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Level sets of harmonic functions 
on the Sierpifiski gasket 

A n d e r s  C)berg(1) ,  R o b e r t  S. S t r i c h a r t z ( 2 )  a n d  A n d r e w  Q.  Y i n g s t ( 3 )  

A b s t r a c t .  We give a detailed description of nonconstant  harmonic functions and their level 
sets on the Sierpifiski gasket. We introduce a parameter,  called eccentricity, which classifies these 
functions up to affine transformations h~---~ah+b. We describe three (presumably) distinct measures 
tha t  describe how the eccentricities are distributed in the limit as we subdivide the gasket into 
smaller copies (cells) and restrict the harmonic function to the small cells. One measure simply 
counts the number  of small cells with eccentricity in a specified range. One counts the contribution 
to the total  energy coming from those cells. And one counts just  those cells tha t  intersect a fixed 
generic level set. The last measure yields a formula for the box dimension of a generic level set. 
All three measures are defined by invariance equations with respect to the same iterated function 
system, but  with different weights. We also give a construction for a rectifiable curve containing 
a given level set. We exhibit examples where the curve has infinite winding number with respect 
to some points. 

1.  I n t r o d u c t i o n  

Interesting geometric objects may be described as solutions of equations. T h i s  

i n s i g h t ,  w h i c h  a l r e a d y  a p p e a r s  in  t h e  c o n c e p t  o f  " locus"  in  G r e e k  g e o m e t r y ,  a n d  

w h i c h  b e c a m e  t h e  c e n t r a l  i d e a  in  D e s c a r t e s '  g e o m e t r y ,  c u l m i n a t e d  in  a p r e c i s e  f o r m  

in  t h e  i m p l i c i t  f u n c t i o n  t h e o r e m .  

W h e n  we c o n s i d e r  t h e  r e a l m  of  f r a c t a l s ,  n o  s u c h  a n a l o g o u s  r e s u l t  p r e s e n t s  i tself .  

I n d e e d ,  i t  is n o t  a t  al l  c l e a r  w h a t  s h o u l d  b e  c o n s i d e r e d  t h e  i n t e r e s t i n g  g e o m e t r i c  

s u b s e t s  of  a g i v e n  f r a c t a l .  O n  t h e  o t h e r  h a n d ,  a t  l e a s t  for  c e r t a i n  f r a c t a l s ,  we h a v e  a n  

i d e a  o f  s o m e  n a t u r a l  c l a s ses  o f  f u n c t i o n s  t h a t  a r e  a n a l o g o u s  t o  S m o o t h  f u n c t i o n s  o n  
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Euclidean space or manifolds. So we can begin to explore this problem by trying to 
understand the properties of the level sets of these functions. If the implicit function 
theorem is any guide, not all the level sets should be equally nice, but perhaps a 
"generic" level set will be a candidate for a class of "interesting geometric subsets". 

In this work we deal with only the simplest case: nonconstant harmonic func- 
tions on the Sierpifiski gasket, as described in Kigami [K1]. These functions are 
perhaps more closely analogous to linear functions on an interval rather than har- 
monic functions on a multi-dimensional domain. They satisfy a simple local inter- 
polation identity which lends itself both to numerical computations and theoretical 
work (see [DSV] for some examples). The space of harmonic functions is three- 
dimensional, but by composing on the right with an isometry of the Sierpifiski 
gasket, and on the left with an affine mapping, which does not change the level 
sets, we can reduce to a one-parameter family of harmonic functions. We refer to 
the parameter as eccentricity. 

We give next a description of these harmonic functions. The Sierpifiski gasket 
SG is the invariant set for the iterated function system in the plane given by 

(1.1) Fix=l(x-p~)+pi,  i =  1,2,3, 

where Pi are the vertices of an equilateral triangle. We regard SG as the limit of 
the graphs Fm with vertices Vm and edge relations x~my defined inductively as 
follows. Let F0 be the complete graph on Vo={pl,p2,Pa}. Then V,~=[.JiF~Vm-1 
with x~my if and only if there exists i such that  x=Fix ~, y=Fiy ~ and x ~ , ~ - l y  ~. 
Note that  Vm-1 C Vm. We regard V0 as the boundary of SG and each of the graphs 
Fro, so that  Vm\Vo consists of all nonboundary vertices in Fro. Note that  every such 
vertex has exactly four neighbors in Vm (since it belongs to Vm, for every m~>m, it 
also has exactly four neighbors in Vm,, but the set of neighbors changes with m~). 

A function on Vm is said to be harmonic if for every nonboundary vertex its 
value is the average of its values at the four neighbors, 

1 
(1.2) h ( x ) = ~  ~ h(y). 

y ~ m x  

This is a standard definition from graph theory (assuming equal weights on all 
edges). It is necessary to exclude boundary vertices in order to have nonconstant 
harmonic functions. It is not hard to show that  every harmonic function on Vm-1 
(no condition imposed when m ~ l )  has a unique harmonic extension to Vm, given 
by the following local harmonic extension algorithm: 

(1.3) h(x) = lh(w), 
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where xEVm\Vm-1, where y and z are the two neighbors of x in Vm that  belong 
to Vm-1, and w is the third vertex of the triangle in Vm-1 tha t  contains y and z. 
In fact it is trivial to show from (1.3) tha t  h satisfies (1.2) at  the new vertices 
Vm\Vm-1, but then one needs to show that  condition (1.2) continues to hold for 

the old vertices Vm-I\Vo on level m, using the assumption tha t  it holds on level 
m - 1  together with (1.3). 

A continuous function h on SG is said to be harmonic if its restriction to Vm 
is harmonic for all m. If we assign any boundary values h(pj), then applying the 
extension algorithm (1.3) inductively we can determine the values of h on tim, and 
since Um Vm is dense in SG, this determines h (it is not hard to see tha t  (1.3) always 
produces continuous functions in the limit). Thus the space of harmonic functions 
is three-dimensional, and contains the constants. For any nonconstant harmonic 
function we may relabel the vertices so that  h(pl) <_ h(p2) _< h(p3) with h(pl) < h(p3). 
This amounts  to composing h on the right with an isometry of SG. We define the 
eccentricity e(h) by 

(1.4) e(h) -h(p2)-h(p l )  0 < e ( h ) < l .  
h(pa)-h(pl)' - - 

By composing on the left with an affine function (which leaves the eccentricity 

unchanged) we may assume without loss of generality that  h(pl)=O, h(p2)--e, 
h(p3)--1. Also note that  e(1-h)=l-e(h) ,  so that  harmonic functions with eccen- 
tricities e and 1 - e  are essentially equivalent. Thus we could impose the restriction 
0 < e <  1 5, if desired. 

