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On the weak-type (1, 1) of the uncentered
Hardy–Littlewood maximal operator associated

with certain measures on the plane
Anna K. Savvopoulou and Christopher M. Wedrychowicz

Abstract. Suppose μ is a positive measure on R
2 given by μ=ν ×λ, where ν and λ are

Radon measures on S1 and R
+, respectively, which do not vanish on any open interval. We prove

that if for either ν or λ there exists a set of positive measure A in its domain for which the upper

and lower s-densities, 0<s≤1, are positive and finite for every x∈A then the uncentered Hardy–

Littlewood maximal operator Mμ is weak-type (1, 1) if and only if ν is doubling and λ is doubling

away from the origin. This generalizes results of Vargas concerning rotation-invariant measures

on R
n when n=2.

1. Introduction

Let μ be a positive Borel measure on R
n, finite on compact sets and with

μ(B)>0 for all Euclidean balls B. We define the uncentered Hardy–Littlewood
maximal operator associated with μ by

Mμf(x) = sup
x∈B

1
μ(B)

∫
B

|f(y)| dμ(y) for f ∈ L1
μ(Rn),

where the B are open balls.
The case when μ=ν ×λ+hδ(0,0), where ν is Lebesgue measure on the unit

sphere Sn−1 and λ is a measure on R
+ are the rotation-invariant measures on R

n

which have been studied in several papers. In [3] it was shown that Mμ is weak-type
(1, 1) for all μ when n=1, and that if n=2 and dμ=e−x2−y2

dx dy then Mμ is not
weak-type (1, 1). In [4] the main result is that Mμ is weak-type (1, 1) if and only
if λ is doubling away from the origin (see Section 3 for the definition) when n≥2.
This includes the result concerning the Gaussian on R

2 as a special case as it is
easy to see that this measure is not doubling away from the origin.
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In the present paper we will restrict our attention to product measures on R
2

of the form μ=ν ×λ, where ν is a measure on the circle S1 and λ is a measure
on R

+. Technically we must extend μ to all of R
2 by writing μ=ν ×λ+hδ(0,0).

However in what follows there is no loss of generality in assuming that h=0 i.e. that
μ({(0, 0)})=0, as the weak-type (1, 1) for ν ×λ will be preserved if hδ(0,0) is added
to μ, and the analysis of Section 5 takes place away from the origin. Our results will
generalize those of [4] when n=2, by taking ν equal to Lebesgue measure on S1.

After some preliminaries we prove that Mμ is weak-type (1, 1), when ν is a
doubling measure and λ is doubling away from the origin. We will next turn to
establishing a partial converse of this statement.

The following are our main results. It is assumed that μ is a Borel measure
which is positive on Euclidean balls and finite on compact sets.

Theorem 1.1. Let μ=ν ×λ be a measure for which ν is doubling and λ is
doubling away from the origin. Then Mμ is weak-type (1, 1).

We will use the upper and lower s-densities of Radon measures to provide
a characterization of some measures μ=ν ×λ where the converse to Theorem 1.1
holds. We recall the following definitions.

Definition 1.2. For a Radon measure σ defined on R
n we define the lower and

upper s-densities respectively by

θs
∗(σ, x) = lim inf

r↓0

σ(B(x, r))
(2r)s

,

θ∗s(σ, x) = lim sup
r↓0

σ(B(x, r))
(2r)s

,

where B(x, r) is the closed ball centered at x with radius r and s>0.

Theorem 1.3. Let μ=ν ×λ be a positive measure on R
2 with μ(B)>0 for

all Euclidean balls B and μ(K)<∞ for all compact sets K. Suppose either of the
following holds:

(1) ν is a Radon measure for which there exists a set A⊂S1, ν(A)>0, with
0<θs

∗(x, ν)≤θ∗s(x, ν)<∞ for all x∈A; or
(2) λ is a Radon measure for which there exists a set A⊂R

+, λ(A)>0, with
0<θs

∗(x, λ)≤θ∗s(x, λ)<∞ for all x∈A;
then Mμ is weak-type (1, 1) if and only if ν is doubling and λ is doubling away from
the origin.
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When s=1 we have the following slightly stronger result.

