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1. Introduction

Let N be a closed smooth manifold. In accordance with conjectures of Arnol′d and

Eliashberg, the symplectic topology of the cotangent bundle T ∗N is expected to be

deeply tied to the smooth topology of N . One way to study the symplectic topology of

T ∗N is to consider its Lagrangian submanifolds; symplectic topologists have traditionally

focused on those Lagrangians which are exact with respect to the canonical Liouville form

on the cotangent bundle. The main result of this paper is the following.

Theorem 1. If L⊂T ∗N is a closed exact Lagrangian, then the canonical map

L⊂T ∗N!N is a simple homotopy equivalence.

We shall presently explain our strategy for proving this result, after highlighting the

following consequence: recall that a lens space is a quotient of S2n−1⊂C2n by a finite

cyclic subgroup of U(n). It was classically known, following Franz and Reidemeister, that

the simple homotopy type of lens spaces determines their diffeomorphism type (a modern

account is provided by Milnor in [13, §12]). From Theorem 1, we therefore conclude an

answer to a long-standing open question.

Corollary 1.1. A pair of lens spaces are diffeomorphic if and only if their cotan-

gent bundles are symplectomorphic.

The proof of Theorem 1 can be broken into three different steps: first, we introduce

a notion of Whitehead torsion for a Floer theoretic equivalence. Here, a Floer theoretic

equivalence should be interpreted as an equivalence in the Fukaya category of a symplectic

M. A. was supported by NSF grant DMS-1308179, and by Simons Foundation grant 385571. The

authors were hosted by the Mittag-Leffler Institute during its “Symplectic Geometry and Topology”
program in Fall 2015.



208 m. abouzaid and t. kragh

manifold, though our usage of this machinery is quite limited, and we give a self-contained

discussion of this notion in terms of the existence of Floer cocycles whose products satisfy

a certain non-degeneracy condition. At a technical level, the study of torsion invariants

for equivalences is a minor generalisation of the work of Sullivan [22] and Hutching

and Lee [10] who considered the torsion of acyclic Floer complexes. However, we find

it convenient to provide our own account for the construction of this invariant, as the

specific context we are studying allows for greatly simplified proofs, especially of the

invariant of torsion under Hamiltonian isotopies. This is the content of §3.

Remark 1.2. There is a direct connection between the torsion of a Floer-theoretic

equivalence and that of an acyclic Floer complex, provided by associating to an equiv-

alence its cone, which can be considered as an immersed Lagrangian, equipped with a

bounding cochain in the sense of Akaho and Joyce [3], with acyclic Floer cohomology

with any other Lagrangian, so that one can apply Sullivan’s techniques (see also [21]).

We expect that the torsion in our sense agrees with the torsion of the Floer homology of

the associated cone.

The next step is to appeal to the results of [2], [9], [11], [14], showing that every

closed Lagrangian in a cotangent bundle gives rise to an object of the Fukaya category

which is Floer-theoretically equivalent to the zero section. In particular, it makes sense to

consider the torsion of this Floer-theoretic equivalence, and we prove that this vanishes in

§4. This section is at the heart of the paper, and the key idea that it uses is a large-scale

Hamiltonian deformation (see also [12]) which allows us to reduce the computation of

torsion to a computation at the level of certain associated graded groups which admit a

particularly simple description.

Finally, we show in §5 that the Floer-theoretic torsion which we introduce agrees,

in the setting of cotangent bundles, with the classical torsion. Here, the main ingredient

is the compatibility of Floer and Morse theoretic constructions in the exact setting,

reminiscent of the constructions of Piunikhin–Salamon–Schwarz in [16] relating Floer

and Quantum cohomology.

From the above ingredients, the proof of Theorem 1 is immediate. We make it

explicit for the record.

Proof. Using [2] and [11], we see that the map L!N is a homotopy equivalence, and

thus its Whitehead torsion is well defined. Proposition 5.2 shows that this Whitehead

torsion agrees with the torsion of the Floer theoretic equivalence between L and N .

Proposition 4.4 implies that this torsion vanishes.
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2. Whitehead torsion

In this section we give a crash course in Whitehead torsion and Whitehead groups. All

the results are standard, and more details can be found in [24].

Let R=Z[G] be the group ring of a discrete group G, and let C∗=(R[αi], d) be

a finitely generated acyclic chain complex of left R modules freely generated by some

αi with degree |αi|—we assume that the differential always increases the degree. The

Whitehead torsion of the pair (C∗, {αi}) is defined as its equivalence class under the

relations generated by

• a very simple expansion (inverse: very simple contraction) given by direct sum

with the chain complex

...−! 0−!R
Id−−!R−! 0−! ...

with the obvious choice of generators;

• a handle slide given by replacing a basis element by itself plus a linear combination

of the other basis elements in the same degree;

• a simple base change given by replacing any αi with (±g)αi for g∈G.

These equivalence classes form a group Wh(G) (the Whitehead group of G) under

direct sum. We speak of the Whitehead torsion of a complex when the choice of basis up

to these equivalences is self-evident (as it is for Floer, Morse, and simplicial complexes).

Remark 2.1. Since we are not working in characteristic 2, we point out that a choice

of Morse function does not determine a basis for the Morse complex, but only a basis

up to sign, because the assignment of a generator to a critical point requires a choice of

orientation of the descending (or ascending, depending on conventions) manifold at the

given point. The same phenomenon occurs in Floer theory, but is inconsequential for

applications, because of the independence of the Whitehead class on sign changes.

Using the chosen basis (and choosing an auxiliary ordering), we can identify each

differential with a matrix with coefficients in Z[G]. Whitehead proved in [24] that, using

these moves, any acyclic chain complex is equivalent to one with support in any two

adjacent degrees, and a single non-zero differential, which then has to be an isomorphism
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in Gln(Z[G]). The inverse in the Whitehead group can be represented by this 2-term

complex with the inverse differential (see [13] for details).

For any chain homotopy equivalence f : (C, dC)!(D, dD) of left Z[G]-module chain

complexes (with bases), we can define the mapping cone as

(C[1]⊕D, d) =

(
dC [1] f

0 dD

)

(with the direct sum basis). Here, C[1] means the chain complex shifted up by 1 in

degree and changing the sign on the differential. This is an acyclic chain complex, and

so defines an element τ(f) in Wh(G). An important property of this that we will use

repeatedly is that

τ(f �g) = τ(f)+τ(g) (2.1)

for the composition of chain homotopy equivalences.

Now, let X and Y be connected finite CW complexes and f :X!Y a cellular homo-

topy equivalence with G=π1(Y )∼=π1(X). By considering the universal covering spaces

X̃!X and Ỹ!Y with their natural CW structure, we get (after a choice of base-points

compatible with f) an induced chain homotopy equivalence

f̃∗:C∗(X̃,Z)−!C∗(Ỹ ,Z).

Here, our convention is that an n-dimensional cell contributes a generator of degree −n,

so that the differential raises degree as with the rest of the chain complexes we shall

study. Using the choice of base-points and choosing a lift of each cell in X and Y , this

lifts to a chain homotopy equivalence of Z[G]-module complexes (complete with choices

of basis as above)

f̃∗:C
CW
∗ (X,Z[G])−!CCW

∗ (Y,Z[G]). (2.2)

We then use the mapping cone construction on this map as above. This defines the

Whitehead torsion τ(f)=τ(f̃∗)∈Wh(G) of f . This is well defined, since different choices

of lifts of cells correspond to simple base changes, and changing the base-point induces

isomorphisms of Z[G] which are well defined up to conjugation with an element γ of

π1(X). However, conjugation acts trivially on Whitehead torsion, since

(γbγ−1)∼
(
γbγ−1 0

0 1

)
∼
(
bγ−1 0

0 γ

)
∼
(
bγ−1γ 0

0 1

)
∼ (b).
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Remark 2.2. The main reason to work with homology is that the standard cellu-

lar cochain complex of X̃ is not free as a Z-module. It is of course possible to work

cohomologically starting with the linear dual of equation (2.2), but it is sometimes psy-

chologically comforting to have direct access to the geometry of the universal cover, in

contrast to abstract twisted coefficients.

