
Removable singularities of CR-functions 

B. J/Sricke 

0. Introduction, statement and discussion of the results. There are well-known 
theorems concerning removable singularities of analytic or harmonic functions 
from various classes in planar domains, see for example [11]. There are also generali- 
zations to higher-dimensional domains and general elliptic differential operators 
instead of the 0 or Laplace operator [4]. The description of removable singularities 
depends on the class of functions and is usually given in terms of capacity or Haus- 
dorff measure. For operators appearing in the theory of several complex variables 
such as the Cauchy--Riemann system or the ~b operator (the boundary Cauchy--  
Riemann operator for smooth domains in C n) we have to expect new phenomena 
so that the complete description cannot be given in the terms mentioned. This is 
suggested, for example, by the well-known Hartogs theorem ([5], Theorem 2.3.2, 
[8], 16.3.6): every funct ionfanalyl i~ in the connected set s s being a domain 
in C ~ ( n > l )  and E a compact subset of s is the restriction to s  of a func- 
tion analytic in the whole of ~. So for the Cauchy--Riemann system a "removable 
set of singularities" E is not necessarily small in measure or capacity, it can even 
have a nonempty interior. 

Suppose now that a closed set E is situated in Clos s (not necessarily in s 
What the Hartogs theorem suggests in this case is that the removability of E (with 
respect to the class of all functions analytic in s  depends only on the behaviour 
of E near the boundary Fr s or maybe depends only on Ef~Fr s (Clos A means 
the closure of the set A, Fr A its boundary). This fact must imply Hartogs type 
theorems for the boundary Cauchy--Riemann operator. That means that we have 
to expect the existence of sets A c F r  s which are removable singularities for the 
boundary Cauchy Riemann operator and are "large" in some sense. So they 
are not necessarily removable for arbitrary differential operators of first order. 

Now we shall give precise statements of the mentioned results. In the state- 
ment and proof of the results we restrict ourselves to the case of the unit ball B (=  B n) 
in C n although it is not hard to see that the main results are true for strictly pseudo- 



118 B. Jrricke 

convex domains f2 with sufficiently smooth boundary (as a rule of class C*). (For 
weakly pseudoconvex domains the complete description becomes more complicated, 
see, for example, I17] and the references there and also [12].) We assume that E n F r  B 
is contained in some open manifold M, M c F r  B, (or that the singularities of 
solutions of the boundary Cauchy--Riemann operator are contained in M, respec- 
tively) and give the answer to the questions raised above in terms of M. 

We shall even get more general results. We consider a domain of the form 
OnV, f2 being strictly pseudoconvex with smooth boundary and V being a neigh- 
borhood of M. The functions are supposed to be analytic in ( f 2 n V ) \ E  with 
E n ( F r  f2 )nVcM (respectively, the singularities with respect to the ~b-equation 
on (Fr g2)c~V are contained in M). For suitable M we shall continue the func- 
tions analytically into f2nV1, V1 being another neighborhood of M (respectively, 
we shall show that there are no singularities of the Oh-equation on (Fr f2)nV). 

Definition 1. A manifold* M c F r B  ( B = B " c C  ~) is called removable if the 
following is true: for an arbitrary closed set E c C l o s B  with E n F r B c M  and 
B \ E  connected the envelope of holomorphy of B \ E  is B, i.e. every function f 
analytic in B \ E  is the restriction ~ - I (B \E)  of a function ~" analytic in B. 

Definition 2. A manifold M c  Fr B is called (L =, ~b)-removable if every func- 
tion fEL~(FrB) with ~b f=0  in ( F r B ) \ A  (in the sense of distributions) for 
some A = C l o s A c M  satisfies ~b f=0  on the whole of FrB.  

For the case of distributions on Fr B we have to change the definition a little 
bit (for example, the Dirac measure 6p on F r B  at a point p E F r B  satisfies the 
equation Ob~Sv=0 on Fr B\{p}  but not on the whole of Fr B, so even points are 
never removable in this sense). 

Definition 3. A manifold M c  Fr B is called (S', Ob)-removable if the following 
holds: for every distribution f on Fr B with ~ b f = 0  in (Fr B ) \ A  for some closed 
set A c M  there exists a distribution g on Fr B with support contained in M and 
such that ~ b ( f - g ) = 0  on the whole of Fr B. 

There is no obvious relationship between removability, (L ~, Ob)-removability 
and (o ~', ~b)-removability. 

We need also the following "local" 

Definition 4. A manifold M c F r  B is said to be locally removable at a point 
pEM if there exists a neighbourhood q / o f p  (in CO such that r162 is removable 
in the sense of Definition 1. 

* In this work manifold (of dimension m) always means a topological space, every point of 
which has a neighborhood homeomorphic to an open set of R 'n. 
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In an analogous way local variants of Definitions 2 and 3 can be given. Note 
that, as we will see below, a manifold M which is locally removable at all points 
need not be removable. 

Theorem 1. Suppose M c F r  B" is a manifoM of  class C ~, pEM. I f  

(1) T[,(Fr B ) \ T p M  # O, 

then M is locally removable at p. 

(TpM is the tangent space of M at the point p and T~(Fr B) is the complex 
tangent space of the sphere at the point p (see [8], 5.4.2).) 

If  condition (1) fails, M is not necessarily locally removable at p as the fop 
lowing example shows. 

Example 1. p = ( l ,  0 . . . . .  0)EFrB ", V is some small neighbourhood (in C ~) 
of p and M = { z = ( z  I . . . . .  z , )EVnFrB":  Imz l=0} .  Here TpM=T~,(FrB")= 
{zEC": zl=0}. Suppose g, is a bounded analytic function in the planar domain 
{zEC: I z ] < l } \ [ 1 - e ,  1] for some small e>0  which cannot be analytically con- 
tinued to the whole unit disc {zEC: Iz]<l}. The function f~(zl, z~ . . . . .  z,)=g,(zO 
is then defined and holomorphic for z=(z~ .. . . .  zn)EB"\{Im z~=0, Re z~->-I-e}, 
but is not holomorphically continuable to the whole of B". The singularity set 
E =  {zE Clos B n: Im zl-- 0, Re zl -> 1 - e} reaches the sphere Fr B" along a subset of  
the set {zEFr B": Im Z 1 = 0  , Iz-pl2=lz~-l l2+lzzl~§247 lZ-<__n~§ 
which is the intersection of M with a small neighbourhood of p (depending on e). 
Note that f~ is bounded, so M is not even locally (L =, 0b)-removable at p. 

So, a manifold M of  real dimension dim, M < 2 n - 2  is locally removable at 
every point. In the case of real dimension 2 n - 2  the locally removability depends 
on the position of M with respect to the complex structure in the neighbourhood 
of the point p. So, real dimension 2 n - 2  is the critical one for M to be locally 
removable or not. (If M has complete real dimension 2 n - 1 ,  it cannot be locally 
removable.) 

The following example shows (with the help of Theorem 1) that a manifold 
which is locally removable at all points need not be removable. 

As the referee pointed out to me other natural examples of sets which are 
locally removable at every smooth point but not globally removable are the zero 
sets of functions analytic in B" and of class C ~ in Clos B". 

Example 2. Consider C 2 and let M c F r  B ~ be the torus 

M = {z--  (zx, z2)EFr BZ: Izll = Iz21-- l/l/2}. 

It is not hard to see from Theorem 1 that M is locally removable at every point. 
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On the other hand M divides F rB  z into two parts S l = ( I Z l l > l [ ( 2 }  and S~= 
{Izll<l/I/2}. The function which is zero in {zEB2: IZal >1/1/2-} and equals one in 

{zEBZ: [z11<l/t/2-} cannot be analytically continued to the whole of B ~. So, M is 
not removable and not even (L =, 0b)-removable. 

A slight modification shows that such manifolds M do not necessarily discon- 
nect FrB 2. 

Example 3. M =  {z= (zl, z~)E Fr B~: ]Zl[ = Iz~l = 1/1/2-, arg z~E ( -~ ,  ~)}, 0<~ <n.  
Atest function showing that M is not removable is f(z~, zz)=g(zl) 

(z = (z~, z~)Cn~,,{Izll = 1/I /2 ,  argz~E(-cq ~)}) with g analytic (and bounded) in 

{zEC: Izl<l}\{Izl= 1/1/)-, arg zE(-~,  c0} but not in the whole of {Izl~l}. 
In this case M is a "ring". The condition that M contains a ring is, roughly 

speaking, the only "global obstruction" for M to be removable. The following 
theorem holds. 

