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1. Introduction

The Schwarzschild family [69] of spacetimes (M, gM ), expressed in local coordinates as

−
(

1− 2M

r

)
dt2+

(
1− 2M

r

)−1

dr2+r2(dθ2+sin2 θ dφ2), (1)

was discovered exactly one hundred years before this writing, and comprises the most

basic family of non-trivial solutions to the celebrated Einstein vacuum equations

Ric(g) = 0 (2)

of general relativity. Though originally geometrically obscured by the coordinate form

(1), the family has now long been understood (see the textbook [76]) to yield, for param-

eter values M>0, the simplest examples of spacetimes containing a so-called black hole,

with the coordinate range r>2M corresponding to the exterior.

There is perhaps no question more fundamental to pose concerning Schwarzschild

than that of the stability of its exterior:

Fundamental question. Is the Schwarzschild exterior metric (1) stable as a solution

to (2)?
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The whole tenability of the black hole notion rests on a positive answer to the above.

The question is further complicated by the fact that the Schwarzschild family sits as a 1-

parameter subfamily of the more elaborate 2-parameter Kerr family (M, gM,a) discovered

only much later [43] in 1963.

One can distinguish between three formulations of the above fundamental question,

each of increasing difficulty, beginning from the statements initially studied in the physics

literature and ending with the definitive formulation of the question as a problem of non-

linear stability in the context of the Cauchy problem for (2), in analogy with the non-

linear stability of Minkowski space, proven in the monumental work [14] of Christodoulou

and Klainerman.

(1) The formal mode analysis of the linearised equations. The equations of grav-

itational perturbations around Schwarzschild (i.e. the linearisation of (2)), “linearised

gravity” for short, can be formally decomposed into modes by associating t-derivatives

with multiplication by iω and angular derivatives with multiplication by i`. The formal

study of fixed modes from the point of view of “metric perturbations” was initiated in a

seminal paper of Regge–Wheeler [61]. This study was completed by Vishveshwara [75]

and Zerilli [79]. A gauge-invariant formulation of “metric perturbations” was then given

by Moncrief [54]. An alternative approach via the Newman-Penrose formalism [58] was

conducted by Bardeen–Press [4]. This latter type of analysis was later extended to the

Kerr family by Teukolsky [74]. A highlight of this analysis was the discovery that various

curvature components in a null frame satisfy a decoupled wave equation, the celebrated

Teukolsky equation, first discovered in the Schwarzschild case in [4] and generalised to the

Kerr case in [74]. The understanding of the problem in the early 1980’s is summarised

by the magisterial monograph of Chandrasekhar [9], who introduced (see also [8]) an

important transformation theory connecting solutions of the two approaches. A highly

non-trivial result is the statement of mode stability for the Teukolsky equation on Kerr,

obtained in a seminal paper of Whiting [77].

(2) The problem of linear stability of Schwarzschild. The true problem of linear

stability concerns general solutions to the equations of linearised gravity arising from

regular initial data, not simply fixed modes. One can in fact distinguish between two

linear stability statements:

(2a) the question of whether all solutions to the linearised Einstein equations around

Schwarzschild remain bounded for all time by a suitable norm of their initial data and

(2b) the question of asymptotic linear stability–i.e. whether all solutions to the

linearised equations asymptotically decay. In view of the existence of the Kerr family

and the gauge freedom of the equations, the best result would be that they decay to a

linearised Kerr solution in some gauge.



the linear stability of the schwarzschild solution 5

Note that the mode analysis corresponding to formulation 1. described above yields

necessary but not sufficient conditions for either statements (2a) and (2b) of true linear

stability.(1) In the case of the linear scalar wave equation

�gϕ= 0,

which can be thought of as a “poor man’s” version of linearised gravity, the analogue of

(2a) for Schwarzschild was proven by Kay–Wald [41], and the analogue of (2a) and (2b)

are shown now for the full subextremal Kerr family in [26], following a host of recent

activity [24], [73], [1], [21]. See [25], [23] for a survey. See [6], [2] for generalisations to the

Maxwell equations and [3] for a discussion of the extremal case |a|=M . Concerning the

linearised Einstein equations themselves, work on the wave equation easily generalises to

establish physical space decay on certain quantities, for instance those gauge-invariant

quantities satisfying the Regge–Wheeler equation on Schwarzschild [32], [7], [29]. For

the full system of linearised gravity however, both problems (2a) and (2b) have remained

open until today. We note explicitly that even the question of uniform boundedness,

let alone decay, for the gauge-invariant quantities satisfying the Teukolsky equation on

Schwarzschild has remained open.

(3) The full non-linear stability of Schwarzschild as a solution to the Cauchy prob-

lem for the non-linear Einstein vacuum equations (2). This is the definitive formulation

of the fundamental question. See our previous [18] for a precise statement of the con-

jecture in the language of the Cauchy problem for (2). In analogy with 2. above, one

could distinguish between questions of (3a) orbital stability and (3b) asymptotic stability.

Experience from non-linear problems, however, in particular the proof of the non-linear

stability of Minkowski space [14] referred to earlier (see also [47], [5]), indicates that (3a)

and (3b) are naturally coupled.(2) Since non-linear stability is thus necessarily a question

of asymptotic stability, the “Schwarzschild” problem is more correctly re-phrased as the

non-linear asymptotic stability of the Kerr family in a neighbourhood of Schwarzschild.

For even if one restricts to small perturbations of Schwarzschild, it is expected that

generically, spacetime dynamically asymptotes to a very slowly rotating Kerr solution

with a 6=0. Since in the context of a non-linear stability proof, one effectively must “lin-

earise” around the solution one expects to approach, this suggests that to resolve the full

(1) Thus, the mode analysis can be an effective tool to show instability, but never, on its own,

stability. For instability results for related problems proven via the existence of unstable modes, see [70],
[28] and references therein. See also discussion in [78].

(2) This coupling arises from the super-criticality of the Einstein vacuum equations (2). Note

that under spherical symmetry (where the vacuum equations must be replaced, however, by a suitable
Einstein–matter system to restore a dynamical degree of freedom) this super-criticality is broken in the
presence of a black hole. Orbital stability can then be proven independently of asymptotic stability,

cf. [17] with [19]. Similar symmetric reductions can be studied for the vacuum equations in higher
dimensions [11], [35].
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non-linear formulation 3. will require a solution of the linear formulation 2. not just for

Schwarzschild, but for very slowly rotating Kerr solutions with |a|�M . Though the non-

linear stability problem is thus completely open, in [18] we have proven, via a scattering

theory construction, the existence of a class of dynamical vacuum spacetimes, without

any symmetry assumptions, asymptotically settling down to Kerr in accordance with

the expectation of non-linear stability. In view of the fast, exponential rate of approach

which we impose in [18], however, the class we construct is expected to be of infinite

codimension in the space of all solutions.

The purpose of the present paper is to completely resolve the linear stability problem

(i.e. formulation (2)) in the Schwarzschild case, in both its aspects (2a) and (2b). A first

version of our main result can be stated as follows.

Theorem. (Linear stability of Schwarzschild) All solutions to the linearised vac-

uum Einstein equations (in double null gauge) around Schwarzschild arising from regular

asymptotically flat initial data

(a) remain uniformly bounded on the exterior and

(b) decay inverse polynomially (through a suitable foliation) to a standard linearised

Kerr solution

after adding a pure gauge solution which can itself be estimated by the size of the data.

See Theorems 3 and 4 of the detailed overview in §2 as well as the more detailed

later formulations in the bulk of the paper referred to there.

A word about gauge is already in order. We will express the equations of linearised

gravity in a double null gauge. This still allows, however, for a residual gauge free-

dom which in linear theory manifests itself in the existence of “pure gauge solutions”

corresponding to one parameter families of deformations of the ambient null foliation of

Schwarzschild. To measure geometrically the initial data of a general solution of linearised

gravity so as to formulate the boundedness statement (a), one “normalises” the solution

on initial data by adding an appropriate pure gauge solution which is computable ex-

plicitly from the original solution’s initial data. Importantly, this gauge assures that the

position of the horizon is fixed and that the “sphere at infinity” is round. We emphasise

that at the level of natural energy fluxes, we obtain a boundedness statement controlling

the full normalised solution without loss of derivatives. An interesting aspect of our work

is that to obtain the decay statement (b), we must add yet another pure gauge solution

which effectively re-normalises the gauge on the event horizon. It is fundamental that

we can quantitatively control this new pure gauge solution in terms of the geometry of

initial data as expressed in the original normalisation, i.e. the new pure gauge solution,

though not explicitly given from data, itself satisfies a uniform boundedness statement.
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In particular, our theorem is stronger than (and thus includes a fortiori) the state-

ment that the gauge invariant linearised curvature components (
(1)
α and

(1)
α in our notation)

satisfying the Teukolsky equation (discussed above in the context of formal mode anal-

ysis) themselves remain bounded and in fact decay inverse polynomially. We will in fact

prove the boundedness and decay of these components as a preliminary step to proving

the full theorem above. More specifically, we will first prove estimates for certain higher-

order gauge invariant quantities
(1)

P and
(1)

P (at the level of 4 derivatives of the linearised

metric and 2 derivatives of
(1)
α and

(1)
α), which satisfy the Regge–Wheeler equation. (This

is the same equation which originally appeared in the “metric perturbations” approach

discussed above in the context of formal mode analysis.) The significance of the Regge–

Wheeler equation is that it can in fact be understood using the methods developed for

the scalar wave equation discussed above. The quantities
(1)

P and
(1)

P will serve as the key

to unlocking the whole system, leading first to the control of
(1)
α and

(1)
α , and then to the

control of the entirety of the system. Let us state explicitly the following corollary of our

proof of the main theorem:

Corollary. All the solutions of the Regge–Wheeler and Teukolsky equations on

Schwarzschild arising from smooth compactly supported data decay inverse-polynomially

with respect to the time function of a suitable foliation of the exterior.

See Theorems 1 and 2 in §2 and the more detailed later formulations referred to

there.

The expression of
(1)

P as a second order differential operator applied to
(1)
α can be

viewed as a physical-space version of the fixed-frequency transformations of Chandra-

sekhar [9] referred to previously. See also [65]. One of the main points of the present

paper is that the physical space understanding of the relation between
(1)
α and

(1)

P clarifies

the fact that the original
(1)
α can be recovered from

(1)

P and initial data quantities by

integrating transport equations along light cones. Indeed, we succeed in estimating all

quantities hierarchically, gauge invariant and gauge dependent, from initial data, by

appropriate estimates of such equations, after control of
(1)

P and
(1)

P via Regge–Wheeler.

We collect some additional references relevant for the problem. Recent studies of sta-

bility in the physics literature with an eye toward numerical implementation include [51],

[64], [50]. For analysis of a model problem related to the axisymmetric reduction of the

stability problem, see [40]. We also note [31], [30].

Let us note finally that the inverse polynomial decay bounds shown in our theorem

above are in principle sufficiently strong so as to treat quadratic non-linearities of the

type present in (2) purely by exploiting the dispersion embodied by our decay results.

This allows one already to try to address a restricted non-linear stability conjecture
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establishing the existence of the full finite-codimension family of solutions which indeed

asymptotically settle down to Schwarzschild. (See §2.5 for a precise statement; note that

this conjecture would include a fortiori various well-known symmetric reductions of the

stability problem which similarly impose a Schwarzschild end-state.) If in future work the

main theorem of the present paper can be extended to the Kerr case, at least in the very

slowly rotating regime |a|�M , then it indeed opens the way for study of formulation 3.,

and thus, for a definitive resolution of the stability question.

Acknowledgements. MD acknowledges support through NSF grant DMS-1405291 and

EPSRC grant EP/K00865X/1. GH acknowledges support through an ERC Starting

Grant. IR acknowledges support through NSF grants DMS-1001500 and DMS-1065710.

2. Overview

We shall give in this section a complete overview of our paper.

We begin in §2.1 with an introduction to the basic properties of linearised gravity

around Schwarzschild in a double null gauge, corresponding to §§3–9 of the body of the

paper. We will then state rough versions of the main theorems of the paper in §2.2,

corresponding to the precise statements in §10 of the body. We make a brief aside (§2.3)

to review the theory of the scalar wave equation which is useful to have in mind before

turning to the proofs. We shall then return to outlining the present paper in §2.4, where

we shall review the proofs of the main theorems, following closely §§11–14 of the body of

the paper. We finally give in §2.5 a restricted version of the non-linear stability conjecture

which in principle can be addressed using the results of this paper.

We have included also a guide for reading the paper (§2.6) for the convenience of

those who are only interested in a subset of the results proven here.

2.1. Linearised gravity around Schwarzschild in a double null gauge

Our paper will employ a double null gauge to express the equations of linearised gravity.

This will define an associated double null frame. The setup is intimately related with

the approach to this problem via the Newman–Penrose formalism [58] studied in the

physics literature since [4]. We note that double null gauges have figured prominently

in the non-linear analysis of the Einstein vacuum equations [11], [45], [49], [44] and thus

provide a promising setting for a future full non-linear analysis of the stability problem.

We describe here how the relevant equations are obtained in physical space, as well as

their most basic properties, including their initial value formulation and the issue of pure

gauge solutions.
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The subsections of this section follow closely §§3–9 of the body of the paper: We

shall review first in §2.1.1 the form of the Einstein equations in double null gauge (cf. §3).

After reviewing the Schwarzschild manifold in §2.1.2 (cf. §4), we shall derive the equations

of linearised gravity around Schwarzschild in §2.1.3 (cf. §5). We shall then identify in

§2.1.4 two special classes of solutions, pure gauge solutions and a reference linearised Kerr

family (cf. §6). The presence of these special solutions motivate looking at a hierarchy of

gauge invariant quantities satisfying the Teukolsky and Regge–Wheeler equations; these

will be introduced in §2.1.5 (cf. §7). We shall then discuss the characteristic initial value

problem for linearised gravity in §2.1.6 (cf. §8), and the issue of gauge normalisation in

§2.1.7 (cf. §9).

2.1.1. The Einstein equations in a double null gauge

We first review the general form of the Einstein vacuum equations (2) in a double null

gauge, following Christodoulou [10], [11]. This corresponds to §3 of the body of the

paper.

A double null gauge is a coordinate system u, v, θ1, θ2 such that the metric takes

the form

g=−4Ω2dudv+/gCD(dθC−bC dv)(dθD−bD dv). (3)

The hypersurfaces of constant u and v are then manifestly null hypersurfaces. Moreover,

the coordinate vector field ∂u is in the direction of the null generator of the constant-v

hypersurfaces.

Associated with a double null gauge is a natural normalised null frame

e3 = Ω−1∂u, e4 = Ω−1(∂v+bA∂θA) (4)

which, together with the choice of a local (not necessarily orthonormal) frame {e1, e2}
with g(e4, e1)=0, g(e3, e2)=0, allows one to decompose components of the second fun-

damental form and curvature. In our notation this yields Ricci coefficients

χAB= g(∇Ae4, eB), χ
AB

= g(∇Ae3, eB),

ηA=− 1
2g(∇e3eA, e4), ηA=− 1

2g(∇e4eA, e3),

ω̂= 1
2g(∇e4

e3, e4), ω̂= 1
2g(∇e3

e4, e3),

(5)

where ∇A=∇eA as well as curvature components

αAB=R(eA, e4, eB , e4), αAB=R(eA, e3, eB , e3),

βA= 1
2R(eA, e4, e3, e4), βA=R(eA, e3, e3, e4),

%= 1
4R(e4, e3, e4, e3), σ= 1

4
?R(e4, e3, e4, e3).

(6)
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The content of the Einstein vacuum equations (2) can be expressed as a system of

transport and elliptic equations for the metric (3) and Ricci coefficients (5) coupled with

Bianchi identities for the curvature (6), the latter capturing the essential hyperbolicity

of the equations (2).

Concerning the metric and Ricci coefficients, examples of transport equations are

D/g= 2Ωχ= 2Ωχ̂+Ω trχ/g, D/g= 2Ωχ= 2Ωχ̂+Ω trχ/g, (7)

/∇3χ̂+trχ χ̂−ω̂χ̂=−α, /∇4χ̂+trχ χ̂−ω̂ χ̂=α, (8)

/∇3(trχ)+ 1
2 (trχ)2−ω̂ trχ=−(χ̂, χ̂), /∇4(trχ)+ 1

2 (trχ)2−ω̂ trχ=−(χ̂, χ̂), (9)

while an example of an elliptic equation is the Codazzi equation

/div χ̂=
1

2
χ̂] ·(η−η)− 1

2
trχη+

1

2Ω
/∇(Ω trχ)+β. (10)

Here χ̂, known as the shear, denotes the trace-free part of χ; the quantity trχ is known

as the expansion. The operators D and /∇3 (respectively, D and /∇4) are geometric

operators associated with g acting on tensors differentiating in the e3 (respectively, e4)

directions, while /div is a natural operator on the constant-(u,v) spheres. Equations (9)

are the celebrated Raychaudhuri equations. The full system of “null structure” equations

satisfied by the metric and Ricci coefficients is given in §3.3.1.

Concerning the curvature components (6), examples of Bianchi identities are

/∇3α+ 1
2 trχα+2ω̂α=−2 /D?2β−3χ̂%−3?χ̂σ+(4η+ζ)⊗̂β, (11)

/∇4β+2 trχβ−ω̂β= /divα+(η]+2ζ])·α, (12)

where the operator /D?2 is a suitable adjoint of /div and 2ζ=η−η denotes the torsion.

The full system is given in §3.3.2.

2.1.2. The ambient Schwarzschild metric

We note that any Lorentzian metric can locally be put in the above form (3). The

maximally extended Schwarzschild manifold and–less obviously–the globally hyperbolic

region of Kerr (see Pretorius and Israel [59]) can in fact both be globally covered by such

a coordinate system, where θ1 and θ2 are interpreted as coordinates on the sphere S2,

modulo the usual degeneration of spherical coordinates. In the bulk of the paper, fixing

an ambient Schwarzschild manifold and double null foliation will be the content of §4.

We summarise briefly here: In the Schwarzschild case with parameter M , one easily

derives from expression (1) a double null parametrisation of the exterior region r>2M .

Defining first

r∗
.
= r+2M log(r−2M)−2M log 2M, (13)
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I +H
+

u=
∞

v=−∞ u=
−∞

v=∞

Figure 1.

set

u
.
= t−r∗ and v

.
= t+r∗. (14)

Then, u and v define null coordinates on the region r>2M , parametrising it as (−∞,∞)×
(−∞,∞)×S2. In the notation (3), the Schwarzschild metric takes the form

Ω2 = 1− 2M

r
, /g= r2γ, bA = 0 (15)

where γ denotes the standard metric of the unit sphere. Note that r(u, v) is now defined

implicitly by (13) and (14). In this context, the coordinates u and v are known as

Eddington–Finkelstein double null coordinates.

Note that we distinguish Schwarzschild metric quantities in the above differentiable

structure by presenting them in regular type, de-bolded compared with quantities asso-

ciated with a general manifold and metric (3). This notation is used in the remainder of

the paper.

Upon rescaling the null coordinate U=U(u) appropriately, one can extend the re-

gion on which the metric is defined to include the so-called event horizon H+, a null

hypersurface which then corresponds to r=2M . In the body of the paper, it is in fact

this U -coordinate which we shall use to define the Schwarzschild manifold in §4.1, with

u defined by inverting the rescaling, and t and r∗ by (14). It is computationally useful

however to work with the irregular u coordinate, which formally still parametrises H+

as u=∞, and to compensate for this by introducing renormalised quantities that are

regular on the horizon. See Figure 1. Thus, our basic double null foliation will be that

defined by coordinates u and v.

We note that the static Killing field ∂t whose existence is manifest from (1) is

expressed in (u, v) coordinates as

T = 1
2 (∂u+∂v). (16)
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This vector field extends smoothly to a null vector on the horizon H+; in (U, v) coordi-

nates, it takes the form T= 1
2∂v on H+.

From (15), in the double null foliation defined by the u, v coordinates, we compute

that, with the notation of §2.1.1, the non-vanishing Schwarzschild metric coefficients are

Ω =

√
1− 2M

r
,
√
/g
.
=
√

det /g= r2
√

det γ
.
= r2√γ, (17)

and, with respect to the associated null frame,

e3 = Ω−1∂u, e4 = Ω−1∂v,

the non-vanishing Ricci coefficients are

χAB = r−1Ω/gAB , χ
AB

=−r−1Ω/gAB , ω̂= r−2Ω−1M, ω̂=−r−2Ω−1M, (18)

while the only non-vanishing curvature component is

%=−2M

r3
. (19)

2.1.3. Linearised gravity around Schwarzschild

The equations of interest in this paper (the equations of gravitational perturbations

around Schwarzschild, or “linearised gravity” for short) are those that arise from lin-

earising the system in §2.1.1 around their Schwarzschild values (17)–(19). The equations

are derived and presented in §5 of the body of the paper. We give a brief outline here.

