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Mappings onto multiplicative subsets
of function algebras and spectral properties

of their products
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Abstract. We characterize mappings Si and Ti, not necessarily linear, from sets Ji,

i=1, 2, onto multiplicative subsets of function algebras, subject to the following conditions on

the peripheral spectra of their products: σπ(S1(a)S2(b))⊂σπ(T1(a)T2(b)) and σπ(S1(a)S2(b))∩
σπ(T1(a)T2(b)) �=∅, a∈J1, b∈J2. As a direct consequence we obtain a large number of previous

results about mappings subject to various spectral conditions.

1. Introduction and motivation

Let A and B be commutative Banach algebras. A mapping S : A→B is

spectrum-preserving if σ(S(a))⊂σ(a) for all a∈A, where σ(a) is the spectrum of a.

The study of spectrum-preserving mappings has a long history. For semisimple com-

mutative Banach algebras A, Gleason [1] and Kahane and Żelazko [15] have proven

independently that every surjective linear operator S : A→C with S(a)∈σ(a) for

all a∈A is multiplicative, i.e. S(ab)=S(a)S(b) for all a, b∈A. This result is known

as the Gleason–Kahane–Żelazko theorem. It yields that every spectrum-preserving

linear mapping S : A→B between semisimple commutative Banach algebras is mul-

tiplicative. It is imperative for the operator S in the Gleason–Kahane–Żelazko the-

orem to be linear. Kowalski and S�lodkowski [16] have found spectral conditions

for a priori nonlinear mappings to be automatically linear. Namely, a surjective

mapping S from a commutative Banach algebra A onto a semisimple commuta-
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tive Banach algebra with S(0)=0 and σ(S(a)−S(b))⊂σ(a−b) for all a, b∈A is an

algebra isomorphism (see [7, Theorem 3.1]).

Let C(X) be the algebra of all complex-valued continuous functions on a com-

pact Hausdorff space X . Molnár [22] proved a multiplicative version of the theorem

of Kowalski and S�lodkowski, namely, if X is a first countable space, then a sur-

jective mapping S : C(X)→C(X) with S(1)=1 and either σ(S(f)S(g))=σ(fg), or,

σ(S(f)S(g))=σ(f ḡ) for all f, g∈C(X) is an isometric algebra isomorphism, where

( · ) stands for the complex conjugate. The study of a priori nonlinear mappings

S with the property σ(S(f)S(g))=σ(fg), or, σ(S(f)S(g))=σ(f ḡ) between uniform

or function algebras was initiated independently in several papers (e.g. [6], [8] and

[23]). The involvement of the peripheral spectrum, σπ(f), of algebra elements f∈A
in spectral preserver problems was initiated in [2] (see also [20]), where a new spec-

tral condition, σπ(S(f)S(g))=σπ(fg) was introduced and mappings satisfying it

were completely characterized. These results were unified further in [5] and [10],

where pairs of mappings between subsets of algebras satisfying corresponding spec-

tral conditions were studied and characterized.

In this paper, we characterize mappings, not necessarily linear, onto multi-

plicative subsets of function algebras that are subject to certain conditions on the

peripheral spectra of their products. As a direct consequence we obtain a large

number of previous results about mappings that satisfy various spectral conditions.

2. Preliminaries and main results

Spectra and peripheral spectra of algebra elements are essential notions in

spectral preserver problems for mappings between commutative Banach algebras

(e.g. [2], [4], [6], [11], [14], [17], [20], [22], [23], [24] and [26]) and their pairs (e.g. [5],

[10] and [18]). In this paper we characterize mappings into multiplicative subsets

of function algebras, not necessarily with units, the products of which satisfy gen-

eral spectral conditions. Most of the previous results, mentioned above, are direct

consequences of the results obtained here.

We assume that a function algebra, A, on a locally compact Hausdorff space X

is a uniformly closed subalgebra of C0(X), the commutative Banach algebra of all

complex-valued continuous functions on X that vanish at infinity, with respect to

the pointwise operations and the sup-norm ‖·‖, which strongly separates the points

of X in the sense that for each x, y∈X with x �=y there exists an f∈A such that

f(x) �=f(y) and for each x∈X there exists a g∈A with g(x) �=0. Uniform algebras are

function algebras on compact Hausdorff spaces that contain the constant function 1.

The underlying space X of a function algebra A can be identified with a subset of

the maximal ideal space of A, not necessarily coinciding with it, that contains the
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Choquet boundary δA of A, namely, the set of all x∈X such that the evaluation map

at x, f�f(x), f∈A, is an extreme point of the unit ball of the dual space of A.

The range of f∈A is the set Ran(f)=f(X)={f(x):x∈X}, which is such that either

Ran(f) or Ran(f)∪{0} are compact sets in C. The peripheral spectrum σπ(f) of

f∈A is the compact set σπ(f) of C defined as

σπ(f)= {λ∈σ(f) : |λ|= ‖f‖}= {λ∈Ran(f) : |λ|= ‖f‖}

(see e.g. [2] and [20]). Moreover, σπ(f)={λ∈f(δA):|λ|=‖f‖} (cf. Lemma 4.1 in

Section 4 below).

Let S be an arbitrary subset of a function algebra A. A set E⊂X is a boundary

of S if every f∈S attains its maximum modulus on E. An h∈S is a peaking function

of S if σπ(h)={1}. The set of all peaking functions of S that peak at x∈δA will be

denoted by PS(x). Clearly, PS(x)⊂PA(x) and PS(x)=PA(x)∩S . A compact subset

E of X is a peak set of S if E=h−1(1)={x∈X :h(x)=1} for some peaking function

h∈S . A point x∈X is a peak point of S if {x} is a peak set of S , or, equivalently,
if there is a function h∈PS(x) such that |h(y)|<1 for any y �=x. Functions h with

this property are called peak functions of S at x. We denote by p◦(S) the set of

all peak points of S . The set of all peak functions of S at x∈X will be denoted by

P ◦
S(x). Clearly, P

◦
S(x)⊂PS(x), P

◦
S(x)⊂P ◦

A(x) and P ◦
S(x)=P ◦

A(x)∩S .
A set E⊂X is a weak peak set of S if E is the intersection of a family of peak

sets of S . A point x∈X is a weak peak point (or, a p-point) of S if {x} is a weak

peak set of S . Equivalently, x is a weak peak point of S if for every open set U⊂X

containing x there is a peak set E of S such that x∈E⊂U . The set of all weak peak

points of S will be denoted by p(S). Clearly, p(S) is a subset of p(A)=δA, though

it may not coincide with it. Actually, p(S) can be empty. However, if S �={0} is a

uniformly closed subalgebra of A strongly separating the points of X (and thus S
is a function algebra on X) then p(S) is nonempty and actually coincides with the

Choquet boundary δS of S .
Let Ji, i=1, 2, be arbitrary sets without any particular structure. Through-

out this paper we will use the following products of mappings of Ji into function

algebras.

Definition 2.1. If S1 : J1→A and S2 : J2→A are two mappings we denote

by S1⊗S2 : J1×J2→A the mapping (S1⊗S2)(a, b)=S1(a)S2(b), where a∈J1 and

b∈J2.

If Si maps Ji onto a subset Si of A, for i=1, 2, then, clearly, the mapping

S1⊗S2 : J1×J2→A maps J1×J2 onto the set S1 ·S2⊂A and, in fact, provides a

J1×J2-parametrization of S1 ·S2.
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In Section 3 we show that if the norms of two ⊗-products of mappings onto

multiplicative subsets of function algebras are equal, then their moduli coincide

up to the composition with a homeomorphism. Recall that a subset S⊂A is a

multiplicative set in A if fg∈S for all f, g∈S . In Proposition 3.1 we prove that if

Si⊂A and Ti⊂B are multiplicative sets in function algebras A and B on locally

compact Hausdorff spaces X and Y with p(Si)=δA and p(Ti)=δB, Ji are arbitrary

sets without any particular structure and Si : Ji→Si and Ti : Ji→Ti are surjections
for i=1, 2 such that ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖ for all a∈J1 and b∈J2, then

there is a homeomorphism φ : δB→δA such that

(2.1) |((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|

for all a∈J1, b∈J2 and y∈δB.

In Section 4 we introduce several spectral conditions for ⊗-products of two

pairs of mappings into multiplicative subsets of function algebras so that the map-

pings in the first pair equal the mappings in the second one up to certain weighted

composition operators on the corresponding Choquet boundaries.

Theorem 2.2. Let A and B be function algebras on locally compact Hausdorff

spaces X and Y , let S1 and S2 be multiplicative subsets of A, and T1 and T2 be

subalgebras of B such that p(Si)=δA and p(Ti)=δB for i=1, 2. If Ji are arbitrary

sets of parameters and the pairs of surjective maps Si : Ji→Si and Ti : Ji→Ti,
i=1, 2, satisfy the conditions:

(i) ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖;
(ii) ((S1⊗S2)(a, b))(δA)⊂Ran((T1⊗T2)(a, b));

for all a∈J1 and b∈J2, then there is a homeomorphism φ : δB→δA and a contin-

uous function α : δB→C\{0} so that

T1(a)(y)=α(y)S1(a)(φ(y)) and T2(b)(y)=
1

α(y)
S2(b)(φ(y))

for all a∈J1, b∈J2 and y∈δB.

A direct consequence of Theorem 2.2 is the main result in [9], where S1=S2 and

T1=T2 are Banach function algebras. For subsets Ti with more specific properties

Theorem 2.2 holds under more general spectral conditions on ⊗-products.

Definition 2.3. Let S and S ′ be subsets of a function algebra A with p(S) �=∅

and p(S ′) �=∅. The pair (S,S ′) is said to be a Bishop pair if for every x∈p(S)
and each f ′∈S ′ with f ′(x) �=0 there is a peaking function h∈PS(x) such that

σπ(f
′h)={f ′(x)}, and for every x′∈p(S ′) and each f∈S with f(x′) �=0 there is
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a peaking function h′∈PS′(x′) such that σπ(fh
′)={f(x′)}. A set S is a Bishop set

if (S,S) is a Bishop pair.