The Whitehead torsion of f is preserved under the notion of simple expansions and

simple contractions of X (or Y ). To describe these let Dn+1
+ =Dn+1∩{xn+1>0} be the

closure of the upper half of Dn+1. This contains Dn, and we give Dn the standard

cell structure (having three cells). We extend this to a cell structure on all of Dn+1
+ by

attaching two more cells in the obvious way.

• A simple expansion is given by attaching Dn+1
+ to X along a cellular map Dn

!X.

Effectively adding the two cells in Dn+1
+ −Dn.

The inverse of this is called a simple contraction. Any map homotopic to a compo-

sition of such moves is called a simple homotopy equivalence. Whitehead proved that a

map f as above is a simple homotopy equivalence if and only if its Whitehead torsion is

trivial.

Whitehead torsion does not generally behave well when it comes to filtrations and

spectral sequences, but we will need a very special case of using a spectral sequence to

compute Whitehead torsion: the context is a complex C equipped with a basis B, with

differential of the form

d=

(
d0 d01

0 d1

)
,

with respect to a decomposition B=B0∪B1 of this basis.

Lemma 2.3. (Cf. [13, Theorem 5.2]) If C0 and C1 are both acyclic with trivial

Whitehead torsion with respect to B0 and B1, then C is acyclic with trivial Whitehead

torsion with respect to B.

Proof. The Whitehead moves corresponding to a very simple expansion, handle slide,

or simple base change for the basis of C0 give rise to the corresponding moves for the

basis of C. In contrast, note that a very simple contraction of C0, which corresponds to

eliminating a summand with differential(
0 1

0 0

)
,

does not directly correspond to a contraction on C, because the entries of the differential

matrix to the right of this 2×2 block may be non-empty. However, assuming that the
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differential on C0 contains such a block, we see that

d(x) = y+

k∑
i=1

ckbk, ck ∈R,

where x and y are the basis elements of C0 in question and the bk are the basis elements

of C1. This means that we may perform a handle slide and change y into y′=d(x),

which does not change the upper triangular block structure (nor does it change the two

diagonal blocks), but it does change the row associated with x into a row with only 0’s

and a single 1. This y′ has d(y′)=0, since the complex is acyclic. We may now perform

the contraction on C. So, inserting this extra move in front of all very simple contractions

provides a reduction of all of C to C1.

Applying the above argument inductively, we conclude the following.

Corollary 2.4. Let 0=F 0C⊂...⊂F k+1C=C be a filtered complex of free left Z[G]-

modules, equipped with a basis that is compatible with the filtration (i.e. that descends to

a basis of the associated graded complexes).

If each filtered quotient F pC/F p−1C is acyclic, and has trivial Whitehead torsion

with respect to the induced basis, then the based complex C has trivial Whitehead torsion.

The following lemma is not immediately clear from the definition, but will be needed

to prove perturbation invariance in Floer and Morse theoretic contexts. For a proof, see

[13, Lemma 7.7]

Lemma 2.5. If f, g:C∗!D∗ are chain homotopic maps (as left Z[G]-modules), then

their Whitehead torsions agree.

3. Whitehead torsion and the Fukaya category

Whitehead groups have been defined and used before in the context of intersection Floer

homology; the work by M. Sullivan in [22] is the most relevant for this paper (see also

[10] which studies a much harder problem). Our treatment will however be essentially

self-contained, in part because we will discuss torsion for Floer theoretic equivalences,

but also because we will only consider such groups in the exact setting. This means that

the action filtration will allow us to use Corollary 2.4 to give a much shorter proof of the

invariance of Whitehead torsion. We shall use Seidel’s book [17] as reference for various

points in Lagrangian Floer theory.
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3.1. Floer cohomology and the action filtration

We begin by considering the following context: let (M,λ) be a Liouville domain with

symplectic form ω=dλ, equipped with a grading G̃rΛ(M) and a background class

b∈H2(M,Z2). Here, the grading is a choice of cover of the Grassmannian bundle of

Lagrangian subspaces in TM , which restricts over each point in M to a universal cover

for the Grassmannian of linear Lagrangians (see [17, §11h]). To simplify the exposition,

we shall assume throughout that b is the second Stiefel–Whitney class of an orientable

vector bundle V on M .

Remark 3.1. If N is a smooth manifold, and M its cotangent bundle with projection

map π:T ∗N!N , there is a preferred grading characterized by the property that the

tangent directions to the cotangent fibres are a section of the corresponding family of

universal covers of the Grassmannian bundle.

We shall consider the pullback of w2(N) as background class on T ∗N . This is the

second Stiefel–Whitney class of the orientable bundle TN⊕(det(TN))
⊕3

, as can be seen

by computing the total Stiefel–Whitney class

(1+w1(N)+w2(N)+... )(1+w1(N))3

= (1+w1(N)+w2(N)+... )(1+w1(N)+w2
1(N)+... )

= (1+w2(N)+... ).

(3.1)

Consider an exact Lagrangian L which is a brane relative to the background class b:

this means that we fixed a function f :L!R such that df=λ|L, a lift of the Gauss map of

L to G̃rΛ(M), as well as a relative Spin structure, i.e. a Spin structure on the direct sum

of the tangent space of L with the restriction of the vector bundle V . The first structure

implies that the Lagrangian is exact, the second that it has vanishing Maslov class, and

the last that the second Stiefel–Whitney class agrees with the restriction of b.

The ambiguity in the choice of primitive is H0(L,R), corresponding to adding a lo-

cally constant function, the ambiguity in the choice of grading is H0(L,Z), corresponding

to the fact that the fundamental group of the Grassmannian of linear Lagrangians is Z,

and the ambiguity in the choice of relative Spin structure is H1(L,Z2).

Remark 3.2. By definition, the Liouville form vanishes on the zero section of T ∗N .

Since the tangent space of the zero section is transverse to the cotangent fibres, it admits

a lift to the preferred covering of the Grassmannian bundle. Moreover, the background

class on T ∗N was chosen so that the zero section is relatively Spin with a preferred

relative Spin structure. Indeed, the computation of equation (3.1) is universal, so that

we can fix a Spin structure on the direct sum of two copies of the universal bundle over
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BO with three copies of its orientation line, and pull this Spin structure back to N to

define a relative spin structure of TN relative to TN⊕det(TN)3.

If L⊂T ∗N is an exact Lagrangian, then a primitive f of the restriction λ|L exists

by definition. As a consequence of [11], every such Lagrangian has vanishing Maslov

class, and thus admits a lift to the fibrewise universal cover of the Grassmannian bundle.

Moreover, as a consequence of [2], the map L!N is a homotopy equivalence. This

implies that the Stiefel–Whitney classes of L agree with the pullback of the Stiefel–

Whitney classes of N under this map, and hence L admits a relative Spin structure

(while this goes back to Thom [23], we would like to point out Nash’s proof [15], which

is much more elementary than the standard proof due to Atiyah [4]).