In deriving the equations of linearised gravity, we will fix the above background dif-

ferential structure (M, g) with its Schwarzschild metric, and embed (15) in a 1-parameter

family of metrics g of the form (3) satisfying the Einstein vacuum equations (2).

The system of linearised gravity concerns linearised quantities associated with the

quantites in §2.1.1, namely linearised metric coefficients(3)

(1)

Ω,
(1)√
/g,

(1)

/̂g ,
(1)

b, (20)

linearised Ricci coefficients

(1)

(Ω trχ),
(1)

(Ω trχ),
(1)
η ,

(1)
η ,

(1)
ω ,

(1)
ω ,

(1)

χ̂,
(1)

χ̂, (21)

(3) The reader should think of the quantities
(1)

/̂g ,
(1)√
/g as arising from linearising the metric /g and

then taking the traceless and trace parts (with respect to the round background metric on the sphere)

of this object. The quantities
(1)
ω,

(1)
ω arise from linearising the rescaled quantities ω=Ωω̂ and ω=Ωω̂.

See §5.1.
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as well as linearised curvature components

(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α. (22)

Our notation is motivated by the formal expansions

Ω = Ω+ε
(1)

Ω+O(ε2), (23)

Ω trχ= Ω trχ+ε
(1)

(Ω trχ)+O(ε2), (24)

α= 0+ε
(1)
α+O(ε2). (25)

We recall that the unbolded quantities without any superscripts denote the Schwarzschild

values given by (17)–(19), and we have substituted that α=0 in (25). See §5.1 for details.

We note that, because our frame (e3, e4) is irregular(4) (cf. §2.1.2 and §4.2.3), some

quantities require Ω-weights, so as to be regular on the horizon H+, e.g.

Ω−1
(1)

Ω, Ω−2
(1)

(Ω trχ), Ω2(1)
α.

The linearised Einstein equations thus take the form of a linear system of equations

in the above quantities (20)–(22). They can be derived from plugging in the expansions of

type (23)–(25) into the equations of §2.1.1 and collecting the linear terms in ε (see §5.1.2).

For instance, the linearised version of the first transport equation (7), decomposed into

trace and trace-free part, is

D

( (1)√
/g√
/g

)
=

(1)

(Ω trχ),
√
/gD

((1)

/̂gAB√
/g

)
= 2Ω

(1)

χ̂
AB
. (26)

Here D is a projected Schwarzschild Lie derivative which on scalars reduces simply to ∂u.

Concerning linearised Ricci coefficients, the linearised versions of the equations (8) are

/∇3(Ω−1
(1)

χ̂)+Ω−1(trχ)
(1)

χ̂=−Ω−1(1)
α, /∇4(Ω

(1)

χ̂)+(trχ)Ω
(1)

χ̂−2ω̂Ω
(1)

χ̂=−Ω
(1)
α, (27)

of (9) is

Ω /∇4

(1)

(Ω trχ) = Ω2(2 /div
(1)
η+2

(1)
%+4%Ω−1

(1)

Ω)− 1
2 (Ω trχ)(

(1)

(Ω trχ)−
(1)

(Ω trχ))

and of (10) is

/div
(1)

χ̂=− 1
2 (trχ)

(1)
η+

(1)

β+ 1
2Ω−1 /∇A

(1)

(Ω trχ). (28)

(4) The linearisation process is frame covariant and thus coincides with the result of linearising
with respect to a regular frame. See §5.1.4.
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Here /∇3, /∇4 and /div are covariant differentiation operators defined with respect to the

Schwarzschild metric. The linearised version of (11)–(12) is

/∇3

(1)
α+ 1

2 (trχ)
(1)
α+2ω̂

(1)
α =−2/D?2

(1)

β−3%
(1)

χ̂, (29)

/∇4

(1)

β+2(trχ)
(1)

β−ω̂
(1)

β = /div
(1)
α.

Again, /D?2 is an adjoint of /div defined with respect to the Schwarzschild background.

The complete system of linearised equations is given in §§5.2.2–5.2.4.

Let us make the following remark: When linearising the equations in §2.1.1 around

Minkowski space, the arising linearised Bianchi identities in fact decouple, and this allows

for them to be studied independently of the full system of linearised gravity. Boundedness

and decay results for this decoupled set of equations (the so-called spin 2 equations) were

obtained in [13] by Christodoulou and Klainerman using robust vector field methods, and

this study played an important role as a preliminary step for their later proof [14] of the

non-linear stability of Minkowski space. In contrast, in our setting here, examining (29),

we see immediately that the linearised Bianchi identities couple to the linearised null

structure equations through the appearance of the term −3%
(1)

χ̂. As we shall see in §2.1.5

below, however, the quantity
(1)
α itself satisfies a second order decoupled wave equation.

We shall denote solutions of the above system by

S = (
(1)

/̂g ,
(1)√
/g,

(1)

Ω,
(1)

b,
(1)

(Ω trχ),
(1)

(Ω trχ),
(1)

χ̂,
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω ,

(1)
ω ,

(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α,

(1)

K ). (30)

For convenience, in the above we have added an additional quantity, the linearised Gauss

curvature
(1)

K (arising from linearising the Gauss equation (84)), as an unknown. We note

that a solution S is completely determined by its linearised metric coefficients (20), but

nonetheless, we prefer to adjoin all quantities as unknowns.

Let us note that one can indeed quantitatively relate solutions of this formal lin-

earisation to 1-parameter families of solutions of the actual vacuum Einstein equations

(2) as expressed by the system in §2.1.1.(5) In this paper, however, we will develop a

self-contained theory of the linearised system without reference to an actual 1-parameter

family of solutions of the full non-linear theory.

2.1.4. Special solutions: pure gauge solutions and the linearised Kerr family

Let us discuss immediately two important classes of special solutions of the above system;

this corresponds to §6 of the body of the paper.

(5) See [55] for subtleties that arise for this in the spatially compact case.
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For the first class, note that the restriction to coordinates of double null form (3)

is not sufficient to uniquely determine them on an abstract Lorentzian manifold. There

is residual gauge freedom: Change of coordinates that preserve the form (3), upon lin-

earisation, give rise to a special class of solutions which we shall refer to as pure gauge

solutions.

An example of a pure gauge solution is one generated by a function f(v, θA):

G = {
(1)

Ω = Ω−1∂v(fΩ2),
(1)

bA =−r2 /∇A(∂v(r
−1f)),

(1)√
/g=

√
/g
(
r−1Ω2f+r /∆f

)
,
(1)

/̂g =−2r /D?2 /∇f},
(31)

where we have shown explicitly only the metric perturbation from which all other geo-

metric quantities can be determined. See §6.1 where we shall classify all pure gauge

solutions. We will return to discuss pure gauge solutions in §2.1.7 when we discuss

gauge-normalised solutions.

Another class of explicit solutions of the linearised system in §2.1.3 arises from

linearising the Kerr family itself (in a convenient coordinate representation) around a

given Schwarzschild solution.

Linearising the Schwarzschild (i.e. constant a=0) sub-family with mass M̃=M+εm

(in a particular double null coordinate representation) gives rise to a solution

K =

{
(1)

Ω =−1

2
Ωm,

(1)√
/g=−

√
/g
−1

m,
(1)
% =−2M

r3
·m,

(1)

K =
m

r2
, rest = 0

}
,

while linearising the constant-M mass Kerr subfamily with rotation parameter ã=0+εa

gives rise to three linearly independent solutions, each of form:

K =

{
(1)

Ω = 0,
(1)

/̂g = 0,
(1)√
/g= 0,

(1)

bA =
4Ma

r
ε C
A ∂CY

1
m

}
,

with Y 1
m (m=−1, 0, 1) being the three linearly independent `=1 spherical harmonics.

See §6.2.1 and §6.2.2. We will call the resulting 4-dimensional subspace of solutions

(parameterised by real coefficients m, s−1, s0, s1) reference linearised Kerr solutions and

denote them by Km,si . We note that these solutions are supported entirely in angular

modes `=0 and `=1.

In view of the existence of the solutions of this section, the best we can expect of

general solutions of our system of linearised gravity is that they decay to a pure gauge

solution G plus a reference linearised Kerr solution K .
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2.1.5. Hierarchy of gauge-invariant quantities

In view of the complication provided by the existence of the solutions in §2.1.4 above, it

is useful to isolate quantities which vanish for all such solutions. These are the so-called

gauge-invariant quantities. In the body of the paper, these are discussed in §7.

An example of such a quantity is the linearised curvature component
(1)
α from (22):

As originally shown by Bardeen and Press [4], the component
(1)
α in fact decouples from

the full system and satisfies the equation

/∇4 /∇3

(1)
α+

(
1
2 trχ+2ω̂

)
/∇4

(1)
α+

(
5
2 trχ−ω̂

)
/∇3

(1)
α− /∆(1)

α

+
(1)
α(5ω̂trχ−ω̂trχ−4%+2K+trχtrχ−4ω̂ω̂) = 0.

(32)

A similar equation (with the roles of the 3 and 4 directions, and underlined and non-

underlined quantities, reversed) is satisfied by
(1)
α . These equations are known as the spin

±2 Teukolsky equations.(6)

We note already that the vanishing of both
(1)
α and

(1)
α identically imply that a solution

is a pure gauge solution plus a reference linearised Kerr, provided that it be asymptoti-

cally flat (cf. §2.1.6). We shall show this in Appendix B.1.

It turns out that
(1)
α and

(1)
α are best understood in the context of a hierarchy of

gauge-invariant quantities. We define

(1)

ψ
.
=− 1

2r
−1Ω−2 /∇3(rΩ2(1)

α) = /D?2
(1)

β+ 3
2%

(1)

χ̂, (33)
(1)

ψ
.
= 1

2r
−1Ω−2 /∇4(rΩ2(1)

α) = /D?2
(1)

β− 3
2%

(1)

χ̂ (34)

and

(1)

P
.
= r−3Ω−1 /∇3(

(1)

ψr3Ω) = /D?2 /D
?
1(− (1)

% ,
(1)
σ )+ 3

4%trχ(
(1)

χ̂−
(1)

χ̂), (35)
(1)

P
.
=−r−3Ω−1 /∇4(

(1)

ψr3Ω) = /D?2 /D
?
1(− (1)

% ,−(1)
σ )+ 3

4%trχ(
(1)

χ̂−
(1)

χ̂). (36)

The second equalities in (33)–(36) above are non-trivial and follow from the linearised

Bianchi equations. It follows from equation (32) and the definitions (33)–(36) alone that

the quantities
(1)

P (and similarly
(1)

P ) satisfy the so-called Regge–Wheeler equation

/∇3 /∇4

(1)

P+ /∇4 /∇3

(1)

P−2 /∆
(1)

P+(5trχ+ω̂)· /∇4

(1)

P+(5trχ+ω̂) /∇3

(1)

P

+
(1)

P (4K−(3trχ+ω̂)2trχ−4(trχ)2+2 /∇3trχ−8ω̂trχ) = 0.

(37)

(6) For the Schwarzschild case considered here, these equations are also known as the Bardeen–

Press equations. It was Teukolsky [74] who showed that the structure allowing decoupled wave equations
for gauge invariant quantities survives when linearising the Einstein equations around Kerr. In that case,
however, the relevant gauge invariant quantities are defined not with respect to the null frame (4), but

with respect to the so-called algebraically special frame. In Schwarzschild, the algebraically special frame
coincides with the null frame (4) associated with a double null foliation.
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The relation defining quantity
(1)

P from
(1)
α is a physical space interpretation of the fixed-

frequency transformation theory of Chandresekhar [9].

In contrast to (32), the equation (37) admits a positive energy and can be understood

using the methods developed for studying the scalar wave equation �gϕ=0 (see §2.3

below). This will allow us to view
(1)

P and
(1)

P as the key to unlocking the whole system

(§2.4.1).

It is remarkable that the equation (37), which originally appeared as a quantity

satisfied by metric perturbations [61], reappears in this context.

We note that there are solutions for which
(1)

P and
(1)

P both vanish identically and are

not pure gauge, in particular the linearised Robinson–Trautman solutions discussed in

Appendix B.2. Nonetheless, as we shall see, we can always estimate
(1)
α given control of

(1)

P

by integrating transport equations (see already §2.4.2 below), picking up also an initial

data quantity for
(1)
α .

In the body of the paper, we will in fact give a self-contained theory of both the

Regge–Wheeler equation (37) and the Teukolsky equation (32), defining these in §7.1,

proving a well-posedness theorem in §7.2, and deriving (37) from (32) in §7.3. In these

sections we naturally drop the superscript(1)from all quantities as we consider a general

P satisfying (37) and a general α satisfying (32). Only in §7.4 do we derive that (32)

is indeed satisfied by the component
(1)
α of a solution to the full system of linearised

gravity. The first two main theorems of this paper (Theorem 1 and 2 in §10) will prove

boundedness and decay for such general solutions of the Regge–Wheeler and Teukolsky

equations. For rough versions of the statements of these theorems, the reader can turn

immediately to §2.2.1.

2.1.6. Characteristic initial data, well-posedness and asymptotic flatness

The equations of linearised gravity described in §2.1.3 above admit a well-posed initial

value problem. Though the structure which makes this possible can be viewed as inherited

from the original non-linear system (2), the well-posedness allows us to develop a self-

contained theory of solutions for the linear system without further reference to its origin.

In the body of the paper, this will be discussed in §8. We give a brief treatment here.

As is well known, initial data for the Einstein vacuum equations (2) must satisfy

constraints. This feature is of course inherited by the linearisation. As we are working in

a double null gauge, it is more convenient to discuss characteristic initial data. This has

the advantage of reducing the constraints to ordinary differential equations, which can

be solved by integrating transport equations after prescribing–freely–suitable seed data.
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I +
H
+

C
v
0

C u
0

S2
∞,v0

Figure 2.

We will introduce thus first a notion of a seed initial data set defined on two null cones

Cu0
and Cv0

of the ambient Schwarzschild metric. Refer to the diagram in Figure 2. This

data set will be described by symmetric traceless tensors
(1)

/̂g�,out and
(1)

/̂g�,in, a 1-form
(1)

b
�,out

and functions
(1)

Ω
�,out and

(1)

Ω
�,in, each defined on Cu0

and Cv0
, respectively, augmented by

certain additional geometric data on the event horizon sphere S2
∞,v0

; see Definition 8.1.

We have the following foundational statement, which we summarise here as follows.

Theorem 0. (Well-posedness of linearised gravity, rough formulation) A smooth

seed initial data set leads to a unique smooth solution S of the equations of linearised

gravity in the region u06u6∞, v06v<∞.

The precise statement is given in the body of the paper as Theorem 8.1.

The boundedness and decay theorems of our paper will require that data, in addition

to smooth, be asymptotically flat. (Note that in the full non-linear theory governed by

(2), this is necessary even for a local existence theorem with a u-time of existence uniform

in v, i.e. up to future null infinity I+.) We will define asymptotic flatness in terms of

seed data in §8.3, and show that it leads to a decay hierarchy for all quantities associated

with a solution. These decay rates in fact propagate under evolution by Theorem 0; see

Theorem A.1.

2.1.7. Gauge normalisation and final linearised Kerr

Before stating theorems which quantitatively estimate solutions, we must confront the

issue of gauge. In addition, we can already identify the final linearised Kerr to which our

solution will eventually approach. In the body of the paper, this is the content of §9.

Two “choices of gauge”, realised in our linear theory by the addition of two distinct

pure gauge solutions G , will play an important role in this work.

(1) To formulate quantitative boundedness (cf. (a) of the main theorem in §1),
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we first need a quantitative measure of the initial data. For this, it is necessary to

normalise the solution on the initial data hypersurface Cu0
∪Cv0

, by subtracting a pure

gauge solution
∨
G . Given a solution S asymptotically flat in the sense of §8.3, then

Theorem 9.1 (see §9.2) establishes that there indeed exists a
∨
G normalising the solution

on initial data, where addition of
∨
G ensures in particular that the “location” of the

horizon is fixed, and that the sphere at infinity is “round”. The resulting solution
∨
S is

known as the initial-data normalised solution

∨
S

.
= S +

∨
G . (38)

Moreover, it is shown that
∨
G is itself asymptotically flat.

Eventually, our main boundedness result (Theorem 3 in §10) will uniformly bound

natural energies (on both spheres and cones) for
∨
S from an initial energy norm. These

integral bounds control all quantities restricted to their `>2 angular frequencies. In The-

orem 9.2 (see §9.5), we show that the projection of
∨
S to its `=0 and `=1 modes is

precisely a linearised Kerr solution Km,si . Thus, the energies of Theorem 3 are coercive

on
∨
S ′=

∨
S −Km,si . As a simple corollary, we will obtain in particular pointwise uniform

bounds on all quantities associated with
∨
S (see Corollary 10.2) in terms of an initial

energy and the Kerr parameters m, si which can be read off explicitly (and thus in par-

ticular are bounded) from data. Rough versions of the statement of the theorem and its

corollary are given in §2.2.2 below.

(2) To prove decay (cf. (b) of the main theorem in §1) of all quantities, we need to

“choose a different gauge”, re-normalised at the event horizon H+. That is to say, we will

add yet another pure gauge solution
∧

G of the form (31), where f(v, θ, φ) is determined

from the metric component
(1)

Ω of the initial data-normalised solution
∨
S by solving the

ordinary differential equation (ODE)

∂vf+
1

2M
f =−Ω−1

(1)

Ω (39)

along H+, to obtain the horizon-renormalised solution
∧

S defined by

∧
S

.
=
∨
S +

∧
G . (40)

The equation (39) ensures in particular that the (regular) linearised lapse associated with
∧

S vanishes on the horizon:

Ω−1
(1)

Ω[
∧

S ] = 0 on the horizon. (41)

See Proposition 9.3.1 in §9.3. (For convenience, we in fact alter the above definition

for the `=0 mode, so that the linearised Kerr solutions Km,si are already correctly

normalised.)
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Eventually, our main decay result (Theorem 4 in §10) will give quantitative energy

decay estimates for
∧

S including the metric components (20) themselves. As with the

boundedness theorem, these estimates control the restriction of
∧

S to angular frequen-

cies `>2, and thus, as above, they are indeed coercive on
∧

S ′=
∧

S −Km,si , i.e. they show

decay of the solution to a reference linearised Kerr. Moreover, we shall show (using The-

orem 3!) that the pure gauge solution
∧

G can itself be uniformly bounded (in a weighted

sense) by the initial values of
∨
S ; thus, the decay result is indeed quantitative. We expect

that this global quantitative control of the pure gauge
∧

G is potentially of fundamental

importance for non-linear applications. A rough version of the statement of Theorem 4

and its pointwise corollary is given in §2.2.3 below.

We note that both the above normalised solutions
∨
S and

∧
S enjoy various addi-

tional properties which will be useful later on. In particular, the so called horizon gauge

conditions (215) hold globally on the horizon, not just the initial sphere S2
∞,v0

. The

roundness of the sphere at infinity and the good properties at the horizon are captured

by two quantities
(1)

Y and
(1)

Z, respectively, the former defined by the expression

(1)

Y := r(r2 /D?2 /div(Ω−1r
(1)

χ̂)−Ω−1r3
(1)

ψ ). (42)

It is shown (see §9.4) that
(1)

Y [
∨
S ] is uniformly bounded along Cu0

. In the course of

the proof of Theorem 3, we shall show that this uniform boundedness propagates. In

Theorem 4, we shall show that this boundedness holds also for
(1)

Y [
∧

S ]. (This will imply,

in particular, that the sphere at infinity remains round for the horizon-renormalised

solution.)

2.2. The main theorems

We give now our first rough statements of the main theorems of this paper. These will

correspond to the more precise statements given in the body of the paper in §10.

2.2.1. Boundedness and decay of gauge invariant quantities: the

Regge–Wheeler and Teukolsky equations

The first two main theorems correspond to boundedness and decay statements for the

gauge invariant quantities α, ψ and P in §2.1.5, and their corresponding underlined

quantities. We will state these as independent statements for general solutions of the

Regge–Wheeler and Teukolsky equations.

The first statement concerns Regge–Wheeler. The precise statement is Theorem 1

in §10.1. A rough formulation is as follows.
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Theorem 1. (Rough version) Let P be a solution of the Regge–Wheeler equation

(37) arising from regular data described in §2.1.5, and define the rescaled quantity Ψ=

r5P . Then, the following statements hold :

(a) The quantity P remains uniformly bounded with respect to an r-weighted energy

norm in terms of its initial flux

F[Ψ].F0[Ψ]. (43)

(b) The quantity P decays to zero in the following quantitative senses: An r-

weighted integrated decay statement

I[Ψ].F0[Ψ] (44)

holds, as well as polynomial decay of energy fluxes and pointwise polynomial decay.

