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1. Introduction 

We consider supersolutions of the equation 

(1.1) V.A(x, Vu) = 0 

,where A: G X R n--~ R" is a strictly monotone (usually non-linear) elliptic differential 
operator in an open set G in R", n_~2. The precise assumptions are given in Sec- 
tion 2. In connection with equations of the type (1.1) we refer, for example, to [9], 
[11], [15], [20], and [21]. Supersolutions of (1.1) are the functions uClocWvl(G) 
satisfying 

f a  a (x, Vu). Vq~ dx ~_ 0 

for all non-negative q~ECo(G ). Supersolutions in general fail to be continuous 
and, in order to have pointwise estimates, the above definition is not quite adequate. 
It is our purpose in this paper to show that the classical potential theoretical defini- 
tion for superharmonic functions is pertinent also in non-linear situations, and 
that it indeed yields a class of functions which strictly includes the supersolutions 
of (1.1) and is closed under upper directed monotone convergence. More precisely, 
we say that a lower semicontinuous function u: G~Ru{oo} is A-superharmonic 
if it satisfies the comparison principle: for each domain D c c  G and each function 
h~C(D) which is a solution of (I.1) in D, the condition h<=u in OD implies h<=u 
in D. The comparison principle is valid for solutions of (1.1), whence potential 
theoretical aspects can be salvaged. 

It is shown that supersolutions of (1.1) can be redefined in a set of measure 
zero so that they become A-superharmonic and, conversely, that if u is a locally 
bounded A-superharmonic function, then u belongs locally to the Sobolev space 
Wp 1 and is a supersolution of (1.1). To sum up, we may say that A-superharmonic 
functions form a closure of supersolutions with respect to upper directed monotone 
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convergence. It is worth noting that there are singular solutions of (1.1) which are 
not locally in Wp 1 but are A-superharmonic. 

Solving the obstacle problem (to be specified below) is the most effective tool 
in this connection, and the key point is to have a solation that is continuous up to 
the boundary. This method is used to show that without any regularity requirement 
the given definition leads to the existence and the integrability of the gradient of 
an A-superharmonic function. Interior regularity for solutions to obstacle problems 
has been studied by several authors in a variety of situations, and the first treatment 
which covers equations of the type (1.1)is apparently due to J. H. Michael and 
W. P. Ziemer [18]. We show that the solution to the obstacle problem with a con- 
tinuous obstacle is continuous not only inside the domain but also at each bound- 
ary point where the Wiener criterion is satisfied. (For solutions of (I.1) this is known 
[15].) As a by-product the lower semicontinuity of supersolutions is attained, cf. [22]. 
The obstacle problem is discussed in Section 2, and the relation between super- 
solutions and A-superharmonic functions is examined in Section 3. 

The fact that the definition for supersolutions through the comparison principle 
is useful also in the case of non-linear equations was first observed by S. Granlund, 
P. Lindqvist and O. Martio [3], [4], [13]. They exploited the obstacle method in 
studying sub-extremals of convex variational integrals in the borderline case, p=n, 
with applications to function theory. In [12] A-superharmonic functions are intro- 
duced for the p-harmonic operator, A(x, h)= [hlP-2h, which is indeed a prototype 
of the operators considered here. We also extend some of their results; for example, 
the regularity of locally bounded sub-extremals (defined through the comparison 
principle) for a class of variational integrals is proved in [4], [12]. 

We close the paper in Section 4, where removable sets for A-superharmonie 
functions are studied. Some observations seem to be new even for solutions of (1.1); 
we show, for example, that compact sets with zero (n-D-measure are removable 
for locally lipschitz solutions. 

Notation. We use fairly standard notation. For G c R "  open and A c R n  
measurable, n->2, the familiar function spaces are denoted as C~176 Co(G), 
C(A), LP(A), Wpl(G), Wpl0(G), locLP(A) etc.; the space L~(G) consists of func- 
tions u whose distributional gradient Vu belongs to LP(G). If B=B(xo, r ) c R "  is 
an open ball and a>0 ,  then aB=B(xo, ar). Integral averages are marked as 

1 
usual, fa u dx= IAI fAudx, IAI =fadx. For open sets D and G, D c c G  means that 

B, the closure of D, is compact in G. 
If l<=q<oo, then the q-capacity of the condenser (C, G) is the number 

cap~ (C, 0"7) = inffs IVu[ ~,tx 
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where u runs through all functions in Co(G ) with u->l in C; here a condenser 
means a pair (C, G) where G is open in R" and C c G  is compact. For G = R "  we 
let capq (C, R") = capq C. The basic properties of variational capacities can be found, 
for example, in [16], [19]. 

In general c is a constant which may change from one line to the next. 

2. Properties of supersolutions 

We investigate supersolutions of the equation (1.1). It is shown that super- 
solutions are lower semicontinuous after a redefinition in a set of measure zero 
and that under suitable (but rather weak) conditions the obstacle problemhas  a 
continuous solution up to the boundary. 