In his celebrated lemma (see e.g. [19]), E. Bishop has shown that every uniform

algebra is in fact a Bishop set. Examples of Bishop sets S are also function algebras

(see [6, Lemma 2.3], and also [26, Proposition 3.1]), unit balls of function algebras,

and the sets of exponents of uniform algebras. Lipschitz algebras on metric spaces

are Bishop sets (cf. [12, Lemma 2.2]). Note that all these sets are also multiplicative

subsets of function algebras such that p(S)=δS .

Theorem 2.4. Let S1,S2⊂A and T1, T2⊂B be multiplicative sets in function

algebras A and B on locally compact Hausdorff spaces X and Y such that p(Si)=δA

and p(Ti)=δB, and (T1, T2) is a Bishop pair. If Ji are arbitrary sets of parameters

and the pairs of surjective maps Si : Ji→Si and Ti : Ji→Ti, i=1, 2, satisfy the

condition

(2.2) σπ((S1⊗S2)(a, b))⊂σπ((T1⊗T2)(a, b))

for all a∈J1 and b∈J2, then there is a homeomorphism φ : δB→δA and a contin-

uous function α : δB→C\{0} so that

T1(a)(y)=α(y)S1(a)(φ(y)) and T2(b)(y)=
1

α(y)
S2(b)(φ(y))

for all a∈J1, b∈J2 and y∈δB.

Earlier versions of Theorem 2.4 have been proven previously under the following

particular conditions: Si and Ti are uniform algebras, S1(a)=T (a)m, S2(b)=T (b)n,

T1(a)=am and T2(b)=bn, where T is a surjective map and m and n are natural

numbers—in [3]; Si and Ti are uniform algebras or algebras of type C0(X)—in [5];

S2(b)=b̄ and T2(b)=T1(b) —in [8]. Theorem 2.4 holds also if the spectral condi-

tion (2.2) is replaced by the conditions σπ((S1⊗S2)(a, b))∩σπ((T1⊗T2)(a, b)) �=∅

and σπ(Si(a))⊂σπ(Ti(a)), i=1, 2, (Proposition 4.2), which implies one of the main

results in [14].

Theorem 2.5. Let S1,S2⊂A and T1, T2⊂B be multiplicative sets in function

algebras A and B on locally compact Hausdorff spaces X and Y such that p(Si)=δA,

p◦(Ti)=δB and (T1, T2) is a Bishop pair. If Ji are arbitrary sets of parameters and

the pairs of surjective maps Si : Ji→Si and Ti : Ji→Ti, i=1, 2, satisfy the condition

(2.3) σπ((S1⊗S2)(a, b))∩σπ((T1⊗T2)(a, b)) �=∅
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for all a∈J1 and b∈J2, then there is a homeomorphism φ : δB→δA and a contin-

uous function α : δB→C\{0} so that

T1(a)(y)=α(y)S1(a)(φ(y)) and T2(b)(y)=
1

α(y)
S2(b)(φ(y))

for all a∈J1, b∈J2 and y∈δB.

The hypotheses on the sets S1,S2 and T1, T2 here are interchangeable. Theo-

rem 2.5 is proven previously in the following cases: Si and Ti are pointed Lipschitz

algebras—in [10]; Si and Ti are uniform algebras—in [25].

As a bi-product of the main theorems we obtain that under their conditions the

moduli in the equality (2.1) can be removed so that the equality ((T1⊗T2)(a, b))(y)=

((S1⊗S2)(a, b))(φ(y)) holds for all a∈J1, b∈J2 and y∈δB.

If in the main theorems we choose Ji=Si and Si=id(Si) for i=1, 2, we obtain

the following result.

Corollary 2.6. Let S1,S2⊂A and T1, T2⊂B be multiplicative sets in function

algebras A and B on locally compact Hausdorff spaces X and Y such that p(Si)=δA,

p(Ti)=δB for i=1, 2. If the two surjective maps Ti : Si→Ti, i=1, 2, satisfy one of

the conditions:

(1) ‖T1(f)T2(g)‖=‖fg‖, (fg)(δA)⊂Ran(T1(f)T2(g)) for all f∈S1 and g∈S2,

and T1, T2 are subalgebras of B;

(2) σπ(fg)⊂σπ(T1(f)T2(g)) for all f∈S1, g∈S2 and (T1, T2) is a Bishop pair ;

(3) σπ(fg)∩σπ(T1(f)T2(g)) �=∅ for all f∈S1 and g∈S2, p◦(Ti)=δB, i=1, 2,

and (T1, T2) is a Bishop pair ;

then there is a homeomorphism φ : δB→δA and a continuous function α : δB→
C\{0} so that

(2.4) T1(f)(y)=α(y)f(φ(y)) and T2(g)(y)=
1

α(y)
g(φ(y))

for all f∈S1, g∈S2 and y∈δB. Therefore, T1 and T2 are weighted composition

operators on δB.

In Section 5 we show that the main theorems follow from Corollary 2.6 (see

Remark 5.1).

Earlier versions of part (1) of Corollary 2.6 have been proven previously under

the following particular conditions: Si and Ti are uniform algebras—in [6]; Si and Ti
are unital semisimple commutative Banach algebras (without assuming p(Si)=δA

and p(Ti)=δB)—in [7]; Si and Ti are Banach function algebras—in [9].
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If, in addition to the hypotheses of Corollary 2.6, we choose T1=T2=T , then

equality (2.4) becomes T (f)(y)=α(y)f(φ(y)), where α2(y)=1. In particular, we

obtain the following result.

Corollary 2.7. Let S⊂A and T ⊂B be multiplicative sets in function algebras

A and B on locally compact Hausdorff spaces X and Y such that p(S)=δA and

p(T )=δB. If a surjective map T : S→T satisfies one of the conditions:

(1) ‖T (f)T (g)‖=‖fg‖, (fg)(δA)⊂Ran(T (f)T (g)) for all f, g∈S , and T is a

subalgebra of B;

(2) σπ(fg)⊂σπ(T (f)T (g)) for all f, g∈S and T is a Bishop set;

(3) σπ(fg)∩σπ(T (f)T (g)) �=∅ for all f, g∈S , p◦(T )=δB and T is a Bishop set;

then there is a homeomorphism φ : δB→δA and a continuous function α : δB→
{±1} so that

T (f)(y)=α(y)f(φ(y))

for all f∈S and y∈δB. Therefore, T is a weighted composition operator on δB.

Earlier versions of part (2) of Corollary 2.7 have been proven previously under

the following particular conditions: S and T are uniform algebras—in [17], [20], [22],

[23], [24]; S and T are function algebras —in [13], [14], [24]; S and T are Lipschitz

algebras—in [12]. Earlier versions of parts (2) and (3) have been proven previously

in the case when T is a function algebra on Y and S is a dense subalgebra of a

function algebra on X ([13], [14]); since any uniform algebra A on a first-countable

compact Hausdorff space is a multiplicative set, its weak peak points are peak points

and A is a Bishop set, part (3) holds also in the case when S , T are uniform algebras

on first-countable compact Hausdorff spaces. This yields some of the main results in

[18], [22] and [25]. In the case when S and T are uniform algebras part (3) is proven

in [17], and when S and T are function algebras—in [26]. Part (1) of Corollary 2.7

implies the following consequence.

Corollary 2.8. Let A and B be dense subalgebras of function algebras on lo-

cally compact Hausdorff spaces X and Y such that p(A)=δ(A) and p(B)=δ(B),

where A and B are the uniform closures of A and B, respectively. If a surjection

T : A→B satisfies the conditions ‖T (f)T (g)‖=‖fg‖ and (fg)(δA)⊂Ran(T (f)T (g))

for all f, g∈A, then there is a homeomorphism φ : δB→δA and a continuous func-

tion α : δB→{±1} such that

T (f)(y)=α(y)f(φ(y))

for all f∈A and y∈δB, i.e. T is a weighted composition operator on δB.
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3. The homeomorphism φ

In this section we prove the following result.

Proposition 3.1. Let S1,S2⊂A and T1, T2⊂B be multiplicative sets in func-

tion algebras A and B on locally compact Hausdorff spaces X and Y , such that

p(Si)=δA and p(Ti)=δB for i=1, 2. If Ji are arbitrary sets of parameters and

Si : Ji→Si and Ti : Ji→Ti, i=1, 2, are pairs of surjective maps satisfying the con-

dition

(3.1) ‖(T1⊗T2)(a, b)‖= ‖(S1⊗S2)(a, b)‖

for all a∈J1 and b∈J2, then there exists a homeomorphism φ : δB→δA such that

(3.2) |((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|

for all a∈J1, b∈J2 and y∈δB.

Lemma 3.2. Let S be a multiplicative set in a function algebra A on a locally

compact Hausdorff space X with p(S)=δA. For every x0∈δA, ε>0 and any closed

set K⊂X with x0 /∈K there is an h∈PS(x0) such that |h|<ε on K.

Proof. If x0∈δA=p(S) choose a k∈PS(x0)=PA(x0)∩S with k−1(1)⊂X\K.

Then maxx∈K |k(x)|<1 and, therefore, |kn|<ε on K for some sufficiently large

power of k. Clearly, h=kn∈PS(x0) since k∈PS(x0) and S is a multiplicative subset

of A. �

The following lemma is an S-version of [26, Lemma 2.2].

Lemma 3.3. Let S be a multiplicative set in a function algebra A on a locally

compact Hausdorff space X with p(S)=δA. If f∈A and x0∈δA then

|f(x0)|= inf
h∈PS(x0)

‖fh‖.

Proof. Let x0∈δA and f∈A. Since |f(x0)|=|f(x0)h(x0)|≤‖fh‖ for h∈PS(x0),

we have |f(x0)|≤infh∈PS(x0) ‖fh‖. Let ε>0, and consider the set

U = {x∈X : |f(x)|< |f(x0)|+ε}.