If (L0, f0) and (L1, f1) are transverse branes, we may associate with each intersection

point x∈L0∩L1 a Maslov index deg(x)∈Z and a graded 1-dimensional real vector space,

which we denote by ox as in [17, §12f] (see also [1, Appendix A]), so that, whenever J

is a generic ω -tame almost complex structure on M , the following holds: for each pair

(x, y) of intersection points such that deg(y)+1=deg(x), every element u of the moduli

space M(x, y) of J -holomorphic strips induces a canonical isomorphism

�u: oy −! ox. (3.2)

More precisely, we define M(x, y) to be the quotient by R-translation of the space of

all the holomorphic maps u:R×[0, 1]!M with boundary conditions u(R×{0})⊂L0 and

u(R×{1})⊂L1, and with the asymptotic conditions that u!x as s!−∞ and u!y as

s!∞. The Lagrangian Floer cochains are then defined to be the direct sum

CF ∗(L0, L1;Z) =
⊕

x∈L0∩L1

|ox|, (3.3)

where |ox| is the orientation line of ox (i.e. the free Abelian group generated by the

two orientations of this vector space, with the relation that their sum vanishes). The

differential is the sum, over all u∈M(x, y), of the maps on orientation lines induced by

equation (3.2).

By Stokes’s theorem, the symplectic area
∫
u∗ω of u∈M(x, y) (which is positive,

since u is holomorphic) is

f1(x)−f1(y)+f0(y)−f0(x)> 0 =⇒ f1(x)−f0(x)> f1(y)−f0(y).

We may therefore associate with each intersection point its action

A(x) = f1(x)−f0(x), (3.4)
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and conclude that the moduli space M(x, y) is empty whenever A(x)6A(y) and x 6=y.

At the level of Floer complexes, we obtain a filtration by subcomplexes

F aCF ∗(L0, L1;Z) =
⊕
A(x)>a

|ox|.

The reader should keep in mind that, with the conventions we have adopted, the differ-

ential raises action.

Whenever L=L0=L1, we follow Biran–Cornea [6], Seidel [18] and Sheridan [19], and

pick a Riemannian metric together with a Morse–Smale function h:L!R with a unique

minimum, and define

CF ∗(L,L;Z) =CM∗(L, h;Z) (3.5)

where the right-hand side are Morse cochains with differential given by counting neg-

ative gradient flow lines. The minimum of h defines a cocycle e∈CM0(L, h;Z) which,

at the level of cohomology, corresponds to the unit in [e]∈H0(L,Z) under the isomor-

phism of Morse cohomology with ordinary cohomology. We set the action filtration on

CF ∗(L,L;Z), so that all generators have zero action.

3.2. The product on Floer cohomology

Given a triple of Lagrangian branes (L0, L1, L2), which are in transverse position, we

have a cochain map

CF ∗(L1, L2;Z)⊗CF ∗(L0, L1;Z)
·−!CF ∗(L0, L2;Z) (3.6)

given by a count of rigid triangles. More precisely, say that (J01, J12, J02) are a triple

of almost complex structures used to define the above Floer complexes. Choosing a

(generic) family J of almost complex structures smoothly parameterized by the disc,

which agrees at three distinct marked points on the boundary (ordered clockwise) with

the above triple, we obtain a moduli space M(x0, x1, x2) associated with every triple

of intersection points x0∈L0∩L2, x1∈L0∩L1 and x2∈L1∩L2 as follows: elements of

M(x0, x1, x2) are finite-energy maps from the disc to M , which are holomorphic in the

interior, mapping the three marked points to x0, x1 and x2, with boundary conditions

along the boundary given by the triple of Lagrangians L0, L1 and L2 (see Figure 1).

Stokes’s theorem shows that the symplectic area
∫
u∗ω of an element u∈M(x0, x1, x2)

disc is given by

f0(x1)−f0(x0)+f1(x2)−f1(x1)+f2(x0)−f2(x2) =A(x0)−A(x1)−A(x2).
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Moduli space defining the product Moduli space defining the homotopy

Figure 1. Discs with marked points and boundary conditions

L2

L1=L0

L0

x0

x2

x1

L2=L0

L1

L0

x0

x2

x1

Figure 2. Discs with gradient trajectory attached

Using coordinates (s, t) on the disc, the symplectic area is given by∫
ω(∂su, ∂tu) ds∧dt=

∫
ω(∂su, Js,t∂su) ds∧dt, (3.7)

where Js,t is the restriction of J to the point with coordinates (s, t). The right-hand side

is positive, because Js,t is tame, so we conclude that the product map is filtered when

the filtration on the tensor product is given by defining the action of a generator α⊗β
to be the sum A(α)+A(β).

Whenever two of these Lagrangians agree, we instead count configurations consisting

of holomorphic discs and perturbed gradient flow lines for some generic Morse–Smale

function with a unique minimum. Explicitly, the flow lines are maps from (−∞, 0]

or [0,∞) to the given Lagrangian, which satisfy the gradient flow equation outside a

compact set, and a perturbation of this equation (by a generically chosen vector field)

near the endpoint zero. The direction of the gradient flow line depends on what side

of the equation the Floer group is on—see Figure 2, where the arrow indicates positive

gradient flow. This product is also filtered with our conventions.

Remark 3.3. Choosing a perturbation on the gradient flow lines allows us to ensure

that the moduli spaces described in Figure 2 are regular. If we desire to work only with

unperturbed flow lines, we need to make sure that the critical points are distinct from

the intersection points of Lagrangians.

Applying this to the special case when L1=L2, and two choices of almost complex
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structures J01 and J ′01, we obtain a map

CM∗(L1, L1;Z)⊗CF ∗(L0, L1, J01;Z)−!CF ∗(L0, L1, J
′
01;Z), (3.8)

where we temporarily introduce notation which incorporates the choice of almost complex

structure. If we input the class of the minimum in CM∗(L1, L1;Z), we obtain a map

CF ∗(L0, L1, J01;Z)−!CF ∗(L0, L1, J
′
01;Z) (3.9)

which is a continuation map for almost complex structures.

Lemma 3.4. The continuation map for almost complex structures is a chain isomor-

phism.

Proof. The computation of equation (3.7) applies verbatim to show that the energy

of continuation maps is positive, and hence, at the chain level, the map is upper triangular

with respect to the action filtration. It therefore suffices to show that the entries along

the diagonal are ±1. These entries count constant holomorphic discs at the intersection

points of L0 with L1 (together with a negative gradient flow line to the unique minimum,

which can be ignored in the generic case where the intersection points all flow to this

minimum).

More generally, one can show that the unit e∈HF 0(L,L;Z) acts as a 2-sided identity

for the product.

Up to a sign change, the product is part of the A∞ structure on the Fukaya category,

as discussed in [17, §12]. We shall only need the fact that it is homotopy associative.

Concretely, the count of holomorphic discs with boundary mapping to a quadruple of

Lagrangian branes (L0, L1, L2, L3) as in Figure 1 defines a homotopy for the diagram

CF ∗(L2, L3;Z)⊗CF ∗(L1, L2;Z)⊗CF ∗(L0, L1;Z)

·⊗Id

��

Id⊗·
// CF ∗(L2, L3;Z)⊗CF ∗(L0, L2;Z)

·

��

CF ∗(L1, L3;Z)⊗CF ∗(L0, L1;Z)
· // CF ∗(L0, L3;Z).

(3.10)

This homotopy again preserves the action filtration, since Stokes’s theorem shows that

A(x1)+A(x2)+A(x3)−A(x0) is negative.

Definition 3.5. A pair of Lagrangians L0 and L1 are Floer theoretically equivalent if

there exist cocycles α∈CF i(L0, L1;Z) and β∈CF−i(L1, L0;Z) such that

[β]·[α] = e0 ∈HF 0(L0, L0;Z), (3.11)

[α]·[β] = e1 ∈HF 0(L1, L1;Z), (3.12)

where ei denotes the unit.
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L1

L0

x y

L0

L1

y x

Figure 3. The circled point at the boundary goes through a fixed point on the Lagrangian.