The flux quantities F referred to in the above theorem are suprema over integrals

on constant u and v null cones (Cu and Cv, respectively). The integral I is a spacetime

intergal over the shaded region of Figure 2. Both will be explained in §10.1.1. The

statements (a) and (b) above are in fact just special cases of an rp hierarchy of flux

bounds and integrated decay statements (cf. §2.3.3 below). Although the precise form of

the statements obtained in Theorem 1 is new, we again note previous decay-type results

for the Regge–Wheeler equation in [32], [7], [29].

Using the above theorem, we can now obtain a result for general solutions of the

Teukolsky equation. The precise statement is Theorem 2 in §10.2. A rough formulation

is as follows.

Theorem 2. (Rough version) Let α be a solution of the spin +2 Teukolsky equation

(32) arising from regular data described in §2.1.5, and let ψ and Ψ=r5P be the derived

quantities defined by (33) and (35). Then the following statements hold :

(a) The triple (Ψ, ψ, α) remains uniformly bounded with respect to an r-weighted

energy norm in terms of its initial flux

F[Ψ, ψ, α].F0[Ψ, ψ, α].

(b) The triple (Ψ, ψ, α) decays to zero in the following quantitative senses: An r-

weighted integrated decay statement

I[Ψ, ψ, α].F0[Ψ, ψ, α]

holds, as well as polynomial decay of suitable fluxes and pointwise polynomial decay.

A similar statement holds for solutions α of the spin −2 Teukolsky equation and its

derived quantities ψ and P .
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Again, the precise versions of the quantities F and I referred to in the above theorem

will be explained in §10.2.1. As noted above, even a boundedness statement for the

Teukolsky equation on Schwarzschild was not previously known.

Applied to the full system of linearised gravity, the above yields the following state-

ment.

Corollary. Let S be a solution of the full system of linearised gravity arising from

regular, asymptotically flat initial data described in §2.1.6. Then, Theorem 2 applies to

yield boundedness and decay for the gauge invariant hierarchy (
(1)

Ψ,
(1)

ψ,
(1)
α) and (

(1)

Ψ,
(1)

ψ,
(1)
α).

See Corollary 10.1 for the precise statement.

We next turn to the problem of boundedness for all quantities (30) associated

with S, not just the gauge-invariant ones.

2.2.2. Boundedness of the full system of linearised gravity

The third main theorem is a (quantitative) boundedness statement for the full system of

linearised gravity, embodying (a) of the main theorem of the introduction.

The most fundamental statement is again at the level of an energy flux, now aug-

mented by L2 estimates on spheres, and must be expressed with the help of the initial-

data normalised solution
∨
S discussed already in §2.1.7. The precise statement is formu-

lated as Theorem 3 in §10.3. A rough statement is as follows.

Theorem 3. (Rough version) Let S be a solution of the full system of linearised

gravity arising from regular, asymptotically flat initial data described in §2.1.6, and let

∨
G be the pure gauge solution such that

∨
S = S +

∨
G

defined by (38) is normalised to initial data. Then, the solution
∨
S remains uniformly

bounded with respect to a weighted energy norm F, augmented by the supremum of a

weighted L2-norm on spheres (denoted D), in terms of its initial norm:

D[
∨
S ]+F[

∨
S ].D0[

∨
S ]+F0[

∨
S ]. (45)

All quantities (30) of
∨
S are controlled in L2 on suitable null cones or spheres by the

above norms up to their projections to the `=0 and `=1 modes.

Moreover, there is a unique linearised Kerr solution Km,si , computable explicitly

from initial data, such that
∨
S ′=

∨
S −Km,si has vanishing `=0 and `=1 modes, and thus

the above L2 control is coercive for all quantities (30) associated with
∨
S ′.
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Again, the precise form of the flux F and the L∞(L2) norm D is contained in §10.3.1.

We emphasise that the bound (45) and resultant control of the restriction of the solution

to angular frequencies `>2 is obtained independently of identifying the correct linearised

Kerr solution Km,si .

From the above flux bounds we immediately obtain, by standard Sobolev inequali-

ties, pointwise bounds on all quantities (30) associated with
∨
S.

Corollary. For sufficiently regular, asymptotically flat initial data for S as above,

all quantities (30) associated with
∨
S are uniformly bounded pointwise in terms of an

initial energy as on the right-hand side of (45), and the parameters m and si of Km,si

(explicitly computable from—and thus also bounded by—initial data).

See Corollary 10.2 for a precise statement. Note that these pointwise bounds are

again r-weighted bounds.

2.2.3. Decay of the full system of linearised gravity in the future-normalised

gauge

The final part of our results is the statement of decay for the full system, embodying (b)

of the main theorem of the introduction. For this, we have already discussed in §2.1.7

the necessity of adding a pure gauge solution
∧

G normalised to the event horizon.

The precise decay theorem is formulated as Theorem 4 in §10.4. A rough statement

takes the following form.

Theorem 4. (Rough version) Let S be a solution of the full system of linearised

gravity arising from regular, asymptotically flat initial data described in §2.1.6, let
∨
S be

as in Theorem 3, and let
∧

S =
∨
S +

∧
G ,

defined by (40), be the solution normalised to the event horizon. Then, the pure gauge

solution
∧

G , and thus, in view of (45), also
∧

S , satisfy boundedness statements

D[
∧

G ]+F[
∧

G ].D0[
∨
S ]+F0[

∨
S ] and D[

∧
S ]+F[

∧
S ].D0[

∨
S ]+F0[

∨
S ], (46)

from which, as in Theorem 3, it follows that all quantities (30) of
∧

G (and thus
∧

S ) are

controlled in L2 on suitable null cones or spheres, while
∧

S moreover satisfies “integrated

local energy decay”, schematically

I
[ ∧
S
]
.D0

[
∨
S
]
+F0

[
∨
S
]
. (47)
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From (47), a hierarchy of inverse-polynomial decay estimates follows for all quan-

tities (30) associated with
∧

S . As in Theorem 3, these estimates control the quantities

(30) of
∧

S up to their projections to the `=0 and `=1 modes.

If Km,si is the linearised Kerr solution of Theorem 3, then
∧

S ′=
∧

S −Km,si has

vanishing `=0 and `=1 modes and the above control is indeed coercive for all quantities

associated with
∧

S ′.

Again, for the precise form of the estimates, see the propositions referred to in the

full statement of the theorem in §10.4. In analogy with the corollary of Theorem 3,

from the above L2 bounds we immediately obtain pointwise decay estimates by standard

Sobolev inequalities.

Corollary. For sufficiently regular asymptotically flat data for S as above, we

have pointwise inverse polynomial decay of all quantities of
∧

S given in (30) to those of

Km,si , in particular quantitative inverse polynomial decay rates for the linearised metric

quantities (20) themselves.

See Corollary 10.3 for the precise statement.

2.3. Aside: Review of the case of the scalar wave equation

The proofs of our main theorems build on recent advances in understanding the much

simpler problem of the linear scalar wave equation

�gϕ= 0 (48)

on a fixed Schwarzschild background (M, g), discussed already in the introduction. We

interrupt the outline of the present paper to review the definitive results for the scalar

wave equation (48) on Schwarzschild, following [20], [25] and [22]. The reader very

familiar with this material can skip this section altogether. We will resume our outline

of the body of the paper in §2.4 below.

Let us note at the outset that the results reviewed in the present section can be

viewed firstly as precise scalar wave equation prototypes for the statements in Theorem 1

in §2.2 concerning the Regge–Wheeler equation. In fact, we will see in §2.4.1 below that

the proof of Theorem 1 indeed follows closely from the results on the wave equation to be

described below. Some of the phenomena, however, that enter will also explicitly appear

again in the proofs of the remaining Theorems 2–4, in particular, the red-shift effect (see

§2.3.1 below), the notion of an integrated local energy estimate (see §2.3.2 below) and

the rp hierarchy (see §2.3.3 below).



the linear stability of the schwarzschild solution 25

I +
H
+

C
v
0

C u
0

S2
∞,v0

C
v

C u

Figure 3.

2.3.1. Boundedness: Conservation laws and the red-shift

The scalar wave equation prototype for statement (43) of Theorem 1 is again a statement

that the flux of a non-degenerate, r-weighted energy associated with ϕ is uniformly

bounded from initial energy. As we shall see, this statement naturally arises in stages.

We first consider unweighted, non-degenerate energy boundedness. Explicitly, let us

define

F [ϕ] = sup
v

∫
Cv

((Ω−2∂uϕ)2+| /∇ϕ|2)r2Ω2 du dγ

+sup
u

∫
Cu

((Ω−1∂vϕ)2+|Ω−1 /∇ϕ|2)r2Ω2 dv dγ

(49)

and F0 to be the same quantity where supv
∫
Cv

is replaced by
∫
Cv0

, and similarly for u. In

regular coordinates, the integrands above represent all tangential derivatives to the cones

Cv={u>u0}×{v}×S2 and Cu={u}×{v>v0}×S2, without degeneration ( /∇ denoting

the covariant derivative induced by the round metric on the spheres of symmetry), and

correspond to the energy flux with respect to the vector field N to be defined below. See

Figure 3. The boundedness theorem for the unweighted energy (49) for the scalar wave

equation (48) then states as follows.

Theorem. ([20], [25]) For solutions ϕ of the wave equation (48) on Schwarzschild,

we have

F [ϕ].F0[ϕ]. (50)

A similar non-degenerate higher-order statement holds as well. (This implies uniform

pointwise estimates for ψ and for all of its derivatives up to any order.)

The full statement of (50) can only be proven in conjunction with the integrated

decay to be shown in §2.3.2 which follows. We may already now prove, however, a

slightly weaker statement, where we remove the Ω−1 weight from the /∇ϕ term in the
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second integral of (49). This estimate is still non-degenerate on the cones Cv, and is thus

sufficient to obtain pointwise estimates. We sketch the proof of this (slightly weaker)

version of (50) below as it is quite elementary and already illustrates two important

features: conservation laws and the red-shift.

Recall the energy-momentum tensor associated with ϕ defined by

Qµν [ϕ] = ∂µϕ∂νϕ− 1
2gµνg

αβ∂αϕ∂βϕ, (51)

which, for solutions of (48), satisfies

∇µQµν [ϕ] = 0. (52)

Contracting (52) with the Schwarzschild Killing field T defined in (16), one obtains the

conservation law

∇µJTµ [ϕ] = 0, (53)

where we use the notation JVµ [ϕ]=Qµν [ϕ]V ν for an arbitrary vector field V . Integrating

(53) in a characteristic rectangle bounded by the initial cones Cu0
and Cv0

and two

later cones Cu and Cv, one obtains a conservation law relating flux terms. Using the

fundamental positivity property of the tensor (51), namely

g(V, V )6 0, g(V,W )6 0, g(W,W )6 0 =⇒ Qµν [ϕ]V µW ν > 0,

it follows that these flux terms arising are non-negative, but degenerate at the horizon

H+, where T becomes null. Thus, this conservation law yields a version of the energy

boundedness (50), but where F and F0 are replaced by fluxes FT and FT0 , respectively,

that degenerate at the event horizon H+, i.e. a flux without the Ω−1 factor on both the

∂u and /∇ terms in the definition (49).

This weaker, degenerate analogue of (50) can be thought of already as a statement

of stability, but it does not allow one easily to infer uniform pointwise estimates up to the

horizon H+.(7) It turns out, however, that given the above uniform degenerate energy

bound, one can than apply the so-called red-shift energy identity, first introduced in [20],

satisfied by a well-chosen timelike vector field N , for which the coercive property

JNµ [ϕ]Nµ.∇µJNµ [ϕ] (54)

(7) Here one should mention that the original Kay–Wald [41] approach to boundedness on
Schwarzschild obtained pointwise estimates for ϕ directly from this degenerate energy, applied to an

auxilliary solution ϕ̃ such that ∂tϕ̃=ϕ. The method of [41] is fragile, however, and cannot, for instance,
obtain boundedness for transversal derivatives. See the discussion in [25].
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holds near H+, and upgrade the degenerate boundedness just obtained to a version of

(50), where the Ω−1 factor is now indeed obtained in the ∂u term of the first integral

in the definition (49) but must still be removed from the second integral. (To obtain

the Ω−1 factor in the /∇ term of the second integral over the Cu cones, we must await

for §2.3.2. We note that the flux terms of (49) are precisely the boundary terms that

arise from integration of the divergence identity of JNµ .) The inequality (54) exploits the

celebrated red-shift feature of the horizon (see the discussion in [25]).

To obtain a higher-order analogue of (50), one can of course first commute the wave

equation (48) by the Killing vector field T and obtain estimates for Tϕ. For a non-

degenerate statement, however, we would like to obtain estimates for a strictly timelike

vector applied to ϕ. For this, it turns out that one can additionally commute the wave

equation (48) by the ingoing null vector field e3, and observe that the most dangerous

new error term in the red-shift identity has a favourable sign (an enhanced red-shift); in

fact, for all k>0,

(k+1)JNµ [ek3ϕ]Nµ.∇µJNµ [ek3ϕ]−{controllable terms}. (55)

From (55) and the fact that T+e3 is timelike, a higher-order analogue of (50) follows,

non-degenerate on the Cv cones. Pointwise bounds on ϕ and all-order derivatives now

follow from standard Sobolev-type inequalities.

We note already that inequality (55) in fact “strengthens” the red-shift of (54) by

an extra k factor. This strengthening will in fact play an important role in the present

paper.

2.3.2. Trapped null geodesics and integrated local energy decay

The scalar wave equation prototype for the statement (44) of Theorem 1 is again a state-

ment of weighted integrated local energy decay. We discuss in this section an unweighted

version of (44) for equation (48), deferring the question of proper r-weights to §2.3.3

below. It is here already that we shall first encounter one of the fundamental aspects

affecting quantitative control of decay: the existence of trapped null geodesics associated

with the photon sphere at r=3M .

Let us define explicitly

I[ϕ] =

∫ ∞
u0

∫ ∞
v0

(r−3(r−3M)2(|Tϕ|2+|Nϕ|2+| /∇ϕ|2)+r−3((∂u−∂v)ϕ)2+r−3|ϕ|2)

×r2Ω2 du dv dγ.

(56)

The degeneration of the first term in the integrand in (56) at r=3M is related precisely

to trapping at the photon sphere. We have the following result.
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Theorem. ([20]) For solutions ϕ of the wave equation (48) on Schwarzschild, we

have the (unweighted, degenerate at r=3M) integrated local energy decay :

I[ϕ].F0[ϕ]. (57)

To prove integrated local energy decay (57), one applies the energy identity arising

from contracting (52) with a well-chosen vector field X orthogonal to the constant-r

hypersurfaces: The vector field X is chosen so that the bulk term ∇µJXµ of the iden-

tity has coercivity properties allowing for the control of the integrand of I, but with

additional degeneration at the horizon. The trapping constraint implies that to obtain

non-negativity of the bulk term, the vector field X must necessarily vanish at r=3M ,

hence the degeneration of (56) at r=3M . The boundary term fluxes of the energy iden-

tity, on the other hand, are bounded by the fluxes of JT . Thus, in view of the trivial

energy estimate for the fluxes of JT , discussed already in §2.3.1, one obtains a version

of (57), where one has additional degeneration of the integrand at the horizon and a

correspondingly degenerate initial energy FT0 on the right-hand side.

Let us note that a general result of Sbierski [66] shows that the estimate (57) could

not hold if some degeneration at r=3M was not included in the definition (56).

In fact, the existence of the estimate (57) implicitly exploits the fact that trapping

itself is “unstable” in the sense that geodesic flow is hyperbolic.(8) Let us note finally that

the actual current applied is in fact more complicated than a pure vector field current

JX , involving in fact order-zero terms. See [20] for details. The analogous construction

for P in the proof of Theorem 1 will in fact be simpler.

While the degeneration at r=3M is necessary, the degeneration at the event horizon

is not. One finally obtains the full (57) by adding the divergence identity associated with

the red-shift vector field N of §2.3.1, in view again of (54).(9) It is at this point that

we obtain also the full (50), obtaining also the Ω−1 factor on the /∇ term of the second

integral in the definition (49).

Let us note that, by commuting the wave equation (48) with T , we may remove

the degeneration at r=3M in the definition of I in (57) at the cost of requiring loss of

differentiability in the estimate, i.e. replacing F0[ϕ] on the right-hand side of (57) with

F0[ϕ]+F0[Tϕ]. In view also of (55), we can further control an analogue of I with all

higher derivatives from a suitable higher-order energy of initial data.

(8) If trapping is stable, then such an estimate cannot hold and the rate of decay is only logarithmic.
See [42], [56], [38], [39]. It turns out that the good “unstable” Schwarzschild structure of trapping is

preserved in the Kerr case for the full sub-extremal range. The analogous construction cannot, however,

be done by a traditional vector field current; see [25], [1], [73] for the |a|�M case and [26] for the full
|a|<M case, where in addition to the hyperbolicity of trapping, the fact that trapped frequencies are

not superradiant also plays an important role.
(9) Note, however, that for scattering results, it is useful to have the original degenerate version

of the estimate because it is time-reversible; see [27].
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2.3.3. The rp hierarchy, weighted estimates and inverse-polynomial decay

bounds

To obtain the scalar wave equation prototype for the full weighted boundedness (43) and

weighted integrated local energy decay (44) of Theorem 1, we must improve the quantities

(49) and (56) with growing weights in r. This is similar to—but more elaborate than—the

improvement already discussed which arises by adding the red-shift identity associated

with the vector field N and exploiting (54).

The fundamental element is the following rp hierarchy of estimates.

Theorem. ([22]) For 06p62, the following hierarchy of estimates holds for solu-

tions of the wave equation (48) on Schwarzschild :∫
{r>R}∩{u=u2}

rp|∂vϕ|2+

∫
{r>R}∩{u16u6u2}

rp−1(p|∂vϕ|2+(2−p)| /∇ϕ|2)

.
∫
{r>R}∩{u=u1}

rp|∂vϕ|2+

∫
{R−16r6R}∩{u16u6u2}

|∂uϕ|2+|∂vϕ|2+| /∇ϕ|2.
(58)

We note that an analogue of the above identity holds for general asymptotically flat

spacetimes. See [57].

In particular, defining now

F[ϕ] =F [ϕ]+sup
u

∫
Cu∩{r>R}

r2|∂vφ|2 and I[ϕ] = I[ϕ]+

∫
r>R

r|∂vϕ|2, (59)

applying the above theorem in conjunction with the theorems in §2.3.1 and §2.3.2, one

infers immediately the following weighted boundedness and integrated local decay esti-

mates

Corollary. Let ϕ be a solution of the scalar wave equation (48). Then, ϕ satisfies

the r-weighted uniform boundedness estimate

F[ϕ].F0[ϕ] (60)

and the r-weighted integrated local energy estimate

I[ϕ].F0[ϕ]. (61)

In (60) and (61), we have indeed now obtained the scalar wave-equation prototypes

of the estimates (43) and (44) of Theorem 1.

The above estimates only represent the special p=2 case of a hierarchy of estimates

where the integrands in the second terms of the right-hand side of definitions (59) are
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replaced by the analogous integrands in (58) arising from a general 06p62. It turns

out that, from repeated use of the above, exploiting the identity also for p=0, 1 and

the pigeonhole principle, one can obtain the following uniform v -decay for the flux of

non-degenerate energy

∫
Cu∩{v>ṽ}

((Ω−1∂vϕ)2+|Ω−1 /∇ϕ|2). ṽ−2(F0[ϕ]+F0[TTϕ]), (62)

as well as similar bounds for fluxes on Cv and for higher-order energies. Pointwise

estimates such as

|ϕ|. v−1, |rϕ|.u−1/2 and |
√
rϕ|.u−1, (63)

the latter two for r>r0>2M , then follow from easy Hardy and Sobolev inequalities, where

the implicit constants depend on weighted L2 norms of initial data. The polynomial

decay statements (62)–(63) represent the precise scalar-wave equation prototype for the

polynomial decay of Theorem 1.

By commuting the wave equation by the vector field e4, as well as the generators of

spherical symmetry, one can apply an analogue of the above theorem for higher values

p>2. With this, one can further improve (63) to decay rates of the form

|ϕ|. t−3/2 and |∂tϕ|. t−2 (64)

for fixed r, where the implicit constants depend on even higher-order weighted norms.

See [67] and the recent [57] for a definitive treatment. We will not obtain the analogue

of such improvements here, though the methods of [67], [57] easily generalise.

Recall that, in Minkowski space, by the strong Huygens’ principle, solutions arising

from compactly supported initial data are in fact compactly supported in u and compactly

supported in t for fixed r. In the case of Schwarzschild, on the other hand, even for

solutions arising from compactly supported initial data, though the decay rate (64) for ϕ

can be indeed improved to t−3 [19], [29], [53], it cannot, for generic initial data, be further

improved [48]. This is just one of a tower of `-dependent linear obstructions which were

first obtained heuristically by Price [60], and there is by now a large literature attached

to them. As opposed to estimates of the form (64), which indeed survive for quasilinear

problems without symmetry (appearing in particular in the proof of the stability of

Minkowski space), the relevance of sharper “Price-law”-type decay estimates for non-

linear problems remains unclear.
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2.4. Outline of the proofs

Having recalled the theory of the scalar wave equation (48) on Schwarzschild, we now

return to the overview of our paper and give an outline of the proof of the main theorems

in §2.2, following §§11–14 of the body of the paper. The reader may wish to revisit this

section upon reading the actual proofs.