Clearly, x0∈U . Choose a k∈PS(x0) with k−1(1)⊂U . Then maxX\U |k(x)|<1 and

for some power of k, h0=kn∈PS(x0), with n big enough, we have |f(x)h0(x)|<
|f(x0)|+ε for all x∈X\U . In addition, for any x∈U we have |f(x)h0(x)|≤|f(x)|<
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|f(x0)|+ε. Hence, ‖fh0‖<|f(x0)|+ε, and, consequently, infh∈PS(x0) ‖fh‖≤|f(x0)|.
Therefore, |f(x0)|=infh∈PS(x0) ‖fh‖, as claimed. �

Throughout this section we assume, without mention, that A and B are func-

tion algebras, not necessarily with units, on locally compact Hausdorff spaces X

and Y , respectively, S1,S2⊂A and T1, T2⊂B are multiplicative sets such that

p(Si)=δA and p(Ti)=δB, Ji are arbitrary sets without any particular structure,

and Si : Ji→Si and Ti : Ji→Ti are surjective mappings for i=1, 2, not necessarily

linear, that satisfy the equality (3.1), i.e. ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖ for all

a∈J1 and b∈J2. Note that the spectral properties (2.2) and (2.3) in Theorems 2.4

and 2.5 imply automatically the equality (3.1). First we construct the homeomor-

phism φ : δB→δA and then we show that it satisfies the equality (3.2).

Lemma 3.4. If |Ti(a)(y)|≤|Ti(b)(y)| for some a, b∈Ji and all y∈δB, then

|Si(a)(x)|≤|Si(b)(x)|, i=1, 2, for all x∈δA.

Proof. Consider first the case of S1 and T1 and suppose that |T1(a)(y)|≤
|T1(b)(y)| for all y∈δB. For each x∈δA and h∈PS2(x) let ch∈J2 be such that

S2(ch)=h. By hypothesis

|((T1⊗T2)(a, ch))(y)|= |(T1(a)T2(ch))(y)| ≤ |(T1(b)T2(ch))(y)|

= |((T1⊗T2)(b, ch))(y)| ≤ ‖(T1⊗T2)(b, ch)‖

for all y∈δB. Therefore, ‖(T1⊗T2)(a, ch)‖≤‖(T1⊗T2)(b, ch)‖. By using twice the

equality (3.1) we obtain

‖S1(a)h‖= ‖(S1⊗S2)(a, ch)‖= ‖(T1⊗T2)(a, ch)‖

≤‖(T1⊗T2)(b, ch)‖= ‖(S1⊗S2)(b, ch)‖= ‖S1(b)h‖,

i.e. ‖S1(a)h‖≤‖S1(b)h‖. Since h∈PS2(x) was chosen arbitrarily, Lemma 3.3 yields

|S1(a)(x)|= inf
h∈PS2

(x)
‖S1(a)h‖≤ inf

h∈PS2
(x)

‖S1(b)h‖= |S1(b)(x)|.

Consequently, |S1(a)(x)|≤|S1(b)(x)| for all x∈δA, as claimed. A similar argument

applies to S2 and T2. �

For any x∈δA we denote by VSi(x) the set VSi(x)
def
= {f∈Si :|f(x)|=1=‖f‖},

i=1, 2. Clearly, VSi(x) is a multiplicative set in A and PSi(x)⊂VSi(x). The set

VTi(y) is defined in a similar way for any y∈δB. For any y∈δB we denote by Fy

the set Fy
def
= {(a, b)∈J1×J2 :T1(a)∈VT1(y) and T2(b)∈VT2(y)}.
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Lemma 3.5. For any y∈δB,

⋂

(a,b)∈Fy

|(S1⊗S2)(a, b)|−1(1) �=∅,

where |(S1⊗S2)(a, b)|−1(1)={x∈X :|((S1⊗S2)(a, b))(x)|=1}.

Proof. Let y0∈δB. We claim that the family

{|(S1⊗S2)(a, b)|−1(1) : (a, b)∈Fy0}

has the finite intersection property. Let m∈N and let (ai, bi)∈Fy0 for 1≤i≤m. The

definition of Fy0 implies that

|T1(ai)(y0)|=1= ‖T1(ai)‖ and |T2(bi)(y0)|=1= ‖T2(bi)‖.

Then, by (3.1), ‖(S1⊗S2)(ai, bi)‖=‖(T1⊗T2)(ai, bi)‖=1 for all 1≤i≤m, as

1= |T1(ai)(y0)T2(bi)(y0)| ≤ ‖(T1⊗T2)(ai, bi)‖≤‖T1(ai)‖ ‖T2(bi)‖=1.

Since T1 and T2 are surjections from J1 and J2 onto the multiplicative subsets T1
and T2 of B, respectively, there exist a∈J1 and b∈J2 such that

∏m
i=1 T1(ai)=T1(a)

and
∏m

i=1 T2(bi)=T2(b). We assert that ‖(S1⊗S2)(a, b)‖=1. In fact, as

1=

m∏

i=1

|T1(ai)(y0)| ≤
∥∥∥∥

m∏

i=1

T1(ai)

∥∥∥∥≤
m∏

i=1

‖T1(ai)‖=1,

we have |T1(a)(y0)|=
∏m

i=1 |T1(ai)(y0)|=1=‖T1(a)‖. By the same arguments, we see

that |T2(b)(y0)|=1=‖T2(b)‖, and thus ‖(T1⊗T2)(a, b)‖=‖T1(a)T2(b)‖=1. Hence by

(3.1), ‖(S1⊗S2)(a, b)‖=‖(T1⊗T2)(a, b)‖=1 as claimed. Therefore, there exists an

x0∈δA such that |((S1⊗S2)(a, b))(x0)|=1.

Next we show that
∏m

i=1 |((S1⊗S2)(ai, bi))(x0)|=1. Since ‖T1(ai)‖=1, we have

|T1(ai)(y)|≤1 for any y∈δB, and thus |T1(a)(y)|=|
∏m

i=1 T1(ai)(y)|≤|T1(ai)(y)| for
all y∈δB and every 1≤i≤m. By Lemma 3.4, |S1(a)(x)|≤|S1(ai)(x)| for all x∈δA
and 1≤i≤m. A similar argument shows that |S2(b)(x)|≤|S2(bi)(x)| for all x∈δA
and 1≤i≤m. Hence,

|((S1⊗S2)(a, b))(x)|= |S1(a)(x)S2(b)(x)| ≤ |((S1⊗S2)(ai, bi))(x)|
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for all x∈δA and 1≤i≤m. Therefore,

1= |((S1⊗S2)(a, b))(x0)|m ≤
m∏

i=1

|((S1⊗S2)(ai, bi))(x0)|

≤
m∏

i=1

‖(S1⊗S2)(ai, bi)‖=
m∏

i=1

‖(T1⊗T2)(ai, bi)‖=1,

where we made use of (3.1). Consequently
∏m

i=1 |((S1⊗S2)(ai, bi))(x0)|=1 as claim-

ed. Hence |((S1⊗S2)(ai, bi))(x0)|=1 since ‖(S1⊗S2)(ai, bi)‖=1 for 1≤i≤m. Hence

x0∈
⋂m

i=1 |(S1⊗S2)(ai, bi)|−1(1). Thus the family {|(S1⊗S2)(a, b)|−1(1):(a, b)∈Fy0}
has the finite intersection property as claimed. Since |(S1⊗S2)(a, b)|−1(1) is a com-

pact set for every (a, b)∈Fy0 , we deduce that
⋂

(a,b)∈Fy0
|(S1⊗S2)(a, b)|−1(1) �=∅

for every y0∈δB. �

For any y∈δB we consider the set Sy=
⋂

(a,b)∈Fy
|(S1⊗S2)(a, b)|−1(1).

Lemma 3.6. δA∩Sy �=∅ for every y∈δB.

Proof. If y∈δB then Sy �=∅ by Lemma 3.5. Let x0∈Sy . By definition,

|((S1⊗S2)(a, b))(x0)|=1 for every (a, b)∈Fy . Therefore, ‖(S1⊗S2)(a, b)‖=1 for ev-

ery (a, b)∈Fy , since, by (3.1),

1= |((S1⊗S2)(a, b))(x0)| ≤ ‖(S1⊗S2)(a, b)‖

= ‖(T1⊗T2)(a, b)‖≤‖T1(a)‖ ‖T2(b)‖=1.

Let f(a,b)=(S1⊗S2)(a, b) and λ=f(a,b)(x0). For each (a, b)∈Fy define the function

p(a,b)=
1
2 ((λf(a,b))

2+λf(a,b))∈A. Since ‖f(a,b)‖=‖(S1⊗S2)(a, b)‖=1, we see that

p(a,b) is a peaking function of A such that x0∈p−1
(a,b)(1)⊂|f(a,b)|−1(1) for all (a, b)∈Fy .

Hence the set Ly=
⋂

(a,b)∈Fy
p−1
(a,b)(1) is a nonempty weak peak set of A. According

to Zorn’s lemma Ly contains a minimal weak peak set relative to the inclusion. As

minimal weak peak sets are singletons (see e.g. [21, proof of Proposition 2.1]), there

exists an x∈δA∩Ly . Hence x∈p−1
(a,b)(1)⊂|f(a,b)|−1(1)=|(S1⊗S2)(a, b)|−1(1) for all

(a, b)∈Fy , and thus, x∈δA∩(
⋂

(a,b)∈Fy
|(S1⊗S2)(a, b)|−1(1))=δA∩Sy . �

Lemma 3.7. For each a∈J1, b∈J2, all y∈δB and all x∈δA∩Sy we have

|((S1⊗S2)(a, b))(x)| ≤ |((T1⊗T2)(a, b))(y)|.
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Proof. Let u∈PT1(y), v∈PT2(y), au∈J1 and bv∈J2 be such that T1(au)=u

and T2(bv)=v. Thus T1(au)∈PT1(y)⊂VT1(y) and T2(bv)∈VT2(y), and therefore, by

definition, (au, bv)∈Fy . Since x∈Sy=
⋂

(a,b)∈Fy
|(S1⊗S2)(a, b)|−1(1), we see that

|((S1⊗S2)(au, bv))(x)|=1. Therefore, for every a∈J1 and b∈J2, we have

|((S1⊗S2)(a, b))(x)|= |((S1⊗S2)(a, b))(x)| |((S1⊗S2)(au, bv))(x)|

= |S1(a)(x)S2(b)(x)| |S1(au)(x)S2(bv)(x)|

≤ ‖(S1⊗S2)(a, bv)‖ ‖(S1⊗S2)(au, b)‖

= ‖(T1⊗T2)(a, bv)‖ ‖(T1⊗T2)(au, b)‖

= ‖T1(a)v‖ ‖T2(b)u‖,

where we made use of (3.1). Since u∈PT1(y) and v∈PT2(y) were arbitrarily chosen,

Lemma 3.3 yields

|((S1⊗S2)(a, b))(x)| ≤ inf
v∈PT2

(y)
‖T1(a)v‖ inf

u∈PT1
(y)

‖T2(b)u‖

= |T1(a)(y)| |T2(b)(y)|= |((T1⊗T2)(a, b))(y)|

for all a∈J1 and b∈J2. �

Lemma 3.8. For every y∈δB there exists an x∈δA∩Sy such that

(S1⊗S2)
−1(VA(x))⊂ (T1⊗T2)

−1(VB(y)).