Theorem 2. (Main theorem.) Suppose M c F r  B 2 is a manifoM of  class C 2 and 
of  real dimension dim, M :  2. I f  (1) is satisfied for every point p E M  (that means 
in this case that M is totally real) and 

(2) M is diffeomorphie to the open unit disc in the plane 

then M is removable. 

Corollary 1. Suppose M is a simple (nonclosed) Jordan curve on Fr B ~ o f  
class C ~. Then M is removable. 

Note that the closed Jordan curve 7={z=(zl ,  z2)EFr B2: zl =a,  Iz~l = 1/T-zTa-~} 
(a being a complex number, la[<l) is not removable as the function f ( z l ,  z~)= 
1/ (z l -a)  shows. 

This corollary can be proved easily by constructing a manifold ~ c F r B  ~ 
satisfying the conditions of Theorem 2 and containing M. Corollary 1 can be proved 
also directly without using Theorem 2 (the direct proof is simpler than that of Theo- 
rem 2) and can be generalized to simple smooth Jordan curves on Fr B" for arbi- 
trary n_->2. We will not do this here. 

Corollary 1'. Suppose M is as in Corollary 1. Then M is (8', Ob)-removable. 
Smooth curves on Fr B 2 are always (L ~, 0b)-removable ([4]). 

Corollary 2. Suppose M c F r  B ~ is as in Theorem 2. Then M is 
removable. 

Corollary. 3. Suppose M c F r B  ~ is as in Theorem 2. Then M is 
removable. 

(8", 
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Examples 1, 2, 3 show that both conditions (1), (2) on M, namely, that 
T;(Fr Bn)\T~M~fl for all pCM and that M is diffeomorphic to a planar disc, 
are essential. Note that manifolds M of this kind are "large" in various senses. 
For example, they are uniqueness sets for the space A(B 2) of functions analytic 
in B 2 and continuous in Clos B ~ [16]. Note also that the results of [4] [Theorem 
4.1(b)) concerning general differential operators of first order imply the (L ~, 0b)" 
removability of a set A = F r  B 2 if the two-dimensional Hausdorff measure of A 
is zero, A2(A)=0. The condition A2(A)< oo is not sufficient for general operators. 
Examples show that results of the type similar to Corollary 2 holcl only for special 
operators (only for special differential operators of first order smooth simply con- 
nected manifolds transversal to the operator at each point are removable in the sense 

0 
of Definition 2 or 3). (Indeed, even the Cauchy--Riemann operator P = ~ x  +i -~y ,  

acting on functions defined for (x,y,t)~R z gives a counterexample. Take 
M={(x,  y, t)ERZ: y=0 ,  x2+t~<3}. Then P is nowhere tangent with respect to M, 
but M is not removable (for the class L~). This can be seen by taking a test func- 
tion g defined on R 3 \ M  in the following way. Let f E H ~ ( C \ [ - 1 ,  1]), f r  

~ beingthe extended complex plane. For (x, y, t)ER~,,M put g(x, y, t )=f  ~ 

for I t l< l  and g(x,y,t)=f(+~,) for It[_->l. Note that gECI(R3\M), so, 
obviously, Pg=O on R3 \M.  By fixing some t, I t [<l ,  it is easy to see that M i s  
not removable.) So it would be interesting to give conditions for an operator (pos- 
sibly different from the 0~-operator for some smooth strongly pseudoconvex domain) 
to have Hartogs type removable singularities or not. It would also be interesting 
to give an operator theoretical proof of Corollaries 2 and 3 not using "complex 
methods". 

Look now what Corollary 2 means in a special situation. Consider the domain 
~={z=(zl, z~)CC2: [Zl[2<Imz2} (the Cayley transform of B2). Its boundary 
Fr f2 = H~ = {(Zx, z2) = (z, s + it): t = I z13} is the well-known Heisenberg group. Iden- 
tify it with C •  by the mapping (z, s)~(z, s+ilzI2). The ~}b-operator for H2 is 

0 0 
L~ (w=s+it) (see [8], 18.2.4). Continuing h~CI(H2) onto C 2 so 

o .  

that h does not depend on t we get Lh=iz-~ h -~ 0~ h. (Note that the formal 

0 0 
adjoint operator with respect to L2(H 2) is the famous H. Lewy operator -~x - i  -~y + 

i (x-iy)~x).  Corollary 2 (more exactly, its slightly stronger variant which fol- 

lows from the Theorem 2" below) now gives the following: Suppose that O = C • R 
is an open set, M c O  is a C2-manifold of dim, M = 2  and M is diffeo- 
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morphic to an open planar disc. If for all p=(z, s)CM the inequality TpM~ 
{(Z, S)CC•  S = R e  (2i~Z)} holds (that means L is not tangent for M at any 
point), then for any compact set K c M  and any h~L~(O) the equality Lh=O 
in O \ K  (in distributional sense) implies Lh=O in O (in distributional sense). On 
the other hand there are C~-manifolds of real dimension two and of arbitrarily small 
diameter without this property. 

Now we come to the proof of the main theorem. An outline of the proofs of 
Corollaries 2 and 3 and also of the "local" Theorem 1 will be given later. Also some 
remarks will be given concerning the proof of the analogue of Theorem 2 for strongly 
pseudoconvex domains in C 2 (instead of the ball B2). 

1. Proof of the main theorem. Denote for simplicity B = B  ~, S = F r  B ~. Sup- 
pose that M c S  is as in the theorem, E is a dosed subset of Clos B, E n S c M ,  
a n d f i s  analytic in B \ E ,  B \ E  being connected. We have to prove the following. 
For every r, r being smaller than one and sufficiently close to one, f can be analyt- 
ically continued into a neighbourhood of the sphere rS. Then f is analytic in some 
spherical layer {r0<lzl<l} and so by Hartogs' theorem also in the whole of B. 

The idea of the proof is as follows. We take a point ~ E n r S  and construct 
an analytic disc Ar (i.e. the holomorphic image of a planar domain) contained in B 
with ~CAr and with boundary Fr A; contained in B \ E .  Our aim is to show 
that there is an analytic function in a neighbourhood of Ar which coincides with f 
in a neighbourhood of the boundary Fr Ar This will be done by using the con- 
tinuity principle ([14], IIIw 17): f will be analytically continued "along a suitable 
family of analytic discs". Note that all constructed discs are situated in a small neigh- 
bourhood of M, So the following somewhat sharper form of Theorem 2 will be 
proved. 

Theorem 2". Suppose M c S is as in Theorem 2, V is some neighbourhood (in C 2) 
o f  M and f is analytic in ( B n V ) \ E  for some closed E with E n S c M ,  ( B n V ) \ E  
being connected. Then f can be analytically continued into the intersection of B with 
some neighbourhood of  M. l f  f is bounded in ( B n V ) \ E ,  then so is the analytic con- 
tinuation. 

For convenience of the reader we work out the details first in a simple partic- 
ular case and then pass to the general case which needs some additional tools. This 
particular case is not needed in the proof of the general case. 

Particular case. M c  S is diffeomorphic to the unit disc in the plane and is con- 
tained in the torus 

T2 de, {2 = (gl, z~)6C2 : iZll = [z~l __ _ ~ }  c S .  
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Proof of  Theorem 2" in the particular case. Everything will be done in a 
small neighbourhood of M, so we can perform a logarithmic transformation of 
coordinates (zl, z2)~(log zl, log z2) and after a translation we come to the fol- 
lowing situation. There is a manifold M c  {0}+iR ~ (0 is the origin in R 2) which is 
diffeomorphic to the (open) unit disc in the plane. Write M =  {0}+ira, where 
m c R z can be assumed to be bounded, simply connected and with smooth bound- 
ary. Further V is some neighbourhood of M, say V= v +ira, where v is a neigh- 
bourhood of zero in R 2. Instead of B we have some domain f2 with smooth bound- 
ary such that VnO=(vnco)+im, where co is a domain in R" with smooth bound- 
ary, such that the boundary points of co belonging to v are points of strong con- 
vexity. Also 0E(Fra~)nv (that means M c ( F r  O)c~V). Further there is a dosed 
set E with E n V n F r  f 2 c M  and a function f analytic in (Y2nV)\E, this set being 
connected. We have to show that analytic continuation of f gives a function which 
is analytic in all points of f2nV sufficiently close to M. This is, of course, (after 
a unitary transformation) the situation of 18.1.7, 18.1.8. of the book by Rudin [8]. 
Instead of showing here that conditions 18.1.7. hold in our situation, we will carry 
out the proof in a somewhat different way which demonstrates the method used 
in the general case. 