The  theory of harmonic functions on SG is par t  of a more general theory tha t  
includes a Laplacian A, so that  h is harmonic if and only if Ah=0 .  For the most 
part  we will not refer to this more general theory here (see the books [Ba] and [K4] 
and the references there, as well as the expository article [S1]). We will need the 
concept of energy, which for harmonic functions is easily explained. Let 

z z 
yEVm x ~ m y  

For harmonic functions, Cm(h, h) is independent of rn, and is called the energy. 
The mysterious renormalization factor (5) m in (1.5) is explained by this condition. 

Kusuoka has shown that  there is a measure uh associated with the energy so tha t  
the energy is the measure of the whole SG, but this measure is singular with respect 
to the normalized Hausdorff measure on SG (see [Ku] or [BST]). In fact one can 

already see in (1.5) how the energy is made up of a sum of contributions from the 
various small triangles of level m in SG. 
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The first problem we consider is the description of the self-similarity of the 
harmonic functions, or more precisely, the whole family of harmonic functions. For 
a fixed harmonic function h, we may restrict to each of the level one cells Fi(SG) and 
rescale to obtain three harmonic functions hoF~. But these are different harmonic 
functions with different eccentricities. In fact there are three explicit functions r 
such that  

(1.6) e(hoFi) = Ce (e(h)). 

The mapping i~--~i I is a permutat ion that  depends on the orientation of vertices for 

which h(pl)~h(p2)~_ h(p3). More generally, on level m we may decompose SG into 
3 m cells Fw(SG), where w=(wl .... ,Win) denotes a word of length Iwl=m, each 
wj=l, 2,3, and Fw=Fwl oF~, 2 ..... Fw,,~. The restriction of h to Fw(SG) rescaled is 
just hoFw, and we have 

(1.7) e(hoFw) = ~,,, (e(h)), 

where ~ ,  = ~  . . . . .  r  Thus a harmonic function of eccentricity e is composed of 
3 m harmonic functions with eccentricities {r when viewed at level rn. 
The self-similarity of harmonic functions is governed by the dynamics of the i terated 
function system 3 

We will show that  there is a unique non-atomic probabili ty measure # on [0,11 
invariant under 3 {r with equal probabil i ty weights: 

3 
1 Z ~off2~_l, ( 1 . s )  , = 

i=1 

and this measure is at tract ive in the Wasserstein (or Monge-Kantorovich) metric 

(1.9) dw(p, u) =sup{ fol f dtt- foa f dt/ : llfllLip <- 1} 

on probabili ty measures. (See JR] for a general reference on probabili ty metrics.) 
This means that  if we look at the distribution of the eccentricities at level m (the 
discrete measure 3 -m ~-~[wt=m 5(r we obtain the invariant measure # in the 

limit as m--+oc in the metric (1.9). This is true no mat te r  what the initial eccen- 
tricity of h. From the point of view of the statistics of the eccentricities of the 
restrictions to small cells, all harmonic functions are the same. 

There are two ways to prove the existence and uniqueness of the solution 
to (1.8). The first refers to the theory of products  of random matrices. This is 
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presented in Section 2. This approach has the advantage tha t  it yields additional 

information relating the eccentricity in a specific cell to the location of the cell, al- 
most independent of the particular harmonic function. The second approach, given 
in Section 5, is based on an average contractivity in the geometric sense of the dou- 
ble iterate of the i terated function system. The advantage of this approach is that  
it gives a geometric rate of convergence. 

In Sections 3 and 4 we introduce two other measures describing the distribu- 
tion of eccentricities. The measure ~t E counts the amount  of energy contained in 
cells with specified eccentricity. The measure #L describes the distribution of ec- 
centricities encountered among the cells tha t  meet a generic level set. The invariant 
equation for ~t L involves a parameter  2 a, and the value ~ gives the box dimension 

of a generic level set. The existence and uniqueness of these measures (and the 
parameter  2 ~) is also established in Section 5. 

In Section 4 we describe the self-similarity of the entire family of level sets. 
This leads to an invariant measure v on the two-dimensional family of level sets. 
In this case we do not have uniqueness for solutions of the invariant equation for 
u, since there do exist non-generic level sets. However, the generic situation leads 
to the conclusion tha t  u has a product  structure, namely I]----~L x dt where dt is 
Lebesgue measure on the parameter  t tha t  indexes the particular level set. 

In Section 6 we show how to construct a rectifiable curve ~/in the plane such 
that  a given level set is the intersection of SG with 7- We give an example to show 

that  ")' may have infinite spiral points. 

In Section 7 we discuss briefly another example, the hexagasket. This is a frac- 
tal in the class of post-critically finite fractals for which Kigami 's  theory of harmonic 
functions applies [K4]. We see tha t  the situation there is quite different, owing to 
the existence of vertices tha t  are not in the boundary  and not junction points. In 
particular this leads to harmonic extension matrices that  are not invertible. There 
exist nonconstant harmonic functions that  are nevertheless constant on open sets. 

Also, the analogs of the measures #, #E and ~L are discrete. A reasonable conjec- 
ture is that  the results of this paper  may be extended to harmonic structures on 
most post-critically finite fractals having the property that  all harmonic extension 
matrices are invertible. 

We note that  in [DSV] it is shown that  certain level sets of eigenfunctions of the 
Laplacian on SG contain line segments. This is presumably nongeneric behavior, 
but it indicates the difficulty in extending this work to more general functions. 

Acknowledgments. We are grateful to A. Teplyaev for helpful discussions. 
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2. Products  of random matrices 

The space of harmonic functions on SG is three-dimensional. If we use the 
boundary values (h(pl), h(p2), h(p3)) as coordinates, then the local extension algo- 
r i thm (1.3) can be written in matrix form 

(2.1) hoFi = Mih 

with 

1(!0!) 1(i1!) 
(2.2) M l = g  2 , 2 - - g  5 , M 3 = g  2 . 

1 2 0 

The iterated form is 

(2.3) hoFw = M w m  . . .  M~,, h (denoted M~h) 

which fits exactly the theory of products of random matrices, with the matrices 
drawn from the three-element set (2.2). It is desirable to factor out the constant 
functions to get a two-dimensional vector space and corresponding 2 • 2 matrices. 
The choice of coordinate representations is not canonical, but  we can obtain an 
orthonormal basis with respect to the energy (degenerate) inner product by choosing 
hi = (0, v ~ ,  vf2) and h2= (0, V / ~ , - V ~ ) -  Then any harmonic function may be 
written alhl +a2h2+c, and (al, a2) will be our coordinates for harmonic functions 
mod constants, denoted informally h. Then 

(2 .4 )  h 

with 

(2 .5 )  M I :  1 M2= .~3= 0 ' ' 

10 2 "  ]-0 2 " 

and the iterated .form is 

(2.6) hoFw = U~m ... Mw, h (denoted~rwh).  

