
Compactification of varieties 

N. Schwartz 

Introduction 

In [22] Morgan and Shalen construct a compactification of the space X(C) 
of C-rational points of an algebraic variety X defined over a subfield k of the field 
C of complex numbers. The motivation for this construction goes back to the work 
of Thurston on Teichmiiller spaces ([33]). A special feature of the construction of 
Morgan and Shalen is the use of the valuation theory of the function field k(X) 
of the k-variety X. Brumfiel ([5]; [6]) noted that, if k is contained in the field R of 
real numbers and if one wants to compactify the space X(R) of R-rational points, 
the real spectrum ([1]; [2]; [8]; [18]; [21]) of the coordinate ring A=k[X] is closely 
related to the construction in [22]. The space of closed points in the real spectrum 
Sper (A) of A is a compactification of X(R). Brurnfiel realized that in the real setting 
this compactification can be mapped onto the one of Morgan and Shalen. Taking 
into account that Morgan and Shalen describe the additional points of their com- 
pactitication in terms of valuations to me it seems that the connection with the real 
spectrum compactification stems from the fact that in ordered fields valuation rings 
appear naturally as convex subrings ([23]; [25]). 

This observation is the starting point for the investigations in this paper. In 
chapter I a.functor "valuation spectrum" from the category of rings to the category 
of spectral spaces ([14]) is defined. The valuation spectrum Spev (.4) of  a ring A 
is closely connected with the valuations of the residue fields of A at its prime ideals. 
The notion of valuations used here comprises not only KruI1 valuations but also 
archimedean valuations or absolute values ([13], Chapter 6; [34], Chapter 1). This 
notion of a valuation makes it possible to embed X(R) into Spev (A) if A is the 
coordinate ring of an affine R-variety X. In fact, Spev (A) contains an isomorphic 
copy of the real spectrum Sper (.4) of A, and therefore X(R) may be considered 
as a snbspace of Spev (A). So Spev (.4) contains the real spectrum compactifica- 
tion of X(R). There is another compactification of X(R) inside Spev (A). Its addi- 
tional points are associated with certain Krull valuations of residue fields Quot (A/P) 
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of A into R >, the multiplicative group of positive real numbers. There is a natural 
map from the real spectrum compactification onto this one. Brumfiel's map from 
the real spectrum compactification to the Morgan--Shalen compactification factors 
through this new compactification. 

The approach using the real spectrum of the coordinate ring of the variety X 
is, of course, limited to the real setting. To compactify the space of C-rational points 
some additional ideas are required. Brumfiel suggests the use of some kind of com- 
plex spectrum of a ring ([5]; see also [26]). The basic idea is that C n may be identified 
with the real affine space R 2". Under this identification the C-rational points 
X(C)cC" of an affine C-variety are the R-rational points of an affane R-variety. 
This real algebraic set can be treated by methods of real algebraic geometry. Huber 
([15]) has defined and systematically investigated the notion of a complex spectrum 
of a ring (independently of Brumfiel's suggestions). In chapter II of the present 
paper another notion of a complex spectrum is defined. The complex spectrum is a 
functor from the category of rings to the category of spectral spaces ([14]). The 
complex spectrum Spec x(A) of the ring A is a subspace of Spev (.4) by defini- 
tion. The complex spectrum has many properties in common with the real spectrum. 
For example, the specializations of a point form a chain with respect to specializa- 
tion. Consequently the space of closed points in a complex spectrum is compact. 
Returning to the original setting this can be used to compactify varieties: Let k c C  
be a subfield containing i. The inclusion defines a canonical absolute value 
n~Specx(k). If A is the coordinate ring of the affane k-variety X then Specxk(A ) 
denotes the fibre of the functional map Spec x(A)~Spec x(k) over x. For xCX(C) 
the evaluation x*: A~C:  a-,-a(x) defines a point e(x)ESpecxk(A ). The map 
e: X(C)~Specxk(A) defined in this way maps X(C) homeomorphically onto a 
dense open subspace of the space of closed points of Spec xk(A). In particular, 
the space of closed points of Spec xk(A) compactifies X(C). This compactification, 
which is called the complex spectrum compactification, is completely analogous to 
the real spectrum compactification in the real setting. 

In chapter III the complex spectrum is used to define yet another compactifica- 
tion of X(C) inside Spev (A) which is very close to the Morgan--Shalen com- 
pactification. This new compactification is the image of the complex spectrum com- 
pactification (in a natural way) and can be mapped onto the Morgan--Shalen 
compactifieation. In fact, in some cases the map onto the Morgan--Shalen com- 
pactification is a homeomorphism. So in these cases the valuation spectrum allows 
an alternative construction of the Morgan--Shalen compactification. Therefore the 
valuation spectrum may help understanding the constructions of Morgan and 
Shalen. 

In this paper several closely related compactifications of X(C) are exhibited. 
Going back to the original motivation for all these compactifications (Thurston's 
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work on TeichmiJller spaces, see [33]) one should of course ask if these new con- 
structions do in any way contribute to a better understanding of the compactifica- 
tions of Teichmiiller spaces. A discussion of these questions is deferred to future 
investigations. 

Comparing the valuation spectrum and the complex spectrum with the real 
spectrum one may ask if these new spectra have geometric applications similar to 
the real spectrum (cf. [1]; [2]; [8]; [13]; [29]; [30]). This is another question which is 
not investigated in this paper. Conceivably an investigation of the geometry of 
these spectra may lead to new aspects causing slight modifications in the notions of 
the valuation spectrum and the complex spectrum. Huber's seminar notes ([16]) 
contain some hints in this direction. 

I. The valuation spectrum 

For an affine algebraic variety X defined over some subfield k c C, Morgan 
and Shalen constructed a compactification of X(C), the space of C-valued points 
of X ([22]). In the compactification there are two essentially different kinds of points: 

In the first place there are the C-rational points. These may be considered as 
absolute values K ~ C  with K a residue field of the affine coordinate ring A=k[X] 
of X at some prime ideal pc:A. 

The points used to compactify X(C) can be obtained from KruU valuations 
K * ~ R  ~" (multiplicative group of positive real numbers) with K a residue field of 
A again. 

These two kinds of points are put together in a rather complicated way ([22], 
p. 413--418) to produce the compactification. 

In number theory there is a notion of valuations K-~R -~ (K a field, R -~ the 
nonnegative real numbers) comprising both absolute values and KruU valuations 
([13], chapter6; [34], chapter 1). The idea behind our construction of a com- 
pactification is that a common generalization of absolute values and Krull valua- 
tions should allow the definition of one space containing both C-rational points 
and points coming from Krull valuations, avoiding the problem of putting two 
different spaces together. To construct this desired space, a spectrum will be as- 
sociated with the ring A=k[X] such that the compactification is contained in 
the space of closed points of the spectrum. The first step in the construction of this 
spectrum is the definition of the valuation spectrum of a ring. 

For all facts about general valuation theory we refer to [3]; [11]; [27]. 

1. The spectral space Spev (A). One way to associate a valuation spectrum 
with a ring A is to consider all homomorphisms A-~K, where K is a field equipped 
with a valuation (in the sense of [13], chapter 6 or [34], chapter 1). Quasi-compact- 
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ness of spectral spaces ([14]) obtained in this say can be proved sometimes by use 
of the compactness theorem of model theory ([7], p. 67; [24], p. 68). But the use of 
model theory makes it impossible to restrict our attention to the archimedean value 
group R >. For the property of being an archimedean totally ordered group cannot 
be axiomatized in first order logic ([7], p. 67). So we will have to work with not 
necessarily archimedean value groups. To have a definition which contains both 
Krttll valuations and absolute values we use the multiplicative groups of positive 
elements in arbitrary real closed fields as value groups. 

Let :E(<=) be the language of ordered fields, Th(rc) the theory of real closed 
fields. If A is a ring then ~A(<-) is obtained from ~(<=) by adding a new con- 
stant c, for every aEA. The extension Tha(rc ) of Th(rc) is given by the following 
axioms: 

(a) For every a~A: c,>=O 
(b) c0=0; c1=c_1=1; (c2=2)v(c2~1) 
(c) For all a, bCA: c,b=c,c~; C,+b~C,+Cb; Ca=O=~cb=c,+b 
(d) For all a, b~A: (c~<=l)=~[(ca+b<=ca) v (C,+b<=Cb)]. 

By Spev ~ (A) we denote the class of all models of Th A(rc). We think of the ele- 
ments of Spev ~ (A) as mappings f :  A ~ R  ~= (with R > the multiplicative group 
of positive elements in the real closed field R, R -~ =R>w{0}) having the following 
properties: 

(b') f (0)=0;  f (1 )=  1 = f ( - 1 ) ;  f (2 )=2  v f ( 2 ) ~  1 
(c') f(ab)=f(a)f(b); f(a+b)<=f(a)+f(b); f(a)=O=~f(a+b)-=f(b) 
(d') f(2)<= 1 =~(f(a+b)<=f(a) vf(a+b)<=f(b)). 

To get a spectral space out of the class Spev ~ (A) of models of Tha(rc) some of 
the models have to be identified via an equivalence relation. Then the equivalence 
classes are the points of the space. There are different identifications possible, and 
for different purposes different identifications may be appropriate. The following 
is one possible approach for the purposes of this paper. (From the seminar notes 
([16]) of Huber I know that there are several other ways which would also work.) 

Let Z be the set {0, 1, ~}. With every (f :  A~R-~)~Spev ~ (tt) we associate a 
map ef: A • A ~ Z by defining: 

f ~  

as(a, b) = { 1  
L w 

The set 

if f ( a ) = O  or f ( b ) = O  
if 0 < f ( a )  <=f(b) 
if O < f(b) < f(a). 

Spev (A) = {eyEZ A • SP ev~ (A)} 

is the valuation spectrum of A. 
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The meaning of the different elements of Z and of this definition will be ex- 
plained shortly. But first it is useful to note the following: 

Proposition 1. I f  ~ESpev(A) then the set {aEAl~(a, 1)=0} is a prime ideal 
of A, called the support of a, denoted by supp (a). 

Proof Let f :  A-~R ~- be a model of  Tha(rc ) with a = ~  I .  Then supp (~)= 
f - l (0 ) .  From the definition of Tha(rc) it is immediately clear that this is a prime 
ideal of A. [] 

Example 2. Let A be a ring, P c A  a prime ideal, K = Q u o t  (ALP) the quotient 
field of A/P. Let v: K* ~/"  be a Krull valuation. If F is the divisible hull of  F 
then /~ can be embedded into R >, R=R((i~)), the power series field with coeffi- 
cients from R and exponents from/~. This is a real closed field ([25], p. 55, Satz 13). 
Thus v may be considered as a valuation K ~ R  ~- (mapping 0 to 0). Altogether 
this gives a map 

f :  A-2-~ - K ~--L-~ R ~ 

which is a model of  ThA (re) as one checks. With f we associate ayE Z a x a according 
to the definition. Then we have 

~ I (a ,b )=0  if and only if aEP or bEP, 
~s(a ,b)=l  if and only if a, b C e  and v(z(a))<-v(z(b)), 
~sfa, b)-- co if and only if a, bCP, v(z(a))>v(n(b)). 

This example also helps explain the term "valuation spectrum". The connec- 
tions with valuations are explained more fully in section 2. 

So far the valuation spectrum is nothing but a set. This set is endowed with 
some structure via the following structures on Z:  

(i) Total order On Z: 0 < 1 < ~ .  
0i) Constructible topology on Z=discrete topology on Z. Notation: Zc. 
(iii) Weak topology on Z: c~, {~}, {1, o~}, Z. Notation: Zw. 

If  I is any set and M ~ Z  I is a subset then the topologies induced on M by Z~ 
and Z~ are also called the constructible topology and the weak topology. In par- 
ticular, Spev (A) has a constructible and a weak topology. 

