Here the metric g is ¢ temperate,
conformal to the metric |dx’|2+|dé"?/(1+|€]*) in T*R", which we denote by g,,
so that g=m-.g,, where 1=m?(£)=(1+&|?) is independent of the x” variables.
Then we find that A%2=sup g/g°=1. As in Sections 2 and 4, we shall use the norms

lully = (@m)="-* [1a@)[2h(&)~* de)

when u€ % (R"TY). Assume that ¢ and ¥€S(1,g) and that y=1 on supp ¢.
Then we shall prove that for every ¢=>0 there exists §=0 such that

(7.1 To*ull = C Y™ Pull o+ llull (—1/15) + | Putll (- 16/15))

if u€ % (R™ has support where |x,|=3J. We shall do this by localizing in the Beals—
Fefferman metric defined in Section 3 and using the estimates in Section 4. It will
follow from the proof that § and C do not depend on P and g as long as the symbol
of P has a fixed bound on every seminorm and g is uniformly ¢ temperate.

Since F(x, &)€S(h™1, g) uniformly in x,, we may normalize F'so that |F|=h"1
and |Fi?=h"'. We define the Beals—Fefferman metric G=Hg/h, where H is
defined by

H-'=max(h=%, sup|F|, (sup | F|{)?h).
*o *o

Then h=H=h"=1 so g=G=h"""g and sup G/G°=H®=1. Proposition 3.1
gives that G is uniformly ¢ temperate if this is the case for g, and F has a fixed bound
on every seminorm in S(A7%, g). Then we also obtain that F has a fixed bound on
every seminorm in S(H %, G), and since g=G we find that a bounded set in
S(1, g is uniformly bounded in S(1, G).

Choose a symbol {p,}€S(1, G) with values in £% so that > ¢;=1 on supp ¢.
We can choose the support of ¢, so close to (x;, &) that G only varies with a fixed
factor in supp ¢,. If we put G,=G, g and compose suitable cut-off functions
with the G, distance to (x;, &), it follows from [4, Lemma 2.5] that we can con-
struct symbols {,} and {x,}€ S(1, G) with valuesin 2, such that Y, =1 on supp ¢,
and y,=1 on supp ¥,.

It is clear that we can choose these symbols non-negative and with support
so small that G and g only vary with a fixed factor in supp y; and that we have
one of the cases i)—iii) in Proposition 3.3 there. By shrinking the supports we may
assume that ¥ =1/2 on supp y, for all k. Later in the proof (see case III) below)
we shall pose additional restrictions on supp ¢,, but this will only change the
seminorms of the symbols (see [4, Lemma 2.5]).
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Let P,(x, D)=D,+iF(x,D’)+R}(x,D’) where F,=y,F and R,=yR.
Then it is clear that Fi ¢ S(H™%, G) and R,£S(1, G) uniformly in x, and k. In
what follows, we shall often consider {P,} as an operator with symbol having dia-
gonal elements in £ (¢2, £?) as values.

Since the metric G is conformal to the metric g,, it follows that the operators
Py satisfy the conditions in Proposition 4.3. In fact, we can take a=(G,(e, 0))~*
and b=(G,(0, e))""/%, where e is an arbitrary unit vector in R”, since then a-b=
H'=H(x,, &)=1.

Now, the choice of y, and Proposition 3.3 imply that we have one of the follow-
ing cases

I) ¥ |C=H=h" in supp F,,
IT) F, has constant sign,

M) Fi(x, &)=a,(x, &)b (x’, &), where O0=qgcC>R*Y) is uniformly
bounded in S(1, G) when x,€R, b, is uniformly bounded in S(H~!, G) and
H,|b,|$=c>0 in supp a,.

Since > ¢@2=1 on supp ¢, the calculus gives as in the proof of Proposi-
tion 4.1 that

(7.2 lo*ul® = Zllo¥ o*ull>+(*u, u)
where r€ S(H2, G)S S(A'?7, G), so we obtain
(7.3) I(u, w)| = Cllull G-

Thus it suffices to prove that for every &=>0 there exists =0 such that

(74 Do e*ul® = CUYY Pullyy +1ullf- 115 + | Pull - 1615 + 2 0* ull?)

if u€#(R"*") has support where |x,|=4. In fact, for sufficiently small  the esti-
mates (7.2)—(7.4) imply (7.1). We shall prove (7.4) by estimating the terms in the
cases I)—IIT).