Throughout this section we assume that G is an open set in R", n->2, and 
that the operator A: G •  satisfies the following assumptions for some con- 
stants l < p < = ,  and 0<~<- /~<~ :  

(2.1) the function x,--,.A(x, h) is measurable for all hER", and the function h,--,-A(x, h) 
is continuous for a.e. xEG; 

for all hER" and a.e. xEG 

(2.2) 

(2.3) 

(2.4) 

whenever hjr and 

(2.5) 

a ( x , h ) . h  -> ~lhl p, 

Ia(x,h)l ~ fllhl p-l, 

(A (x, hO - A (x, h2)) . ( h l -  hz) > O, 

A(x, 2h) = I2IP-'2Afx, h) 

for all 2ER, 2 r  
Operators satisfying (2.1)--(2.5) have been studied earlier e.g. by V. G. Maz'ya 

[15], see also [11], [20], and [21]. 
A function u in loc Wp 1 (G) is an A-supersolution in G if 

(2.6) fG A(x, Vu). dx ~ 0 

for all non-negative ~oECo(G ). Observe that (2.5) implies: if u is an A-supersolu- 
tion, then so is 2u+/ t  whenever 2->0 and pER. This homogeneity assumption 
can be used in many places to replace the linearity. 

We require the following form of the comparison principle; see also 3.7 below. 
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2.7. Lemma. I f  u, --v6Wpl(G) are two A-supersolutions in G and i f  

w = min (u-v, o)~w~.o(o), 
then u>=v a.e. in G. 

Proof Since 

o < f  A(x Vv) .Vwdx-f  A(x, V u ) . V w d x  
- '~  G ~ G 

= -f{~<o~ (A(x, Vv)-A(x, Vu)). (Vv-Vu) dx ~ O, 

then Vw=0 a.e. in G and the lemma follows. 

Next suppose that G is bounded, that ~k is a function in G and that 0E Wp 1 (G) 
is such that 0=>~ a.e. in G. A function uEWpI(G) with u-OEWp~o(G ) and u_>-~ 
a.e. in G is a solution to the obstacle problem with the obstacle ~k and with boundary 
values 0 if (2.6) holds for all q~EWp~o(G ) with cp->~k--u a.e. in G. 

The operator A defines a strictly monotone, coercive and continuous mapping 
from the space L~(G) onto its dual, cf. e.g. [15]. Hence there exists a unique solu- 
tion u to the above obstacle problem, see [9], p. 87. Clearly u is also an A-super- 
solution in G. 

2.8. Lemma. Suppose that u is a solution to the obstacle problem in G with the 
obstacle ~, and with boundary values O. I f  vE Wp 1 (G) is an A-supersolution in G with 
v~_~k a.e. in G and min (v, u)-OEWplo(G), then v>-u a.e. in G. 

Proof The non-negative function 

~/= u- ra in  (v, u) 

belongs to Wpl.o(G) and -~/=>~b-u a.e. in G. Thus 

o _~ f~ (A (~, Vv)-a (x, W)). Vn dx 

= f o  (A (x, V min (v, u ) ) -A (x, Vu))-(Vu-V min (v, u))dx ~_ O. 

It follows that ~/=0 a.e. in G as required. 

2.9. Corollary. I f  u and v are two A-supersolutions in G, then min (u, v) is an 
A-supersolution in G. 

Proof Choose D c c G .  Let �9 be the solution to the obstacle problem in D 
with the obstacle and boundary values w=min (u, v). Then, by Lemma 2.8, u_->~ 
and v->r~ a.e. in G. Thus w--#  is an A-supersolution in D as desired. 

For each bounded G and 0EWpl(G) there is a unique solution u of (1.1) with 
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(2.10) 

boundary values 0, that is, u-O~Wp~o(G ) and 

f oA(x, Vu). Vq~ dx --- O 

for all q~Wp~0(G). As known, weak solutions of (1.1) are actually continuous [20], 
[21]. Further, if 06C(G) and the Wiener criterion 

f l  r x/p-x dt =~o 
d o t 

It p-" Capp (B(x, t) c~ (R'r',,,G)), p ~ n, 
~p(t) = [ c a p . ( B ( x ,  t ) n ( R ~ , G ) ,  B(x, 2t)), p = n, 

holds at x6i~G, then 

(2.11) lim u(y) = O(x). 
y ~ x  

Therefore we say that a bounded open set G is regular if (2.10) holds at each x6OG. 
Observe that balls and polygons are regular and, in particular, that each open set 
can be exhausted by regular ones. Finally, if p>n, then (2.11) always holds. For 
this discussion the reader is referred to [15] (see also [13]). 

For the next theorem suppose that G is bounded, that ~6C(G) and that 
OEWpl(G) is such that 0->~k a.e. in G. 

2.12. Theorem. There is a unique function u6C(G)nWpl(G) with u-O6Wplo(G), 
u>=~b in G and 

(2.13) f a(x, Vu). dx o 

for all r o(G) with ~p>=~k-u a.e. in G; in the open set {x6G: u(x)>r 
u is a solution of (1.1). 

If, moreover, G is regular and OEC(G), then u6C(G) and u=O in ~G. 

The existence and the uniqueness of the solution u6Wpl(G) were discussed 
above, and we proceed to prove that u is actually continuous. Our reasoning follows 
the usual track through Harnack type inequalities and the Moser iteration scheme 
(cf. [20], [21]), the situation being simpler than that in [18]. 

The lower semieontinuity of supersolutions is also established, cf. [22]. 

2.14. Theorem. Suppose that u is an A-supersolution in G. Then u is locally 
essentially lower bounded, and there is a lower semicontinuous (lsc) version of  u with 

(2.15) u(x) = ess lim u(y) 
y--~X 

for each x6G. 