Recall that VA(x)={f∈A:|f(x)|=1=‖f‖} by definition. VB(y) is defined in

the same way. Note that (T1⊗T2)
−1(VB(y)) �=∅ for every y∈δB=p(Ti), since

(T1⊗T2)(a, b)=T1(a)T2(b)∈PB(y)⊂VB(y)

for any a∈T−1
1 (PT1(y)) and b∈T−1

2 (PT2(y)). Similarly, (S1⊗S2)
−1(VA(x)) �=∅.

Proof. If y∈δB, then by Lemma 3.6 there exists some x∈δA∩Sy . For any

(a, b)∈(S1⊗S2)
−1(VA(x)) we have |((S1⊗S2)(a, b))(x)|=1=‖(S1⊗S2)(a, b)‖. We

prove that (a, b)∈(T1⊗T2)
−1(VB(y)). By Lemma 3.7 and (3.1),

1= |((S1⊗S2)(a, b))(x)| ≤ |((T1⊗T2)(a, b))(y)|

≤ ‖(T1⊗T2)(a, b)‖= ‖(S1⊗S2)(a, b)‖=1,

and therefore, |((T1⊗T2)(a, b))(y)|=1=‖(T1⊗T2)(a, b)‖. This implies that (a, b)∈
(T1⊗T2)

−1(VB(y)), and consequently, (S1⊗S2)
−1(VA(x))⊂(T1⊗T2)

−1(VB(y)), as

desired. �
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Lemma 3.9. If y, y′∈δB are so that (T1⊗T2)
−1(VB(y

′))⊂(T1⊗T2)
−1(VB(y)),

then y=y′.

Proof. Suppose, on the contrary, that y �=y′. By Lemma 3.2 there exist

ui∈PTi(y
′) such that |ui(y)|<1 for i=1, 2. Let a∈J1 and b∈J2 be such

that T1(a)=u1 and T2(b)=u2. Then (T1⊗T2)(a, b)=u1u2∈PB(y
′)⊂VB(y

′). By

the assumption, (a, b)∈(T1⊗T2)
−1(VB(y

′))⊂(T1⊗T2)
−1(VB(y)). Hence u1u2=

(T1⊗T2)(a, b)∈VB(y), and therefore |(u1u2)(y)|=1. This contradicts the inequality

|ui(y)|<1, i=1, 2. Consequently, y=y′, as desired. �

Since the conditions for the mappings S1⊗S2 and T1⊗T2 are symmetric, Lem-

mas 3.8 and 3.9 yield the following lemma.

Lemma 3.10. For every x∈δA there is a y∈δB such that (T1⊗T2)
−1(VB(y))⊂

(S1⊗S2)
−1(VA(x)). If (S1⊗S2)

−1(VA(x
′))⊂(S1⊗S2)

−1(VA(x)) for some x, x′∈δA,

then x=x′.

Lemma 3.11. For each y∈δB there exists a unique x∈δA∩Sy such that

(T1⊗T2)
−1(VB(y))= (S1⊗S2)

−1(VA(x)).

Proof. Let y∈δB. According to Lemma 3.8 there exists an x∈δA∩Sy such

that (S1⊗S2)
−1(VA(x))⊂(T1⊗T2)

−1(VB(y)). By Lemma 3.10 there exists a y′∈δB
with (T1⊗T2)

−1(VB(y
′))⊂(S1⊗S2)

−1(VA(x)), and therefore

(T1⊗T2)
−1(VB(y

′))⊂ (S1⊗S2)
−1(VA(x))⊂ (T1⊗T2)

−1(VB(y)).

Lemma 3.9 yields that y=y′, and thus (T1⊗T2)
−1(VB(y))=(S1⊗S2)

−1(VA(x)).

We now prove the uniqueness of the element x∈δA∩Sy . If x
′∈δA∩Sy is such

that

(S1⊗S2)
−1(VA(x

′))= (T1⊗T2)
−1(VB(y)),

then

(S1⊗S2)
−1(VA(x))= (S1⊗S2)

−1(VA(x
′)),

and hence x=x′ by Lemma 3.10, as desired. �

Lemma 3.12. There exists a bijection φ : δB→δA such that for every y∈δB,

φ(y)∈Sy and (T1⊗T2)
−1(VB(y))=(S1⊗S2)

−1(VA(φ(y))).
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Proof. According to Lemma 3.11, for each y∈δB there exists a unique

x∈δA∩Sy such that (T1⊗T2)
−1(VB(y))=(S1⊗S2)

−1(VA(x)). Hence the corre-

spondence φ(y)=x is a well-defined mapping from δB to δA such that φ(y)∈Sy

and (T1⊗T2)
−1(VB(y))=(S1⊗S2)

−1(VA(φ(y))) for every y∈δB. We claim that the

mapping φ is surjective. Let x∈δA. Lemma 3.10 shows that there exists a y0∈δB
such that (S1⊗S2)

−1(VA(φ(y0)))=(T1⊗T2)
−1(VB(y0))⊂(S1⊗S2)

−1(VA(x)). Hence

(S1⊗S2)
−1(VA(φ(y0)))⊂(S1⊗S2)

−1(VA(x)). By Lemma 3.10 we see that φ(y0)=x,

and therefore φ is surjective, as claimed. Suppose that φ(y1)=φ(y2) for y1, y2∈δB.

Then

(T1⊗T2)
−1(VB(y1))= (S1⊗S2)

−1(VA(φ(y1)))

= (S1⊗S2)
−1(VA(φ(y2)))= (T1⊗T2)

−1(VB(y2)),

and thus y1=y2 by Lemma 3.9. Therefore, the mapping φ is also injective. �

Lemma 3.13. If φ : δB→δA is the bijection from Lemma 3.12, then

|((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|

for all a∈J1, b∈J2 and y∈δB.

Proof. If φ : δB→δA is the bijection from Lemma 3.12, then φ(y)∈Sy and

(T1⊗T2)
−1(VB(y))=(S1⊗S2)

−1(VA(φ(y))) for every y∈δB. The fact that φ(y)∈Sy

allows us to apply Lemma 3.7 to φ(y) instead of to x. Let a∈J1, b∈J2 and

y∈δB. We show that |((T1⊗T2)(a, b))(y)|=|((S1⊗S2)(a, b))(φ(y))|. Applied to φ(y),

Lemma 3.7 yields |((S1⊗S2)(a, b))(φ(y))|≤|((T1⊗T2)(a, b))(y)|.
Next we prove the converse inequality. If u∈PS1(φ(y)), v∈PS2(φ(y)), au∈J1

and bv∈J2 are such that S1(au)=u and S2(bv)=v, then

(S1⊗S2)(au, bv)=S1(au)S2(bv)=uv ∈VA(φ(y)),

and therefore

(au, bv)∈ (S1⊗S2)
−1(VA(φ(y)))= (T1⊗T2)

−1(VB(y)).

Thus |((T1⊗T2)(au, bv))(y)|=1, and consequently

|((T1⊗T2)(a, b))(y)|= |((T1⊗T2)(a, b))(y)| |((T1⊗T2)(au, bv))(y)|

= |(T1(a)T2(bv))(y)| |(T1(au)T2(b))(y)|
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≤‖(T1⊗T2)(a, bv)‖ ‖(T1⊗T2)(au, b)‖

= ‖(S1⊗S2)(a, bv)‖ ‖(S1⊗S2)(au, b)‖

= ‖S1(a)v‖ ‖S2(b)u‖,

where we made use of (3.1). Since u∈PS1(φ(y)) and v∈PS2(φ(y)) are chosen arbi-

trarily, Lemma 3.3 yields

|((T1⊗T2)(a, b))(y)| ≤ inf
v∈PS2

(φ(y))
‖S1(a)v‖ inf

u∈PS1
(φ(y))

‖S2(b)u‖

= |S1(a)(φ(y))| |S2(b)(φ(y))|= |((S1⊗S2)(a, b))(φ(y))|,

as claimed. Thus |((T1⊗T2)(a, b))(y)|=|((S1⊗S2)(a, b))(φ(y))| for every a∈J1,

b∈J2 and y∈δB. �

Lemma 3.14. The bijection φ : δB→δA is a homeomorphism.

Proof. Let y0∈δB. For each open neighborhood O⊂δA of φ(y0) there exists

an open set Õ⊂X such that O=Õ∩δA, where X is the underlying space of A.

The set K=X\Õ is a closed subset of X and φ(y0) /∈K. By Lemma 3.2 there exist

h1∈PS1(φ(y0)) and h2∈PS2(φ(y0)) such that |hi|< 1
2 on K for i=1, 2. Choose a∈J1

and b∈J2 so that S1(a)=h1 and S2(b)=h2, and set

W =
{
y ∈ δB : |((T1⊗T2)(a, b))(y)|> 1

2

}
.

Then y0∈W , since

|((T1⊗T2)(a, b))(y0)|= |((S1⊗S2)(a, b))(φ(y0))|= |(h1h2)(φ(y0))|=1.

The continuity of (T1⊗T2)(a, b) implies that W is an open neighborhood of y0 in

δB. We assert that φ(W )⊂O. In fact, for each y∈W we have

|(h1h2)(φ(y))|= |((S1⊗S2)(a, b))(φ(y))|= |((T1⊗T2)(a, b))(y)|> 1
2 .