2.4.1. Proof of Theorem 1: Boundedness and decay for Regge–Wheeler

This will be the content of §11 of the body of the paper.

The solution P of the Regge–Wheeler equation can be estimated in direct analogy

with our results for the wave equation (48) described in §2.3 above. It is in fact natural

to introduce from the beginning rescaled quantities Ψ=r5P . The equation satisfied by

Ψ admits a conserved energy in analogy with the JT energy discussed in §2.3.1. We

immediately obtain in §11.1 the global boundedness of a degenerate flux FT (Proposi-

tion 11.1.1).

In §11.2 we obtain our initial “unweighted” integrated local energy decay, which

moreover degenerates at the horizon. This is in close analogy with the estimate for the

wave equation (48) via the current associated with a vector field X discussed in §2.3.2.

In fact, the construction is easier than in the case of the wave equation, in particular

since P , as a symmetric traceless S2
u,v 2-tensor, is necessarily supported only in angular

frequencies `>2 (cf. §4.4.3). The initial statement obtained is the integrated local energy

decay statement (268), with the degenerate fluxes on the right-hand side.(10) This is

immediately improved in §11.3 by the analogue of the red-shift estimate (55) to obtain

non-degenerate boundedness (with an integrated decay which does not degenerate on the

horizon), and in §11.4 by (270), which is the analogue of the rp-weighted estimate for

the wave equation following from (58) with p=2.

Polynomial decay statements follow by adapting the arguments discussed in §2.3.3

for the wave equation (48). This is accomplished in §11.5. See Proposition 11.5.1.

2.4.2. Proof of Theorem 2: Boundedness and decay for Teukolsky

This will be the content of §12. We outline below.

Let α satisfy the spin +2 Teukolsky equation (32), and let ψ and P be defined by

(33) and (35), respectively. It follows that P satisfies the Regge–Wheeler equation, and

thus, Theorem 1 applies to P . The goal is to ascend the hierarchy, obtaining estimates

(10) In particular, it is here—and only here—that the structure of trapping at the photon sphere
appears directly in this paper.
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for ψ and then α from estimates for P by integrating transport equations. (The results

for a solution α of the spin −2 Teukolsky equation are entirely analogous.)

Multiplying (35) by r2−ε ·ψ we obtain

∂u(|ψ|2r6Ω·r2−ε)+|ψ|2r6Ω4r1−ε. r7+2−ε|P |2Ω2. (65)

We note that the right-hand side of (65) is indeed bounded when integrated over space-

time by the weighted integrated decay estimate for P discussed above in §2.4.1. Thus,

the first term on the left-hand side of (65) gives an estimate for a flux on constant u

hypersurfaces, while the second term gives a weighted integrated decay estimate. See

(282) and (284) in Proposition 12.1.1. Let us note that both the non-degeneracy at the

horizon and the extra rp weights in our original estimate for P were fundamental for the

numerology of (65) to work out. We thus indeed need the full strength of the weights in

Theorem 1 to successfully estimate ψ.

Given now estimates for ψ, we similarly multiply (33) by a weighted r-factor times

α to obtain

∂u(r4−ε ·r2Ω4|α|2)+r3−εr2Ω6|α|2. r−1−εΩ4|ψ|2. (66)

Again, the numerology is such that the right-hand side can be estimated by the inte-

grated energy just controlled by Proposition 12.1.1, again, using in an essential way the

non-degeneracy at the horizon and the rp weights. Thus, upon integration over space-

time, (66) yields both an energy flux and integrated energy decay statement for α. See

Proposition 12.1.2.

Revisiting the equations, one can now also estimate higher derivatives of ψ, ψ, α, α

from control of P and P (§12.2). With this, one has all the elements necessary to obtain

polynomial decay estimates, following the method of [22] for the scalar wave equation

discussed above in §2.3.3. This is achieved in §12.3.

2.4.3. Proof of Theorem 3: boundedness for linearised gravity

This will be the content of §13 of the bulk of the paper. We outline the main points here.

Gauge invariant statements. Let
∨
S be as in the statement of Theorem 3. By the

considerations in §2.1.5, we have that
(1)
α and

(1)
α satisfy the spin ±2 Teukolsky equations,

and thus, Theorem 2 applies, yielding boundedness and decay estimates on the hierarchy

of gauge invariant quantities (see §13.1). The goal is to promote this to boundedness

estimates on all quantities.

Fluxes on the horizon. The first task (§13.2) is to estimate certain fluxes on the

horizon H+ which contain in their integrands non-gauge invariant quantities. For in-
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stance, from the boundedness of the
(1)

ψ flux on H+ and the second identity in (33), we

can immediately obtain a flux controlling
(1)

β and
(1)

χ̂, in particular∫
H+

|
(1)

χ̂|2. (67)

This is the content of Proposition 13.2.1. Using also the flux of P , we may obtain

higher-order fluxes associated with the transversal derivative Ω−1 /∇3(Ω
(1)

χ̂), namely∫
H+

|Ω−1 /∇3(Ω
(1)

χ̂)|2 (68)

(see Proposition 13.2.2), as well as the angular derivatives /D?2 /D
?
1(

(1)
% ,

(1)
σ ) and /D∗2

(1)
η . At

this point, one can already obtain polynomial v-decay of various fluxes (see Proposi-

tion 13.2.4).(11)

We remark that the above estimates control only the projection of the above quan-

tities to angular frequencies `>2. (Note that symmetric traceless S2
u,v 2-tensors like

(1)

χ̂

are necessarily supported only on `>2; see §4.4.3.) This will be a common feature of all

estimates obtained in the proof.

Decay estimates for the outgoing shear χ̂. In analogy to how we estimated ψ from

P and α from ψ in §2.4.2, one wishes to integrate the transport equation (27) for
(1)

χ̂. The

problem is that the third term on the left-hand side of (27) has a bad (i.e. blue-shift) sign

at the horizon. It turns out that, in analogy with the improved k factor in (55) for higher

transversal derivatives of the scalar wave equation (48) discussed in §2.3.1, the bad term

in (27) can be killed by applying suitable commutation. We see that the quantity

/∇3(Ω−1 /∇3(r2
(1)

χ̂Ω)) (69)

is in fact “red-shifted”. (This is apparent from equation (342) in §13.3.1.) We may now

control
(1)

χ̂ in the darker shaded region r6r1 as indicated in Figure 4.

We couple red-shift estimates for (69) obtained by integrating along outgoing cones

Cu in the manner of §2.4.2 to estimates for
(1)

χ̂ and Ω−1 /∇3(Ω
(1)

χ̂) obtained by integrating

(applying the fundamental theorem of calculus, twice) (69) along the cone Cv from the

horizon, using our “initial” control of the horizon fluxes (67) and (68). This yields finally

(11) It is worth noting here that, although the integrands of the above fluxes (67) and (68) are
gauge-dependent, the total fluxes are gauge-invariant, given the horizon gauge conditions (215). The
(1)

χ̂ flux (67) can in fact be directly related to an energy which arises from the Lagrangian structure of

the Einstein equations. See Hollands and Wald [34] for a general discussion of such fluxes and the
upcoming [37] for the relation to our setting.
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an integrated decay statement for χ̂ restricted to the darker shaded region (Proposi-

tion 13.3.2). Finally, we may extend our estimates of
(1)

χ̂ to the lighter shaded region

above by integrating directly (27) along Cu in the manner of §2.4.2, restricted to the

lighter shaded region, using our “initial” control along r=r1 just obtained. This gives a

global integrated local energy decay statement for
(1)

χ̂ (as well as higher-order derivatives).

The estimate is stated as Proposition 13.3.1.

Boundedness estimates on the ingoing shear χ̂. Having shown decay for the

outgoing shear
(1)

χ̂, we now turn to estimate the ingoing shear
(1)

χ̂. Here, we will only be

able to show boundedness, not decay. First, we note that we are not able to estimate

the evolution equation (27) for
(1)

χ̂ directly. Instead, we estimate
(1)

χ̂ via the quantity
(1)

Y ,

defined by (42).

We have already noted that
(1)

Y is initially bounded on the outgoing cone Cu0
, captur-

ing the roundness of the sphere at infinity which is ensured by our gauge normalisation.

It turns out that
(1)

Y satisfies an evolution equation in the ingoing direction with gauge-

invariant right-hand side which is moreover integrable (see (357)). This allows us to

obtain the uniform boundedness of
(1)

Y (Proposition 13.4.1). From this, one obtains the

boundedness of angular derivatives of
(1)

χ̂ (Corollary 13.3), as well as the boundedness of

a flux of angular derivatives
(1)

χ̂ on null cones (Corollary 13.4).

The r-weights above unfortunately do not allow us to obtain integrated local energy

decay for
(1)

χ̂. We can obtain, however, at this point such decay for the derivative /∇4(Ω−1
(1)

χ̂)

(Proposition 13.4.2) and upgrade it to a polynomial decay statement on the event horizon

(Proposition 13.4.3).

Boundedness for the remaining quantities. Finally, we briefly discuss the remaining

quantities (see §13.5), focussing on the order of the hierarchy and not the precise nature

of the estimates.
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We first note that the second identity of (35) relating
(1)

P with the pair (
(1)
% ,

(1)
σ ) and

the shears
(1)

χ̂ and
(1)

χ̂ allows us to obtain estimates for
(1)
% and

(1)
σ . Similarly, from the second

identities of (34) and (33), we may now obtain estimates for
(1)

β and
(1)

β (see §13.5.1).

The quantities
(1)
η and

(1)
η can also be controlled, using however propagation equations

which we have not introduced in this overview.(12) We then estimate (see §13.5.4) the

quantity
(1)

(Ω trχ) via the Codazzi equation (28). Finally, we may estimate the metric

components (20) themselves by integrating their respective transport equations. For

instance, to estimate
(1)√
/g, we integrate (26) using the bounds we have just obtained on

the right-hand side (see Proposition 13.5.12).

At this point, we have estimated all quantities with the exception of
(1)

(Ω trχ). While

this could easily be estimated via the analogue of (28) relating
(1)

(Ω trχ) and
(1)

χ̂, that

method would not give us the quantitative boundedness as stated in Theorem 3, as our

previous estimates on
(1)

χ̂ lose regularity. An alternative approach is thus given and it is

here where the quantity
(1)

Z mentioned already in §2.1.7 is in fact used. We defer further

discussion of this to §13.5.5 and §13.5.6.

By the above procedure, we obtain finally L2 estimates on all quantities (30) associ-

ated with
∨
S, either on spheres or cones. As noted in the statement of Theorem 3, these

control only the restriction of all quantities to angular frequencies `>2. We can now,

however, apply Theorem 9.2 to obtain that the projection of
∨
S to the `=0 and `=1

modes is given precisely by a unique Km,si , and thus we have truly coercive estimates

on
∨
S ′=

∨
S −Km,si . The pointwise estimates of the corollary then follow by standard

Sobolev inequalities applied to
∨
S ′ (see §13.5.8).

2.4.4. Proof of Theorem 4: Decay for linearised gravity

This will be the content of §14. Again, we outline below.

Boundedness of the pure gauge solution. Let
∧

S =
∨
S +

∧
G be as in the statement

of Theorem 4. The new normalisation (41) allows us to derive the following evolution

equation for the ingoing linearised shear on the horizon:

Ω /∇4(Ω−1
(1)

χ̂[
∧

S ])+
1

2M
Ω−1

(1)

χ̂[
∧

S ] =
Ω

2M

(1)

χ̂[
∨
S ]+2/D?2

(1)
η [
∨
S ].

See (408). It follows that the regular quantity Ω−1
(1)

χ̂ is “red-shifted”, in the sense that

the sign of the factor multiplying
(1)

χ̂ in the second term on the the left-hand side of the

(12) Specifically, equations (140) and (141). See Proposition 13.5.3.
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above identity is positive, and moreover the right-hand side is suitably decaying. This

immediately allows for estimating suitably normalised
(1)

χ̂ and
(1)

(Ω trχ) on the event horizon

(see Proposition 14.1.1 and its corollaries). We can then translate this into bounds for

derivatives of the gauge function f (see Proposition 14.1.2), and thus, for
∧

G itself (see

Proposition 14.1.3). This gives the boundedness statement for
∧

G , and thus, in view of

Theorem 3, also for
∧

S , i.e. the statements schematically represented as (46).

We note that the reader may have expected that one must renormalise the gauge

also “at null infinity” in addition to the renormalisation carried out at the horizon. It is

indeed remarkable that the horizon-renormalisation is on its own sufficient, at least for

the decay to be stated in the present paper. This appears again to be fundamentally

connected to the red-shift at the horizon.

Integrated local energy decay. Recall from our discussion in §2.4.3 that it was

precisely the quantity
(1)

χ̂ which provided the first obstruction to showing decay for
∨
S.

Having obtained now decay for
(1)

χ̂[
∧

S ] on the horizon, we can now upgrade this to a global

integrated decay bound (Proposition 14.2.1), and from this, repeating steps similar to

those described in our discussion of the proof of Theorem 3 in §2.4.3, we move up the

hierarchy, to obtain now integrated decay at each step for all other quantities (cf. also

the proof of Theorem 2). This corresponds to the statement schematically represented

as (47). We defer further discussion to §14.2.

Polynomial decay. As in Theorems 1 and 2, polynomial decay can be obtained for

all quantities by an adaptation of the method of [22] described in §2.3.3 in the context

of the scalar wave equation (48). Refer to §14.3. (We only remark here that for rea-

sons of length, since we have not derived integrated local energy decay for the metric

components themselves, we obtain polynomial decay for these by directly integrating

transport equations like (26), using the decay already obtained for the Ricci coefficients

(see §14.3.2).)

As in the proof of Theorem 3, the above bounds in fact only estimate the restriction

of the solution to angular frequencies `>2. In view of Theorem 9.2, however, we again

infer that we have indeed true decay to zero for
∧

S ′=
∧

S −Km,si (without restriction in

angular frequency). In other words, all quantities (30) of S decay (in a suitable L2 sense)

inverse polynomially to their Km,si values. The pointwise polynomial decay estimates of

the corollary then follow immediately by standard Sobolev inequalities.
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2.5. A restricted non-linear stability conjecture

For background on the full non-linear problem, see the discussion in our previous pa-

per [18], where we have in particular given a precise formulation of the non-linear stabil-

ity conjecture for Kerr. We end this overview section by noting that the linear stability

around Schwarzschild proven in the present paper is in principle sufficient to try to ad-

dress the following restricted version of the full non-linear stability conjecture:

Conjecture. (Full finite-codimension non-linear stability of Schwarzschild) Denote

by (ΣM , ḡM ,KM ) the induced data on a spacelike asymptotically flat slice of the Schwarz-

schild solution of mass M crossing the future horizon and bounded by a trapped surface.

Then, in the space of all nearby vacuum data (Σ, ḡ,K), in a suitable norm, there exists

a codimension-3 subfamily for which the corresponding maximal vacuum Cauchy devel-

opment (M, g) contains a black-hole exterior region (characterized as the past J−(I+)

of a complete future null infinity I+), bounded by a non-empty future affine-complete

event horizon H+, such that in J−(I+) (a) the metric remains close to gM and moreover

(b) asymptotically settles down to a nearby Schwarzschild metric g
M̃

at suitable inverse

polynomial rates.

We emphasise that by dimensionality considerations, the above conjecture would

construct all spacetimes arising from data sufficiently near Schwarzschild whose final

state is again Schwarzschild.(13) In particular, we note that the above class of solutions

would a fortiori include the evolution of axisymmetric initial data near Schwarzschild

whose total angular momentum vanishes, as these necessarily have a final Schwarzschild

endstate (in view of the fact that for the vacuum equations under axisymmetry, angular

momentum does not radiate to null infinity).

2.6. Guide to reading the paper

Though the paper has been written to be read linearly, the reader interested only in

certain results can skip various sections. We give here a guide to various self-contained,

more limited trajectories through the paper.

(13) The reader should compare this with the result of [18] which gives a scattering construction

of a family of solutions asymptoting to any given particular subextremal Kerr |a|<M . The solutions
of [18] are constructed by prescribing exponentially decaying “scattering” data on the event horizon

and on null infinity and solving the vacuum Einstein equations (2) backwards in time. In view of the

strong, exponential rate of approach imposed, however, this family is presumably very exceptional and
in particular of infinite codimension in the space of all solutions of the Einstein vacuum equations. Thus,

when specialised to a=0, the result of [18] is far from obtaining the above conjecture. See the comments
in [18] for futher discussion.
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The reader only interested in results concerning the Regge–Wheeler and Teukolsky

equations need only read §4 for notation and basic differential operators defined on

Schwarzschild, then §7, up to §7.3, for background on these equations, then §10.1 and

§10.2 for the statement of Theorems 1 and 2, and finally §11 and §12 for their proofs.

The boundedness theorem (Theorem 3) is independent of the decay theorem (The-

orem 4), and thus the reader interested only in the former can skip §9.3 concerning the

horizon-normalised gauge, as well as §10.4 and §14 giving the statement and proof of

Theorem 4.

We note that the reader who does not want to concern themselves with some of the

intricacies of exploiting pure gauge solutions can skip §9.2, and still understand the proof

of Theorem 3.

Finally, the reader interested in the full results but who is willing to take on faith

the system of linearised gravity can skip §3 and §5.1, though we note that the pure gauge

solutions and reference linearised Kerr solutions in §6 are more easily verified by applying

the linearisation in §5.1, than by direct computation.

3. The vacuum Einstein equations in a double null gauge

In this section, we review the form of the vacuum Einstein equations (2) written with

respect to a natural null frame attached to a local double null foliation of a Lorentzian

manifold. See Christodoulou [11] for a detailed exposition. It is these equations which we

shall formally linearise in §5.1 to obtain the equations of linearised gravity. The reader

not interested in the derivation of the linearised system can skip immediately to §4.

An outline of the current section is as follows: We begin in §3.1 with preliminaries,

defining the notion of double null gauge and associated notation. Ricci coefficients and

curvature components are then defined in §3.2. Finally, the vacuum Einstein equations

are presented in §3.3.

3.1. Preliminaries

Let (M, g) be a (3+1)-dimensional Lorentzian manifold.

3.1.1. Local double null gauge

In a neighbourhood of any point p∈M, we can introduce local coordinates u, v, θ1 and

θ2 such that the metric is expressed in “canonical double-null form”:

g=−4Ω2 dudv+/gCD(dθC−bC dv)(dθD−bD dv) (70)
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for a spacetime function Ω:M!R, an Su,v-tangent vector bA and a symmetric Su,v-

tangent covariant symmetric 2-tensor /gAB . Here, Su,v denotes the 2-dimensional (Rie-

mannian with metric /gAB) manifold arising as the intersection of the hypersurfaces of

constant u and v.

3.1.2. Normalised frames

We can define a normalised null frame associated with the above coordinates as follows.

We define

e3 = Ω−1∂u, e4 = Ω−1(∂v+bA∂θA), eA =∂θA for A= 1, 2, (71)

for which we note the relations

g(e3, e4) =−2, g(e3, eA) = 0, g(e4, eA) = 0, g(eA, eB) = /gAB .

In particular, {e1, e2} constitutes a (local) coordinate frame field (not necessarily or-

thonormal) of the orthogonal complement of the span of e3 and e4 (i.e. in the tangent

space of the submanifold Su,v). In view of the above relations, we shall refer to the null

frame N={e3, e4, e1, e2} as being normalised.

3.1.3. Su,v-tensor algebra

In §3.2, we will express the Ricci coefficients and curvature components of the metric

(70) with respect to the null frame (71). These objects will then become Su,v-tangent

tensors, or Su,v-tensors for short (see [11]). Two types of such Su,v-tensors will play

a particularly important role: 1-forms ξ and symmetric 2-tensors θ, the latter being

defined as satisfying θAB=θBA in any coordinate patch. A traceless symmetric Su,v

2-tensor θ satisfies in addition /g
ABθAB=0.

Let ξ and ξ̃ be arbitrary Su,v 1-forms, and θ and θ̃ be arbitrary symmetric Su,v

2-tensors.

We denote by ?ξ and ?θ the Hodge-dual (on (Su,v,/g)) of ξ and θ, respectively, [11],

and denote by θ] the tensor obtained from θ by raising an index with /g.

We define the contractions

(ξ, ξ̃) :=/g
ABξAξ̃B and (θ, θ̃) :=/g

AB
/g
CDθAC θ̃BD,

and |ξ|2=(ξ, ξ) and |θ|2=(θ,θ). We denote by θ] ·ξ the 1-form θ B
A ξB arising from the

contraction with /g.
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We finally define the 2-tensors θ×θ̃ and ξ⊗̂ξ̃, and the scalar θ∧θ̃ via

(θ×θ̃)BC := /g
ADθABθ̃DC ,

(ξ⊗̂ξ̃)AB := ξAξ̃B+ξB ξ̃A−/gCDξC ξ̃D/gAB ,

θ∧θ̃ :=/ε
AB

/g
CDθAC θ̃BD,

where /εAB denotes the components of the volume form associated with /g on Su,v. Note

that ξ⊗̂ξ̃ is a symmetric traceless 2-tensor.