It is natural to introduce polar coordinates in this two-dimensional space and to 
delete the origin, which represents the constant functions. Thus each nonconstant 
harmonic function is associated with a unique angle 0 (mod 2r).  The eccentricity 
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e is a continuous function of 0 which can be given piecewise by explicit rational 

functions of sin 0 and cos 0. For example 

x/3 c o s 0 - s i n 0  [ 7r] 
(2.7) e =  x/3 cosO+sinO on O, 

with similar expressions on five other intervals. Of course 0 carries slightly more 
information, since it also determines the orientation. Also, if 0 corresponds to e then 
0+7r corresponds to 1 - e .  Since the results from the theory of products of random 
matrices concern the projective circle P ( R  ~) (0 and 0+7r are identified since they 

determine the same line through the origin), they will only translate to s ta tements  
about  eccentricities with the identification of e and 1 -  e. We will use 0 to represent 
a variable in P(R2) ,  so in what follows it should be understood that  every function 

f (0 )  satisfies f ( 0 ) = f ( 0 + T r ) .  
From the theory of products of random matrices we immediately obtain a great 

deal of information about  the angles O(Mwh). Note that  we are in the fortunate 
position of dealing with 2 • 2 matrices where the theory is more complete. I t  is 

clear by inspection that  the matrices (2.4) generate a noncompact  semigroup with 
no invariant finite union of lines, so Theorem 4.1 of [Bo] applies. The first conclusion 
is the existence of a unique invariant probabili ty measure # on P ( R  2) associated 

with the independent choice of Mi with equal 1 probabilities. This may be writ ten 

(2.8) (0 , ) 
for any function f .  The measure tt is nonatomic (continuous). If we s tar t  with any 
initial nonzero vector v we may obtain # as 

(2.9) fo 2~f(t)d#(t)= lim 1 Z f(O(M_~v)). 
ln- -~oo 3 rt~ 

For large m, the direction O(M~v) effectively depends only on w: there exists a 
function O(w) such tha t  for every v and ~, 

(2.1o) J i m  ~-~#{w : [wl = m and 10(M~v)-a(w)l _> ~} = 0. 

Note that  for any w, the function O(Mwv) maps onto p (R2) ,  but for most choices 

of v the values will be close to each other, and we may choose 0(w) to be O(M~v) 
for one of these typical choices of v. 
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We may formulate a general principle, geography is destiny, to describe this 
phenomenon. The behavior of a harmonic function in a neighborhood of a generic 
point x is essentially determined, except for an affine transformation hF+ah+b, by 
the location of the point, not the particular harmonic function. This seems paradox- 
ical, because the space of harmonic functions is three-dimensional. Of course, for 
each point x there will be exceptional harmonic functions, but  they will constitute a 
set of measure zero with respect to Lebesgue measure in three-space. There will also 
be nongeneric points x, including in particular all vertex points. The computational 
implication is that  for large m and most choices of words w of length m, the values 
of O(M~(cost, sin t)) will cluster around some value 00 (and 00+zr) for all t except 
for a few narrow regions. (Similarly, the eccentricities e(hoF~) will cluster around 
some e0 and l - e 0  for all initial eccentricities e except for a few narrow regions.) 
Unfortunately, the convergence of this process is slow, so that  m has to be taken to 
be quite large for this to be apparent. 

The "geography is destiny" principle seems likely to hold more generally for 
functions in the domain of the Laplacian and perhaps even functions of finite energy, 
using the methods of Kusuoka [Ku] and Teplyaev [W]. 

3. D i s t r ibut ion  of  eccentric i t ies  

Suppose h is a harmonic function with boundary values h (p l )=0 ,  h(p2)=e and 
h(p3)=l. Then hoF1 has boundary values 

h(F1 (P111 = 0 < h(F1 (P2)) = ~ (2e 4-1) <_ h(F1 (P3)) = ~ (e +2),  

so e(hoF1)=(2e+l)/(e+2). Similarly hoF3 has boundary values 

h(F3(Pl)) = ~(e+2)  _< h(F3(P2)) = ~(2e+2) < h(F3(P3)) = 1, 

so e(hoF3)=e/(3-e). For hoF2, the order of the boundary values 

h(F2(Pl)) = ~(2e+l ) ,  h(F2(p2)) =e, h(F3(P2)) = ~(2e+2) 

depends on the size of e. When 0 < e <  �89 we have h(F2(p2))<h(F2(pl))<_h(F2(ps)), 
1 < e <  2, we have h(F2(pl))<_h(F2(p2))<_ hence e(hoF2)=(1-3e)/(2-3e). When ~ _  _ 

h(F2(P3)), so e(hoF2)=3e-1. When 2<e_<l,  we have h(F2(pl))<h(F2(p3))<_ 
h(F2(p2)), so e(hoF~)=l/(3e-1). 
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We may summarize these computations in the form (1.6) with 

r  2 x + l  
x + 2  ' 
I' 1 - 3 x  1 
[ 2--Z-~x, i f O < x < ~ ,  

1 2 
(3.1) r / 3 x - l ,  i f ~ < x < ~ ,  

/ 1 - - ,  if 2 
tx3X_ l ~<__x<_l, 

Ca(z) a-x" 

Figure 3.1 below shows the simultaneous graphs of r r r Note that  while 
r and r are one-to-one and contractive, r is two-to-one and expansive. If we 

t given by identify x and 1 - x  we obtain an iterated function system on 0 < x < g  

= i -x 
x + 2 '  
f 1 - 3 x  1 

(3.2) g)2 (x) 2 - 3 x '  i fO<x_<  ~, 
1 1 

[, 3 x - 1 ,  i f ~ < x < ~ ,  

x 

It is clear that  questions about invariant measures for the iterated function sys- r tem { j}j=l have equivalent formulations for the iterated function system { J}j=l 
provided the weights respect the e~-+l-e  symmetry, which is true in all cases we 
consider. Therefore, we will work with whichever formulation is most convenient 
for each question. 

According to the results of the last section, there is a unique probability mea- 
sure satisfying (1.8), which is just the image under 0,-~e of the invariant measure 
satisfying (2.8) (by slight abuse of notation we will use the same letter # to denote 
both measures). In Figure 3.2 we show an approximation of this measure obtained 
after 10 iterations of the iterated function system starting from a random initial 
value. By a standard argument based on uniqueness, the measure is either singular 
or absolutely continuous, but not a mixture of both. 

The measure # gives equal consideration to all cells of level m. It is also natural 
to ask how much energy is contained in the cells with eccentricity in a given range. 
This will be described by a different measure, which will be denoted #E. 

The total energy of our choice of h is E(h)=2(e 2 - e +  1), and this splits into a 
sum of 5E(hoFi). We can easily compute the values, and express the result in the 
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form 

(3.3) 

with 

(3.4) 

Note tha t  we have 

5 E(hoF~) =pi(e)E(h)  

1 e 2 + e + l  
pl(e) = 5 e 2 - e + l  ' 

1 3 e 2 - 3 e + l  
p 2 ( e ) = 5  e 2 - - e + l  ' 

1 e 2 - 3 e + 3  
p3(e)----- 5 e 2 - - e + l  

(3.5) Pl (e) +P2 (e) +P3 (e) = 1. 