Corollary 1.4. If the Lebesgue decomposition of either ν or λ has a non-zero
absolutely continuous part, then Mμ is weak-type (1, 1) if and only if ν is doubling
and λ is doubling away from the origin.

We also obtain the following under the assumption that one of the factors ν

and λ satisfies the somewhere doubling property. See Section 3 for the definition.

Theorem 1.5. If either ν or λ is somewhere doubling, then Mμ is weak-type
(1, 1) if and only if ν is doubling and λ is doubling away from the origin.

The converse of Theorem 1.1 does not hold in full generality. In Example 5.9
we give an example of a measure μ=ν ×λ where Mμ is weak-type (1, 1) and ν is
not doubling and λ is not doubling away from the origin.

2. Some basic inequalities

We begin by defining a few fundamental objects, and then state some simple
geometric propositions. The proofs may be established using basic trigonometry
and will therefore either be sketched or left to the reader. The notation, however,
will be employed throughout the paper.

The following object appeared in [4].

Definition 2.1. Given a ball B=B(x0, R) we define its associated sector SB as

SB =
{

x ∈ R
n : |x0| −R < |x| < |x0|+R and ang(x, x0) < arcsin

(
R

|x0|

)}

if |x0| ≥R, where ang(x, x0) is the angle between the rays emanating from 0 and
ending at x and x0.

When |x0|<R we have

SB = {x ∈ R
n : |x| < |x0|+R}.

Definition 2.2. We define the axis of the ball B to be the ray emanating from
the origin which passes through the center of B.

Notation 2.3. (1) By Fθ we will mean a ray emanating from the origin making
an angle θ with some other specified ray.
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For (2)–(4) let B be a ball of radius R<|x0|.
(2) By r1(θ) and r2(θ) we will denote the lengths along Fθ, if any, where Fθ

intersects the boundary of B. We will set r(θ)=r2(θ)−r1(θ). Thus r(θ) is the
length of the segment of Fθ which is inside B.

(3) By AB we will denote the annulus

{x : |x0| −R < |x| < |x0|+R}.

(4) By g1(θ) and g2(θ) we denote the lengths of the two line segments in Fθ

contained in AB \B when such segments exist for θ. They are thus the lengths of
the gaps between the boundary of the annulus and the boundary of B.

(5) We will let g(θ)=|x0|+R−r(θ), when R≥ |x0|.

In the following propositions θ is an angle made with respect to the axis of the
ball.

Proposition 2.4. Let B be a ball with center x0 and radius R, where |x0|/4≤
R<|x0|. Then for small enough θ, independent of x0 and R, we have

2g1(θ)
|x0| −R

≤ 10,(1)

2g2(θ)
(|x0|+R)−4g2(θ)

≤ 10,(2)

r(θ)
g1(θ)

,
r(θ)
g2(θ)

≥ 100.(3)

Proof. We prove (1), leaving (2) and (3) to the reader.
(1) Assume without loss of generality that the axis of B is the positive y-axis.

Thus we may write x0=(0, y0). It follows that

r1(θ) = y0 cos(θ)−
√

R2 −y2
0 sin2 θ and r2(θ) = y0 cos(θ)+

√
R2 −y2

0 sin2 θ.

As g1(θ)=r1(θ)−(y0 −R), we have

5(y0 −R)−g1(θ)= 6(y0 −R)+
√

R2 −y2
0 sin2 θ −y0 cos θ.

Set R=σy0 for 1
4 ≤σ<1 to obtain

5(y0 −R)−g1(θ) = y0

(
6(1−σ)+

√
σ2 −sin2 θ −cos θ

)
.

As a function of σ, using a derivative argument, the right-hand side is seen to be
greater than or equal to 0 over the interval

[
1
4 , 1

]
when θ is small enough. �
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The following two propositions follow similarly and the proofs are omitted.

Proposition 2.5. Let B be a ball with center x0 and radius R with R<|x0|/4.
Then there exists an N independent of x0 and R such that when θ ≤arcsin(R/|x0|)/N
we have

R ≤ r(θ).

