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Unicity of graded covers of the category O
of Bernstein–Gelfand–Gelfand

Michael Rottmaier and Wolfgang Soergel

Abstract. We show that the standard graded cover of the well-known category O of

Bernstein–Gelfand–Gelfand can be characterized by its compatibility with the action of the center

of the enveloping algebra.

1. Introduction

Let g⊃b⊃h be a complex semisimple Lie algebra with a choice of a Borel and

a Cartan subalgebra. In [BGG] Bernstein, Gelfand and Gelfand introduced the so-

called category O=O(g, b) of representations of g. Later on Beilinson and Ginzburg

[BG] argued that it is natural to study Z-gradings of category O, see also [BGS]. In

this article we introduce the notion of a graded cover, a generalization of the notion

of a Z-grading which seemed to be more natural to us, and prove the following

uniqueness theorem for graded covers of O, to be explained in more detail in the

later parts of this introduction.

Theorem 1.1. (Uniqueness of graded covers of O)

(1) Category O admits a graded cover compatible with the action of the center

of the universal enveloping algebra of g;

(2) If two graded covers of O are both compatible with the action of the center

of the universal enveloping algebra, they are cover-equivalent.

Note 1.2. Graded covers of category O which are compatible with the action

of the center have already been constructed in [S1] and [BGS]. The main point

of this article is to show that compatibility with the action of the center already

determines a graded cover of O up to cover-equivalence. To our knowledge this
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statement is already new in the case of Z-gradings [BGS, Section 4.3], although

to see this case treated the reader could skip most of the paper and go directly

to the proof of Theorem 9.3, which mainly reduces to a careful application of the

bicentralizer property as discussed in Section 7. In the body of the paper, we mainly

investigate the notion of a graded cover.

Note 1.3. An analogous theorem holds with the same proof for the modular

versions of category O considered in [S3] and [RSW]. It is for this case, that

the generalization from gradings to graded covers is really needed. An analogous

theorem also holds for the category of all Harish-Chandra modules over a complex

connected reductive algebraic group, considered as a real Lie group. If we interpret

our Harish-Chandra modules as bimodules over the enveloping algebra in the usual

way and restrict to the subcategories of objects killed from the left by a fixed power

of a given maximal ideal in the center of the enveloping algebra, the same proof

in conjunction with [S2] will work. To deduce the general case, some additional

arguments are needed to justify passing to the limit, which can be found in the

diploma thesis of Rottmaier [R].

Definition 1.4. An abelian category in which each object has finite length will

henceforth be called an artinian category.

Note 1.5. This terminology is different from the terminology introduced in [G,

p. 356]. There a category is called artinian if it is abelian and all its objects satisfy

a descending chain condition, noetherian if it is abelian and all its objects satisfy a

ascending chain condition, and finite if it is abelian and all its objects are of finite

length.

Definition 1.6. By a graded cover of an artinian category A we understand a

triple (Ã, v, ε) consisting of an abelian category Ã equipped with a strict automor-

phism [1] “shift the grading”, an exact functor v : Ã→A “forget the grading” and

an isotransformation of functors ε : v
∼
=⇒v[1], such that the following hold:

(1) For all M,N∈Ã the pair (v, ε) induces an isomorphism on the homomor-

phism groups
⊕

i∈Z
Ã(M,N [i])

∼−→A(vM , vN );

(2) GivenM∈A, N∈Ã and an epimorphismM→→vN there exists P∈Ã and an

epimorphism vP→→M such that the composition vP→vN comes from a morphism

P→N in Ã.

Remark 1.7. The main difference to the concept of a Z-grading in the sense of

[BGS, Section 4.3] is that for our graded covers we do not ask for any kind of positiv-

ity or semisimplicity. In particular, if we start with a grading and “change all degrees
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to their negatives”, we would always get a graded cover again, but most of the time

this would not be a grading anymore. If A is a left-artinian ring with a Z-grading,

for which in this article we ask no positivity condition whatsoever, then the for-

getting of the grading on finitely generated graded modules v : Ã -ModfZ→A -Modf

with the obvious ε is always a graded cover, see Example 3.1. In Proposition 4.2

we will show that the opposed category of a graded cover is a graded cover of the

opposed category. In Proposition 4.2 we discuss in more detail how our notion of a

graded cover generalizes the notion of a Z-grading as given in [BGS, Section 4.3].

Remark 1.8. We would like to know whether condition (2) will follow in gen-

eral, when we ask it only in case N=0. This amounts to the condition that every

object from A is a quotient of some object coming from Ã. We rather expect a

negative answer, but still would like to see a counterexample.

Remark 1.9. We will try to strictly follow a notation, where calligraphic letters

A, B, ... denote categories, roman capitals F , G, ... denote functors between or

objects of our categories, and little Greek letters τ , ε, ... denote transformations.

