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Singularities of functions of one and several
bicomplex variables

Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, Adrian Vajiac and
Mihaela B. Vajiac

Abstract. In this paper we study the singularities of holomorphic functions of bicomplex

variables introduced by G. B. Price (An Introduction to Multicomplex Spaces and Functions,

Dekker, New York, 1991). In particular, we use computational algebra techniques to show that

even in the case of one bicomplex variable, there cannot be compact singularities. The same

techniques allow us to prove a duality theorem for such functions.

1. Introduction

The classical work [8] introduces the notion of bicomplex and, more gener-
ally, multicomplex numbers. Even though the author traces back the origin of
these numbers to the Italian school of the early twentieth century (see [13]–[17]),
other important contributions that need to be highlighted are the papers of Ryan
([11] and [12]). Price’s book, however, is the first formal and thorough introduction
to these concepts. On the basis of this work, Rochon, Shapiro, and others further
developed the theory of bicomplex holomorphicity in [2], [9] and [10]. To avoid
confusion with the complex case, in this paper we will refer to these functions as
hyperholomorphic.

In a nutshell, one regards the space C of complex numbers as a real bidi-
mensional algebra, and then complexifies the algebra itself. Thus, one obtains a
four-dimensional algebra which is usually denoted by C2, or by BC. The key point
of the theory of functions on this algebra is that classical holomorphic functions
can be extended from one complex variable to this algebra, and one can therefore
develop a new theory of hyperholomorphic functions.

In [8] one can see how to define such a notion of hyperholomorphicity for
bicomplex-valued functions defined on BC and its author shows how most of the
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classical properties of holomorphic functions of one complex variable can be ex-
tended to these new functions. For example, hyperholomorphic functions admit
a representation in power series of a bicomplex variable, and the classical Cauchy
theory (Cauchy theorem, Cauchy integral formula, etc.) can easily be obtained for
these functions.

The last chapter of [8] highlights a few open problems in the theory, in partic-
ular the extension of this analysis to the case of several bicomplex variables.

In this paper we attempt two different tasks. First, in Section 2, we show how
the space of hyperholomorphic functions on bicomplex numbers can be obtained in
a new way; rather than looking at a generalization of complex numbers, we consider
the space of quaternions, and we attempt to define a variation of the Cauchy–Fueter
operator, whose solutions form a multiplicatively closed structure. We therefore
discuss a variety of possible modifications of the Cauchy–Fueter system, and we
show that some of those leads to a multiplicatively closed space of functions. As
it turns out, this approach corresponds exactly to identifying R

4 with BC, and the
systems one looks at are those who are necessary to define hyperholomorphicity
in [8].

More important, however, we show that while Price has regarded the theory of
hyperholomorphic functions as an extension of the theory of holomorphic functions
of one complex variable, there are in fact important reasons why we should think
of this as an extension of the theory of holomorphic functions of several complex
variables. This was already understood by Spampinato ([15] and [16]), and we
demonstrate it here by looking at the nature of singularities for hyperholomorphic
functions.

Specifically, we will show that hyperholomorphic functions of a bicomplex vari-
able can be seen as solutions of an overdetermined system of linear constant coeffi-
cient partial differential equations (unlike the case of holomorphic functions which
are solutions of a determined system), and as such we are able to use some stan-
dard techniques from the theory of those systems to demonstrate, for example,
that hyperholomorphic functions of a bicomplex variable do not admit compact
singularities (in contrast with holomorphic functions of a complex variable).

Section 3 is therefore devoted to the introduction and the study of the differen-
tial operators which allow to define hyperholomorphicity in BC. In Section 4, these
operators are used to study the algebraic properties of hyperholomorphic functions
in BC, and they allow us to highlight the similarities between these functions and
holomorphic functions of several complex variables. Finally, in Section 5 we show
how this approach is useful to extend the theory to the case of several bicomplex
variables. We will find, in this case, some interesting peculiarities, that give further
interest to their study.
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2. Generalized Cauchy–Fueter operators

Our motivation for this article started with the investigation of the failure for
the space of solutions of the Cauchy–Fueter operator to be multiplicatively closed.
In this section we use 1, I, J and K to denote the usual quaternionic basis, in order
to distinguish them from 1, i, j and k which denote the bicomplex basis in the
following section.