Proposition 2.6. Let B be a ball with center x0 and radius R with R≥ |x0|.
Then for θ small enough, independent of x0 and R, we have

r(θ)
g(θ)

≥ 100.(4)

3. Doubling measures

Throughout the remainder of the paper μ will be a measure on R
2 which is the

product of a positive measure ν on S1, with ν(S1)<∞ and ν(I)>0 for every interval
in S1, and a positive measure λ on R

+ with λ(J)>0 for all intervals J in R
+ and

λ(K)<∞ for all compact sets K in R
+. We will let |I| denote the Lebesgue measure

of an interval I , I the closure of the interval, and I◦ the interior of the interval. As
usual A∼B implies there exist constants C1>0 and C2>0 such that C1 ≤A/B ≤C2.
By kI or kB for some interval I or ball B we mean the ball or interval concentric
with the original one and having radius k-times that of the original radius. We
are identifying the circle with [0, 2π) where arithmetic is mod 2π. Geometrically θ

increases as we move counterclockwise in the plane.

Definition 3.1. For a measure ν as above on S1 we say ν is doubling if ν(2I)≤
Cν(I) for some C>0 and every interval I ⊆S1. We say that ν is doubling somewhere
or somewhere doubling if there exists an interval I ⊆S1 such that ν(2J)≤Cν(J) for
some C>0 whenever J and 2J are contained in I . We say that ν is nowhere doubling
if it is not somewhere doubling.

Definition 3.2. For a measure λ as above on R
+ we say that λ is doubling away

from the origin if there exists a constant C>0 such that

λ([a, a+2r]) ≤ Cλ
([

a+ 1
2r, a+ 3

2r
])

whenever r ≤10a.

We define λ to be somewhere doubling analogously to the definition given for ν.
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Remark 3.3. Verifying the doubling conditions on closed intervals implies them
for all intervals. This is because Cν(I◦)>ν(I) and Cλ(I◦)>λ(I) where I◦ is the
interior of a closed interval I .

We now set out some basic properties of doubling measures which will be useful
in proving the main results of the paper. By adjacent we will mean that I ∪J is an
interval of any kind and I ∩J=∅.

Propositions 3.4 and 3.5 are well known. We refer the reader to [1].

Proposition 3.4. The following are equivalent for a measure ν on S1 with
ν(I)>0 for non-empty intervals I :

(1) ν is doubling ;
(2) ν(I)∼ν(J) for adjacent intervals I and J with |I|=|J |.

The extension of Proposition 3.4 to measures which are doubling away from
the origin is straightforward.

Proposition 3.5. Let λ be a measure on R
+. Then the following are equiva-

lent :
(1) λ is doubling away from the origin;
(2) if |I| ≤10a then λ(I)∼λ(J), whenever I and J are adjacent intervals with

|I|=|J | and a=inf(J ∩J).

Proposition 3.6. Suppose ν is a non-doubling measure on S1 and λ is non-
doubling away from the origin on R

+. Then
(1) there exist adjacent intervals I and J in S1, whose union is open, with

|I| ≥n|J | and ν(J)/ν(I)≥n for any positive integer n;
(2) there exist adjacent intervals I and J in R

+, with 10 inf(I ∪J)≥ |I|, whose
union is open, with |I| ≥n|J | and λ(J)/λ(I)≥n. Furthermore we may take I and
J so that if I ∪J=Q and Q=(a, b) then |I ∪J |/a→0 as n→∞.

Proof. (1) Let a0=1. Define a sequence by aj =n
∑j−1

i=0 ai, and set T =
∑n

j=1 aj .
Now choose a half-open interval U and an adjacent open interval V , such that
ν(U)/ν(V )>T , and |U |=|V |. This is possible since ν is not doubling. Divide U

into n adjacent intervals U1, U2, ..., Un of equal length, where U1 is adjacent to V .
At least one of these intervals satisfies ν(Ui)≥aiν(V ). Let Ui0 denote the first such
interval. Now set J=V ∪

(⋃i0−1
i=1 Ui

)
and I=Ui0 . Then
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ν(J) ≤ ν(V )+
i0−1∑
i=1

aiν(V ) = ν(V )
i0−1∑
i=0

ai =
ν(V )

n
ai0 ≤ ν(Ui0)

n
.