Since |hi|< 1
2 on K, we deduce that φ(y) /∈K=X\Õ. Thus, φ(y)∈Õ∩δA=O, and

consequently φ(W )⊂O, as claimed. This implies that the map φ is continuous at

y0. Since y0∈δB was arbitrarily chosen, we conclude that φ : δB→δA is continuous

on δB. The same argument, applied to φ−1 : δA→δB, shows that φ−1 is continuous

too. Consequently, φ is a homeomorphism, as claimed. �
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Proposition 3.1 follows immediately from Lemmas 3.13 and 3.14. What it says

is that the moduli of the maps S1⊗S2 and T1⊗T2 are equal up to the composition

with a homeomorphism φ : δB→δA, i.e. that the diagram

J1×J2

|S1⊗S2|

������������ |T1⊗T2|

������������

|S1 ·S2|
∣∣
δA

Cφ

�� |T1 ·T2|
∣∣
δB

is commutative. Here Cφ : C(δA)→C(δB) is the composition operator induced by

the homeomorphism φ : δB→δA, namely, Cφ(f)=f ◦φ, f∈C(δA), and the map-

pings |S1⊗S2| and |T1⊗T2| are assumed to map J1×J2 into the restriction alge-

bras C(δA) and C(δB), respectively. Note that since the mapping φ : δB→δA is a

homeomorphism, the equality (3.2) yields

|((T1⊗T2)(a, b))(δB)|= |((S1⊗S2)(a, b))(δA)|

for all a∈J1 and b∈J2.

4. Proofs of the main results

The property (3.1) alone is not sufficient for the equality

(4.1) ((T1⊗T2)(a, b))(y)= ((S1⊗S2)(a, b))(φ(y)),

i.e. the equality (3.2) with the moduli deleted, to hold for every a∈J1, b∈J2 and

y∈δB. In this section we establish spectral conditions on ⊗-products of two pairs

of mappings, not necessarily linear, into multiplicative subsets of function algebras

in order for (4.1) to hold, and together, the mappings in the first pair to equal

the mappings in the second one up to compositions with certain operators. Recall

that if f∈A, then the range of f is the set Ran(f)=f(X) and either Ran(f) or

Ran(f)∪{0} are compact subsets of C.

We precede the proof of Theorem 2.2 by the following useful result, mentioned

in Section 2, the proof of which we provide for reference purposes.

Lemma 4.1. If A is a function algebra on a locally compact Hausdorff space

X then

σπ(f)= {z ∈ f(δA) : |z|= ‖f‖}, f ∈A.
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Proof. We consider only the case when f∈A\{0}. Since f(δA)⊂Ran(f),

{z ∈ f(δA) : |z|= ‖f‖}⊂{z ∈Ran(f) : |z|= ‖f‖}=σπ(f).

Conversely, if z0∈σπ(f), then there is an x0∈X such that z0=f(x0) and

|f(x0)|=|z0|=‖f‖. Let f0=f/‖f‖∈A and λ=f0(x0). Then f1=
1
2 ((λf0)

2+λf0)

is a peaking function of A. Hence f−1
1 (1)=f−1

0 (λ) is a peak set of A. As peak sets

of function algebras meet their Choquet boundaries (see e.g. [21, Proposition 2.1]),

there is an x1∈f−1
0 (λ)∩δA. Therefore f0(x1)=λ=f0(x0), and hence f(x1)=

f(x0)=z0. Thus z0=f(x1)∈f(δA), which implies that z0∈{z∈f(δA):|z|=‖f‖}.
Consequently, σπ(f)⊂{z∈f(δA):|z|=‖f‖}. �

4.1. Proof of Theorem 2.2

Let φ : δB→δA be the homeomorphism from Proposition 3.1 such that

(4.2) |((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|

for all a∈J1, b∈J2 and y∈δB. Conditions (i), (ii) and Lemma 4.1 imply that

(4.3) σπ((S1⊗S2)(a, b))⊂σπ((T1⊗T2)(a, b))

for all a∈J1 and b∈J2. Let y∈δB. Note that PTi(y) �=∅ as p(Ti)=δB for i=1, 2.

We will show that (S1(a)S2(b))(φ(y))=1 for a∈T−1
1 (PT1(y)) and b∈T−1

2 (PT2(y)).

Indeed, if a∈T−1
1 (PT1(y)) and b∈T−1

2 (PT2(y)), then, according to (4.3),

σπ((S1⊗S2)(a, b))⊂σπ((T1⊗T2)(a, b))=σπ(T1(a)T2(b))= {1}.

Therefore, (S1⊗S2)(a, b) is a peaking function of A. The equality (4.2) yields

|((S1⊗S2)(a, b))(φ(y))|= |((T1⊗T2)(a, b))(y)|= |T1(a)(y)T2(b)(y)|=1.

Thus the peaking function (S1⊗S2)(a, b) attains its maximum modulus at φ(y).

Hence (S1(a)S2(b))(φ(y))=((S1⊗S2)(a, b))(φ(y))=1, as desired. Consequently, the

function α : δB→C\{0} defined as

(4.4) α(y)=
1

S1(a)(φ(y))
=S2(b)(φ(y))

for any a∈T−1
1 (PT1(y)) and any b∈T−1

2 (PT2(y)) is well defined.
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Next we show that T1(a)(y)=α(y)S1(a)(φ(y)) for all a∈J1 and y∈δB. Let

a0∈J1 and y0∈δB. For any b∈T−1
2 (PT2(y0)), equality (4.2) yields

|T1(a0)(y0)|= |T1(a0)(y0)| |T2(b)(y0)|= |((T1⊗T2)(a0, b))(y0)|

= |((S1⊗S2)(a0, b))(φ(y0))|= |α(y0)S1(a0)(φ(y0))|.

It follows that

(4.5) |T1(a0)(y0)|= |α(y0)S1(a0)(φ(y0))|.

Therefore, we only need to consider the case when T1(a0)(y0) �=0, or, equivalently,

S1(a0)(φ(y0)) �=0. In the proof of this case we use some reasoning similar to the ones

when Si and Ti are Banach function algebras (cf. [9, Lemma 3.11]). A discussion

with F. Sady is gratefully acknowledged. Since p(T2)=δB and T2 is an algebra,

there is a v∈PT 2
(y0) with σπ(T1(a0)v)={T1(a0)(y0)}, and such that there are ele-

ments vn∈T2 converging uniformly to v of type vn=rnkn for some kn∈PT2(y0) and

rn=1−2−n, where T 2 is the uniform closure of T2 (see [9], and also [6, Lemma 2.3]

and [26, Proposition 3.1]). Clearly, rn→1 as n→∞. Let T2(bn)=vn for some

bn∈J2. We claim that

(4.6) S2(bn)(φ(y0))=α(y0)rn

for all n∈N. For each a∈T−1
1 (PT1(y0)), we have T1(a)kn∈PB(y0), and thus equal-

ity (4.3) implies σπ((S1⊗S2)(a, bn))⊂σπ((T1⊗T2)(a, bn))=σπ(T1(a)vn)={rn}. By

(4.2),

|((S1⊗S2)(a, bn))(φ(y0))|= |((T1⊗T2)(a, bn))(y0)|= rn

for every a∈T−1
1 (PT1(y0)). Consequently, the function (S1⊗S2)(a, bn) attains its

maximum modulus, rn, at the point φ(y0). Hence

(S1(a)S2(bn))(φ(y0))= ((S1⊗S2)(a, bn))(φ(y0))= rn.

Since a∈T−1
1 (PT1(y0)), then, by the definition, S1(a)(φ(y0))=1/α(y0) and therefore,

S2(bn)(φ(y0))=rn/S1(a)(φ(y0))=α(y0)rn as claimed. Equality (4.6) implies that

S2(bn)(φ(y0))=α(y0)rn→α(y0) as n→∞. Note that, by (ii),

(S1(a0)S2(bn))(φ(y0))∈ ((S1⊗S2)(a0, bn))(δA)⊂Ran((T1⊗T2)(a0, bn)).

Hence there are points yn∈Y such that

(T1(a0)T2(bn))(yn)= (S1(a0)S2(bn))(φ(y0)).
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If λn=(T1(a0)v)(yn) and λ=α(y0)S1(a0)(φ(y0)), then we have

|λn−λ| ≤ |λn−(T1(a0)T2(bn))(yn)|+|(T1(a0)T2(bn))(yn)−λ|

= |T1(a0)(yn)| |v(yn)−T2(bn)(yn)|+|(S1(a0)S2(bn))(φ(y0))−λ|

= |T1(a0)(yn)| |v(yn)−vn(yn)|+|S1(a0)(φ(y0))| |S2(bn)(φ(y0))−α(y0)|

≤ ‖T1(a0)‖ ‖v−vn‖+|S1(a0)(φ(y0))| |α(y0)rn−α(y0)|

→ 0

as n→∞. Hence λn→λ, i.e. (T1(a0)v)(yn)→α(y0)S1(a0)(φ(y0)) �=0. Therefore,

α(y0)S1(a0)(φ(y0))∈Ran(T1(a0)v), as Ran(T1(a0)v)∪{0} is a compact set in C. The

equality (4.5) implies that |α(y0)S1(a0)(φ(y0))|=|T1(a0)(y0)|. Since σπ(T1(a0)v)=

{T1(a0)(y0)} it follows that α(y0)S1(a0)(φ(y0))=T1(a0)(y0), as claimed.

We next prove that the function α : δB→C\{0} is continuous. Let y0∈δB.

Since p(S1)=δA, we have PS1(φ(y0)) �=∅ and therefore there exists an a0∈J1

such that S1(a0)(φ(y0)) �=0. Since S1(a0) and φ are continuous, there exists an

open neighborhood O⊂δB of y0 such that S1(a0)(φ(y)) �=0 for all y∈O. Thus

α=T1(a0)/(S1(a0)◦φ) on O. The continuity of T1(a0) and S1(a0)◦φ at y0 implies

that α is continuous at y0∈δB. Since y0∈δB was chosen arbitrarily, we see that α

is continuous on δB.