We require several estimates in which the regularity of the obstacle plays no 
role. In what follows we use the notation u+=max(u ,  0), u -=ra in  (u, 0) and 

-}. 



92 

o r  

Juha Heinonen and Tero Kilpel,~iincn 

2.16. Lemma. Suppose that D is an open subset of  G. I f  either 
(i) e= +,  and u is a solution to the obstacle problem in G with the obstacle 

~b~_O in D, 

(ii) e = - ,  and u is an A-supersolution in G, 

then 

(2.17) fD luqa tVu~IPnP dx ~_ c(p, 13/:0 f v lu~I'+qVnl" dx 

whenever ~IECo (D ) is non-negative and q>-O. 

Proof. Pick rl~Co(D), 0g~/~_l. Since the function ~p=-u"q p belongs to 
Wplo(D) and since ~o=>~k-u (case (i)) or tp->0 (case(ii)) a.e. in G, then 

0 <= f A(x, Vu). (-Vu*~tP-pu'qv-tVtl) dx 

<= -=f~ iVu~l,n, ax + p# f o lu=llV~l~.-XlVu=l.-x dx. 

N o w  H61der's inequality yields 

fo [vu*l.,. dx ~_ c(p. B/~) f o lu'l"lvql" dx. 

Thus it follows that 

fD IV(u- k)*lPn p dx <- c(p, ~1~) f I(u- k)'lPlV~l p dx 
D 

for k_~0 (case (i)) or k---0 (case (ii)). Multiplying both sides by Ikl *-1, q>0,  
and integrating (cf. e.g. [16], Theorem 1.2.3) yields the desired estimate (2.17). 

2.18. Lemma. Suppose that B c G  is a ball and that either (i) or Oi) of  Lemma 2.16 
holds for B=D. Then 

(2.19) esssup lu*l < -  c(X-~)-*[f lu*lqdx] I/q 
~.,i B .s 

whenever 0 < , < 1  and O<q~_p. Here ~ = n  i f  p<n, ~=2p i f  p>=n, and 
q q 

c=c(n, p, q, fl/~) >0. 

Proof. We may assume that B=B(0, 1). Write 

rl = ~ + ( 1 - ~ ) 2  -l, 

1=0, 1,2 . . . . .  and let thECo(r~B ) be such that ~h=l in rl+~B and that IVq~l ~ _ 
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c ( 1 - a ) - 1 2  t where c > 0  does not depend on l. Next, writing 

W l = ( U g ) I + s / P ~ I  

for s=>0 and using the estimate (2.17) yields 

f IVwtl ~ dx <- c(p+ s) p f lu*l~+PlVn,I p dx 

<c(p+s)P(1 a)-P21P f luq *+pdx = - -  o 

n 
Now we employ the familiar Moser iteration, cf. e.g. [2], [20], [21]. If  Z = ~  

n - p  
(p<n)  or Z=2  (p>-n) and ~:=p+s, then the Sobolev inequality yields 

( f . , . , . lu ' l  "x ax) <- c1'  (f . , .  In'l" ax) 
Choosing ~ = p x  ~ and iterating we arrive at the desired estimate for q=p: 

(2.20) esssup ]u'] _~ c ( 1 - r 1 6 2  ( L  [uq" dr)a/'; 

here c=c(n,p, fl/oO>O and ~ = n ( p < n )  or ~=2(p=>n).  
P 

It is by now well known that the exponent p in (2.20) can be arbitrarily decreased 
(see e.g. [7]); to be precise, we apply an interpolation argument used by E. Di Bene- 
detto and N. S. Trudinger [1], p. 299: for O<q<=p let 

~ ( q ) =  sup (X--ff)q[f~BVPdX)al" 
where v=luq, r and ~ is as in (2.20). Write Mr  sup. B v. Then 

�9 i ( l + a )  (2.20) implies for every a~(0, 1) and a =-~ 

M , ( 1 - a )  r <- c ( 1 - a ' ) ~  { f , ,Bv  p dx} x," ~_ c#(q), 

and using Young's inequality yields 

M,(1-~)r ~_ c { L  v" dxla/" 

where c =  c(n, p, q, fl/o 0 > 0  as desired. The lemma is completely proved. 

2.21. Remark. It follows from Lemma 2.18 that if u is a solution to the obstacle 
problem (2.13), then u is locally essentially bounded above. Similarly, each A-super- 
solution v is locally essentially bounded below. 

In view of  (2.5) it is not difficult to see that if u is a positive A-supersolution, 
then the function -1/u is also an A-supersolution; for details see [8], (2.3). Thus 
Lemma 2.18 produces 
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2.22. Lemma. Suppose that u is an A-supersolution, positive in a ball B c G .  
Then 

(2.23) ess inf u oB > - c ( 1 - a ) ' ( L u - ' d x ) - l / ~ '  

whenever 0<o-< 1 and O<q<=p. Here ~ is as in Lemma 2.18 and c=c(n, p, q, fl/a)>0. 

2.24. Lemma. Let u be a positive A-supersolution in G. Then 

(2.25) fc IV log ul p dx ~_ c(p, fl/a) cap~(C, G) 

whenever C is compact in G. 