(2) The proof of the first part of (b) is analogous to that of (a). For the
statement |I ∪J |/a→0 we suppose it is false. This implies that there exists an n0

and 1
20 >K>0 such that if n≥n0, and I and J are adjacent intervals where the

following hold:
(a) |I| ≥n|J |;
(b) |I ∪J |/a≤K< 1

20 , where I ∪J=[a, b];
then λ(J)/λ(I)<n.

Take an interval A=(c, c+2r) with r ≤10c and let B=(c+r/2, c+3r/2). Let
M=max{100n0, 100/K} and set Δ=|A|/M=2r/M . Set for 1≤k ≤M2/4,

Bk =
(

c+
r

2
− kΔ

M
, c+

r

2
− (k −1)Δ

M

]
,

B′
k =

(
c+

r

2
− (k −1)Δ

M
, c+

r

2
− (k −1)Δ

M
+Δ

)
.

Observe that
(a) B′

1 ⊂B;
(b) |Bk |/|B′

k |=1/M ≤1/n0;
(c) |Bk ∪B′

k |/(c+r/2−kΔ/M)≤(Δ+Δ/M)/(r/10+r/2−kΔ/M)≤100/M ≤K;
and therefore

(d) λ(Bk)≤n0λ(B′
k).

We also note that for 1≤k ≤M2/4 we have B′
k ⊂Bk−1 ∪B′

k−1. From this it follows
easily that there exists a constant C0>0, independent of A and r, such that

λ(Bk) ≤ C0λ(B′
1) ≤ C0λ(B) for all 1 ≤ k ≤ M2

4
.

Hence

λ

(M2/4⋃
k=1

Bk

)
=λ

((
c, c+

r

2

])
≤ C0

M2

4
λ

((
c+

r

2
, c+

3r

2

))
.

A similar argument gives

λ

([
c+

3r

2
, c+2r

))
≤ C0

M2

4
λ

((
c+

r

2
, c+

3r

2

))
.

Therefore λ is doubling away from the origin which is a contradiction. �
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4. A positive result

In this section we will establish a positive result. Our strategy will be similar
to that in [4] in that we will show that μ(B)∼μ(SB) and then divide the Euclidean
balls into two groups to deduce the weak-type (1, 1) inequality. We assume that
μ=ν ×λ where ν is a doubling measure on S1 and λ is doubling away from the
origin on R

+.

Proposition 4.1. μ(B)∼μ(SB).

Proof. Suppose N is chosen large enough to satisfy Proposition 2.5 and if
θ ≤2π/N then Propositions 2.4 and 2.6 are satisfied by θ. We examine three cases
separately:

R <
|x0|
4

,
|x0|
4

≤ R < |x0| and |x0| ≤ R.

Case 1. R<|x0|/4. Write B=B1 ∪B2 where B1 is the half of B counterclock-
wise from the axis of B and B2 is the other half. Let S1

B and S2
B be the corresponding

halves of SB . We will prove that μ(S2
B)∼μ(B2). That μ(S1

B)∼μ(B1) will follow by
a similar argument.

Divide S2
B and B2 along N sectors of equal angle arcsin(R/|x0|)/N and la-

bel these sectors S1, S2, ..., SN , where S1 is bounded by the axis of B, and set
β=arcsin(R/|x0|). Let θ be an angle made by a ray passing through S1 and the
axis of B. Since 0≤θ ≤arcsin(R/|x0|)/N , Proposition 2.5 implies that r2(θ)−r1(θ)=
r(θ)≥R. This and the fact that R<|x0|/4 gives

λ(|x0| −R, |x0|+R) ≤ Cλ(r1(θ), r2(θ)).

It follows that
μ(B ∩S1) ∼ μ(S1).

Since ν is doubling, by repeatedly applying Proposition 3.4 we get that μ(Si)∼μ(S1)
for N ≥i≥1, the similarity depending on N alone. Therefore

μ(S2
B) ≤ μ(S1)+

N∑
i=2

μ(Si) ≤ C1μ(B ∩S1)+(N −1)C2μ(B ∩S1)

≤ C1μ(B2)+(N −1)C2μ(B2) ≤ C3μ(B2).