CO 

Fig. 1 

Choosing v sufficiently small we may assume that E n V c ( e + i n ) n V ,  where 
e and n are closed subsets of R 2, n c m  and n is diffeomorphic to the dosed unit 
disc in the plane and e n v c C l o s  co, e n F r  co= {0}. 

So, f i s  analytic in {(co+im)\(e+in)}nV. We want to construct the analytic 
continuation o f f  into (co+im)n(vl+im) for some small neighbourhood vl of 0. 
Now it is not hard to construct the analytic disc A~ through a point ~ = ~ +  
itiE (09 n ~1)+ im. It will be a part of the complex line F/~ through the point ~ parallel 
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to the complex tangent space tO f2 at the points of M (this space is constant for 
points in M). Note that the projection of this complex line/-/~ into the real space 
R 2 is the line lr containing ~Eco and being parallel to the tangent line for co at 
the point 0. The projection of//~ into the imaginary space iR 2 is Some line iS~ con- 
taining i~/. So, the intersection of / /~ with I2nV is lenconv+i(La, nm), the union 
of rectangles corresponding to the connected components of s nco. (/enconv is 
a segment with the endpoints on Fr co, if vl is small enough and ~Ez,1.) The disc 
A~ is now the rectangle containing ft. Obviously the intersection of A~ with a neigh- 
bourhood of its boundary Fr A~ is contained in 12nV, Now we write down the 
family of discs "along which we want to continue f " .  Take 9, a unit vector in R 2 
orthogonal to La~ and pose ~ =0+i~.  By//~ we denote the translation of the com- 
plex line H E by the vector s~3 (sE(-o% ~)). (We translate in the imaginary direc- 
tion orthogonal to//~). So, ll~=l~+i(S~.+s~) is parallel to H~ and goes through 
~+i(r/+s~). The intersection fl~nf2c~V is 1-l~nf2nV=lene)nv+i{(~+so)nm}, 
the union of disjoint open rectangles p~,k (the connected components of II~nf2nV, 
corresponding to the connected components of (~e~+sv)nm). 

T ~ 

Fig. 2 

For each rectangle its intersection with some neighbourhood of its boundary 
is situated in {(co+im)\(e+in)}nV. The sets / /~nf2nV form the desired family 
of analytic discs. We will show that for each s~O 

( . )  there is an analytic function in some neighbourhood of 

//~ O f2 A V coinciding with f near Fr (H E O f2 ~ V). 

0 def p~.k 
(//~ ~---/7~ and are the connected components of /-/,n~?nV). So, we shall 
get a well-defined analytic continuation of the function f into a neighbourhood of 
the (arbitrary) point ~E~?nV, which will prove Theorem 2' in the particular case. 
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Denote Sl=sup {s: (L~~162 and s2=sup {s: (.oq'n+sD)c~m~0 }. Then 
- o o < s l < s 2 < ~ o  and for sE(sl, s2) (*)  is obviously true. Suppose ( . )  is not true 

for some s->0 and take s0 a'r sup {s<s2: (*)  is not true for s}. Obviously, so<s~. 
We want to show that 

(3) ( . )  is not true for So. 

This is based on the fact that the set of regularity of the function f is open but it 
needs some arguments because the boundaries Fr (H~nf2nV) in general do not 
depend continuously on s. (There is only some semicontinuity.) Then we want to 
apply the continuity principle ([14], III w 17) and show that (3) is impossible, hence 
( . )  holds for all s=>0. In this step the semicontinuity is easily seen to be sufficient. 
It is enough to choose suitable subsets of II~nf2nV (s>=So) continuously depending 
on s. These two steps will be repeated also in the general situation. Now we will 
prove (3). 

Suppose (3) does not hold: there is an analytic function in a neighbourhood 
W of/-/~onf2nV coinciding w i t h f  near Fr (H~0n~2nV). Recall that /-/~n~2nV= 
leno)nv+i(~+su)nm for arbitrary s. Take a sufficiently large compact subset 
K c / / ~ 0 n ~ n V .  Now for s sufficiently close to So an arbitrary point pE/-/~nOnV 
is either close to K and therefore contained in W, or p is close to /7~0\(f2nV) and 
therefore close to Fr (f2nV). But /-/~nFr ( f2nV)c{Fr  (leno)nv)+i(~,+sv)}u 
{lcn~onv+iFrm}, so points from f2nV which are close to / /~nFr  (r 
belong to f2nV\E. Now it is easy to see that for all s sufficiently close to So the 
set /-/~nf2nV is contained in some open set into which the function f c a n  be analy- 
tically continued in the desired way. Therefore ( . )  holds for this s in contradiction 
to the definition of So, and (3) is proved. 

Using the fact that ( . )  is true for S>So we will now get a contradiction to 
the continuity principle ([14], I IIw 17). Indeed, suppose p{0,k is a rectangle, one of 
the connected components of /-/~0nOnV, for which f cannot be analytically con- 
tinued to its neighbourhood in the desired way. It is easy to see that for each com- 
pact KcP~ o'k we have K+(s-so)YBcFl~nf2nV for ls-s0l<b (6>0 depending 
on K). Taking sufficiently large dosed rectangles for these K's we see that the points 
near Fr (K+(s-So)~) are in f2 \E .  This permits us to choose a family of (open) 
rectangles P~ (S>So,, s is close to So) such that l i m ~ o  ~;--~O~--l:'~~ lim~_,~ ~ Fr P~= 
Fr p~o,k, the points on P~ near Fr P~ being contained in f 2 \ E  and such that 
the function f can be analytically continued into a neighbourhood of P~ in the 
desired way. (Recall that ( . )  is true for S>So. ) But this contradicts (3) by the 
continuity principle. Theorem 2' is proved in the particular case. 

2. Proof  of  Theorem 2" in the general case. The main difficulty in this case is 
to construct the analytic discs mentioned above. The construction may be of some 
interest in itself, so we give the formulation of the corresponding result in Theorem 3 
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(see Section 4 below). We begin with a heuristic discussion to give an idea of  how 
to do this. So, suppose zEB and z is close to M. We have to construct an analytic 
disc A~, ZEAz, which is contained in B and whose boundary Fr A~ lies in B \ E  
and is close to M. We can expect that the discs look as in the special case: In one 
direction they are "long",  which means they lie in some neighbourhood of  a curve 
which is very close to M at aI1 its points, and in the other (orthogonal) direction 
they are "shor t"  and, roughly speaking, 

( + )  "reach the boundary F r B  very fast". 

What does this mean for the tangent space of Az at points pEAz? The tangent 
space is, of  course, a complex line (because A z is analytic) and in view of ( + )  it 
must be close to the complex tangent space T;,,S of S at some point p'ES, p' being 
close to p. Now we proceed as follows. Suppose r < l ,  zErM. On rM we choose 
a smooth tangent vector field w such that the corresponding integral curve through 
z is almost the curve mentioned above. (So w(p)ETp(rM) and w(p) is "almost"  
in T~/ip I S for pErM.) By approximation (note that M is totally real) we get a vector 
field v which is analytic in some neighbourhood of  r Clos M1 for some M1, M 1 c  
Clos M I c M ,  M 1 being of the same kind as M, and such that v is close to w on 
rM~. Now we find a vector function ~ ' ( = ~ ) ,  analytic for ~ in some planar domain 
such that 

(4) ~ ( 0 )  = z 

(5) Y ( 0  = 

The solution of this differential equation in a suitable planar domain gives us the 
desired disc. Condition (5) implies that { ~ ( x ) :  xEI} (I being some interval, 
0E I c  R) is the curve mentioned above. 

The following lemma is needed to prove that in the direction iv the disc "reaches 
the regularity set o f f  very fast". 

Lemma 1. Suppose E c C l o s  B is a closed set, B \  E is connectedand E n S c M, 
where M is a C~-manifold of real dimension dim, M = 2 .  Then there exists a closed 
set A c E  which touches M nontangentially and such that each function f analytic 
in B \ E  is the restriction to B \ E  of  a function analytic in B \ A .  

A closed set A~Clos  B is said to touch M nontangentially if A n S c M  and 
there are a neighbourhood U of  M and a number ~>0,  such that 

(6) A n B n U c [..3 K~ (~), 
~EM 

where Kr I~-CI<~ Re (~-~,~)}  is the nontangential cone (with respect 
to B)  with vertex ~ and angle ~. (Here (a, b )=a~x+a~2  is the complex scalar 
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product of the vectors a, bE C 2, la[ =((a, a)) 1/2 is the corresponding norm.) An 
equivalent definition is that there exists some fl >0 such that (with the U above) 

(7) A n B n  U c  U {~ErS: dist(~,rM) < fl(1-r)} 
to<r<1 

(dist (p, .4) is the distance of the point p from the set .4 with respect to the norm 
I" [). Note that in (6) and (7) we can replace M by some open subset M0 of M, 
Clos MoCM (because `4 is dosed) and we can suppose that M0 is diffeomorphic to 
a planar disc. 