A subset K c  Spev (A) is said to be constructible if K belongs to the Boolean 
algebra of  subsets of  Spev (A) generated by all sets {~ESpev (A)l~(a, b)=z} with 
a, bEA, zEZ. 

A key result about the constructible topology of Spev (A) is 

Theorem 3. I f  KcSpev  (A) is constructible and K=Uic i  Ki is a cover by 
eonstruetible subsets then there is a finite subcover. 
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Proof Every constructible subset C c S p e v ( A )  can be described by a for- 
mula of  the language ~ a ( ~ ) .  That means, there is a formula ~b of  the language 
~ a ( ~ )  Such that 

{(f: A -~ R-~)ESpev ~ (A)L(f: A ~ R -~) ~ qS} 

is the class C o of  those models of  ThA(rc) for which CtsEC. 
To prove this it suffices to consider constructible sets generating the Boolean 

algebra of  coustructible sets. For example, let C =  {,ESpev (A)lct(a, b )=  1} and 
let C o be the class of  ( f :  A~R=~)ESpev ~ (A) with ~sEC. If  ~b is the following 
formula : 

(c~ ~ 0) ^ (c~ ~ 0) ^ ~c, ~ cb), 

then C o is the class of  models of  ThA(rc)u{49 }. 
Now suppose that K and Ki, iEL are constructible subsets of  Spev (A), 

K =  Ui~i Ki. We choose formulas qS, qSi, iEL defining these construetible subsets. The 
constructible set K \ K ~  is defined by the formula 4)^ -q~ -  Since ["]iEl (/C,,,Ki)=~, 
the set {4 ^ ~c~zliEI} of formulas does not have a model, i.e., it is inconsistent 
(completeness theorem of model t h e o r y -  see [7], chapter 2.1; [24], chapter 1.5). 
By the compactness theorem of model theory ([7], loc. cit.; [24], loe. cir.), there 
is a finite subset JCI such that {A4~- (~iI}iEJ} is inconsistent. By the completeness 
Theorem this means that there is no model for the (rr 
i.e., O(i~s(K/Ki)=c~. Thus K = A ~ s K  i as claimed. [] 

This result has the following immediate consequences: 

Corollary 4. Spev (A) with the construetible topology is a Boolean space. 

Corollary 5. A subset C c S p e v  (A) ix construetible i f  and only i f  C is open and 
cloyed in the constructible topology. 

Corollary 6. Let Z carry an arbitrary topology and consider Spev (A) as a 
subspace of Z ~• with the product topology. Then a subset K c S p e v ( B )  is open 
and eonstructible i f  and only i f  it is open and quasi, compact. The open quasi-compact 
sub~ets are closed under finite intersections. They form a basis of  the topology of  
Spev (B). 

Using [14], proposition 7 we conclude: 

Corollary 7. Let Z carry an arbitrary To-topology (e.g., the weak topology). 
Then Spev (,4) with the restriction of the product topology of Z a • a is a spectral 
space in the yense of  Iloehster ([14]). 

From now on we will consider Spev (A) only with the constructible topology 
or the weak topology. If  nothing is said about  the topology then we always mean 
the weak topology. 
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There are many different T0-topologies on the set Z. It may happen that in 
some context one of  these topologies should be used and that for other purposes 
another topology is more appropriate. It turns out that the weak topology is well 
suited for the purposes of  this paper. However, this choice of  topology is not only 
justified by its success in this paper but also by our geometric intuition. This will be 
discussed in some more detail at the end of  section 2. 

Concerning the choice of  topology, there is a similar situation in semi-algebraic 
geometry. In the abstract setting the real spectrum of  a ring ([8]; [2], Chapter VII) 
is used as the basic topological space ([29]; [30]). The real spectrum of the ring A 
can be considered as a subspace of  {0, 1} A. On {0, 1} there are three T0-topologies, 
namely the discrete topology, the weak topology {qS, {1}, {0, 1}} and the inverse 

topology {q~, {0}, {0, 1}}. The weak topology is very well suited for working with 
locally semi-algebraic spaces ([29]; [30]; [10]). Recently it turned out that the inverse 
topology should be used in the abstract discussion of  weakly semi-algebraic spaces 
([19]; [31]; [321). 

So far the spectral space Spev (.4) has been associated with the ring A. This 
construction can be extended to give a functor from the category of  rings to the 
category of  spectral spaces: 

Proposition 8. Le t  tp : A--~B be a homomorphism o f  rings. r induces a map 
Z ~ • ~,: Z B • B_~.Z A • A which restricts to ~p* : Spev (B)-~Spev (,4). ~p* is a morphism 

o f  spectral spaces. 

Proof. The definition of  Z ~• is obvious. Let ( f :  B ~ R  ~-) be a model of  
ThB(rc ). Then (tip: A~R-~)ESpev ~ (A) and Z~~215 This defines the map 
qS*: Spev (B) - -  Spev (A). Since Z ~~' is clearly continuous in both the construc- 
tible topology and the weak topology the same is true for r [] 

2. Connections with valuations. We saw in example 2 that at least some points 
of  the valuation spectrum Spev (A) of  the ring A arise from Krull valuations of  
the residue fields of  A. The next example shows that absolute values also define 
points of  the valuation spectrum: 

Example 9. Let R be a real closed field with algebraic closure C. Then there is 
the absolute value 

1.[: C ~ R>=: a-,Lib ~ ( - ~ + b  ~. 

If ~p: A-~C is a ring homomorphism then 

f :  ,4 -~ R~: a -~ I~o(a)l 

belongs to Spev ~ (A) and, hence, defines a point of  the valuation spectrum. In 
this case we have f (2 )=2 .  
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We will see that the examples exhibited in example 2 and example 9 show 
fairly typical points of  valuation spectra. To start with we show that every point 
of  Spev (A) is of  the form ~0*(e) with q~: A ~ K  a homomorphism into a field K, 
eE Spev (K). 

Proposition 10. Let  A be a ring, P e A  a prime ideal, i: A~.41, the canonical 
homomorphism. Then i*: Spev (Ae)~Spev (A) is a homeomorphism onto 

{eESpev (A)lsupp (e) c P}. 

Proof If flESpev(Ae) then 

supp (i*(fl)) = i -1 (supp (fl)) c i-l(Pe) = P. 

Pick eESpev(A) with s u p p ( c 0 c P  and let ( f :  A-~R~-)ESpev~ be such that 

( b )  f (a)This iswel l -def inedsincesupp(e)cP ~=c~ I. We define g: Av-*R ~- by g = f ( b )  " 

An easy computation shows that gESpev~ Moreover, e=i*(eo),  and the 
image of i* is as claimed. 

i* is injective: Let i*(/~)=c~=i*(7) and pick representatives g, hESper ~ (Ae) 
a a b d 

of fl, 7. Then fl _[b' __d} = l  is equivalent to O<g_ _(~)<--g __..[d}. Because of -i- '-i -E A• 

this is the same as O<g[~-}=gi(ad)<=g[~ Since e=~gi this is equiv- 

alent to c~(ad, bc)= 1. Similarly, this is also equivalent to ~ , = 1. The same 

computations with 0 and oo in place of 1 show that fl = 7. 
Since i* is a morphism of  spectral spaces it remains to prove that i* : Spev (Ae) -- 

a c 
ira(i*) is open. If suffices to show that, given ~-, - jEAe,  UcZw open, the image 

a c a c 
of  V={flESpev(A,)fl[-ff ,-j)EU} is openinim(i*). It isclear that fl(-~-,--d-)EU 

tad bc ~ T 
if and only if i*(fl)(ad, bc)=fl [--~,---~JEC,. Thus, 

i* (V ) = im( i*)n(c~E Spev (A) l ct( ad, bc)E U} 
is open. [] 

Proposition 11. Let P E A  be a prime ideal, rr: A ~ A / P  the canonical homo- 
morphism. Then ~z*: Spev(A/P)~Spev(A) is a homeomorphism onto the set 
{eE Spev (A)IPc supp (e)}. 
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Proof. It is obvious that im(zc*)c {~ESpev (A)lPcsupp (~)}. On the other hand, 
pick ~ in this set and let ( f :  A-+R-~)ESpev ~ (.4) be a representative of ~. Then 
P c s u p p  (~)=f-l(0),  and the definition of Spev ~ (A) shows that f factors through 
z~: A ~ A / P  to give g: A/P-,-R ~-. One readily checks that gESpev ~ (A/P). Since 
c~=n*(%) the image is as claimed. Surjectivity of n implies injectivity of n*. So, 
n* is a bijection onto the image. 

Since n* is continuous it remains to prove that n*: Spev (A/P)~im(n*) is 
open. So, let ~(a),~(b)EA/P and pick some open subset U c Z  w. Define 
V={#ESpev(A/e)l#(n(a),n(b))EU}. Since ~*(~)(a,b)=fl(~(a),zc(b)) it fol- 
lows that 

zc*(V) = im(n*)n{~E Spev (A)[ ~(a, b)E U}, 

proving that n*(V) is open in ira(re*). [] 

As a consequence of proposition 10 and proposition 11 we record 

Corollary 12. Let P c A  be a prime ideal, A(P) the residue fieM of  A at P, 
q): A-~A(P) the canonical homomorphism. Then q)* maps Spev(A(P)) homeo- 
morphically onto {gESpev (A)lsupp (~)=P}. 

As consequence of  these results we may restrict our attention to fields when 
studying individual elements of valuation spectra. 

Let K be a field, gESpev(K) with representative (f:  K~R~-)ESpev~ (K). 
Then f ( K * ) c R  > is a totally ordered subgroup. We will see now that this totally 
ordered group depends solely on ~, not on the representative chosen: To see this let 

U = {xEg*loc(x, 1) = 1 & or x) = 1}. 

It is clear that U=f- l (1 ) .  Thereforef(K*) and K*/U are isomorphic as groups. 
Now we define U<xU in K*/U if and only if a(x, 1) = ~o. With this order K*/U 
is a totally ordered group and the above isomorphism is an isomorphism of totally 
ordered groups. Since the totally ordered group has been defined solely by referring 
to a we see that f(K*), as a totally ordered group, depends only on a and not on 
the representativef. This group is denoted b y  F,. We write F~ for f(K*)u{0}. The 
map v~: K~F,  is the same a s f w i t h  the range restricted tof(K).  

Theorem 13. Let K be a field, ~ESpev(K), v~: K-~F~ as above. Then the fol- 
lowing statements are equivalent: 

(a) v~ is a Krull valuation. 
(b) ~(2, 1)~_1. 
(c) V~={xEKI~(x, 1)<=1} is a valuation ring. 
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Proof (a)=~(c): Note that ~(x, 1)~_1 if and only if v~(x)<_-l. - -  (c)=~(b): 
Since 2EV~, the definition of  V~ shows that ~(2, 1)~=1. - -  (b)=~(a): Let 
( f :  K-~R-~)ESpev ~ (A) be a representative of  ct. Then f(2)-<_l and the definition 
of  Spev~ shows that f(x+y)<-f(x) or f ( x + y ) ~ f ( y )  for all x, yEK. The 
same is true for  v~, and we see that v~ is a Krull valuation. [] 

As a consequence of  corollary 12 and theorem 13 we note: 

Corollary 14. Let A be a ring, eESpev(A), P = s u p p  (c0, ~p: A ~ A ( P )  the 
canonical homomorphism into the residue f e ld  of A at P. I f  ~(2, 1)<_-1 then ~. is 
induced by a unique Krull valuation of A (P). 

Concerning eESpev (A) with :~(2, 1)= o~ we have the following result: 

Theorem 15. Let K be a fieM, eESpev (K) with e(2, 1)= ~. I f  F~ is arehi- 

medean then v,: K~F,  is an archimedean valuation of K (in the sense of[21], p. 9). 

