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O. Introduction 

Let (X, 0)~(C "+1, 0) be a germ of reduced analytic hypersurface in (C "+1, 0) 
defined by f = 0 ,  where J~(gc,+~,0 is a germ of analytic function in C "+~ at 0. 

We shall prove the following: 

Main Theorem. Assume that outside an analytic subgerm (Y, O) of  (X, O) of  
dimension at most n - 2  the only singularities of  (X, O) are normal crossings then the 
local fundamental group of  the complement of  (X, O) in (C "+l, O) is abelian. 

Remark. Using Milnor fibration theorem ([M] theorems 4.8. and 5.11.) this 
theorem implies that under its hypothesis the Milnor fiber of(X, 0) has a fundamental 
group which is free abelian of rank the number of analytic components of X at 0 
minus one. In particular, if (X, 0) is analytically irreducible, the Milnor fiber is simply 
connected. This result extends a result of M. Kato and Y. Matsumoto ([K--M]) 
which says that if the singular locus of (X, 0) has codimension 2, the Milnor fiber of 
(X, 0) is simply-connected. 

We shall still denote by X and Y representants of (X, 0) and (Y, 0) in a suffi- 
ciently small neighbourhood of 0 in C "+1. 

We notice that, if e>0  is small enough, the balls B 2"+2 of C "+~ centered at 0 
with radius e>0 :  

BP+2:  = {z~C "+1, IIzll < e} 

- -  make a fundamental system of good neighbourhoods of 0 in C "+a with regard 
to both X and Y in the sense of D. Prill (cf. [P] definition 1) by using the local conic 
structure of an analytic set (cf. [B--V] lemma (3.2.)). 
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Thus the local fundamental group of the complement of (X, 0) in (C "+', 0) 
(cf. [G] expos6 XIII p. 15 and commcntaires p. 26) is ~I(B~"+2-X, x), when e>0  
is small enough and x~B~'+2-X (cf. [P] proposition 2). 

By using a theorem of [H--L1] (theorem (0.2.1 .)) it is enough to prove our the- 
orem in the case n = 2. 

Our proof is strongly inspired by [D1] (see [Dz] too) and, of course, the theorem 
above will imply the fact proved by W. Fulton and P. Deligne (cf. [F] and [D2]) 
that the fundamental group of the complement of a complex projective plane curve 
with only nodes as singularities is abelian, as we shall see below. 

Our main theorem above gives a positive answer to a question of IS] (2.14). 

1. Proof  of the main theorem in the irreducible case 

In this paragraph we shall assume (X, 0) to be irreducible. 
(1.1.) As we have said above, we may suppose n=2.  
(1.1.1.) We notice that, because of the local conic structure of analytic sets 

(cf. [B--V] lemma (3.2.)), B ~ - X  has the homotopy type of 5 ~ - X  when ~>0 is 
small enough and 5 6 S t =OB~ is the sphere boundary of B~. Actually one proves that 
B ~ - X  is: diffeomorphic to (S~ -X)X[0 ,  1[. 

(1.1.2.) Let Z be the singular locus of X. Now let us choose e>0  such that 
for any ~', e_-->~'>0, S~, is transverse to X - X  and Z and hence, as above, S~,-X 
is a deformation retract of B~,-X. 

(1.1.3.) We call K,:=Xc~SS~. Then K~ is a manifold outside OZ,:=XnSS,. 
Now OX, is a 1-dimensional compact submanifold of S 5 which is the union of em- 
bedded circles in S~. Thus S~- c)Z~ is simply connected because dim 5~=5 and 
S~ is simply connected 

Locally at every point of OZ~ the space K~ looks like two embedded 3-dimensional 
manifolds cutting transversally along OX~. (Fig 1). 

We call K* :=K~-Os Let T(K*) be a tubular neighbourhood of K* in 55,. 
Because (X, 0) is irreducible, K* is connected. We can apply Van Kampen's 

_ _  5 theorem to S~-Or~--(S,-X)wT(K*).  As (S~ * -  * * - X)c~T(K~) -  r ( K ~ ) - / ~ ,  we 
have the cocartesian diagramm: 

~l(s2-x, x) 
/ /  \ 

~I(T(K:)--K:, x)/~ \~l(S:-Os~, x) = {1} 

~ i f ( K : ) ,  x)" 

with x~r(x:)--K:. 
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J 

Fig 1. 

(I.I.4.) Notice that T(K*) retracts on K* and in the above diagram the homo- 
morphism /3 is induced by the punctured discbundle T(K*)-K*~K*. Thus 
the kernel Ker/3 of/3 is a quotient of Z and/3 is surjective. Actually we shall prove 
below that this kernel is isomorphic to Z, but what we shall need now is that it is 
an abelian group. 

By diagramm chasing one finds easily that the normal subgroup generated by 
the image ~(Ker fl) in nl(S~ -X ,  x) is ~1(5~ - X ,  x) itself. Thus, if one proves that 

is surjective, as Ker/3 is a normal subgroup of ~z~(T (K*~)-K*, x), its image by 
is normal. Then the surjectivity of e would imply that the restriction of c~ to Ker/3 

is already surjective and this implies that nz(5~,-X,x) is abelian as announced. 
Now, if 7r~(S~-X, x) is abelian, using the fibration theorem of Milnor ([M] 

Theorem 4.8.) in this case when (X, O) is irreducible we obtain that nl(S,-X,  x) is 
isomorphic to Z and the Milnor fiber of (X, 0) is simply connected. This shows 
altogether that Ker fl is isomorphic to Z. 
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(1.2.) In this case where (X, 0) is analytically irreducible, it remains to prove 
that the homomorphism e of the cocartesian diagramm of (1.1.3.) is surjective. 

To show this surjectivity we shall proceed analogously as in [D1]. 
(1.2.1.) Let n: X-+X be the normalization of X. 
Consider Z:=(B~-X)X( (X-~)nB~)  and ZI:=(B~-X)Xn-I(XnB~--{O}). 

Let A be the diagonal of 6 6 B~ XB, ,  and we denote by A*:=A-{0}.  
Let us define: 

y)<B. XB., IIx-yll  < a} (A):=  {(x. ~ ~ 

with 0<6<<e, where H n is the Euclidean norm of C a. We shall denote: 

g ( A ) : =  {(x, ~ ~ y)EB. • [Ix-yll <= a}. 

For any xEB~- {0}, we define Va.x by: 

V~,~ := {yEB~, (x, y)EV~(A)}. 

These form a fundamental system of neighbourhoods of x as 6 >0  and 6<<~. 
Denote Ta(X):=Ux~x Va,x. 

(1.2.2.) Now we define a complex non-Hausdorff 3-dimensional analytic mani- 
fold by Ta(X') as an union of charts Va,,(~), with xEn -1 (B~nX), where two points 
pE Va,,(~) and qE Va,,(y) are identified when p=q as points in B~ and x and y belong 
to the same connected component of n-~(XnVa, p). 

The space n-~(B~nX) is naturally immersed in Ta(X" ) by the correspondence 
- - 1  t - -  X *  i: xEn (B~nX)~+x ETa(X), where is represented by n(x) in the chart Va,.(~). 

The natural correspondence of charts from the chart Va,.(~) of T0(X) to the 
chart Va..(x) of B~ induces an 6tale map: 

~P: Ta(X) -'- Ta(X) 

such that the composition of q~ with the above immersion i induces the map 
n-I (B~nX)~B~nX defined by the normalization. 