3.1.4. Su,v-projected Lie and covariant derivates

We define the derivative operators D and D to act on an Su,v-tensor φ as the projec-

tion onto Su,v of the Lie-derivative of φ in the direction of Ωe3 and Ωe4, respectively.

We hence have the following relations between the projected Lie-derivatives D and D,

and the Su,v-projected spacetime covariant derivatives /∇3= /∇e3
and /∇4= /∇e4

in the

direction e3 and e4, respectively:

Df= Ω /∇4f on functions f ,

Dξ= Ω /∇4ξ+Ωχ] ·ξ on 1-forms ξ,

Dθ= Ω /∇4θ+Ωχ×θ+Ωθ×χ on symmetric 2-tensors θ,

(72)

and similarly for /∇3, replacing χ by χ and D by D. See [11] for details.

3.1.5. Angular operators on Su,v

We employ the following notation (adapted from [14]) for operators on the manifolds

Su,v.

Let ξ be an arbitrary 1-form and θ be an arbitrary symmetric traceless 2-tensor on

Su,v.

• /∇ denotes the covariant derivative associated with the metric /gAB on Su,v.

• /D1 takes ξ into the pair of functions ( /div ξ, /curl ξ), where /div ξ=/g
AB /∇AξB and

/curl ξ=/ε
AB /∇AξB .

• /D?1, the formal(14) L2-adjoint of /D1, takes any pair of scalars % and σ into the

Su,v-1-form − /∇A%+/εAB /∇
B
σ.

• /D2 takes θ into the Su,v-1-form ( /div θ)C=/g
AB /∇AθBC .

• /D?2, the formal L2 adjoint of /D2, takes ξ into the symmetric traceless 2-tensor

( /D?2ξ)AB=− 1
2 ( /∇BξA+ /∇AξB−( /div ξ)/gAB).

(14) In our application, the surfaces Su,v will be compact topological spheres and this will indeed
define an adjoint on appropriate spaces.
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3.2. Ricci coefficients and curvature components

We now define the Ricci coefficients and curvature components associated with the metric

(70) with respect to the normalised null frame N={e3, e4, e1, e2}.
For the Ricci coefficients, using the shorthand ∇A=∇eA we define

χAB= g(∇Ae4, eB), χ
AB

= g(∇Ae3, eB),

ηA=− 1
2g(∇e3

eA, e4), ηA =− 1
2g(∇e4

eA, e3),

ω̂= 1
2g(∇e4

e3, e4), ω̂= 1
2g(∇e3

e4, e3),

ζA= 1
2g(∇Ae4, e3).

(73)

Note that, in view of Ω−1e3 and Ω−1e4 being geodesic vectorfields, all other connection

coefficients automatically vanish. It is natural to decompose χ into its trace-free part χ̂,

a symmetric traceless Su,v 2-tensor and its trace trχ, and similarly χ.(15)

With R denoting the Riemann curvature tensor of (70), the null-decomposed cur-

vature components are defined as follows:

αAB=R(eA, e4, eB , e4), αAB=R(eA, e3, eB , e3),

βA= 1
2R(eA, e4, e3, e4), βA=R(eA, e3, e3, e4),

%= 1
4R(e4, e3, e4, e3), σ= 1

4
?R(e4, e3, e4, e3),

(74)

with ?R denoting the Hodge dual on (M, g) of R. The above objects are Su,v-tensors

(functions, vectors, symmetric 2-tensors) on (M, g); cf. [14]. Note also the relations

ω̂=
/∇3Ω

Ω
, ω̂=

/∇4Ω

Ω
, ηA = ζA+ /∇A log Ω, ηA =−ζA+ /∇A log Ω.

3.3. The Einstein equations

If (M, g) satisfies the vacuum Einstein equations

Rµν [g] = 0, (75)

the Ricci coefficients defined in (73) and curvature components (74) satisfy a system of

equations, which is presented in this section.

(15) This is of course unrelated to the ˆ in the case of the scalar quantity ω̂, which distinguishes it
from other normalisations; we retain the notation ω̂ to facilitate comparison with [11].
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3.3.1. The null structure equations

First, we have the important first variational formulas:(16)

D/g= 2Ωχ= 2Ωχ̂+Ω trχ /g and D/g= 2Ωχ= 2Ωχ̂+Ω trχ /g. (76)

Second,

/∇3χ̂+trχ χ̂−ω̂ χ̂=−α, /∇4χ̂+trχ χ̂−ω̂χ̂=α, (77)

/∇3(trχ)+ 1
2 (trχ)2−ω̂ trχ=−(χ̂, χ̂), /∇4(trχ)+ 1

2 (trχ)2−ω̂ trχ=−(χ̂, χ̂). (78)

Note that the last two equations are the celebrated Raychaudhuri equations. We also

have

/∇3χ̂+ 1
2 trχ χ̂+ω̂χ̂=−2 /D?2η− 1

2 trχ χ̂+(η⊗̂η), (79)

/∇4χ̂+ 1
2 trχ χ̂+ω̂χ̂=−2 /D?2η− 1

2 trχ χ̂+(η⊗̂η), (80)

/∇3(trχ)+ 1
2 (trχ)(trχ)+ω̂ trχ=−(χ̂, χ̂)+2(η,η)+2%+2 /div η, (81)

/∇4(trχ)+ 1
2 (trχ)(trχ)+ω̂ trχ=−(χ̂, χ̂)+2(η,η)+2%+2 /div η, (82)

/∇3η=χ] ·(η−η)+β, /∇4η=−χ] ·(η−η)−β,

D(Ωω̂) = Ω2[2(η,η)−|η|2−%], D(Ωω̂) = Ω2[2(η,η)−|η|2−%],

Ω2ω̂=DΩ, Ω2ω̂=DΩ, ηA+ηA = 2 /∇A log Ω,

∂ub
A = 2Ω2(ηA−ηA). (83)

Finally, we have

/curlη=− 1
2χ∧χ+σ and /curlη= 1

2χ∧χ−σ,

the Codazzi equations

/div χ̂=−1

2
χ̂] ·(η−η)+

1

4
trχ(η−η)+

1

2
/∇ trχ−β

=−1

2
χ̂] ·(η−η)− 1

2
trχη+

1

2Ω
/∇(Ω trχ)−β,

/div χ̂=
1

2
χ̂] ·(η−η)− 1

4
trχ(η−η)+

1

2
/∇ trχ+β

=
1

2
χ̂] ·(η−η)− 1

2
trχη+

1

2Ω
/∇(Ω trχ)+β,

and the Gauss equation (K denoting the Gauss curvature of the metric /g)

K =− 1
4 trχ trχ+ 1

2 (χ̂, χ̂)−%. (84)

(16) Note that these formulas are equivalent to the statement that /∇3/g=0= /∇4/g.
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3.3.2. The Bianchi equations

We finally turn to the equations satisfied by the curvature components of (M, g), which

are the well-known Bianchi equations:

/∇3α+ 1
2 trχα+2ω̂α=−2 /D?2β−3χ̂%−3?χ̂σ+(4η+ζ)⊗̂β,

/∇4β+2 trχβ−ω̂β= /divα+(η]+2ζ])·α,

/∇3β+trχβ+ω̂β= /D?1(−%,σ)+3η%+3?ησ+2χ̂] ·β,

/∇4%+ 3
2 trχ%= /divβ+(2η+ζ,β)− 1

2 (χ̂,α),

/∇4σ+ 3
2 trχσ=− /curlβ−(2η+ζ)∧β+ 1

2 χ̂∧α,

/∇3%+ 3
2 trχ%=− /divβ−(2η−ζ,β)− 1

2 (χ̂,α),

/∇3σ+ 3
2 trχσ=− /curlβ−(2η−ζ)∧β− 1

2 χ̂∧α,

/∇4β+trχβ+ω̂β= /D?1(%,σ)−3η%+3?ησ+2χ̂] ·β,

/∇3β+2 trχβ−ω̂β=− /divα−(η]−2ζ])·α,

/∇4α+ 1
2 trχα+2ω̂α= 2 /D?2β−3χ̂%+3?χ̂σ−(4η−ζ)⊗̂β.

We note that the vacuum equations (75) further imply that the symmetric tensors α and

α are in addition traceless. The above equations encode the essential hyperbolicity of

(75). See [14].

4. The Schwarzschild exterior background

In this section, we shall introduce the Schwarzschild exterior metric as well as relevant

background structure which will be useful in the paper.

We first fix in §4.1 an ambient manifold-with-boundary M on which we define the

Schwarzschild exterior metric g with parameter M . We shall then pass to the compu-

tationally more convenient Eddington–Finkelstein double null coordinates u and v, and

associated null frames in §4.2, computing the Ricci coefficients and curvature compo-

nents, commenting on issues associated with lack of regularity at the horizon. In §4.3,

we shall introduce various natural differential operators associated with Schwarzschild,

specialising the definitions in §3, and give some useful commutation formulas. Finally,

in §4.4, we recall some elementary properties of the classical `=0, 1 spherical harmonics,

and derive various important elliptic estimates on spheres.
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4.1. Differential structure and metric

We define in this section the underlying differential structure and metric in terms of a

Kruskal coordinate system.

4.1.1. An underlying Kruskal coordinate system

Define the manifold with boundary

M := (−∞, 0]×(0,∞)×S2 (85)

with coordinates (U, V, θ1, θ2). We will refer to these coordinates as Kruskal coordinates.

The boundary

H+ := {0}×(0,∞)×S2

will be referred to as the horizon. We denote by S2
U,V the 2-sphere {U, V }×S2 in M.

4.1.2. The Schwarzschild metric

We define the Schwarzschild metric on M as follows.

Fix a parameter M>0. Let the function r:M![2M,∞) be given implicitly as a

function of the coordinates U and V by

−UV =
1−2M/r

(2M/r)e−r/2M
, (86)

and define also

Ω2
K(U, V ) =

8M3

r(U, V )
e−r(U,V )/2M , γ= standard metric on S2. (87)

Then, the Schwarzschild metric g with parameter M is defined to be the metric:

g=−4Ω2
K(U, V ) dU dV +r2(U, V )γAB dθ

A dθB . (88)

Note that the horizon H+=∂M is a null hypersurface with respect to g. We will some-

times use the standard spherical coordinates (θ1, θ2)=(θ, φ), in which case the metric γ

takes the explicit form

γ= dθ2+sin2 θ dφ2. (89)

The above metric (88) can in fact be extended to define the so-called maximally

extended Schwarzschild solution (see [72], [46] and the textbook [76]) on the ambient

manifold given by (−∞,∞)×(∞,∞)×S2. In this paper, however, we only need consider

the manifold-with-boundary M as defined in (85).
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4.2. Eddington–Finkelstein double null coordinates u and v, and frames

We have defined our manifold and metric as above so that its smoothness is manifest.

For computations, however, it is much more convenient to rescale the null coordinates

in such a way that quantities are more symmetric. The new coordinates are known as

Eddington–Finkelstein double null coordinates. Care must be taken at the horizon H+,

however, where these coordinates break down. We explain below.

4.2.1. Eddington–Finkelstein double null coordinates

In this section we will define another double null coordinate system that covers Mo,

the interior of M, modulo the degeneration of the angular coordinates. This coordinate

system, (u, v, θ1, θ2), will be referred to as Eddington–Finkelstein double null coordinates

and are defined via the relations

U =−e−u/2M and V = ev/2M . (90)

Using (90), we obtain the Schwarzschild metric on Mo in (u, v, θ1, θ2)-coordinates:

g=−4Ω2(u, v) du dv+r2(u, v)γAB dθ
A dθB , (91)

with

Ω2 := 1− 2M

r
(92)

and the function r: (−∞,∞)×(−∞,∞)!(2M,∞) defined implicitly via the relation

e(v−u)/2M =

(
r

2M
−1

)
er/2M . (93)

Note that setting t=u+v, we may rewrite the above metric in coordinates (t, r, θ, φ)

in the usual form (1).

In (u, v, θ1, θ2)-coordinates, the horizon H+ can still be formally parameterised by

(∞, v, θ2, θ2) with v∈R, (θ1, θ2)∈S2. This will allow us to use these coordinates at H+,

provided that we appropriately rescale all quantities so as to be regular. We shall see

this principle used already in the section below.

Let us also introduce the notation S2
u,v to denote the sphere S2

U,V , where U and V

are defined by (90). In the spirit of the remark of the previous paragraph, we shall write

in addition S2
∞,v for the spheres of the horizon H+ (where we are to understand U=0).

Finally, we will often refer informally to the limit v!∞ as null infinity I+, which

can be parameterised as I+={(u,∞, θ, φ)}.
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4.2.2. Killing fields of the Schwarzschild metric

It is natural at this point to already discuss the Killing fields associated with g.

We define the vectorfield T to be the timelike Killing field ∂t of the (r, t) coordinates

(1), which in Eddington–Finkelstein double null coordinates is given by

T = 1
2 (∂u+∂v). (94)

The vector field extends to a smooth Killing field on the horizon H+, which is moreover

null and tangential to the null generator of H+. See §4.2.3 below.

We can also define a basis of “angular momentum operators” Ωi, i=1, 2, 3, for in-

stance, fixing standard spherical coordinates (θ, φ) on S2, where γ takes the form (88),

by

Ω1 = ∂φ, Ω2 =− sinφ∂θ−cot θ cosφ∂φ, Ω3 = cosφ∂θ−cot θ sinφ∂φ.

The Lie algebra of Killing fields of g is then precisely that generated by T and Ωi,

i=1, 2, 3.

4.2.3. The null frames NEF and NEF ?

We define in this section two normalised null frames associated with Schwarzschild.

The most important one is the Eddington–Finkelstein frame NEF , which we define

first. The vectorfields

e3 =
1

Ω
∂u and e4 =

1

Ω
∂v (95)

defined with respect to (u, v, θ1, θ2)-Eddington–Finkelstein coordinates, together with a

local frame field (e1, e2) on S2
u,v provide a normalised frame on Mo:

NEF = normalised null frame{e3, e4, e1, e2}.

The above frame does not extend regularly to the horizon H+ (cf. the comments at

the end of §4.2.1). However, it is easy to see that the rescaled null frame

NEF? = normalised null frame{Ω−1e3,Ωe4, e1, e2}

does extend regularly to a non-vanishing null frame on H+. Though we shall always

compute with respect to NEF , passing to NEF? will be useful to understand which

quantities are regular on the horizon.

Note finally that 2T=Ωe3+Ωe4=Ω2(Ω−1e3)+Ωe4, from which it follows that, on the

horizon, T corresponds up to a factor with the null vector of the EF ∗ frame T= 1
2Ωe4.
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4.2.4. Connection coefficients and curvature components

We compute here the connection coefficients and curvature components with respect to

the two null frames of §4.2.3.

With respect to the Eddington–Finkelstein null frame NEF =(Ω−1∂u,Ω
−1∂v, e1, e2),

we compute the following non-vanishing Ricci coefficients (cf. §3.2) on (Mo, g):

χAB := g(−e4,∇AeB) =
Ω

r
r2γAB , χ

AB
:= g(−e3,∇AeB) =−Ω

r
r2γAB (96)

ω̂ :=
1

2
g(∇e4e3, e4) =

M

r2Ω
, ω̂ :=

1

2
g(∇e3e4, e3) =− M

r2Ω
. (97)

Remark 4.1. Recall from the comments in §4.2.3 that the frame NEF is not regular

near the horizon H+ as is manifest from some of these quantities diverging at the horizon!

Converting to the rescaled regular null frameNEF? one easily finds χ=(Ω/r)r2γ, χ=−rγ,

ω̂=2M/r2 and ω̂=0, which makes all components manifestly regular at H+.

Turning to curvature, the only non-vanishing null curvature component on (M, g)

is

% :=
1

4
Riem(e4, e3, e4, e3) =−2M

r3
, (98)

an identity which holds with respect to both null frames NEF and NEF? , as these only

differ by a scaling of the two null-directions. We also introduce the notation

K =
1

r2
(99)

for the Gauss curvature of the round S2
u,v-spheres.

4.3. Schwarzschild background operators and commutation identities

In this section, we introduce a number of natural differential operators associated with

Schwarzschild. In §4.3.1, we specialise the operators discussed in §3.1 to Schwarzschild.

We then give in §4.3.2 some important commutation identities and define the additional

useful angular operators A[i].

4.3.1. The Su,v-tensor analysis and natural differential operators on

Schwarzschild

In this section we simply specialise some of the constructions of §3.1 to Schwarzschild. We

explicitly repeat all definitions, however, so that this section can be read independently.
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We recall the notion of an Su,v tensor from [11]. Specialised to Schwarzschild, these

are simply tensors which when expressed in the frame NEF only have components in the

angular directions e1 and e2.

Particularly important for our purpose will be 1-forms ξ and symmetric 2-tensors θ.

An Su,v-2-tensor θAB is symmetric if θAB=θBA and traceless if /g
ABθAB=0.

We quickly repeat the definitions from §3.1.3 for 1-forms ξ and ξ̃ and symmetric

2-tensors θ and θ̃.

We denote by ?ξ and ?θ the Hodge duals (with respect to (Su,v, /g)), and by θ] the

tensor obtained from θ by raising an index with /g.

We define the contractions

(ξ, ξ̃) := /g
ABξAξ̃B , (θ, θ̃) := /g

AB
/g
CDθAC θ̃BD, θ] ·ξ= θ B

A ξB .

We finally define the 2-tensors θ×θ̃, ξ⊗̂ξ̃ and the scalar θ∧θ̃ via

(θ×θ̃)BC := /g
ADθAB θ̃DC ,

(ξ⊗̂ξ̃)AB := ξAξ̃B+ξB ξ̃A−/gABξAξ̃B ,

θ∧θ̃ := /ε
AB
/g
CDθAC θ̃BD,

where /εAB denotes the components of the volume form associated with /g on Su,v, and

where we note again that ξ⊗̂ξ̃ is a symmetric traceless S2
u,v 2-tensor.

We now specialise the general definitions of the projected Lie and covariant dif-

ferential operators in §3.1.4 to the case of the Schwarzschild manifold (M, g), with its

Eddington–Finkelstein double null coordinates (u, v, θ1, θ2) and normalised null direc-

tions e3=Ω−1∂u and e4=Ω−1∂v.

• The projections to the spheres S2
u,v of the Lie-derivative in the directions ∂u and

∂v are denoted by D and D, respectively.

Hence, if ξ is an S2
u,v tensor of rank n on (M, g), we have in components(17)

(Dξ)A1...An
= ∂u(ξA1...An

) and (Dξ)A1...An
= ∂v(ξA1...An

). (100)

Similarly,

• The projection to the spheres S2
u,v of the covariant derivative in the e3-direction

is denoted by /∇3, and that in the e4-direction by /∇4.

The relations (72) now hold true “un-bolding” all quantities. Since χ and χ only

have a trace-component in (M, g), one can deduce simplified formulas such as

Ω( /∇3ξ)A = ∂u(ξA)− 1
2Ω trχ ξA for an S2

u,v-1-form ξ (101)

(17) Observe that non-trivial terms would appear in the second formula if the background was not
spherically symmetric.
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and

Ω( /∇4θ)AB = ∂v(θAB)−Ω trχθAB for a symmetric traceless S2
u,v-2-tensor θ, (102)

which will be used below.

Finally, we specialise the definitions of §3.1.5, i.e. we introduce the following notation:

• /∇ denotes the covariant derivative associated with the metric /g on S2
u,v;

• /D1 takes any Su,v-tangent 1-form ξ into the pair of functions ( /div ξ, /curl ξ);

• /D?1, the L2-adjoint (with respect to /g) of /D1, takes any pair of scalars % and σ

into the S2
u,v-tangent 1-form − /∇A%+/εAB /∇

B
σ, with /εAB denoting the components of

the volume form associated with /g on S2
u,v;

• /D2 takes any 2-covariant symmetric traceless S2
u,v-tensor ξ into the S2

u,v-tangent

1-form /div ξ;

• /D?2, the L2 adjoint (with respect to /g) of /D2 takes any S2
u,v-tangent 1-form ξ into

the 2-form − 1
2 ( /∇BξA+ /∇AξB−( /div ξ)/gAB);

• /∆ denotes the covariant Laplacian associated with the metric /g on S2
u,v.

Recall that the spheres S2
u,v on the Schwarzschild manifold are equipped with the

round metric /gAB=r2γAB , with γ being the metric on the unit sphere. We will use the

notation εAB=r−2/εAB for the components of the volume form on the unit sphere.