Proof. Since F~ is archimedean F~ may be considered as subgroup of  R > with 
v , (2)=2 (H61der's theorem - -  see [12], p. 73, Satz 1 or [25], p. 8, Satz 4). From 
the definition of  the valuation spectrum (section 1) it follows immediately that v, 
is a valuation in the sense of  [34], p. 1 (with C=2) .  It is clear that this is an archi- 
medean valuation. [] 

It  remains an open problem if every c~ESpev (A) with e(2, 1)= ~ is induced 
by a homomorphism A ~ C  into an algebraically closed field and an absolute value 
of  C (as in example 9). In any event, such an element o f  the valuation spectrum 
can always be used to define a Krull valuation: 

Proposition 16. Let K be a fieM, ctESpev(K) with ~(2, 1)=oo. Let F~cF~ 

be the convex subgroup generated by v~(2). Then K ~,~ -=r ~E~,.~tr' is a Krull val- 
uation. 

The easy proof  is omitted. 

Based on the results of  this section we will call the elements of  Spev (A) valua- 
tions of  A. Valuations ~ are called Krull valuations or absolute values according 

as ~(2, 1)<_--1 or ~(2, I )=  oo. The correspondin map A-+A(supp(~)) ~" *-F~ is also 
denoted by v, and is called a valuation. F, is the value group. 

We continue to consider a field K. The set {~ESpev(K)lcr 1)~_1} is can- 
onically bijeetive to the set of  equivalence classes of  Krull valuations and also to 
the set o f  valuation rings o f  K. The abstract Riemann surface of  K is the set of  
valuation rings with the topology having all sets 

{Vial . . . . .  a.EV}, aa, . . . ,a.EK 
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as a basis of open subsets ([35], chapter VI, w 17). With a valuation ring V c K  we 
associate the following element CtvE Spev (K): 

! if a = O  or b = 0  
a 

av(a, b) = if ab # O, ~ E V  

if ab # O, b ~ V. 

In this way we consider the abstract Riemann surface of K as a subset of Spev (K) 
and of Z rxK. To get the above topology of the abstract Riemann surface one 
can use the following topology of Z: {qh, {1}, {1, oo}, Z}. So the weak topology 
we are using does not restrict to the usual topology on the abstract Riemann surface. 

Both in Huber's seminar notes ([16]) and in de la Puente Mufioz' dissertation 
([26]) the Krull valuations of a ring are considered (by de la Puente Mufioz under 
the name abstract Riemann surface of a ring). They also consider topologies dif- 
ferent from the weak topology. 

The reason for using the weak topology in this paper is the following: Let A 
be a ring and let K c  Spev (A) be the set of Krull valuations. Choosing a topology 
on Z one makes a decision about which of the following subsets of K are open: 

{~EKlv,(a) -<_ 1}, 

{o~EKlv,(a) >= 1}, 

{~EK[v,(a) > 1}, 

where aEA. To start with, there is no obvious reason to decide that certain of these 
sets should be open and others should be dosed. So the choice of topology seems 
to be somewhat arbitrary. However, in our setting Spev (.4) also contains absolute 
values. And for these it is easy to decide which subsets ought to be open. For example, 
let A be the atfine coordinate ring of an affine C-variety X. Then every C-rational 
point x defines an absolute value by composing the evaluation homomorphism 
x*: A--C: a--,-a(x) with the canonical absolute value C-~R -~. In this way X(C) 
may be considered as a subset of  Spev (A). We even want to consider V(C) as 
a subspace of Spev (.4). To get this it is necessary to consider the sets 

{~ESpev (A) [ ~(a, 1) = co}, 

{~E Spev (A) I ~(a, 1) ~ 0} 

as open subsets of Spev (A). For, their restrictions to V(C) are the sets 

{xEV(C)[la(x)l > 1}, 
{xEg(C)lla(x)l >0}, 
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and these are open subsets of  V(C). So, if one wants to consider V(C) (with the 
strong topology) as a subset of  Spev (,4) then the weak topology has to be used. 

3. Connections with other spectra. If  A is a ring we have seen that the Krull 
valuations of  the residue fields of  A at its prime ideals yield elements of  Spev (A). 
The set of  KruU valuations of  A, 

{~ESpev(A)[cr 1) <_- 1}, 

is a closed constructible subspace of  Spev (.4). This subspace is also a spectral space, 
called the Krull valuation spectrum. 

In proposition 1 we defined the support of  a valuation of  a ring. 

Proposition 17. The support map supp: Spev (A)~Spec(A)  ig a morphism of 
spectral spaces. 

Proof. The sets D(a)={PESpec(A)Ia~P}, aEA, form a basis of  the Zariski 
topology of  Spec (A) and at the same time generate the Boolean algebra of  con- 
structible subsets of  Spec (A). Therefore it suffices to show that supp -1 (D (a)) is 
open and constructible for all aEA. Because of  

supp-1 (D (a)) = {~ E Spev (/3) I ~ (a, 1) # 0} 
this is clear. [] 

We may also consider Spec (A) is a dosed  subspace of  Spev (A): 

Proposition 18. I f  PESpec (.4) then z(P)E Z A• is defined by 

z(P)(a'b)=[O~l i f  aEP or bEP 
i f  ab ~ P. 

This defines a map z: Spec(A)~Spev(A) .  �9 is an isomorphism onto the closed 
subspace 

Na,b~A {~1 ~(a, b) <_- 1} c Spev (.4). 

Proof. For PE Spec (A) define f (P):  A ~ R  -~ by f (P)  (a) = 0 if a E P, f (P)  (a) = 1 
ifaCP. Thenf (P )  ESpev ~ (A) and z(P)=~s(e~. Thus z is a map Spec (A)~Spev (A). 
It is clear that the image of  T is as claimed. Because of  suppoz= id  it fo l lowsthat  
z is injective. 

It  remains to show that �9 is both continuous and open. First pick a, b E A 
and set 

U.. = {~ESpev (A) [ ~(a, b) = ~}, 

U1 = {~ESpev(A) l ~(a, b) ~ 0}. 

Then z-l(U~.)=~b, z-l(UO= {PESpec (A)labCP}. This proves continuity. Now we 
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determine the image of D(a)= {PESpec (A)IaCP} under ~: 

z(D(a)) = im(z)n{~ESpev(A)le(a, 1) # 0}, 
and zis open. [] 

The image of �9 is the set of trivial valuations of A, i.e., the valuations c~ with 
r,={1}. 

Let Sper(A) be the real spectrum of A (see [1]; [2]; [8]; [18]; [21]). For 
#ESper (.4) let Q,: A-*Q~) be the canonical homomorphism into the real closure 
of the residue field A (supp ~))  of A at supp ~ )  = :t ca - /z  with respect to the total 
order defined on A(supp ~))  by/t.  On O~) there is the canonical absolute value 
[. [: O~)-+Q(.u)-~: x-+max {x, -x} .  Composing this with 0~ we obtain 

f(p,): A o~, 4(#) I.I, Q(/~)~ 

which belongs to Spev ~ (A). Thus 
Spev (A). 

Proposition 19. ro maps Sper (A) 
space of Spev (A). 

Proof. Injectivity: Suppose that 

r defines a map o9: Sper(A)-* 

isomorphically onto a pro-constructible sub- 

2#kt, 2, /z E Sper (A). Case1. supp(2)# 
supp(p). We may assume that there is some aEsupp(2) \supp~) .  Then 
ro(2)(a, 1)=0, ro~)(a, 1)#0, and this proves 09(2)#09(#). Case2. supp(2)= 
supp ~).  Let K= A(supp (,l)). With K~ and Kz we denote K with the total order 
induced by 2, resp./~. Then there is some xEK such that 0 < x  in Ka, x < 0  in Kz. 

Y 
Replacing x by x -1 if necessary we may assume that O < x < l  in Ka. Let x = - -  

with y, z E A, y, ~ E A/supp (2) their canonical images. Assume by way of contra- 
diction that o9(2)=r From O < y < z  we see that o)(cO(y,z)=l=o)([3)(y,z). 
This implies - l < x < O  in Kz. Then l < l + x  in Ka and 0 < l + x < l  in Kz, 
and og(~)(y+ z, z)= .% co(]3)(y+z,z)=l, a contradiction. This proves that o~ is 
injective. 

To prove that co is a morphism of spectral spaces, we pick a, b E A and deter- 
mine the inverse images of 

U** = {zESpev (A) I~(a, b) = ~} 

under o~: 
U1 = {~E Spev (A) I c~(a, b) # O} 

co-l(U**) = {#ESper (A) I0 < Q~(b) 2 < ~(a)2}, 

~o-l(Ux) = {/~ESper (A) I Q,(a) Qu(b) # 0}. 
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These are both open and constructible, showing that to is a morphism of spectral 
spaces. In particular, im(co)cSpev (A) is a pro-constructible subspace. 

To show that r is open onto the image we note that, for aEA, 

09 ({/zE Sper (A) I oz (a) > 0}) = im(~o)nV 
with 

V =  {ctESpev(A)[~(a+l,a)=oo & ct(a+a2, a )=~} .  [] 

4. Specializations in the valuation spectrum. If  ~, flE Spev (A) we say that fl 
is a specialization of  ~ and ~ is a generalization of  fl if fie {~}. In real spectra the 
specializations of  a point have the remarkable property of  forming a chain with 

respect to specialization, i.e., if fl, ~E{~} then fiE{7} of  ~E{fl} (cf. [8], proposi- 
tion 2.1). This statement is false in the Zariski spectrum of  A. Since Spec (A) may 
be considered as subspace of  Spev (A) (proposition 18) it is also false in Spev (A). 
To exclude this trivial case we will discuss mostly Spev (A) \Spec  (A) in this sec- 
tion. In this space the specializations of  a point have some rather special properties, 
although they do not necessarily form a chain. First we record 

Lemma 20. Let ct, fie Spev (A), fie {ct}. Then supp (fl) D supp (ct). 

Proof. supp is continuous (proposition 17). [] 

Before continuing with the investigation of  specializations we note that, if fl 
is a specialization of  ~ and if we are only interested in the valuations g and fl, prop- 
osition 10 in connection with lemma 20 allows us to assume that A=Asupp~p ~. 
Whenever this leads to a simplification of  arguments this assumption will be made 
without much comment. 

To gain a good understanding of  specializations in Spev (A) it is important 
to establish connections between the value groups F~ and Fp if fie {~} : By lemma 20, 
supp (~)csupp (fl). Suppose that A=Asupp~e ~ and let i: A--Asupp(~ be the can- 
onical homomorphism. Let Fp~cF~ be the image of  the group homomorphism 

v~i: A* * 

Lemma 21. ker (v~i)cker  (va). 

Proof. Pick aEA* such that vj (a)=l .  This means that v~(a)=l=v~(1), L:e., 
~(a, 1)=1 and c~(1, a ) = l .  Since # is a specialization of  ~ either fl(a, 1)-=0 or: 
fl(a, 1)=1 and fl(1, a ) = l .  Since #(a, 1)=0 contradicts aEA* wehave  #(a, 1)=1 
and fl(1, a ) = l ,  i.e., va(a)=l .  [] 

As a consequence of  lemma 21 there is a canonical homomorphism rtp,: F~-~Fp. 
Both groups are totally ordered (Fp~ as a subgroup of  F,). 

Lemma 22. np~ is order compatible. 
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Proof. Pick aEA* and suppose that vj(a)>-I in Fp,. Then either v~(a)>l 
or v~(a)=l. This means either e(a, 1)=~o or: cr 1)=l  and e ( I , a ) = l .  As- 
sume that vp(a)<l. Then B(1, a ) = ~  and, since BE{e}, e(1, a)=~o follows, a 
contradiction. 

Corollary 23. Let eESpev (A), P e A  a prime ideal with supp (e)cP.  Then 
{e}n{BE Spev (A)isupp (B)=P} is a chain with respect to specialization. 