The only exception is the “forgetting of grading” in all its variants, to be denoted

by the small letter v although it is a functor.

Definition 1.10. We say that a graded cover (Õ, v, ε) of the BGG-category O
is compatible with the action of the center Z⊂U(g) of the enveloping algebra if

the following holds: Given an object M̃∈Õ and a maximal ideal χ⊂Z such that

χn(vM̃)=0 for some n∈N, the induced morphism

Z/χn −→ Endg(vM̃),

z+χn �−→ (z · ),

is homogeneous for the grading on Endg(vM̃) induced by the pair (v, ε) and the nat-

ural grading on Z/χn induced by the Harish-Chandra-homomorphism as explained

in Note 1.11.

Note 1.11. (The natural grading on Z/χn) Let S=S(h) be the symmetric al-

gebra of our Cartan subalgebra. The Weyl group W acts on it in a natural way. We

have the Harish-Chandra isomorphism Z
∼−→SW . For any maximal ideal λ⊂S let

Wλ be its isotropy group and Y =Y (λ)⊂S be the Wλ-invariants and put χ=λ∩Z
and μ=λ∩Y . Now general results in invariant theory [L, Exercise 3.18] tell us, that

the natural maps are in fact isomorphisms

Z∧
χ

∼−→ (S∧
λ )

Wλ ∼←−Y ∧
μ
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from the completion of the invariants to the invariants of the completion, leading

to isomorphisms Z/χn ∼−→Y/μn. Moving the double of the obvious nonnegative W -

invariant grading on the polynomial ring S, living only in even degrees, with the

comorphism of the translation by λ, we obtain a nonnegative Wλ-invariant grading

on S, which induces a nonnegative grading on Y with μ=Y >0 being its part of

positive degree. This way we get a natural nonnegative grading on Y/μn. The

induced nonnegative grading on Z/χn does not depend on the choice of λ. Indeed,

any other choice λ′ will be conjugate under the Weyl group, so in formulas we have

λ′=xλ for some x∈W . We deduce the commutative diagram

Z∧
χ

∼−→ (S∧
λ )

Wλ
∼←− Y (λ)∧μ∥

∥ x

−→ � x

−→ �

Z∧
χ

∼−→ (S∧
λ′)Wλ′ ∼←− Y (λ′)∧μ′ .

Now the action of x induces an isomorphism Y (λ)
∼−→Y (λ′) of graded rings mapping

the maximal ideal μ to μ′ and thus inducing a graded isomorphism Y (λ)/μn ∼−→
Y (λ′)/(μ′)n compatible with our isomorphism from Z/χn to both sides. Thus the

induced grading on Z/χn does not depend on the choice of λ. We call it the natural

grading on Z/χn.

Note 1.12. The graded cover of the category O coming from Koszul duality

is compatible with the action of the center. Our main Theorem 1.1 holds also for

graded covers compatible when we take the half of our natural grading on the Z/χn,

or any integer multiple of it. The proof remains the same.

Note 1.13. We obtain as Corollary 9.4, that any two nonnegative Z-gradings

on the endomorphism ring of a projective generator of a block of category O, which

are compatible with the action of the center and semisimple in degree zero, coincide

up to conjugation with a unit from our endomorphism ring.

Definition 1.14. Let (Ã, ṽ, ε̃) and (Â, v̂, ε̂) be graded covers of an artinian cat-

egory A. A cover-equivalence is a triple (F, π, ε), where F : Ã→Â is an additive

functor and ε : [1]F
∼
=⇒F [1] and π : v̂F

∼
=⇒ṽ are isotransformations of functors such

that the following diagram of isotransformations of functors commutes:

v̂[1]F

�ε̂

��

ε

∼
�� v̂F [1]

π

∼
�� ṽ[1]

ε̃ �
��

v̂F
π

∼
�� ṽ.
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Two covers are said to be cover-equivalent if there is a cover-equivalence from one

to the other. We will show in Note 8.1 that this is indeed an equivalence relation.

Note 1.15. This notion of cover-equivalence generalizes the definition of equiv-

alence of gradings given in [BGS, Definition 4.3.1.2]. We will show in Proposition 6.1

that given a left-artinian ring A every graded cover of A -Modf is cover-equivalent to

the graded cover given by a Z-grading on A. The question when two graded covers

of this type are cover-equivalent to each other is discussed in Proposition 6.2.

Note 1.16. We thank the referee, whose pertinent remarks helped to make the

article more readable.