Proof of the lemma. Take an arbitrary point (EM0. Denote by /-/~ the (real) 
two-dimensional plane trough ~ orthogonal to M (that means orthogonal to T~M). 
So H~ is the plane spanned by the two vectors ( and n~, where n~ET~Sn(T~M) • 
ln;I = 1. All we have to do is to find a set `4 satisfying 

(8) A n UnBnlI~  c K;(~) n H~. 

(Indeed, U;eMoH~ covers some neighbourhood of M0.) We use the following 
well known lemma (see [8], 18.1.8. or 18.1.12). 

Lemma 2. Suppose f is holomorphic in Bn U, where U is some neighbourhood 
of the spherical cap C~,t d~f {zES: Re (z, ~>>t} ( t< l ,  ~ES). Then f can be analy- 
tically continued into the sector Or ~ {zEB: Re <z, (>:>t}. 

(Note that O~,tuS~,t is the convex hull of the spherical cap C~,t.) 
This lemma gives a well defined analytic function in Uc~,tcS\Mo O~,t coinciding 

wi th fnear  S\,M0. Denote it b y f a s  before. We have to show that the remaining 
exceptional set A satisfies (8). Suppose that (EBo and that B~ is some small ball 
centered at (. Then M divides SnB~ into two connected components. It follows 
easily from the fact that M is of class C ~ that each of them contains some spherical 
cap Cr ( j =  1, 2) such that their boundaries Fr Cr J are tangent to M at the 
point ( and tj=tj(O>=to>O ( j = l ,  2) for some to depending only on M, M o, but 
not on (EM0. This is enough. Indeed, Tr ) implies that ~ j - (  
is orthogonal to T~M ( j =  1, 2) and so H~ is the plane spanned by ( and ~j ( j =  1, 2). 
Now by Lemma 2 f is holomorphic at the points of the set {zEBnlI~: Re (z, ~j)> t j} 
for j =  1 or 2, that is at the points of BnFIr which belong to one of the halfplanes 
Pj={zEII~: Re (z, ~)>t]} ( j = l ,  2), ( being a boundary point of both halfplanes 
and ~jEPj (.i=1, 2). Now the inequality tj>=to implies that near ( the'remaining 
set (II;nB)\(PIuP~) is contained in some nontangential angle K~(e)nHr with 

not depending on ~. The lemma is proved. 
" In the following we will assume from the outset that the singularity set E is 
dosed and touches M0 nontangentially, where M0 is diffeomorphic to an open 
planar disc, MocClos MocM and we also fix a set Mx, Clos M0~MxcClos M x c M  
of the same kind as Mo. 
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3. We now come t o  the definition of  the vector field w and the construction of  
the holomorphic field ~. We construct a vector field wl on M and then put w ( p ) =  

w,(p)=rw1(-~) for pErM. The field wl has to be of  class C 1 and to satisfy the 

condition wl(p)ETpMc~T~S for all p~M. Both spaces TpM and T~S have real 
dimension two and are contained in the three-dimensional space TpS, so their 
intersection is a (real) line (in view of  the condition of  the theorem TpMr 
All that remains to do is to choose an orientation on TpMc~T~,S cont inuous ly  
depending on p~M. With this aim we find a C 1 vector field v on M such that 
v(p) is not  orthogonal to TpMc~T;S for all p and wl(p) is the unit vector from 
TpMc~T~S satisfying Re (w~(p), v(p ) )>0 .  Then wl will be of  class C 1 (because 
M and S are of  class C2). The vector v(p) will be defined in the following way. 
There is a nonsingular C 1 vector field D in Tp SO T~M (the orthogonal complement 
of  TpM in T~S) (recall that M is diffeomorphic to a planar disc). Take v=i~. We 
have to show that i• (p) is not orthogonal to T;SnTpM (pEM), or what is the same, 
that D(p) is not o r thogona l  t o  i(T~Sc~TpM)=T~Sn(iTpM), that is T~Sc~ 
iTpM(=TpS) is not contained in TpM. This is obvious. 

Now we approximate the vector field w=w, on rM ( r < l  is sufficiently 
close to one) by a vector field ~ = ~ ,  holomorphic in a suitable neighbourhood of 
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(9) 

and 

(10) 

rM. For this purpose we approximate wx on M by a suitable field v and then put 

v , (p )=rv  (P}  for p near rM. This is possible in view of the following theorem 

([1], [21, [3]). 

Theorem A. Suppose that M c  C ~ is a totally real manifoM of class C ~, w is 
a vectorfieM of class C 1 on M, and M~ is an open subset of M with Clos M 1 c M .  
There existaconstant C > 0  and a function 7 on [0, +~o), y->0, with lim,_o7(s)=0, 
both depending only on M, M~ and w, such that 

for every sufficiently small e>0  there exists a vector fieM v, analytic in the 
~-neighbourhood V, of Clos Mx and such that 

sup Iw( z ) - v . ( z ) l  <- ~v(~) 
z E Clos M~ 

Iv,(z0-v.(z~)l ~ CIz~-z~l+~(~) for all Z1, Z2EI"re, 

The proof follows from [3]. We will only sketch it. First construct a vector 
field of class C x in some fixed neighbourhood V of  Clos M~ which coincides with 
w on M (denote it also by w) and such that g)w(z)~O for dist (z, M ) ~ 0  uni- 
formly for zEV. (This is Lemma4.3 of H6rmander and Wermer [1], see also [2] 
Lemma 1.6.) So 

(11) IW(Zl)-W(z2)l ~ Clzl-Z~l for zl, z2EV. 

Now put ~>0 and solve the 0-equation Ou~=Ow in some suitable domain of 
holomorphy T, DV,. The function v,=w--u, is holomorphic in T, DV, and 
the theorem follows if we can take u, with supr ~ lu.I <=~(~). This is essentially done in 
[3]. T, is defined by using the C 2 strictly plurisubharmonic function ~0 in V con- 
structedin Lemma 1.2 of [2], such that M n V =  {zE V: (p (z)=0}= {zE V: grad (p (z) = 0}. 
To solve the 0-problem on T, we use the kernel Ko ~,o constructed in Section 3 of 
[3] and use the Koppelman formulas (1), (2) for K0~ (see also formula (10) in [3]) 
and estimate (a) with Q = 0 from Lemma 4.4 of this work. 

4. Now all is ready for the construction of the discs. Assume first that zErM1 
( r<  1 is sufficiently close to one). (Later we will deal with the general case zEEnB.) 

Recall that M c F r B  2 is a C2 totally real manifold, Ml ~ Cl o s  M j c M  is a 
manifold diffeomorphic to the open unit disc. Further E= Cl o s  E c C l o s  B touches 
M nontangentially. Then analytic discs of the following kind can be constructed. 

Theorem 3. Suppose r< l  is sufficiently close to 1. Let zErM1. There exists 
an analytic disc el. of the following form: 
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There are a planar rectangle 

e = {z = x+iyEC: xE(a, b), yE( - s ,  8)} 

(s=const  ( l - r )  for a suitable const) and an analytic mapping ~'=~zz: P~C~ 
such that o~(O)=z and dz=o~r~( P ). Moreover, ~ is one to one and O<c<= Igrad Y] <=C 
on P. The curve ~zz((a, b)) is the curve mentioned above which is very close to 
rMl : dist ((, rM0)<(1 - r )? (1  - r )  for each (E~ ( ( a ,  b)), where ~(e)=O(e) for e~O. 
Further dzcB and Fr d z c B \ E .  

Proof of Theorem 3. Put ~ = v , ,  ~, (p) = rv, , where v. is the holomorphic 

vector field in the c(1-r)-neighbourhood of M~ (c is a sufficiently large constant 
depending on the constant c~ in (8)) constructed by Theorem A by taking e=c(1 - r ) ,  
w=w~. We want to solve the differential equation 

(4) : ( o ) =  z 

(5) :'(0 = 

in some suitable planar region. By Cauchy's theorem (see, for example, [15], I IIw 13) 
there exists a unique solution in a neighbourhood of zero. Next we will continue 
the solution to the points of an interval of the real line and show that the image 
of this interval is a curve which is very close to rM, moreover, it is close to the inte- 
gral curve of the vector field wr on rM~ through the point z. We need some informa- 
tion about the 

integral curves of the fieM w,. 