It remains to show that T2(b)(y)=S2(b)(φ(y))/α(y) for all b∈J2 and y∈δB.

Since the conditions on S1, T1 and S2, T2 are symmetric, we get, by (4.4), T2(b)(y)=

β(y)S2(b)(φ(y)) for all b∈J2 and y∈δB with β(y)=1/S2(c)(φ(y)), where c is an

arbitrary element in T−1
2 (PT2(y)). So β(y)=1/α(y) by definition, and therefore

T2(b)(y)=S2(b)(φ(y))/α(y).

4.2. Proof of Theorem 2.4

Recall that if (S,S ′) is a Bishop pair, then for every x∈p(S) and each f ′∈S ′

with f ′(x) �=0 there is a peaking function h∈PS(x) such that σπ(f
′h)={f ′(x)},

and for every x′∈p(S ′) and each f∈S with f(x′) �=0 there is a peaking function

h′∈PS′(x′) such that σπ(fh
′)={f(x′)}. A set S is a Bishop set if (S,S) is a Bishop

pair.

The inclusion (2.2) implies that ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖ for all a∈J1

and b∈J2. Let φ : δB→δA be the homeomorphism from Proposition 3.1 such that

(4.7) |((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|



348 Takeshi Miura and Thomas Tonev

for all a∈J1, b∈J2 and y∈δB. As in the proof of Theorem 2.2 we define a function

α : δB→C\{0} by

α(y)=
1

S1(a)(φ(y))
=S2(b)(φ(y))

for any a∈T−1
1 (PT1(y)) and b∈T−1

2 (PT2(y)), such that

|T1(a)(y)|= |α(y)S1(a)(φ(y))|,

where a∈J1 and y∈δB (see (4.5)). Let a∈J1 and y∈δB. Therefore to prove that

T1(a)(y)=α(y)S1(a)(φ(y)) we only need to consider the case when T1(a)(y) �=0,

or, equivalently, S1(a)(φ(y)) �=0. Since (T1, T2) is a Bishop pair, there is an h∈PT2(y)

such that σπ(T1(a)h)={T1(a)(y)}. If bh∈J2 is such that T2(bh)=h, then we have

σπ((T1⊗T2)(a, bh))={T1(a)(y)}. The inclusion (2.2) yields σπ((S1⊗S2)(a, bh))⊂
σπ((T1⊗T2)(a, bh))={T1(a)(y)}. By equality (4.7),

|((S1⊗S2)(a, bh))(φ(y))|= |((T1⊗T2)(a, bh))(y)|= |T1(a)(y)|.

Consequently, the function (S1⊗S2)(a, bh) attains its maximum modulus at φ(y),

and therefore, ((S1⊗S2)(a, bh))(φ(y))=T1(a)(y). As bh∈T−1
2 (PT2(y)) and, by def-

inition, α(y)=S2(bh)(φ(y)), we have T1(a)(y)=α(y)S1(a)(φ(y)) as claimed. The

continuity of α and the equality T2(b)(y)=S2(b)(φ(y))/α(y) can be proven in the

same way as in Theorem 2.2. This completes the proof of Theorem 2.4.

By using arguments similar to the ones in the proof of Theorem 2.4 (and of

Theorem 2.5 below) one can prove the following result.

Proposition 4.2. Let S1,S2⊂A and T1, T2⊂B be multiplicative sets in func-

tion algebras A and B on locally compact Hausdorff spaces X and Y such that

p(Si)=δA, p(Ti)=δB and (T1, T2) is a Bishop pair. If Ji are arbitrary sets of pa-

rameters and the pairs of surjective mappings Si : Ji→Si and Ti : Ji→Ti, i=1, 2,

satisfy the conditions

σπ((S1⊗S2)(a, b))∩σπ((T1⊗T2)(a, b)) �=∅ and σπ(Si(c))⊂σπ(Ti(c))

for all a∈J1, b∈J2 and c∈Ji, i=1, 2, then there is a homeomorphism φ : δB→δA

so that

T1(a)(y)=S1(a)(φ(y)) and T2(b)(y)=S2(b)(φ(y))

for all a∈J1, b∈J2 and y∈δB.
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[14, Theorem 5], one of the main results in [14], is a consequence of this theorem.

For subsets Ti with more specific properties we can remove the second spectral

condition. Recall that P ◦
S(x) is the set of all peak functions in a subset S of a

function algebra A that peak at x∈δA, i.e. P ◦
S(x)={h∈PS(x):|h|<1 on δA\{x}}.

A point x∈X is a peak point of S , i.e. x∈p◦(S) if and only if P ◦
S(x) �=∅.

4.3. Proof of Theorem 2.5

Condition (2.3) implies that ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖ for all a∈J1

and b∈J2. Note that p(Ti)=δB, as δB=p◦(Ti)⊂p(Ti)⊂δB, i=1, 2. Let φ : δB→δA

be the homeomorphism from Proposition 3.1 such that

(4.8) |((T1⊗T2)(a, b))(y)|= |((S1⊗S2)(a, b))(φ(y))|

for all a∈J1, b∈J2 and y∈δB. Let y∈δB. Since, by the hypothesis, y is a peak

point of Ti, we get that P ◦
Ti
(y) �=∅ for i=1, 2. We claim that (S1(a)S2(b))(φ(y))=1

for all a∈T−1
1 (P ◦

T1
(y)) and b∈T−1

2 (PT2(y)). Indeed, if both a∈T−1
1 (P ◦

T1
(y)) and

b∈T−1
2 (PT2(y)), then we have (T1⊗T2)(a, b)∈P ◦

B(y), since |T1(a)|<1 on δB\{y}.
Therefore σπ((T1⊗T2)(a, b))={1} and ((T1⊗T2)(a, b))(y)=1. By condition (2.3),

1∈σπ((S1⊗S2)(a, b)), and hence, by Lemma 4.1, there exists an x∈δA such

that ((S1⊗S2)(a, b))(x)=1. Choose y′∈δB so that φ(y′)=x. Therefore, by (4.8),

|((T1⊗T2)(a, b))(y
′)|=1. Hence, (T1⊗T2)(a, b) is a peaking function that attains

its maximum modulus at y′, and consequently ((T1⊗T2)(a, b))(y
′)=1. This im-

plies that y′=y, since |(T1⊗T2)(a, b)|<1 on δB\{y}. Hence x=φ(y), and thus

(S1(a)S2(b))(φ(y))=((S1⊗S2)(a, b))(φ(y))=1 as claimed. Now α : δB→C\{0} de-

fined as

α(y)=
1

S1(a)(φ(y))
=S2(b)(φ(y))

for any a∈T−1
1 (P ◦

T1
(y)) and for all b∈T−1

2 (PT2(y)), is well defined.

We claim that T1(a)(y)=α(y)S1(a)(φ(y)) for all a∈J1 and y∈δB. Let a∈J1

and y0∈δB. If b∈T−1
2 (PT2(y0)), then T2(b)(y0)=1, and therefore (4.8) implies

|T1(a)(y0)|= |((T1⊗T2)(a, b))(y0)|= |((S1⊗S2)(a, b))(φ(y0))|= |α(y0)S1(a)(φ(y0))|.

Therefore, we only need to consider the case when T1(a)(y0) �=0. Since (T1, T2)
is a Bishop pair, there is u∈PT2(y0) such that σπ(T1(a)u)={T1(a)(y0)}. As y0 is

a peak point of T2, we can choose v∈PT2(y0) so that |v(y)|<1 for y �=y0. Thus,

w=uv∈PT2(y0) satisfies σπ(T1(a)w)={T1(a)(y0)} and |T1(a)(y)w(y)|<|T1(a)(y0)|
for y �=y0. Let bw∈J2 be such that T2(bw)=w∈PT2(y0). Therefore, σπ((T1⊗T2)

(a, bw))={T1(a)(y0)}. Condition (2.3) implies that T1(a)(y0)∈σπ((S1⊗S2)(a, bw)).
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By Lemma 4.1 there exists an x0∈δA such that ((S1⊗S2)(a, bw))(x0)=T1(a)(y0).

The equality (4.8) yields

|((T1⊗T2)(a, bw))(φ
−1(x0))|= |((S1⊗S2)(a, bw))(x0)|= |T1(a)(y0)|.

Therefore, φ−1(x0)=y0, since |((T1⊗T2)(a, bw))(y)|=|T1(a)(y)w(y)|<|T1(a)(y0)| for
y �=y0. Therefore, x0=φ(y0), and thus T1(a)(y0)=((S1⊗S2)(a, bw))(φ(y0)). Since

bw∈T−1
2 (PT2(y0)), we have α(y0)=S2(bw)(φ(y0)) by the definition, and consequently

T1(a)(y0)=α(y0)S1(a)(φ(y0)) as claimed. The continuity of α and the equality

T2(b)(y)=S2(b)(φ(y))/α(y) can be proven by the same arguments as in the proof

of Theorem 2.2. This completes the proof of Theorem 2.5.

It is obvious that the spectral conditions in the main theorems can be written,

equivalently, as ‖S1(a)S2(b)‖=‖T1(a)T2(b)‖, (S1(a)S2(b))(δA)⊂Ran(T1(a)T2(b)),

σπ(S1(a)S2(b))⊂σπ(T1(a)T2(b)), and σπ(S1(a)S2(b))∩σπ(T1(a)T2(b)) �=∅, respec-

tively. The conclusions of the main theorems imply that the diagram

Ji

Si

��

Ti
�� Ti|δB

Mi

��

Si|δA
Cφ

�� C(δB)

is commutative, where Mi, i=1, 2, are the multiplicative operators M1(f)=(1/α)f ,

M2=αf and Cφ(Si(a))=Si(a)◦φ. Here the mappings Si and Ti are assumed to map

Ji onto the restriction sets Si|δA and Ti|δB , respectively. In particular, we see that

Si(a)=0 if and only if Ti(a)=0, and Si(a)=Si(b) if and only if Ti(a)=Ti(b), i=1, 2.