2. Construction of compatible graded covers of O

Let us recall how a graded cover of O is constructed in [S1]. The construction

is blockwise. Given a block Oλ one chooses an indecomposable antidominant pro-

jective Qλ∈Oλ and shows that the action of the center Z of the enveloping algebra

leads to a surjection onto its endomorphism ring Z→→EndgQλ. Then one shows

that the functor Vλ=Homg(Qλ, · ) : Oλ→Mod-Z is fully faithful on projective ob-

jects and if χ⊂Z is a maximal ideal and n an integer with χnQλ=0 and Pλ is a

projective generator of Oλ, then VλPλ admits a Z-grading making it a Z-graded

module over Z/χn for the natural grading on Z/χn explained in Note 1.11. Any

choice of such a Z-grading on VλPλ induces a Z-grading first on EndZ(VλPλ) and

then on Endg(Pλ). Our graded cover is then obtained as the composition

ModfgZ-Endg(Pλ)−→Modfg-Endg(Pλ)
≈−→Oλ

of the forgetting of the grading with the equivalence given by tensoring with Pλ

over Endg(Pλ). In fact, in [S1] it is even proven that the above choices can be made

in such a way that the graded ring Endg(Pλ) is a Koszul ring.

3. Graded covers of artinian categories

Example 3.1. Let A be a left-artinian ring. Given any Z-grading ˜ on A let

(Ã -ModfZ, v, ε) be the category of finitely generated Z-graded left Ã-modules with

morphisms homogeneous of degree 0 and let (v, ε) be the natural forgetting of

the grading. Then (Ã -ModfZ, v, ε) is a graded cover of A -Modf. To check the

second condition in Definition 1.6, let M→→N be a surjection of a not necessarily

graded module onto a graded module. A generating system of M gives a generating
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system of N . Take the nonzero homogeneous components of its elements. It is

possible to choose preimages of these components in M in such a way that they

generate M . Then a suitable graded free A-module P with its basis vectors going

to these preimages will do the job.

Example 3.2. Let A be a ring and ˜ be a Z-grading on A and suppose m⊂A

is a homogeneous ideal such that A/mn is left artinian for all n. Then the category

of all finitely generated Z-graded left Ã-modules killed by some power of m is in a

similar way a graded cover of the category of all finitely generated left A-modules

killed by some power of m.

Remark 3.3. Every graded cover of an artinian category is also artinian, as the

length can get only bigger if we apply an exact functor which does not annihilate

any object. Our forgetting of grading cannot annihilate any object, as an object

with nonzero endomorphism ring by Definition 1.6 (1) is mapped to an object with

nonzero endomorphism ring.

Definition 3.4. Given a graded cover (Ã, v, ε) of an artinian category A, a Z-

graded lift, or for short lift, of an object M∈A is a pair (M̃, ϕ) with M̃∈Ã and an

isomorphism ϕ : vM̃
∼−→M in A.

Lemma 3.5. If for an indecomposable object there exists a lift, then this lift

is unique up to isomorphism and shift.

Proof. Given an indecomposable object M∈A, its endomorphism ring

A(M,M) is a local ring. Suppose there are two lifts (M̃, ϕ) and (M̂, ψ) of M .

We can then decompose the identity morphism of M into homogeneous compo-

nents. Because the nonunits in A(M,M) form its maximal ideal, at least one of the

homogeneous components has to be a unit, i.e. an isomorphism. �

Lemma 3.6. Given a graded cover (Ã, v, ε) of an artinian category A, a non-

trivial object 0 �=M∈Ã is never isomorphic to its shifted versions M [i] for i �=0.

Proof. It is enough to prove the statement for simple objects. From now on

let M∈Ã be simple. Suppose there is an isomorphism M
∼−→M [i] for some i �=0.

Then the endomorphism ring of vM ∈A is given by twisted Laurent polynomials

over a skew-field, more precisely A(vM , vM ) is of the form Kσ[X,X−1] where

the skew-field K=Ã(M,M) is the endomorphism ring of M in Ã, σ : K→K is

an automorphism of skew-fields and cX=Xσ(c) for all c∈K. More precisely, let

i>0 be minimal such there exists a nonzero morphism M→M [i] and let X be
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such a morphism. It necessarily is an isomorphism and has to be a basis of its

homomorphism space as a right and also as a left K-module. In addition, there

is no nonzero morphism M→M [ j] unless j∈Zi, and Xn is a K-basis of the space

of homomorphisms M→M [ni] from the left as well as from the right. Finally,

we find an automorphism σ : K→K of skew-fields such that cX=Xσ(c) for all

c∈K, and these data then completely determine the structure of the endomorphism

ring. Obviously 0 and 1 are the only idempotents in Kσ[X,X−1], so vM ∈A is an

indecomposable object. On the other hand it has finite length by assumption. Thus,

by a version of Fittings lemma, all elements in the endomorphism ring A(vM , vM )

have to be either units or nilpotent, and this is just not the case. �

Lemma 3.7. Given a graded cover (Ã, v, ε) of an artinian category A, forget-

ting of the grading induces a bijection of sets

(irr Ã)/Z
∼−→ irrA

between the isomorphism classes of simple objects in the graded cover modulo shift

and the isomorphism classes of simple objects in A.