Fixing where this point is on the boundary component corresponds to gauging the action of R.

The cocycles α and β are called (Floer theoretic) equivalences.

Remark 3.6. Whenever L0 and L1 are connected, the possible cohomology classes of

all Floer theoretic equivalences are uniquely determined up to sign, because they induce

isomorphisms

HF ∗+i(L0, L1;Z)∼=HF ∗(L0, L0;Z)∼=HF ∗−i(L1, L0;Z), (3.13)

and the group HF ∗(L0, L0;Z) is isomorphic to H∗(L;Z), which is of rank 1 in degree 0.

Remark 3.7. In the cotangent bundle case we know that any brane supported on a

closed Lagrangian L⊂T ∗N!N is Floer theoretically equivalent to a rank-1 local system

on the zero section, by the results of [2]. As we are working over Z, and rank-1 local

systems are in bijective correspondence with relative Spin structures whenever the latter

exist, this implies that there is a relative Spin structure on L so that the corresponding

object is Floer theoretically equivalent to the zero section equipped with the relative Spin

structure fixed in Remark 3.2.

When dealing with such a Lagrangian in later sections we will always fix the brane

structure in this way.

Assuming for simplicity that α and β are represented by unique intersection points

x and y, the condition that L0 and L1 are Floer-theoretically equivalent can be restated

as the fact that the signed count of elements ofM(x, y) whose boundary passes through

any fixed point of L0 is 1, as is the count of such elements passing through a fixed point

of L1 (see Figure 3). In the general case, one requires instead that a linear combination

of such counts equal 1.

It follows immediately from the associativity of multiplication at the cohomological

level that Floer theoretic equivalence is transitive. We record a precise formulation for

future use.

Lemma 3.8. If (α1, β1) and (α2, β2) are Floer theoretic equivalences for pairs

(L0, L1) and (L1, L2), then (α2 ·α1, β1 ·β2) are Floer theoretic equivalences for the pair

(L0, L2) assuming they are transverse or equal.
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To see that Hamiltonian isotopies induce Floer theoretic equivalences, we start by

considering the following special case.

Lemma 3.9. Assume that K1⊂M and K0⊂M are exact Lagrangians and that

W=DεT
∗K0 is a Weinstein neighbourhood of K0 containing K1 as the graph of the

differential of a Morse function g:K0!R. Then, K1 and K0 are Floer theoretically

equivalent.

Proof. It suffices to prove that the graph of an exact 1-form is Floer theoretically

equivalent to the zero section. This goes back to Floer: in [8], he shows that, by picking

J01 and J10 carefully, we get isomorphisms of complexes

CF ∗(K0,K1;Z)∼=CM∗(g;Z) and CM∗(−g;Z)∼=CF ∗(K1,K0;Z). (3.14)

The Floer theoretic equivalence α∈CF 0(K0,K1;Z) is then the sum of the intersections

corresponding to the local minima of g, and β∈CF 0(K1,K0;Z) corresponds to the sum

of all the local maxima of g. Indeed, the product α·β is a count of holomorphic strips

(corresponding to gradient trajectories of g from a minimum to a maximum), which pass

through the unique minimum of some other generic Morse function on f :K0!R, and

this count is exactly 1. Using continuation maps as in Lemma 3.4, we conclude the

desired result for any generic choice of almost complex structure.

Corollary 3.10. Assume that K0 and K1 are Hamiltonian isotopic and transverse

or equal. Then, K0 and K1 are Floer theoretically equivalent.

Proof. Any Hamiltonian isotopy can be perturbed relative its endpoints, so that it

can be expressed as a concatenation of the special case in Lemma 3.9. Furthermore,

this can be done such that all the intermediate Lagrangians are pairwise transverse and

transverse to K0 and K1. This means that these equivalences can be composed as in

Lemma 3.8 to get the desired equivalence.

3.3. Floer chains with coefficients in the group ring of M

In this section we consider local coefficients on Floer homology, which was first done in

[5], and later in [7] and [1].

We now fix a base-point ?∈M and consider the local coefficient system R on M

whose value at a point x is the free Abelian group Rx on the components of the space of

paths from ? to x. The fibre at the base point is the group ring R?=Z[π1(M,?)], which

acts on all other fibres by concatenation. We shall define a Floer homology group with

values in the coefficient system R.
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Given transverse Lagrangian branes L0 and L1 as before, the underlying graded R?

module for this vector space is

CF−i(L0, L1;R) =
⊕

x∈K∩L
deg(x)=i

|ox|∨⊗Rx, (3.15)

where |ox|∨ is the linear dual of the graded line |ox| appearing in equation (3.3). The

differential is defined as before by counting elements of moduli spaces of rigid strips

M(x, y), noting that a map u representing such an element induces, by concatenation

with the path u(R×{t}), an R?-linear map

Rx−!Ry.

Taking the tensor product with the map induced by equation (3.2) on dual orientation

lines, we obtain

∂u: |ox|∨⊗Rx−! |oy|∨⊗Ry.

By construction, Floer chains are equipped with a filtration by subcomplexes

F aCF∗(L0, L1;R) =
⊕

x∈L0∩L1

A(x)6−a

|ox|∨⊗Rx. (3.16)

We extend this definition as before to the case L0=L=L1 by picking a Morse function

h on L, and defining

CF∗(L,L;R) =CM−∗(h;R). (3.17)

In other words, a generator of this complex corresponds to a choice of a homotopy class

of paths from a critical point of h to the base point in M . The filtration on the self-Floer

group is trivial, i.e. supported at the zero level.

The construction of operations on the Fukaya category naturally extends to give rise

to an A∞ bimodule structure on the Floer chains CF∗(L0, L1;R) over the A∞ algebras

CF ∗(Li, Li,Z). We will only need a small part of this structure, which we now explicitly

describe. Of key importance are the first two structure maps (% and λ stand for right

and left multiplication)

CF ∗(L0, L1;Z)⊗CF∗(L0, L2;R)
λ−−!CF∗(L1, L2;R)

CF∗(L2, L0;R)⊗CF ∗(L1, L0;Z)
%−−!CF∗(L2, L1;R).

These maps are induced by the moduli spaces of holomorphic triangles as follows: given

intersection points x0∈L0∩L2, x1∈L0∩L1 and x2∈L1∩L2, any element of the moduli
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? L2

L1

L0

x0

x2

x1

Figure 4. Contribution to local coefficients from disc. The homotopy class of a path from ?

to x0 defines a generator in Rx0 and composing with the homotopy class of the path from x0

to x2 in the image of the disc defines a map to Rx2 . The arc in the disc is meant to help the
reader keep track of the intersection points of Lagrangians which are equipped with twisted

coefficients.

L3

L2

L1

L0

x0

x3

x2

x1

x0

x3

x1

x2x0
x1

x3

x2

Figure 5. Breaking of discs corresponding to the two ways around the diagram in equation (3.18).

space M(x0, x1, x2) determines a canonical homotopy class of paths from x0 to x2. Left

and right multiplication are then defined by taking the tensor product of the induced

map Rx0
!Rx2

with the map induced on orientation lines. By construction and Stokes’s

theorem, these are maps of filtered complexes.

The right action is compatible with the product in the sense that, given a quadruple

(L0, L1, L2, L3), the count of holomorphic discs with four marked points defines a filtered

homotopy in the following diagram:

CF∗(L3, L0;R)⊗CF ∗(L1, L0;Z)⊗CF ∗(L2, L1;Z)
Id⊗·

//

%⊗Id

��

CF∗(L3, L0;R)⊗CF ∗(L2, L0;Z)

%

��

CF∗(L3, L1;R)⊗CF ∗(L2, L1;Z)
%

// CF∗(L3, L2;R).