4.3.2. Commutation formulas and the operators A[i]

We have the following commutation formulas for projected covariant derivatives in the

Schwarzschild spacetime. If ξ=ξA1...An
is an n-covariant S2

u,v-tensor on the Schwarzschild

manifold (M, g), then

/∇3 /∇BξA1...An− /∇B /∇3ξA1...An =− 1
2 trχ/∇BξA1...An

,

/∇4 /∇BξA1...An
− /∇B /∇4ξA1...An

=− 1
2 trχ/∇BξA1...An

,

/∇3 /∇4ξA1...An
− /∇4 /∇3ξA1...An

= ω̂ /∇3ξA1...An
−ω̂ /∇4ξA1...An

.

In particular, we have

[ /∇4, r /∇A]ξ= 0, [ /∇3, r /∇A]ξ= 0, [Ω /∇3,Ω /∇4]ξ= 0.

Finally, we introduce a shorthand notation for i angular derivatives acting on a

symmetric traceless S2
u,v-tensor (i>1). The crucial feature of these A[i] is that they

commute trivially with /∇3 and /∇4. We define

A[0] = 1, and then, inductively, A[2i+1] = r /D2A[2i] and A[2i+2] = r2 /D?2 /D2A[2i]. (103)



50 m. dafermos, g. holzegel, and i. rodnianski

4.4. The `=0, 1 spherical harmonics and elliptic estimates on spheres

We collect in this final subsection some useful properties which require isolating the `=0, 1

angular frequencies of a tensor. More specifically, after defining notation in §4.4.1, we

shall recall in §4.4.2 the classical `=0, 1 spherical harmonics and define what it means

for S2
u,v tensors of various types to be supported on angular frequencies `>2. This will

then allow us to infer in §4.4.3 some useful elliptic estimates on spheres for such tensors.

4.4.1. Norms on spheres

Let (θ, φ) denote standard spherical coordinates as in §4.1.2 where the spherical metric

takes the form (89).

We define the following pointwise norm for S2
u,v-tensors ξA1...An

of rank n:

|ξ|2 := /g
A1B1 ... /g

AnBnξA1...AnξB1...Bn . (104)

We also define the L2(S2
u,v)-norm

‖ξ‖2S2
u,v

:=

∫
S2
u,v

r2(u, v) sin θ dθ dφ |ξ|2 (105)

and note that(18)

‖r−1 ·ξ‖2S2
u,v

=

∫
S2
u,v

sin θ dθ dφ |ξ|2. (106)

4.4.2. The `=0, 1 spherical harmonics and tensors supported on `>2

Recall the well-known spherical harmonics Y `m (where `∈N0 and m∈{−`, ..., `} admissible

for fixed `) on the unit sphere. The `=0, 1 spherical harmonics are given explicitly by

Y `=0
m=0 =

1√
4π

(107)

and

Y `=1
m=0 =

√
3

4π
cos θ, Y `=1

m=−1 =

√
3

4π
sin θ cosφ, Y `=1

m=1 =

√
3

4π
sin θ sinφ. (108)

We have that the above family is orthogonal with respect to the standard inner product

on the sphere, and any arbitrary function f∈L2(S2) can be expanded uniquely with

respect to such a basis.

(18) We will often write quantities in this form, as it is easier to read off the decay.



the linear stability of the schwarzschild solution 51

Definition 4.1. We say that a function f onM is supported on `>2 if the projections∫
sin θ dθ dφ f ·Y `m = 0

vanish for (107) and (108). Any function f can be uniquely decomposed orthogonally as

f = c(u, v)Y `=0
m=0+

1∑
i=−1

ci(u, v)Y `=1
m=i(θ, φ)+f`>2,

where f`>2 is supported on `>2. The functions c(u, v) and ci(u, v) inherit regularity

from f .

Recall that an arbitrary 1-form ξ on S2 has a unique representation ξ=r /D?1(f, g) in

terms of two unique functions f and g on the unit sphere, both with vanishing mean.

We can use this to define an analogous decomposition for S2
u,v 1-forms on M. We then

have the following definition.

Definition 4.2. We say that a smooth S2
u,v 1-form ξ on M is supported on `>2 if

the functions f and g in the unique representation

ξ= r /D?1(f, g)

are supported on `>2. Any smooth S2
u,v 1-form ξ on M can be uniquely decomposed

orthogonally as

ξ= ξ`=1+ξ`>2,

where the two scalar functions

(r /div ξ`=1, r /curl ξ`=1)

are in the span of (108) and ξ`>2 is supported on `>2.

For symmetric traceless S2
u,v 2-tensors, we have the following result.

Proposition 4.4.1. Let ξ be a smooth symmetric traceless S2
u,v 2-tensor. Then, ξ

can be uniquely represented as

ξ= r2 /D?2 /D
?
1(f, g),

where f and g are supported on `>2. In this sense, any symmetric traceless 2-tensor on

S2 is supported on `>2.
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Proposition 4.4.1 follows immediately by duality considerations from the following

lemma concerning the angular operator

T = r2 /D?2 /D
?
1, (109)

which, for fixed u and v can be considered as an operator on the unit sphere(19) which

maps a pair of functions (f1(θ, φ), f2(θ, φ)) to a symmetric traceless tensor on S2. Note

that its adjoint, r2 /D1 /D2, has trivial kernel in L2.

For the computations in the following lemma we regard T as an operator defined on

pairs of smooth functions, which are dense in L2(S2).

Lemma 4.4.1. The kernel of T is finite-dimensional. More precisely, if the pair of

functions (f1, f2) is in the kernel, then

f1 = cY `=0
m=0+

1∑
i=−1

ciY
`=1
m=i(θ, φ) and f2 = c̃Y `=0

m=0+

1∑
i=−1

c̃iY
`=1
m=i(θ, φ)

for constants c, ci, c̃, c̃i and i=−1, 0, 1, where Y `m are the spherical harmonics defined

by (107) and (108).

Proof. If (f1, f2) is in the kernel, then clearly∫
S2

sin θ dθ dφ [/D?2 /D
?
1(f1, f2)· /D?2 /D

?
1(f1, f2)] = 0.

Integrating by parts and using that /D2 /D
?
2=− 1

2
/∆− 1

2K (K=1/r2 is the Gauss curvature

and /∆ the covariant Laplacian), as well as /D?1 /D1=− /∆+K and /D1 /D
?
1=− /∆, we find∫

S2

sin θ dθ dφ

[
1

2
f1 · /∆ /∆f1+

1

r2
f1 /∆f1+

1

2
f2 · /∆ /∆f2+

1

r2
f2 /∆f2

]
= 0,

and hence ∫
S2

sin θ dθ dφ

[
1

2
| /∆f1|2−

1

r2
| /∇f1|2+

1

2
| /∆f2|2−

1

r2
| /∇f2|2

]
= 0,

which can be written∫
S2

sin θ dθ dφ

[
1

2

∣∣∣∣ /∆f1+
2f1

r2

∣∣∣∣2+
1

r2
| /∇f1|2−

2(f1)2

r4
+

1

2

∣∣∣∣ /∆f2+
2f2

r2

∣∣∣∣2+
1

r2
| /∇f2|2−2

(f2)2

r4

]
= 0.

Clearly, the constant solutions f1=c and f2=c̃ satisfy this (and are obviously in the

kernel). If we assume both f1 and f2 to have mean value zero, we see using the Poincaré

(19) More precisely, it acts on the round spheres S2
u,v which have been rescaled (this is the reason

for the factor r2) to have unit radius.
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inequality on the sphere that the only functions satisfying the above condition are the

`=1 modes. Finally, one checks directly that the `=1 modes are indeed in the kernel: In

components, the equation for f1,

/∇A /∇BY `=1
m + /∇B /∇AY `=1

m =−2/gABY
`=1
m ,

reads (using Γθφφ=− sin θ cos θ and Γφθφ=cos θ/sin θ in standard coordinates)

(2∂2
θ+2)Y `=1

m = 0

∂θ∂φY
`=1
m − cos θ

sin θ
∂φY

`=1
m = 0

∂2
φY

`=1
m +sin θ cos θ ∂θY

`=1
m +sin2 θY `=1

m = 0

and these identities are easily verified. The computation for f2 is similar or can be

inferred by duality.

In particular, we have the following corollary.

Corollary 4.1. Let ξ be a smooth symmetric traceless S2
u,v 2-tensor on M. Then,∫

S2
u,v

sin θ dθ dφ /D1 /D2ξ ·(c+ciY `=1
m=i, c̃+c̃iY

`=1
m=i) = 0.

for any choice of constants c, ci, c̃ and c̃i.

Note that this, in particular, means that, if ξ is a symmetric traceless S2
u,v 2-tensor,

then the scalars /div /div ξ and /curl /div ξ are supported on `>2.

4.4.3. Elliptic estimates and positivity for angular operators on S2
u,v-tensors

We end with a discussion of elliptic estimates giving positivity for various angular oper-

ators acting on S2
u,v tensors supported on `>2.

We first give an estimate associated with the operator T from (109) acting on pairs

of scalar functions supported on `>2.

Proposition 4.4.2. Let (f1, f2) be a pair of functions on S2
u,v supported on `>2.

Then, we have the elliptic estimate

2∑
i=0

∫
S2
u,v

sin θ dθ dφ (|ri /∇if1|2+|ri /∇if2|2).
∫
S2
u,v

sin θ dθ dφ |r2 /D?2 /D
?
1(f1, f2)|2.

Proof. This follows immediately revisiting the computation of Lemma 4.4.1.
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We next give identities (in the formulas below, recall that K=1/r2) associated with

operators acting on symmetric traceless 2-tensors and 1-forms.

Proposition 4.4.3. Let ξ be a smooth symmetric traceless S2
u,v 2-tensor on M.

Then,∫
S2
u,v

sin θ dθ dφ (| /∇ξ|2+2K|ξ|2) = 2

∫
S2
u,v

sin θ dθ dφ | /div ξ|2, (110)∫
S2
u,v

sin θ dθ dφ |/D?2 /div ξ|2 =

∫
S2
u,v

sin θ dθ dφ
(

1
4 | /∆ξ|

2+K| /∇ξ|2+K2|ξ|2
)
. (111)

Now, let η be a smooth S2
u,v 1-form on M. Then, we have

‖/D?2 /D
?
1 /D1η‖2S2

u,v
= ‖2/D?2 /div /D?2η‖2S2

u,v
+‖2K /D?2η‖2S2

u,v
+8K‖ /div /D?2η‖2S2

u,v
. (112)

Proof. See [14] for the first and note /D?2 /div ξ=
(
− 1

2
/∆+K

)
ξ for the second. For

(112) observe that /D?2 /D
?
1 /D1η= /D?2(− /∆+K)η=2/D?2 /div /D?2η+2K /D?2η and integrate the

cross-term by parts.

Remark 4.2. The identities (110) and (111) can be paraphrased as saying that the

operator A[n] defined in (103) acting on symmetric traceless S2
u,v 2-tensors is uniformly

elliptic and positive definite.

The identity (112), on the other hand, when combined with Proposition 4.4.2 and

the identity (111) leads to the following corollary, which can be thought of as an elliptic

estimate associated with the operator /D?2 acting on S2
u,v 1-forms η supported on `>2.

Corollary 4.2. Let η be a smooth S2
u,v 1-form supported on `>2. Then, we have

3∑
i=0

∫
S2

sin θ dθ dφ |ri /∇iη|2.
∫
S2

sin θ dθ dφ |A[2] /D?2η|2.

The statement remains true replacing 3 by 1 in the sum on the left and removing A[2]

on the right-hand side.

We also remark, at this point already, the following result.

Proposition 4.4.4. Let ξ be a smooth symmetric traceless S2
u,v 2-tensor. Then, we

have the estimate

−
∫
S2

sin θ dθ dφ

((
/∆− 4

r2

)
ξ

)
AB

ξAB >
6

r2

∫
S2

sin θ dθ dφ |ξ|2. (113)
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Proof. We only outline the proof. The desired estimate follows from

−
∫
S2

sin θ dθ dφ /∆ξ ·ξ=

∫
S2

sin θ dθ dφ | /∇ξ|2> 2

r2

∫
S2

sin θ dθ dφ |ξ|2, (114)

which holds for any symmetric traceless S2
u,v 2-tensor ξ. The latter can in turn be shown

by representing the tensor ξ as ξ= /D?2 /D
?
1(f, g) for unique functions f and g supported on

`>2 as in Proposition 4.4.1, so in particular

−
∫
S2

sin θ dθ dφ /∆f ·f > 6r−2

∫
S2

sin θ dθ dφ|f |2,

and the same estimate for g) and diligently integrating by parts using the properties of

spherical harmonics (in particular, their orthogonality).

5. The equations of linearised gravity around Schwarzschild

In this section, we will present the equations of linearised gravity around Schwarzschild.

We begin in §5.1 with a guide to the formal derivation of this system from the equations

of §3. The complete system of linearised gravity is then presented in §5.2.

5.1. A guide to the formal derivation from the equations of §3.3

We give in this section a formal derivation of the system from the equations of §3. The

reader willing to take the system of linear gravity on faith can skip to §5.2.

5.1.1. Preliminaries

We first identify the general manifold M and its coordinates (u,v,θ1,θ2) of §3.1 with

the interior of the Schwarzschild manifoldM� and its underlying Eddington–Finkelstein

double null coordinates (u, v, θ1, θ2).

On M�, we consider a 1-parameter family of Lorentzian metrics g(ε)

g(ε)
.
=−4Ω2(ε) du dv+/gCD(ε)(dθC−bC(ε) dv)(dθD−bD(ε) dv), (115)

such that g(0)=gS expressed in the Eddington–Finkelstein double null form, i.e.

Ω2(0) = Ω2 = 1− 2M

r
, b(0) = 0, /gCD = r2γCD.

We assume moreover that the family is smooth in the extended sense; by this, we

mean it defines a smooth family of smooth metrics on the manifold M of §4.1.1.
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This can be characterized explicitly in Eddington–Finkelstein double null coordi-

nates as follows: We require that the function Ω2(ε), the symmetric S2
u,v 2-tensor /gCD(ε)

and the S2
u,v 1-form bC(ε) are smooth functions of the double null Eddington–Finkelstein

coordinates on the interior Mo, and that for any n1, n2, n3∈N0 and in any spherical co-

ordinate chart the functions

(eu/2M∂u)n1(∂v)
n2(∂θA)n3(Ω2(ε)eu/2M ), (116)

(eu/2M∂u)n1(∂v)
n2(∂θA)n3/gCD(ε), (117)

(eu/2M∂u)n1(∂v)
n2(∂θA)n3bC(ε) (118)

extend continuously to the boundary H+ (in particular, the limit u!∞ of the above

quantities exists for any fixed v, θ1, θ2).

We similarly say a function f of the Eddington–Finkelstein coordinates (u, v, θ1, θ2)

to be smooth in the extended sense if f defines a smooth function on M. Again, we can

characterize this directly by requiring that f is a smooth function of its coordinates on

Mo, and moreover

(eu/2M∂u)n1(∂v)
n2(∂θA)n3f

extend continuously to the boundary H+. Symmetric tensorfields and 1-forms which are

smooth in the extended sense are defined completely analogously. We sometimes use

the phrase that a function (or S2
u,v 1-form or symmetric traceless S2

u,v tensor) extends

regularly to H+ to mean that it is smooth in the extended sense.

In view of the general discussion in §3.1 associated with (115) is a family of null

frames

NEF = (Ω−1(ε)∂u,Ω
−1(ε)(∂v+bA(ε)∂θA), e1, e2). (119)

We can hence define the Ricci coefficients and curvature components for the family of

metrics with respect to these frames as in §3.2, and formally expand them in powers of

ε.

Note that the frame (119) does not itself extend smoothly to the event horizon H+,

in the sense that given a smooth (in the extended sense) function f of the Eddington–

Finkelstein coordinates, the expression Ω−1(ε)∂uf does not extend continuously to H+.

It is easily seen on the other hand that the rescaled frame

NEF? = (Ω−2(ε)∂u, ∂v+bA(ε)∂θA , e1, e2) (120)

is smooth, in the extended sense in that any element of the frame applied to a smooth

(in the extended sense) function produces a smooth (in the extended sense) function.
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5.1.2. Outline of the linearisation procedure

We will now linearise the smooth 1-parameter family of metrics (115), i.e. in particular we

shall expand the equations of §3.3.1 and §3.3.2 (with the Ricci and curvature components

defined with respect to the family of frames (119)) to first order in ε.

We begin by recalling the derivative operatorsD andD associated with (115), which

(when acting on functions) read in coordinates:

D= ∂u,D= ∂v+bA(ε)eA, eA =
∂

∂θA
. (121)

To formally linearise the full system of equations of §3.3, we invoke the following

general notation: Geometric quantities defined with respect to the full metric (115)

are written in bold (e.g. χ). Their Schwarzschild value (i.e. the quantity defined with

respect to the Schwarzschild metric) is written without any subscript and their linear

perturbation with a superscript “(1)”. For instance, we write (recall Ω2=1−2M/r)

Ω≡Ω+ε·
(1)

Ω,

/gAB ≡ /gAB+ε·
(1)

/gAB ,

Ω trχ≡ (Ω trχ)+ε·
(1)

(Ω trχ) =
2

r

(
1− 2M

r

)
+ε·

(1)

(Ω trχ),

Ω trχ≡ (Ω trχ)+ε·
(1)

(Ω trχ) =−2

r

(
1− 2M

r

)
+ε·

(1)

(Ω trχ),

ω := Ωω̂≡Ωω̂+ε·(1)ω ,

ω := Ωω̂≡Ωω̂+ε·(1)ω ,

%≡−2M

r3
+ε· (1)% ,

(122)

which covers all metric, Ricci and curvature coefficients which have non-trivial Schwarz-

schild values, cf. (96), and

b≡ 0+ε·
(1)

b, χ̂≡ 0+ε·
(1)

χ̂, χ̂≡ 0+ε·
(1)

χ̂, η≡ 0+ε·(1)η , η≡ 0+ε·(1)η , (123)

as well as

α≡ 0+ε· (1)α, α≡ 0+ε·(1)α, β≡ 0+ε·
(1)

β , β≡ 0+ε·
(1)

β , σ≡ 0+ε·(1)σ , (124)

for the coefficients which have vanishing Schwarzschild values. In the above, ≡ means to

first order in ε.

The linearised equations are now obtained simply by expanding the equations of

§3.3 to order ε leading to the equations presented in §5.2.
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To give a non-trivial example, we consider the second equation of (76), which, in

view of formula for the projected Lie-derivative,

(D/g)AB = ∂v(/gAB)+( /∇AbB+ /∇BbA), (125)

with ∂v acting on the components of /g on the right, can be written as

∂v(/gAB) = 2Ωχ̂AB+/gABΩ trχ+2( /D?2b)AB−/gAB /div b.

Note that the operator ∂v on the left-hand side coincides with the Schwarzschild differ-

ential operator D introduced in §4.3.1. Expanding in terms of powers of ε as above, we

find

∂v(
(1)

/gAB) = 2Ω
(1)

χ̂AB+2(/D?2
(1)

b)AB+/gAB(
(1)

(Ω trχ)− /div
(1)

b)+Ω trχ
(1)

/gAB , (126)

where the unbolded operators are the Schwarzschild differential operators of §4.3.1. We

now decompose

(1)

/gAB =
(1)

/̂gAB+ 1
2/gAB ·tr/g

(1)

/g , (127)

where
(1)

/̂g is traceless with respect to the round metric /g=r2γ. Note that this implies, to

linear order,

det/g≡det /g(1+ε·tr/g
(1)

/g ) and we therefore define
(1)√
/g := 1

2

√
/g ·tr/g

(1)

/g , (128)

using the notation
√
/g :=

√
det /g. Finally, upon contracting (126) with the inverse /g

AB ,

we find

∂v(tr/g
(1)

/g ) = 2
(1)

(Ω trχ)−2 /div
(1)

b and
√
/g∂v
((1)
/̂gAB

(√
/g
)−1)

= 2Ω
(1)

χ̂AB+2(/D?2
(1)

b )AB ,

leading directly to (131) and (132). The linearisation of the first equation of (76) is

completely analogous.

The remaining equations for the metric components and Ricci coefficients are much

simpler to linearise, since they are either scalar equations with spherically symmetric

background values, or tensorial equations where the background quantity vanishes, in

which case one can simply replace all operators and coefficients in the equation by their

Schwarzschild ones (see §4.3).

We give two more examples: The non-linear Bianchi equation for % in the 4-direction,

which linearises via

∂v(%+ε
(1)
% )+ε

(1)

bA
∂

∂θA
(%+ε

(1)
% )+

3

2
((Ω trχ)+ε

(1)

(Ω trχ))(%+ε
(1)
% ) = ε /div

(1)

β+O(ε2)
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to produce the linearised equation (151) in §5.2.4 below, and the Bianchi equation for β

in the 3-direction, which using the linearisation formula

[ /D?1(−%,σ)]A≡−
∂

∂θA
(%+ε· (1)% )+/ε

B
A

∂

∂θB
(0+ε·(1)σ )≡ ε[/D?1(− (1)

% ,
(1)
σ )]A,

leads to (150).