Figure 3.1 also shows the simultaneous graphs of pi(e). The advantage of (3.3) 
is tha t  it remains valid for any harmonic function (provided tha t  we permute  the 
indices i~-+i' as in (1.6) for different orientations of the vertices). Thus the measure 
~[~E satisfies the invariance 

3 
(3.6) ]'$E = ~(Pi~E)~  -1 

i=1 

with respect to the variable probabili ty weights (3.5). On the right-hand side of 
Figure 3.2 we show an approximation of the measure/~E analogous to the approx- 
imation to #. The appearance of the approximation of #E is considerably more 
singular than  tha t  of/~ displayed on the left of Figure 3.2. Not only do the meas- 
ures # and ~E appear  to be singular with respect to Lebesgue measure, but they 
also appear  to be mutually singular. 

1 
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Figure 3.1. On the left: The graphs of r (solid line), ~P2 (dashed line) and r (dotted 
line). On the right: The graphs of pl (solid line), p2 (dashed line) and p3 (dotted line). 
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Figure 3.2. Histogram approximat ions  to ~u (left) and ~E (right) wi th  300 equally 
spaced bins in [0, 1], after  10 i terat ions of  the  i terated function sys tem from a random 
initial value. 

4.  L e v e l  s e t s  

Let L(e,t) denote the level set {x:h(x)=t} for the harmonic function h of 
eccentricity e as in the previous section, and 0 < t < l .  If h is any nonconstant 
harmonic function with h(pl) <_ h(p2)_< h(p3), then 

(4.1) {x:h(x)=s}=L ~ ,  h(p3)-h(pl)] 

so these level sets and their rotations and reflections contain all level sets of non- 
constant harmonic functions. 

At level m,  the level set L(e, t) intersects a number N(m, e, t) of cells F~(SG) 
with Iwl = m ,  and each intersection is of the form FwRL(e', t') for some (e', t ' )  and 
a rotat ion or reflection R. By abuse of notation we will omit  R since it plays an 
inessential role in our analysis. The number N(m, e, t) will be of the order of 2 ~m, 
where c~ is the box dimension of L(e, t). More precisely 

(4.2) a = lim l o g N ( m ,  e,t) 
m - - ~  m log 2 

is the box dimension, if the limit exists (otherwise the lim sup and lim inf give the 
upper  c~* and lower c~, box dimensions). We are also interested in the distribution 
of the values (e', t ')  tha t  occur, and the measure they approximate  on the square, 

(4.3) v(A) = lim #{ (e ' ,  t ')  E A at level m} for A C_ [0, 1] • [0, 1]. 
m - - > c x ~  N(m, e, t) 

We will see tha t  for a generic choice of (e, t) the measure v is a product of a measure 

~L in e and the uniform Lebesgue measure in t, with ~L being independent of the 
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Figure 4.1. The subdivision of the unit square into 8 regions. 

particular level set. There are exceptional level sets, such as L(e, 0) and L(e, 1) 
which consist of single points, and L(�89 �89 which consists of a countable set of 
points with a single limit point p2- 

We now describe in detail what happens when m--1. We divide the square up 
into 8 regions R1, R3, Rll,  R12, -R13, R31, R32 and R33. See Figure 4.1. The union 
R1URllUR12URta is just the region defined by t<_�89 of all (e,t) such that 
L(e, t) intersects FI(SG), and there we have 

(4.4) L(e, t)riFt (SG) = F1 (L(~l(e, t))) 

for 

(2e§ St) 
(4.5) qal(e,t)= ~, e+2 ' e T 2  " 

Similarly, R3URal U R32URaa is defined by t>-~ (e+2) and represents the (e, t) val- 
ues for which L(e, t) intersects F3(SG), with 

(4.6) L(e, t)nF3( SG) = F3( L(~3(e, t) ) ) 

fOr 

(4.7) ~o3(e,t)= 3 - e '  ~ )" 

The intersection of L(e, t) with F2(SG) occurs in the regions Rll UR12UR13URal U 
R32UR33. The region RllUR31 is defined by 0<_e<_ �89 and e < t <  ~(2e+2), and there 

(4.8) L(e, t)NF2(SG) = F2(L(qa21 (e, t))) 
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for 

(4.9) 
( 1 - 3 e  5 t - 5 e )  

~21(e,t)= ~ 2 - 3 e '  2 - 3 e  " 

The region R13 uR33 is defined by ~ _< e < 1 and ~ (2e + 1) < t _< e, and there 

(4.10) L(e, t)AF2( SG) = F2( n(~23(e, t) ) ) 

for 

(4.11) 
3 e - 1  ]"  
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l(2e+l)<t<~(2e+2), and Finally, the region R12UR32 is defined by �89 and ~ _ =- 
there 

(4.12) L(e, t) MF2( SG) = F2( L(~p22(e, t) ) ) 

for 

(4.13) pz2 (e, t) = ( 3 e -  1, 5 t -2e -  1). 

Apart from trivial point intersections, 

(4.14) N(1,e , t )={  1 inR1UR3,  
2 in RllUR12UR13UR31UR32UR33. 

We can summarize the above by the identities 

(4.15) L(e,t)=Fj(L(~j(e,t))) on Rj,  j = l , 3 ,  

(4.16) n(e;t)=Fj(L(~j(e,t)))UF2(L(~k(e,t))) on Rjk, j = l , 3 ,  k = 1 , 2 , 3 .  

We therefore have a description of the self-similarity of the family of sets L(e, t). 
We can write the decomposition at level m as 

(4.17) L(e,t) = U F~(L(e(w),t(w))), 
wEAm 

where Am is a set of words of length m (in our notation we suppress the dependence 
on the initial (e, t) values). Let Bm denote the set of points (e(w), t(w)) in the square 
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for wEAm. Both sets have cardinality N(m, e,t). The identities (4.15) and (4.16) 
yield an inductive description of these sets: 

(4.18) 
if w E Am and (e(w), t(w)) E Rj (j  = 1, 3) then wj E Am+l 
with (e(wj), t(wj) ) = qoj(e(w), t(w)); 

if w E Am and (e(w), t(w)) E Rjk (j = 1, 3) then both 

(4.19) wj and w2 are in Am+l with (e(wj),t(wj))=~(e(w),t(w)) 
and (e(w2), t(w2)) = ~2k(e(w), t(w)). 

The distribution of points in the set B,n is described by the measure 

1 ES(e(w),t(w)). 
(4.20) N(m, e, t) Am 

In the weak limit as m- -+~  we obtain the invariant probability measure u which 
satisfies the identity 

(4.21) v = 1(po~911 +/2oq031 -~- uo~0211 -~-/2%027 -~-//o~9231). 