Proof. We may assume that ess infu>0.  Pick a non-negative q~ECo(G) 
with ~p=l in C. Since the function ~l=~prul-r614:rlo(G) is non-negative, then 

o ~_ f~ a (x, Vu). (p~,-' u ~ - , v ~ - ( p -  1) u-,~,Vu) ax 

o r  

f IVulPu-P&dx <= c(p, B/'of lVu:-~u~-'lV~l~:-~ax 
$pt ~, spt r 

~_ c(?, #/a)(f,,. IVul" u-" ,: dx) (p-I)/p ( f o lV~ol" ax)". 

This establishes (2.25). 

As known, the estimate (2.25) implies that the function v=logu  belongs 
locally to BMO(G). Indeed, for each ball B=B(x ,  R) with 2 B c G  we have 

f [c(n,p, fl/a)R n-p, p ~ n, 
B IVvlPdx ~- tc(n, B/a), p = n, 

and it follows from the John--Nirenberg lemma [2], Theorem 7.21, that 

( L  uS dx) ~/~ <= c ( L  u-~ dx)-i/~ 

whenever B is a ball with 2BcG;  here s=s(n,p,  fl/a)>O and c=c(n,s)>O. 
Thus (2.23) provides 

2.26. Lemma. Suppose that u is a positive A-supersolution in G. Then there is 
s=s(n, p, fl/a) >0 such that 

(2.27) ess inf u o, >=c(1-a) ' (Lu~) t /~  

whenever B is a ball with 2 B c G  and 0 < a < l .  Here ~ is as in Lemma 2.18 and 
c=c(n, p, B/a)>o. 

Proof of  Theorem2.14. In view of Remark 2.21 it suffices to find a version 
of u with the property (2.15). For that, suppose first M=sup~ u < ~  and fix xEG. 
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Write BR=B(x , R) and 
mR = ess infu  

BR 

for R positive and small enough. We may assume that u > 0  in G and that M > m  R 
for small R. Then (2.27) implies for some 0<s<= 1 

ml~/~-mR ~= c ( f , .  ( u - m , )  ~ dx)l ls~ cfM-m.y'-'" (f.. (u-mlOdX) 1Is. 

Thus 

(2.28) ess lira u (y) lim 1 e u dx 
y ~ x  R~O .1 B(x,R) 

for every xE G, and, by the Lebesgue theorem, the proof is complete if u is bounded 
above. The general case follows from this since the functions uk=min (u, k) are 
A-supersolutions and since a locally integrable lsc function can be redefined in a 
set of measure zero so that (2.15) holds. Theorem 2.14 is then proved. 

Proof of Theorem 2.12. Let u be the Isc solution to the obstacle problem (2.13) 
such that (2.15) holds. Then the set D =  {xEG: u(x)>~k(x)} is open and the standard 
reasoning shows that u is a solution of (1.1) in D. Indeed, suppose that D is not 
empty,and pick t/EC~(D) with lr/l<=l; then - a = S U p s p t n ( ~ - u ) < 0  and for 
8E( -a ,  6), et/->~O-u in G, whence 

0 <_- fo  A (x, Vu). v(,n) dx 
or  

0 --- f .  a (x, Vu). vn dx 

as required. Thus there is a continuous version of u in D, and by (2.15) it equals u 
at each point xED. 

We show next that 

(2.29) ess ~ u(y) = u(x) 
y~X 

whenever xEG; this, by (2.15) and by Remark 2.21, implies that uEC(G). So fix 
xEG. Since, again by (2.15), u->~k everywhere in G, we may assume that u(x)=~(x). 
Now fix e > 0  and choose a ball B=B(x,  R ) c c G  so that supn~k<~k(x)+e=2 
and so that in fu>u(x ) -~=p.  The estimate (2.19)yields 

(u-~)+ ~= ~ f~(u-~)+ ax, e s ~ s u p  

where c does not depend on R. On the other hand, 

f (u-2)+ dx=fn(u-min(u,X))dx 

<- f . (u-~)dx= f .  ud~-u(~)+~. 
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Since u is locally bounded above, the above inequalities together with (2.28) yield 

ess 1-~ u(y) <= tp(x)+c~ = ess lim u(y)+ce. 
Y ~ X  y ~ X  

Letting ~ 0  establishes (2.29); thus uEC(G). 
To prove the second assertion we first show that 

(2.30) ~ u(y) <= O(x) 
y ~ X  

for each xEOG. Suppose that the open set U={xEG: u(x)>O(x)} is not empty. 
Since u=O in OUnG and since u-OEWpl, o(G), it is not difficult to see that 
u-OEWp]o(U ). Thus u is the unique solution of (1.1) in U with boundary values 
OEC(U)nWpl(U). Since G is regular and since UcG, limy-~x,r~vu(y)=O(x) for xE 
OUnOG, cf. (2.11). Thus (2.30) follows. 

To complete the proof, let hEC(G) be the unique solution of (1.1) in G with 
h=O in OG. Thus it follows from Lemma 2.7 and from (2.15) that u>=h in G, 
whence 

lira u(y) >= O(x) 
y ~ X  

for xEOG as desired. 
Theorem 2.12 is thereby completely proved. 

2.31. Remarks. (a) The above proof yields also that limy_~x u(y)=O(x) when- 
ever 0EC(G) and (2.10) holds at xEOG. 

(b) Observe that Theorem 2.12 holds also under weaker requirements on ~k; 
this is made more explicit in [18]. 

We conclude this section with a lemma, required in Section 3. 