We denote the usual complex space with imaginary unit I by CI={z=a+Ib|
a, b∈R}, and, similarly, the complex space with imaginary unit J by CJ. Then the
space of quaternions can be written as H=CI ×CJ CI, where I and J anti-commute,
IJ=K, and I2=J2=K2=−1. Thus, a quaternion q=x0+Ix1+Jx2+Kx3 ∈H can
be rewritten as q=z+Jw̄, where z=x0+Ix1 and w=x2+Ix3 both belong to CI.

We define the usual complex differential operators in both copies of CI as
follows:

∂z̄ = ∂x0 +I∂x1 , ∂z = ∂x0 −I∂x1 ,

∂ẇ = ∂x2 +I∂x3 , ∂w = ∂x2 −I∂x3 ,

where (for every real or complex variable t) we use the shorthand ∂t for ∂/∂t.
Note that, if h is a quaternionic-valued function defined on H, then

∂z̄(Jh)= (∂x0 +I∂x1)(Jh)= (J∂x0 −JI∂x1)h =J∂z(h).

If F : H→H is the function F (q)=f0(q)+If1(q)+Jf2(q)+Kf3(q), where fi : H→R,
then F can be rewritten as F =f+Jḡ, where f=f0+If1 and g=f2+If3, and
f, g : H→CI. From this point of view, the usual Cauchy–Fueter operator can be
written (up to a factor of 4) as

∂q̄ = ∂x0 +I∂x1 +J∂x2 +K∂x3 = ∂z̄+J∂w.

Let us then check if it is possible to modify the Cauchy–Fueter operator in such
a way that its space of solutions becomes multiplicatively closed. We will consider
the family of generalized Cauchy–Fueter operators of the type

(1) ∂ε
q̄ = ε0∂x0 +ε1I∂x1 +ε2J∂x2 +ε3K∂x3 ,

where εi=±1.
Note that the usual Cauchy–Fueter operator is obtained when εi=1 for all

i=0, ..., 3. Similarly, the modified Cauchy–Fueter operator [5] is

∂̃ q̄ = ∂x0 +I∂x1 +J∂x2 −K∂x3 = ∂z̄+J∂ẇ,
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and the Cauchy–Fueter conjugate operator is given by

∂q = ∂x0 −I∂x1 −J∂x2 −K∂x3 = ∂z −J∂w.

A quaternionic function F =f0+If1+Jf2+Kf3, is said to be ε-regular if

∂ε
q̄(F )= 0,

or, alternatively, if its components satisfy the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε0∂x0f0 −ε1∂x1f1 −ε2∂x2f2 −ε3∂x3f3=0,

ε1∂x1f0+ε0∂x0f1 −ε3∂x3f2+ε2∂x2f3=0,

ε2∂x2f0+ε3∂x3f1+ε0∂x0f2 −ε1∂x1f3=0,

ε3∂x3f0 −ε2∂x2f1+ε1∂x1f2+ε0∂x0f3=0.

A simple, though lengthy, computation shows that the following result holds.

Theorem 2.1. For every choice of quaternions q1, q2, q3, and q4 (except for
the trivial case in which all qi’s coincide), the space of solutions to the generalized
Cauchy–Fueter operator

q0∂x0 +q1I∂x1 +q2J∂x2 +q3K∂x3

is not closed under multiplication.

Proof. It is easy to notice that it is sufficient to prove the statement of the
theorem when qi=ai are real numbers, instead of quaternions. Denoting by ∂a

q the
generalized Cauchy–Fueter operator, and by fi and gi, respectively, the components
of two quaternion-valued functions F and G, the following relation holds:

∂a
q (F ·G)

= ∂a
q (F )·G+F ·∂a

q (G)

+1(2a1(−f2∂1g3+f3∂1g2)+2a2(f1∂2g3 −f3∂2g1)+2a3(−f1∂3g2+f2∂3g1))

+I(2a1(−f2∂1g2 −f3∂1g3)+2a3(f1∂3g3 −f2∂3g0)+2a2(f3∂2g0+f1∂2g2))

+J(2a2(−f1∂2g1 −f3∂2g3)+2a3(f2∂3g3+f1∂3g0)+2a1(f2∂1g1 −f3∂1g0))

+K(2a3(−f1∂3g1 −f2∂3g2)+2a2(−f1∂2g0+f3∂2g2)+2a1(f2∂1g0+f3∂1g1)).

An easy analysis of the formula above leads to the proof of the theorem. �

The reason for this situation is, as is well known, due to the lack of commuta-
tivity in the skew field H of quaternions. It is therefore natural to think that maybe
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a different product could lead to a family of generalized Cauchy–Fueter operators
for which the space of solutions would be closed under multiplication.