Remark 5.1. We emphasise that, for the connection coefficients χ and χ, we linearise

the equations for their trace-free and (weighted) trace parts χ̂, Ω trχ and χ̂, Ωtrχ

(taken with respect to the metric g); cf. (77)–(82). This is different from linearising the

connection coefficients χ, and then splitting the resulting tensor into traceless and trace

part with respect to the background spherical metric /g, although the two are of course

easily related. Consequently, when writing expressions like
(1)

(Ω trχ), it is understood that

this is a weighted linearised trace, not taking an actual trace of a tensor
(1)
χ.

5.1.3. Regular quantities at the horizon

While it is indeed convenient to perform the linearisation computation in Eddington–

Finkelstein coordinates and with respect to the associated frame (119) as indicated above,

one should keep in mind that one will eventually need to consider regular quantities.

This will require rescaling appropriately some of the linearised quantities near the event

horizon.

To understand the correct rescalings, as an example, consider the connection coef-

ficient χ. Since the metric (115) is smooth in the extended sense with respect to our

Eddington–Finkelstein differential structure, it is e−u/4Mχ which extends smoothly to

the event horizon, and hence it is the linearisation of this quantitity that one should

consider. Equivalently, since Ω(ε)eu/4M is a function which is smooth in the extended

sense, we should consider the linearisation of Ωχ near the horizon. Decomposing into

the traceless part Ωχ̂ and the trace Ω trχ, we have

Ωχ̂≡ 0+Ω
(1)

χ̂ and (Ω trχ)≡ 2

r

(
1− 2M

r

)
+

(1)

(Ω trχ),

and hence the weighted linearised quantities Ω
(1)

χ̂, as well as
(1)

(Ω trχ), are the regular

linearised quantities that we eventually have to estimate uniformly up to the horizon.

Similarly for the metric component Ω, since it is Ωeu/4M , which extends smoothly to

H+, we need to consider the linearisation of

Ωeu/4M ≡ (Ω+
(1)

Ω )eu/4M = (1+Ω−1
(1)

Ω )Ωeu/4M =

√
2M

r
er/4Me−v/4M (1+Ω−1

(1)

Ω ).
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and hence the quantity Ω−1
(1)

Ω. To give a final example, we have

Ω trχ

Ω2 ≡

(1)

(Ω trχ)

Ω2
−2Ω−1

(1)

Ω
(Ω trχ)

Ω2
=

(1)

(Ω trχ)

Ω2
+

4

r
Ω−1

(1)

Ω,

which extends regularly to H+, so we need to consider Ω−2
(1)

(Ω trχ) near the horizon.

The full list of rescaled quantities is given by (130) in §5.2.1 below.

5.1.4. Aside: The relation between linearisation in the frames NEF

and NEF ?

The reader might wonder about the relation between the evolution equations of §5.2

(which we recall arose from linearising metric, Ricci and curvature components in the

Eddington–Finkelstein frame NEF (119), as indicated in the previous section) and the

equations one would obtain if one defined these components using the regular frame

NEF? (cf. (120)), and then linearised the Einstein equations expressed with respect to

that frame.

We collect in this section the formulas allowing oneself to transform the equations

from one to another leading to the notion of linearisation covariance. To distinguish the

components defined with respect to the two frames, we will use the subscripts “EF” and

“EF ?” below, which should not be confused with coordinate indices.

For the curvature components we easily see

(1)
αEF? = Ω−2 (1)

αEF ,
(1)

βEF? = Ω−1
(1)

βEF ,
(1)
αEF? = Ω2 (1)

αEF ,
(1)

βEF? = Ω
(1)

βEF ,
(1)
%EF? =

(1)
%EF ,

(1)
σEF? =

(1)
σEF .

For the Ricci coefficients, we note that

χEF? = ΩχEF , χ̂EF? = Ωχ̂EF , trχEF? = Ω trχEF ,

χ
EF? = Ω−1χ

EF
, χ̂

EF? = Ω−1χ̂
EF
, trχ

EF? = Ω−1 trχ
EF
,

and hence
(1)

χ̂EF? = Ω
(1)

χ̂EF ,
(1)

χ̂
EF? = Ω−1

(1)

χ̂
EF
,

and
(1)

(trχ)EF? =
(1)

(Ω trχ)EF ,
(1)

(trχ)
EF? = Ω−2

(1)

(Ω trχ)
EF

+
4

r
Ω−1

(1)

Ω.

Also, since ηEF? =ηEF and η
EF? =η

EF
, we have

(1)
ηEF? =

(1)
ηEF ,

(1)
ηEF? =

(1)
ηEF , ω̂EF? = 2ωEF = 2Ωω̂EF =

2M

r2
+2

(1)
ωEF , ω̂EF? = 0.
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Note that the quantity
(1)
ωEF? is hence automatically zero.

Observe also that the linearised components in the frame EF ? are automatically

regular at the horizon. This is of course consistent with our notion of regular quantities

introduced in (130); cf. §5.1.3. Using the formulas above, one may easily reformulate the

system of gravitational perturbations of §5.2 as equations for linearised components in

the frame EF ?. This yields the same equations as linearising directly the full non-linear

equations expressed in the frame NEF? (linearisation covariance).

5.2. The full set of linearised equations

In the following subsections we present the equations arising from the formal linearisation

(outlined in §5.1) of the equations of §3.3. These equations are physical space analogues

of the equations appearing in Chandrasekhar’s [9]. We stress that the system can be

studied without reference to the full non-linear Einstein equations. In particular, the

discussion below can be read independently of the formal derivation in §5.1.

5.2.1. The complete list of unknowns

The equations will concern a set of quantities

S = (
(1)

/̂g ,
(1)√
/g,

(1)

Ω,
(1)

b,
(1)

(Ω trχ),
(1)

(Ω trχ),
(1)

χ̂,
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω ,

(1)
ω ,

(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α,

(1)

K) (129)

of smooth (to be defined precisely below) functions, S2
u,v-vectors and tensors defined on

domains of the Schwarzschild manifold (M, g). Specifically, the quantities

•
(1)

/̂g ,
(1)

χ̂,
(1)

χ̂,
(1)
α and

(1)
α are symmetric trace-free S2

u,v 2-tensors;

•
(1)

b ,
(1)
η ,

(1)
η ,

(1)

β and
(1)

β are S2
u,v 1-forms;

•
(1)

Ω,
(1)√
/g,

(1)

(Ω trχ),
(1)

(Ω trχ),
(1)
ω ,

(1)
ω ,

(1)
% ,

(1)
σ and

(1)

K are scalar functions.(20)

We will sometimes bundle some of these quantities and refer to

•
(1)

/̂g ,
(1)√
/g,

(1)

Ω and
(1)

b as the linearised metric components;

•
(1)

(Ω trχ),
(1)

(Ω trχ),
(1)

χ̂,
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω and

(1)
ω as the linearised Ricci coefficients;

• (1)
α ,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β and
(1)
α as the linearised curvature components.

We also recall from (127) and (128) the notation

(1)

/gAB =
(1)

/̂gAB+/gAB(
√
/g)−1

(1)√
/g.

(20) The quantity
(1)
σ is actually a 2-form on S2

u,v which we will identify with its (pseudo)scalar
representative.
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When we say that S is smooth on a set D⊂M, we mean, following the consider-

ations of §5.1.3 and our previous definition of smooth in the extended sense, that the

above quantities (129) are smooth functions of the Eddington–Finkelstein coordinates on

Mo∩D, and that the following weighted linearised quantities in S extend regularly to

H+∩D:
(1)

/̂g ,
(1)√
/g,

(1)

b,
(1)

Ω,
(1)

(Ω trχ), Ω−2
(1)

(Ω trχ), Ω
(1)

χ̂, Ω−1
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω ,

Ω−2(1)
ω , Ω2(1)

α, Ω
(1)

β ,
(1)
% ,

(1)
σ , Ω−1

(1)

β , Ω−2(1)
α,

(1)

K.

(130)

We recall that the latter means, for any quantity q from (130) and any n1, n2, n3∈N0,

that, in any spherical coordinate patch,

(eu/2M∂u)n1(∂v)
n2(∂A)n3q··

extends continuously to H+. Here q·· stands for the components of the quantity q, so it

should be replaced by qBC for the symmetric traceless S2
u,v-tensors in (130), by qB for

the S2
u,v 1-forms and by q for the scalars.

We say that a smooth S defined on D⊂M satisfies the equations of gravitational

perturbations around Schwarzschild (or linearised gravity) if (131)–(157) to be given in

the subsections below hold on Mo∩D.

Note that given a solution of (131)–(157), all quantities of S can in fact be recon-

structed from knowing just the “metric perturbation” (
(1)

Ω,
(1)

b,
(1)

/g ). Nonetheless, we shall

view all quantities of S as unknowns.

5.2.2. Equations for the linearised metric components

The equations for the metric components read

D

( (1)√
/g√
/g

)
=

(1)

(Ω trχ), D

( (1)√
/g√
/g

)
=

(1)

(Ω trχ)− /div
(1)

b, (131)

√
/gD

((1)

/̂gAB√
/g

)
= 2Ω

(1)

χ̂
AB
,
√
/gD

((1)

/̂gAB√
/g

)
= 2Ω

(1)

χ̂AB+2(/D?2
(1)

b)AB , (132)

∂u
(1)

bA = 2Ω2(
(1)
ηA−(1)

ηA). (133)

(1)
ω =D(Ω−1

(1)

Ω),
(1)
ω =D(Ω−1

(1)

Ω),
(1)
ηA+

(1)
ηA = 2 /∇A(Ω−1

(1)

Ω). (134)

Note that the derivatives D and D act on the components of
(1)

/̂g in (132); cf. formula

(100).
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5.2.3. Equations for the linearised Ricci coefficients

We start with the equations for the weighted linearised traces of the second fundamental

forms:

D
(1)

(Ω trχ) = Ω2(2 /div
(1)
η+2

(1)
%+4%Ω−1

(1)

Ω)− 1
2Ω trχ(

(1)

(Ω trχ)−
(1)

(Ω trχ)), (135)

D
(1)

(Ω trχ) = Ω2(2 /div
(1)
η+2

(1)
%+4%Ω−1

(1)

Ω)− 1
2Ω trχ(

(1)

(Ω trχ)−
(1)

(Ω trχ)), (136)

D
(1)

(Ω trχ) =−(Ω trχ)
(1)

(Ω trχ)+2ω
(1)

(Ω trχ)+2(Ω trχ)
(1)
ω , (137)

D
(1)

(Ω trχ) =−(Ω trχ)
(1)

(Ω trχ)+2ω
(1)

(Ω trχ)+2(Ω trχ)
(1)
ω . (138)

For the traceless parts, we have(21)

/∇3(Ω−1
(1)

χ̂)+Ω−1(trχ)
(1)

χ̂=−Ω−1(1)
α,

/∇4(Ω−1
(1)

χ̂)+Ω−1(trχ)
(1)

χ̂=−Ω−1(1)
α,

(139)

/∇3(Ω
(1)

χ̂)+ 1
2 (Ω trχ)

(1)

χ̂+ 1
2 (Ω trχ)

(1)

χ̂=−2Ω/D?2
(1)
η , (140)

/∇4(Ω
(1)

χ̂)+ 1
2 (Ω trχ)

(1)

χ̂+ 1
2 (Ω trχ)

(1)

χ̂=−2Ω/D?2
(1)
η . (141)

For
(1)
η and

(1)
η the equations read

/∇3

(1)
η = 1

2 (trχ)(
(1)
η−(1)

η )+
(1)

β and /∇4

(1)
η =− 1

2 (trχ)(
(1)
η−(1)

η )−
(1)

β . (142)

The equations for the linearised lapse and its derivatives are given by

D
(1)
ω =−Ω2(

(1)
%+2%Ω−1

(1)

Ω), (143)

D
(1)
ω =−Ω2(

(1)
%+2%Ω−1

(1)

Ω), (144)

Finally, we have the linearised Codazzi equations

/div
(1)

χ̂=− 1
2 (trχ)

(1)
η+

(1)

β+
1

2Ω
/∇

(1)

(Ω trχ),

/div
(1)

χ̂=− 1
2 (trχ)

(1)
η−

(1)

β+
1

2Ω
/∇

(1)

(Ω trχ),

(145)

and

/curl
(1)
η =

(1)
σ and /curl

(1)
η =−(1)

σ , (146)

as well as the linearised Gauss equation

(1)

K =− (1)
%− 1

4

trχ

Ω
(

(1)

(Ω trχ)−
(1)

(Ω trχ))+
1

2
Ω−1

(1)

Ω(trχ trχ). (147)

(21) We use the projected covariant derivatives /∇3 and /∇4 for equations involving tensorial quan-

tities. This is because later, when we derive estimates, there will be contractions involving /g: Since
/∇3/g= /∇4/g=0, such contractions are easier to handle.
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5.2.4. Equations for linearised curvature components

We complete the system of linearised gravity with the linearised Bianchi equations:

/∇3

(1)
α+ 1

2 trχ
(1)
α+2ω̂

(1)
α =−2/D?2

(1)

β−3%
(1)

χ̂, (148)

/∇4

(1)

β+2(trχ)
(1)

β−ω̂
(1)

β = /div
(1)
α, (149)

/∇3

(1)

β+(trχ)
(1)

β+ω̂
(1)

β = /D?1(− (1)
% ,

(1)
σ )+3%

(1)
η , (150)

/∇4

(1)
%+

3

2
(trχ)

(1)
% = /div

(1)

β− 3

2

%

Ω

(1)

(Ω trχ), (151)

/∇3

(1)
%+

3

2
(trχ)

(1)
% =− /div

(1)

β− 3

2

%

Ω

(1)

(Ω trχ), (152)

/∇4

(1)
σ+ 3

2 (trχ)
(1)
σ =− /curl

(1)

β , (153)

/∇3

(1)
σ+ 3

2 (trχ)
(1)
σ =− /curl

(1)

β , (154)

/∇4

(1)

β+(trχ)
(1)

β+ω̂
(1)

β = /D?1(
(1)
% ,

(1)
σ )−3%

(1)
η , (155)

/∇3

(1)

β+2(trχ)
(1)

β−ω̂
(1)

β =− /div
(1)
α, (156)

/∇4

(1)
α+ 1

2 (trχ)
(1)
α+2ω̂

(1)
α = 2/D?2

(1)

β−3%
(1)

χ̂. (157)

Note the coupling of the linearised Bianchi system with the linearised Ricci coefficients
(1)

χ̂,
(1)
η ,

(1)
η and

(1)

χ̂, remarked already in §2.1.3. (For comparison, recall that these terms do

not arise in the Minkowski case since the background curvature components vanish, in

particular %=0.)

6. Special solutions: pure gauge and linearised Kerr

In this section, we shall look at two classes of special solutions of the system of linearised

gravity given in §5.2. We begin in §6.1 with a discussion of pure gauge solutions followed

by a presentation of a 4-dimensional family of reference linearised Kerr solutions in §6.2.

6.1. Pure gauge solutions G

As described already in §2.1.4, pure gauge solutions are those derived from linearising the

families of metrics that arise from applying to Schwarzschild smooth 1-parameter families

of coordinate transformations which preserve the double null form (70) of the metric. We

will classify such solutions here, deriving them from the formal linearisation of §5.1 in

order to best illustrate their geometric significance. (The reader can alternatively simply

directly verify that these solutions satisfy the system of linearised gravity of §5.2.)
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6.1.1. General computations and formal developments

Let us fix functions Ω2(u, v)·f1(u, θ, φ), f2(v, θ, φ), j3(v, θ, φ) and j4(v, θ, φ) on M� ex-

tending smoothly to M.

Consider a smooth 1-parameter family of coordinates on M� defined by

ũ= ũε :=u+εf1(u, θ, φ),

ṽ= ṽε := v+εf2(v, θ, φ),

θ̃= θ̃ε := θ+εf3(u, v, θ, φ) = θ+ε
2

r(u, v)
(f2)θ(v, θ, φ)+εj3(v, θ, φ),

φ̃= φ̃ε :=φ+εf4(u, v, θ, φ) =φ+ε
2

r(u, v)

1

sin2 θ
(f2)φ(v, θ, φ)+εj4(v, θ, φ).

(158)

If we express the Schwarzschild metric in the form (91)

gS =−4Ω2(ũ, ṽ)dũdṽ+r2(ũ, ṽ)(dθ̃2+sin2 θ̃ dφ̃2), (159)

where Ω2, r2 and γ are defined by the expressions (92), (93) and (89), where however u,

v, θ and φ are replaced by the new coordinates ũ, ṽ, θ̃ and φ̃, then, in view of (158), this

defines with respect to the original fixed coordinates u, v, θ and φ of §4.2.1 a 1-parameter

family of metrics, whose first-order ε-dependence can be expressed as

gS(ε)≡du dv
[
−4Ω2+ε

(
−8M

r2
Ω2[f2−f1]−4Ω2(f2)v−4Ω2(f1)u

)]
+dv dθ (−4Ω2ε(f1)θ+2r2ε(f3)v)+dv dφ (−4Ω2ε(f1)φ+2r2 sin2 θε(f4)v)

+dθ dθ (r2+2rΩ2ε[f2−f1]+2r2ε(f3)θ)+dθ dφ (2εr2(f3)φ+2εr2 sin2 θ(f4)θ)

+sin2 θ dφ dφ

[
r2+2rΩ2ε[f2−f1]+2r2ε(f4)φ+2r2 cos θ

sin θ
εf3

]
. (160)

Here, as before, “≡” indicates that we are ignoring terms of order ε2 or higher and

the subscripts v, θ, etc. indicate a partial derivative with respect to this variable. The

smoothness assumptions on f1, f2, j3 and j4 ensure that this defines in fact a smooth

1-parameter family of metrics on M, i.e. including the boundary H+.

Note that the right-hand side of (160) is of the double-null form (115) with Ω2(0)=

Ω2, b(0)=0 and /g(0)=/g. Since the right-hand side of (160) thus defines a family dif-

feomorphic to Schwarzschild to first order in ε, it in particular satisfies the Einstein

equations (75) to first order, and thus, still gives rise to a solution of linearised gravity,

which can be read off as in §5.1.2 from (160) by collecting the terms at O(ε).
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Specifically, from (160) we can read off

(1)

bθ =
1

r2
(2Ω2(f1)θ−r2(f3)v)

(1)

bφ =
1

r2

(
2Ω2 (f1)φ

sin2 θ
−r2(f4)v

)
, (161)

2Ω−1
(1)

Ω = (f2)v+
2M

r2
f2+(f1)u−

2M

r2
f1, (162)

(1)√
/g√
/g

=
2Ω2

r
(f2−f1)+

1

sin θ
∂θ(sin θf3)+(f4)φ, (163)

(1)

/̂gθθ = 2r2(f3)θ−
r2

sin θ
∂θ(sin θf3)−r2(f4)φ,

(1)

/̂gθφ = r2(f3)φ+r2 sin2 θ(f4)θ,

sin−2 θ
(1)

/̂gφφ = 2r2(f4)φ+2r2 cos θ

sin θ
f3−

r2

sin θ
∂θ(sin θf3)−r2(f4)φ.

(164)

Note that, since Ω2(u, v)·f1(u, θ, φ), f2(v, θ, φ), j3(v, θ, φ), j4(v, θ, φ) are functions

smooth in the extended sense on M, the perturbation (Ω−1
(1)

Ω,
(1)

b,
(1)

/g ) is smooth on M.

All geometric quantities can now be computed from the above using the system of

gravitational perturbations. For future reference we collect here the formulas for

(1)

(Ω trχ) = ∂v

( (1)√
/g√
/g

)
+ /div

(1)

b = ∂v

(
2Ω2

r
(f2−f1)

)
+

2Ω2

r2
∆S2f1

=
2Ω2

r
∂vf2+

Ω2

r2
[(2−4Ω2)(f2−f1)+2∆S2f1], (165)

where ∆S2 =r2 /∆ denotes the Laplacian on the unit sphere and

(1)

(Ω trχ) = ∂u

( (1)√
/g√
/g

)
= ∂u

(
2Ω2

r
(f2−f1)

)
+

2Ω2

r2
∆S2f2

=
2Ω2

r
(−∂uf1)−Ω2

r2
[(2−4Ω2)(f2−f1)−2∆S2f2], (166)

which are easily determined from (131). We conclude the following.

Proposition 6.1.1. Let Ω2 ·f1(u, θ, φ), f2(v, θ, φ), j3(v, θ, φ), j4(v, θ, φ) be smooth

functions on M and f3(u, v, θ, φ), f4(u, v, θ, φ) be defined through (158). Then, the met-

ric perturbation with Ω−1
(1)

Ω defined as in (162),
(1)

bA defined as in (161) and
(1)

/g defined as

in (163) and (164) determines a smooth solution of the system of gravitational perturba-

tions on M.