(1.2.3.) Let ~a, e2 such that ~=>~2>~1>0. We denote by" 

B~,~ := {z<C ~, c1 <= IlzlI <= ~2} 

x~,~ := XnB~,,~, X~,~ := n-*(x~,.~) 
T~(X~,.~) := T~(X)nB~.~ 

T,(X~.~) := ~,-*(r~(x~.,~)) 

(1.2.4,) Lemma. Let ~,  ~2 such that ~ e ~ > e ~ > 0 .  There exists 50>0 such 
that, for any 5, 50=>5>0: 

1) The space Ta(~'q, ~,) is a Hausdorff manifoM," 
2) The immersion i induces an embedding of X,,,~, into Ta(Xq,~=); 
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3) The image i(X~l,~2) of X~l,~ 2 by this embedding is a deJbrmation retract of 

To (~ol, ~); 
4) The space X~I,~, is a deformation retract of T0(X~I,~,); 
5) There is a subspace To of To(X~l,~) such that: 

c~) ~o induces a homeomorphism of To onto a tubular neighbourhood of 

[3) To--i(X~I,~) is a deformation retract of To(X~,~2)-q~-I(X~,~,). 

Proof. Let V be a neighbourhood of the singular locus 2nX~,~2 in B~ such that, 
for any connected component Vi for V, the space Vic~2nX is connected and 
n-~(VinX) has exactly two components. As B~,~, is compact, if 6>0  is small 
enough, for any tET~(X~I,~), there is a neighbourhood Ut of t such that, for any 

# 

t n g 
k 

Fig. 2. 
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t'E Ut, n-l(V~,t,c~X) has the same number of components which is equal to one or 
two, and, if it is two, V~,t, is contained in some component V~ of V and each of  the 
components of n-l(Vo, ec~X)is contained in each of the components of n-l(Vf~X). 

Let xl ,  x2 be two distinct points of To(X~I,~2). If  their images in T~(X~I,~2) are 
distinct, because To(X~,~ ) is a subspace of C a, it is Hausdorff and one finds easily 
neighbourhoods of xl and x2 in T0(X~,~2) to separate Xl and x2 there. Thus the only 
case to be really considered is when x=9(xl)=q~(x2). By definition, as xl#x2, 
the points x1 and xs belong respectively to the charts V~,,(yl) and V~,,(y2) and, Yl 
and Y2 belong to different components of  n-l(Vo,~c~X). Now let U1 and Us be the 
neighbourhoods of xl and xs in To(X,~,,,) the images of  which are both equal to a 
neighbourhood U of x in To(X~,,~,) contained in Ve,,(~)c~V~,,(y~)c~U~. Let x'EU 

t r t t and Xl, x 2 the corresponding points in U1 and Us. If one proves x l#x  s, then 
Us~Us=O. As x[EVo,,(y,) and x'~EVo,,(y~) it is enough to prove that Yl and Y2 lie 
on different components of  n-l(Vo,~,c~X). Because U is contained in U~, for any x '  
in the open set U, the number of  components does not change and is equal to two, 
as it is two at x. As 3'1 and Y2 belong to different components of n-l(Vo, xC~X), they 
lie on different components of n-l(Vf~X) if V0,~c V~. Thus they must lie on diffe- 
rent components of n-l(Vo,x,C~X) for any x'E U, because it is clear that Vo,~,cV~ 
and by choice of 6 each of the components of n-l(Vo,x,C~X) is contained in each of 
the components of n-l(V~c~X). 

To prove the second assertion we consider the following commutative diagramm: 

B~c~X c To(X) 
where n~ is induced by the normalization n. As n, is an isomorphism outside 2;, the 
immersion i restricted to n-l(B~ n X - ~ )  is an embedding. Thus it remains to prove 
that the restriction of  i to X,I,, c~n-1(2) is an injective map when 3 is sufficiently 
small. As X~,~mn-1 (27) is compact, for any 3 small enough and any xEX,~,~c~n -1 (2), 
n -1 (Xc~ l/0,,(x) ) has two connected components and this proves our second assertion. 

Let ~ be the function defined on T~(X,~,~) by: 

Actually one can prove that this function is real analytic in a neighbourhood of 
i(X~,,,). As o----0 coincides with i(X,~,,) and the boundary of X~I,~, is real analytic, 
there is 61 small enough such that for any 6, 0<6~31, the space t~=6 is smooth and 
cuts the boundary of  X~, ~, transversally. This shows that for any 3, Y, 0 < 6" < 6 =< 61, 
T0(X~,~,) retracts by deformation on To,(X~,~). For 0<f i~61 ,  the T~(-~,~) 
define a fundamental system of  good neighbourhoods of  i(X,~,~,), because i(X,~,~) 
is compact;  thus they define good neighbourhoods of  i(X~,,,) in the sense of D. 
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Prill ([P]) and retract on it by deformation. This proves our third assertion. Actually 
one may obtain that T6(X~,**) is diffeomorphic to X'~,,**Xb where b is an open 
2-disc. 

As ~p is dtale, for any 8, 0<8<=8~, the restriction of ~o to the boundary of  
To(X~,,~,), defined by a = 8 ,  is an immersion. As the singularities of X - { 0 }  are 
normal crossings, the self intersections of  ~p (a =- 8) are normal crossings if 0 <  8 ==_ 82 
for 82 small enough. If  82 is well chosen, there is a submanifold with corners 
of  T6(X~,,~,) the corners of  which are the self intersections of  ~0(a-=8) and which 
is a neighbourhood of Zc~X~,~ . 

~_ . T~(X,~.,:) 

Fig. 3 

Because the spaces Ta(X'~,~,) define a fundamental system of neighbourhoods 
of i(X~,~,) when 8 > 0  is small enough, one obtains that the T6(X~,,,) define a 
fundamental system of neighbourhoods of X~I,~ ,. As X.I,~, is a CW-complex, to 
prove the fourth assertion it is enough to prove that the T6(X~,~,) define a funda- 
mental system of  good neighbourhoods of  X~,~, in the sense of D. Prill ([P]), i.e. 
if 8, 8' are small enough, 8 > 8 ' > 0 ,  then T6,(X~,~,) is a deformation retract of 
T~(X~,,~). To prove this fact one builds up a vector field on B~,~ the integration 
of which gives the deformation retraction: actually one obtains a diffeomorphism 
of  manifolds with corners. Precisely we have : 

As ~0 induces an Stale mapping from T~(_~,~) onto T~(X~,,~) when 8 > 0  
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is small enough, we may find a covering (U~)~EA of T6(X~,,~) such that either 
U~nZ~,,~=0 or U~nZ~,,~O and: 

i) if U~nZq,~=O, there is a real analytic function a~: U ~ R  such that 
T~(X~,~)nU~={a~<6},, .. and T~,(X~l,t~)nU~=(a~<6" } for any 5>=6">0 and 

nu := 
ii) if U~nZ~,,~r there are two analytic functions o-a: U~-~R and o-;: U ~ R  

2~-  f such that: T~,(Xq,~,)c~U~={a,<6'}u{a'<6"} for any 6=6 >0, X~,,tnU~:= 
{ ~=0}u{o-~=0} and for any 5 ~ ' - > a  the spaces {a~=5'} and {o-~=fi} are 
submanifolds of U~ which cut transversally. 