Lemma 3. Through every point pE M1 passes a unique integral curve of maximal 
length for the vector fieM wllMx. (Recall that Wx is a nonsingular vector field of 
class C ~ defined on the C2-manifold MDClos  Mx and wl is tangential to M at 
every point.) All integral curves are simple Jordan curves of finite length and join 
two (distinct) points on the boundary Fr 3/11. The length of the curves can be esti- 
mated from above by a finite number depending only on M 1 and wl, but not on the curve. 

Proof. We may assume that Mx is the unit disc in the plane and w~ is a Ca-vector 
field (tangent for M1) in a neighbourhood of its closure, Iwd does not vanish there 
and so O<c~<=lwd<=cz<~ on ClosMt .  The existence and the uniqueness of 
an integral curve through a given point z is well known (see, e.g. [9], II 1.1, II 3.1), 
which means that there exists a unique function s(t) defined on the maximal interval 
(a, b ) c R ,  OE(a, b), such that 

(12) s(0) = z, s'(t) = (walM~)(s(t)) (tE(a, b)). 

The length f b Is'(t)l dt of the curve lies between c~(b-a) and c2(b-a), so we 
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have to prove that a r  br  +~,, s(a+)EFrM1, s(b-)EFrM~ and s(a+)r 
s(b-) .  

Suppose, for example, that b=  + ~. Consider the equation (12) on the whole 
of M (instead of M1) and recall that w~r on M. We come to a contradiction with 
the theory of Poincar6--Bendixson: we have Clos {s(t): t_->0}cClos M1, this set 
is compact and is contained in M, a contradiction with the Theorems VII.4.3 and 
VII.3.1 of [9]. So, b < + ~  and therefore s(b-)EFrM1 ([9], II 3.1). In the same 
way we prove that a > - ~  and s(a+)EFrM1. The inequality s (a+)r  
also follows from Theorem VII.3.1 of [9] : we have to consider s on (a, b) as a part 
of the solution of (12) on the whole M (instead of M1). 

It remains to give uniform estimates for the length of the curves. To do this 
we choose some open set Ms diffeomorphic to a planar disc and such that Clos M 1 c  
M2cClos  M2cM. Consider the integral curves for the field wxlM2 through a 
point pEM2, that is solve the differential equation 

(13) S•(t) = (wxlM~)(S,(t)), S,(O) = p 

on the maximal interval (A,B). Put Fp={Sp(t): tE(A,B)} and for pEM~ put 
rp={sp(t):  tE(a,b)}={Sp(t): tE(a, b)} ((a, b) being as in (12)). Let r ~ be the 
connected component of FpnM~, containing p. Denote by [?1 the length of the 
curve r (Irl = f ,  Is'l, if ~= {s(t): tel}, I being an interval of R). Then, obviously, 
I~pl=lF~ for pEM~. We shall show that for each ~EClos M~ there exists 
a neighbourhood V; in Ms such that for zE VcnMt we have Irgl < I/'r By com- 
pactness of Clos/141 this is enough. But this is an easy consequence of the con- 
tinuous dependence of the solution of the Cauchy problem on the initial data ([9], 
Theorem V.2.1). Indeed, if ~EClosM1 and Fr162 tE(A, B)}, then for some 
neighbourhood V~ of ~ and some small 5>0 for zEV~nM1 the solution Sz of 
(13) is defined at least on [A+e, A - e l .  Further Sz(A+e), S=(B-e)EM2\Clos M~, 
S=(O)=zEM~, so F~ is contained properly in {S=(t): tE(A+e, B-e)}.  Moreover 
S=(t)-S:(t) (tE[A+s,B--e])  is very small for zEV~ and so is S'~(t)-S~ (t)=- 
(wllM~)(S=(t))--(wllM~)(S:(t)), therefore IF~ for zEV~nMa, if V~ is small. 

To construct the continuation of the solution of (4), (5) we need also 

Gronwall's lemma. Suppose f is a vector function of class C 1 on (a, b), 0E(a, b) 
and f (0 )=0 .  Suppose that If'(t)l<=flf(t)l-t-e for all tE(a, b) and some e>0.  
Then 

(14) If(t)l ~ 1+2C------ ~ .e.e(~r+C~)ltl <_--econst for tE(a,b), 

where const depends only on C and max {b, ]al}. 

For convenience of the reader we give the short 
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Proof. Without loss of generality we assume tha t f i s  a real vector function. Then 

[(I f l2) ']=(2 Z f j f f )  <=Z (fj)=+x~ (fj)=<= Ifl=+(Clfl  +e)=<=(1 +2C 2) I f l2+2e 2. In- 
equality (14) follows by integrating the inequality 

(If12)'(1 + 2 C  2) 
( l+2C2)lf l=+2e = ~ 1+2C 2 for t > 0 and the inequality 

(If12)'(l +2c~) 
-(1+2C~)1f12+2~ 2 <= 1+2C ~ for t < 0 and having in mind 

the condition f (0 )=0 .  
Now it follows from Gronwall's lemma that (for sufficiently small e>0) the 

solution ~ of (4), (5) exists for ~ in a neighbourhood of the interval (a, b ) c R ,  
the maximal interval on which a solution of (12) exists with z/r instead of z (recall 
that zErM1). Indeed, we can continue the function ~- as a solution of (4), (5) 
in a neighbourhood of all points t of an interval ! as long as ~-~(t) for t e l  remains 
in rV,, i.e. the set where v is defined. We want to show that this is so on the whole 
of (a, b). Put w,(p)=rwl(p/r) for pErM~ and ~(t)=rsz/,(t), the integral curve 
through pErMx for the field w, lrM~. Denote f ( t )=~z ( t ) -~ ( t ) .  Then f (0 )=0 ,  
f ' ( t )=J~( t ) -~ ' ( t )=w, (r  so by the estimates (9) and (10) of Theo- 
rem A 

(15) lf'(t)l-<-lw,(oz(t))-~(oz(t))l+[~(oz(t))-~(~(O)[ 

re7 (~) + re7 (e) + r C s~/, ( t) - ~ < 2e7 (~) + C If(t) l, 

as long as ~(t)ErV,,  so for those t by Lemma 3 and Gronwall's lemma 

(16) If(t)l <= const ey(e) 

(const depending on C and the (uniform) estimate for (b-a)  from Lemma 3). 
Therefore (if e > 0  is sufficiently small) the inclusion ~'(t)ErV, remains true for 
all tE(a, b) (because Oz(t)ErMx for those t), and (16) holds on (a, b). 

Now we continue the solution ~ of (4), (5) in imaginary directions of (. So we 
look at the differential equation 

0 ~( t+iz )  = i~(~(t+iz))  (17) ~ ( t  +iz) : i--~- 

with initial value ~-(t) for z=0,  t being some number from (a, b). Note that 
while ~(t+iz)ErV~ we have (as in (15)) 

(18) [iv(~(t+iz))-iw,(o~(t))l ~ 2e7(e)+flo~(t)-.~(t+iz)l ~ 2Ce 
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(for r close to one and therefore ~ small), therefore 

~ ( t + i z ) - @ ( t )  = iw,(o~(t)), z +O(e I~1), 

and so o~(t+ir)ErV, for I~I~- .  (We assume that r is sufficiently close to one 

so that ~ is small and also that Iwrl is close to one.) Note that ~(t)=o~(t)+O(e7(e)), 
8 

oz(t)ErS, iwr(o~(t))zET~z(o(rS), so for I~1<=~- we have 

~- (t) + iw~ (~z (t)) �9 ~ (r + o (~ (~)) + o (~2)) s = (r + o (~)) s .  

On the other hand iw~(~(t))(~T~,(o(rM), and by compactness we can assume 
that the angle between iw~(p) and TprM is uniformly bounded away from zero for 
pErM~(cClos  rM~cM). Recall now that for the set E of singularities we have 
the inclusion (7) and that e was defined by e=c(1  - r ) .  The choice of the constant 
c will be made precise now: we choose c depending on fl in formula (7), and on 
the lower bound for the angle between iw,(p) and Tp(rM) for pCrM~, and such 

8 
that for tE(a, b) and for T close to +~-  or 2 ' ~(t+i~) is contained in BX,,E, 

the set where f is regular (recall that the function z ~ ' ( t + i T )  can be continued 

to the interval I~1 <= �9 

Recall now that MocClos  MocMa is of the same kind as 21//1, that is M 0 is 
diffeomorphic to an open disc and E = C l o s  E touches M 0 nontangentially. The 
following Lemma 4 will imply Theorem 3 and will also be useful in the following. 