Since the functions ~1,. . . ,  ~323 all have the form where the first variable is indepen- 
dent of t and the second is linear in t, we may assume that  u has the product form 
~L (e) X dE. If we substitute a measure with this product  form in the right-hand side 
of (4.21), we obtain a measure with this product form in the left-hand side. 

Substituting the product form into (4.21) and simplifying, we find the invariant 
identity for #g to be 

L l f ( e ) d # L ( e ) = l ( L l  e+2.[2e+ 1 '  13--e-[ e ' 

fl13 2 - 3 e  _[ 1 - 3 e ~  1 f213 
/ f(3e- 1) d#L(e) (4.22) + Jo  -~ ]t2_-Z-3~e) d#L(e)+-~ J1/3 

+Lia3e-1 _[ 1 "kd#i(e) ) 
s t y )  �9 

Here the weights do not satisfy the probability condition, and the value of 2 ~ is an 
unknown. We can obtain a formula for 2 ~ in terms of the measure by substituting 
a constant function into (4.22). After some simplification, and using the e ~ + l - e  
symmetry, we find 

2~ = 6 +2 f l /3  1--3e (4.23) Jo d,L(e). 
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This gives the obvious bounds  -65 < 2 a < ~. If  we used uniform measure in place 

of PL this would yield a value of  19 for the r ight -hand side of  (4.23), which would 

give a value of a round log ~ / l o g  2~0.3410369 for a .  

In Section 5 we will prove (using the est imate  56- < 2 ~) existence and uniqueness 

for solutions of (4.22), with a geometr ic  ra te  of  convergence. This implies tha t  we 

have a geometr ic  ra te  of  convergence of  (4.20) to  a solution v:ttL(e)• s tar t ing  

from any generic level set L(e, t). 
Figure 4.2 shows an approximat ion  to  #L- Star t ing  from r andom (e, t) values, 

we found 9358 cells at  level 35 meet ing L(e, t). The  figure shows the dis t r ibut ion 

of e-values among  these cells. The  number  of cells gives a rough est imate  of 0.3769 

for a .  

4 

3 

2 

1 

0 0.2 0.4 0.6 0.8 1 

Figure 4.2. A histogram approximation to #L, with 300 equally spaced bins in [0, 1], 
starting from random initial values of (e, t). After 35 iterations there are 9358 cells 
meeting L(e, t), and the e-values only are displayed. 

Since there are no exceptional  eccentricities, it is reasonable to  conjecture tha t  
for every e there are at  mos t  a countable  number  of t values for which L(e, t) fails 

to be generic. 

5. U n i q u e n e s s  a n d  c o n v e r g e n c e  

In  this section we present some general results on invariant measures for an 
i terated funct ion sys tem with weights, and then we show how these results apply 

to the invariant measures described in Sections 3 and 4. In the following we assume 

tha t  we have an i terated function sys tem with cont inuous maps  $1, ..., Sin, rn>_2, 
with corresponding nonnegat ive weight functions ql , - . - ,  qm, on a compac t  metric 
space (X, d). If  the weight functions qj =pj satisfy Ejrn=l p j ( x )= l  for all x E X ,  then 

we say tha t  the i terated funct ion sys tem is probabilistic. 
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(5.1) 

Definition 5.1. The associated Perron-Frobenius operator is defined by 

m 

Lf(x) = E qj(x)f(Sj(x)). 
j = l  

We will assume that  L acts on Lip, the space of Lipschitz functions equipped 
with the norm I1" ItLip defined by 

(5.2) ilfllLip = s u p  If(x)-f(Y)l  I-Ilflloo. 
~#u Ix-yl 

The operator L has an adjoint operator L*, which we restrict to the probability 
m e a s u r e s  on  X~ 

m P 

(5.3) L*u(A) = E ] qj (x) du(x), 
j=l JSfl(A) 

where u is any probability measure and A is any Borel subset of X. 

Definition 5.2. The Wasserstein metric for probability measures # and u is 
defined as 

dw(.,.): sup [ : (5.4) du. 
l[fllLip <_l l J X Jx 

Definition 5.3. A probabilistic iterated function system is average contractive 
in the arithmetic sense if 

m 

(5.5) sup E p j ( x  ) d(Sj(x), Sj(y)) < 1. 
~ u  j=l d(x, y) 

A probabilistic i terated function system is average contractive in the geometric sense 
if 

(5.6) 
m 

sup H d(Sj(x), Sj(y)) pj(x) < 1. 
xCYj=l 
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L e m m a  5.4. (See [O]) For an iterated function system with constant proba- 
bility weights Pl , - - - ,Pm we have 

(5.7) dH((L*)nu, (L*)n#) < E diam(Sw, o .... Sw, X),  

where E denotes the mean taken with respect to the choices of wl, ..., wn, according 
p r n  . to the probabilities { j } j=l In particular, / f E d i a m ( S w .  o .... S~, X)--+O, then there 

is a unique probability measure It satisfying L * # = # ,  i.e., a unique invariant measure 
for the iterated function system. 

Proof. For probabili ty measures it and t/, and f E L i p  with ]]fl]Lip<l, we have 

I x  f d(L*)'~it-/x f d(L*)'~u = l,~l=n p~' I x  I x  ( f (S~x ) - f (S~y ) )  d#(x) du(y) 

<- ~ P~ / x  I x  d(SwX, Swy)dit(x)du(y) 
I~l=n 

< E diam(SwX). 

Taking the supremum over f we obtain (5.7). [] 

We now specialize to the case where (X, d) is an interval and the maps are 
differentiable. We write, e.g., the ari thmetic average contractivity condition as 

vn 
suP0<x<l ) -~ j= lp j (x ) lS j (x ) ]< l -  It  is an elementary observation to make tha t  if a 
probabilistic i terated function system is average contractive in the geometric sense, 

then there exists 0 < q < 1, such that  sup0 < x <1 ~-~=1 PJ (x)] Sj (x)] q < 1. The case when 
q =  1 covers the case when the probabilistic i terated function system is also average 
contractive in the ari thmetic sense. 

Lemma 5.4 makes it possible to derive an upper  est imate for the rate of con- 
vergence if we assume only the geometric average contraction condition, but  with 
constant probabili ty weights. If we t ry  to apply this directly to the i terated function 

1 system given by (3.2) with weights �89 �89 ~ we discover that  (5.6) fails. However, if 
we pass to the double iteration of the i terated function system then (5.6) holds. In 
contrast,  the ari thmetic average contractivity condition fails no mat te r  how many 
times we iterate the i terated function system. 

L e m m a  5.5. Suppose that an iterated function system is average contrac- 
tive in the geometric sense with respect to the constant probability weights. Then 
dH((L*)nu, (L*)nit)<Ca n, where C > 0  and 0 < a < l .  