Proof. We may assume that A=Ap (proposition 10, lemma 20). Pick 

B, 7E{e} with supp(f l )=P=supp(7  ). Then the subgroups Fp~, F~ of F~ agree. 
Let Ap~=ker(nB~ ), Ar~=ker(nr~). These are convex subgroups of F~=Fr~ 
(lemma 22). Hence Ap~cAr~ or Ar~cAa~. In the first case 7E{B}, in the second 

case BE{7}. [] 

In particular we have 

Corollary 24. I f  K is a fieM and ~ESpev (K) then {e} is a chain. 

We continue to discuss e, BE Spev (A), B a specialization of e. We assume that 
A = Asupp (p~. Moreover we choose representatives ( f :  A ~R-~), (g: A-~S-~)E Spev ~ (A) 
of  e and/L 

Lemma 25. I f  a, bEA are such that f(a)<-f(b) and g(b)r then g(a)<=g(b). 

Proof. Assuming that g(a)>g(b) we have B(a, b)= ~o. This implies e(a, b)= oo 

since BE {cr and hence f(a) >f(b), a contradiction. [] 

Proposition 26. I f  F~, Fp are both nontrivial then f(a)<-f(b) implies g(a)~_g(b) 
for all a, bE A. 

Proof. If g(b)~O then the claim follows from lemma 25. We assume by way 
of contradiction that g(b)=0 and g(a)>g(b). 

First suppose that f(2)<_-l, i.e., e (2 ,1 )~ l .  This implies B(2, 1)<-1, i.e., 
g(2)<_-l. Since ~ is nontrivial there is some cEA such that O<g(c)<g(a) (observe 

that A=A~,pp(~). This implies O<f(c)<f(a)<-f(b) (since BE{a}----). Both v~ and 
vp are induced by Krull valuations of the residue fields of A at supp (a) and supp (B) 
(corollary 12, theorem 13). Therefore f(a)<=f(b)=f(b+c) and O<g(c)=g(b+c). 
Lemma 25 implies that g(a)<=g(b+c)=g(c), a contradiction. 

From now on we assume that f (2)=2,  i.e., a(2, 1)= co. We will need 

Lemma 27. Let fESpev ~ (A) be such that f (2)=2.  Then f(n)=n for all nEN. 

Proof. First note that f(2~)=f(2) " for all rEN (since f is multiplicative). 
Trivially we have f(n)<=n for all nEN. Choose rEN such that n<2  ~ and write 
2r=n§ Then 2" =f(2")<=f(n)+f(p)<=n+p=2 ~. This is possible only if f(n)=n. [~ 
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Proof of  Proposition 26 continued. For f we have the following inequalities: 

f (a)  < 2f(a) = f(2a) _~ f(2b) < f(2b) + ( f (2b) - f (a ) )  = 

= 2 f (2b) - f (a )  ~_f (4b)- f (a)  <=f(4b- a). 

Because of g ( 4 b - a ) = g ( - a ) = g ( a ) > O  lemma 25 shows that g(2a)<=g(4b-a)= 
g(a), i.e., we have g (2 )~ l .  By corollary 12 and theorem 13, vp is induced by a 

Krull valuation of the residue field of  A at supp (/~). Since flE{c~}, riO, 2 )=0  or 
8(1, 2)= 1. 

First assume that /~(1, 2)= 1. Since F# is nontrivial there is some c E A = Asupp (p) 
such that g ( c )> l .  Then also f ( c ) > l  and g(a)<g(ca). From the inequalities 

f (a)  < f(ca) <= f(cb) < f(cb) + ( f ( cb ) - f (a ) )  = 

= f ( 2 c b ) - f ( a )  ~_ f ( 2 c b -  a) 

in connection with O < g ( a ) = g ( - a ) = g ( 2 c b - a )  (by g(b)=0) we conclude by use 
of  lemma 25 that g(ca)<=g(2cb-a)=g(a), a contradiction. 

Finally we assume that /~(1, 2 )=0  i.e., g(2) =0. Then g(3) = 1. From lemma 
27 we learn that 3f(a)=f(3a)<f(3b)=3f(b). Again pick cEA such that g ( c )> l .  
The same computations as above show that f (ca)<f(3cb-a) ,  g(3cb-a)=g(a)~O.  
Now lemma 25 yields g(ca)<=g(3cb-a)=g(a), a contradiction. [] 

The statement of  proposition 26 can be reformulated by saying that there is a 
natural homomorphism f ( A ) ~ g ( A )  of ordered sets. 

Next we study the space of  closed points in certain subsets of  the valuation 
spectrum. 

Theorem 28. Let A be a ring, K ' c S p e v  (A) a closed subset. Pick al, ..., anE A 
and set ao=2. Then 

K = {c~EK'I ~(a0, 1) = o~ or. . .  or c~(an, 1) = co} 

is a constructible subset of  K'. Every c~E K has a unique closed (in K) specializa- 
tion in K. 

Proof. K is obviously a pro-constructible subset of Spev (A), hence is a spectral 
space. Therefore every point of  K has a closed specialization. It remains to prove 
uniqueness. So let ~EK and pick a representative ( f :  A-~R-~)ESpev ~ (A) of  c~. 
We set U~={xER~-I3aEA: x<=f(a)}. By definition of  K, U~ contains a nontrivial 
convex subgroup of  R ~'. Let V, be the largest such subgroup and set W~ = U~\V~. 
We define P={aEAIf(a)EW~}. It is immediately clear (from the definition of  
Spev ~ (,4) u see section 1) that P c A  is a prime ideal. We pick a closed specializa- 

tion /~E{~} in K and a representative (g: A~S~)ESper  ~ (,4) of /L If  we can show 
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that supp (f l )=P then an application of  corollary 23 finishes the proof. So it re- 
mains to prove that supp (fl)=P. 

First assume that there is some aEsupp ( f l ) \P .  Then there exists some bEA 
such that l<=f(ab). Proposition 26 implies that l<=g(ab). But this contradicts 
g(ab) =g(a)  g(b) = 0. We see that supp (fi) c P. Conversely assume that supp (fl) ~ P. 
Using g instead o f f ,  we define the subsets Up, Vp, WpcS -~ in the same way as 
we defined U,,V~,W~cR ~-. Then we also have P={aEAIg(a)EW~} and Wp#{0} 
(since supp (fl) ~ P). 

Case 1. vp is a Krull valuation. In this case define 

0 if aEP 
h: A~S~-:  a-+ g(a) if aCP. 

Noting that xEP, aCP implies g(a)=g(a+x) one sees that (h: A~S-~)ESpev ~ (A) 
and ~h is a proper specialization of/L Moreover, g(aj) > 1 for some i implies h (a~) > 1 
for the same i. We see that ~hEK, and/~ is not closed in K, a contradiction. 

Case 2. vp is an absolute value. In this case g(2)=2. Let C c S  be the convex 
subring generated by g(A), let M c C  be the maximal ideal. Then M=Wp U-W~.  
It is easy to check that 

h: A ~ §  -~ C/M 

is in Spev ~ (A). ~h is a proper specialization of fl since h - l (0 )=P .  Moreover 
h(2)=2 so that ~hEK. Again this contradicts the choice of/~ as a closed point 
of  K. [] 

Corollary 29. With the notation of theorem 28, K max, the space of closed points 
of K, is a compact space. 

Proof. Since K is quasi-compact the same is true for K m~x. To prove the Hans- 
dorff property let ~,/~EK be dosed points. By theorem 28, ~t and /~ do not have 
common generalizations. Thus c~ and /~ have disjoint neighborhoods in K, hence 
also i n K  m~. [] 

Still sticking to the same K, a retraction r: K ~ K  max is defined by letting r(~t) 

be the closed point in {u} for all ~E K. 

Proposition 30. r is continuous. 

Proof Pick eEK and set fl=r(~). If  U c K  m~x is a neighborhood o f t ,  then 
C=Kmsx\U is closed in K mSX, hence compact. For  vEC, t ,  ~ do not have common 
generalizations. There are open constructible neighborhoods U~ of  y, V~, of fl in 
K with U~nV~=~. c c U r c c  Ur is an open cover. By compactness there is a finite 
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subcover c~U~=I  Ur,=W. If V=A,".=I V~, then V is an open neighborhood of/~ 
in K. V is also a neighborhood o f~  in K. By construction, VnW=ck and W is an 
open neighborhood of C in K. This implies r ( V ) c  U, and continuity of r has been 
proved. [] 

The closed points of the space K of theorem 28 have the following charac- 
terization: 

Theorem 31. I f  ~E K, K as in theorem 28, then ~ is a closed point i f  and only i f  
F, is nontrivial arehimedean. 

Proof. If ~EK and (f :  A~R~-)ESpev~ is a representative of ~ then 
F~cR > is the subgroup generated by f (A\supp(~)) .  Since f ( a i )> l  for some 
i=0,  ..., n, F, is nontrivial. Now suppose that ~ is a closed point. The subsets 
U,, V~, W~cR ~- are defined as in the proof of  theorem 28. It was shown there that 
f-I(W~), is the support of the closed point in {~}. Since a is closed, supp (~)= 
f-x(W~). Therefore V, is the convex subgroup of R > generated by F,. If iE {0 . . . . .  n} 
is chosen to be minimal such that f(ai)>1 and V~ is the convex subgroup of V~ 
generated by f(a.~ then F, is the convex subgroup of F, generated by v,(ai). There 
are two cases: 

Case 1. i=0. In this case ~ is an absolute value and f(2)=2.  If C c R  is 
the convex subring generated by V~ then C is generated by f (2)=2,  i.e., C is the 
convex hull of Q. Let M c  C be the maximal ideal. Then with 

g: A :-L-, - C --,- C/M, 

% is a specialization of ~ and belongs to K since g(2)=2. Since c~ is a closed point 
of K, c~ =c~g. Since C[M is an archimedean real closed field, /'~ is archimedean. 

Case 2. i>0. It is easy to check that, if F~'cF~ is the largest convex subgroup 
not containing f(al), the map 

defines a Krull valuation ]~ of A which specializes ~. Since vp(f(a,))>l by con- 
struction, ]~ belongs to K. Since ~ is a closed point of K, /~=~, i.e., F~=FJF~ is 
arehimedean. 

Conversely suppose that F~ is archimedean. If/~ is a proper specialization of 
~, then we have the order compatible epimorphism nB~: Fp~-*~ (lemma 22) with 
nontrivial kernel. Since F~ is nontrivial (see the beginning of the proof) ~ is non- 
archimedean. Since F~cF~ is a subgroup, F~ is nonarchimedean, a contra- 
diction. [] 
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II. The complex spectrum 

The valuation spectrum of the ring A contains the real spectrum of A (proposi- 
tion I 19). The connections between these two spectra can be used to give a rather 
satisfactory construction of the real version of the compactification of Morgan 
and Shalen ([22]): If k c R  is a subfield and A=k[a l ,  ..., an] then Sperk(A ) 
denotes those points of Sper (A) which induce the given total order on k. With 
a0=2 and 

K = {c~CSpev(A)l~(a0, 1)=o~ or . . .or  ~(a,, 1)=co} 

the set L=Kc~og(Sper k (.4)) is dosed in K. L m~ is a compact space (corollary 1 29) 
and contains the image of 

e: X(R) -~ Spev (.4) 

x -~ ~,a la(x)l) 

(theorem I 31). From proposition I 19 and since X(R) with the strong topology 
can be considered as a subspace of Sper k (,4) ([8], section 3) it follows that L max is 
a compactification of V(R). The compactification of Morgan and Shalen is a quotient 
of this compactification. 