Let us fix 5 > 0  small enough such that properties above are satisfied. Now 
consider fi', 5>5">0. In each U~ we build up a smooth vector field v~ such that: 

i) For any x~Uar~(T6I(Xel,%)-To~(X.I,e,)), Va(x)r for some 51,62 such 
that 61>6>6">5~>0, and v~(x)=0 in T6,(Xq,~,)for some 0<63<62. 

ii) I f  U~nr~l,~,=O , for any xEU such that v~(x)r one has d~,(v~(x))<O, 
and for any xEU~nOT6(X~,,~,), v,(x) is tangent to OT6(X~,,~) where OTo(X,,,~) is 
the image of the boundary of T6(X~ ~ ), inverse image of 0X~, ~•  by the diffe- 

. - -  1 ' 0 2  , 

omorphlsm of T~(X~,~,) onto Xq,~ XD where / )  is an open 2-disc (notice that the 
boundary OTe(X~,~,) lies on StyS t ,  ). 

iii) If  U~n~,,,tr , for any xEU~ such that v~(x)r we have da~(v,(x))<0 
and da'~(v~(x))<O, moreover at any point xEU~ such that a~(x)=a'(x) we have 
d~(v~(x))=da'~(v~(x)) and at any point x of U, ncp(OT~(Xq,~)), v~(x) is tangent to 

Now let ((P~)~a be a partition of unity associated to the covering (U~)~cA of 
To(X~,,~), we have a vector field v = z ~ c  a (p~v~ on T~(Xq,~,) the integration of 
which gives the diffeomorphism of To(Xq,~) onto To,(Xtx,,,) for any 5>=6">0. 
This proves the fourth assertion of kmma (1.2.4.). 

The space T~(~I,~)-q~-I(X~,,~,) is readily a tubular neighborhood of 
X~, , , -n  -~ (Z) (wich is diffeomorphic to X q , ~ - Z  by ~p) minus its center, i.e. 
X,~,~ -nX(Z TM) itself. Besides of it its projection into T~(Xq,~) by q~ has overlappings 
near the singularities r .  Therefore for the fif::h assertion, one may take, iPe to be 
the interior of the space {z E T~ (Xtl ' ~): a (z) = ir~f {a (x): x E ~o - ~((p (z)))}. To prove 
e) and fi) we proceed as above, using vector fields. 

Actually we have a more precise result than the one of 5) c 0 of Lemma (1.2.4.): 

(1.2.5.) Lemma. Let e, ez=e =e~. The space (o(Ta)nS~,=T (K~) is a tubular 
neighbourhood of ~ * (X-Z)c~St,=K ., in St,. Moreover (P(To) is diffeomorphic to 

x r 

This lemma comes from the fact S t, is transverse to ~o(SV~) and Lemma (1.2.4.). 

. 6 6 " 6  (1.2.6.) Let P~,,~.=B~XB~-B, XB,, for e2>e~>0 and /}6XB!,~, being 
6 6 the interior of Be, N B , .  
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Let60be the constant defined in the lemma (1.2.4.) for e=e2>e~. Then let us 
choose go and 6 such that go~6 and e~eo>-_e~+6. 

--1 6 6 6 Let Wa be the inverse image of Va(A*) by ~: B~X(n (Xc~B~))~B~XB~ 
where the first component is the projection and the other is induced by the compo- 
sition of the normalization and the inclusion of Xc~B~ into B~. We denote 
W6 :.-~- I/1 --1 ( ge$ (A*)). 

We have the inclusion u: ZJ~W~c~-~(Peo,~)~Z~c~-I(P~o, %) and the 
mapping q: Z ~ - x ( P e o , ~ ) - * B ~ - X  induced by the first projection. 

(1.2.7.) Lemma. The composition qou factorizes through To(X~o,~)-go-i(X): 

Zi ~ Wa (-5 ~]-l(P~o, e~) h-~ Ta(Y.~,,,a)-,p-I((X) </ 
\ /  

& - X  

where ~o o is induced by ~o. 

(1.2.8.) We have the following commutative diagram: 

1 h Z I ~ W o ~  ~ -  (Peo,~2) --'+ T6(XEI, e 2 ) -@- I (X)  + -~-kD Ts- i (Xo,~2 ) 

ZlC~4,- l (P~o,~)  ~ ~ B 2 - X  , D ~o(~_i(_~el ,~))  

j i 
u u 

S2--X + " ~ T(K*) -K*  

where 5~a is defined by Lemma (1.2.4.) 5-a) where in this case e=ez go1 is induced by ~p 
and, i, j, a, k, u are inclusion. 

All the spaces above are connected and denoting by * the adequate base point, 
the above diagramm gives for the fundamental groups the following commutative 
diagramm of groups: 

7~l(Zz~Wo~l_](p~o,z2),  . )h ._~ g l (T~(~ l ,~2 )_go_ l (X)  ' . )  k+~_. T~I(~O - i(~1,~2), ,'l~) 
u, ~ ( q o u )  l(q~0), (ePl). 

+ "-,, + 

rq (S2-X,  *) , ~=~* ~,(T(K*)-K~*, *) 
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As j ,  is an isomorphism because of the local conic structure of X at 0 (cf. 1.2.2.)), 
i, is an isomorphism because of lemma (1.2.5.), (r is an isomorphism because of 5)-- 
~) of lemma (1.2.4.) and k, is an isomorphism because of the 5 ) I f i )  of lemma (1.2.4.) 
we obtain that cr is an epimorphism if and only if (q~0)* is an epimorphism. From (1.1.5.) 
to prove our main theorem it remains to prove the surjectivity of (q~0),. Obviously 
if u, is surjective, (~o0), is surjective, because, Zln~-I(P~o,~2) containing (B~ - X ) •  {y} 
for any yEn-l(XnB~o,~), and Z~:=(B~-X)Xn- I (XnB~-{O}) ,  q, is already 
surjective. 

(1.2.9.) To prove the surjectivity of u,, one considers the following commu- 
tative diagramm: 

ZnL" nS~3 c._. Zc~V6nS~,I c_...~ Zc~V6nP~o,~ ~ ZlnW6n~-l(P~o ' ~) 

Z n N .  ~ ~ ~ �9 Z n L o . ~  , * z l n o - ~ ( L o . , ~ )  

where r is induced by the identity on B ~ - X  and the natural section of n over X -  
and u, v, w, w0, s are inclusions. Moreover e' and e2 are chosen such that ~ S~, CP~o,~ 2 
and (ZnS~,~)• 1] is homeomorphic to ZnB~,. Then L'  is a linear 3-space of 
C3XC 3 going through 0 such that ZnL'~S~,  ~ is contained in ZnVonS~, .  

Now r. is surjective because the complement of r (ZnP~,~2) has real codimen- 
sion two in Z~n~-a(P~o,~,). On the other hand s will be shown to be a homotopy 
equivalence (cf. (1.2.12.)). Thus to prove the surjectivity of u. it will be enough to 
get the surjectivity of (w0).. 

(1.2.10.) Now let ~" be small enough, ~'>>e">0 such that the inclusions: 

ZnB~, 2 D Z n B ~  D Zc~S~ 

Z~L" nBf f  D ZnL"  nS~, ~ 

- -  are homotopy equivalences. From [H--Lz] (compare to H--L~ (th6or~me (0.2.1.)) 
and [Dz] (Assertion 1.3.)) i fL '  is sufficiently general for x E Z n L ' n B ~ ,  the homomor- 
phism: 

p 12 (Wa), : 7 ~ I ( Z n L  nB~,,, x) ~ g l ( Z n B l e ~ ,  x )  

inclusion is an epimorphism because Z is non singular and induced by the 
dim Z n L ' = 2 .  