Case 2. |x0|>R≥ |x0|/4. We note in this case that arcsin(R/|x0|)=β ≥arcsin 1
4 .

By parts (1) and (2) of Proposition 2.4 and the fact that λ is doubling away from
the origin, we have for Fθ a ray passing through S1, where S1 is as before,

λ((|x0| −R, |x0|+R)) = λ((r1(θ), r2(θ)))+λ((|x0| −R, r1(θ)])+λ([r2(θ), |x0|+R))
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≤ λ((r1(θ), r2(θ)))+λ((r1(θ)−g1(θ), r1(θ)+3g1(θ)))

+λ((r2(θ)−3g2(θ), r2(θ)+g2(θ)))

≤ λ((r1(θ), r2(θ)))+Cλ(r1(θ), r1(θ)+2g1(θ))

+Cλ((r2(θ)−2g2(θ), r2(θ))).

Since these measures are all over segments in B ∩Fθ and in light of part (3) of
Proposition 2.4, the claim follows as before.

Case 3. R≥ |x0|. Using Proposition 2.6 for θ small enough we have,

λ((0, |x0|+R)) = λ((0, r(θ)))+λ([r(θ), r(θ)+g(θ)))

≤ λ((0, r(θ)))+λ((r(θ)−3g(θ), r(θ)+g(θ)))

≤ λ((0, r(θ)))+Cλ((r(θ)−2g(θ), r(θ)))

and the conclusion follows as before. �

Proposition 4.2. When R≤ |x0|/4, μ(SB)∼μ(S2B).

Proof. Assume that the axis of B makes an angle α0 with the x-axis. Then

μ(S2B) = ν

(
α0 −arcsin

2R

|x0| , α0+arcsin
2R

|x0|

)
λ((|x0| −2R, |x0|+2R))

≤ C1C2ν

(
α0 −arcsin

R

|x0| , α0+arcsin
R

|x0|

)
λ(|x0| −R, |x0|+R)

= C1C2μ(SB)

since arcsin(2R/|x0|)/ arcsin(R/|x0|)≤C, ν is doubling and λ is doubling away from
the origin. �

Proposition 4.3. If R≥ |x0|/4 we have μ(B)∼μ(AB), where

AB =
{

SB , if R≥ |x0|,
{x : |x0| −R<|x|<|x0|+R}, if R<|x0|.

Proof. This follows immediately from the fact that μ(SB)≤Cμ(B), the as-
sumption that ν is doubling, and that arcsin(R/|x0|)≥arcsin 1

4 for balls with
|x0|/4≤R<|x0|. �

We are able to conclude the argument exactly as in [4].
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Theorem 4.4. If μ=ν ×λ where ν is doubling and λ is doubling away from
the origin, then Mμ is weak-type (1, 1).

Proof. See [4], p. 15. �

5. Partial converses to Theorem 4.4

We continue to assume that μ=ν ×λ is a Borel measure which is positive on
open balls and finite on compact sets.

Definition 5.1. A measure σ defined on R
+ or S1 will be called uniform at a

point if there exists an x∈R
+ or x∈S1, respectively, for which the following two

properties hold:
(1) there exist ρ0>0 and a constant C>0 such that for all 0<ρ≤ρ0,

σ((x−ρ, x+ρ)) ≤ Cσ((x−ρ/2, x+ρ/2));

(2) for any sequences of positive numbers εn→0 and ρn→0 with εn/ρn→0,
and a collection of open intervals Jn with Jn ⊂(x−ρn, x+ρn) and |Jn|=2εn we
have

σ(Jn)
σ((x−ρn, x+ρn))

→ 0.

Lemma 5.2. Let σ be a Radon measure defined on R
+ or S1 for which there

exists a set of positive measure A in R
+ or S1, respectively, on which

0 <θs
∗(σ, x) ≤ θ∗s(σ, x) < ∞ for all x ∈ A.

Then σ is uniform at a point.

Proof. We assume that σ is defined on S1, the argument for R
+ being identical.