Proof. We know that  there is a 0 < q < 1 such that  suP0<z<l ~j~--1 pj]S'j (x)[q < Qq 
for some p < l .  This means that ,  for any ~ satisfying 0 < ~ < 1 ,  

Ediam(Sw,  o .... S~,X) = E(d iam(S~ o .... S~,X):  ]](S~ o .... S~, ) '][~ > Q~n) 

+E(diam(Sw~ o .... Sw, X ) :  ]](Sw, o .... Sw, )'IIcr <- psn). 
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Using Chebyshev's  inequality we obtain 

E d iam(S~ ,  o .... S~ 1 X)  <_ Q(1-~)qn diam X + Q~ diam X. [] 

Remark. The optimal  choice of e is to take e = ( 1 - E ) q .  

T h e o r e m  5.6. For the iterated function system (3.2) with constant probability 
weights 1 1 5, 5, �89 the measure p defined by (1.8) is uniquely determined by this equa- 
tion. For any probability measures ~, dH((L*)nv,~) converges to 0 at a uniform 
geometric rate. 

Proof. We consider the double iterate of the i terated function system (3.2) 
consisting of the nine mappings ~w with Iwl=2 with all probabilities equal to ! 9" 
To apply Lemma 5.5 we need to verify the average contractivity in the geometric 
sense, namely 

sup 1-I ~' lew(x)l < 1. 
O<x<l I~I=2 

-! 1/9 
This follows immediately from the straightforward calculation I]]~]=2 I1r -- 
0.8874 .... [] 

We will now t reat  the functional equation (4.22), where both the measure ~L 
and 2 ~ are unknown. 2 ~ can be regarded as an eigenvalue of L and L* and we will 
prove that  it is in fact the spectral radius and the only eigenvalue with a positive 

measure solution of (4.22). In the process we will also prove uniqueness of #L and 
we will use the techniques for accomplishing this goal also to provide a proof of 
uniqueness of PE, the invariant measure produced by the i terated function system 
(3.2) with the variable probabili ty Weight functions given by (3.4). Since ]2 E is 
defined using strictly positive probabili ty functions (summing pointwise to one), we 
could have referred to Barnsley et al. [BDEG], since with these weights the i terated 
function system is average contractive even in the ari thmetic sense; it is very easy 

to see tha t  it is average contractive in the geometric sense, which is enough, since 

sup  UI~; (x) IPJ(X> < ( ( 1 2 ~  7 /15 
0<~<1 ~'_~ _ \ \ ~ ]  33 ~0.83499 < 1. 

But  we will use a different method in order to obtain rates of convergence. 

Definition 5.7. The  Perron-Frobenius operator  L is said to be quasi-compact 
on Lip, if outside a radius strictly smaller than the spectral radius the spectrum 
consists of discrete eigenvalues with finite multiplicities. 
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It is well known (see [HI or [KL]) that  L is quasi-compact on Lip if 

(5.8) IlLn fllLip <_ CanllfllLip-I- Rnllftlor 

where C >0 ,  0 < a < l  and P ~ > 0  depend on n_>l only. 

A sufficient condition for (5.8) to be true is that  

m 

(5.9) sup ~ qi(x)lS'j(x)l < ,~ = t h e  spectral radius, 
O<x<l ~=1 

see e.g. [n]. If this is true for L and, in addition (see [n]), we have for every xE[O, 1] 
and any nontrivial nonnegative continuous function f 

(5.10) Lnf(x) > 0 for some n > 1, 

then, since the multiplicity of the spectral radius, which is an eigenvalue, is one, we 
get 

(5.11) 
1 1 

-~-~Lnf(x)-h(x) ~oo f d# Lip < Ca'~llf]lLip' 

where, as before, A is the spectral radius, C > 0  and 0 < a < l .  Furthermore, we 
have Lh=Ah and h > 0  (a consequence of (5.10)). This implies that  # is the unique 
invariant measure, in the sense that  L*p=Att. 

T h e o r e m  5.8. In the functional equation (4.22) we have a unique 2 ~, hence 
a unique a. Also, #L i8 uniquely defined by (4.22), and we have for all Lipschitz 
functions f 

(5.12) ~TnLnf(x)-h(x) ~01 f d~L Lip <~ Ca'*llfllLip' 

where L is defined by using the maps in (4.22), h > 0  and Lh=2ah. 

Proof. The measure #L defined by (4.22) is an invariant measure for the iter- 
ated function system (3.1) in the sense of 

3 
2~pL (A) = E ~ i qj (e) dpL (e), 

j=l ~ (A) 
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or equivalently L* ttL = 2 ~/IL, where 

x + 2  
ql(X) : 5 '  

q2(x) [ g ,  

3 x -  1 
, 

3 - - x  
q3(x) 5 

We then have 

1 
i f 0 < x < ~ ,  

1 2 
i f ~ < x < ~ ,  

2 
i f ~ < x < l ,  

3 
303 6 

(5.13) sup ~-~qj(x)lr < ~ < ~ < 2  ~. 
O<x<l ~.= 

The condition (5.10) is true since we have strictly positive weight functions and 
the two maps r and r are strictly contractive and nonoverlapping with images 
covering the whole interval. 

Uniqueness of 2 ~ (and a) follows now from standard Perron-Frobenius the- 
ory. [] 

T h e o r e m  5.9. Consider the iterated function system in (3.2) with the weights 
given by (3.4). Then for all Lipschitz functions f 

(5.14) 
fl/2 ] 

L'~f(x) -Jo f dpE <-- Ca r ]l filLip, 
Lip 

where as usual C>O and 0 < a < l .  

Proof. It is easy to check that sup0<x<l E3:lpj(x)l  (x)l<l. (5.10) follows 
from the same argument as in the proof of Theorem 5.8, but now with reference to 
the maps r and r [] 

Remarks. (1) It is easy to see that  we can turn the statement of Theorem 5.9 
into an upper estimate of the rate of convergence in the rill-distance of L*-iterates 
of any probability measure to PE using a similar type of argument as in the proof 
of Lemma 5.4. 

(2) The value 2 a is given by limn-~o~ [[LnlH~n=limn~ [[ ~--:~lwl=n qw[[~n' with 
reference to the same weights qj as in the proof of Theorem 5.8. The iterates qw, 
Iwl=n, are defined multiplicatively (according to the definition of iterates of L) 
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as qw,~ ( r . . . . .  r ( x ) ) ... qwl ( x ). In the present case with the i terated function 
system (3.1) and the weights of Theorem 5.8 this product simplifies due to cancel- 
lation. 