This is a reformulation of Brumfiel's construction of the compactification of 
Morgan and Shalen ([5]; [6]). The basic idea for dealing with the normal case is to 
define the notion of a complex spectrum of a ring. This complex spectrum should 
play a similar role in the nonreal case as the real spectrum does in the real case. Such an 
approach has also been suggested by Brumfiel ([5]). The idea of a complex spectrum 
has been realized independently by Huber ([15]) and de la Puente Mufioz ([26]). 
However, Huber's complex spectrum does not fit into the valuation spectrum. We 
will define another notion of a complex spectrum which is a subspace of the 
valuation spectrum. This complex spectrum has many properties in common with 
the real spectrum. Using this spectrum the construction of the real compactifica- 
tion of Morgan and Shalen pointed out above carries over to the nonreal situation. 
In preparation for the construction of compactifications in chapter III this chapter 
contains a discussion of the complex spectrum. 

1. Compatible valuations. In real algebraic geometry for some purposes usual 
commutative algebra is not the adequate algebraic tool. It is only natural that, if 
one is dealing with genuinely real questions, partial or total orders must enter in 
some way into the algebra used. Currently such a brand of commutative algebra 
is developed under the name "real algebra" ([4]; [20]; [21]). Similarly, a complex 
spectrum requires some algebraic methods of its own. Here a few valuation theoretic 
notions and results are assembled which are necessary for the discussion of the 
complex spectrum. 
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Definition 1. A complex field is a triple consisting of an algebraically dosed 
field C, a distinguished square root i of - 1 and a real dosed subfield R such that 
C=R(i). 

The notion of a morphism of complex fields is obvious. The complex fields 
form a category. 

The language of the theory of complex fields consists of the usual language of 
the theory of fields, a constant i, a one-place relation R and a two-place relation <=. 
This language is denoted by 9.(cx). The theory of complex fields is the theory of 
algebraically closed fields supplemented in the following way: 

The constant i distinguishes a particular square root of - 1 .  
The one-place relation R singles out a real closed subfield over which the alge- 

braically closed field is algebraic. 
The two-place relation _-< restricts to the unique total order on the real closed 

subfield. On the algebraically closed field it is the componentwise lattice order with 
respect to the basis {1, i} over the real closed subfield. 

The theory of complex fields is denoted by Th(cx). Its models are usually de- 
noted by (C, R, i) or just by C if the meaning is clear from the context. 

On a complex field C=(C, R, i) there is a natural absolute value 

_.~ ~ 2  ~ X 2 1. I : C R ~- : x = x l  + ix~ Ix l  = I/ .~1 ~-  2 -  

This absolute value defines an element of the valuation spectrum of C. The abso- 
lute value will be used to connect the complex spectrum of a ring with its valuation 
spectrum. 

The order compatible valuation rings of the real closed field R are exactly the 
convex subrings of R ([23]; [25]). They are Henselian valuation rings with real closed 
residue field and divisible value group (loc. cit.). Any such valuation ring V c R  
extends uniquely to a valuation ring W c C  ([11]; [27]). The residue field of W is 
the algebraic closure of the residue field of V, the value groups of V and W agree 
(loc. cit.). 

Definition 2. A valuation ring (resp. valuation) of  the complex field C=(C, R, i) 
is compatible with the complex structure if the restriction to R is an order com- 
patible valuation ring (resp. valuation). The smallest compatible valuation ring 
(resp. finest compatible valuation) is the natural valuation ring (resp. valuation) of C. 

By this definition a compatible valuation ring of C may be considered as a 
couple (W, V) of  valuation rings W c C ,  V = W n R c R  such that V is convex 
in R. Let MwCW, M v c V  be the maximal ideals. Then W[Mw canonically con- 
tains the real closed field VIM v and is its algebraic closure. 

Definition 3. If C=(C, R, i) is a complex field and (W, V) is a compatible 
valuation ring, then (W]Mw, V]Mv, i) is the induced complex structure on W[Mw, 
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where iEW/Mw is the canonical image of the distinguished square i E W c C  
of -- 1. 

Definition 4. The complex field (C, R, i) is archimedean if R is archimedean. 
(C, R, i) is archimedean over the subring A c C  if {[xl xEA} is cofinal in R. 

The following is a consequence of H61der's theorem ([12], p. 74, Satz 1 ; [25], 
p. 8, Satz 4): 

Proposition 5. I f  (C, R, i) is an archimedean complex field then there is a 
unique embedding (C, R, i )~(C,  R, i). 

If (C, R, i) is a complex field and (W, V) is the natural valuation ring then 
the complex field (W/Mw, V/My, i) is archimedean. 

As a consequence of the real Hahn embedding theorem ([25], p. 62, Satz 21) 
we note 

Proposition 6. I f  (C, R, i) is a complex field with natural valuation w: C* ~ F  
then there is an embedding (C, R, i)-~(c((r)), R((F)), i) of complex fields. 

2. The spectral space Spec x(A). If A is a ring containing a square root of 
- 1  the complex spectrum of A shall consist of homomorphisms A~(C,  R, i) 
into complex fields under an appropriate identification. We proceed as follows: 

Let A be a ring containing a squareroot of - 1. We distinguish one of these 
and denote it by i(A). The language P.(cx) of complex fields is extended by con- 
stants ca for every aEA. The resulting language is denoted by !~a(cx). The theory 
Tha(cx) is obtained from the theory Th(cx) of complex fields by adding the fol- 
lowing axioms: 

C 0 : O ,  r  : l ,  el(A) -~- i ,  Ca'-~r b : Ca+b, Cab : Cae b. 

The class of models of Tha(cx) is denoted by Spec x~ Usually we think of the 
elements of Spec x~ as ring homomorphisms f :  A ~ C ,  where C is a field 
carrying a complex structure, such that f( i(A))=i.  

With ( f :  .4~(C, R, i))ESpecx~ we associate the map 

0 if f(a)f(b) = 0 
~ :  A •  ~ Z :  (a, b) ~ if 0 < f ( a )  <=f(b) 

if O < f ( b ) <  f(a). 
The subset 

Spec x(A) = {~IEZ a • a ]fE Spec x~ 

is the complex spectrum of A. An immediate consequence of the definition is that 
the complex spectrum of A is a subset of the valuation spectrum of A. In fact, every 
~sESpec x(A) is an absolute value of A. As a subset of Spev (A), Spec x(A) has a 
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constructible topology and a weak topology. Without proof we note that the same 
methods as in chapter I, section 1 apply to prove 

Theorem 7. Specx(A) with the weak topology is a spectral space. 

An immediate consequence of this in 

Corollary 8. Specx(A) is a pro-constructible subspace of  Spev (A). 

We have the following sufficient condition for elements of Specx~ to give 
the same point in the complex spectrum of A: 

Proposition 9. Let (f :  A~(C1, R1, il)), (g: A-+(C2, R2, i~))ESpecx~ and 
suppose that hi: (C1, R1, il)--~(C, R, i), h2: (C2, R2, i~)--~(C, R, i) are morphisms of 
complex fields such that hlf=h2g. Then ~y=~o in Specx(A). 

Proof. It suffices to show that c~r Let a, bEA, f(a)=al+ila2,  f (b )=  
bl +ilb~ (with al, as, b~, b2E Ra). Then h~f(a)=h~(al)+ih~(a~), hl f (b)=hl(bl)+ 
ihl(b2) and it follows that If(a)l< If(b)l if and only if [hlf(a)l< Ihxf(b)[. 

Since Specx(A) is contained in Spev(A) every element of Specx(A) has 
a support. The support map is a morphism of spectral spaces Specx(A) ~Spec (A). 

The proof of proposition 1.8 can be copied to prove 

Proposition 10. I f  ~o: A-~B is a ring homomorphism then Z~• ZB•  A~a 
restricts to a map ~0": Specx(B)-+Specx(A). q~* is a morphism of spectral spaces. 

An immediate consequence of proposition 10 is that Specx is a functor from 
the category of rings to the category of spectral spaces. 

The results of proposition I 10, proposition I 11, corollary I 12 also carry over 
to the complex spectrum: 

Proposition 11. Let P c A  be a prime ideal. 
(a) I f  i: A~Ap  is canonical then i*: Specx(Ap)~Specx(A) is an isomorphism 

onto the pro-constructible subspace {~Specx(A)lsupp (c0cP } of Specx(A). 
(b) I f  ~: A- ,A /P  is canonical then n*: Specx(A/P)~Specx(A) is an iso- 

morphism onto the pro-constructible subspace {c~CSpecx(A)lPcsupp(~)} of 
Specx(A). 

(c) I f  ~p: A ~ A ( P ) = Q u o t ( A / P )  is canonical then ~o*: Specx(A(P))-- 
Specx (A) is an isomorphism onto the pro-constructible subspace 

{c~ Specx(A)lsupp (c0 = P)  
of Specx(A). 

Other approaches to the complex spectrum of a ring may be found in [15] 
and in [26]. The basic idea is always the same: the points of the complex spectrum 
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shall arise from homomorphisms into complex fields. The difference between these 
approaches is the way different homomorphisms into complex fields are identified. 
proposition 9 shows that the identification used here is coarser than the one used 
in the references. 

3. Specializations in the complex spectrum. The complex spectrum is a sub- 
space of the valuation spectrum. Thus, for a, flESpecx(A), fl specializes a in 
Spec x(A) if and only if fl specializes a in Spev (A). All the results about specializa- 
tions in Spev (A) also apply to Spec x(A). In particular we mention that fie {a} im- 
plies supp (fl) Dsupp (a) and, if ( f :  A ~(C1, R1, i~)), (g: A-~(C~, R~, i,))E Spec x~ 
are representatives of a and t ,  then [f(a)[<-[f(b)[ implies [g(a)l<=[g(b)[ for all 
a, bEA. 

Since the elements of Spec x(A) are rather special valuations of A we can 
prove some results about specializations in Spec x(A) which go beyond those of 
chapter I, section 4. 

Proposition 12. Let flE{~} in Specx(A) and let ( f :  A-~(C~,R~,i~)), 
(g: A~(Cp, Rp, ip))ESpecx~ be representative of ~ and ft. I f  (W, V) is the 
smallest compatible valuation ring of C~ containing f(A) then supp(fl)=f-l(P), 
where P c W  is some prime ideal 

Proof. The set 

P = {xEWI3nEN 3aEsupp (/~): Ixl" ~ If(a)l} 

is a prime ideal of W. By definition, f (supp (fl))pP. On the other hand, suppose that 
f(a)EP, i.e., there are nEN and bEsupp(fl) such that [f(a)ln=lf(a")l<-lf(b)[. 
By proposition 1 26 this implies [g(a')l<=lg(b)l =0, i.e., g(a)=0.  [] 

Theorem 13. In Spec x(A) the specializations of a point form a chain. 

Proof. Let (f~: A~C~), fp: A--,Cp), (f~: A~C~) be representatives of a, t ,  
y in Specx~ and suppose that fl, yE{~'-'}. By proposition 12 supp(fl) and 
supp (V) are inverse images of prime ideals of W, where (W, V ) c  (C,, R,, i~) is 
the natural valuation ring. Thus supp (fl) and supp (7) are comparable. Ifsupp (fl) = 
supp (7) then corollary 1 23 shows that/~, ~ are comparable. 

Assume now that supp (fl)C~supp (7). It will be shown that ~E{#}. With the 
notation used in chapter I, section 4 We have the subgroups F~, c Fp, c F~ and the 
epimorphisms n~,: Fr~--F~, rcp,: Fp,~Fp of ordered groups. Let A~cF~,, Ap, cFp~ 
be the kernels of nr~ and np,. The convex subgroups of F, generated by A~, and 
A~, are denoted by [A~,], [Aa~]. From the defirfition it is clear that [Ar,]nFr,=A~ 
and [Ap,]c~Fp, =Ap,. The claim follows immediately if we can show that [Ap,] ~ [ATe]. 
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Since the convex subgroups [Ap,], [d~,] qz F~ are comparable it suffices to show that 

Pick some a~supp (y ) \ supp  (fl). Then f~(1 + a ) = f ~ ( 1 ) =  1 and If,(1 +a)lCAr,. 
Assume by way of  contradiction that [Ar~] c [Ap,]. Then also Ar, cAp, and we have 
[f~(1 +a)[EAp,. In the same way, 2a~supp (y ) \ supp  (fl) and If,(1 +2a)l~dy, cAp, .  
Writing fp(a)=ax+iaa2 with al, a2CRp we obtain 

1 = If , (1 + a)[ 2 : (1 +a1)2-} - a~, 

1 = Ifp(1 +2a)[ z = (1 +2al)Z+4a~.  