By reviewing the computations above, it is not difficult to see that this is the
case if one defines, for example, the matrix product

F ·G=

⎡

⎢
⎢
⎣

f0g0 f0g1 f0g2 f0g3

−f1g1 f1g0 −f1g3 f1g2

−f2g2 −f2g3 f2g0 f2g1

f3g3 −f3g2 −f3g1 f3g0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1
I
J
K

⎤

⎥
⎥
⎦ .

In this case one immediately notices that the product is commutative, and that
the space of solutions to generalized Cauchy–Fueter operators are closed under this
particular multiplication. But, obviously, this is not the quaternionic multiplication,
and in fact one can easily show that the product above reflects exactly the structure
of bicomplex numbers (which will be introduced formally in the next section). In
other words, if we assume that F and G have values in the space of bicomplex
numbers, then the product above is the natural product for those functions, and a
theory of solutions of generalized Cauchy–Fueter operators can be reconstructed in
the most natural way.

We recover, therefore, bicomplex numbers not as an extension of complex num-
bers, but rather as a new structure on R

4 which maintains commutativity.
The next few sections will study in detail the properties of functions defined

on bicomplex numbers (and with bicomplex values), which satisfy suitable systems
(and combinations of systems) of differential equations.

3. Bicomplex differential operators

We summarize below the definition and properties of the space of bicomplex
numbers, and we refer the reader to [8] and [10] for further details.

The bicomplex space BC is defined to be the product of two copies of the
complex spaces Ci over the space of complex numbers Cj, i.e. BC=Ci ×Cj

Ci, where
i and j commute, ij=ji=k, i2=j2=−1 and k2=1.

We will write a bicomplex number as Z=x0+ix1+jx2+kx3=z+jw, where
z, w ∈Ci. A function F : BC→BC can be written as F (Z)=f0(Z)+if1(Z)+jf2(Z)+
kf3(Z), where fi : BC→R; we can also write F =u+jv, where u=f0+if1 and
v=f2+if3.

The algebra BC is not a division algebra since, for example, (1+k)(1−k)=0.

From this point of view, it is useful to consider the following two elements of BC:

e1 =
1+k

2
and e2 =

1−k
2

.
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It is easy to verify that e1 and e2 are linearly independent over C, and that
e1+e2=1, e1 ·e2=0, e2

1=e1, e2
2=e2 and e2

1+e2
2=1. If we denote by I1=〈e1〉 and

I2=〈e2〉 the ideals they generate in BC, we see that I1 ∩I2={0}, I1 ·I2={0} and
〈I1+I2〉=BC.

For all Z=z+jw ∈BC, we can write:

Z =(z −iw)e1+(z+iw)e2;

for obvious reasons, this is called the idempotent representation of a bicomplex
number.

Let Z=x0+ix1+jx2+kx3=z+jw ∈BC. Unlike what happens for complex
numbers, there are several natural ways to define a notion of conjugation in BC.

The various definitions are all interesting, and lead to different ways of regarding
the algebra of bicomplex numbers.

Definition 3.1. The Z∗-conjugate is defined as

Z∗ = z̄ −jw̄,

where we took the conjugates in the two complex spaces Ci corresponding to the
variables z and w, respectively, and the conjugate in Cj corresponding to j �→−j.

The Z̃-conjugate is defined as

Z̃ = z̄+jw̄,

where we took only the conjugates in the two complex spaces Ci corresponding to
the variables z and w, respectively.

Finally the Z†-conjugate is defined as follows

Z† = z −jw,

where we took only the conjugate in Cj corresponding to j �→−j.

Remark 3.2. Note that

ZZ∗ = |z|2i +|w|2i +2k(x0x3 −x1x2)

is an element of the real Clifford algebra R1,0, see [5] for its definition; this algebra
is not a complex space because k2=1, and it is also known as the set of hyperbolic
numbers or duplex numbers.

Similarly,
ZZ̃ = |z|2i − |w|2i +2j(x0x2+x1x3) ∈ Cj

and
ZZ† = z2+w2 ∈ Ci.
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It is easy to notice that the combination of any two conjugates gives the third
one,

Z̃∗ =Z†, (Z†)∗ = Z̃, etc.

Remark 3.3. A bicomplex number Z=z+jw is nonsingular (or invertible) if
and only if

ZZ† = z2+w2 �=0.