Lemma 4. For some c5 >0 and all r sufficiently close to 1 the following is true. 
Suppose zErM~ and (a, b) is the maximal interval for (12) as above. I f  tE(a, b) 
and dist (oz(t), r(M~\Mo))<6 (in particular, if dist (~:(t), Fr (rMO)<6, i = 0  or 1) 

{ c } 
then ~( t+iz):  [ r l<=~-(1-r )  is contained in B \ E .  

The lemma follows from the facts that E n S c M o ,  E is closed and M 0 is dif- 
feomorphic to an open disc, so the intersection of B with some neighbourhood of 
Clos (M~\Mo) is contained in B \ E .  

Applying now Theorem 3 to rMo instead of rMx, zErMo, we get analytic discs 
A ~ d ,  (instead ofd~) with zEAl. Note that A~=~({~=x+iyE C: xE (a0, b0), lYl <e}), 
where (a0, bo) is the maximal interval on which a solution of the equation 

(13o) s~/,(O) = z/r, s'~/~(t) = (walMo)(Sz/,(t)) 

exists. By Lemma 4 we have d~ \A~cB\E .  
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5. Now we come to the analytic continuation of the function f along a suitable 
family of discs of the form A~. Fix some r close to 1. The function f is analytic in 
the set B \ E ,  which contains some neighbourhood of Fr (rMo). For every point 
zErMo there exists a unique analytic disc A~ of the type constructed above such 
that zEd~ and the boundary Fr A, lies in B \ E .  Our aim is to prove the fol- 
lowing 

Lemma 5. For every disc A~ (zErMo) there exists a function which & analytic 
in some neighbourhood W~ of Clos A. and coincides with f near the boundary Fr A~. 

From this lemma the proof of the Theorem 2' follows. Indeed, by the lemma 
we have a well-defined analytic function f in some neighbourhood of Clos (rMo) 
which coincides with f in a neighbourhood of Fr (rMo). The function is defined 

as follows: for ~ in a neighbourhood ~ of a fixed disc clos Az ( ~  being much 
smaller than W~) we define f(()  to agree with the function of Lemma 5 which is 
holomorphic in W~ and coincides with f in a neighbourhood of Fr A z. Now it is 
not hard to see that the definition does not depend on the choice of A~. Indeed, if 

( E ~ l n ~ , ,  then (if the ~ are sufficiently small) we can assume that there is some 
o 

small connected open part of W~, contained in W~I which contains ( and a part F 
of the boundary Fr Az~, F being close to a part of Fr A~. This shows that the 
definition does not depend on the choice of A z. So there is a function holornorphic 
in a neighbourhood of O,o<,< 1 CIos (rMo) which coincides with f near 
U,o<,< 1 Fr (rMo). (For a fixed r we can take the above defined function analytic 
in a neighbourhood of Clos (rMo). Again it is easy to see that the definition is 
correct.) We have to continue the function also to points on rS in a fl(1 -r)-neigh- 
bourhood of rMo (see (7)). This can be done as follows. Suppose ( lies in rS and 
in the fl(1 -r)-neighbourhood of rMo. For every point pES we consider the unitary 

in C ~ given by the matrix [P: -/52 / (P=(Pl,P2)). Thenit is not hard operator u~ 

to see that there is some z with Iz-e~l<constfl(1-r) (el=(1, 0)ES) and such 
that [Eu~(rMo) and, moreover, uz(rMo) is contained in the constfl(1-r)-neigh- 
bourhood of rMo. We repeat now the construction for u~Mo instead of M 0 (the 
only difference is that we have 

Un E n / S  c {~Er'S: dist ((, ruzM1) < cost B(1 - r )}  

for r '=r+o(1-r )  instead of (7), so that we have to take c in the definition of 
8 = c ( 1 - r )  somewhat larger). Now it is easy to see that this procedure gives a 
function analytic in the intersection of a neighbourhood of M with B and coinciding 
with f outside E. 

It remains to give the 
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Proof of  Lemma 5. Suppose the lemma is not  true, so there is some disc A z 
corresponding to a point zErM o such that there does not exist a function analytic 
in a neighbourhood of  Az and coinciding with f near Fr  A~. Such a disc we shall 
call a singular disc, and the point z we shall call a singular point. Consider the set 
of  all integral curves 7 with respect to the field w, lrMo, i.e. 7={~z(t):  tE(a0, b0)} 
for some zErM o and the maximal interval (a0, b0) on which a solution of  (130) 
exists. We shall call a curve 7 a singular curve, if some point ~E~ is singular (so the 
corresponding disc Ar is singular). Now we define an ordering in the set of  curves 

in the following way. Suppose rMo is oriented in some way and define on Fr  (rMo) 
the induced orientation. On a curve 7={~(t ) :  tE(ao, bo)} the real parameter t 
defines an orientation. To a curve 7 correspond (in a unique way) its endpoints 
p(=p(~))=~(ao+) and q(=q(~))=o(bo-), p, qEFr(rMo). Now (rMo)\y con- 
sists of two connected components, and also Fr (rMo)\({p}w{q}) consists of  two 
components. Denote by ct(=q(7)) (the left component) that component of 
Fr (rMo)\({p}u{q}) for which 7uClos ct (with the previous orientations on 7 
and on the part ct of Fr  (rMo)) is an oriented curve and denote by Ol(=  Ol(v)) 
the corresponding component of rMo\7.  The other components are denoted by 
c,(=cr(v))  (the right component) or O, ( = Or (7)), respectively. We shall say that 
a curve 71 lies on the left of  ~3 if cz(vl)cq(V3) and that 71 lies strongly on the left 
of ~3 if the inclusion is proper. Obviously, if Yl lies on the left of  73 and Y2 lies on 
the left of 78 then 71 lies on the left of 73. Note that it is possible that neither Yl lies 
on the left of Y3 nor ~,~ lies on the left of Vl. Our aim is to prove the following lemma 
and to bring it to a contradiction with the continuity principle. 

Lemma 6. Suppose Lemma 5 is not true. Then there exists a singular curve 7" 
such that there are no singular curves strongly on the left of  ~*. 

Proof. Suppose Y0 is some singular curve. Define by induction singular curves 
Yk in the following way. If  for k - 1  there are no singular curves strongly on the 
left of  7k-~ then we are done. Otherwise we choose a singular curve ~k strongly on 
the left of  7k-1 such that 

(19) 

Ict(~k)l < ~-+inf{Ic~(7)l: 7 being a singular curve strongly on 
I 

the left of  ~k-1} 

(Iq(v)l means the length of  the curve cz(v), we assume that Fr  M0 is a Cl-curve.) 
Obviously, Ct(7~)CCl(Tk_0 for all k. Suppose that the number of k's is infinite 

and put 60__~r Ak Clos ct(Tk ). Then g is a dosed arc on Fr (rMo) (possibly a single 
point). Denote by p, q its endpoints (possibly p=q). Obviously, p(Tk)~p, q(vk)-~q- 
Our aim is to show that p # q  and P=P(7*),  q=q(7*)  for some integral curve Y*, 
where 7" is the desired singular curve. To do this we denote b y / "  the integral curve 



136 B. JSricke 

through the point p(ErM1) for the field wrlrM 1. Denote by F k the corresponding 
curves through p (Tk). We choose the parametrization on F k so that F k = {~ (t): t E I,} 
(Ikc R is an interval), OEIk and ~(O)=p(Tk ). We parametrize also F =  {5~(t): tEI}, 
0EI, 5~ Suppose tkEIk satisfies ~(tk)=q(yk). NOW ~(0)-~5~ SO by 
[9], Theorem V.2.1, we have tEI~ for an arbitrary tEI and sufficiently large k 
(depending on t). Also ~(t)-~Se(t) uniformly for t on compact subsets of I. But 
0EI and 5P(t) can be continued into the segment [0, t) (i.e. [0, t ) c I )  as long as 
5~ ') remains in rM 1 for t'C[0, t). On the other hand 5r o for tE(0, tk). 
Put T=lil'ntk for some subsequence {k,,}c{k} and prove that [O ,T]c l .  If  
not, then ~ can be defined on [0, t) for some t<=T and not on [0, ~') if ~>t. So 
by [9], II.3.1 5~( t ' )~Fr  (rM1) for t ' ~ t -O .  But 5~ 5~k (t')EClos (rMo) 
for " -< 0 < t  <t=T, a contradiction. Now 5 ~  by [9], Theorem V.2.1 and the 
fact that ~ ( t k ) ~ q .  Taking other subsequences {h,,} this shows that T--lira tk. 