The main theorems imply also that ((T1⊗T2)(a, b))(y)=((S1⊗S2)(a, b))(φ(y)) for

all a∈J1, b∈J2 and y∈δB, i.e. the products S1⊗S2 and T1⊗T2 coincide up to the

composition with the homeomorphism φ, or, equivalently, that the diagram

J1×J2

S1⊗S2

������������ T1⊗T2

������������

(S1 ·S2)|δA
Cφ

�� (T1 ·T2)|δB

is commutative.



Mappings onto multiplicative subsets of function algebras and spectral properties 351

Theorems 2.2 and 2.4 hold, say, in the case when Si and Ti are function alge-

bras, or, the unit balls of function algebras. Theorem 2.5 holds in the case when

S1=S2 and T1=T2 are pointed Lipschitz algebras, since any pointed Lipschitz alge-

bra A on a compact metric space X with a distinguished base point e is a Bishop

set and a multiplicative set of C(X) with p(A)=p◦(A)=X\{e}. This yields the

main result in [10].

5. Remarks and examples

Remark 5.1. It is clear that parts (1), (2) and (3) of Corollary 2.6 follow from

Theorems 2.2, 2.4 and 2.5, respectively. Actually, the corresponding statements

are equivalent. Let Si and Ti be multiplicative sets in the function algebras A

and B, Ji be arbitrary sets and let Si : Ji→Si and Ti : Ji→Ti be surjective map-

pings for i=1, 2. We will show that, under the conditions of the main theorems, if

Si(c)=Si(c
′) then Ti(c)=Ti(c

′) for all c, c′∈Ji and i=1, 2. This will allow us to

define surjections Ui : Si→Ti as follows. Since Si are surjective mappings, for any

f∈S1 and g∈S2, there exist a∈J1 and b∈J2 such that S1(a)=f and S2(b)=g. The

mappings Ui : Si→Ti we define by U1(f)=T1(a) and U2(g)=T2(b). U1 and U2 are

well defined, since, as claimed, Si(c)=Si(c
′) implies Ti(c)=Ti(c

′), i=1, 2. Since T1

and T2 are surjective, so are U1 and U2. Moreover, as we will show, under the

conditions of Theorems 2.2, 2.4 and 2.5 the mappings Ui satisfy the conditions of

parts (1), (2) and (3) of Corollary 2.6, respectively. Consequently, there exists a

homeomorphism φ : δB→δA and a continuous function α : δB→C\{0} such that

(5.1) U1(f)(y)=α(y)f(φ(y)) and U2(g)(y)=
1

α(y)
g(φ(y))

for all f∈S1, g∈S2 and y∈δB. Let S1(a)=f and S2(b)=g for all a∈J1 and b∈J2.

Then U1(f)=T1(a) and U2(g)=T2(b) by definition. Now equalities (5.1) imply that

T1(a)(y)=α(y)S1(a)(φ(y)) and T2(b)(y)=
1

α(y)
S2(b)(φ(y))

for all a∈J1, b∈J2 and y∈δB. This will complete the proof that the cases (1), (2)

and (3) of Corollary 2.6 imply Theorems 2.2, 2.4 and 2.5, respectively, as claimed.

Claim 1. Theorem 2.2 follows from part (1) of Corollary 2.6.

We show that, under the conditions of Theorem 2.2, if S1(a)=S1(b) then

T1(a)=T1(b) for all a, b∈J1, as claimed. Let y0∈δB. Suppose that T1(b)(y0)=0.
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By Lemma 3.3 for each ε>0 there is a u0∈PT2(y0) such that ‖T1(b)u0‖<ε. Let

c∈J2 be such that T2(c)=u0. Since S1(a)=S1(b), we get that

‖T1(a)u0‖= ‖T1(a)T2(c)‖= ‖S1(a)S2(c)‖

= ‖S1(b)S2(c)‖= ‖T1(b)T2(c)‖= ‖T1(b)u0‖<ε.

Thus, infu∈PT2
(y0) ‖T1(a)u‖=0. By Lemma 3.3, T1(a)(y0)=0=T1(b)(y0) as de-

sired. Similarly, if T1(a)(y0)=0 then T1(b)(y0)=0. Suppose now that T1(a)(y0) �=0

and T1(b)(y0) �=0. By the same reasoning as in the proof of Theorem 2.2, there

are u, v∈PT 2
(y0) with σπ(T1(a)u)={T1(a)(y0)} and σπ(T1(b)v)={T1(b)(y0)}, and

there are kn, hn∈PT2(y0) and rn>0 so that rnkn and rnhn converge uniformly to u

and v, respectively. Then w=uv∈PT 2
(y0), wn=r2nknhn converges uniformly to w,

σπ(T1(a)w)={T1(a)(y0)} and σπ(T1(b)w)={T1(b)(y0)}. Let wn=T2(cn) for some

cn∈J2. By (4.3) we have σπ(S1(a)S2(cn))⊂σπ(T1(a)T2(cn))=σπ(T1(a)wn) and

σπ(S1(b)S2(cn))⊂σπ(T1(b)T2(cn))=σπ(T1(b)wn). If S1(a)=S1(b), it follows that

σπ(S1(a)S2(cn))⊂σπ(T1(a)wn)∩σπ(T1(b)wn). Hence σπ(T1(a)wn)∩σπ(T1(b)wn) �=
∅ for every n. As T1(a)wn and T1(b)wn converge uniformly to T1(a)w and T1(b)w,

respectively, we get that σπ(T1(a)w)∩σπ(T1(b)w) �=∅. Therefore, T1(a)(y0)=

T1(b)(y0). Since y0 was an arbitrary element in δB it follows that T1(a)=T1(b),

as desired. By the same argument we see that if S2(a)=S2(b) then T2(a)=T2(b)

for all a, b∈J2. Let f∈S1, g∈S2, a∈J1 and b∈J2 be such that S1(a)=f and

S2(b)=g. Then U1(f)=T1(a) and U2(g)=T2(b) by the definition at the beginning of

the remark, and conditions (i), (ii) of Theorem 2.2 imply that ‖fg‖=‖S1(a)S2(b)‖=
‖T1(a)T2(b)‖=‖U1(f)U2(g)‖ and

(fg)(δA)= (S1(a)S2(b))(δA)⊂Ran(T1(a)T2(b))=Ran(U1(f)U2(g))

for all f∈S1 and g∈S2. Hence the mappings U1 and U2 satisfy the condition (1)

of Corollary 2.6, as desired. Consequently, Theorem 2.2 follows from Corollary 2.6,

as claimed.

Claim 2. Theorem 2.4 follows from part (2) of Corollary 2.6.

We show again that, under the conditions of Theorem 2.4, if S1(a)=S1(b) then

T1(a)=T1(b) for a, b∈J1. Let y0∈δB. By the same arguments as in the proof of

Claim 1, we see that T1(a)(y0)=0 if and only if T1(b)(y0)=0. Suppose now that

T1(a)(y0) �=0 and T1(b)(y0) �=0. As (T1, T2) is a Bishop pair there are

u, v∈PT2(y0) such that σπ(T1(a)u)={T1(a)(y0)} and σπ(T1(b)v)={T1(b)(y0)}. Then
for w=uv∈PT2(y0), clearly, σπ(T1(a)w)={T1(a)(y0)} and σπ(T1(b)w)={T1(b)(y0)}.
If c∈J2 is such that T2(c)=w, then (2.2) yields

σπ(S1(a)S2(c))⊂σπ(T1(a)T2(c))=σπ(T1(a)w)= {T1(a)(y0)}.
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Therefore, σπ(S1(a)S2(c))={T1(a)(y0)}. By the same reasoning, we also have

σπ(S1(b)S2(c))={T1(b)(y0)}. If S1(a)=S1(b), then, clearly, T1(a)(y0)=T1(b)(y0).

Since this holds for every y0∈δB, we have T1(a)=T1(b), as desired. By the same

arguments, we see that if S2(a)=S2(b) then T2(a)=T2(b) for all a, b∈J2. Let f∈S1,

g∈S2, a∈J1 and b∈J2 be such that S1(a)=f and S2(b)=g. Then U1(f)=T1(a)

and U2(g)=T2(b) by the definition at the beginning of the remark. Condition (2.2)

of Theorem 2.4 implies that

σπ(fg)=σπ(S1(a)S2(b))⊂σπ(T1(a)T2(b))=σπ(U1(f)U2(g)).

Therefore, the mappings U1 and U2 satisfy condition (2) of Corollary 2.6. Conse-

quently, Theorem 2.4 follows from Corollary 2.6, as claimed.

Claim 3. Theorem 2.5 follows from part (3) of Corollary 2.6.

We show that under the conditions of Theorem 2.5, if S1(a)=S1(b) then

T1(a)=T1(b) for a, b∈J1. Let y0∈δB. As in the proof of Claim 1 we see that

T1(a)(y0)=0 if and only if T1(b)(y0)=0. Let T1(a)(y0) �=0 and T1(b)(y0) �=0. By the

hypotheses of Theorem 2.5 there are u, v∈P ◦
T2
(y0) such that

σπ(T1(a)u)= {T1(a)(y0)} and σπ(T1(b)v)= {T1(b)(y0)}.

For the function w=uv∈P ◦
T2
(y0) we have

σπ(T1(a)w)= {T1(a)(y0)} and σπ(T1(b)w)= {T1(b)(y0)}.

Let c∈J2 be such that T2(c)=w. By the property (2.3),

σπ(T1(a)w)∩σπ(S1(a)S2(c))=σπ(T1(a)T2(c))∩σπ(S1(a)S2(c)) �=∅.

Therefore, we get T1(a)(y0)∈σπ(S1(a)S2(c)). Similarly, T1(b)(y0)∈σπ(S1(b)S2(c)).

As w∈P ◦
T2
(y0), (3.2) implies that

|(S1(a)S2(c))(φ(y))|= |(T1(a)w)(y)|< |T1(a)(y0)| for y �= y0.

By Lemma 4.1, σπ(S1(a)S2(c))={T1(a)(y0)}. The same arguments show that

σπ(S1(b)S2(c))={T1(b)(y0)}. Hence if S1(a)=S1(b), then T1(a)(y0)=T1(b)(y0).