Moreover one can show that the inclusion of Z n L ' n S ~  1 into ZnL'nB~,  ~ 
induces an epimorphism: 

(cO, : z~l(ZnL" nS~ 1, x) ~ zrx(ZnL' nB~ 2, x) 

for any xEZnL 'nS~ , .  
To prove this last fact first notice that the closure of ZnL"  is a surface and 
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Z n L ' - Z c ~ L '  is the intersection of B~)<(Z n B6~)uXNX and ' 6 L nB~ XB~. By a gene- 
ricity argument one sees that, if L '  is sufficiently general the intersections of  X •  

1~ {0}. Thus inside /)~,~ this and B~ X (s n B~) with L '  are transverse at any point in B E, - 
intersection is a non singular curve outside 0. Actually outside of  0 the components 
of  the intersection of L '  with X X X  are composed of non singular points of  ZnL"  
and the other components of  Z n L " - - Z n L '  are self intersections of  ZnL"  which 
are normal crossing points of  two non singular components outside of  0. Notice 
moreover that this curve (ZnL ' - -ZnL ' )nB~ ,  2 is defined by complex analytic equa- 
tions on a neighbourhood of  B~e ~. Finally, for a general 3-plane L' ,  $1, ~ cuts Z n L "  
transversally, because S~, ~ cuts Z transversaUy and the space of complex hyperplanes 
which are not transverse to ZnS~ } has a real dimension at most  equal to 9. For  the 
same reason S~, ~ cuts ( X X X ) n L '  and ( C a •  ' transversally if L '  is sufficiently 
general. 

Now our assertion will be a consequence of: 

(1.2.11.) Lemma. Let V be a complex analytic surface closed in an open neigh- 
bourhood U of  0 in C" and 0E V. Suppose that the singular points of  V are normal 
crossings with two non singular components outside O. Let F be a curve contained in V 
which contains the singular locus of  V, which is non singular outside 0 and which is 
defined by complex analytic equations in U. Suppose B is a closed ball centered at 0 
contained in U, such that its boundary S cuts F and V - F  transversally. Then the 
inclusion S n ( V - F ) c B n ( V - F )  gives an epimorphism: 

rCl(Sn(V-I ') ,  x) -+ n l ( B n ( V - F ) ,  x) 

for x E S n ( V - F ) .  

Proof. We essentially use Morse theory on a manifold with boundary to prove 
this lemma. 

First notice that i f B '  is a sufficiently small ball the inclusion of ( B - B ' ) n ( V - - F )  
into B n ( V - F )  gives an isomorphism of the fundamental groups: if 0 does not 
belong to F, B n ( V - F )  is obtained from ( B - ] 3 ' ) n ( V - F )  by adding the 4-ceU 
B ' n V  i f B '  is sufficiently small, because B ' n F = 0 ;  if 0EF, we use the conic struc- 
ture theorem already quoted (cf. [B--V] loc. cit.) to show that the above inclusion 
is a homotopy  equivalence (actually in that case ( B - - B ' ) n ( V - F )  and B n ( V - F )  
are homeomorphic).  

We fix such a ball B ' :  notice that its boundary S" cuts F and V - F  transversally 
as any other spheres centered at 0 contained in it. 

Now let us consider the restriction of the distance function to 0 on F. By even- 
tually replacing it by the distance function ~ to a point near to 0, we may assume 
that the restrictions of  a to F and V - F  are Morse functions. I f  r and r" were the 
radii of  B and B '  for a point chosen near enough to 0 the sets a - ~ ( r ) n ( V - F ) ,  
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{a<-r}n(V--F), {r'~G<=r}nV-F are respectively homeomorphic  to Sn(V-F), 
Bn(V-F) and (B--B')n(V-F). 

Let f / = 0  i =  1 . . . .  , k be the equations of  F in U. Let (p be the restriction of  
~k=l  ]f/I z to V. We shall denote by T~(eER +) the sets {cp~c~} and 0T~={~o=a}. 
Thus To=F. One sees that for a > 0  small enough, c~T~ is transverse to S and S ' .  
Moreover if c~ is small enough the inclusion (V-I'~)n(B-B')c(V-F)n(B-B') 
is a homotopy  equivalence, as well as (V-T~)nSc(V-F)nS. 

We are going to do Morse theory on the manifold with corners ( V - T ~ ) n B  
(compare to [H--L1] (w 3)). Actually, because of  the above remark, one must con- 
sider (V-~r~)n{a<=r} instead. To be simple and avoid cumbersome notations we 
shall assume that the function a is actually defined by the distance function to 0. 
The Morse function considered is then - a .  

We shall prove that ( V - 2 P ~ ) n ( B - ] / ' )  is obtained from ( v - ] r ~ ) n S  by adding 

cells of  real dimension 1/2 at least and this will prove our lemma. 
Actually in our proof  the restriction of the Morse function - a  has no critical 

point on the corners. Thus these corners do not bother. The restriction of  - a  
to V-F has critical points of  indexes at least 2 because of the well-known result of  
A. Andreot t i - -T.  Frankel (cf. [A--F]).  It  remains to consider the critical points on 
the boundary. I t  is known that in that case the only critical points giving cells are 
the ones for which the gradient of  - a  is entering our manifold (compare to [H--L1] 
(w 3)). We shall show that precisely for these points the indexes are at least 2 (for 
that purpose the method indicated is very similar to [ H - - L d  (w 5)). 

Let x be a non-degenerate critical point of  the restriction of  - a  to F. For  
small enough the critical points of  the restriction of - a  on OT~ can only appear 
near to a critical point x of  the restriction of - a  on F. Because if - a  is transverse 
to F at some point yEF then for c~ small enough - a  is transverse to 0T~ in a 
neighbourhood of  yEF in V. 

Actually, in the case x is a non singular point of  V, the non-degeneracy of the 
critical point x of  the restriction of - a  on F makes that, for any ~ small enough, 

it appears two critical points x~ and x~ of  the restriction of  - a  on OT~ which tend 
to x as ~ tends to zero. By using the implicit function theorem one shows that, for 
a > 0  small enough, x~ and x~ lie on a real non singular curve going through x. 

Proceeding as in [H--L1] (w 5) (compare to [H--L~]) the index of the restric- 
tion of - a  on c)T~ at x~ or x~ is equal to the index i at x of  the restriction of  - a  
on F or to i §  according to the fact the gradient of  - a  is going out or entering 
(V-f~)n(B-B'). Using again the quoted result of  A. Andreotti and T. Frankel 
(cf. [A--F]),  we obtain that i->l and at critical points of  the restriction of  - a  
on OT~, when ~ > 0 is small enough, and with entering gradient into ( V -  i v )n (B  - ~ ' ) ,  
the indexes will be at least 2. 

In the case the critical point x of  the restriction of - a to F lies on the singular 



The local n~ of the complement of a hypersurface with normal crossings 13 

locus of V, as, at x there are two non-singular components having distinct tangent 
planes, we make the above argument on each of the components. In that case there 
will be four critical points of the restriction of - a  to OT, which tend to x when 
tends to 0 and at two of them the gradient of -cr is entering (V-~ f '~ )n(B-h ' , )  
and the indexes are at least equal to 2. 