I) Let K, be the set of all k for which A%'/C=H=h"" in supp F,. Then
{Fi}x € S(h~%", G) uniformly in x,. Proposition 4.3 gives for sufficiently small
4, that
(7.5) log ™ ull = 6C| P @™ ul
if u€#(R"*") and u=0 where |x,|>5, for ¢} @*uc P (R**Y) has support where
Ixo|=8 then. Now we have
(7.6) [ Pxoi 0" ull = [Py, o¥l@™ull +l 0¥ [Pe, o™ 1ul

+llo¥ 0¥ (P — PYull + | @ ¢* Pul.
The calculus with symbols with values in #2 and Z(¢2, £2) (see Section 4) gives
that [P, of1=Ey, where {E}€S(1,G) uniformly in x, with values in #2. Thus
we find
7.7 2 I[Py, o¥1p*ull? = Cllo™ul2
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We also obtain [P, ¢"]=4; + By, where A4,={F,, ¢} and {B,}¢S(H,G) uni-
formly in x,. Since {F,}g € S(h=%7, G) uniformly in x, and @€S(l,g) we find
that {4,}x €S(#'™, G) uniformly in x,. This implies

(7.8) 2 lleE [P, 0*1ul? = C Sk, I[Py, ¢*]ull* = C7 |ull{-1119-

If we consider {(P,—P)} as an operator with diagonal elements in Z£(¢2, £2) as
symbol values we find, since y,=1 on supp ¢,, that ¢y " (P,—~P)=r;, where
{r,}€¢ S(H, G) uniformly in x,, with values in #2. Thus we obtain

(7.9) 2ok o* (P—P)ull® = Clullt-g)-

Since ¥=1 on supp ¢ we find that @*=¢*y*¥+r", where re S(H? G). This
implies that
(7.10) 2 loxe*Pull® = Cllo*Pul? = C" (1Y Pul*+ | Pullt-16/15)-

If we combine the estimates (7.5)—(7.10) we obtain

(1.11) 2, lloxo*ull> = 8> C(1y* Pull®+ | Pull-1615) + | ull {- 115 + @™ ull®
if uc#(R"*1) has support where |x,/=6, and & is small enough. This gives the
desired estimate in case I).
Before continuing with the other cases we observe that since
ox " u = @ o u+or, olu,
where {[¢}, »*]} has symbol in S(H, G) with values in £2, we obtain
Zlererul? = C(Z ok ull+lult-em)-

Thus it suffices to estimate > |@y u]|? in what follows.
II) Let K, be the set of all k for which F; has constant sign. Since F,=x F
and y,=1 on supp ¢, Proposition 4.2 gives, if § is small enough, that

(712 - 2 llopull® = 6C Sk, llor Pull*+ Clulli-y/a

if uc#(R"™*Y) and u=0 where |x5|>5. Now =1/2 on supp ¢, $O
o = (@l — D) ow, VI Y" + 7,

where {7} S(H? G) with values in #2. This implies

(7.13) 2 ok Pull®* = C (1" Pull®+ [ Pul?-16/15)

which combined with (7.12) give the desired estimate in case II).

II) Let K, be the set of all k for which F,=a.b,, where 0=q,cC~(R**?)
is uniformly boundedin S(1, G) when x,€R, b, is uniformly boundedin S(H 1, G)
and H,b,|9=c>0 in supp a,. In this case we shall localize the estimate of Beals
and Fefferman (Proposition 4.3) by using symbols which are elliptic in supp ¢,
and which approximately commute with P,.
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Lemma 7.1. For every &£>0 there exist positive constants 6y, @, so that if
k€K there exists my(x, EVeS(h™%, G) uniformly when |x,|<&,, with support where
V=1, such that

a) Qo +ia H, m=AS(H~°, G) uniformly when [x,|<d,,

b) |1/m|f=C; where the G, distance to (x;, &) is less than g, and |xg|<d,.

Proof of Lemma 7.1. Choose G, orthonormal coordinates z’=(z,, z”) with the
origin at (x;,&) and let z=(z,,2)=(xy,2). Now cH;'=b|¢=CH; ' in
supp a; and

Gf (Hy,) = sup o (Hy,, W)I*/Gi(w) = sup [(dby, w)¥/Gy(w) = (Ibilf)*

Since G,=H;G; we find that the Hamilton field H, transforms to a vector field
with fixed upper and lower bounds in a fixed neighborhood of the origin. Since
8“H,,k=H 3%, Wwe also get fixed bounds for all derivatives of the vector field.