2.32. Lemma. Suppose that u s is an increasing and locally bounded sequence 
of A-supersolutions in G. Then u=lim ui is an A-supersolution in G. Moreover, 
A(x, Vus)~A(x, Vu) weakly in LPI(P-1)(D) whenever D c c G .  

Proof. Fix open sets D=cDoc=G.  Since we may dearly assume that u<0  in 
Do, it follows from (2.17) that uEWpX(D0) and that Vus-*Vu weakly in LP(Do). 
Now choose r/ECo(Do) with 0-<r/=<l and r /=l  in D. Write 0s=r/(u-ui)  and 

~', = f~, (.4 (x, V, , ) -A (x, Vu,)) �9 ( V u -  Vu,) dx. 

Thus 

0 <= I s <- foo,(a(x, Vu)-A(x, Vu,)). (Vu-Vu,)  dx 

= fDo (A (x, Vu) - A  (x, Vu,)) �9 V~,, dx-f~o (u- u,)(A (x, V u ) - A  (x, Vu,)) �9 vu dx 

~_ f .oA(x, Vu). VOsdx- f  ,o(U-u3(A(x, Vu)-A(x,  Vu,)). Vr/dx 

= _f.onA(x, Vu). (Vu- Vus) dx+f%(u-u3A(x,.,, Vu3. Vt/dx. 
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The last two integrals tend to zero and, accordingly, so does the sequence Ii. This 
guarantees that A(x, Vui)~A(x,  Vu) weakly in LP/~'-I)(D) (for the details see e.g. 
[15], Lemma 1). The lemma is thereby proved since the rest is now obvious. 

3. A-superharmonie functions 

We introduce A-harmonic and A-superharmonic functions and investigate the 
relation between A-supersolutions and A-superharmonic functions. In particular, it 
is shown that A-superharmonic functions form the closure of A-supersolutions with 
respect to upper directed monotone convergence. 

Throughout this section let G be an open set in R" and suppose that 
A: G •  is an operator satisfying (2.1)--(2.5). 

A weak solution u~loc Wpl(G) of the equation (1.1) is called A-harmonic in G 
if uEC(G). Recall that each weak solution of (1.1) is actually H61der continuous. 
Also it is worth noting that 2u+#,  2, #4 R, is A-harmonic whenever u is. Further- 
more, Harnack's inequality holds; as in [20] we deduce from Lemmas 2.18 and 
2.26 that if u is a non-negative A-harmonic function in a domain G and if C is com- 
pact in G, there is a constant c=c(n,p,  c~, [1, C)~1 with 

(3.1) sup u ~= c inf u. 

The class of A-harmonic functions is closed under uniform convergence. 

3.2. Theorem. Let ui, i= 1, 2 . . . . .  be a sequence of A-harmonic functions in G 
such that ui~u uniformly on compact subsets of  G. Then u is A-harmonic. 

Proof. (For another proof see [3], Theorem 4.21.) Applying the argument used 
in the proof of Lemma 2.32 yields that uCC(G):~loc Wpl(G) and that A(x, Vui)~ 
A(x, Vu) weakly in LP/~'-I)(D), D c c G .  This shows that u is A-harmonic in G. 

Harnack's principle, a celebrated tool in potential theory, also holds. 

3.3. Theorem. Suppose that ui is an increasing sequence of  A-harmonic func- 
tions in a domain G. Then the function u=lim u~ is either A-harmonic or identically 
+~, inG. 

Proof. Suppose that u(x)<~, for some x~G. Then, by Harnack's inequality, 
u is locally bounded in G, and it follows from the H61der continuity estimate [20], 
p. 269, that the sequence u~ is equicontinuous. Thus Ascoli's theorem together with 
Theorem 3.2 yields the claim. 

3.4. A-superharmonic functions. A lower semicontinuous (lsc) function u: G ~  
Ru{oo} is A-superharmonic in G if for each domain D c c G  and each function 
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hEC(D), A-harmonic in D, h<=u in 0/9 implies h<=u in D. An upper semicontinuous 
(usc) u: G ~ R u { - ~ , }  is A-subharmonic if  - u  is A-superharmonic. 

The following two lemmas are obvious. 

3.5. Lemma. I f  u and v are A-superharmonic in G, then min (u, v) and 2u+/t ,  
2_->0, #ER are also A-superharmonic. 

3.6. Lemma, Let ui, i= 1, 2 . . . . .  be A-superharmonic in G. I f  the sequence 
u~ is increasing or uniformly converging on compact subsets of  G, then u=l im ui is 
A-superharmonic in G. 

We need the following extension of [4], Lemma 2.3, cf. also Lemma 2.7 above. 

3.7. Comparison principle. Suppose that G is bounded and that u is A-subharmonic 
and v A-superharmonic in G. I f  

u (y) < = lim v (y) 
y ~ X  y ~ X  

for all xEOG and if  the left and the right hand sides are not simultaneously oo or - oo, 

then u<=v in G. 

Proof. Fix xEG. Let e > 0  and choose a regular domain D c c G  such that 
xED and that u<v+e in 0D. Then let rp~EC~~ be a decreasing and OiEC~(G) 
an increasing sequence with 91ou  and ~ v + e  in /?. Since OD is compact 
~0~=<ffi on 0D for some i. Choosing A-harmonic functions h and g in D with bound- 
ary values <p~ and ~ ,  respectively, yields u<-h<=g<=v+e in D. By letting ~ 0  
we obtain u(x)<=v(x) as desired. 