Proof. First we show that each epimorphism vM→→L in A, where M∈Ã is

simple and L∈A is nonzero, has to be an isomorphism. By definition of a graded

cover we find an object N∈Ã such that vN maps epimorphically onto ker(vM→→L),

i.e. there is a resolution vN
ϕ−→vM→→L of L in A by objects having a Z-graded lift.

We can decompose ϕ into homogeneous components ϕ=
∑

i∈Z
ϕi and each summand

ϕi : N→M [i] has to be either trivial or an epimorphism in Ã. Using Lemma 3.6,

the nontrivial summands give an epimorphism

(ϕi) : N −→−→
⊕

i∈Z

ϕi �=0

M [i]

in Ã. This has to stay an epimorphism when we forget the grading and postcompose

with the morphism
⊕

ϕi �=0 vM→→vM adding up the components. So if ϕ is non-

zero, it is a surjection. Thus we have shown that the forgetting of the grading

induces a map (irr Ã)/Z→irrA. To see that it is surjective, take L∈irrA. By our

assumptions there is an M∈Ã together with an epimorphism vM→→L; consider the

set of all objects in Ã which map, after forgetting the grading, epimorphically onto

L and choose among them an object M∈Ã of minimal length. If M is not simple,

there is a nontrivial subobject K⊂M with nontrivial quotient and we get a short

exact sequence

0−→ vK −→ vM −→ vC −→ 0.
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Then the restriction of vM→→L to vK must be trivial, otherwise it contradicts the

minimal length assumption on M ; therefore vC has to map epimorphically onto L

again contradicting the minimal length assumption on M . We conclude that M∈Ã
was already simple. The proof of injectivity is left to the reader. �

Proposition 3.8. Projective objects do lift.

Remark 3.9. Using the stability of graded covers by passing to the opposed

categories of Proposition 4.2, we easily deduce that injective objects do lift as well.

Proof. It is enough to prove the statement for indecomposable projective ob-

jects. Let P be one of those. It is known that P admits a unique simple quotient,

which in turn by Lemma 3.7 admits a graded lift, so that we can write

P −→−→ vL

with L∈Ã being a simple object. By our definition of a graded cover we can find

an epimorphism vM→→P such that the composition vM→→P→→vL comes from a

morphism M→L. Assume now in addition, that M has minimal length for such

a situation. If we can show that vM is indecomposable we are done, because P is

projective and thus the morphism vM→→P splits. Suppose vM∼=A⊕B. Then one

summand, say A, has to map epimorphically onto L. If B is not zero, then B also

has a simple quotient π : B→→vE and we get an epimorphism ψ : vM→→vL⊕vE . We

can decompose the composition

λ=pr2 ◦ψ : vM −→ vL⊕vE −→−→ vE

into homogeneous components
∑

i∈Z
λi. If there was a nonzero λi : M→E[i] with

E[i]�L, then kerλi would also surject onto L and v(kerλi) would surject onto vL

and thus onto P , contradicting our assumption of minimal length. So we may as-

sume our epimorphism ψ is obtained by forgetting the grading from an epimorphism

(λ̃, ϕ̃) : M→L⊕L. But then again v(ker λ̃) will still surject onto vL, contradicting

our assumption of minimal length. Thus vM is indecomposable and the split epi-

morphism vM→→P has to be an isomorphism. �

Corollary 3.10. Let (Ã, v, ε) be a graded cover of an artinian category A
and suppose A has enough projective objects. Then forgetting the grading induces a

bijection of sets

(inProj Ã)/Z
∼−→ inProjA

between the isomorphism classes of indecomposable projective objects in the graded

cover modulo shift and the isomorphism classes of indecomposable projective objects

in A.
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Proof. It is well known that if an artinian category A has enough projective

objects, taking the projective cover gives a bijection between the set of isomorphism

classes of simple objects in A and the set of isomorphism classes of indecomposable

projective objects in A. So both sides are in bijection to the corresponding sets

of isomorphism classes of simple objects. Since each projective object admits a lift

by Proposition 3.8, and since such a lift clearly is again projective, the statement

follows from the existence and unicity statement about lifts of simple objects of

Lemma 3.7. �

Corollary 3.11. Let A be a left-artinian ring with a Z-grading.

(1) There exists a complete system of primitive pairwise orthogonal idempotents

in A such that all its elements are homogeneous;

(2) If (1x)x∈I is such a system, (M̃, ϕ) a graded lift of A considered as a left

A-module, and Ã is the lift of A given by the Z-grading, then there exists a map

n : I→Z along with an isomorphism of graded left Ã-modules

M̃
∼−→

⊕

x∈I

Ã1x[n(x)].