An easy computation shows that this implies a l = 0 = a 2 ,  i.e., fp (a )=0 ,  a con- 
tradiction. [] 

As immediate consequences of  theorem 13 we record: 

Corollary 14. I f  ~,/~Spec x(A) are not comparable with respect to specializa- 
tion then they have disjoint neighborhoods. 

Corollary 15. For any pro-constructible subset K c S p e c x ( A )  the space K max 
of  closed points is compact. 

Theorem 13 can be used to define a retraction r: Spec x(A)-+Spec x max (A): r(~) 
is the closed point of  {~}. It is easy to show that r is continuous (see the proof  of  
proposition I. 30). We will see now how r(c0 can be determined: Let 

( f :  A -~ C=)~Spec x~ 

be a representative of  ~. The smallest compatible valuation ring in C, containing 
f(A) is denoted by (W, V). Then 

g: A . i ,  W ~  W/Mw 

belongs to Specx~ (where W/Mw carries the induced complex structure). 

Proposition 16. ~a is the unique closed point in {~}. 

Proof. Obviously /~=%~{~} holds. Suppose that 7E{/~}- Since supp(7)D 
supp (//) holds trivially, proposition 12 and the definition of  g imply that supp (7)= 
supp (fl). By proposition 11 (a) we may assume that A is local with maximal ideal 
supp (/~). Then we have Fa~,=Fz,~,cF~, and Ap~,cA~, where Ap,, A~, are the kernels 
of  7rp, and nr," It suffices to prove that Ap,=A~ (since then /~=7). 

Assume by way of  contradiction that there is some a6 A* with I f(a)l~Ar~,\At~,,. 
Then If(a)l is not a 1-unit in V. Without loss of  generality we may assume that 
If(a)] >1. Then the interval 

(1 - I f ( a ) [ ,  I f ( a ) i -  1) c V  
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is not contained in My. Since {If(b)ll bEA*} is cofinal in V there is some bEA* 
such that If(2b)lE(1-l(f(a))l, I f (a) [ -1) ,  i.e., l<l+lf(2b)l<lf(a)l.  Write f(b) 
as bl+i~bz with bl, b2ER,. Replacing b by - b  if necessary we assume that 
bl=>0. Then 

1 < I f ( l+2b) l  ~- l+ l f (2b) l  < If(a)l. 

By choice of a and proposition I. 26, 

1 = [h(1)l ~: lh(l+2b)l  ~ [h(a)l = 1 

(where (h: A ~ C~) E Spec x ~ (A) is a representative of V). This implies [h (1 + 2b) l = 1. 
In the same way it can be shown that [h(1 +b)[--1. An easy computation yields 
h(b)=0. This is a contradiction since b was chosen in A*. [] 

4. An ultrafilter theorem for the complex spectrum. If  k is a field containing a 
square root o f  - 1  and A is a k-algebra and if ( f :  A~(C,R,i))ESpecx~ - 
has the property that C is archimedean over f(k) then it is an immediate consequence 
of proposition 16 that es is a closed point of  Spec x(A). 

In particular, let (C, R, i) be a complex field, A=C[al . . . . .  a,] a finitely 
generated C-algebra, We have the structural map ~o: C ~ A  and the functorial 
map ~o*: Spec x(A)-~Spec x(C). Let zE Spec x(C) be the canonical absolute value. 
The we denote q3*-~(• by Specxc(A). Let X be the scheme Spec(A) over C, 
X(C) the set of C-valued points of  X. Given xEX(C) we have the evaluation map 
x*: A~C: a~a(x), which belongs to Specx~ By e(x) we denote the cor- 
responding point of Specx(A). Since x*o~0: C~A--,C is the identity we even 
see that e (x) E Spec xc (A). By the above remark, e (x) in a closed point of Spec x(A), 
hence also of Specxc(A). So a map e: X(C)~Specx~a~(A) has been defined. 

Since X(C)is contained in  C"= R 2" the interval topology of  R defines a topology 
on X(C) which we call the strong topology. 

Theorem 17. e maps X(C) with the strong topology homeomorphically onto 
im (e) c Spec Xc (A). 

Proof. Firs t  we prove that e is injective: For xEX(C) let M x c A  be the maxi- 
mal ideal belonging to x. Then supp(e(x))=M~. If  x ~ y  then M~r and 
hence the supports of e(x) and e(y) are different. 

e is continuous: Let UcSpecxc(A)  be an open neighborhood of  e(x). We 
may assume that U= Uln; . .nUk,  where each U~ is an open set of  one of  the fol- 
lowing two forms: 

V = {~ESpecxc(A) lc~(a, b) ~- ~}, 

W = {eESpecxc(A)le(a, b) ~ 0} 
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with a, bEA. Since 

e-~(g) = {xE X(C) [ la(x)l > Ib(x)l > 0}, 

e-X(W) = {xEX(C)la(x)b(x) ~ 0} 

are both open it follows that e is continuous. 
Finally, e is open onto the image: x=(x~ . . . . .  x,)EX(C) has a neighborhood 

basis consisting of open polycylinders 

e(x,  e) : {y E X(C) I l y l -  Xll < ~ ~ ... ~ l y . -  x.l < s}. 

On the other hand 

{ 4 )}  U = aESpecxc(A)[ V/: ~(e, ax-xl )  =o~ or ~ , a l - x l -  =oo 

is open in Spec xc(A). Since e(P(x, 8))=im(e)c~U the proof is finished. [] 

In real algebraic geometry there is a natural correspondence between semi- 
algebraic subsets of an affine variety defined over a real dosed field and constructible 
subsets of the real spectrum of the coordinate ring ([8], section 5). Similar results 
can be established in the complex setting: 

Definition 18. Let e: X(C) ~Spec xc(A) be the embedding introduced above. 
A subset M c X ( C )  is complex if it is of the form e-X(K) with KcSpecxc(A)  
constructible. 

The main result about the connections between constructible subsets of 
Spec Xc(A) and complex subsets of X(C) is 

Theorem 19. The map K ~ e - I ( K )  from the set of  constructible subsets of  
Specxc(A) to the set of complex subsets of  X(C) is a bijection. 

Proof. It sutfices to show that e-l(K) is nonempty if K is nonempty. So, pick 
KcSpecxc(A)  constructible, K ~ b .  Let ~p: C[X1 .. . .  ,X ,]~A=C[al , . . . ,a , ]  be 
an epimorphism over C. Then ~p*(K)cSpecxcC[X1, ..., X,] is constructible. If e 
also denotes the embedding C"~SpecxcC[X~, ..., X,] it suffices to prove that 
~p*(K)c~e(C")~p. So we may assume that A=C[XI,  ..., X,]. With A we associate 
the real polynomial ring B= R[Y~, ..., Y,, Zx, ..., Z,] by separating the real and 
imaginary parts of the elements of A (cf. [9]; [15]): Replacing Xk by Yk+iZk for 
every aEA we obtain a(Yl+iZ~ . . . . .  Yn+iZ,)=b+ic with b, cEB. We call b the 
real part of a, c the imaginary part of a. To study the connections between A and B 
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more closely we look at the diagram 

B - ~  ~ B  
r ,  + izk ~--  x~ 

Since the  left-hand square is a push out every homomorphism B ~ R1 into a real 
closed field yields a unique homomorphism f |  B |174  over C into 
the complex field (Ra | C, RI, t | It follows from proposition 9 and the amal- 
gamation property of real closed fields ([24, Satz 3.22, Satz 4.7; [28], section 17) 
that, if g: B~R2 defines t h e  same element of Sper(B) as does f ,  then 
g|  B|174 defines the same element of Specxc(B| as does 
f |  So, we have def ineda map Sper(B)~--2*--~*Specxc(B| We show that 
a ,  is a morphism of spectral spaces: 

Pick a=a~ +ia2, b=bl +ib2~B| with al, a,~, b~, b~ER and consider the 
open constructible subsets 

V = {a~Specxc(B| b) = o~}, 

W = {c~Specxc(B| R C) la(a, b) ~ 0} 

of Spec xc(B@RC). If  f :  B-+R1 is a homomorphism into a real closed field then 
only if f(al+az) f(bl+b2) O. So, a , l ( V )  is open and constructible o~I| if and " ~ ~ > 2 2 > 

f (a  1 + a2)f(b ~ + b2) r O. This shows in Sper (B). Similarly, c~y| W if and only if 2 2 2 2 
that ~r,a(W) is also open and constructible in Sper (B). 

Composing the morplfisms a .  and z*: Specxc(B|  of spec- 
tral spaces we obtain a morphism r*a . :  Sper (B)-~Specxc(A). Considering R 2" as 
the subspace o f  R-valued points in Sper (B) (cf. [8], Section 5) we restrict z ' a .  to R ~". 
It is immediately clear from the definition that the image of (Yl . . . .  , y , ,  zi, ..,, z,)E R ~" 
under z ' a .  is (yl+iz~, ..., y,+iz,)EC". So r*a,  restricts to the usual identification 
of  C"= R 2". 

Now we return to the constructible subset KcSpecxc(A) .  We have shown 
that (z*a , ) - l (K)DSper(B)  is constructible. By the connections between con- 
structible subsets of Sper (B) and semi-algebraic ~ubsets of  R 2" (cf. [8], section 5) 
we know that R 2"n (z* o-,)-1 (K) r ~b. But then C"n K c  z* o', (R 2"c~(~* a , ) - I  (K)) r ~b. [] 

Corollary 20. I f  V is an affine C-variety with coordinate ring A then there is 
a b(iection between Spec xc(A) and the set ofultrafilters ofcornplex subsets of  V(C). 
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HI. Valuation spectrum and compactification 

After the preparations in the first two chapters now complex varieties will 
be compactified by using the valuation spectrum and the complex spectrum. In 
section 1 we describe the construction of the compactification. In section 2 the 
connections with the compactification of Morgan and Shalen ([22]) are established. 

In this entire chapter k c C  is a fixed subfield containing i, where i denotes 
a fixed square root of - 1 .  We consider a finitely generated integral k-algebra 
A=k[al, ..., an] and set B=A| The schemes Spec(A) and Spec(B) are 
denoted by X and Y, their C-valued points (over k and C) by X(C) and Y(C). 
The canonical absolute values k-~R -~ and C---R -~ given by x-~lxl determine 
points of Spec x(k) and Spec x(C) which are denoted by gk and gc- The can- 
onical homomorphisms k--,A, C~B  are denoted by Jk, Jc" The fibres of 
fk*: Specx(A)~Specx(k) and j~: Spec(B)-~Specx(C) over Uk and gc are de- 
noted by Specxk(A ) and Specxc(B ) (as in chapterlI). The canonical maps 
X(C)~Spec Xk(A), Y(C)-~Spec xc(B ) defined by evaluation at the points of X(C) 
and Y(C) are denoted by e. Zk, ZC are the trivial valuations in Spev (k), Spev (C). 

1. Compactification through the valuation spectrum 

Let q~: k-~C be the inclusion and ~k: k--,C another embedding with ff(i)=i.  
Suppose that ~k*: Specx(C)~Specx(k) maps u c to gk. Then for all aEk and all 
rEQ -~ we have: 

Xc(cp(a ), r) = Uk(a, r) = gc(~(a), r), 

Zc(~O(a)- 1, r) = uk(a- 1, r) = Uc(~O(a)- 1, r), 

Zc(q~(a)--i, r)= xk(a--i, r) = gc(~(a)--/ ,  r). 