We have used 2 ~ = l im~_ ,~  II ~ f~ l=n  q~ II ~ n  to obtain the numerical approxima- 

tions 2 ~ 1 . 2 8 1 2 1  and a~0.35751 as follows. We computed the function ~l~l- -n  q~ 

for n = l ,  2, 3, 4, 5 and observed that  it was decreasing on [0, �89 and symmetr ic  
1 Thus the supremum is the value at x = 0 .  Assuming that  this contin- about  ~. 

ues to hold for all n, we may compute 

(5.15) 
1In / \ l / n  

qw = (  ~ qw(O)) �9 
= ~  o~ i~1= ~ 

This simplification makes it feasible to carry the computat ion out to n=10 .  We 

then fitted a straight line (least mean square) to the da ta  (n, log ~'~lwt= n qw(O)) for 
3 < n < 1 0  and took the slope of the line as our approximation for 2% 

6 .  A s t r i n g  o f  p e a r l s  

In this section we describe the level sets L(e, t) in SG as the restriction of a 
rectifiable curve ~/(e, t) in the plane to SG. Such a curve is not unique, of course; 
in particular, what  it does in the complement of SG is rather  arbitrary. But  the 

construction of the curve will specify an order on the level set. The level set will 
appear  as a Cantor set in % and so we can imagine ~/as consisting of some "string" 
7 \ L  on which the "pearls", namely L, are strung. 

Our approach is based on the s tandard embedding of SG in the plane. The 
theory of harmonic functions on SG is based only on the topology of SG, not on 
its geometry. There is a more natural  metric on SG, called the effective resistance 
metric [K3], but it is not even known whether or not SG embeds isometrically for 
this metric in any Euclidean space. There are also other natural  emheddings of SG 

in the plane which are harmonic (in fact energy minimizing) [K2]. For a harmonic 
embedding the level sets are nothing other than the restriction to SG of straight 
lines in the plane. However, it is not clear how to pull back the straight lines 

from the harmonic embedding to the s tandard embedding, since we do not know 
how to extend the identification of SG in the two embeddings to a mapping of the 
complements of SG in the two embeddings. Nevertheless, it is not hard to see that  
the ordering on the level set induced by the ordering of the straight line in the 
harmonic embedding is the same as the ordering that  is induced by our string of 
pearls % 
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We now give an inductive description of 7 for a harmonic function in standard 
position and  L(e, t). The key observation we use is Theorem 2 in [DSV] which says 

that  the restriction of h to two of the edges (P~,P3) and (Pl,P~) if e>  �89 (or (P2,P3) 
if e < 1) is monotone increasing, while on the third edge ((pl, P2) if e < �89 or (P2, P3) 
if e >  �89 it has a single extremum. In all cases L(e, t) intersects the edge (Pl,P3) in 
a single point, and that  point will be the initial point of 7- Except in the trivial 
cases t-=O or 1, Lie, t) will intersect the other two edges in one or three points, with 
exactly one of the edges meeting L(e, t) in one point (there is a degenerate case 
when we consider Lie , t) meeting an edge in a point of multiplicity 2). That  point 
is the terminal point of 7. 

If L(e, t) lies entirely in FI(SG) or F3(SG), we pass to the next level and iterate 
1 t_< ~(2e+l ) .  This the process. This happens in the first case if t < e < �89 or ~ < e and 

happens in the second case if 2<_e<_t, or ~_>e and t_>~(2e+2). 
If L(e,t) lies in F2(SG) and one of the others, say FI(SG) (it cannot lie in 

all three except in the degenerate case t = ~ ( e + 2 ) )  we consider two separate cases. 
Note that  t_< ~(e+2) .  

Case I: e_< 1 and e<t<~(2e+l). Then L(e,t) intersects the edge (P2,P3) ex- 
actly once, and this point lies in F2(SG) and is the terminal point of 7. But L(e, t) 
intersects the edge (Pl,P2) twice, once at a point ql in FI(SG) and once at a point q2 
in F2(SG) (the degenerate case t= -~(2e+l )  has ql---q2)- We place a curve (string) 
joining ql to q2 and going outside SG in the middle of 7. On one side we have the 
F1 (SG) part of 7 joining the initial point of 7 to ql, and on the other side we have 
the F2(SG) part of 7 joining q2 to the terminal point of 7. We iterate to determine 
these two parts of y. 

Case II: ~(2e+l)<t_< �89 In this case L(e, t) intersects both the segments 
(FI(p3), FI(p2)) and (F2(pl), F2(p3)) exactly once, in points ql and q2, respectively 
(when t--g--1 (2e+ l )  we have ql=q2).  We place the line segment (string) joining ql 
and q2 (passing through the largest inverted triangle in the complement of SG) in 
the middle of 7. On one side we have the FI(SG) part of 7 joining the initial point 
of 7 to ql, and on the other side we have the F2(SG) part of 7 joining q2 to the 
terminal point of 7. We iterate to determine these two parts of % 

Note that  when we iterate the orientation of the parts of 7 in Fi(SG) may be 
switched, but that  does not matter.  It is easy to see that  7 is rectifiable, since at 
each level m we add at most N(m, e, t) pieces of string, each of length bounded by 
a constant multiple of 2 -m, and the sum 

m = l  
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is convergent because c~ < 1. 

We now give an example to show that  7 may have points around which it 
spirals infinitely often. In particular this means that  "y cannot be chosen to be a C 1 
curve. In fact, in our example an initial segment of ~, will be a self-similar spiral. 

The idea is to find a fixed point (eo, to) for the mapping ~o3o~o23o~1o~1o~t:~21 . 
We will verify that  e0<�89 so that  ~21 is the correct mapping for the intersection 
of L(eo, to) with F2(SG), and this changes the orientation (permuting Pl and P2). 
The two mappings ~Pl that  follow (now corresponding to F2) preserve orientation. 
We will verify that  the e value of ~fll(cfll (~21(e0,t0))) lies in w so that  ~a23 is 
the correct mapping for the intersection of L(e0, to) with F2oF2oF2oFI(SG). This 
again changes the orientation (permuting P2 and P3), SO the net result of the two 
changes is a rotation R through -21r. The final mapping ~3 (corresponding now 
to F1) preserves orientation. Thus we will have 

(6.1) L(eo, to)lF,,(ZG) = RFwL(eo, to) 

for w=(2,  2, 2, 1, 1) and we may iterate this indefinitely. Let "y' denote the initial 
segment of 7 that  contains L(eo, to)g)F1 (SG). This is followed by a string segment 
7"  connecting ql to q2 (Case I). Then q2 is the initial point in L(e0, to)NFw(SG), 
so the next segment of ~, is R F ~ / ,  and so on. Thus we have the infinite self-similar 
spiral ~', 3",  RF~'/', RF~7", R~F~2~/', ..., as an initial segment of % 

To find the fixed point (eo, to) we first solve for eo. We obtain the quadratic 
_ , ( 4 4 _ v / ~ ) =  equation ( 1 4 - 2 7 x ) / ( 6 1 - 1 3 5 x ) : x  and we choose the solution e0-1--~ 

0.2756864 ... which satisfies e0_< 1. We then find that  the e value after applying 

~1o~1o~o21 is ( 2 1 + v f ~ ) / ( 2 6 + x / ~ ) = 0 . 8 4 7 4 7 8 8 . . .  which is above -~ as required. 
If we let h be the harmonic function with eccentricity eo, then hlgw(sc ) as- 

sumes all values between the minimum h(FwP2) and the maximum h(F~pl). The 
t-component of ~3o~23o~1o~1 ~ is just the affine map of this interval to [0, 1]. 
Clearly this has a unique fixed point to. 