NOW we want to state that p Cq and that p, q are the endpoints of  a singular 
curve 7* (7* being an integral curve for the field w,lrMo). Take a > 0  so small that 
[--G; T+~]cI  and dist (5~(t), r (M~\M0 ) )< ~  for tE[-~,  a]~[T--c~, T+a]. There- 
fore also for k k0 and also dist(~(t),r(Ma\Mo))<6 for 
tE[-a, cr]w[T-a, T+a] and k~ko. Denote by I'kCF k the curve 

/~k = {SCk(t) : tE(--~, T+ , )} ,  

and by /~cF,  respectively, /~-{SP(t) :  tE(-o-, T+a)}.  For z=SCk(t0) (or z=SP(t0) ) 
with t0E(-~, T+a) we denote by D~ the disc 

D~ = ~ ( t + i O :  I~l <~-, to+tE(--a, T+a) 

(i.e. the part of the disc d~ situated near/~k (or/~)). As for the discs A~, a disc D~ is 
called singular if there is no function analytic in its neighbourhood and coinciding 
w i t h f n e a r  its boundary. Now for each k there is some Zk=Sek(a,) , a,E(O, tk), such 
that the disc D~ is singular (because A ~ c  D,~ is singular). Suppose z is a limit point 

of {Zk}. Then zE/~c~Clos (rMo). It is easy to see that D~ is singular (in the contrary 
ease the equality lim D~=D~ would imply that D~  is nonsingular for Zk close 
to Z). The fact that D~ is singular implies by Lemma 4 that F~rMor so T r  
(hence pCq). We need also the following. 

Lemma 7. For every zEF the disc D~ is singular. 

Proof. The set {zE/~: D~ is nonsingular} is open. By the continuity principle 
it is also closed./~ is connected, so the set of nonsingular discs is empty. 

Take now zEF~rM o The disc D~ is singular, so by Lemma 4 the corresponding 
disc A~D~ is singular. We want to show that the integral curve 7 :7~  for the 
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field wrlrM through the point z is the desired curve ?*. We found already that this 
curve is singular. Further 

(20) p(y) = p, q(y) = q. 

Indeed, put F'= {Se(t): tC[0, T]}, the part of/~ between p and q; then F ' c C l o s  (rMo) 
�9 /.r, p def (because F ' = l i m  F k V k =  {~( t ) :  tC[0, tk]})). For every k we have 

pC Clos Ot (Vk)\{Clos Vk}, 

so F ' c C l o s  O~(Tk) (if not, F '  must intersect Clos Yk in such a way that we get a 
contradiction with the uniqueness theorem for solutions of (12)). But ycF'rarMo, 
so P(7), q(y)~Clos ct(yk ) for every k and so [cl(7)]<[~[=lim ]ct(yk)[ if one of  the 
equalities (20) is false. But this contradicts (19). The inequality (19) implies also 
that there are no singular curves strongly on the left of  y. Lemma 6 is proved. 

It is easy now to get a contradiction with the continuity principle. Indeed, take 
~,~Ol(7" ), ( , ~ z .  The integral curves yr of  the field w, lrM through ~, are then 
strongly on the left of  y* (taking into account that ~,EOt(?*) and the uniqueness 
property for solutions of (12)), and therefore they are nonsingular. By [9], Theorem 
V.2.1 there are parts ~ .  of  the curves y~, such that '~.-~7", ~,C~..  We can assume 
that the endpoints of ~r are near Fr (rMo). (Compare with the end of the proof  

Z~ dcf{ 8 
of the particular case.) So for the discs ~---- ~ . ( tq- iz ) :  [TI<~-, t is such that 

~ . ( t ) ~ . }  the boundaries Fr zT~, are contained in I,%B\E and f can be con- 
tinued into a neighbourhood of  Clos z~. in the desired way (recall that y~. are 
nonsingula0. Now zT~ ~3~,  Fr z~ ~ F r  3~ and the continuity principle gives a 
contradiction. Theorem 2' is proved. 

6. Outline of the proof of the local result for n>2.  Take a point pCM. After 
a unitary transformation of  C" we can assume that p=(1 ,  0 . . . . .  0) and that T~,M 
is contained in {z~=z~=0}. Lemma 1 is true for n > 2  also. The idea of  the proof  
of Theorem 1 is now to apply the construction of the discs from Theorem 2 to Bnc~ 
{za=g  . . . . .  z . = g }  for small z ~ . . . . .  d .  

Note that Theorem 1 can be strengthened in the same way that Theorem 2 was 
strengthened to obtain Theorem 2'. This is possible because the constructed discs are 
contained in a small neighbourhood of M. 

7. Remarks about the proof of Theorem 2' for strongly pseudoconvex domains 
f2c  C 2 with C~-boundary. The proof  follows the same scheme as the proof  of  Theo- 
rem 2'. Lemma 1 is of  local character (for each boundary point p~Fr  f2 there 
exists a biholomorphic mapping of some neighbourhood o fp  under which f2 becomes 
strongly convex near p, see [10] Theorem 1.4.14 or [8] 15.5.3). The other parts of 
the proof  are not specific for the ball, except for the choice of M,=rM and approxi- 
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marion on Mr: (by Theorem A) with a constant r and a function 7 not depending 
on r. In the general case we choose the manifold M, by the following procedure. 
Denote by no(z) the unit inner normal (with respect to the domain f2) at points 
zEM, and denote by vo(z) a nondegenerate Cl-vector field, vo(z)ET~S@TzM. 
Approximate these fields on a large compact part of M by fields n (z) and v (z) which 
are holomorphic in some neighbourhood V of this compact part and consider the 
holomorphic mapping @(=~,a) :  z~z+en(z)+eAv(z) (zEV). For small e.>0 the 
mapping is biholomorphic. Denote the image of Mc~V by M1_8, a. The manifold 
Mr, a for a suitable A will play the role of UzrM in Theorem 2". Indeed, it is now 
enough (as in the proof of Theorem 2) to define the field Wl on Mc~ V and to approxi- 
mate it there by v I . Then we can define the fields w,, A and v,, A on M,, a by the for- 
mula W,, A (Z) = (grad ~k)~_1(~)wl(~k-1(z)), vr, a(z)=(grad ~)~_,(~)vl(~k-l(z)) (~b=~k~,a) 
and the discs through zEM,,a are defined by the formula tp(~_~(~)(~)) (with ~_~(,) 
defining the disc through ~k-l(z) which corresponds to the field vl). (So 

(~ (~-~c~) (0))" = (grad ~ ) ~  _~(~(o ~'0'-'(z) ( 0  

= (grad ~)~-'c,(~,-,c~)CO)) vl (~k-1 (~k (:o- ~_,c~ ) (~)))) = ~,  a (4 (~-'c,) (~))):) 

8. Now we shall deduce Corollaries 2 and 3 from Theorem 2. (Note that they 
can  be strengthened with the help of Theorem 2'.) Corollary 2 follows immediately 
from Theorem 2 and 

Lemma 8. For an (relatively) open set F c F r  B 2 and a function fE L~(F) the 
following facts are equivalent: 

a) ~bf=0 on F in the distributional sense; 
b) f coincides a.e. on F with the radial boundary values of  a bounded function 

holomorphic in B n V  (V being some neighbourhood ofF):  f(~)=lim m ~'(r~) a.e. 

Note that [I fl[L-<r) = 1[ ~[lL~C~nr3 �9 
Indeed, Theorem 2 gives an analytic continuation of the function ,~ obtained 

by Lemma 8 b) for F = F r  B \ A  (the set where ~bf=0) to the whole of the ball B. 
We get a function bounded and holomorphic in B (see Theorem 2') with radial 
boundary valuesfa.e,  on FrB,  so ~ f = 0  on FrB,  again by the 1emma. 

For the proof of Lemma 8 it is enough to continue the function to the sets Or 
for all Cr This can be done by a refinement of the arguments at the end 
of the proof of Theorem 18.1.12 in [8] or by Lemma 15 and Theorem 16 of [13]. 

Corollary 3 follows from 

Lemma 9. 1) For an open set F c F r  B and a distribution f on F the following 
conditions are equivalent: 
a) f is of finite order in F (i. e. I f(~P)l <=c : maxlal~k f liD ~ ~PlIL-(r) for every function 

q~ECo(F)) and Obf-=O o n E .  



Removable singularities of CR-functions 139 

b) Denote by V the union of  O~,t for all spherical caps C~.t=F. There exists a func- 
tion ~r analytic in V such that 

(21) I~(f)l <-- er(1-l~fz) -N,, (~EV) 

and the measures ~*(r~) &r(~) on F c F r  B (a being the normalized rotation 
invariant measure on FrB, ~*( r~)=~ ' ( r f )  if r~EV and ~-*(r~)=0 other- 
wise) tend to f as distributions. 
2) Moreover, i f  o-~ is holomorphic in the set V of lb) and satisfies (21) then there 

exists a distribution f on F of  finite order such: that ~*(r~)da(~) tend to f .  I f  f=O 
then ~=-0. 