3.8. A-superharmonic functions versus A-supersolutions. We first show that each 
A-supersolution can be made A-superharmonic after a change in a set of  mea- 
sure zero. 

3.9. Theorem. Suppose that u is an A-supersolution in G with 

(3.10) u(x) = esslim u(y) 
y ~ X  

for each xEG. Then u is A-superharmonic. 

Proof. Note first that u is lsc in G, cf. Remark 2.21. Let D c c G  be a domain 
and let hEC(D) be A-harmonic in D with h<=u in 0D. Fix ~>0. Let D o c c D  
be an open set with u+e>h in D\Do.  Write v(x)=min(u(x)+~,h(x)) for 
xEDo. Then v is an A-supersolution in Do and min (v-h ,  0)EWp~o(Do). Thus 
Lemma 2.7 yields v>-h a.e. in Do, whence, by (3.10), u+e>=h everywhere in D. 
Letting e~O establishes the desired conclusion. 

If  u is an A-supersolution in G, then, by Theorem 2.14, u can be redefined in a 
set of  measure zero so that (3.10) holds. Thus we obtain 
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3.11. Corollary. Suppose that u is an A-supersolution in G. Then there is an 
A-superharmonic function v in G such that u=v a,e. in G. 

3.12. Theorem. Suppose that u is A-superharmonic in G and that D = c G  is a 
domain. Then there is an increasing sequence of functions ulEC(D)nWpl(D) such 
that u~ are A-supersolutions in D and that u=lim u~ in D. Moreover, u~ are A-super- 
harmonic. 

Proof. We may suppose that D is regular. Choose an increasing sequence 
q~iECO*(R n) with u=lim~o i in D and let u~EC(D)nWpl(D) be the solution to 
the obstacle problem with the obstacle ~o~ in D and with boundary values u~=cp~ 
in OD. Then ui is the desired sequence. In fact, ui is A-superharrnonic by Theorem 3.9; 
since ui is A-harmonic in the open set W= {xED: u~(x)>ui+l(x)}, it follows from 
the comparison principle that W=~I. Thus the sequence u~ is increasing. Moreover, 
w=lim u~>-u in/~. To complete the proof, fix i. Since u~ is A-harmonic in the open 
set U= {xE D: u~(x)>q~(x)} and since limr_~, u(y)>=q~(x)=ui(x ) for each xEc~U, 
the comparison principle yields u ~ u  in D, whence w<=u in D. This completes 
the proof. 

Now Theorem 3.12 together with Lemma 2.32 yields 

3.13. Corollary. Suppose that u is A-superharmonic in G. I f  u is locally bounded 
above, then uEloc I, Vpl(G) and u is an A-supersolution. 

Applying the proof of Lemma 2.32 to the functions ui=min (u, i), i=1, 2 . . . .  , 
Corollary 3.13 yields 

3.14. Corollary. Let u be A-superharmonic in G. Then u is an A-supersolution 
prot:ided that uEloc Wp 1 (G). 

To obtain a converse to Theorem 3.9 we should establish (3.10) for A-super- 
harmonic functions. 

3.15. Theorem. Suppose that u is A-superharmonic it', G. Then 

u(x) = ess lim u(y) 
y ~ J r  

for each xEG. 

Theorem 3.15 can be established by arguing as in [12], Theorem 5.4. However, 
the following lemma calls for a proof. 

3.16. Lemma. Suppose that u is A-superharmonic in G and that u(x)=0 for 
a.e. xEG. Then u(x)=0 for each xEG. 

Proof. Since u is lsc, u<=0 in G. Then fix xEG. We show that u(x)=0. For 
that, pick domains D o = = D 1 c c G  with xEDo. Let uiEC(DI)nWpl(D1) be an 
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increasing sequence of  A-superharmonic functions in DI with u= l im  u i. Then 
Vui~Vu=O weakly in LP(Dx) and, as in the proof  for Lemma 2.32, we obtain 

lim f (A(x, Vui) -A(x ,  Vu)). (7u i -Vu)dx  = O. 
i ~  ~ D o 

Then, since 

=f ]VuilPdx <= f A(x, Vui).Vuidx 
D o Do 

= f~. (A (x, Vu,)-A (x, Vu)). (Vu~-- Vu) dx, 

Vui-+O in LP(Do). Here we have made use of the fact that Vu=0  a.e. in D 0. 
Now choose a ball B=B(x,  r ) c c D o ,  and the unique A-harmonic function 

hiEC(B)nWpt(B) with hi=u i in OB. Let v i be the Poisson modification, 

hi in B 
V i ~--- 

ui in Do\B, 

which is easily seen to be A-superharmonic in Do' Moreover, v.:<=v~+l<=u~+1 in 
Do by the comparison principle. Thus Lemma 3.6 and Theorem 3.3 imply that 
v=l im v i is A-superharmonic in Do and A-harmonic in B.  Since v<=u, it sut~ces 
to show that v = 0 in B. 

To this end, observe that Vvi~O in LF(Do) since 

f .  IVhit" dx <- f A(x, Vh,). Vh, dx = f ~ A(x, Vhi)-Vuidx 

< p ( f .  [Vh,l" d~) ' ' - ' / "  (fB [Vu,l" dx) ~`" 

Then v is a constant a.e. in Do. But since v = u = 0  a.e. in Do\B,  v = 0  a.e. in D o. 
Thus, by continuity, v = 0 in B as desired. 