This shows that q~ (a) and ff (a) lie at the same distance from 0, 1 and i. But then 
they must be the same. This proves 

Proposition 1. I f  ~k: k ~ C  is an embedding with ~ ( i ) = i  and ff*(uc)=x k then 
is the inclusion. 

By the same method one can prove 

Lemma 2. The map e: X(C)~Specxk(A) is injective. 

Proof If x, y~X(C), x ~ y  then there is some aEA with a(x)~a(y). Since 
a(x) and a(y) cannot lie at the same distance from all of 0, 1 and i it follows 
that e(x)(a,r)~e(y)(a,r) or e ( x ) ( a - l , r ) ~ e ( y ) ( a - l , r )  or e(x) (a- i , r )~  
e(y)(a-i ,r)  for some 0<=r~Q. Thus, e(x)~e(y). [] 
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In the valuation spectra Spev (A) and Spev (B) we consider the constructible 
subsets 

/Ca = {a~Spev(A)l~(a0, 1) =oo or . . .or  ,(a,, 1) =oo}, 

KR=  {~Spev(B)[ , (a0 ,  1) =~o or . . .or  cr 1) =oo} 

with a0=2 (of. chapter I, section 4). We set 

La = Spec Xk(A)c~Ka, LB = Spec xc(B)c~KB. 

By proposition 1 30 there are continuous retractions rA: La-~L~ ax, rB: LB-~L~ ax. 
Since Spec Xk (A) C Spev (A), Spec x c(B) ~ Spev (B) are pro-constructible subsets 
their closures consist of the specializations of  their points. Therefore rA, rB restrict 
to surjective maps 

ra: Specx~aX(A)-~L~ ax, rB: Specx~aX(B)-~ L~ ~ 

of compact spaces. 
We study the points of  L~a~: 

Proposition 3. Pick ~CSpecxk(A), ( f :  A~(C, R, i))~Spec x~ a represent- 
ative. Let (W, V) be the smallest compatible valuation ring of (C, R, i) containing 
f(A). Let 2: (W, V)~(W/Mw, V/My, i) be canonical. 

(a) I f  (W/Mw, V/M~,i) is arehimedean then rA(~ ) is given by 

(2f: A -- (W/Mw, V/M~, i)). 

(b) I f  (W/Mw, V/M,, i) is nonarehimedean then there is a largest nontrivial 
compatible valuation ring (W, V')c(W/Mw, V/Mv, i). Let w' : W/M~-~P be the 
corresponding Krull valuation. Then r a(o 0 has (w'2f: A ~ r )  as its representative. 

Proof. From the definitions it is clear that (2f: A-~(W]Mw, V/M~, i))C Spec x~ 
is the representative of a specialization of a. Moreover, axf restricts to xk on k. 
For, azf defines a specialization of xk on k with nontrivial value group. Since the 
value group ofxk is archimedean we see that gas induces xk on k, i.e., a~yC Spec xk(A). 
We may assume now that (C, R, i) is arcbJmedean over f(A). 

(a) If (C, R, i) is archimedean then ~ is closed in L a (theorem I. 31). 
(b) Suppose that (C, R, i) is nonarchimedean. There is some iE{1, ..., n} 

such that {[f(ai)l~ll~N} is cofinal in R. Let V ' c R  be the largest convex subring 
not containing [f(a~)[. Then (W'=V'[i], V') is the largest nontrivial compatible 
valuation ring. It has nontrivial archimedean value group F. Let w': C~/~ be 
the corresponding Krull valuation. Since w'([f(a~)[)>l in F it is clear that the 
valuation (w'f: A--,-C~ff) has nontrivial archimedean value group. So ~w,$ is 
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m 

closed in K a (theorem I. 31). By construction it is clear that ~,~,fE {~}. This proves 
that ~ , f= ra (~ ) .  [] 

Another description of L~ a• is contained in 

Proposition 4. L~max is the set of  closed points of ./k'*-I (zk," vk)nKa. 

Proof First let ~E L~ ax. Then ~ is a closed point of K a and (by continuity ofj~) 
belongs to A (zk, %)- Conversely, let c~ be a closed point of .,-1 
First suppose that j~(~)=u~, i.e., ~(2, 1)= co. Since ~ is closed in K a the value 
group of ~ is nontrivial archimedean. So we may Consider the associated valuation 
as a valuation v~: A~A(supp (~))-~R ~. This may be normalized so that v~(2)=2 
(because of ~(2, 1)=oo). This shows that A(supp (~))~R -~ is a n  archimedean 
valuation in the sense of [34], section 1-3. By the result of [34], sections I-7, 1-8 
there is an embedding A(supp (~))-*C such that the canonical absolute value of 
C restricts to the archimedean valuation of A(supp (~)). This shows that ~ is deter- 
mined by the homomorphism A~A(supp (c0)~(C, R, i) into the complex field C. 
By composition withjk we obtain an embedding ~: k ~ C  such that ~b*(Xc)=U ~. 
So ~ESpec xk(A ), and this proves that c~EL~ a~. 

Now suppose that jk(~)=Zk, i.e., ~(2, 1)=1. Let w~: A(supp(~))~F, be the 
Krull valuation determined by ~. By [17], section 4, there is a valuation preserving 
embedding A(supp (c0)-~C((/~,)) into a field of formal power series with its natural 
valuation (where C is an algebraically closed field of cardinality at least max {IAI, I C I} 
and ~ff~ is the divisible hull of ~)  such that the image of k ~ / ~ A ( s u p p  (~)) ~C((/~)) 
is contained in the subfield C. Let g: C ~ C  be an extension of k ~ C  (this exists 
by the cardinality assumption about C). If R c C  is a maximal real closed sub- 
field containing g(R) then (C, R, i) (with i=g(i)) is a complex field. Now (C((/~)), 
R((r~)), i) is a complex field as well. By construction (f :  A---A(supp (~))~(C((r~)), 
R((F,)),i))ESpecx~ defines ~yESpecxk(A ) and ~E a{~} (proposition 3). [] 

I f  xEX(C) then the value group of e(x)EKa is archimedean. Theorem 1 31 
m a x  shows that e(x) is  closed in K A. Therefore e maps X(C) into L A . 

Corollary 5 . . , - 1  max_. _ ~ax Jk (~ )nLa  - tm(e)--{~ELa t~(2, 1)=oo} and j~'*-l(z~)nL Amax= 
j*'a(Zk)c~K~a~= {c~EL~ a~ 1c~(2, 1) = l}. 

Proof The inclusions im(e)cj~-l(zk)nL~"~c{=EL~Xl~(2 , 1)=oo} are trivial. 
The proof of proposition 4 shows that ~zEL~ ax, ~(2, 1)= co implies =Eim(e). 

The other statement is clear from proposition 4. [] 

m a x  m a x  All the results proved so far for L~ are also true for Ln . Just set k=C.  

Theorem6. e maps X(C) homeomorphicatty onto the dense open subspace 
{~1~(2, 1)= o~}cZ~ "x. 
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Proof. e is injective by lemma 2. Continuity of e is proved exactly as in the 
proof of theorem II 17. To show that e: X(C)~im(e)  is open we note that x~X(C)  
has a neighborhood basis consisting of open polycylinders 

P(x, 8) = {yrX(C)  i l y l -x l [  < ~ &.. .  & [y , -x , [  < e} 

with 0<eCQ. The same argument as in the proof of theorem II 17 shows that 
e(P(x,  ~)) is open in ira(e). The image of e has been determined in corollary 5. 

It remains to be shown that ira(e) is dense in L~ "~. First note that e(Y(C)) is 
dense in L~ ~X. This follows from continuity of r B (proposition 1 30) and from theo- 
rem II 19. If j :  A ~ B  denotes the canonical homomorphism then j induces a 
morphism j*: KB~KA which restricts to Specxc(B)~Specxk(A ), hence also to 
LB~La  and (by theorem 1 31) to L~ax~L~ ~X. This map is also denoted by j*. 
The canonical morphism Y ~ X  of schemes yields a map Y(C)-~X(C) which is 
also denoted by j*. This is continuous and the diagram 

Y(c)  J* . x ( c )  

L ~ . x  J* , L ~  ~X 

commutes. To prove that e(X(C)) is dense in L~ ax it suffices to show that 
j*. max max max s ~L a is surjective. So pick ~EL A . 

First suppose that ~(2, I)=o% i.e., ~=e(x) for some xEX(C). With the 
evaluation map x*: A~C: a-~a(x) we have the commutative square 

k Jk -~ .,4 

C = ~-C 

(cf. proposition 1). This yields a homomorphism f :  B-~C such that x*=f j  and 
idc=fj  c. Therefore (f(a~) . . . . .  f (a , ) )= E Y(C) and j*( f (a~) , . . . , f (a , ) )=x.  

Now suppose that a(2, 1)=1, i.e., a~K~ aX and jk*(~)=Tk. ~ is defined by a 
Krull valuation v: A(supp (~))*-~F. As in the proof of proposition 4, the valued 
field (A(supp (~)), v) is embedded into a formal power series field C((/~)) with its 
natural valuation ([17], section 4). Again,/~ is the divisible hull of F and C is alge- 
braically closed, ICl-~lCI. We may assume that the image of k ~ A ~ A ( s u p p  (~))~ 
C((/~)) is contained in C. By the cardinality hypothesis, k--,C can be extended to 
C---C. The commutative diagram 

k ~A 

c ccc((r)) 
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yields a homomorphism (f :  B-+C((/~')))ESpev ~ (B) such that 

A J ,B 

",, /S 
c((r)) 

commutes. By construction we have ~IEK~ "x (cf. theorem I 31) and ]~(ei)=~c. 
corollary 5 shows that e:EL~ ax. Since j * ( e / )=e  by construction, the claim is 
proved. [] 

It is a consequence of theorem 6 that L~ ax is a compactification of X(C). 
This compactification will be related to the Morgan--Shalen compactification in 
the next section. 

2. The Morgan--Shalen compactification. First the construction of Morgan and 
Shalen ([22]) is briefly recalled: 

The space X(C) is locally compact. So X(C) has a one point compactification 
X(C)+=X(C)u{+}.  Let 7": X(C)-~X(C) + be the inclusion. 

Pick a subset ~ c A  generating A over k. A map 0": X(C)~(li~-) ~ is defined 
by x~Oog (If(x)l+2)):~ ~. The group R" operates on (R>)g~,,{0} by s ( r ( f ) : ~ ) =  
(sr(f))I~ ~. The set of equivalence classes is denoted by ~(~) ,  the canonical map 
(li-~)~,{0}--~(~) by p(~). (Re) ~ is equipped with the product topology, ~ (~)  
with the quotient topology. The map 0: X ( C ) ~ ( ~ )  is defined to be the com- 
position p(~)O'. This map is continuous and has compact.image ([22], proposi- 
tion 1 3.1). 

The two maps j :  X(C)-+X(C) + and 0: X(C)-+~(~) together define the 
continuous map (j,  0): X(C)--,-X(C)+• If the range of (j,  0) is restricted 
to the closure X of im(j, O) then the resulting map X(C)--,.X is denoted by ~/. 

is compact and r/maps X homeomorphically onto r/(X) ([22], p. 415), so ~" is a 
compactification of X. If p: 2 - -X(C)+•  + is the projection then 
2=r / (X)uB with B = p - ' ( + ) .  B can be considered as a subspace of ~3(~), To 
study these additional points in the compactification the valuation theory of the 
quotient field K of A is used: 

The abstract Riemann surface of K over k is denoted by S=S(K/k) ([35], 
Chapter VI, w 17). Let SocS  be the set of valuation rings V maximal with the 
property that A~V.  If v: K*--,-A~ is the valuation corresponding t o  VES0 
then there is a smallest nontrivial convex subgroup A'~cA~ and for all aCA, a~O 
one has v(a)~l  or v(a)CA',,. There is some fC~ with v(f)=>l -. By Htlder's 
theorem ([12], p. 74, Satz 1; [25], p. 8, Satz 4) the archimedean group A~ can and 
will be considered as a subgroup of R >. This is unique only up to a positive exponent. 
A map U': S0--(R-~)~'x,{0} is defined by v-+(log(max {1, v(f)}))i~ ~. Composi- 
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tion withp(~) gives U: So-*~(~) ([22], p. 416). U is continuous ([22], theorem 1 3.4) 
and maps So onto B ([22], theorem I 3.6). 