Let r0 be small enough so that there exist C2, C1>0 such that the set

A0 =
{

x ∈ S1 : C2 >
σ(B(x, r))

(2r)s
>C1 > 0 for all r ≤ r0

}

has σ(A0)>0. For σ-almost every x∈A0 we have

lim
r↓0

σ(B(x, r)−A0)
(2r)s

≤ C2 lim
r↓0

σ(B(x, r)−A0)
σ(B(x, r))

= 0.

See Corollary 2.14(1) on page 38 of [2] for the last equality.
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Let

A1 =
{

x ∈ A0 : lim
r↓0

σ(B(x, r)−A0)
(2r)s

=0
}

.

Choose any point x of A1. Suppose there is a constant K>0, sequences εn→0 and
ρn→0 with εn/ρn→0, and intervals Jn ⊂(x−ρn, x+ρn) with

σ(Jn) >Kσ((x−ρn, x+ρn)) and |Jn| =2εn.

Assume that for some subsequence of intervals {Jnk
} ∞

k=1 there is a zk ∈Jnk
∩A1 for

all k. Let N=nk for some large k, and write JN =[y −εN , y+εN ]. Then

KC1(ρN )s ≤ Kσ
([

x− ρN

2
, x+

ρN

2

])
≤ Kσ((x−ρN , x+ρN ))

≤ σ(JN ) ≤ σ([zk −2εN , zk+2εN ]) ≤ C2(4εN )s.

This implies that [KC1/C24s]1/s ≤εN/ρN , a contradiction for k large enough. Hence
for M large enough A1 ∩Jm=∅ for all m≥M .

Since A1 ∩Jm=∅ for all m≥M we have

KC1ρ
s
m ≤ Kσ((x−ρm, x+ρm)) ≤ σ(Jm)

≤ σ([x−ρm, x+ρm]−A1) ≤ σ([x−ρm, x+ρm]−A1)
(2ρm)s

(2ρm)s.

This implies that
KC1

2s
≤ σ([x−ρm, x+ρm]−A1)

(2ρm)s
→ 0

as m→∞, a contradiction. Hence (2) of Definition 5.1 holds. That (1) of Defini-
tion 5.1 holds is trivial given that x∈A0. �

Lemma 5.3. If σ is a measure on R
+ or S1 which is somewhere doubling,

then σ is uniform at a point.

Proof. Because somewhere doubling is a local property we give the proof as-
suming σ is defined on S1, the case of R

+ being identical. Let I0 be an interval
for which there exists a C>0 such that σ(2J)≤Cσ(J) for every J ⊂I0 with 2J ⊂I0.
Let x denote the center of I0 and write I0=(x−r, x+r) for some r. Let U denote
the collection of intervals contained in I0/16.

Given two adjacent intervals I1 and I2 of equal length in I0/16, somewhere
doubling implies that

1
C2

σ(I1) ≤ σ(I2) ≤ C2σ(I1).
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Thus given an interval I ⊂I0/16 writing I=I1 ∪I2 ∪I3 ∪I4, where the interval Ii is
adjacent to Ii+1 and I/2=I2 ∪I3, we see that there is an η>0 such that

(1+η)σ
(

I

2

)
≤ σ(I) for all I ∈ U.

Set ρ0=r/16, and take ρ≤ρ0. Let J be an interval in (x−ρ, x+ρ) where ρ/2n+1 ≤
|J | ≤ρ/2n for some n≥10. Then

σ(J) ≤ 1
(1+η)n−1

σ((x−2ρ, x+2ρ)) ≤ C

(1+η)n−1
σ((x−ρ, x+ρ)).

(2) in Definition 5.1 now follows easily, while the truth of (1) is trivial. �

We let

Π1 : S1 ×R
+ −→ S1,

Π2 : S1 ×R
+ −→R

+

denote the projections onto S1 and R
+ respectively. Note that Π2 is an isometry

when restricted to rays passing through the origin.

Theorem 5.4. Let μ=ν ×λ where ν is uniform at a point. If λ is not doubling
away from the origin, then the Mμ is not weak (1, 1).