Now Theorems 3.9 and 3.15 together with Corollaries 3.11 and 3.14 imply our 
main theorem: 

3.17. Theorem. Let u be a function in loc WpI(G). Then u is A-superharmonic 
in G i f  and only i f  u is an A-supersolution in G with 

(3.18) u(x) = ess lim u(y) 
y ~ X  

for each xEG. Moreover, if u is an A-supersolution in G, then (3.18) holds a.e. in G. 

Using a partition of unity reveals the local nature of  A-superharmonic functions; 
a special case of the following is Shown in [3]. 

3.19. Corollary. A function u: G ~ R u { ~ }  is A-superharmonic in G i f  and 
only i f  each xEG has a neighborhood D so that u[o is A-superharmonic in D. 
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3.20. Remarks. (a) Since an A-supersolution has a l sc  version, we may handle 
t as a pointwise defined function which is, in view of Corollary 3.11, A-super- 

harmonic in G. Moreover, the class of A-superharmonic functions forms the closure 
of A-supersolutions with respect to upper directed monotone convergence. In fact, 
this follows from Lemma 3.6, since the functions min (u, k), k = l ,  2 . . . . .  are 
A-supersolutions whenever u is A-superharmonicl 

Furthermore, these two classes of functions are not equal for p~_n. For exam- 
ple, let A be the p-harmonic operator, A (x, h)= [hi p-2 h, 1 <p-<_ n. Then the function 

f x  t(:_n)/(p_:)dt u(x )=  txJ 

is A-superharmonic in G=B(0,  1) but u(tloc Wpl(G), so u is not an A-supersolu- 
tion. Similar examples can be constructed also for other operators, see [20]. For  
p>n the situation differs, since by using the estimate (2.25) and Theorem 3.17 it 
is not difficult to show that each A-superharmonic function is continuous and there- 
fore an A-supersolution by Corollary 3.13, cf. [12]. 

(b) Theorem 3.17 also yields: a function h is A-harmonicin G if and only if h 
and - h  are A-superharmonic in G. 

(c) Given a regular open set G and a function f:C(OG) there exists a unique 
uEC(G), A-harmonic in G, with u : f  in OG. This follows easily from Harnack's 
principle and the comparison principle. It is not known to the authors whether the 
Wiener criterion (2.10) is also necessary for (2.11) if p<=n-1. For p > n - 1  the 
necessity is proved in [13]. 

The Perron method to solve the generalized Dirichlet problem works also in 
this non-linear case [4], [10]. 

4. Removability theorems 

We ask conditions which guarantee that a closed set E in G is removable for a 
given class of A-superharmonic functions in G\E.  It is shown that, for lower 
bounded A-superharmonic functions, E is removable if and only if E is of p-capacity 
zero, a well known theorem in classical potential theory. Further, larger sets are 
removable for A-superharmonic functions in L~(G',,,E) with s>p. 

Throughout this section let G be an open set in R n and E a relatively closed 
set in G. Suppose that A: G •  n is an operator satisfying (2.1)--(2.5). 

4.1. Sets of q-capacity zero. A compact set C in R n is of q-capacityzero i f  
cap e (C, D ) = 0  for each open neighborhood D of C. It is an easy task to Show 
that C is of q-capacity zero if and only if there is a bounded open neighborhood 
D of C with eapq (C, D)=0,  of. [19], I f E i s  dosed in G and if each compact subset~ 
of E is of q-capacity zero, we say that E is of q-capacity zero. 
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1 1 
We let q" denote the conjugate exponent of qE[1, oo], i.e, q +  ~ - =  1. 

4.2. Theorem. Let qE[1,p]. Suppose that a function uEloc L~(G), s=q ' (p -1 ) ,  
is A-superharmonic in G \ E  and that E is of  q-capacity zero. Set 

u (x)  = li__m_m u ( y )  
y ~ X  

for xE E. Then u is A-superharmonic in G. 

Proof. Since s = q ' ( p -  i)=>p, u belongs to loc L~(G)=loe Wp 1 (G); by Corol- 
lary 3.14, u is an A-supersolution in G',,.E. In view of Theorem 3.17 it sumces to 
show that u is an A-supersolution in all of GI For this, let q~ECo(G ) be non,nega- 
tive. Choose an open set D c ~ G  with spt~pcD and a sequence q~ECo(D) 
such that 0-<q~i<-l, q~i=l in a neighborhood of Enspt q~, and llq~llwg(o)~0 as 
i ~  oo; since Enspt 9 is of q-capacity zero, such a choice is possible by the Poincar6 
inequality. Then (1 -qgi) qgEC ~ (G',.,E) is non-negative, whence 

f oA (x, Vu). vq, dx = f ,  A (x, Vu). v (~ , )  dx+ f o\ A (x, Vu). V((1-9i)  cp) dx 

>- f oA(x, Vu)v(,~0,) dx 

Now the last integral tends to zero as i ~  co since 

[foA(x,  Vu). V(q~q~,) dx] ~_ [[A (x, Vu)IIr (max Iq~l [IVq~,[[~ +max IV~ol [[~o,llq) 

and since 
IIA (x,  Vu)llq, <--/~tlVullff -1  < ~ 

This shows that u is an A-supersolution in G as required. 