Proof. It is easy to see that every homomorphism Ã→Ã[i] of graded left A-

Modules is the multiplication from the right with an element of A homogeneous of

degree i. There is a direct sum decomposition Ã∼=
⊕

x∈I Px into indecomposable ob-

jects in Ã -ModfZ, and its summands are projective. The corresponding idempotent

endomorphisms of Ã are right multiplications with some idempotents 1x∈A, homo-

geneous of degree zero. Forgetting the grading on the Px we get indecomposable

projective A-modules by Corollary 3.10, and thus our family (1x)x∈I is a full set of

primitive orthogonal idempotents in A. For the second statement let M̃=
⊕

y∈J Qy

be a direct sum decomposition into indecomposable objects in Ã -ModfZ. Again

its summands are projective, so by Corollary 3.10 they stay indecomposable when

we forget the grading. Thus there is a bijection σ : I
∼−→J with vPx

∼=vQσ(x) and

by the uniqueness of lifts in Lemma 3.5 we find that Px[n(x)]∼=Qσ(x) for suit-

able n(x)∈Z. �

4. Alternative definition of graded covers

Note 4.1. The following proposition establishes the relation to the concept of

a Z-grading as introduced in [BGS]. It also ensures our concept of graded cover to

be stable upon passing to the opposed categories. Apart from that, this section is

not relevant for the rest of this article.
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Proposition 4.2. Let A be an artinian category. A triple (Ã, v, ε) consisting

of an abelian category Ã equipped with a strict automorphism [1], an exact functor

v : Ã→A and an isotransformation of functors ε : v
∼
=⇒v[1] is a graded cover of A

if and only if the following hold :

(1) For all M,N∈Ã and all j, the pair (v, ε) induces isomorphisms of exten-

sion spaces
⊕

i∈Z
ExtjÃ(M,N [i])

∼−→ExtjA(vM , vN );

(2) Every irreducible object in A admits a graded lift.

Note 4.3. Our proof of the backwards implication only uses condition (2) along

with condition (1) for j=0, 1. So it is also equivalent to ask only these seemingly

weaker properties.

Note 4.4. The definition of a Z-grading in [BGS] consists in asking conditions

(1) and (2) and in addition asking that there exists a Z-valued function on the set

of irreducibles in Ã called weight such that every short exact sequence starting and

ending with an irreducible splits unless the weight of the end is smaller than the

weight of the starting point.

Proof. Let us first show that every graded cover has these two properties. For

the second property, this follows from Lemma 3.7. For the first property, we use

the description of extensions as homomorphism spaces in the derived category

ExtjA(vM , vN )= lim−−→
Q

HotjA(Q, vN ),

where Q runs over the system of all resolutions Q→vM of vM and HotjA denotes

homomorphisms of homological degree j in the homotopy category. Our condition

(2) on a graded cover ensures that if we take all resolutions P→M in Ã, the

resolutions vP→vM will be cofinal in the system of all resolutions of vM and thus

give the same limit. To explain this, consider the diagram

Qi
�� ... �� Q1

�� Q0
�� �� vM

vP i
��

��

... �� vP1
��

��

vP0

��

�� �� vM .

By condition (2) on a graded cover, there exists a choice for a rightmost square

as indicated, with the lower horizontal row coming from a morphism in Ã. Now
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suppose inductively that we already have constructed a diagram as above up to

degree i with the lower horizontal row exact and coming from Ã. Then we construct

the next step as to be explained in the diagram

Qi+1 Qi+1

1
�� �� kerQ

� � 1
�� Qi

�� Qi−1

vP i+1

3

��

3
�� �� Ai+1

2

��

2
�� �� v kerP

1

��

� � 1
�� vP i

��

�� vP i−1.

��

In the first step, we take kernels of the last horizontal arrows constructed and profit

from the exactness of the Q-complex. In the second step, we form the pullback.

In the third step, we again use condition (2). The claim follows. Now let us

show in the other direction that our two properties ensure both conditions of the

definition of a graded cover Definition 1.6. The first condition is obvious. To show

the second condition, we may use pull-backs and induction on the length of the

kernel to restrict to the case when K :=ker(M→→vN ) is simple. Indeed we can

otherwise find a simple subobject E⊂K and put K :=K/E and M :=M/E and

consider the surjection M→→vN . By induction we know it can be prolonged by a

surjection vP→→M such that the composition vP→→M→→vN comes by forgetting

the grading from a morphism P→N . Now pulling back this surjection vP→→M we

get a surjection Q→→M and a short exact sequence E↪→Q→→vP . Here the kernel

is simple, so if we assume the case of a simple kernel known, we find a surjection

vP→→Q such that the composition vP→→Q→→vP comes from a morphism P→P .