This ends the proof of lemma (1.2.11.). 
From the commutative diagramm of inclusions : 

Z ~ L '  nSa)  c~o+ Z~S~, 1 
n 

Cl [bl 
Z ~ L "  nB23 ~ ZcsB 12 

W 2 

J. J, 
Z n L '  nB~? c , Zc~B~,2 

"w 1 

we obtain the commutative diagramm of fundamental groups: 

7 c l ( Z f 3 L ' ( h S  11, . )  (wo)*, rc l (Z(sS  11, . )  

,%). l(b,), 

rq(Zc~L" c~B~' * )-g~),-* ~h(ZnB~e' * ) 
t, 4. [(c,), I(b2). 

rq(ZnL '~B~,  ~, *)  (-i-~5-0. + ~h(ZnB~?, *)  

As (w 0 is an epimorphism and (bl)., (b2). are isomorphism, (we). is an epimor- 
phism, thus (w0). is an epimorphism, because we saw that (Cl). is an epimorphism. 

This implies the surjectivity of c~ and proves the main theorem when X is irre- 
ducible at 0. 

(1.2.12.) To complete the proof of the main theorem in the case X is irreducible 
at 0, it remains to prove that s: ZnS,,=~Zc~P~o,, ~ is a homotopy equivalence. 

To prove this last fact we notice that, for e > 0  small enough, the following 
stratification of Xc~b, obviously satisfies the Whitney condition: 

= ( ( x -  {o}. 

From this results immediately that the stratification of Zn(/)~X/)~) given by the 
following 12 stratas satisfies the Whitney condition (to avoid too many notations 
we assume X and S to be closed in/) , ) :  

(ho-x)x(x-~), ( x - s ) x ( x - z ) ,  (h~-x)x(s-{o}), 
(x-z)x(z-{o}),  (s-{o})x(~-{o}), (L-x)x{o},  (x-z)x{o}, 

(s-{o))x{o), (z-{o})x(x-~), {o}x(x-s), {o} x (z - {o}), {o}. 



14 L6 Dfing Tr~ing and Kyoji Saito 

Now if one chooses to<Z, for any t '  0 < t ' < t o  we have that the boundary and 
12 12 the corners ofB~, XB,, cut this stratification of Z transversally. Thus as it is shown 

in [B--VJ, the polydiscs 6 6 B~,• for 0 < t  <t0,  will define a fundamental system 
of neighbourhoods of 0 in Z relatively to Z - Z .  As the balls B~} define already 
good neighbourhoods of 0 in Z relatively to Z - Z ,  this shows, using again the conic 
structure of the singularity (cf. [B--V] loc. cit.) that for to small enough the inclusion 
Zc~S'cZ~P,o,~ ~ is a homotopy equivalence. 

2. The reducible case 

In this paragraph we show how to get the main theorem when (X, 0) has several 
analytic components from the case when there is only one component. 

(2.1.) We could have proceeded as P. Deligne in [D2], but actually we prove a 
result similar to the one obtained by M. Oka and K. Sakamoto in [O--S]. In fact 
this last result was proved in the projective case. To adapt it to our situation which 
is local, we shall see we need to be much more technical. Thus our main theorem, 
as stated in the introduction, will be a consequence of the result already obtained 
in the first paragraph for irreducible hypersurfaces and the following lemma: 

(2.1.1.) Lemma.. Let X be an analytic hypersurface in an open neighbourhood U 
of O in C a and OE X. Suppose it decomposes locally at 0 into two analytic hypersurfaces, 
i.e. i f  U is chosen small enough." 

x = x l u x ~  

moreover suppose that at any point xE Xlc~X2-O both X1 and X2 are non singular and 
intersect transversally. Then for t > 0 small enough there is a canonical isomorphism: 

~cl(B~--:X, x) -~ 7q(B~--X1, x)Xrq(B~-X~, x) with xEB~-X. 

(2.1.2.) Remark. Notice that )(1 and )(2 might be non-irreducible and have 
"bad"  singularities. Moreover using the quoted result of [H--L1] (th6or6me (0.2.1.)) 
there is a similar lemma for hypersurfaces in C". 

Proof. Suppose X1 and X2 are defined in U by the analytic equations f~=0  
and f2=0:  

x l  := {(x, y,  z )~  c~, f~(x,  y, z) = 0} i = 1, 2. 

For the sake of simplicity in the proof we may suppose U to be a ball centered at 0. 
(2.1.3.) We recall that from the work of [H--L1] if H0 is a sufficiently general 

plane of C a going through 0, for ~:>0 small enough and for affine planes Hc parallel 
to H0 and near to Ho, Hor the fundamental groups of (B~-X)c~Hc and 
(B~-Xi)nH~ ( i= l, 2) are respectively isomorphic to the ones of B ~ - X  and B~-Xi 
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( i= 1, 2). From [L1] for instance, one finds it is enough to assume Hor~X and Hor~Xi 
( i= 1, 2) to be reduced to get the preceding property. 

(2.1.4.) Let us choose coordinates in a way such that f~(x, 0 , 0 ) ~ 0  and 
f2 (0, y, 0) ~ 0 and moreover the topological type of the plane curve f~ (x, 0, z) = 0 
at 0 is the one of a general plane section of X1 at 0 and such that the topological 
type of the plane curve J~ (0, y, z) = 0 at 0 is the one of a general plane section of)(2 at 
0. (Recall that a general plane section of Xi at 0 ( i - 1 ,  2) has a well defined equisin- 
gular type by using the fact that reduced plane sections of Xi define a family of 
plane curves for which there is a well defined general equisingular type at 0 (cf. [Z1])). 

Following M. Oka and K. Sakamoto in [O--S] we consider the hypersurface 
~ o f  DXU, where D={tEC, ] t i l l  }, defined by: 

Y(= {(t,x, y, z)CDXU, f~(x, ty, z)f~(tx, y, z) = 0}. 

Notice that we have a natural mapping ~P-~ D induced by the projection. 
Then p-~(0) is given by the union of two cylinders f~(x, 0, z)--0 and f2(0, y, z)=0,  
and p - l ( l )  corresponds to our original hypersurface X. We shall denote by Xl(t) 
and X2(t) the hypersurfaces of U defined by fl(x, ty, z)=O and f~(tx, y,z)=O 
respectively and X(t)=Xl(t)wX2(t). 

(2.1.5.) Now let /4o be a general hyperplane going through 0 defined by 
z=ax+by, with a and b sufficiently general and both non zero, such that HonX 
has at 0 the topological type of a general plane section at 0. 

We shall dengte Ci(t)=Xi(t)c~Ho. 
According to (2.1.3.), for ~>0 small enough, if Hc:={z=ax+by+c}, with 

0<  Icl<<e, the fundamental group of (B~-X)r~H c is isomorphic to the one of B~-X. 
The intersection of p-X(0) with {0}XH0 is given by two curves C1 and C2 in 

general position, i.e. with tangent cones without common components if a and b 
have been conveniently chosen, and Ci has at 0 the topological type of a section of 
Xi by a general plane (i = 1, 2). 

As the intersection o f p - l ( t )  with {t}XH0 is given, for all t except a finite num- 
ber, by two curves having respectively at 0 the topological types of general plane 
sections of X~ and X~ at 0, we shall prove that for all t except a finite number, the 
topological type at 0 of p-l(t)r~({t}XHo) will be the one of p-l(0)c~({0}XH0). 
Actually we notice that the Milnor number #(t), ofp-l(t)r~({t}XHo) at (t, 0) equals 
# ,+#2+2(C1(t )  "C~(t))o-1, where #, is the Milnor number of (C,, 0) or (Ci(t), O) 
(i= 1, 2) and ( �9 )0 denotes the intersection multiplicity at 0. As the lowest value 
of #(t) is obtained when t--0, using a known result proved by [L2] (Corollaire 7) 
(cf. [L--R] (w 3) too), we obtain that, for all t except a finite number, the equisingular 
type of p - i ( t )  at (t, 0) is the one of p- l (0)  at (0, 0). In particular for these values of t 
necessarily the tangent cones of Ca(t) and C2(t) have no common components. 