Let di(z)=a,(x, &). Then it is clear that 0=a,€ C=(R**?) with fixed bounds
for each z’ derivative. By a change of z” variables we may transform H, to 9, in
supp @,. Observe that G, remains uniformly equivalent to the euclidean metric
in these coordinates. It is also clear that y,=1 where |z’|=}2/, for some fixed
positive constant A.

Let Qy=0,+ia,d;. Then it is obvious that Q, is bounded in W when k€K,
(see Definition 5.1). Thus Proposition 6.1 gives positive constants d,, ¢ and co<
¢y<cy=<A, a neighborhood Q={z: |zy|<dy, |z:]<¢a, |z”]<g} of the origin and a
solution v, €C~(Q) to the equation

(7.14) O, =0 in Q,

such that v, has a fixed bound for each z” derivative,

(7.15) Rev, =0 in Q,

(7.16) Rev, =¢/3 in {z€Q: |zy| = ¢},
and

(7.17) Revy, =1 in {z€Q: |z]| = ¢;}.

By choosing a smaller ¢ we obtain g<AJ, thus Y,=1 in Q. Choose @(¢)€C;(R)
with support where |t|<c, such that &(¢)=1 where |f|=c¢;, and let

M (x, &) = B(2) B(12"] col0) )=+

where h,=h(x;, £;). Then m, has support where Y, =1 and is uniformly bounded
in S(h™*, G) when |x,|<d8,. In fact, Re v,=0 in supp m, when [xo|<J,, which
implies that |m,|=Ch;%? and differentiation with respect to z;, j=1, can only
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produce factors bounded by |log /|. Since @’(z) has support where c¢;=|t|<c,
and v, satisfies (7.14) in supp m, when |x,|<J,, we obtain a) with

A(x, &) = ia,(2) ' (20) D(|2”] caf @) By~ 2.

Now Rewv;=1 in supp 4, which, as before, gives that 4,€S(A'~%, G) uniformly
when |xg|<&,. From (7.16) it follows that [1/m,|=h%® when the G, distance to
(xy, &) is less than a fixed constant g,. Since differentiation of m, * can only give
factors bounded by [log &/, we obtain b), which finishes the proof of Lemma 7.1.

When ¢>0 and k€K; we choose m, as in Lemma 7.1. Since yY,=1 on
supp my, we have a bound on the number of overlapping supports. Thus we obtain
that {m} €S(h™", G) and {4} € S(h' % G) with values in /2, when |x|<,.

Now we pose the additional condition that ¢, shall have support where the
G, distance to (xf, &) is less than g,, so that |I/m|{=C; in supp ¢, if k€K,
and |xe]<d,. This we could have required from the beginning, but it would have
been difficult to motivate then. With this condition we obtain that ¢./m€S(1, G)
uniformly when |xg|<d,. Thus we find

(7.18) Srllotulr= C(Sxmyull+lullte-em)-
if uc# R and |x,|<8, in supp w. It remains to estimate 2k, Imull? if u
has support where |[xo|=0<dJ,, which we assume in what follows.
Proposition 4.3 gives that if ¢ is small enough then
(7.19) Imiu| = 6C | Pumi ul
if u€ % (R"*Y) has support where |x,|=5. Now we have
(7.20) [ Pemiull = I[Py, mul +||mi (Pe— Pyuil +|my Pul|.

Since Y =1/2 in supp m, we obtain as in the proof of (7.13) that m} =T y" +ry,
where {7y} €S(h™", G) and {r}y € S(H*h™%, G) with values in /2 when |x,|<3,.
This implies

(7.21) 2 lmgPul? = C({[y* Pullfey + 1| Pull - 16/15))

if € is small enough. Since y,=1 on supp m, we obtain as in the proof of (7.9)

(7.22) 2 mg(Pe—P)ul* = Cllullt-1as-

The calculus with symbols with values in £2 and Z(£?, £?) gives that the symbol
of the commutator [Py, my] is equal to —iH, m,+C,, where {C,}€S(h™°H,G),
when  |x,|<d,, with values in /2% Now H,m,=0ym+i{F,, m}=0,m+
ia, H, my+ib{ay, m}=A,+B,. Here we know that {4} €S(h'~%, G) with values
in /%, and since B, =ib,{a, m,} we find that {B}; €S(h™", G) uniformly, when
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[Xo| <8y, with values in £2. Thus we obtain
(7.23) WPy, mJull® = 3 3 (| A ull>+|| By ul* -+ C¥ ull?)