Putting all this together, we thus can restrict our attention to the case of a simple

kernel L. Then by Lemma 3.7 this kernel admits a graded lift, so we arrive at a

short exact sequence

vL ↪−→M −→−→ vN .

Now use the isomorphism
⊕

i∈Z
Ext1Ã(N,L[i])

∼−→Ext1A(vN , vL) to write the class

e of the above extension as a finite sum of homogeneous components e=
∑b

i=a ei.

We then get a commutative diagram

⊕b
i=a L[i]

� � �
⊕b

i=a Ei
�� ��
⊕b

i=a N

⊕b
i=a L[i]

� � � P �� ��

��

N

Δ

��
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with a right pullback square and by forgetting the grading another commutative

diagram

⊕b
i=a vL

� � �

P

����

vP �� ��

����

vN

vL
� � � M �� �� vN

with a left pushout square. This finishes the proof. �

5. Lifting functors to Z-graded covers

Definition 5.1. A Z-category is a category Ã together with a strict autoequiv-

alence [1] which we call “shift of grading”. A Z-Functor between Z-categories is

a pair (F, ε) consisting of a functor F between the underlying categories and an

isotransformation ε : F [1]
∼
=⇒[1]F .

Definition 5.2. Let A and B be artinian categories, F : A→B be an additive

functor and let (Ã, v, ε) and (B̃, w, η) be graded covers of A and B respectively.

A Z-graded lift of F is a triple (F̃ , π, ε), where F̃ : Ã→B̃ is an additive Z-functor

and π : wF̃
∼
=⇒Fv and ε : [1]F̃

∼
=⇒F̃ [1] are isotransformations of functors, such that

the following diagram of isotransformations of functors commutes:

w[1]F̃

�η

��

ε

∼
�� wF̃ [1]

π

∼
�� Fv[1]

ε �
��

wF̃
π

∼
�� Fv.

Note 5.3. By definition, a cover-equivalence as defined in Definition 1.14 be-

tween two graded covers of a given artinian category is a graded lift of the identity

functor in the sense of Definition 5.2.

Note 5.4. Take two Z-graded left-artinian rings Ã and B̃ and in addition a

B-A-bimodule X of finite length as left B-module. Then obviously the functor

F=X⊗A : A -Modf→B -Modf admits a graded lift F̃ : Ã -ModfZ→B̃ -ModfZ if and

only if X admits a Z-grading making it into a graded B̃-Ã-bimodule X̃ .
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6. Comparing graded covers of module categories

Proposition 6.1. Let A be a left artinian ring and (Ã, v, ε) be a graded cover

of A -Modf. Then there exists a Z-grading ˜ on A such that Ã -ModfZ is cover-

equivalent to (Ã, v, ε).

Proof. By Proposition 3.8 there exists a lift (M̃, ϕ) of A in Ã. By assumption

we obtain isomorphisms

⊕

i

Ã(M̃, M̃ [i])
∼−→ EndA(A)

∼←−Aopp.

Here the left map comes from forgetting the grading and the right map from the

action by right multiplication. We leave it to the reader to check that this grading

on A will do the job. �

Proposition 6.2. Let A be a left-artinian ring and let ˜ and ˆ be two Z-

gradings on A. Then the following statements are equivalent :

(1) The Z-graded covers Ã -ModfZ and Â -ModfZ of A -Modf are cover-equiva-

lent;

(2) There exists a Z-grading on the abelian group A making it a graded Â-Ã-

bimodule ˆA˜;

(3) For each complete system of primitive pairwise orthogonal idempotents

(1x)x∈I in A, homogeneous for the grading Â, there exist a unit u∈A× and a func-

tion n : I→Z such that the homogeneous elements of Ã in degree i are given by

Ãi =
⊕

x,y∈I

u1xÂn(x)−n(y)+i1yu
−1;

(4) There exist a complete system of primitive pairwise orthogonal idempotents

(1x)x∈I in A, homogeneous for the grading Â, a unit u∈A× and a function n : I→Z

such that the homogeneous elements of Ã in degree i are given by

Ãi =
⊕

x,y∈I

u1xÂn(x)−n(y)+i1yu
−1.

Proof. (1) ⇔ (2) follows from Note 5.4. Next we prove (2) ⇒ (3). Our graded

bimodule ˆA˜with id: v̂ˆA˜
∼−→A is a Z-graded lift in Â -ModfZ of the left A-module A.

By Corollary 3.11, for each complete system of pairwise orthogonal idempotents

1x∈A, homogeneous for Â, there exist integers n(x) along with an isomorphism

ψ : ˆA˜
∼−→

⊕

x∈I

Â1x[n(x)]
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of graded left Â-modules. Here both sides, when considered as ungraded left A-

modules, admit obvious natural isomorphisms to the left A-module A. In these

terms ψ has to correspond to the right multiplication by a unit u∈A×. Now

certainly h �→ψhψ−1 is an isomorphism between the endomorphism rings of these

graded left Â-modules and with a �→u−1au in the lower horizontal row we get a

commutative diagram

EndA(
ˆA˜)

∼ �� EndA(
⊕

x∈I Â1x[n(x)])

A
∼ ��

�
��

A.