Proof. Assume λ is not doubling away from the origin. Using Proposition 3.6(2)
take a sequence of intervals Un=(an, bn)⊂R

+ with Un=Un
1 ∪Un

2 , n|Un
1 | ≤ |Un

2 |,
nλ(Un

2 )≤λ(Un
1 ) and (bn −an)/an→0. Assume for convenience that Un

1 is to the
left of Un

2 in R
+. Let x∈S1 be a point given by Definition 5.1 and ρ0 and C be the

corresponding constants. Let B1 and B2 be two open balls of radius r=(bn −an)/4,
both of whose points closest to the origin are on the circle |y|=an, and which touch
only at one point z, where Π1(z)=x. Let In=Π1(B1 ∪B2) and Jn=Π1(An ∩B1)
where An=S1 ×Un

1 .
A routine calculation gives

|In| =4 arcsin
bn −an

3an+bn
and |Jn| ≤ C√

n

bn −an

3an+bn
.

Thus for n large enough, since (bn −an)/an→0, we have |In|<ρ0, |In|→0, and
|Jn|/|In|→0. Let B denote the collection of open balls with radius (bn −an)/4 whose
boundary points closest to the origin are on In/2× {an} and note that z ∈

⋂
B∈B B.
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Let D=
⋃

B∈B B. Let B be any ball in B. Set J=Π1(B ∩An) and U=(an, an+2r).
Then |J |=|Jn|. Set

J= {J : J ⊂ In, J an open interval and |J | = |Jn| }

and kn=supJ ∈J ν(J)/ν(In). By (2) of Definition 5.1, kn→0 as n→∞. For large
enough n we have

μ(B) = μ(B ∩An)+μ(B −An)

≤ ν(J)λ(U)+ν(In)λ(Un
2 )

≤ knν(In)λ(U)+ν(In)
1
n

λ(Un
1 )

≤
(

kn+
1
n

)
ν(In)λ(U)

≤ C

(
kn+

1
n

)
ν

(
In

2

)
λ(U)

≤ C

(
kn+

1
n

)
μ(D).

Therefore

μ

({
w ∈ S1 ×R

+ : sup
w∈B

χB(z)
μ(B)

>
1

2C(kn+1/n)μ(D)

})
≥ μ(D)

while a weak-type (1, 1) inequality would imply that μ(D)≤2KC(kn+1/n)μ(D) for
some K>0 (see [3]), which is a contradiction as kn→0 as n→∞. �

Theorem 5.5. Let μ=ν ×λ. If λ is uniform at a point and ν is not doubling
then Mμ is not weak-type (1, 1).

Proof. Using Proposition 3.6(1) take a sequence of open intervals Un=(an, bn)⊂
S1 with Un=Un

1 ∪Un
2 , n|Un

1 | ≤ |Un
2 |, nν(Un

2 )≤ν(Un
1 ) and the Un

i adjacent. Assume
for convenience that an is clockwise from bn and Un

1 is counterclockwise from Un
2 .

Set Δn
1 =(bn −an)/(n+1) and Δn

2 =(bn −an)/
√

n, so Un
1 =(bn −Δn

1 , bn). Let x be
the point in R

+ given by Definition 5.1 and ρ0 and C be the corresponding con-
stants. Let z be the point on Fbn −Δn

2
for which Π2(z)=x. Let B1 and B2 be two

balls both tangent to Fbn whose boundaries touch only at z and whose radii are
both equal to d(z, Fbn)=|z| sin Δn

2 =|x| sin Δn
2 , where d(z, Fbn) denotes the distance

of z to the ray Fbn . Let p1 and p2 denote the points of tangency of B1 and B2

respectively to Fbn . Let S denote the line segment with endpoints p1 and p2 and
let Vn=Π2(S) and In=2Vn. Then it is obvious that |In|=4|x| sin Δn

2 .
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Let B denote the collection of balls tangent to Fbn with radius d(z, Fbn) whose
point of tangency to Fbn , call it pB for B ∈B, satisfies Π2(pb)∈In/2=Vn. Then z ∈B

for every B ∈B. For B ∈B denote by TB the segment on Fbn −Δn
1

that is contained
in B. And let J=Π2(TB). The following are seen to hold for sufficiently large n:

(1) |In| ∼(bn −an)/
√

n,
(2) |J | ≤K1(bn −an)/n3/4,
(3) |J |/|In| ≤K2/n1/4,

where the similarities, and constants depend only on |x|. Let A=Un
2 ×R

+, D=⋃
B∈B B, J={J ⊂In : |J | ≤K1(bn −an)/n3/4} and kn=supJ ∈J λ(J)/λ(In). Then for

large enough n we have

μ(B) = μ(B ∩A)+μ(B \A)

≤ λ(In)ν(Un
2 )+λ(J)ν(Un

1 )

≤ 1
n

λ(In)ν(Un
1 )+λ(J)ν(Un

1 )

≤ 1
n

λ(In)ν(Un
1 )+knλ(In)ν(Un

1 )

≤ C

(
1
n

+kn

)
λ

(
In

2

)
ν(Un

1 )

≤ C

(
1
n

+kn

)
μ(D).

The conclusion follows as in the proof of Theorem 5.4. �

The following is now easily established.

Theorem 5.6. If ν and λ are Radon measures and
(1) there is a set A⊂S1, ν(A)>0, with 0<θs

∗(x, ν)≤θ∗s(x, ν)<∞ for x∈A; or
(2) there is a set A⊂R

+, λ(A)>0, with 0<θs
∗(x, λ)≤θ∗s(x, λ)<∞ for x∈A;

then Mμ is weak-type (1, 1) if and only if ν is doubling and λ is doubling away from
the origin.

Proof. The converse here is Theorem 4.4. Assume that Mμ is weak-type (1, 1)
and (1) holds. Then Lemma 5.2 and Theorem 5.4 imply that λ is doubling away
from the origin. Lemma 5.3 and Theorem 5.5 then imply that ν is doubling. A
similar argument may be applied under the assumption of (2). �

When s=1 we have the following as a consequence of the above and the
Lebesgue density theorem.
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Corollary 5.7. If the Lebesgue decomposition of either ν or λ has a non-zero
absolutely continuous part, then Mμ is weak-type (1, 1) if and only if ν is doubling
and λ is doubling away from the origin.

A similar argument to that used in the proof of Theorem 5.6 can be used to
give the following result.

Theorem 5.8. If either ν or λ is somewhere doubling, then Mμ is weak-type
(1, 1) if and only if ν is doubling and λ is doubling away from the origin.

We end with an example showing that the converse to Theorem 4.4 is not true
in general. In the following μ will be an atomic measure.

Example 5.9. Let S={qn} ∞
n=1 be a dense set in R

2 and μ be a measure sat-
isfying μ(R2 \S)=0 for which there exists a constant C>0 such that Cμ(qn)≥∑

m>n μ(qm) for all n. It is clear that

μ({qi : Mμf(qi) >λ}) ≤ C ′μ(qn(λ)),

where n(λ) is the smallest index of the points in this set. Since for some B with
qn(λ) ∈B,

λ <
1

μ(B)

∫
B

|f | dμ ≤ 1
μ(qn(λ))

∫
B

|f | dμ

we have μ(qn(λ))<(1/λ)
∫

B
|f | dμ and Mμ is weak-type (1, 1).

A product measure μ=ν ×λ satisfying the above may be found as follows.
Let {rn} ∞

n=1 and {sn} ∞
n=1 be countable dense sets in S1 and R

+ respectively. Let
ν(rn)=2−2n

and λ(sn)=2−2n

. Enumerate the qn by setting q1 to be the pair (ri, sj)
with greatest μ-measure, q2 to be the pair with second greatest μ-measure to be and
so on. Only two points may have the same measure, so in the event of a tie choose ar-
bitrarily. Observe that the pairs (n, m) and (i, j) satisfy 2−2m

2−2n ≥2−2i

2−2j

if and
only if (max{n, m}, min{n, m})≤(max{i, j}, min{i, j}) lexicographically. Hence if
qn=(rp, rt), with p≤t, we have

∑
m>n

μ(qm) ≤ 2
( ∞∑

i=t+1

∞∑
j=1

1
22i

1
22j +

1
22t

∑
j=p

1
22j

)
<C1

1
22t+1 +C2

1
22t

1
22p ≤ Cμ(qn).
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