Since the nonzero complex number z2+w2 ∈Ci has a natural complex inverse, the
bicomplex number

Z−1 =
Z†

z2+w2

is easily seen to be the inverse of Z in BC.

In terms of the ideals I1 and I2, the set of nonsingular bicomplex numbers is
BC\(I1 ∪I2). A simple computation shows that, in terms of the {e1, e2} idempotent
representation, the inverse of a bicomplex number Z=z+jw /∈I1 ∪I2 is given by

Z−1 =(z −iw)−1e1+(z+iw)−1 e2.

Definition 3.4. Let us consider z=x0+ix1 and w=x2+ix3 in Ci. We define the
‡-conjugate of ζ=z+iw=(x0 −x3)+i(x1+x2)∈Ci by analogy with the bicomplex
conjugate †, as follows:

ζ‡ = z −iw =(x0+x3)+i(x1 −x2) ∈ Ci.

With this new notation, every bicomplex number Z can be written as
Z=ζ‡ e1+ζ e2, with ζ‡ ·ζ=ZZ† =z2+w2 ∈Ci. Moreover we can now multiply in-
vertible bicomplex numbers “term-by-term” as follows: if Z=ζ‡ e1+ζ e2 and
U=η‡ e1+η e2, then:

ZU = ζ‡η‡ e1+ζη e2,

ZU −1 = ζ‡(η‡)−1 e1+ζη−1 e2,

ZZ−1 = 1 e1+1 e2 =1,

Zn = (ζ‡)n e1+ζn e2.

In what follows we will indicate by A1 and A2 the two copies of Ci, determined
by ζ‡ and ζ .
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For each one of the conjugates we introduced above, we can define correspond-
ing differential operators. Since the usual complex derivatives in Ci are given by

∂z̄=∂x0 +i∂x1 , ∂z=∂x0 −i∂x1 ,

∂ẇ=∂x2 +i∂x3 , ∂w=∂x2 −i∂x3 ,

we can analogously define

∂ζ =∂z+i∂w, ∂ζ‡ =∂z −i∂w,

∂ζ̄ =∂z̄+i∂ẇ, ∂
˛ζ‡ =∂z̄ −i∂ẇ.

Consider now a bicomplex function F : BC→BC, and write it in two equivalent
ways as F =u+jv=φ‡ e1+φ e2, where u, v : BC→Ci, and φ‡ =u−iv and φ=u+iv
are functions from BC to A1 and A2, respectively. The following identities are
immediate:

(2)
∂
˛ζ‡ φ‡ =(∂ζ̄φ)‡, ∂ζ̄φ

‡ =(∂
˛ζ‡ φ)‡,

∂ζ‡ φ‡ =(∂ζφ)‡, ∂ζφ
‡ =(∂ζ‡ φ)‡.

This allows us to define the natural bicomplex differential operators, corre-
sponding to the three conjugates:

∂Z∗ = ∂x0 +i∂x1 +j∂x2 +k∂x3 = ∂z̄+j∂ẇ = ∂
˛ζ‡ e1+∂ζ̄ e2,

∂Z̃ = ∂x0 +i∂x1 −j∂x2 −k∂x3 = ∂z̄ −j∂ẇ = ∂ζ̄ e1+∂
˛ζ‡ e2,

∂Z† = ∂x0 −i∂x1 +j∂x2 −k∂x3 = ∂z+j∂w = ∂ζ‡ e1+∂ζ e2,

∂Z = ∂x0 −i∂x1 −j∂x2 +k∂x3 = ∂z −j∂w = ∂ζ e1+∂ζ‡ e2.

We will now show that these operators act like derivatives, in the sense that
they obey the Leibniz multiplication formula when applied to products of bicomplex
functions.

Let F : BC→BC be the bicomplex function F =u+jv=φ‡ e1+φ e2, with
u, v : BC→Ci, φ‡ =u−iv and φ=u+iv, and let G : BC→BC be the bicomplex func-
tion G=s+jt=γ‡ e1+γ e2, with s, t : BC→Ci, γ‡ =s−it and γ=s+it. Then the
bicomplex product F ·G is given by

F ·G=(us−vt)+j(vs+ut) =φ‡γ‡ e1+φγe2.