The proof of Corollary 3 follows immediately. Indeed, f is a distribution on 
the compact set Fr B, sof is  of finite order. Take the function ~ obtained by apply- 
ing lb) to f l F  a n d  I "=FrB~\A ,  the set where ~bf=O. Theorem2 gives an 
analytic continuation ~ of .~ to the whole of the ball B, satisfying (21) in the whole 
of the ball. (The estimate (21) in the whole of the ball follows from the maximum 
principle and the fact that each disc from the proof of Theorem 2' is contained in 
some spherical layer of the form {zEB: c1(1-r2)~(l- iz l2)<c2(1-r~)} ( 0 < r <  1).) 
By Lemma 9 there is a distribution f l  on Fr B corresponding to ~ and ./'111" =fl / ' .  

Outline of the proof of  Lemma 9. To prove point 1) of the lemma it is enough 
to prove it for a l l  spherical caps C contained in F with unique constants cf, gf 
and Nj, and to use the uniqueness property (see 2)). We will prove now the implica- 
tion a)=~b). We want to consider "convolutions of the distribution f with smooth 
functions" and get continuations of these smoothed functions. For this we identify 

points ~ on S with unitary operators u~ by the formul a ~= [~:)~u~=[~:-~:}.  

Take C=-mollifiers )~. on S (or equivalently on the group l[ of unitary operators). 
For ~EC., some smaller spherical cap consisting of points ~EC with some distance 
(depending on n) from the boundary Fr C, we define 

(22) = f . f(u~)z.(u) du 

(the integral is symbolic and means application of the distribution f to a suitable 
Co-function of ffEC (defined by Z.)). Then f.EC = and it is easy to see that 0bf .=0 
on C. in the usual sense. Therefore ([8], 18.1.12)f. extends to a continuous func- 
tion in C.uO.,  the convex hull of C. (See the definition of O in Lemma 2), 
also denoted by f . ,  which is holomorphic in O.. The following lemma gives a con- 
venient representation formula for f . (p)  (pEO.) by the boundary function f . IC. .  

I.emma 10. Suppose C o S  is some spherical cap, 0 is the corresponding subset 
of  B. Suppose gEC(CuO) and g is analytic in O. Then for each ~EC and r suffi- 
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ciently close to 1 we have the representation 

(23) g(r() = f r  ~(r, <r r162 

where the function ~k can be taken in the following form: 

(23a) ~(r, ((, r = ( 1 - r )  ~ 1/1-I((, r ~ 

for some fixed function q~EC o t a ((r, 9), ~-o, 

f(=~c-l~t-~) ~o(Izl) dm~(z) = 1. 

So O(r, (~, ~)) has the following properties: O->O; for fixed r, ~ the function 
~ k ( r ,  (if, 4))is  in Cg*(C;,,_~(t_o); f O(r, (~, ~))da(~)=l  for a suitable choice 
of const, so the integrals (23) give an approximation of the identity for r t l ;  
O(r, (~, ~>)=O(r, (~, ~)). 

Proof. Suppose ff = [01} dot el, so (e~, z)=~,t for zE C z. For r sufficiently close 

to 1 we have by Cauchy's formula applied in the zx direction: 

~r ~ c o  ((§ ,~)), q ~ 0 ,  f q~=l. Applying Cauchy's formula in the z, direction, 
we have 

_~-2.^ ( [r -zxl  ~ 1 
g(r, 0) ----- fl,,_,l.~&r vl--TsT-_r ) l/1-1z~l ~ 

• f~"g(zx, r 1 7 6  1/1-1z112 dO. 
2re 

The general case can be proved by rotation. 
Continue now the proof of Lemma 9. The formula (23) applied to f ,  shows 

that for all points pE O, f ,  (n =>n (p)) converge uniformly on a small neighbourhood 
of p to the function : ' ,  

(24) ~ = f@(r, <r ~))f(~) da(~), r~EO. 

(The integral is in distributional sense.) Further f ,  are analytic in O,, therefore ~ar 
is analytic in O. Now the choice of ~k (see (23a)) together with the fact that f is of 
finite order gives the estimate [~" (r~)l ~ c (1 - r )  -N (r~E O). We have to show now that 

(25) f g(~)ff*(r~)da(~) -~ f g(~)f(~)da(~) 
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tbr every dECk'(C) (the right hand side being understood in distributional sense). 
This follows easily from (24): For r sufficiently close to 1 (in dependence on supp cp) 
we have 

f g(0 *(r0 d (O = f g(O f r (r r162 d~r(r da(r 

(the last integral is also distributional). So 

f g(~):*(rr = fs(r162 g(r ~k(r, (~, r da(~)). 

It remains to use the facts that f i s  a distribution of finite order, gECo(C ), and 
is a smooth approximation of identity, ~k(r, (4, ~))=~k(r, (~, 4)). The implication 
l a ) ~  lb) is proved. 

Now we will prove 2), again for a spherical cap C and the corresponding 

set OcB. Assume that C=C~,, where r Define (J  )Czl, 
fo 2 ~'(zl,  ~)d~ for (z~, z~)ECr the integration being along a suitable curve 
joining 0 and z, (for example, along {~=rz~: rE(0, 1)}). Let also. (Jl~)(Zx, z~)= 
f~_, ~'(~, z2) d~ (integration along a suitable curve joining t+8 and zl, for exam- 
ple, a linear segment). Then Jl~" and j ~ r  are analytic in Cr , . For some I and k 
the function JlxJ~ is analytic in Cr and bounded, as is not hard to see by a 
computation (l, k and the bound for J ~ J ~  depend only on Cf and N s from (21), 
not on 8 and 8'). The point 2) can be proved now by taking derivatives of this bounded 
function along spheres of radius r < l .  The uniqueness ( f - = 0 = ~ ' - 0 )  is obtained 

by considering the smooth function ~*(r~) d~r fa ~r*(ur~)z,(u) du for a suitable 
C~'-fnnction Z, on l[ with small support near the identity. Then ~*(r~) tend to 

f~(r ~ faf(uOz.(u)du as r t l  (the integral is distributional). The uniqueness theo- 
rem for smooth analytic functions and a suitable choice of Z, give the desired result. 

The remaining implication lb)=~la) is now easy. 

Remarks added April 15, 1987. During the preparation of this article the work 
of G. Lupacciolu "A theorem on holomorphic extension of CR-functions" appeared 
(Pacific ]. Math. 124:1 Sept. 1986), where also removable singularities (in the sense 
of Definition 1) are considered. Lupacciolu considers arbitrary domains f2 (not 
necessarily strictly pseudoconvex domains) and shows that polynomial convexity 
of the singularity is sufficient for removability. For domains of holomorphy in C" 
this condition was shown to be suffic/ent already by E. L. Stout ("Analytic con- 
tinuation and boundary continuity of functions of several complex variables", Prod. 
Roy. Soc. Edinburgh 89.4, (1981), 63--74.) For n>2  Stout showed that even rational 
convexity is sufficient. 

It is in general not easy to give geometric conditions for polynomial or rational 
convexity. Compact subsets of smooth arcs are polynomially convex, so Corollary 1 
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fol lows f rom the works of  Stout and Lupacciolu, Their p roof  Uses ifitegral formulas. 
'It seems that this tool does not give Corollary 1'. 

Every totally real manifold is locally polynomially convex, so Theorem 1 for 
the case n = 2  follows f rom the works of  Stout and Lupacciolu. But arbitrary 
compact  sets on simply connected totally real manifolds in C 2 are not  necessarily 
polynomially convex (see the example of  Wermer at p. 34 of the work of  R. Nirenr 
berg and R. O. Wells, Trans.  Amer ,  Math .  Soc.  142 (1969), 15-735), so theorem 2 is 
not contained in the works of  Stout and Lupacciolu. It  seems that the method 
of  Lupacciolu and of  Stout in the case of  dimension n = 2  does not give L~176 - 
mates for obtaining removable singularities for CR-functions or CR-distributions 
(in the sense of  Definitions 2 and  3). It  seems also that their method does not alMw 
to prove versions of  the results "localized to a neighborhood of M "  (in the Sense 
of  Theorem 2") (such as, inpart icular ,  the analog of Corol lary 2 for parts o f  Fr  B ~" 
o r  arbitrary, not necessarily closed, smooth hypersurfaces in C 2 with nondegenerate 
Levi  form (instead of  the whole of  Fr B0).  
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