A related example involves finding a solution of 

(6.2) 

Then 

(6.3) 

~22 ((~1 (~21 (eo, to ) ) )  = (1 - e o ,  to) .  

L(eo, tO)IFw(SG) = R-1F~L(eo, to) 

for w=(2 ,2 ,1 ) ,  but now the ordering on 7 is reversed. Thus we must iterate a 
second time before we come back to the initial order. In this case 

(6.4) ( e 0 , t o ) = (  -_~I 8 9 V ~ - 1 6  ) 
, 9 ( 1 3 2 _ v / ~ )  " 
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Figure 6.1 illustrates the construction of "~ for this example, including the first four 
steps in the algorithm, a "complete" approximation after nine levels (beyond that 
it is impossible to see any changes) and a highlighting of the self-similar region. 

�9 �9 . �9 " . ' . : ' i  " . "  ~ " " " " 

. " . . . .  \ . . . .  

. . . .  \ . . . .  

i: i �9149 iiiii iiiii . . . . . . . . . . . . . .  - . . . .  . .  - - �9 . . . . . .  : .  . . . . . . . . .  

i I ii 

/ �9 . . 

. . . . . .  j "  . . . . . . . . .  

Figure 6.1. An example of the construction of ~ for the parameter values (6.4). The 
first four steps of the algorithm are shown, with dotted lines for the string segments 
(always taken as straight line segments). The SG is outlined in dots in the background. 
The "completed" approximation at level nine is shown alone, and with the level three 
triangle highlighting the region where it is self-similar. 

7. T h e  h e x a g a s k e t  

To illustrate the kind of behavior we may expect for general post-critically 
finite fractals having vertices that are neither boundary points nor junction points, 
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we describe briefly the case of the hexagasket (or fractal star  of David) shown in 
Figure 7.1(a). To simplify the discussion we will take the boundary to consist of 
just  three points, every other vertex of a regular hexagon H.  The iterated function 

system consists of six similarities with contraction ratio �89 so that  each Fi(H) 
contains one of the vertices of H,  but the ones associated to the nonboundary 

1 so that  the intersections Fi(H)N vertices must include a rotation through angle 57r 
F~+I (H)  occur at images of the three boundary vertices. See [$2] for the details of 
the construction of a harmonic s tructure on the hexagasket analogous to the theory 
on SG sketched in the introduction, 

Pl 

P3 " - ~ ~ ~ ~  P5 

Y 

X I 

Figure 7.1. (a) The hexagasket, with boundary points Pl, P3 and Ps- (b) The relative 
placement of the points x, x j, y, z and w. 

We define Vm as before, but we note that  there are two distinct types of non- 
boundary vertices: the junction points, which belong to two distinct cells of level m 

and have four neighbors in Fro, and the nonjunction points, which belong to only 
one cell of level m and have two neighbors in Fro. The condition for h to be a 

1 harmonic function is (1.2) for junction points, and the analogous formula with 
1 for nonjunction points. The harmonic extension algorithm (1.3) also replaced by 

must  be replaced by two formulas, 

(7.:) h(x) = 4h(y) + 2h(z)+ lh(w) 

if x is a junction vertex in Urn\Urn_l, and y, z and w are three junction vertices in 
Vm-: closest to x, and 

(7.2) 

if x' is a nonjunction vertex in V,~\Vm-1 (here y and z are equidistant to x'). See 
Figure 7.1 (b). 
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Writing the harmonic extension algorithm in the form (2.1), we find that  the 
six matrices Mi are of two types, 

(7.3) M1 -- ~ 2 and M2 = ~ 1 
1 1 

and their cyclic permutations,  with the odd indices associated to junction points 

and the even indices associated to nonjunction points. Note that  the second type 
of matr ix  has rank two, so it is not invertible. In particular, this means tha t  the 

theory of products of random matrices is no longer applicable. 

We may define eccentricity exactly as before. The images of the matrices M2k 
correspond to harmonic functions with eccentricity �89 or to constant functions. We 
obtain a constant function just  in the case tha t  the initial eccentricity is 0 or 1. 

Thus if we define mappings Cj as before we have r162162189 except 
for x--0 ,  1. Furthermore a simple computat ion shows that  the remaining r  are 

identical to the functions in (3.1), with the indices suitably changed. 

A nonconstant harmonic function may be constant on an entire cell, and this 
happens with initial eccentricity e if and only if there exists a word w with r  ( e )=0  
or r  (e) = 1. There is a countable set E of rational numbers e for which this holds. 
Presumably E is dense. I t  seems likely tha t  �89 does not belong to E. The rest of 
this discussion is predicated on this assumption. 

Let A denote the set of numbers ~Pw(�89 as w varies over all words. We are 
assuming tha t  A does not contain 0 or 1. If we start  with any initial eccentricity 
and look at the harmonic function restricted to cells of level m, we will find more 
than  half of them with eccentricity �89 and at least a set proportion with eccentricity 
equal to each number  in A (for fixed m only a finite number  will occur, because the 

proportions tend to zero). In fact, only the cells associated with odd words (all wj 
odd) will have eccentricity tha t  depends on the initial eccentricity. Since there are 
only 3 m out of 6 m such cells, we see a very strong form of the geography is destiny 

principle: aside from the presumably nongeneric possibility that  the restriction to 
a cell is constant, the eccentricity of the restriction of a harmonic function to a 
cell of level m is exactly determined by the location of the cell, not the particular 
harmonic function, with the exception of 3 m out of the 6 m cells. 

The analog of the measure/~ is therefore discrete, not continuous, with a toms 

at each of the points in A. In fact it is easy to see that  

(7.4) 
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This is not quite an explicit formula because each a E A  may be represented as 

r189 with w odd in many  ways. Similarly, the measure #E is discrete with atoms 
in A, but  with different weights. A simple computat ion shows tha t  the energy of a 
harmonic function in a cell F w H  splits at the next level as follows: 2 of the energy 
goes into the three even cells FwkH (k even) and the remaining 5 splits according 

1 replaced by to weights pk(e) (k odd) given by the analog of (3.4) with the factor 
1 7, and the indices relabeled. Thus 

(7.5) 

where p~ is defined as in Remark (2) following Theorem 5.9. 

We may parameterize level sets by L(e, t) as before. Nongeneric level sets, for 
e E E  and the appropriate  choice of t, will contain entire cells and so have dimension 
equal to the dimension of the hexagasket (log 6 / log  3). Generic level sets will avoid 

1 this difficulty (under our assumption 5 ~ E),  and can be described in terms of level 
sets with e E A  (we can safely throw away the contributions from odd words). Thus 
the measure u analogous to (4.3) will be the product of a discrete measure ~L with 
a toms in A and uniform measure in t. We omit  the details. 
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