In real coordinates, if F =f0+if1+jf2+kf3 and G=g0+ig1+jg2+kg3, then

F ·G = (f0g0 −f1g1 −f2g2+f3g3)+i(f0g1+f1g0 −f2g3 −f3g2)

+j(f0g2 −f1g3+f2g0 −f3g1)+k(f0g3+f1g2+f2g1+f3g0).
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Simple computations show that

(3) ∂Z∗ (F )= (∂z̄u−∂ẇv)+j(∂ẇu+∂z̄v) = ∂
˛ζ‡ φ‡ e1+∂ζ̄φ e2,

and that a similar formula holds for the other differential operators. As a conse-
quence, we obtain that

∂Z∗ (F ·G) = ∂Z∗ (F )·G+F ·∂Z∗ (G),

∂Z̃(F ·G) = ∂Z̃(F )·G+F ·∂Z̃(G),

∂Z† (F ·G) = ∂Z† (F )·G+F ·∂Z† (G).

Every one of these differential operators can be used to define a natural notion
of holomorphicity (or regularity), by simply looking at its kernel. It turns out
that the three theories that one obtains are very much similar, but what will be
interesting will be to look at the intersection of the three kernels.

Definition 3.5. A function F : BC→BC will be called bicomplex Z∗-regular if
it satisfies the equation

∂Z∗ (F )= 0;

F will be called bicomplex Z̃-regular if it satisfies the equation

∂Z̃(F )= 0;

finally, F will be called bicomplex Z†-regular if it satisfies the equation

∂Z† (F )= 0.

If we write F in terms of its complex coordinates as F =u+jv, the regularity
conditions just introduced are equivalent, respectively, to the following 2×2 complex
systems (some sort of complex versions of the Cauchy–Riemann system):

{
∂z̄u−∂ẇv=0,

∂ẇu+∂z̄v=0,

{
∂z̄u+∂ẇv=0,

∂ẇu−∂z̄v=0,
and

{
∂zu−∂wv=0,

∂wu+∂zv=0.

Finally, if we write F =f0+if1+jf2+kf3, the conditions of regularity can be
interpreted in terms of 4×4 real systems that resemble the well-known Cauchy–
Fueter system as follows (once again, the first system is for Z∗ regularity, the
second for Z̃ regularity, and the third for Z† regularity:

⎡

⎢
⎢
⎢
⎣

∂x0 −∂x1 −∂x2 ∂x3

∂x1 ∂x0 −∂x3 −∂x2

∂x2 −∂x3 ∂x0 −∂x1

∂x3 ∂x2 ∂x1 ∂x0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0

f1

f2

f3

⎤

⎥
⎥
⎥
⎦

= �0,
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⎡

⎢
⎢
⎢
⎣

∂x0 −∂x1 ∂x2 −∂x3

∂x1 ∂x0 ∂x3 ∂x2

−∂x2 ∂x3 ∂x0 −∂x1

−∂x3 −∂x2 ∂x1 ∂x0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0

f1

f2

f3

⎤

⎥
⎥
⎥
⎦

= �0,

⎡

⎢
⎢
⎢
⎣

∂x0 ∂x1 −∂x2 −∂x3

−∂x1 ∂x0 ∂x3 −∂x2

∂x2 ∂x3 ∂x0 ∂x1

−∂x3 ∂x2 −∂x1 ∂x0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0

f1

f2

f3

⎤

⎥
⎥
⎥
⎦

= �0.

Remark 3.6. If we write F =φ‡ e1+φ e2, where φ‡ =u−iv and φ=u+iv, then
F is Z∗-regular if and only if ∂

˛ζ‡ φ‡ =0 (equivalently ∂ζ̄φ=0, see (2)). Similarly F

is Z̃-regular if and only if ∂ζ̄φ
‡ =0 (equivalently ∂

˛ζ‡ φ=0, see again (2)). Finally F

is Z†-regular if and only if ∂ζ‡ φ‡ =0 (equivalently ∂ζφ=0, see (2)).

Example 3.7. Easy computations show that the identity function F (Z)=Z is
bicomplex Z∗-regular, as well as Z̃-regular, and Z†-regular. By the same token,
every polynomial in Z is regular with respect to Z∗, Z̃ and Z†. It can also be
shown, for example, that Z† is Z∗-regular, but cannot be written as a polynomial
in Z. Thus, while polynomials in Z (and even converging power series in Z for
which we assume the usual notions of uniform convergence on compact sets) are
Z∗-regular, it is not true that all Z∗-regular functions can be written as converging
power series in Z.

4. Hyperholomorphicity in one variable

In [8] and [10] the following notion of bicomplex derivative is introduced.

