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Deficient rational functions and 
Ahlfors's theory of covering surfaces 

Andreas Sauer 

A b s t r a c t .  We prove a second fundamenta l  theorem in the  sense of Nevanl inna 's  theory 
of meromorphic  functions replacing the  cons tants  a in .N(r, f ,  a) by rat ional  functions R with  
R(cc)=a. The  key argument  is Ahlfors 's  second fundamenta l  theorem from his theory of covering 
surfaces. 

1. I n t r o d u c t i o n  

The central result in Nevanlinna's theory of meromorphic functions in the plane 
is his second fundamental theorem 

q 

(1) (q- 2)T(r, f) <_ ~ N(r, f -ak, O) + S(r, f), 
k=l  

where the ak are distinct points on the sphere. (From now on we assume that  the 
case a k=e c  is interpreted in an appropriate manner.) For notation and results of 
this theory we refer to [H], [N] and [Y]. 

Many efforts have been made to generalize this theorem in the sense that  the 
constants ak in (1) can be replaced by so called small meromorphic functions, i.e. 
meromorphic functions with T(r, ak)=o(T(r, f)). The first theorem of this type 
was proved by R. Nevanlinna for the case q=3 using a M6bius transformation 
which makes it possible to apply (1). The development culminated in Steinmetz's 
theorem IS]: 

q 

(2) ( q - 2 - c ) T ( r ,  f) << E N(r, f -ak, O)+ S(r, f) 
k--1 

for distinct small functions ak. An independent proof was given by Osgood [02]. 
Earlier this was proved for rational functions ak by Frank and Weissenborn [FW]. 
For the history of these questions and a proof of (2) we refer to [Y]. 
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I t  is an open question whether (2) holds if N is replaced by N. If  this was true 

it would have interesting consequences, e.g. Nevanlinna's theorem on five shared 
values would carry over to the "small function case". 

In this note we will not t reat  the case of arbi t rary small functions. We consider 
a simpler situation, namely we replace the constants ak in (1) by rational functions 
Rk with Rk(oc)=ak .  It  turns out tha t  (1) is true in this case. Therefore the usual 
corollaries of (1) remain valid. We will give no proofs for these corollaries. Keeping 
in mind that  rational functions have only finitely many poles the classical proofs 
for constants ak work without any changes. 

2. R e s u l t s  

2.1. T h e o r e m .  Let f be a transcendental meromorphic function in the plane 
and Rk be rational functions with distinct values at oc. Then 

q 

(3) (q- 2)T(r, f) <_ ~ N(r, f - Rk, O)+ S(r, f). 
h--1  

We admit  tha t  Theorem 2.1 is almost a direct consequence of Ahlfors's theory 
of covering surfaces (see [A], [H] and [N]). Nonetheless, it seems to us that  the simple 
combination of Ahlfors's second fundamental  theorem and Rouch~'s theorem is an 
interesting argument.  It  can certainly be applied in various situations. Further 
the s ta tement  seems to be unknown and could be of some value for applications. 
Probably ore" method cannot handle the case when many Rk have the same value 
at oc. Note that  the error te rm in (3) is a bit worse than the original S(r, f) in (1). 
See [M] for details. We remark tha t  Osgood proved in [O1] that  a transcendental 
meromorphic function can have at most four completely ramified small functions, 
pointing in the stone direction. 

Proof of Theorem 2.1. Let ak :=Ra(oc) .  Without  loss of generality we can 
assume tha t  all ak are finite. Indeed, considering 1~(f-c) and 1/ (Rk--e)  with 
suitable e E C  will cause no problems in the following reasoning. Choose disks Dk 
around the ak with disjoint closures. According to Ahlfors's second fundamental  
theorem it holds 

q 

(4) (q- 2)A(r, f) ~ ~ fi(r, f, Dk ) +O(L(r, f) ). 
k = l  

An easy application of Rouch6's theorem shows that ,  except for finitely many, all 
islands of f over Dk contain a zero of f--Rk, i.e. n(r, f, Dk)<n(r, f - R k ,  0)+O(1) .  
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Combining this with (4) and logarithmic integration yields the result. The state- 
ment about the error term follows from the result of Miles [M] concerning the 
logarithmic integration of L(r, f).  [] 

It is natural to introduce 

(s) 

for small functions a. 

E 

ON(f,a):=liminf(1,._~ N ( r , f  -a,O) 

2.2. Corol lary.  Let f be a transcendental meromorphic function and R~ be a 
family of rational functions with Ra(OO)=a, aEC. Then 

ON(f, Ra) < 2. 

2.3. Corollary.  Let f be a transcendental meromorphic function. The set 
of values aEC such that there exists a rational function with Ra(oc)=a and 
ON(f, Ra)>0 is at most countable. 