�
��

Here EndA means endomorphism rings of ungraded modules, but with the grading

coming from the grading on our modules, and the vertical arrows are meant to map

a∈A to the multiplication by a from the right, modulo the obvious natural isomor-

phisms mentioned above. In particular, the vertical maps are not compatible but

rather “anticompatible” with the multiplication. Nevertheless, the lower horizontal

row has to be homogeneous for the gradings induced by the vertical isomorphisms

from the upper horizontal row and from that we deduce that

u−1Ãiu=
⊕

x,y

1xÂn(x)−n(y)+i1y.

To prove (3) ⇒ (4), just recall that by Example 3.11 we can always find a complete

system of primitive pairwise orthogonal idempotents (1x)x∈I in A, which are homo-

geneous for the grading Â. To finally check (4) ⇒ (2), just equip A with the grading
ˆA˜ for which the right multiplication by u as a map ( ·u) : ˆA˜

∼−→
⊕

x Â1x[−n(x)] is

homogeneous of degree zero. �

7. Gradings and bicentralizing modules

Definition 7.1. Let A be a ring. An A-module Q is called bicentralizing if the

obvious map is an isomorphism

A
∼−→ EndEndAQ Q.

Note 7.2. For the artinian rings A describing blocks of categoryO, the modules

Q corresponding to the antidominant projective objects are bicentralizing. Indeed,

they are known to be injective and the struktursatz [S1] tells us in this case, that

the functor
HomA( · , Q) : A -Modfopp −→ (EndA Q) -Modf

is fully faithful on projective modules. On the other hand it maps A to Q and thus

induces an isomorphism (EndA A)opp
∼−→EndEndAQ Q. We learned this from [KSX].
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Definition 7.3. Let A be a ring and Q∈A -Mod be a bicentralizing A-module.

Then we call a Z-grading on A and a Z-grading on EndA Q compatible if there exists

a Z-grading on Q such that Q becomes a graded module for both of them.

Proposition 7.4. (Compatibility implies cover-equivalence) Let A be a left-

artinian ring and Q be a bicentralizing A-module. Then any two Z-gradings on A,

which are compatible with the same Z-grading on EndA Q, give rise to cover-equiva-

lent covers of A -Modf.

Proof. Let Ã and Â be our two Z-gradings on A. By assumption, there exist

Z-gradings Q̃ and Q̂ on Q compatible with the given grading on EndA Q and com-

patible with the gradings Ã and Â of A respectively. But then let us consider the

isomorphism

A
∼−→ HomEndAQ(Q̃, Q̂)

given by the left action of A on Q and denote by ˆA˜ the group A with the Z-grading

coming from the right-hand side of this isomorphism by transport of structure.

Then ˆA˜with its obvious left and right action is a Z-graded Â-Ã-bimodule and the

proof is finished by Proposition 6.2. �

Proposition 7.5. (Compatibility criterion) Let A be a left-artinian ring and

let Q be a projective finite length bicentralizing left A-module with commutative

endomorphism ring. Then the compatibility of a grading on A with a grading on

EndA Q is equivalent to the homogeneity of the composition

EndA Q−→EndEndAQ Q
∼←−A.

Proof. If the gradings are compatible, clearly this composition is homogeneous.

If on the other hand the composition is homogeneous, then any grading on Qmaking

it a graded A-module will show the compatibility. However such a grading always

exists by Proposition 3.8. �

8. Cover equivalence is an equivalence relation

Note 8.1. Clearly cover-equivalence of graded covers is a reflexive relation. We

are now going to show that it is also symmetric and transitive, so it is indeed an

equivalence relation on the set of graded covers of a fixed artinian category. This

allows us to speak of cover-equivalent graded covers without having to specify from

which of the two there exists a cover-equivalence to the other.
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Lemma 8.2. Any graded lift F̃ of an equivalence F of artinian categories is

again an equivalence of categories.

Proof. Since a direct sum of morphisms of abelian groups is an isomorphism

if and only if the individual morphisms are isomorphisms, a graded lift of a fully

faithful additive functor is clearly fully faithful itself. We just have to show that if

F is an equivalence of categories, then F̃ is essentially surjective. So take an object

B̃∈B̃. By assumption there is an object A∈A with an isomorphism FA
∼−→wB̃.