Moreover notice that in {0}X U, the plane {0})<H 0 cuts the singular locus of 
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p-1(0) transversally. Thus for t small enough, {t})<H0 cuts the tangent cone of 
the singular locus o f p - l ( t )  transversally. This implies that for t small enough, there 
is et>0 such that for any c, 0<  ]c[<<e,, the singular points of HcnX/(t) (i= 1, 2) 
are the ones where Hc cuts the singular locus of Xi(t) and for t # 0  their corresponding 
equisingular type is the one of Xi(t ) along the corresponding branch of the singular 
locus. 

On the other hand, if eo>0 is small enough, because of the assumptions in 
(2.1.4.) that f l (x,  0, 0) ~ 0 and f2 (0, y, 0) ~ 0, for any c r 0 small enough, )(1 (0 )n i l  c 
and X2(0)nHc cut transversally inside B~o at (C1(0)-C2(0))0 points. Thus for t r  
small enough, for any c r  small enough, X~(t)nHc and X~(t)nH~ cut transversally 
at (C1(0). C2(O))o=(Cx(t). C2(t))o points inside B~o. 

(2.1.6.) From the preceding observation we find a real analytic path e: [0, 1] ~ / )  
such that: 

1 ~ e(0)=0 and c~(1)=l; 
2 ~ For ~ 1  the equisingular type of p-~(e('c))n({e(z)}• at (e(T),0) 

is the one ofp-l(0)n({0}XH0) at (0, 0); 
3 ~ For zE[0, 1] the plane H0 cuts transversally at 0 the tangent cones of the sin- 

gular loci of Xa(ct(z)) and X2(c~(z)); 
4 ~ For zE[0, 1], there is e~>0 small enough, such that for any c, 

0 <  Ic[<<e~, the curves HcnXa (e (z)) and H c n  X~(e(r)) cut transversally inside B,, at 
(C1 (e (~)) �9 C~ (c~ (~)))0 points. 

(2.1.7.) Now the coordinates are fixed as it was described in (2.1.4.), the hyper- 
plane H0:= {z=ax+by} is given by (2.1.5.) and the real analytic path is defined as 
in (2.1.6.). 

According to (2.1.3.) there is e>0  such that: 
1 ~ The local fundamental group at 0 of the complement of X in C a is given by 

the fundamental group of B~-X; 
2 ~ There is 71>0 such that for any c, 0<  [cI<=71, the fundamental group of 

H~n(B,-X) is isomorphic to the one of B~-X, and moreover the curve XnH~ 
cuts S~ transversally; 

3 ~ The singularities of the curve XnHc are the ones of XlnH~ and XznH~ 
and the intersections points of X~nHc and X2nH~, the number of which is 
(XlnH0-X2nH0)0 are ordinary double points. 

Let us first fix such an e>0.  There is -c0#l near enough to 1 such that: 
1 ~ For any zo~=z<=l, the curve C(e(z))=Cl(e(z))uC2(a(z)) (where (i=1, 2): 

Ci(o~(r))=Xi(o~(z))nHo) cuts transversally S, and there is 7~ such that for any c, 
0<  lc]-<-7~, the curve (Xl(c~(z))nX2(e(z)))nH~ cuts S, transversally. 

2 ~ As XInH~ and X~nH~ cut transversally each other in HcnB,, we may ask 
that for any ~, zo<=z<= 1, the curves Xl(e(z))nH~ and X2(c~(z))nH~ cut transversally 
each other in Hr at (XlnHo. X~nH0)0 points. 
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Then we have: 
(2.1.8.) For any z, z0<=z<-l, and any c, 0<]c[_<-inf(?l, 7D the fundamental 

groups of (B-X(a(~)))~Hc are isomorphic to the local fundamental group at 0 
of  the complement of X in C a. 

Actually one proves that the pairs (B~nH c, B,c~H~nX (~(~)), are homeomorphic 
for any "c, z0<=r<=l, and any c, 0<[c t~ inf (v l ,7[ ) .  

This result comes from the fact that, for any ~ and c as considered, the 
curves HcnX(o~ (z)) cut S, transversally and the sir g Aarities of these curves inside B, 
are equisingularly the same for the considered z and c. 

(2.1.9.) A standard argument of equisingularity theory allows us to build-up 
explicitly a Lipschitz vector field in c~([r0, 1])• nH~) which realizes by integration 
the searched homeomorphisms. 

(2.1.10.) According to (2.1.3.) again there is s '>0 ,  s'-<5, such that B,,-X(c~(%)) 
has its fundamental group isomorphic to the local fundamental group at 0 of the 
complement of X(e(z0)) in C 3 and there is 7~>0, such that, for any c, 0<  lcl-<_~, 
the fundamental group of (B,,-X(c~(Zo)))~Hr is isomorphic to B~,-X(~(Zo)). 

Now to end our proof of lemma (2.1.1.) we need a m3re precise description of 
our fundamental groups by generators and relations. 

(2.1.11.) One knows the following fact (cf. [H--L1] Lemme (4.2.3.)): 
If  L0 is a sufficiently general line going through 0 defined by /1 =/2 = 0 (where l i 

are linear forms), for 5>0 small enough and 0<t/<<5, if T~:={llll2+II~I~<=tl} 
the inclusion: 

T.nB. -X ca B . -X  

is a homotopy equivalence (actually one may prove these spaces are homeomorphic). 
One may choose L0 in H0 (and lt=z-ax-by) and then if 5>0 is small enough, 

M ~ H 0<q<<s, 0<71<<t/, 0<]cI=71 the inclusion: 

H ~ ( r . ~ B ~ - X )  c H~n(B~-X) 

is a homotopy equivalence (again here, one may prove these spaces are homeomor- 
phic). 

(2.1.12.) One sees from this last statement how one can obtain the fundamental 
group of H~c~(B~--X) by generators and relations, because if c is small enough, 
12 induces a mapping 2:HcC~(T,c~B~-X)~D1 where DI:={zEC, ]zl2-<q-lcl2 } 
which is a C = fibration outside a finite number of "critical" points. Thus by an 
argument due to Van Kampen in the projective case (cf. [V--K]) the generators of 
the fundamental group of Hcn(T, nB,--X) at a point x are given by a base of the 
free group rcl (2 -1(2 (x)), x) if 2(x) is not one of the quoted "critical" points, and 
the relations are obtained by considering the monodromy of the above generators 
around the "critical" points (compare with [C--L] theorem (1.2)). Notice that if c 
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is small enough, among these critical points are the values of  12 at the singular points 
of  Xc~Hc in B,. 