(3.18)

The proof is the same as the proof of homotopy associativity of the product; the only

additional ingredient is the fact that the breaking of holomorphic discs is compatible

with concatenation of paths as shown in Figure 5.

The left action is similarly compatible via a diagram which we omit. Finally, we

shall use the fact that the left and right actions are homotopically compatible with each

other, i.e. we obtain a bimodule by passing to cohomology. Concretely, this is given by
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Figure 6. Breaking of discs corresponding to the two ways around the diagram in equation (3.19).

the homotopy in the diagram

CF ∗(L0, L1;Z)⊗CF∗(L0, L3;R)⊗CF ∗(L2, L3;Z)
λ⊗Id

//

Id⊗%

��

CF∗(L1, L3;R)⊗CF ∗(L2, L3;Z)

%

��

CF ∗(L0, L1;Z)⊗CF∗(L0, L2;R)
λ // CF∗(L1, L2;R).

(3.19)

The breaking of discs which shows that this is defined with local coefficients is illustrated

in Figure 6.

An easy application of Stokes’s theorem shows that

A(%(m⊗x))6A(m)−A(x) and A(λ(x⊗m))6A(m)−A(x). (3.20)

So, to make sense of these as filtered maps, we define action on generators of the source of

% and λ byA(m⊗x)=A(x⊗m)=A(m)−A(x). Defining the action of generators of tensor

products of Floer complexes to be the difference between the action of the homological

element and the actions of the cohomological elements, we see that the homotopies in

the above diagrams also preserve the filtrations.

3.4. The torsion of a Floer theoretic equivalence

Consider a pair of connected Lagrangians K and L, and cocycles α∈CF ∗(K,L;Z) and

β∈CF ∗(L,K;Z) which give rise to a Floer theoretic equivalence.

Using the bimodule structure, we obtain chain homotopy equivalences

%(−⊗α):CF∗(Q,K;R)−!CF∗(Q,L;R), (3.21)

%(−⊗β):CF∗(Q,L;R)−!CF∗(Q,K;R), (3.22)

which are quasi-inverses, since the homotopy commutativity of the diagram in equa-

tion (3.18) shows that their compositions are homotopic to multiplication with the unit

element. Multiplication with the unit is the identity, since the rigid discs that one counts

(as the first in Figure 2) are constant on the disc part. Similarly, for the maps induced

by λ(α⊗−) and %(β⊗−).
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Definition 3.11. The Floer-theoretic torsion of a pair (K,L) of Floer-theoretically

equivalent Lagrangians is the Whitehead torsion element in Wh(π1(M,?)) of the map

CF∗(L,L;R)−!CF∗(K,K;R) (3.23)

induced by left and right multiplication by equivalences.

Explicitly, if α∈CF ∗(L,K;Z) and β∈CF ∗(K,L;Z) are equivalences, then we con-

sider the composition

CF∗(L,L;R)
λ(α⊗−)−−−−−−!CF∗(K,L;R)

%(−⊗β)−−−−−−!CF∗(K,K;R). (3.24)

Lemma 3.12. The Whitehead torsion of λ(α⊗−) is independent of the choice of

Floer theoretic equivalence and almost complex structure. Similarly for the map %(−⊗α).

Proof. Changing α to α+dα′: the map λ(α′⊗−) provides a chain homotopy between

λ(α⊗−) and λ((α+dα′)⊗−), which by Lemma 2.5 does not change the Whitehead

torsion. By Remark 3.6, the cohomology class a Floer theoretic equivalence is uniquely

determined up to sign, which does not affect the torsion.

The continuation map for complex structures is defined using the first picture in

Figure 2. The resulting matrix, with respect to the action filtration, is upper triangular

with entries 1 along the diagonal as in the proof of Lemma 3.4. Combined with Corol-

lary 2.4, we see that the Whitehead torsion of the continuation map is trivial. Since

composing λ(α⊗−) with a continuation map gives a chain homotopic map, Lemma 2.5

and equation (2.1) prove that the torsion is independent of the choice of almost complex

structure.

Corollary 3.13. The Floer-theoretic torsion is independent of the choice of equiv-

alences and almost complex structures.

Remark 3.14. Traditional proofs of invariance of Whitehead torsion often rely at

some point on checking invariance under handle slides, which correspond to the appear-

ance of a flow line between critical points of equal index, which is generic in a 1-parametric

family. The above result covers the analogue in Floer theory.

3.5. Torsion is Hamiltonian invariant

We shall presently strengthen Lemma 3.12 by showing that torsion is in fact invariant

under Hamiltonian isotopies. To this end, we consider Hamiltonian isotopic Lagrangians

K0 and K1, and a fixed Lagrangian L.
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We start by considering the special case of Lemma 3.9, where we additionally assume

that both Lagrangians K0 and K1 are transverse to L. Let g:K0!R be the Morse

function defining K1, as in Lemma 3.9. In the Weinstein neighourhood DεT
∗K0, we

have a standard isotopy given by the graph of t dg for t∈[0, 1].

Lemma 3.15. The following properties hold for a generic C1-small perturbation of

the isotopy between K0 and K1:

(1) there are finitely many points t∈I such that Kt∩L is non-transverse;

(2) for each t∈I there are finitely many points in Kt∩L;

(3) Kt and Ks are transverse for t 6=s.

Proof. The desired properties hold for t and s close to 0 and 1, by the transversality

assumption. Any C1 small perturbation of the isotopy (on a compact set in the interior

of K0×I) can be realized as the differentials of ht(x)g(x), t∈I, where ht(x)=t when t is

close to 0 and 1. This satisfies (3) as long as ht(x) has positive derivative with respect

to t. Standard transversality arguments thus show that we can pick ht with such positive

derivative and such that the isotopy and L are transverse. This implies that the locus of

intersection, say S⊂K0×I, is a 1-dimensional manifold. Now, (1) and (2) will be satisfied

if the restriction of the projection to I, say p:S!I, is a Morse function. To see that

we may perturb to also make this true, let ν!S be a tubular neighborhood ν⊂K0×I
around S⊂K0×I. Using this we may canonically parameterize any small perturbation of

S as an embedded manifold by S. With this choice, any small Hamiltonian perturbation

(in the interior of I) of the isotopy now gives rise to a perturbation of the function

p:S!I. As usual, we see that we can perturb in this way to make p Morse, by arguing

that there exists a family of such perturbation which makes the family of differentials

dp have zero as a regular value. This is possible, since for any point (x, t)∈S where

dp=0 we have that Kt and L have a tangential direction at x; and by introducing a

Hamiltonian flow that rotates Kt around the point x (and the Ks for s close to t) we can

make this transverse—in fact, the differential of dp under this rotation is non-zero. Since

this differential is non-zero in a small neighborhood, we may cover the compact set dp=0

with finitely many charts, and thus create a finite-dimensional family of perturbations

which has dp transverse to zero. It follows by the transversality theorem that for an open

and dense set in the family the functions p is Morse.

Consider an arbitrary member Kt in the isotopy produced by Lemma 3.15. Choos-

ing ε sufficiently small, we may assume that Kt±ε∩L is arbitrarily close to Kt∩L. In

particular, since the intersection points are isolated, each intersection point of Kt±ε with
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L is close to a unique intersection point of Kt with L. We obtain a decomposition

Kt±ε∩L=
⋃

x∈Kt∩L
B±x , (3.25)

where B±x consists of those intersection points which are close to x (if x were a generic

intersection point we would conclude that B±x is a singleton, but this is not the case in

general).