Definition 4.1. Let U ⊆BC be open and Z0 ∈U . A function F : U→BC is called
bicomplex differentiable at Z0 with derivative equal to F ′(Z0)∈BC, if

lim
Z→Z0

Z−Z0 invertible

(Z −Z0)−1(F (Z)−F (Z0)) =F ′(Z0).

Functions which admit a bicomplex derivative are called hyperholomorphic,
and it can be shown that this is equivalent to requiring that they admit a power
series expansion in Z [8, Definition 15.2]. There is however a third equivalent notion
which is more suitable for our purposes (see [10]).
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Theorem 4.2. Let U be open and F : U→BC be such that F =u+jv ∈C1(U).
Then F is hyperholomorphic if and only if

(1) u and v are complex holomorphic in z and w, and
(2) ∂zu=∂wv and ∂zv=−∂wu on U .

Moreover, F ′ = 1
2∂ZF =∂zu+j∂zv=∂wv −j∂wu and F ′(Z) is invertible if and only if

the Jacobian is nonzero.

As mentioned in [10], the condition F ∈C1(U) can be dropped via Hartogs’
theorem. Note here a major difference between quaternionic and bicomplex analysis:
as is well known, in H the only functions who have quaternionic derivatives are
quaternionic linear functions ([17] and [18]), while in the bicomplex setting the class
of functions admitting derivatives is nontrivial and consists of functions admitting
power series expansion.

In our interpretation, the conditions in Theorem 4.2 can be translated into
the following: let F =u+jv and set "F =[u v]t; then F is a bicomplex holomorphic
function if and only if

(4)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂z̄ 0
∂ẇ 0
0 ∂z̄

0 ∂ẇ

∂z −∂w

∂w ∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

"F =�0.

Note that the condition (4) can also be written as

(5)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂z̄ 0
0 ∂z̄

∂ẇ 0
0 ∂ẇ

∂z −∂w

∂w ∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

"F =�0.

Taking suitable linear combinations of the first four rows, the condition (4) becomes

(6) P (D)"F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂z̄ −∂ẇ

∂ẇ ∂z̄

∂z̄ ∂ẇ

∂ẇ −∂z̄

∂z −∂w

∂w ∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

"F =�0

which is nothing but the result in Lemma 1 from [9].
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Theorem 4.3. Let U ⊆BC be open and F : U→BC be such that F =u+jv ∈
C1(U). Then F is hyperholomorphic if and only if F is Z∗, Z̃ and Z†-regular.

Note also that in the idempotent representation, a function F is bicomplex
holomorphic if and only if

⎧
⎪⎨

⎪⎩

∂ζ̄φ=0,

∂
˛ζ‡ φ=0,

∂ζφ=0.

This system of equations is equivalent to system (5).

Remark 4.4. System (6) is elliptic; indeed any infinitely differentiable solution
to the system can be expressed in a power series (see [8]).

We have the following result.

Proposition 4.5. Bicomplex holomorphic functions form a sheaf H of rings.

Proof. For any open set U the set H(U) of bicomplex holomorphic functions is
a ring with respect to the usual sum and product of functions. Consider the sheaf
E of infinitely differentiable functions and the system represented by P (D) defined
in (6). Since H is the kernel E P of P (D) in E , it follows immediately that H is a
sheaf of rings. �

In the sequel, we will derive cohomological properties of the sheaf of bicomplex
holomorphic functions by using some standard tools described in detail in [5]. We
will show that, even though the hyperholomorphic functions are functions in one
(bicomplex) variable, they have properties which make them similar to functions
in several variables. Specifically, most other theories of regularity in one variable
(holomorphic functions in one complex variable, Cauchy–Fueter regular functions
in one quaternionic variable, monogenic functions in one vector variable, and so
on) can be algebraically characterized by noting that the resolution of the associ-
ated module has length one (in fancier terminology, the flabby dimension of the
associated sheaves is one). In the case of hyperholomorphic functions on bicomplex
variables, however, the resolution is not trivial, the flabby dimension is three, and
the specific description of the resolution entails a number of significant analytic
consequences.

In accordance with the process described in [5], and with some abuse of lan-
guage, we will now construct the module associated with the system (6). To begin
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with, we consider the “Fourier transform” P of the matrix P (D) in (6). The en-
tries of P belong to the ring R=C[z, z̄, w, w̄] and the cokernel of the map P t, i.e.
M :=R2/〈P t〉, where 〈P t〉 denotes the module generated by the columns of P t, is
the module associated with the system (6). We have the following result.