(2.13.) Now let us choose L0 and H0, e > 0  and ~ '>0  such that the conditions 
of  (2.1.7.) and (2.1.10.) are fulfilled and such that we obtain these results simulta- 
neously for X and X(~(z0)). Moreover we may assume that for any ~, %~z<=l, 
(L0-X(~(0))0 equals the multiplicity of X (c~(T)) at 0 which does not depend on ~. 
This last condition implies that, if e>0 ,  e=>e'>0 are conveniently chosen, and 
0<~/<<~', 0<V<<t/ there is L defined by ll=c, l~=c" such that: 

1 ~ O<ld  , 
2 ~ For any "c, zo<=z~l, L cuts X(~(Z)) transversally in B, at (L0.X(c~(z)))0 

points and BenL n X(~ (%)) c B~,; 
3 ~ The inclusion Hc~(T~nB~,-X)cH~n(B~-X) is a homotopy equivalence; 
4 ~ The inclusion H~c~(T~nB~,-X(c~(To)))ctl~n(B~-X(~(Zo))) is a homotopy 

equivalence. 
Because of 2 ~ above the vector field constructed in (2.1.9.) can be built in such 

a way the image ofB, nL-X(a('co) ) is B~nL-X(c~(O) for any Zo<_=z~ 1 by the family 
of homeomorphisms obtained by integration. 

"As  the inclusion B~,nL-X(a(zo))cBs~L-X(a('Co)) is obviously an homo- 
topy equivalence because LnX(c~(Zo))nB~ is contained in B~,, the loops, which gene- 
rate rc~(H~n(T,c~B~,-X(c~(%))), x) and thus n~(B~,-X(ct(Zo)), x), give a base of the 
free group, fundamental group of  LnB~-X and thus generators of the fundamental 
group of B , -  X. 

(2.1.14.) Let us suppose that we can choose a base of the free group 
rc~(B~,nL-X(c~(~o) ), x) defined by loops at x contained in B~,caL-X(a(%)) turning 
simply around the points of  B~,nLnX(a(Vo)) such that the loops turning aroung 
points of  B,,nLnX~(a(%)) give generators which commute in ~l(B~,-X(a(z0)), x) 
with the ones defined by other loops at x turning simply around the points of 

Now using (2.1.12.) we see that our lemma (2.1.1.) is a consequence of the 
hypothesis (2.1.14.). 

To be more precise, let gl ( i= 1 . . . .  , r)  and h 7 ( j =  1 . . . .  , s) be the elements 
of  the base of~x(Lc~B~-X, x) coming from the loops having the property in (2.1.14.). 
The g~ will come from the loops turning around the points of LnX~(a(Zo))nB, 
and the hi will be the ones coming from the loops turning around the points of 
LnX2(c~(%))~B,. As the inclusion B~,-X(ct(~o))cB~-X(c~(%)) gives an epimorph- 
ism of the fundamental group and as B.--X(ct(zo) ) is homeomorphic to B , - X  
by an homeomorphisrrrwhich sends (L-X(~z(Zo)))nB, onto ( L - X ) ~ B ~ ,  the images 
~ and hj of g~ and h~ ( i= 1 . . . . .  r, j =  1 . . . . .  s) in the fundamental group of B . - X  
commute. According to the hypothesis in (2.1.14.) we have g/ f~=~j~,  ( i=1 . . . .  , r, 
j = l  . . . . .  s) in the fundamental group B,-X. Now from (2.1.12.) the group 
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7r l (B~-X , x) is obtained from the free group 7 C l ( L ~ B . - X  , x) by dividing by the 
normal subgroup generated by: 

g~- 1 ~Oik gak(1) qg~ 1 

h f 1 ~/ jk ha~,(j) ~l j-kl 

i - -  1 ,  . . . ,  r 

j -- 1 . . . .  , s 

k = 1, ..., v 

where rrk(i ) and rr'k(j) are the indexes obtained from i and j by the monodromy 
around the k-th "critical" point described in (2.1.12.) and (pig and ~jk are words in 
gl . . . . .  gr, hi . . . . .  ha which describe the monodromy. 

As gi and ~j commute in n I ( B , - X ,  x), this last group is the quotient of  the 
direct product G •  of  the free groups generated respectively by the gi ( i= 1 . . . . .  r)  
and  the hj ( j = l  . . . . .  s) by the image in G X H  of the above normal subgroup of  
n l ( L n B ~ - X ,  x ) = G * H  (free product of  G and H).  Now the image ~Pik of  (pig in 
G •  can be written in G •  

~)ik ~(1)  2K(2) tP ik W ik 

where =(1) is the image of  a word ~O~k 1) in G and ~ik q)ik =(2) is the image of  a word ~0~ ) in H. 
Similarly: '~ _,7;,(1),7;,(2) in G •  tP j k  - -  W j k  ~t" j k  

Thus n l (B~-X ,  x) is isomorphic to the quotient of  G X H  by the normal sub- 
group generated by: 

, ~ - - 1 7 ~ ( 1 ) r  . ~"~(1) - 1  
i Wik  ?5~rk~i)tl'ik 
- ~  (2) ( 2 ) - I  

It  is now an exercise to see that the fundamental group of B~-X~ is isomorphic 
to the quotient of G by the normal subgroup generated by: 

g - 1 , ~ ( 1 )  ~ ,,~ (1) -1  
i Wik  6 trk( i )Wik  

and the fundamental group of  B , - X 2  is isomorphic to the quotient of H by the 
normal subgroup generated by: 

- 1  (2) (2) -~ 
h j  I~ jk  h a ~ ( j ) ~ l j k  . 

This obviously gives our lemma (2.1.1.). 
It remains to prove that we may assume (2.1.14.). For  this purpose we shall 

investigate the geometry of  Y" ~,-/7 as we go to 0 along the path e. 
(2.2.) We fix H0 as in (2.1.5.). 
(2.2.1.) According to the definition of  c~ in (2.1.6.) the germs of curves 

(X(~(z))nHo,  O) are equisingular when O<=z<=Zo . 
Thus we can choose e ' > O  such that e"<=e" and the spheres S,~ are transverse 

to X(~(z ) )~Ho for any e 1 , O<e  1 =e  and O<-z_<-z0 (cf. [El] or [L~]). 
Let us fix such an e' .  By a compacity argument there is ya>O such that for any z, 

and  for any c, the c rves cut S~,, transversally. 
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(2.2.2.) By a construction similar to the one quoted in (2.1.9.) we find that 
7a>0 can be chosen in such a way that, for any -c, 0 < ~ % ,  and any c, 0<[c]=~73 
the pairs (B~,,nHc, B~,,nHcnX(c~(r))) are homeomorphic. In particular the 
B~,,nHc-X(c~(T)) are homeomorphic when 0<z<=~0 . 

(2.2.3.) The same argument as in [L1] shows that there is a natural epimorphism 
of the fundamental group of B,,nHc-X(O) onto the one of B,,nH~-X(c~(zx)) 

F when 0<Ic]=78 and "q~0 is small enough. 
More precisely one can find a line L0 in H0 such that (L0. X(c~(z)))0 is equal 

to the multiplicity of X at 0 for any z, 0-<z<=l. Then choosing e" accordingly to 
L0 and (2.2.1.) as in (2.1.13.) for 5>0, one may find L in H~ such that, in the above 
epimorphism, the generators of the fundamental group of B,,,nH~-X(O) coming 
from loops in LnB,,-X(O) which give a base of its fundamental group are sent on 
generators of the fundamental group of B,,nH~-X(c~(~I)) which are represented 
by loops in LnB,,,-X(c~(~)). 