By the definition of graded cover and Proposition 4.2, there are X̃, Ỹ ∈Ã with an

epimorphism and a monomorphism vX̃→→A↪→vỸ . Applying F we find an epi-

morphism and a monomorphism wF̃X̃→→wB̃↪→wF̃ Ỹ . Now if λi : F̃ X̃[i]→B̃, for i

running through a finite set I⊂Z of degrees, are the homogeneous components of

the first map, then they together define the left epimorphism of a sequence

⊕

i∈I

F̃ X̃[i]−→−→ B̃ ↪−→
⊕

j∈J

F̃ Ỹ [ j]

in B̃. The left monomorphism is constructed dually. But the composition in this

sequence has to come from a morphism in Ã, and the image of this morphism is

the looked-for object of Ã essentially going to B̃ under our functor F̃ . �

Note 8.3. (Symmetry of cover-equivalence) In particular, given a cover-equiva-

lence (F, π) of graded covers the functor F is always an equivalence of categories.

Given a quasiinverse (G, η) with η : Id
∼
=⇒FG being an isotransformation, from

π : v̂F
∼
=⇒ṽ we get as the composition v̂

∼
=⇒v̂FG

∼
=⇒ṽG, or more precisely (πG)(v̂η),

an isotransformation τ : v̂
∼
=⇒ṽG. Similarly from ε : [1]F

∼
=⇒F [1] we get a unique

ε : [1]G
∼
=⇒G[1] such that the composition

[1]
∼
=⇒ [1]FG

∼
=⇒F [1]G

∼
=⇒FG[1]

∼
=⇒ [1]

with our adjointness η at both ends and the old and the newly to be defined ε in

the middle is the identity transformation. Then one may check that (G, τ, ε) is also

a cover-equivalence.

Note 8.4. (Transitivity of cover-equivalence) Let finally be given artinian cat-

egories A, B, C, additive functors F : A→B and G : B→C, graded covers (Ã, v, ε),

(B̃, w, η), (C̃, u, θ) of A, B, C, and graded lifts (F̃ , π, ε) of F and (G̃, τ, ε) of G. Then

(G̃F̃ , (Gπ)(τ F̃ ), ε) is a lift of GF , where we leave the definition of the last ε to the

reader. In particular the relation of cover-equivalence is transitive.
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9. Proof of the main theorem

Note 9.1. (Pushforward of graded covers) Let (Ã, ṽ, ε̃) be a graded cover of

an artinian category A and let E : A ≈−→B be an equivalence of categories. Then

obviously (Ã, Eṽ, E(ε̃)) is a graded cover of B. We call it the “pushforward” of our

graded cover of A along E. Obviously two graded covers of A are cover-equivalent

if and only if their pushforwards are cover-equivalent as graded covers of B.

Note 9.2. Recall the block decomposition of O. It is enough to prove Theo-

rem 1.1 for each block Oλ of O.

Theorem 9.3. (Uniqueness of graded covers of O) If two graded covers

(Õλ, ṽ, ε̃) and (Ôλ, v̂, ε̂) of a block Oλ of category O are both compatible with the

action of the center, they are cover-equivalent.

Proof. We find a left artinian ring A along with an equivalence

E : Oλ
∼−→A-Modf.

It is sufficient to show that the pushforwards of our covers along E are cover-

equivalent. Both these pushforwards are cover-equivalent to covers corresponding

to Z-gradings Â and Ã on A, which are compatible with the action of the center in

the sense that the maps Z/χn→Â and Z/χn→Ã are homogeneous for the corre-

sponding central character χ∈MaxZ and n so big that our maps are well defined.

But now the antidominant projective objects of our block corresponds to a bicen-

tralizing A-module Q by Note 7.2, and the action of the center induces a surjection

Z/χn→→EndA Q by the endomorphismensatz of [S1], and by the compatibility cri-

terion in Proposition 7.5 both our Z-gradings on A are compatible with the same

Z-grading on EndA Q. Then however the corresponding covers are cover-equivalent

by Proposition 7.4. �

Corollary 9.4. Any two nonnegative Z-gradings on the endomorphism ring

of a projective generator of a block of category O, which are both compatible with

the action of the center and semisimple in degree zero, coincide up to conjugation

with a unit from our endomorphism ring.

Proof. By [BGS], on the endomorphism ring A of our projective generator

there exists a Z-grading with all the above properties and with the additional prop-

erty, that the equivalence relation ∼ on the set of indecomposable homogeneous

idempotents e, f, ... generated by asking ((eAf)1 �=0 �=(fAe)1⇒e∼f) has only one

equivalence class. Now by Proposition 6.2 part (4) any Z-grading giving rise to a
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cover-equivalent graded cover is related to the given one by the conjugation with a

unit and a Z-valued function on a complete system of homogeneous pairwise orthog-

onal idempotents. If the new grading is nonnegative and semisimple in degree zero

too, then the said function has to be constant on equivalence classes and thus in our

case has to be constant. This in turn means that the two gradings are conjugate to

one another by a unit. �
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