Since this holds for every y0∈δB, T1(a)=T1(b), as desired. By the same arguments,

we see that if S2(a)=S2(b) then T2(a)=T2(b) for all a, b∈J2. Let f∈S1, g∈S2,

a∈J1 and b∈J2 be such that S1(a)=f and S2(b)=g. Therefore, U1(f)=T1(a) and

U2(g)=T2(b) by the definition at the beginning of the remark, and condition (2.3)

of Theorem 2.5 implies that

σπ(fg)∩σπ(U1(f)U2(g))=σπ(S1(a)S2(b))∩σπ(T1(a)T2(b)) �=∅.
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Thus the mappings U1 and U2 satisfy condition (3) of Corollary 2.6. Consequently,

Theorem 2.5 follows from Corollary 2.6, as claimed.

Example 5.2. Let A(D) be the disc algebra and T={z∈C:|z|=1}. For each

f∈A(D) define f∗(z)=f(z̄) for z∈D. If T : A(D)→A(D) is a surjective map such

that

(5.2) σπ(fg
∗)∩σπ(T (f)T (g)

∗) �=∅, f, g ∈A(D),

then Theorem 2.5 (with the choices J1=J2=S=T =A(D), S1=id(A(D)), S2(g)=

g∗, T1=T and T2(g)=T (g)∗) yields that there exist a homeomorphism φ : T→T

and a continuous function α : T→C\{0} such that

T (f)(z)=α(z)f(φ(z)) and T (f)∗(z)=
1

α(z)
f∗(φ(z))

for all f∈A(D) and z∈T. Then α=T (1) on T, and hence we may regard α=T (1)∈
A(D). By definition, T (f)∗(z)=T (f)(z̄) and f∗(φ(z))=f(φ(z)), and thus

α(z)f(φ(z))=T (f)(z)=T (f)∗(z̄)=
1

α∗(z)
f(φ(z̄)).

Consequently, α(z)α∗(z)f(φ(z))=f(φ(z̄)) for all f∈A(D) and z∈T. Taking f=1,

we have αα∗=1 on D, since T is a boundary of A(D). For example, if g∈A(D) has no
zeros in D, then α=g∗/g∈A(D) satisfies αα∗=1 on D. As f(φ(z))=f(φ(z̄)), we get

that φ(z)=φ(z̄) for all z∈T. Since α∗T is an algebra isomorphism on A(D), there

exists a homeomorphism ψ : D→D such that α∗T (f)=f ◦ψ for all f∈A(D), and thus

ψ∈A(D). Since f ◦φ=α∗T (f)=f ◦ψ on T, we see that ψ is an extension of φ. As

is well known, such a ψ is a Möbius transform of the form ψ(z)=λ(a−z)/(1−āz),

where |λ|=1 and |a|<1. For each z∈T,

λ
a−z

1−āz
=ψ(z)=φ(z)=φ(z̄)=ψ(z̄)=λ

ā−z

1−az
.

Since T is a boundary of A(D), the above equalities hold for all z∈D, and hence a=ā

and λ=λ. Consequently, if T : A(D)→A(D) is a surjective map that satisfies (5.2),

then there exists an α∈A(D) with αα∗=1 on D such that T (f)(z)=α(z)f(ψ(z))

for all f∈A(D) and z∈D, where ψ(z)=λ(a−z)/(1−az) for λ=±1 and some real

number a with |a|<1.

Remark 5.3. In the main theorems if S1=S2=S and T1=T2=T , then the set

S contains the constant function 1 if and only if T does. In fact, if 1∈S , then
there exist ei∈Ji, i=1, 2, such that S1(e1)=1=S2(e2), and thus T1(e1)=α and
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T2(e2)=1/α on δB. Hence T1(e1)T2(e2)∈T ⊂B satisfies T1(e1)T2(e2)=1 on δB.

Since δB is a boundary of B, we get that T1(e1)T2(e2) is the unit of B, i.e. the

constant function 1. Therefore, 1∈T . A similar argument shows that 1∈T implies

1∈S .

Example 5.4. The function α in the main theorems is not necessarily uni-

modular. Indeed, let A(D) be the disc algebra and set D0=D\{0}. Then A=

{f |
D0

:f∈A(D) with f(0)=0} is a function algebra on the locally compact Haus-

dorff space D0, whose Choquet boundary δA is the unit circle. Set α(z)=(2z+3)/

(z+3), and then α, 1/α∈A(D) but α, 1/α /∈A, since α(0)=1. Define T1, T2 : A→A

by

T1(f)(z)=α(z)f(z) and T2(f)(z)=
1

α(z)
f(z)

for f∈A and z∈D0. Both T1 and T2 are surjective mappings so that T1(f)T2(g)=fg

for all f, g∈A. Therefore, Ji=A=Si=Ti for i=1, 2, S1=S2=id(A), and T1 and T2

satisfy the hypotheses of the main theorems. Note that |α| is not constant on

δA since α(1)= 5
4 and α(−1)= 1

2 . This example shows that, in general, neither

α∈B nor |α|=1 on δB in the main theorems. Since A has no unit, then, by

Remark 5.3, there are no surjective maps S1, S2 : A→A and T1, T2 : A→A(D) that

satisfy condition (2.3).

Example 5.5. Let A(D) be the disc algebra and

A= {f |
D0

: f ∈A(D) with f(0)= 0},

where D0=D\{0}. For each f∈A define f∗(z)=f(z̄) for every z∈D0. If T1 : A(D)→
exp(A(D)) and T2 : A→A are surjective mappings such that

(5.3) σπ(e
fg∗)∩σπ(T1(f)T2(g)) �=∅, f ∈A(D), g ∈A,

then Theorem 2.5 (with the choices J1=A(D), S1=T1=exp(A(D)), J2=A=S2=T2,
S1(f)=ef and S2(g)=g∗) shows that there is a homeomorphism φ : T→T and a

continuous function α : T→C\{0} such that

T1(f)(z)=α(z)ef(φ(z)) and T2(g)(z)=
1

α(z)
g∗(φ(z))

for all f∈A(D), g∈A and z∈T. Since α=T1(0) on T, we may regard α=T1(0)∈
exp(A(D)). As T is a boundary of A, the mapping g�αT2(g

∗), g∈A, is an al-

gebra isomorphism on A. Thus there is a homeomorphism ψ : D0→D0 such that

αT2(g
∗)=g◦ψ for every g∈A. Therefore, ψ∈A and hence we may regard ψ∈A(D)
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with ψ(0)=0. Since ψ : D→D is bijective and continuous, we see that ψ is a home-

omorphism on D. Thus ψ is a Möbius transform with ψ(0)=0, and consequently

ψ(z)=λz, z∈D, for some λ∈C with |λ|=1. As g◦φ=αT2(g
∗)=g◦ψ on T, ψ is an

extension of φ to D. Since T is a boundary of A(D) and A, if T1 : A(D)→exp(A(D))

and T2 : A→A are surjective mappings that satisfy (5.3), then there is an h∈A(D)
and a λ∈C with |λ|=1 such that

T1(f)(z)= eh(z)ef(λz), T2(g)(z)= e−h(z)g∗(λz)

for all f∈A(D), g∈A and z∈D.

Remark 5.6. If the mappings Ti : Ji→Ti and Si : Ji→Si satisfy the conclusion

of the main theorems for i=1, 2, namely, T1(a)(y)=α(y)S1(a)(φ(y)) and T2(b)(y)=

S2(b)(φ(y))/α(y) for all a∈J1, b∈J2 and y∈δB, then

((T1⊗T2)(a, b))(δB)= ((S1⊗S2)(a, b))(δA)

since φ(δB)=δA. Consequently, the maps S1, S2, T1 and T2 satisfy the spectral con-

ditions (i) and (ii) of Theorem 2.2. Therefore, under the conditions of Theorem 2.2,

the following properties are equivalent:

• ‖(T1⊗T2)(a, b)‖=‖(S1⊗S2)(a, b)‖ and

((S1⊗S2)(a, b))(δA)⊂Ran((T1⊗T2)(a, b))

for all a ∈J1 and b∈J2;

• ((T1⊗T2)(a, b))(δB)=((S1⊗S2)(a, b))(δA) for all a∈J1 and b∈J2.

Observe that the equality ((T1⊗T2)(a, b))(δB)=((S1⊗S2)(a, b))(δA) implies,

by Lemma 4.1, that σπ((T1⊗T2)(a, b))=σπ((S1⊗S2)(a, b)) for all a∈J1 and b∈J2.

As a consequence, under the conditions of Theorem 2.4, the following properties are

equivalent:

• σπ((S1⊗S2)(a, b))⊂σπ((T1⊗T2)(a, b)) for all a∈J1 and b∈J2;

• ((T1⊗T2)(a, b))(δB)=((S1⊗S2)(a, b))(δA) for all a∈J1 and b∈J2;

• σπ((T1⊗T2)(a, b))=σπ((S1⊗S2)(a, b)) for all a∈J1 and b∈J2.

Similarly, under the conditions of Theorem 2.5, the following properties are

equivalent:

• σπ((T1⊗T2)(a, b))∩σπ((S1⊗S2)(a, b)) �=∅ for all a∈J1 and b∈J2;

• ((T1⊗T2)(a, b))(δB)=((S1⊗S2)(a, b))(δA) for all a∈J1 and b∈J2;

• σπ((T1⊗T2)(a, b))=σπ((S1⊗S2)(a, b)) for all a∈J1 and b∈J2;

• σπ((S1⊗S2)(a, b))⊂σπ((T1⊗T2)(a, b)) for all a∈J1 and b∈J2.

Remark 5.7. If S is a subset of a function algebra A, then, clearly, p(S)⊂δA

and in order to have p(S)=δA it is enough that δA be a subset of p(S).
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Remark 5.8. The assumption that a function algebra A is a subset of a space

of type C0(X) is not restrictive. We may assume, equivalently, that a function

algebra A is a uniformly closed subalgebra of the space Cb(X) of bounded continuous

functions on a locally compact Hausdorff space X that separates strongly the points

of X . All results in this paper hold also under this assumption for function algebras

if, in addition, the underlying space X contains the Shilov boundary of A.
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