The same reasoning yields a parallel result concerning a-harmonic functions: 

4.3. Theorem. Let qE[1,p]. Suppose that the function uEloc L~ (G), s=q" (p --1), 
is a-harmonic in G",,E and that E is of  q-capacity zero. Then u has an A-harmonic 
extension to E. 

The following two corollaries have natural counterparts for A-superharmonic 
functions. We let dim n E denote the Hausdorff dimension of E. 

4.4. Corollary. Suppose that u is a-harmonic in G \ E  and that dim n E < n - 1 .  
I f  uEloc L~(G) for each s < ~ ,  then u extends to an a-harmonic function in G. 

Proof. If 1 < q < m i n  (p, n - d i m  n E), then E is of q-capacity zero (see e.g. [19], 
Theorem 4.2), and the assertion follows from Theorem 4.3. 

4,5. Corollary. Suppose that u is locally K-lipschitz and a-harmonic in G',,,E 
and that the (n-1)-measure of  E is zero, Then u extends to a locally K-lipschitz A-har- 
monic function in G. 
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Proof. Since the (n-1)-measure of E is zero, u has a locally K-lipschitz extension 
in G and E is of 1-capacity zero, cf. [16], Lemma 2.2.5. Then, by Theorem 4.3, this 
extension of u is A-harmonic in G. 

4.6. Remarks. (a) Theorem 4.3 and Corollaries 4.4 and 4.5 might be known 
but we have not found any reference to give. O. Martio [14] makes use of the fact 
that large sets are removable for lipschitz solutions in constructing counterexamples 
for unique continuation; he assumes that E is an (n-2)-plane and proves a result 
similar to Corollary 4.5. 

Observe that the proofs of Theorem 4.3 and Corollaries 4.4 and 4.5 work also 
under weaker requirements on the operator A. 

(b) L, I. Hedberg [5] obtains Theorem 4.3 for ordinary harmonic functions, 
and he also shows that it cannot be improved. 

Next we extend a well-known result of classical potential theory. 

4.7. Theorem. Suppose that u is an A-superharmonic function in G'x,E with 
limr, x u ( y ) > - c o  for each xEE. Set 

u(x) = lim u(y) 
y ~ X  

for xE E. I f  E is of  p-capacity zero, then u is A-superharmonic in G. 

Proof. Let D c c  G be a domain. It suffices to show that u is A-superharmonic 
in D. Replacing u by min (u, k), k =  1, 2 . . . . .  if necessary, we are free to assume 
that u is bounded in D. Using the estimate (2.17) we show that u~loc Wpl(D) which, 
by Theorem 4.2, establishes the desired conclusion. For that, pick a domain Do c c  D 
and r ) with 0 _ 9 = 1  and 9=1  in Do. Now, since E0=spt9c~Do is 
of p-capacity zero, we may choose a sequence D~, i=  1, 2 . . . . .  of open sets with 
Eo=AkDkcDi+I~cD~ccD,  and a sequence 9~6C=(D) such that 9i=1 in 
D\Dz,  9/=0 in a neighborhood of E0, and f .  [V9~l p dx-*O as i-~ oo. Since u is 
bounded and A-superharmonic in D \ E ,  (2.17) yields 

f IVulP~ogdx <= f IVulP(99i)pdx 
D O D 

<-_ c fDlV(~931Pdx ~_ c(fDIV91"dx+ fD lVg,lPdx). 
Thus letting i~oo yields 

f~.ElVulPdx<oo. 

Since the (n-1)-measure of E is zero, it follows that u6Wpl(Do), and the proof is 
complete. 

4.8. Remarks. (a) Theorem 4.7 is sharp. Indeed, let C be a compact set in a 
ball B with capp(C,B)>O. Let 9CC**(R") be such that 9 = 0  in C, and 9 = 1  
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in OB, and choose A-harmonic u in B \ C  with u-q~CWpl0(B',,,C). Since u > 0  
in B \ C  and since l imy . ,xu(y)=0  for some x ~ C  (cf. [6], Theorem2) ,  u has 
no A-superharmonic extension in B as a consequence of  the comparison principle. 

(b) Theorem 4.7 is well known for A-harmonic functions [20]; this is also sharp 
in view of  the remark above. 

(c) Neither Theorem 4.2 nor 4.3 can be improved by assuming that 
uClocL](G' , , ,E) .  For  this, note that there is ~ = e ( n , p ,  a, f l )>0  such that each 
A-harmonic function u in G belongs to locWp~_,(G), cf. [17]. The function u in 
(a) above serves as a counterexample by choosing C so that capq (C, B ) = 0  for q < p .  

Moreover,  the same example shows that  there does not exist e, > 0  not depend- 
ing on G, such that each A-harmonic u in Wpl(G) would belong to Wpl+,(G). 

(d) It  is well known that there is no non-constant bounded A-harmonic func- 
tion in R ~ (see e.g. [1], p. 307). Using the above results yields that if  E is a closed 
set of  p-capacity zero, then there is no non-constant bounded A-harmonic func- 
tion in R ' \ E .  Conversely, by using [15], the estimate (26), it is not difficult to 
construct a non-constant A-harmonic function in each domain G provided that 
R'~N,G is not of  p-capacity zero. 

In the borderline case, p = n ,  an analogous result holds for A-superharmonic 
functions; it easily follows from the estimate (2.17) that each lower bounded A-super- 
harmonic function in R ~ \ E  is a constant whenever E is of  n-capacity zero. For n = 2  
this is the well known characterization of Greenian sets. 
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