Lemma 3.16. For each t∈[0, 1] and δ>0 which is sufficiently small, there is a con-

stant ε such that

• Kt+ε, Kt−ε, and L are pairwise transverse;

• Kt+ε and Kt−ε are δ-close to Kt and the action of each intersection point z

between Kt+ε and Kt−ε satisfies |A(z)|�δ;
• for any intersection point x±∈B±x , the difference in actions satisfies

|A(x±)−A(x)|� δ.

Proof. Given any t∈[0, 1], we may, by condition (1) and (3) above, choose ε suffi-

ciently small so that the Lagrangians (Kt+ε, L,Kt−ε) are pairwise transverse. Since the

action and the distance to an intersection point of L with Kt are continuous in ε, the

desired conditions can be achieved for ε sufficiently small.

The above result, together with the monotonicity lemma, gives the following con-

straint on moduli spaces of holomorphic triangles.

Corollary 3.17. Given distinct intersection points x and y of L and Kt, with

A(x)6A(y), and ε sufficiently small, the moduli space M(x+, z, y−) is empty for each

z∈Kt−ε∩Kt+ε, x+∈B+

x and y−∈B−y . Similarly, for A(y)6A(x) and M(y−, z, x+).

Moreover, there is a contractible neighbourhood Ux of each intersection point x such that,

if x±∈B±x , then any element of M(x+, z, x−) is homotopic to a map into Ux relative the

two marked points which map to x+ and x−.

Proof. Choose disjoint neighbourhoods Ux of the intersection points of Kt with L,

so that the conclusion of Lemma A.1 holds for Ux and some δ>0. Then, choose ε small

enough so that B±x ⊂Ux, and so that the conclusions of Lemma 3.16 hold for this δ.

Stokes’s theorem implies that the energy of any element ofM(x+, z, y−) is given by

A(x+)−A(y−)−A(z) = (A(x+)−A(x))+(A(x)−A(y))+(A(y)−A(y−))−A(z)� δ,

where the second inequality follows from the conclusion of Lemma 3.16, and the assump-

tion that A(x)6A(y). On the other hand, Lemma A.1 implies that the energy must be
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greater than δ when x 6=y, so the moduli space is empty. Similar for the moduli space

M(y−, z, x+) when A(y)6A(x).

The second statement follows from Corollary A.2.

Remark 3.18. The use of basic action estimates would be sufficient to prove the

above result with the stronger assumptions that the inequality between the action of

x and y is strict. The monotonicity lemma allows us to strengthen this to the case

A(x)=A(y) which will be crucial in the proof of the next result.

We now arrive at the main result of this section.

Theorem 2. If K0 and K1 are Hamiltonian isotopic, and L is transverse to both,

the equivalences

CF∗(K0, L;R)−!CF∗(K1, L;R) (3.26)

CF∗(L,K0;R)−!CF∗(L,K1;R) (3.27)

have trivial Whitehead torsion.

Proof. As the arguments for the two maps are completely symmetric, we only address

one of them.

Perturbing and subdividing any Hamiltonian isotopy into pieces as considered above,

we can further subdivide into pieces as in the corollary above. We therefore start by

proving that the equivalence in CF ∗(Kt−ε,Kt+ε;Z) induces a map

CF∗(Kt−ε, L;R)−!CF∗(Kt+ε, L;R) (3.28)

whose Whitehead torsion is trivial.

Consider the action filtration given by the critical values of the action functional. If

c0<...<cd are the values of the action functional on Kt∩L, we put a(p)=− 1
2 (cp+cp−1)

(with a(0)>−c0 and a(d+1)<−cd) and consider the corresponding action filtration. We

write

GpCF∗(Kt±ε, L;R)≡F a(p)CF∗(Kt±ε, L;R)/F a(p+1)CF∗(Kt±ε, L;R) (3.29)

for the associated graded group. By the description of moduli spaces in Corollary 3.17,

the chain homotopy equivalence (induced by any Floer theoretical equivalence) is well

defined on the quotients

GpCF∗(Kt−ε, L;R)−!GpCF∗(Kt+ε, L;R),

and splits as a direct sum of maps of complexes of R-modules—one for each of the original

intersection points in Kt∩L (this is where Remark 3.18 is relevant).
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Corollary 3.17 applied to the inverse shows that we have quasi-equivalences on the

quotients. Moreover, there is a fixed contractible set which contains the image (up to

homotopy relative the two marked points lying on L) of each holomorphic triangle which

contributes to the map of associated graded spaces. This means that the map on these

quotients induced by multiplying by the equivalence can be identified with the map

GpCF∗(Kt−ε, L;Z)−!GpCF∗(Kt+ε, L;Z)

tensored with the identity on R. Since the Whitehead group of the trivial group is trivial

and Whitehead torsion is functorial with respect to group homomorphisms—the complex

with coefficients in R also have trivial Whitehead torsion. So, Corollary 2.4 shows that

the map in equation (3.28) has trivial torsion, from which we deduce the case of general

isotopies by concatenation.

The above result has the following straightforward generalization.

Corollary 3.19. The Whitehead torsions of equation (3.21) and (3.22) are invari-

ant under Hamiltonian isotopy of K, L and Q.

Proof. Let L0 and L1 be Hamiltonian isotopic. As a special case of equation (3.19),

we have a chain homotopy commutative diagram

CF∗(K,L0;R)
λ(α⊗−)

//

%(−⊗β)

��

CF∗(Q,L0;R)

%(−⊗β)

��

CF∗(K,L1;R)
λ(α⊗−)

// CF∗(Q,L1;R),

where the vertical maps are the maps considered in Theorem 2 which up to homotopy

do not depend on the choice of β∈CF 0(L0, L1;Z). Using Theorem 2, Lemma 2.5 and

equation (2.1), we see that the two horizontal maps have the same Whitehead torsion.

Changing K or Q involves the following slightly different diagrams:

CF∗(K,L;R)
λ(α⊗−)

//

λ((β·α)⊗−)

&&

CF∗(Q0, L;R)

λ(β⊗−)

��

CF∗(Q1, L;R)

CF∗(K0, L;R)
λ((α·β)⊗−)

//

λ(β⊗−)

��

CF∗(Q,L;R)

CF∗(K1, L;R)

λ(α⊗−),

88

but the conclusion is the same since in each case the additional map (multiplication

with β) has trivial torsion by Theorem 2, and the diagrams homotopy commute by using

equation (3.18) and its analogue for the left module action.
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4. The Floer-theoretic torsion vanishes

In this section we specialize to the setting of cotangent bundles: recall that, if N is a

closed manifold, every closed exact Lagrangian in T ∗N may be equipped with a relative

Spin structure so that it is Floer-theoretically equivalent to the zero section ([14], [9], [2],

[11]). Our main result will be the following.

Proposition 4.1. If L⊂T ∗N is an exact Lagrangian, then the torsion of the Floer-

theoretic equivalence with the zero section vanishes.

We shall prove this result by appealing to the Hamiltonian invariance of torsion and

a large-scale deformation of the Lagrangian L. The deformation of L is essentially the

same as that used in [12].

Denote by ψr the time-(log r) Liouville flow (which corresponds to dilating the fibres

by r), and by φg the time-1 Hamiltonian flow of g�q, where g:N!R is a Morse function

with distinct critical values. For any K⊂T ∗N we define

Kr =ψrK and Kr
1 =φgK

r, (4.1)

and abbreviate Nr
1 as N1, since the zero section is invariant under the Liouville flow.

Note that even though the Liouville flow is not Hamiltonian, we have the following

result, which follows via an elementary computation with the Liouville form.