Theorem 4.6. The minimal free resolution of the module M=R2/〈P t〉 is

(7) 0 −→R2(−3)
P t

2−−→R6(−2)
P t

1−−→R6(−1)
P t

−−→R2 −→M −→ 0.

Moreover, Exti(M, R)=0, i=0, 1, 2, and Ext3(M, R) �=0.

Proof. First of all let us rewrite the matrix P t as

P t =
[

z̄ w̄ z̄ w̄ z w

−w̄ z̄ w̄ −z̄ −w z

]

= [Z∗ Z̃ Z†]

with obvious meaning of the symbols. It is immediate to verify that any two ele-
ments among Z∗, Z̃ and Z† commute. The relations coming from these commuta-
tions are syzygies. There cannot be other relations among the columns of P t, in
fact the entries are the complex variables z, z̄, w and w̄ whose syzygies can only
come from their commutation. Thus, the matrix of the first syzygies can be written
as

P t
1 =

⎡

⎢
⎣

−Z̃ Z† 0
Z∗ 0 −Z†

0 −Z∗ Z̃

⎤

⎥
⎦

and the matrix which closes the complex is P t
2=[Z† Z̃ Z∗]t. The fact that

Ext0(M, R)=0 follows from the fact that the matrix P t has independent columns.
Moreover, the greatest common divisor of the 2×2 minors of the matrix P t, in the
form (6), is one, and so Lemma 3.1 in [1] implies that Ext1(M, R)=0. The fact that
Ext2(M, R)=0 can be proved directly by using the algebraic manipulation soft-
ware CoCoA [3]. At the last spot of the complex we have a nontrivial cohomology,
corresponding to the cokernel of the last map. �

Remark 4.7. An alternative way to prove Theorem 4.6 is to use the condition
of regularity on the matrices representing Z∗, Z̃ and Z† given in [4].

An immediate corollary follows from the fact that the matrix P1(D) expresses
the compatibility conditions on the solvability of the inhomogeneous system asso-
ciated with the bicomplex hyperholomorphicity (see [5] and [6]).



290 F. Colombo, I. Sabadini, D. C. Struppa, A. Vajiac and M. B. Vajiac

Corollary 4.8. Let U ⊆BC be an open convex set and let gi be infinitely dif-
ferentiable functions on U . The inhomogeneous system

⎧
⎪⎨

⎪⎩

∂Z∗ F =g1,

∂Z̃F =g2,

∂Z† F =g3,

admits a solution F if and only if
⎧
⎪⎨

⎪⎩

∂Z∗ g2=∂Z̃g1,

∂Z∗ g3=∂Z† g1,

∂Z† g2=∂Z̃g3.

Two more corollaries are direct consequences of the vanishing of the Exti-
modules [7, Chapter 8].

Corollary 4.9. Let K ⊂BC be a compact convex set and let U be an open
neighborhood of K. Then the distribution solutions to the homogeneous system
P (D)f=0 on U \K can be uniquely extended to a solution of the system on U .

Proof. This is a consequence of the vanishing of Exti(M, R) for i=0, 1. �

Corollary 4.10. The characteristic variety of M has dimension 1.

As another consequence of Theorem 4.6 we can state the following duality
result.

Proposition 4.11. If K is a bounded convex set in BC then

Hj
K(BC, H)= 0, j =1, 2.

If K ⊂BC is a compact set, then

(8) H3
K(BC, H) ∼= H(K)′.

Proof. The vanishing of Exti(M, R) for i=1, 2 immediately gives the first part
of the statement. The duality (8) is a consequence of the topological duality

H3
K(R4, (D ′)P ) ∼= H0(K, E P t

2 )′

which holds by the vanishing of Exti(M, R) for i=0, 1, 2. The fact that P t
2=P and

that the system is elliptic give that (D ′)P =E P =H. �
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5. Hyperholomorphicity for functions of several bicomplex variables

In this short section we will consider functions of several bicomplex variables.
We will denote by (Z1, ..., Zn) a variable in BC

n. For each Zi=zi+jwi we have
the conjugates Z∗

i , Z̃i and Z†
i . The notion of bicomplex hyperholomorphicity in

several variables can be introduced by requiring bicomplex hyperholomorphicity in
each variable as in the following definition.

Definition 5.1. Let U be an open set in BC
n and let F be a differentiable

function from U to BC. Then F =u+jv is bicomplex holomorphic if and only if
(1) u and v are complex holomorphic in zi and wi for every i=1, ..., n, and
(2) ∂ziu=∂wiv and ∂ziv=−∂wiu on U .