=3 Y 1 BYul®+ Cllullt-er)-
Thus it suffices to estimate '||By'u|®. This will be possible since the symbol B,
vanishes on the zero set of b,. First we make a factorization so that we get a symbol
which does not depend on x,.

Since ¥, =1 on supp m, we can write B,=E,-M,, where E,=ihi{a,, m}/H,
and M,=y,b,h;°H,, so that {E}¢S(1,G) uniformly when |x,|<J, and
{M}eS(h™*, G). Then we obtain
(7.24) S NBEul® = C(Z | MY ull2+|ulfe-o/m)-

To estimate > | M. u|? we need the following lemma which will be proved later,

Lemma 7.2. Under the assumptions above there exists 6=0 so that for & small
enough we have the estimate

(7.25) ZKS | M u|? = C(”‘pwP””%a) +”u”%—l/15)+”Pu”%—16/15))
if uceR*Y has support where |xy|=9.

If we combine the estimates (7.18)—(7.25), using Lemma 7.2, we obtain for
sufficiently small ¢ and §
(7.26) 2k, |98 ull® = C(S* I Pulllyy +ul{- 115 + | Pull{ - 16/15))
if u€#(R"") and |x,|=6 in suppu. This gives the desired estimate in case III)
and finishes the proof of Proposition 2.7.

Proof of Lemma7.2. We shall prove the estimate (7.25) by cutting off
M, =\, H,.b.h " near the zero set and use the estimate of Proposition 4.2. Choose
&(1)€Cy (R) with support where [f|=1 such that &(z)=1 with equality where
[t]=<1/2, and let

O = P(H2H M) = O(HP Y by).

Then we obtain that 6,€S(1, G;) uniformly, where G,=H VG, since differen-
tiation with respect to unit vectors in the G metric can only produce factors bounded
by H7 12,

Let M, ,=60,M,. Then M, £S(H"h™* G,) uniformly, since |M,|=
H™p* in supp 6, and \

|M|§ = HI"|M,|§ = C;H'/**h~*

if j=0. Now (1-0)M,=M, ,+M, , where M, €S(h°, G,) uniformly and has
support where (—1)F=0, because f,=1 in a neighborhood of the zero set of
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b, and F=a, b, in supp M,. Since y,=1 on supp M, and {y}€S(, G), we
have a bound on the number of overlapping supp M;, which gives that
{M, o} S(HY2h™2, G)) and {M, }€S(h~% G,) with values in £2.

Now we have

(7.27) 2eIMul? =3 3 | My ull®
Since {M, o} S(H'™h*, G,) and HY?=h"* we obtain
(7.28) 2 1M ull2 = Cllullf-115

if € is small enough. We shall now estimate the remaining terms by using Proposi-
tion 4.2. To do this we need to know that F has constant sign in a G, neighborhood
of supp M, ;. Let :
0, = ®QH:Y2h M,).

Then, as before, we obtain that 8, S(1, G;) uniformly. Now §,=1 with equality
in a neighborhood of the zeros of b, and 6,=1 on supp §,. Thus we obtain that
(1-8)=1 on supp (1—6,) and (1—8)=0 with equality in a neighborhood of
the zeros of b,. Since y,=1 on supp M, we find

a _gk)Xk = Ye,1 X 2

where y; ; has support where (—1)'5,=0 and g, ;=1 on supp M, ;. Now x=0

and F=a-b, in supp x,, where a=0, so we find that (—1)'y, ;F=0. Since

X and (1—8,) are uniformly bounded in S(I, G,) we obtain that Xe,1 and x o

are uniformly bounded in S(1, G;) because they have disjoint support.
Proposition 4.2 then gives for sufficiently small ¢ and é that

(7.29) Ziza il MEul® = 6C S| M Pul*+ Clluli-10)

if u€Z(R"*Y) has support where |x,|=J. Since ¥=1/2 on supp M, ;, the cal-
culus gives as in the proof of (7.13) that

MY, = SEa+ Ry,

where {S, }€S(7%, G) and {R, }<S(H}h™*, G)S S(H? G,) for small ¢ because
H,=H®=p"" Thus we obtain

(7.30) 2 ME Pull® = C(I Pullgyy + 11 Pullf-1615), 1 # 0,

for small e. If we combine the estimates (7.27)—(7.30) we obtain (7.25), which
finishes the proof of Lemma 7.2.
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