Lemma 4.2. If K is an exact Lagrangian of T ∗N with primitive f :K!R, then

the isotopy from K to Kr and Kr
1 is Hamiltonian, and equips these Lagrangians with

primitives rf and rf+g under the identification with K induced by the isotopy.

Corollary 3.19 implies that the Floer theoretic torsion of the equivalence of L with

the zero section agrees with the torsion of the map

CF∗(L
r, Lr1;R)−!CF∗(N,N1;R), (4.2)

induced by left and right multiplication with Floer theoretic equivalences αr∈CF ∗(Lr, N)

and βr1∈CF ∗(N1, L
r
1).

By construction, intersection points of N and N1 occur at critical points of g, and

A(x)=g(x). In particular, if c0<...<cd are the critical values of g, then we consider the

action filtration

F a(p)CF∗(N,N1;R) (4.3)

using the actions a(p)=− 1
2 (cp+cp−1); the fact that there is a unique intersection xp of

action cp implies that the associated graded group is

GpCF∗(N,N1;R)∼=Rxp
. (4.4)
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We shall now assume that r�1, in which case the following statements hold:

• the cocycles αr and βr1 and their quasi-inverses are supported in action level very

close to zero (using the primitives from Lemma 4.2);

• the intersection points of Lr and Lr1 decompose as a disjoint union

Lr∩Lr1 =

d∐
p=0

Brp, (4.5)

with Brp consisting of those intersection points lying in a small neighbourhood of the

critical point xp of g.

(i) The action of any element y∈Brp satisfies

|A(y)−cp|� 1 (4.6)

(again by the explicit primitives from Lemma 4.2).

We now consider the filtration on CF∗(L
r, Lr1;R) given by the same action levels as

the above filtration on CF∗(N,N1;R). The pth associated graded group is generated by

intersection points of action between 1
2 (cp+cp−1) and 1

2 (cp+1+cp). By equation (4.6), all

such intersection points in fact have action approximately equal to cp and lie in the set

Brp of intersection points which are close to xp. This associated graded group is therefore

given by

GpCF∗(L
r, Lr1;R)∼=

⊕
y∈Br

p

Ry, (4.7)

and is equipped with the induced differential.

Since left and right multiplication induce maps which preserve action filtrations, and

the equivalences αr and βr1 have small action, we conclude that equation (4.2) descends

to the associated graded with respect to the filtration, as does the chain homotopy

inverse induced by multiplication with the quasi-inverses of αr and βr1 . We conclude the

following.

Lemma 4.3. The equivalences αr and βr1 induce a chain homotopy equivalence

GpCF∗(L
r, Lr1;R)−!GpCF∗(N,N1;R). (4.8)

On the other hand, equation (4.8) agrees with the map obtained from

GpCF∗(L
r, Lr1;Z)−!GpCF∗(N,N1;Z) (4.9)

by extension of scalars from Z to R. Indeed, using Corollary A.2 with K=N and Q=N1,

we see (as in the proof of Theorem 2) that the homotopy class of the path defined by
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dL r
L

H0

Figure 7. The function H approximates.

any rigid disc counted in these maps is homotopic relative to end points to a path inside

a small contractible neighbourhood of xp.

In particular, the Whitehead torsion of equation (4.8) vanishes. Since this is the

map on associated graded groups of equation (4.2), we conclude from Corollary 2.4 that

the Whitehead torsion vanishes. Using invariance of torsion under Hamiltonian isotopies,

we arrive at the main result of this section.

Proposition 4.4. The Whitehead torsion of any Floer-theoretic equivalence of closed

exact Lagrangians in T ∗N vanishes.

5. From cellular to Floer cochains

In this section, we prove that the Whitehead torsion of the projection map L!N , which

we call the classical torsion, agrees with the Floer theoretic torsion. We will prove this

by passing through a sequence of intermediary maps which are defined using Morse and

Floer theory in the disc cotangent bundle D∗N⊂T ∗N (which we assume contains L in

its interior).

On the Morse theoretic side, we consider a Morse function H which C1-approximates

a function

H0(z) =

{
dL(z)2, if dL(z)<ε,

r, if r > 1−ε.

Here dL:D∗N!R is the distance function to L in some Riemannian metric we fix such

that L is a totally geodesic submanifold, and r:D∗N![0, 1] is the radial coordinate

equal to 1 on the boundary ∂D∗N . The function values elsewhere will not matter and

we assume that ε is so small that this is well defined and smooth. This function is

illustrated in Figure 7. To perturb this close to L, we consider a small positive Morse
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function h:L!R and assume that in a small neighbourhood of L we have

H(z) =h(π(z))+dL(z)2, (5.1)

where π(z) is the nearest point to z in L. Note that h=H|L and, by the assumption

on the Riemannian structure, the critical points of H which lie on L have descending

manifolds contained in L, which agree with the descending manifolds of the corresponding

critical points of h. Close to the boundary ∂D∗N , we assume that H has outwards

pointing gradient (as H0 does) and that it is a Morse function when restricted to the

boundary. We conclude that the Morse complex CM∗(L, h;R) embeds as a subcomplex

into CM∗(D
∗N,H;R).

Lemma 5.1. The classical torsion agrees with the torsion of the inclusion

CM∗(L;h,R)!CM∗(D
∗N ;H,R). (5.2)

Proof. We first use the factorization

L−!D∗N −!N ; (5.3)

to see that the classical torsion agrees with the torsion of the map L!D∗N we note that

the second map has trivial torsion, since D∗N has a sequence of simple collapses to N .

We now appeal to the fact that for a generic Riemannian metric on D∗N the union

of the descending manifolds of H yield a CW subcomplex XD∗N!D
∗N . Picking the

metric so that L is totally geodesic, we obtain a further factorization

L!XD∗N!D∗N. (5.4)

Using the explicit way H looks close to the boundary, we may compare the latter two

by building an even bigger CW complex with cells given by critical points of H in the

interior and two for each critical point of H restricted to ∂D∗N (which we assumed to

be Morse). That is, first we build XD∗N , then we disjointly build ∂D∗N and then finally

for each cell in the boundary we can use the descending manifold inside the boundary

together with the directions into D∗N to attach a new cell of one dimension higher than

the cell in the boundary. This is homeomorphic to D∗N and shows that the inclusion

XD∗N!D
∗N has trivial torsion. Indeed, the difference of the two cell structures is a

sequence of trivial collapses from D∗N to XD∗N by starting with the top-dimensional

cells (associated with critical points of the boundary Morse function) and going down

in dimension. Combining the above arguments, we conclude that the torsion of L!N

agrees with the torsion of L!XD∗N .
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h

L
L

H

Figure 8. Standard Morse map in Lemma 5.1 interpreted as a count of discs and gradient

flow lines: the dotted line is a flow line of H starting at the centre of the disc and converging

to a critical point.

To complete the argument, we observe that the map L!XD∗N is cellular with

respect to the Morse-theoretic CW structure on L, and we have a natural commutative

diagram

CCW∗ (L;R) //

∼=
��

CCW∗ (XD∗N ;R)

∼=
��

CM∗(L, h;R) // CM∗(D
∗N,H;R).

(5.5)

We have arranged our fixed choice of pair of Morse functions so that equation (5.2)

is an inclusion. This inclusion can also be interpreted as a count of configurations shown

in Figure 8, which consist of (1) a flow line γ− of h parameterized by (−∞, 0], (2) a flow

line γ+ of H parameterized by [0,∞), and (3) a holomorphic map u:D2
!M mapping

the boundary to L, such that u(−1)=γ−(0) and u(0)=γ+(0). The key point is that all

such rigid configurations are constant: the exactness of L implies that all holomorphic

discs are constant, and equation (5.1) implies that all negative gradient flow lines of H

starting on L are contained in L.