We immediately have the following result.

Proposition 5.2. Let U ⊆BC
n be an open set and let F =u+jv be a differen-

tiable function from U to BC. Then F is bicomplex holomorphic in (Z1, ..., Zn) if
and only if F is Z∗

i , Z̃i and Z†
i -regular for all i=1, ..., n.

Proof. By reasoning as in Section 4, we can write conditions (4) for each
i=1, ..., n in the form (6) and the statement follows. �

To construct the module of the system associated with several bicomplex vari-
ables it is sufficient to consider the matrices Pi(D) in (6) for each variable Zi and
then to form the matrix

Q(D) =

⎡

⎢
⎣

P1(D)
...

Pn(D)

⎤

⎥
⎦ ,

whose “Fourier transform” is denoted by Q. The entries of Q belong to the ring
R=C[z1, z̄1, w1, w̄1, ..., zn, z̄n, wn, w̄n] in 4n variables. We will consider the cokernel
of the map Qt i.e. M :=R2/〈Qt〉. We have the following result.

Theorem 5.3. The minimal free resolution of the module M=R2/〈Qt〉 is lin-
ear of length n:

(9) 0 −→R2(−3n)
Qt

3n−1
−−−−→ ... −→R2(3n

2 )(−2)
Qt

1−−→R6n(−1)
Qt

−−→R2 −→M −→ 0.

Moreover, Exti(M, R)=0, i=0, 1, ..., 3n−1 and Ext3n(M, R) �=0.
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Proof. We write the matrix Qt in the form

Qt =
[

z̄1 w̄1 z̄1 w̄1 z1 w1 ... z̄n w̄n z̄n w̄n zn wn

−w̄1 z̄1 w̄1 −z̄1 −w1 z1 ... −w̄n z̄n w̄n −z̄n −wn zn

]

.

All its columns are independent and any two blocks representing a variable Zi or
one of its conjugates, commute. The matrix of the first syzygies has 2

(
3n
2

)
rows

which come from the commutation relations among the 2×2 blocks. Also all the
other matrices can be written using the Koszul-like relations and at the rth step
they have dimension 2

(
3n

r+1

)
×2

(
3n
r

)
. In particular, the matrix which closes the

complex contains all the 3n building blocks in Q and thus defines the same system
as Q. The fact that Ext0(M, R)=0 follows from the fact that the matrix Qt has
independent columns. All the other vanishing follow from the fact that the syzygies
are of Koszul type. At the last spot of the complex we have a nontrivial cohomology,
corresponding to the cokernel of the last map, and thus Ext3n(M, R) �=0. �

As in the previous section, we have the following immediate corollaries.

Corollary 5.4. Let U ⊆BC be an open convex set and let G be a 3n-dimension-
al vector of infinitely differentiable functions on U . The inhomogeneous system

Q(D)F =G

admits a solution F if and only if

Q1(D)G=0,

where Q1(D) is the anti-Fourier transform of the matrix Q1.

Corollary 5.5. Let K ⊂BC
n be a compact convex set and let U be an open

neighborhood of K. Then the distribution solutions to the homogeneous system
P (D)f=0 on U \K can be uniquely extended to a solution of the system on U .

Proof. This is a consequence of the vanishing of Exti(M, R) for i=0, 1. �

Corollary 5.6. The characteristic variety of M has dimension n.

As another consequence of Theorem 5.3 (and its proof) we can state the fol-
lowing duality result whose proof is similar to the proof of Proposition 4.11, and
where the crucial fact is the fact that the matrix which closes the complex in The-
orem 5.3 is the same matrix that defines hyperholomorphicity in several bicomplex
variables.
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Proposition 5.7. If K is a bounded convex set in BC
n then

Hj
K(BC

n, H)= 0, j =1, ..., 3n−1.

If K ⊂BC is a compact set, then

(10) H3n
K (BC

n, H) ∼= H(K)′.

Remark 5.8. This last result is perfectly parallel (with 3n replacing n) to the
well known Köthe–Martineau–Grothendieck duality theorem for several complex
variables; its beauty rests on the fact that the same sheaf of functions appears on
both sides of the duality. This is not a feature that exists in the quaternionic case
(at least not for n>2), as is shown for example in [1] and in [5]. This aspect,
together with the fact that n is replaced by 3n in this case, may be an indication
that an interesting hyperfunction theory can be defined in this setting.
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