For a E C let N(r, f, D:  (a)) be the logarithmically integrated counting flmction 
of islands of f over D:(a) :={z: l z -a l<s  } (with obvious modification for a=:xD). 
We define for a G C, 

/ N(r_, f, D~ (a)) ) OA (f, a, : ) : =  lim inf { 1L 
~--+oo ,, T(r, f )  /t 

and 

(6) OA(f, a) := lim OA(f, a, ~). 
:--+0 

Inequality (4) gives E a c e  OA(f, a)<2, hence OA(f, a)>0 for at most countably 

many aE C. Prom fi(r, f, a)_>n(r, f, D~ (a)) it follows ON(f, a)_< On (f, a). Strict 
inequality is possible as f (z):=e z - 1 / z  shows. One easily checks ON(f, 0)=0 and 
On(f,  0)=1. Considering f~(z):=e z-c~/z shows that a generalized defect relation 
for On does not hold since ~ e c  Oa(f~,0)  diverges. On the other hand @x in 
Corollary 2.2 can be replaced by On. 

The same argumentation as in the proof of Theorem 2.1 shows that the count- 
able set in Corollary 2.3 is contained in the countable set of all aGC with OA(f, a) > 
0. By the above example strict inclusion is possible. 
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2.4. T h e o r e m .  Let f be a transcendental meromorphic function and a6C 
with OA(f,a)=O. Then ON(f, Ra)=O for all rational functions Ra with R~(oc)=a .  

We conclude: If  f has no deficient value in the sense of (6) then f has no 
deficient rational function in the sense of (5). 

It  is known that  two transcendental  meromorphic functions tha t  share seven 

small functions are identical [T] and tha t  for entire functions seven can be replaced 
by four (even in C n) [L]. From Theorem 2.1 we obtain the following result. 

2.5. C o r o l l a r y .  Let f and g be transcendental meromorphic functions that 
share five rational functions with distinct values at oo then f =g. 

We denote by N1) the counting function of simple zeros. A well-known variation 
of (1) also carries over to our situation. 

2.6. T h e o r e m .  Let f be a transcendental meromorphic function in the plane 
and Rk be rational functions with distinct values at ~ .  Then 

q 

(q--4)T(r, f )  <_ Z N1)(r, f --Rk, O)+ S(r, f). 
k=l  

Proof. The proof is almost the same as for Theorem 2.1. Instead of (4) we use 

q 

(q-4)A(r, f )  <_ Z us(r, f ,  Dk)+O(L(r, f )  ), 
k=l  

where ns is the counting function of sehlicht islands. The zeros obtained from 
RouchS's theorem in sehlicht islands are simple. [] 

We therefore have the following generalization of the theorem on the number 
of completely ramified values. 

2.7. C o r o l l a r y .  Let f be a transcendental meromoTwhic function and Ra be 
a family of rational functions with Ra(C~)=a, aCC. Then, except for possibly four 
a-values, the equation f=Ra  has infinitely many simple roots. 

R e f e r e n c e s  

[A] AHLFORS, L. V., Zur Theorie der lYberlagerungsfl~chen, Acta Math. 65 (1935), 
15~194. 

[FW] FRANK, G. and WEISSENBORN, G.,  Rational deficient functions of mer.omorphic 
functions, Bull. London Math. Soc. 18 (1986), 29 33. 

[H] HAYMAN, W. K., Meromorphic Functions, Oxford University Press, Oxford, 1964. 



Deficient rational functions and Ahlfors's theory of covering surfaces 155 

[L] LI, B. Q., Uniqueness of entire functions sharing four small functions, Amer. J. 
Math. 119 (1997), 841-858. 

[M] MILES, J., A note on Ahlfors' theory of covering surfaces, Proc. Amer. Math. Soc. 
21 (1969), 30-32. 

[N] NEVANLINNA, R., Eindeutige analytische Funktionen, 2nd ed., Springer-Verlag, Ber- 
lin, 1953. English transl.: Analytic Functions, Springer-Verlag, Berlin, 1970. 

[O1] OSGOOD, C. F., Extending Nevanlinna's ramification results, in Factorization The- 
ory of Meromorphic Functions and Related Topics (Yang, C. C., ed.). Lecture 
Notes in Pure and Appl. Math. 78, pp. 83-93, Marcel Dekker, New York, 
1982. 

[02] OSGOOD, C. F., Sometimes effective Thue-Siegel-Roth Schmidt-Nevanlinna 
bounds, or better, J. Number Theory 21 (1985), 347-389. 

[S] STEINMETZ~ N., Eine Verallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, 
J. Reine Angew. Math. 368 (1986), 134-141. 

IT] TODA, N., Some generalizations of the unicity theorem of Nevanlinna, Proc. Japan 
Acad. Ser. A Math. Sci. 69 (1993), 61 65. 

[Y] YANG, L., Value Distribution Theory, Springer-Verlag, Berlin, 1993. 

Received August 20, 1999 Andreas Sauer 
Gerhard Mercator Universitgt 
Fachbereich 11 Mathematik 
Lotharstrafie 65 
DE-47057 Duisburg 
Germany 
emaih sauer~math.uni-duisburg.de 