This last result means that the Morgan--Shalen compactification is obtained 
by putting two spaces together, namely the space X(C) and the space So of Kr~ll 
valuations. In [16] it is a nontrivial problem to put these spaces together. This is 
done by using certain sequences in X(C), called valuating and pre-valuating sequences. 
In the present paper both X(C) and So belong to the valuation spectrum of A. It 
wiU be shown now that the valuation spectrum can be used to construct the com- 
pactification of Morgan and Shalen. In this way at least the problem of putting the 
spaces X(C) and So together vanishes completely. 

The homomorphism k-~K induces a morphism Spev (K)~Spev (k) of valua- 
tion spectra. By Spev (K/k) we denote the fibre of this morphism over the trivial 
valuation of k. As a set this agrees with the abstract Riemann surface S(K/k) ([22], 
Chapter VI, w 17). However the topologies are different. Let Z1 be the topology 
induced on So by Spev (K/k), Z2 the topology induced by S(K/k). It is shown 
in [22], 1emma I 3.3 that (So, Z2)-~(So, Z1) is continuous. 

S0-- U"~=I {~E Spev (K/k)l~(ai, 1) = ~} 

is open and constructible in Spev (K]k), So is the set of closed points of Sg. Corol- 
lary 1 29 shows that (So, Z1) is a compact space. 

Let j:  A ~ K  be the canonical injection. Then by functoriality there is the map 
Spev (K) ~ Spev (.4) which is an isomorphism onto {~ESpev (A)[supp (~t)=(0)} 
(corollary I 12). Therefore j* (So)cSpev (.4) is a compact subspace which we iden- 
tify with So. By definition of So, SocKa. If r: Ka~K~ ax is the retraction of 
proposition I 30 then r(So)~K~ ~ is denoted by $1. If ~ES1 then jk*(~t)=Zk 
(since the Krull valuations in So are trivial on k). So we see that S~Cj~-~(~k)nL~ a~ 
(corollary 5). Conversely, if ~Ej~'-l(zk)nL~ a~ then ct is determined by a homo- 
morphism f :  A ~ F ,  where F is a field with Krull valuation v: F*~F over k, 
F an archimedean ordered group. Moreover, vf(ai)>l for some iE {1 . . . .  , n}. The 
valued field F can be embedded into a formal power series field C((/~)) with its 
natural valuation (C an algebraically closed field, r the divisible hull of F). The 
homomorphism A f ,  FcC((~)) extends to a place K--2*C((P))u{=} ([13], 
chap. 6, w 2 no. 4, proposition 3). Let VxcK be the corresponding valuation ring, 
VocV ~ the inverse image of the natural valuation ring of C((i~)). Since ff is archi- 
medean there are no valuation rings between Vo and V~. By construction we have 
A0zV0, AcV~. This proves that VoES0. Let ~o be the corresponding point of Ka. 
Then it is clear that r(~0)=~. We have proved 

Proposition 7. I f  we identify X(C) with {ctlct(2, 1)= oo}cL~ ax (theorem 6) 
then X(C)=j~-~(~tk)nL~ a~, Sl=j~-l('ck)t~L~ ax and L~a~= X(C)wS1. 
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As before we choose subset ~ c  A generating A over k. We will now define a 
continuous map L ~ x ~ x ( c ) + x  ~3(~) whose image is exactly the compactification 
of Morgan and Shalen. The definition is done componentwise: 

First 21: L ~ x ~ x ( c ) +  is defined by 21[X(C)=id, 21(~)=+ for ~X(C) .  
This is clearly continuous. 

If ctEL~ ~ let v,: A ~ R  -~ be the corresponding valuation (note that the value 
group is archimedean), v, is unique only up to a positive exponent. If ctEX(C) 
then we can normalize v, such that v,(2)=2. But if ~ES~ then there is no natural 
normalization for v,. So for the time being we do not normalize at all. We define 

~,. L],~ -~ (R-~)~,,{0} 

~(log ( % ( f ) + 2 ) ) s ~  if 

-~/0og(max {1, ~(f)}))s~ if 
is defined to be 

~ES~. 

p(~)2~. At this point it becomes obvious why 
the space ~3(~) has to be used: lacking a canonical way to normalize the Krull 
valuations v~ (eES1) we have chosen them arbitrary. So 2~ cannot be expected to 
be continuous. Composition of 20' with p(~) makes the construction canonical. 
For, different choices v, and v~ (sER >) for the Krull valuation associated with 
yield the same point 

p (~)(log (max { 1, .v~ (f)})y ~ ~) = p (~)(s(log (max { 1, % (f)}))I ~ g) 

in ~(~).  
Together 21 and 2~ yield the map 

2 = (;~1, &):  L~ ~ -~ x ( c ) +  x ~ ( i ~ ) .  

The restriction 2IX(C) agrees with the map i: X(C)-~X(C)+• of Morgan 
and Shalen ([22], p. 415). The composition So "'SlcL~a~--L'~X(C)+X~(~) 
agrees with the map U: So--,-{+}•215 of Morgan and Shalen 
([22], p. 416). So it has already been shown that 2 maps L~ ~ onto the compactifica- 
tion of Morgan and Shalen. Of course 2 can play a reasonable role only if it is con- 
tinuous. This will be proved now: 

We noted above that 21 is continuous. It remains to consider 42. If ~ c A  is 
another subset containing ~ then v~: L~a~(R-~) ~ and v2=p(~")v~ are defined 
exactly as 2~ and 25. The commutative diagram 

, (R-~)~ r(r 

\ (R-~) ~ ~ , ~(i~) 
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(with pr the canonical projections) shows that it suffices to prove that vz is con, 
tinuous. Therefore we assume now that,  ~ = A  and prove that 2 is continuous in 
this case. 

For every i=0 ,  ..., n the subsets 

U, = {(r(f))lr(a~) > r(a,)} : (R-~) ~, 

v, = p (~6) (u3  = ~ 06) 

are open. By definition of  2~:we have 

Wi = 2 ~ - 1 ( ~ ) =  ~ - l ( U i )  : {~EL~"I ~(ai, 1) ~- oo} 

which is a n  open subset of  L~ aX. We must prove that the restriction 22,~: Wi~Vi 
is ContinuOus for all i=0 ,  ..., n. Since W0=X(C) it is immediately clear from the 
definition that 22,0 is continuous. So suppose that l~_i<=n. For ~EW i now we 
normalize v, such that log (v , (a~)+2)=l  if c~EX(C) and log (v , (a3)=l  if ~ES~. 
As explained above, 2~, ~ is not affected by this normalization at all. However 

, . ~(log(v,(a)+2))ar if ~EX(C) 
,22,,, W~-~ U,: ~ -~ [(log (max {1, v~(a)}))o~ if c~ESa 

is now continuous: To prove this we fix some aE ~ and show that 

�9 . ~log(v,(a)+2) if ~EX(C) 
22,,,a. Wi ~ R=~: ~ ~ Hog(max {1, v,(a)}) if ~ESx 

is continuous. 
If  aEX(C) then continuity at a is clear since v.(a) is la(a)] up to a positive 

exponent.-So suppose that aEW~nS~. I f  22;i.o(a)<r for some rER > then there 
is a neighborhood WcW~ of  a such that f lEW implies 2,,,,a(fl)<r. To see this 

�9 t pick sE (2,, f, ~ (a), r ) n Q  and write s=~- with t, uEN. If  we define 

then-  

u2~.,,~(~) = log (max {1, v,(a")}) = log (max {1, v~(2a)'}) < log (v~(a~)) = t  

implies that ~EWt, u. Clearly, Wt,. is open. If  flEWt,.nS~ then an easy computa- 
tion shows that 2Z, i,~(fl)<s. F ina l ly  we have to deal with ~EW~,~nX(C). We set 

W,~. = {/~EW,,. I/~(a~, 4") =oo}. 

Since ~E S~ we know that v, is a Krull valuation over k and hence W,,~ is an open 
neighborhood of  ~. If  flEW(,nX(C) is such that M(fl)[=>2 then 

(la(,e)l +2)" ~_ 12a(/~)l" < lai(/OI < (la~(B)t+2)'. 
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If /~EW~;,nX(C) is such that laffl)l<2 then 

(la(/~)l +2" < 4" <_- I~(/~)l <= ([a,(/~)l+2)'. 

In any event we have 
u2~.,.o(fl) = log ((ia(/~)l +2)') 

< log ((la,(/~)l +2)') = t, 
and ;t~,i.o(/~)<s for all /~EWt~,. 

Similar computations show that there is an open neighborhood W c ~  of 
with 2~,,,o(W)c(r, ~) if 2~,/,,(a)>r for rER >. 

We see that, for every aE~, 2~,~,o is continuous. This implies continuity of 2~.~. 
Finally 2, is continuous. We have proved 

Theorem 8. The Morgan--Shalen compactification of  X(C) is a continuous image 
of  the compactification L~ ax of  X(C). 

In general the Morgan--Shalen compactification is a proper image of L~ ~. 
However there is one case in which L~ ~ is actually equal to the Morgan--Shalen 
compactification: 

Theorem 9. I f  ~ = A then the continuous map 2: L ~  X ( C) + • ~3 (~) is a homeo- 
morphism onto the Morgan--Shalen compactification. 

Proof. We only have to prove that 2 is injective. Pick ~, pEL~ = with ~ .  
If u,/~EX(C) then ).(~)=(ct, A~(~))#(/~,A~(fl))=2(fl). If aEX(C), tiES1 then 

Finally suppose that u, flESx. Assume by way of contradiction that 2(~)= 
A(fl). Then v~(a)=O if and only if va(a)=O, i.e., supp(ct)=supp(fl). Suppose 
that ~EW/ (notation as in the proof of theorem 8). Then 22(~)=22(fl) implies 

(log (v~(a,)) = log (max {1, v~(a,)}): log (v,(1)) = O) 

= (log (max {1, vp(a,)}: log (v~(1)) = 0). 

Since log (v.(ai))>0 we see that log (max {1, vp(ai)}>O). This is possible only if 
va(a,)>l, i.e., fl(a~, 1)=~.  

As in the proof of theorem 8 we now assume that v~ and vp are normalized 
such that log (v~(a~))= 1 =log (vp(a~)). Now pick aEA\supp  (~). If v~(a)>l then 

(log (max {1, v~(a)}): log (v~(1)) = 0) = (log (max {1, vp(a)}): log (vp(1)) = 0) 

implies that log(max {1, vp(a)})>O, which is possible only if va(a)>l. Since ~t 
and fl have been normalized the equality ;t~ (~) = 2~ (fl) implies v~ (a) = va (a). Now 
assume that v~(a)<_-l. Then (with p, qEN)log(v~(a~))>O if and only if 
plog(o , (a ) )>-q ,  i.e., if and only if log(v,(a))>--~.  Since ~=A,  2,(~t) deter- 
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mines the set 
D~(a) = {(p, q )CN•  Ilog (v~(aP~)) > 0}. 

So 2~(ct) also determines 

log(v~(a,) = s u p { - q [ ( p ,  q, ED(a)}. 

The same also holds with fl instead of ~. Because of  23 (ct) = 2~ (fl) we see that D~ (a) = 
D# (a). This proves that v~ (a) = v# (a). 

Finally, ff a, bCA\supp  (ct) then it has been shown that o~(a)=v#(a) and 
v~(b)=v#(b). This implies that ct(a, b)=p(a, b). [] 
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