Proposition 5.2. The classical and Floer-theoretic torsions agree.

Proof. Consider the composition

CM∗(L;h,R)
%−−!CF∗(L,N ;R)

λ−−!CM∗(N,N ;R)
m−−!CM∗(D

∗N ;H,R). (5.6)

The last map m is the map considered in Lemma 5.1 (in the case L=N) and therefore has

trivial Whitehead torsion. Indeed, the standard inclusion N⊂D∗N has trivial Whitehead

torsion. The proposition will thus follow from the claim that the composition of these is

homotopic to the map from Lemma 5.1, which is represented in Figure 8.

Let α∈CF ∗(L,N ;Z) and β∈CF ∗(N,L;Z) be Floer cochains inducing the Floer the-

oretic equivalences, and let f :N!R be any Morse function on N whose stable manifolds

are transverse to the unstable manifolds of H. The maps in the sequence are given by

counting rigid objects in moduli spaces of maps as in Figure 9.
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h

L

L

L N
α

f

N

N

NL

β

f

N
N

H

% λ m

Figure 9. The three maps in equation (5.6).

h

L

L

L
N

L

α

β

N

N, f

a(s)
N

H

Figure 10. The moduli space for −1<s<0.

Here marked points on the boundary of a disc should be mapped to an intersection

point.

To create a homotopy between the two maps we construct a 1-parameter family of

moduli spaces, parameterized by s∈[−1, 1], interpolating between Figures 8 and 9.

• Near s=−1, we glue the flow lines in the right and centre of Figure 9 to obtain a

(finite of length a(s)) flow line of f on N . The resulting configuration of discs and flow

lines is illustrated in Figure 10.

• As s approaches zero from the left, we let the length of the finite gradient flow

line along N go to zero. In particular, at s=0, we obtain the moduli space shown in

Figure 11 which has three disc components meeting at two boundary nodes. These three

disc components represent a point in (the Gromov boundary of) the moduli space of

discs with three boundary marked points and one interior marked point. This moduli

space is connected and has dimension 2.

• For 0<s<1 we pick a path in the moduli space of such discs, as shown in Figure 12,

between the configuration appearing at s=0, and the configuration shown in Figure 13

consisting of a stable disc with two components meeting at a node, so that one disc is

biholomorphic to the unit disc D2⊂C with boundary marked points at (−1, 1) and an

interior marked point at the origin, and the other is a disc with three marked points, one

of which is the node, and the others are labeled by the equivalences α and β.

In this way, we have produced a homotopy between the composition appearing in
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h

L

L

L
N

L

α

β

N
N

H

Figure 11. The moduli space for s=0.

h

L

L

L
α

β

N

H

Figure 12. The moduli space at 0<s<1.

equation (5.6) and the map defined by the moduli spaces for s=1. Since α and β are Floer

theoretic equivalences, the (signed) count of holomorphic bigons with corners labeled α

and β passing thought a generic point of L is 1. This implies that the (signed) count of

configurations shown in Figure 13 is the same as the count of the moduli space appearing

in Figure 8, which, by Lemma 5.1, agrees with the classical torsion. Note in particular

that each contribution to the local coefficient system is the same, since this is given by

the path (unique up to homotopy) from the far left of the diagram to the marked point

at the end of the arrow decorated with H.

Remark 5.3. If we did not specify the modulus of the disc with interior marked point

in Figure 13, the corresponding moduli space would have excess dimension, corresponding

to the fact that the boundary of a disc with interior marked point sweeps a 1-dimensional

cycle in L, and hence could not rigidly intersect the n-dimensional cycle in L, which

accounts for the product of α and β. We obtain a rigid intersection by specifying that

the disc is biholomorphic to one with marked points at ±1 and the origin. Any other

choice of modulus would give rise to a homotopic map.

Appendix A. The monotonicity lemma

Let M be any symplectic manifold (possibly non-compact) with a given almost com-

plex structure J , and let K and Q be two proper Lagrangians in M with an isolated

intersection point x∈K∩Q.
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L

N

H

α

β
L

L

Figure 13. The moduli space for s=1.

Let Ux be a neighbourhood of x, and consider J-holomorphic discs u:D2
!M which

satisfy the following conditions with respect to a constant δ>0:

u(1)∈Ux and u(−1) /∈Ux (A.1)

u maps the upper semi-circle in ∂D2 to a δ neighbourhood of K,

and the lower semi-circle to a δ neighbourhood of Q.
(A.2)

The following technical result about minimal areas of holomorphic curves is a variant

of the monotonicity lemma, and is crucially used in §3 and §4.

Lemma A.1. For each sufficiently small neighbourhood Ux there is a constant δ such

that all holomorphic discs satisfying conditions (A.1) and (A.2) have area greater than δ.

Proof. Pick a Darboux chart D2n
ε !M mapping the origin to x such that Q is

identified with Dn
ε , and such that the image of the tangent space of K at x has trivial

intersection with iRn (i.e. is non-vertical). Locally K is given by the differential of a

function, and, by making ε smaller, we may assume that f :Dn
ε!R is such a function,

and that the differential defines K in a neighbourhood of type Dn
ε ×iDn

ε′ .

Since f has an isolated critical point at zero, we have a codimension-2 manifold

W =
{

(q, p)∈Dn
ε ×iDn

ε′ : ‖q‖= 1
2ε and ‖p‖= 1

2‖dqf‖
}
,

which is an Sn−1 bundle over the sphere of radius 1
2ε in Rn.

We shall presently appeal to the monotonicity lemma [20, Proposition 4.3.1 (ii)]:

there is a constant C4 such that any holomorphic curve which intersects W and has

boundary in the complement of the r neighbourhood of W has area greater than C4r
2,

whenever r is sufficiently small.

Let us therefore choose some neighbourhood U of x inside the chart whose closure is

disjoint from W , and pick δ so that the following properties hold in the Darboux chart:

(1) the δ neighbourhoods of Q and K only have common points in U ;

(2) the r-neighbourhood of W , with r=
√
δ/C4, is disjoint from U and from the

δ-neighbourhoods of Q and K, and this r is small enough for the monotonicity lemma

to apply.
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The first assumption implies that u(−1) lies outside of the chart. The image of the

boundary of u under the collapse map M!D2n
ε /∂D2n

ε is therefore a loop which winds

once around W . The algebraic intersection number of u with W is hence non-trivial

modulo 2. The image of u therefore intersects W , while the image of its boundary lies

outside the δ -neighbourhood of W . The monotonicity lemma implies that such a curve

has area greater than δ, completing the proof.

We shall also consider the following variant.

Corollary A.2. For each sufficiently small neighbourhood of x there is a constant

δ such that, if condition (A.2) holds, the image of ±1 under u lies in Ux, and the area

of u is less than δ, then the path {u(t)}t∈[−1,1] is homotopic relative to its end points to

a map with image in Ux.

Proof. Assume by contradiction that there is such a disc for which the path from

u(−1) to u(1) is not homotopic to a path with image in Ux, we then see that the lift of u to

the universal cover of M (with the canonical symplectic structure) has endpoints mapping

to distinct inverse images of Ux. Replacing K and Q by their inverse images, we find

a contradiction to the previous lemma and the fact that lifting any pseudo-holomorphic

disc preserves the symplectic area.
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[21] Suárez, L. S., Exact Lagrangian cobordism and pseudo-isotopy. Internat. J. Math., 28
(2017), 1750059, 35 pp.

[22] Sullivan, M. G., K-theoretic invariants for Floer homology. Geom. Funct. Anal., 12
(2002), 810–872.

[23] Thom, R., Espaces fibrés en sphères et carrés de Steenrod. Ann. Sci. École Norm. Sup.,
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