(2.2.4.) As in (2.1.13.), we notice that the homeomorphisms of (2.2.2.) built simi- 
larly as in (2.1.9.) may be constructed such that the image of (LnHc-X(e(z~)))nB,, 
is (LnH~-X(c~(%)))nB,,. Thus to find a base of the free group, fundamental group 
of (LnH~--X(c~(Zo)))nB,,,, which satisfies the hypothesis (2.1.14.), the inclusion of 
B,,,-X(c~(%)) into B.--X(e(%)) for 0<e"<_-e" being a homotopy equivalence, it 
is enough to prove: 

(2.2.5.) We can choose a base of ~Zl(B~,nH~--Y(e(~l)), x) defined by loops at x 
contained in B,,nL-X(o~(Zl)) turning simply around the points of B,,nLnX(e(~I)) 
such that the loops turning around points of B,,nLnXI (c~ (zl)) give generators which 
commute in rtl(B,,,--X(e(~)), x) with the ones defined by the other loops at x turning 
simply around the points of B,,nLnX2(~(Vl)). 

It remains to prove (2.2.5.). 
XN~o 

X(To) N ~o 

" ~ = 0  $ = T  1 $ = $ 0  $ =  1 

(2.3.) Actually notice that, X(0) being the union of two cylinders on Xl(0)nH0 
and X2(0)nH0, if ~">0, is such that S,, cuts X(0)nH0 transversally, it cuts the 
non singular part of X(0) and its singular part transversally. Thus as, for any el', 
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r  It 0 < s  1 =s  , S,~ cuts X(O)nHo transversally, the fundamental group of B~,,-X(O) 
is isomorphic to the local fundamental group at 0 of the complement of X(0) in C 3. 

Let L0 chosen as in (2.2.3.) and let L 0 be a line in the plane z = 0  such that 
(L0. X(0))0---(Lo. X(0))o which is the multiplicity re(X, 0) of X at 0. One can show 
that there e">O such that, for any L and L'  near and parallel to L0 and L 0 respectively 
and cutting X(0) in re(X, 0) points there is an homeomorphism of B,,, onto itself which 
induces a homeomorphism of B~,,-X(O) onto itself and a homeomorphism of 
B~,,nL-X(O) onto B~,,nL' -X(O). Thus, if we can build up the loops in B,,,nL'--X(O) 
(instead of B,,,nL-X(O)) to obtain similar properties as (2.2.5.), we bring these 
loops into B,,,nL-X(O) by the above homeomorphism to obtain (2.2.5.). But L'  
is c~ntained in a plane H" parallel to the plane z = 0  and, if L" is sufficiently near 
to L~, we see that H'c~B,,nXI(O) and H'c~B,,,c~Xz(O) are given by parallel lines 
which cut transversally one another. In this situation the construction of the loops 
in L'nB,,-X(O) to obtain the desired property is obvious. 

~/' R B.,, R xd0) 

H'RB,,,RXI(O) 

This ends the proof of Lemma (2.1.1.). 
(2.4.) As it was quoted in the remark (2.1.2.), using the result of [H--Ld 

(Theorem (0.2.1.)) we have: 
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(2.4.1.) Corollary. Let X be an analytic hypersurface in an open neighbourhood 
U of  O in C n and OCX. Suppose it decomposes locally at 0 into two analytic hypersur- 

faces, i.e. i f  U is chosen small enough: 

x = x ~ u x a .  

Suppose that there is an analytic subspace Y of  codimension 2 in ~ such that at any 
point xE X l n X 2 -  Y both X1 and X2 are non singular and intersect transversally. Then 
the local fundamental group at 0 of  the complement of  X in C" is isomorphic to the 
direct product of  the local fundamental group at 0 of  the complement of  X1 in C" and 
the one of  the complement of  Xa in C". 

3. Some  consequences 

(3.1.) Application to projective hypersurfaces. The following result was first 
stated by O. Zariski in [Z2] and proved by P. Deligne and W. Fulton (cf. [Da]): 

(3.1.1.) Theorem. Let C be a complex projective plane curve in p2. Suppose 
that C has only nodes as singular points. Then the complement of  C in pz has an abe- 
lian fundamental group. 

Proof. One can consider this theorem as a consequence of our main theorem. 
In fact one considers the cone C1 in C z which lies over C. Then the local fundamental 
group at 0 of the complement of C1 in C 3 is isomorphic to the fundamental group 
of the complement of C1 in C ~. But the complement of C1 in C 3 is a locally trivial 
C*-fibration over the complement of C in p2. Now using the exact homotopy sequence 
of this fibration and our main theorem we obtain the above Theorem (3.1.1.), because 
obviously C1 satisfies the conditions of our main theorem. 

Using another result stated by O. Zariski in [Z3] and proved by H. Hamm and 
L~ Dfing Trfing in [H--Ld (0.3.) the theorem above can be stated for hypersurfaces: 

(3.1.2.) Theorem. Let H be a complex projective hypersurface in P". Suppose 
that there is a codimension 2 Subvariety Y in H such that the singularities of H - Y  
are normal crossings, then the complement of  H in P" has an abelian fundamental group. 

Using again the result stated by O. Zariski in [Za] (cf. [ H - L d  (0.3.)) and pro- 
ceeding as in the proof of (3.1.1.), our Lemma (2.1.1.)give the following consequence: 

(3.1.3.) Theorem. Let 1tl and Ha be two complex projective hypersurfaces in P". 
Suppose there is a codimension 2 subvariety Y in H~wHa such that for any point 
xE Hlc~Ha- Y the hypersurfaces H1 and Ha cut transversally, then i f  L is a sufficiently 
general hyperplane of  P" the fundamental group of  the complement of  HlwHawL 
in P" is isomorphic to the product of  the fundamental groups of  the complements of  
H lwL  and HzwL in P". 



The local nl of the complement of a hypersurfaee with normal crossings 23 

(3.2.) Another application of our main theorem is to give a partial answer to a 
question of K. Saito in [S] ((2.14.) Note). 

Let us formulate the question again here: 
Let U be a domain in C n and X be a closed hypersurface in U. One defines the 

sheaf of logarithmic 1-forms f2~(log X) on U along X and the residue map 
res: f2~(logX)-~n,(gXx) where Jz: ~ X  is the normalization of X and 9J/x is 
the sheaf of meromorphic functions on ,~' (cf. [S] (1.2.), (2.2.)). 

Then the following question was asked in [S] ((2.14) Note and (2.13)): 
(3.2.1.) Question: The following conditions on X are equivalent: 

i) The local fundamental groups at any x E X  of the complement of X in U 
are abelian; 

ii) There is a subvariety Y of codimension 2 in X such that X -  Y has at most 
normal crossings; 

iii) The residues of any elements of t2~(log X) are holomorphic on ,~ (i.e. weakly 
holomorphic on X). 

The implication: "i) implies 5)" is coming from the fact that along any codi- 
mension one component of the singular locus at any general point of this component 
X is equisingular (cf. [Zd) and a computation of O. Zariski which shows that the 
only germs of plane curves which have a local complement with abelian fundamental 
groups are the non singular germs and the germs of an ordinary singularity. Our 
main theorem shows that ii) implies i). 

The implication ii)=,iii) comes from an easy computation. The implication 
iii)=Mi) is still open. We only know a weaker assertion. 

(3.2.2.) Theorem. (Cf. [S] (2.11.)) Let C be a germ of  plane curve in C 2 at O. 
Then the residues o f  the elements o f  f21 (log C) at 0 are holomorphic on the normali- 
zation of  C i f  and only i f  C is either non singular at 0 or with an ordinary double 
point at O. 

(3.2.3.) It is an interesting problem to find a direct relation between the condi- 
tions i) and iii) of (3.2.1.). 
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