We call such a solution a pure gauge solution and denote it by G or, to indicate

how it is generated, by G (f1, f2, j3, j4).
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Note that non-trivial (f1, f2, j3, j4) can generate the trivial solution G =0. For in-

stance, choosing f1=1, f2=1 and j3=j4=0 generate the zero solution.

The validity of the above proposition is clear by the above formal computations. One

can also check explicitly that all equations of the system of gravitational perturbations

(131)–(157) are satisfied.

In the next three subsections we will look at the basic building blocks of pure gauge

solutions arising from Proposition 6.1.1. Specifically, we compute explicitly all Ricci

coefficients and curvature quantities of three special pure gauge solutions produced by

Proposition 6.1.1:

• setting (f1=0, f2=f(v, θ, φ), j3=0, j4=0): Lemma 6.1.1;

• setting (f1=f(u, θ, φ), f2=0, j3=0, j4=0): Lemma 6.1.2;

• setting (f1=0, f2=0, j3(v, θ, φ), j4(v, θ, φ)): Lemma 6.1.3.

In view of linearity, the general pure gauge solution can be obtained from summing

the three special ones.

We will also include the computation that all equations of (131)–(157) are indeed

satisfied for Lemma 6.1.1, since we have omitted the lengthy but straightforward proof

of Proposition 6.1.1.

6.1.2. Pure gauge solutions of the form (f1=0, f2=f(v, θ, φ), j3=0, j4=0)

The following solution is the explicit form of the pure gauge solution (f1=0, f2=f(v, θ, φ),

j3=0, j4=0) arising from Proposition 6.1.1.

Lemma 6.1.1. For any smooth function f=f(v, θ, φ), the following is a pure gauge

solution of the system of gravitational perturbations:

2Ω−1
(1)

Ω =
1

Ω2
∂v(fΩ2),

(1)

/̂g =
4

r
r2 /D?2 /D

?
1(f, 0),

(1)√
/g√
/g

=
2Ω2f

r
+

2

r
r2 /∆f,

(1)

b = 2r2 /D?1
(
∂v

(
f

r

)
, 0

)
,

(1)
η =−Ω2

r2
r /D?1(f, 0),

(1)
η =− 1

Ω2
r /D?1

(
∂v

(
Ω2

r
f

)
, 0

)
(1)

χ̂= 2
Ω

r2
r2 /D?2 /D

?
1(f, 0),

(1)

(Ω trχ) = 2∂v

(
fΩ2

r

)
,

(1)

(Ω trχ) = 2
Ω2

r2
[∆S2f−f(1−2Ω2)],

(1)
% =

6MΩ2

r4
f,

(1)

β =−6MΩ

r4
r /D?1(f, 0),

(1)

K =−Ω2

r3
(∆S2f+2f),

(1)
ω and

(1)
ω determined by (134) and

(1)

χ̂=
(1)
α =

(1)
α = 0,

(1)

β = 0,
(1)
σ = 0.

We will call f a gauge function.
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Remark 6.1. Note that
(1)
η ,

(1)
% and

(1)

(Ω trχ) vanish on the horizon H+.

Remark 6.2. In §8.3, we will introduce the notion of asymptotically flat seed data

(Definition 8.2). In this language, note that the above pure gauge solution induces

asymptotically flat seed data with weight s to order zero on Cu0
∩Cv0

, provided the

gauge function f satisfies |(r /∇)nf |.v for n62, |(r /∇)nr2∂v(f/r)|.1 for n61, and∣∣∣∣r1+s∂v

(
r2∂v

(
f

r

))∣∣∣∣. 1.

In particular, f does not have to be bounded. It is also easy to see what higher-order

assumptions on f need to be imposed to guarantee that the seed data are asymptotically

flat to higher order.

Proof of Lemma 6.1.1. We verify some of the null stucture and all of the Bianchi

equations below leaving the remaining equations to the reader. The left-hand side of the

(renormalised) (135) is

D[r
(1)

(Ω trχ)] = 2∆S2

(
∂v

(
Ω2

r
f

))
−2∂v

(
Ω2(1−2Ω2)

r
f

)
,

while the right-hand side is

2Ω2r

(
1

Ω2r
∆S2

(
∂v

(
Ω2

r
f

))
+

6M

r4
Ω2f− 2M

Ω2r3
∂v(fΩ2)

)
+r

Ω2

r
2∂v

(
fΩ2

r

)
.

The term involving the angular Laplacian cancels and since

−2∂v

(
Ω2(1−2Ω2)

r
f

)
= 2∂v

(
Ω2

r
f

)
−∂v

(
8M

r2
Ω2f

)
= 2Ω2∂v

(
Ω2

r
f

)
+

4M

r
∂v

(
Ω2

r
f

)
−∂v

(
8M

r2
Ω2f

)
= 2Ω2∂v

(
Ω2

r
f

)
− 4M

r2
∂v(fΩ2)+

12M

r3
Ω4f,

we have established that (135) holds. Let us check the two Codazzi equations. The one

involving β can be read off directly, while the one involving β reads

2Ω/D2 /D
?
2 /D

?
1(f, 0) = +

Ω

r

Ω2

r2
r /∇f+

6MΩ

r4
r /∇f+

1

2Ω
2

Ω2

r2
/∇[∆S2f−f(1−2Ω2)]. (167)

Now, use the fact that

/D2 /D
?
2 /D

?
1(f, 0) =

(
−1

2
/∆− 1

2
K

)
/D?1(f, 0) =

1

2
/D?1 /D1 /D

?
1(f, 0)−K /D?1(f, 0) =

1

2
/∇ /∆f+

1

r2
/∇f

(168)
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to validate (167). To validate (138), note that

∂u[
(1)

(Ω trχ)r2Ω−2] =−8M

r2
fΩ2 =−4r

1

2
f∂u

(
2M

r2

)
=−4r

(1)
ω .

The Bianchi equations (148) and (149) are trivially satisfied, (150) is easily checked by

inspection. For (151) note that

∂v(r
3 (1)
% ) = ∂v

(
r3 6M

r4
Ω2f

)
=

3M

Ω
2∂v

(
fΩ2

r

)
=

3M

Ωr3
r3

(1)

(Ω trχ).

For (152) note similarly that

∂u(r3 (1)
% ) = f∂u

(
r3 6M

r4
Ω2

)
=−6MΩ(∆S2f)+

3M

Ω
2

Ω2

r2
[∆S2f−f(1−2Ω2)],

which is readily verified through the identity ∂u(6MΩ2/r)=6MΩ2(Ω2/r2−2M/r3). The

Bianchi equations (153) and (154) hold trivially and so does (157). The equation (156)

is also easily verified using that f does not depend on u. It remains to verify (155). We

renormalise it to

/∇4(r2Ω
(1)

β )A =−r2Ω /∇A
(1)
%+

6M

r
Ω

(1)
ηA.

The left-hand side is

/∇4(r2Ω
(1)

β )A = /∇4

(
6MΩ

r2
r /∇Af

)
=

6Mr

Ω
/∇A∂v

(
fΩ

r2

)
,

while the right-hand side is

−r2Ω /∇A
(1)
%+

6M

r
Ω

(1)
ηA =−6M

r2
Ω

(
1− 2M

r

)
/∇Af+

6M

r

1

Ω2
r /∇A

(
∂v

(
Ω2

r
f

))
.

Equation (155) is now immediate.

6.1.3. Pure gauge solutions of the form (f1=f(u, θ, φ), f2=0, j3=0, j4=0)

Completely analogously, one proves the following lemma, which provides the explicit

form of the pure gauge solution (f1=f(u, θ, φ), f2=0, j3=0, j4=0) arising from Proposi-

tion 6.1.1.

Lemma 6.1.2. For any function f=f(u, θ, φ) such that Ω2 ·f(u, θ, φ) is smooth in

the extended sense on M, the following is a (pure gauge) solution of the system of
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gravitational perturbations:

2Ω−1
(1)

Ω =
1

Ω2
∂u(fΩ2),

(1)√
/g√
/g

=−2Ω2f

r
,

(1)

b = 2Ω2 /D?1(−f, 0),

(1)

χ̂= 2
Ω

r2
r2 /D?2 /D

?
1(f, 0),

(1)
η =− 1

Ω2
r /D?1(∂u(

Ω2

r
f), 0),

(1)
η =

Ω2

r2
r /D?1(f, 0),

(1)

(Ω trχ) =−2∂u(
fΩ2

r
),

(1)

(Ω trχ) = 2
Ω2

r2
[∆S2f−f(1−2Ω2)],

(1)

β =
6MΩ

r4
r /D?1(f, 0),

(1)
% =−6MΩ2

r4
f,

(1)

K =
Ω2

r3
(∆S2f+2f),

(1)
ω and

(1)
ω determined by (134) and

0 =
(1)

/̂g =
(1)

χ̂=
(1)
α =

(1)
α = 0,

(1)

β = 0,
(1)
σ = 0.

We will call f a gauge function.

Remark 6.3. Recall that, as long as Ω2 ·f(u, θ, φ) is smooth in the extended sense

and uniformly bounded, the corresponding pure gauge solution is smooth in the extended

sense all the way to the horizon. In addition, the linearised curvature components and

Ricci coefficients of the above gauge solution satisfy the decay rates (439) towards null

infinity; cf. Remark 6.2.

6.1.4. Pure gauge solutions of the form (f1=0, f2=0, j3, j4)

We finally consider pure gauge solutions of the form (f1=0, f2=0, j3, j4). As we will see,

they will only generate non-trivial values for the metric components
(1)√
/g,

(1)

/̂g and
(1)

b , while

all other quantities of the solution vanish. To discuss these solutions, it will be desirable

to bring the formulas (161)–(164) into a more geometric form. For this, it is useful to

think about the associated underlying coordinate transformation (158) on the sphere as

θ̃A = θA+εjA(v, θ, φ), with θ̃1 = θ̃, θ̃2 = φ̃, θ1 = θ and θ2 =φ,

for a v-dependent vectorfield jA(v, θ, φ) on S2
u,v with components j3 and j4. We can then

solve for each u and v the equation

j= r2 /D?1(−q1,−q2) or, in components, jA = γAB∂Bq1−εAC∂Cq2,

for a pair of functions (q1(v, θ, φ), q2(v, θ, φ)). Note that q1 and q2 do not depend on u,

as there is no u-dependence, if the equation is written with indices upstairs. Note that

q1 and q2 are unique, up to their spherical mean. The following lemma parametrises the

pure gauge solutions of the title in terms of smooth functions q1(v, θ, φ) and q2(v, θ, φ),

which, by the above considerations, exploit the full freedom given by j3 and j4.
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Lemma 6.1.3. For any smooth functions q1(v, θ, φ) and q2(v, θ, φ), the following is

a pure gauge solution of the system of gravitational perturbations:

(1)

/̂g = 2r2 /D?2 /D
?
1(q1, q2),

(1)√
/g√
/g

= r2 /∆q1,
(1)

b = r2 /D?1(∂vq1, ∂vq2),

while the linearised metric coefficient
(1)

Ω, as well as all linearised connection coefficients

and curvature components vanish.

Proof. Note that, since
(1)

b with indices upstairs does not depend on the variable u,

(133) indeed holds. The equations (131) and (132) are also readily checked, and the

remaining equations hold trivially.

6.2. A 4-dimensional reference linearised Kerr family K

The other class of interesting special solutions which we shall identify corresponds to

the 4-dimensional family that arises by linearising 1-parameter representations of Kerr

(which of course solves the non-linear equations (75)) around Schwarzschild in an ap-

propriate coordinate system. We will present such a family here, giving first in §6.2.1 a

1-dimensional linearised Schwarzschild family, and then in §6.2.2 a 3-dimensional family

corresponding to Kerr with fixed mass M .

6.2.1. Linearised Schwarzschild solutions

We begin by reminding the reader that, in view of the pure gauge solutions identified in

§6.1, there is no unique way of identifying a 1-parameter family of linearised Schwarzschild

solutions. This uniqueness up to pure gauge solutions is reflected in the choice of double

null coordinates in which one linearises the 1-parameter Schwarzschild family. A par-

ticularly simple such choice is given by writing the 1-parameter Schwarzschild family in

rescaled null coordinates

gM = 4M2

(
−4

(
1− 1

x

)
dû dv̂+x2dσ2

)
, (169)

with x defined via the relation (x−1)ex=ev̂−û. Note that, setting r=2Mx, u=2Mû

and v=2Mv̂ produces the metric in standard Eddington– Finkelstein coordinates u and

v. Since the x in (169) does not depend on M at all, the linearisation of (169) in the

parameter M is immediate.

One obtains thus a proof of the following proposition (which can alternatively be

proven by directly verifying that the system of linearised gravity is satisfied).
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Proposition 6.2.1. For every m∈R, the following is a (spherically symmetric)

solution of the system of gravitational perturbations (131)–(157) in M:

(1)

/̂g =
(1)

χ̂=
(1)

χ̂=
(1)
α =

(1)
α = 0,

(1)

b =
(1)
η =

(1)
η =

(1)

β =
(1)

β = 0,
(1)

(Ω trχ) = Ω−2
(1)

(Ω trχ) =
(1)
ω =

(1)
ω =σ= 0,

and

2Ω−1
(1)

Ω =−m, tr/g
(1)

/g =−2m,
(1)
% =−2M

r3
·m,

(1)

K =
m

r2
.

We refer to the above 1-parameter family as the reference linearised Schwarzschild solu-

tions.

As mentioned, the above proposition exhibits the family of linearised Schwarzschild

solutions in a particular gauge.

Remark 6.4. With respect to standard Eddington–Finkelstein coordinates (u, v), the

Schwarzschild family is given by

gM =−4

(
1− 2M

rM

)
du dv+(rM )2 dσ2, (170)

with rM defined via (rM/2M−1)erM/2M=e(v−u)/2M . If one linearises (170) with re-

spect to the parameter M fixing the (u, v)-differential structure, one obtains the sum of

the family of Lemma 6.2.1 and the pure-gauge transformation generated by f1=u/2M

and f2=v/2M (and f3=f4=j3=j4=0) in (158), the reason being that the coordinate

transformation relating (u, v) and (û, v̂) mentioned above depends on M itself.

6.2.2. Linearised Kerr solutions leaving the mass unchanged

Recall from the discussion in §2.1.2 that the Kerr family can globally be brought into

the double null form (115) in its exterior. This was achieved in [59] (see also [18]). One

can linearise a 1-parameter representation of the metric in this form with respect to

the angular momentum parameter a=εa, to obtain what we shall call the (reference)

linearised Kerr solution below. Alternatively one can take a shortcut and start from

the Kerr metric expressed in standard Boyer–Lindquist coordinates ignoring all terms

quadratic or higher in a:

gKerr =−
(

1− 2M

r

)
dt2+

dr2

1−2M/r
+r2(dθ2+sin2 θ dφ2)− 4Ma

r
sin2 θ dφ dt+O(a2).
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One can now introduce the standard Eddington–Finkelstein coordinates (u, v) for the

Schwarzschild part and do a coordinate transformation φ 7!φ̃+f(v−u) for an appropriate

function f to bring the metric into the form (115) to first order in ε and still read off the

metric perturbation. Either of these procedures leads to the (m=0 case of the) following

proposition.

Proposition 6.2.2. Let Y `=1
m , for m=−1, 0, 1, denote the spherical harmonics

(108). For any a∈R, the following is a smooth solution of the system of gravitational

perturbations (131)–(157) on M. The non-vanishing metric coefficients are

(1)

bA = (bKerr,m)A =
4Ma

r
/ε
AB∂BY

`=1
m . (171)

The non-vanishing Ricci coefficients are

(1)
ηA = (ηKerr,m)A =

3Ma

r2
/ε
AB∂BY

`=1
m and

(1)
η = ηKerr,m =−ηKerr,m. (172)

The non-vanishing curvature components are

(1)

β =βKerr,m =
Ω

r
ηKerr,m,

(1)

b =βKerr,m =−βKerr,m,
(1)
σ =σKerr,m =

6

r4
aM ·Y `=1

m .

We will refer to this 3-parameter family spanned by the above solutions (m=−1, 0, 1) as

the reference `=1 linearised Kerr solutions.

Note that the above family may be parameterised by the `=1-modes of the curvature

component
(1)
σ .(22)

Proof. To ease notation, we suppress the superscript m for the proof. We first note

that /div bKerr=0 and /D?2bKerr=0, as well as

∂u(bKerr)A = ∂u

(
4Ma

r3
γACε B

C ∂BY
`=1
m

)
=

12MaΩ2

r2
/ε
AB∂BY

`=1 = 2Ω2(ηKerr−ηKerr)A,

where we recall that /g=r2γ and that ε B
A =/ε

B
A does not depend on r. Hence, (131)–(133)

all hold.

Since also /div ηKerr= /div ηKerr=0 and /D?2ηKerr= /D?2ηKerr=0, all null structure equa-

tions (135)–(147) hold trivially except (142) and (146). Note that the Codazzi equations

(145) hold by definition of
(1)

β and
(1)

β in terms of
(1)
η and

(1)
η . To verify (146), we compute

/curl ηKerr = /ε
BA∂Bη

Kerr
A =

3Ma

r2
/ε
BA∂B/ε

C
A ∂CY

`=1
m

=−3Ma

r4
∆S2Y `=1

m =
6

r4
aM ·Y `=1

m =σKerr,

(22) The scalar
(1)
σ has no `=0 mode, as it satisfies the equation

(1)
σ=curl

(1)
η .
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and similarly for ηKerr. To verify (142), we compute

(Ω /∇4r
2ηKerr)A = ∂v(r

2ηKerr
A )−Ω2

r
(r2ηKerr

A ) =−ΩβKerr
A ,

(Ω /∇3r
2ηKerr)A = ∂u(r2ηKerr

A )+
Ω2

r
(r2ηKerr

A ) = ΩβKerr
A .

We finally turn to verifying the Bianchi equations (148)–(157). We first note that the

ones for
(1)
α and

(1)
α , as well as those for

(1)
% , are trivially satisfied. Also,

(Ω /∇4(r4Ω−1βKerr))A = (Ω /∇4(r3ηKerr))A = 0,

(Ω /∇3(r4Ω−1βKerr))A = (Ω /∇3(r3ηKerr))A = 0,

verifying (149) and (156). It remains to check that (150) and (153)–(155) are satisfied.

For the
(1)
σ equations, we note

Ω /∇4(r3σKerr) =− 6

r2
aMΩ2Y `=1

m =−r2σKerrΩ2 =−Ωr3 /curlβKerr,

and similarly for equation (154). We finally verify (150), noting that (155) is verified

analogously:

Ω /∇3(r2ΩβKerr)A = Ω /∇3(rΩ2ηKerr)A

= ∂u

(
3Ma

r
Ω2ε B

A ∂BY
`=1
m

)
+

Ω2

r

(
3Ma

r
Ω2ε B

A ∂BY
`=1
m

)
=

6Ma

r2
Ω2

(
1− 2M

r

)
ε B
A ∂BY

`=1
m − 3Ma

r3
2MΩ2ε B

A ∂BY
`=1
m

= r2Ω2ε B
A ∂Bσ

Kerr− 6M

r
Ω2ηKerr

A .

The reader might wonder why the family in Proposition 6.2.2 is a 3-parameter family

of solutions, while the full Kerr metric with fixed mass is a 1-parameter family. This

can be explained as follows. When writing down the Kerr metric one fixes an axis of

symmetry. Rotations of this axis in space correspond to the same Kerr metric expressed

in different coordinates. At the linear level, if we linearised the metric at a non-trivial

(a 6=0) member of the Kerr family, this would manifest itself in the existence of non-

trivial pure gauge solutions corresponding to a rotation of the axis. In contrast, here

we are linearising with respect to the spherically symmetric Schwarzschild metric. The

associated pure gauge solutions of rotating the axis are then trivial in view of the isometry

group of the round sphere. Hence, we must see three “basis” Kerr metrics which cannot

be connected by a pure gauge transformation. Note the aforementioned trivial pure gauge

solutions are seen as (q1=0, q2=Y 1
m) generating the trivial solution in Lemma 6.1.3.

Finally, let us combine the 1-dimensional space of reference linearised Schwarzschild

solutions and the 3-dimensional space of reference `=1 linearised Kerrs in the following

definition.
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Definition 6.1. Let m, s−1, s0 and s1 be four real parameters. We call the sum of

the solution of Proposition 6.2.1 with parameter m and the solution of Proposition 6.2.2

satisfying σKerr=
∑
m smY

`=1
m the reference linearised Kerr solution with parameters

(m, s−1, s0, s1), and denote it by Km,si , or simply K .

7. The Teukolsky and Regge–Wheeler equations and the gauge invariant

hierarchy

In this section, we will introduce the celebrated spin ±2 Teukolsky equations and the

Regge–Wheeler equation and explain the connection between the two and their relation

to the full system of linearised gravity.

We begin in §7.1 by defining the above three equations, considering them as second

order hyperbolic partial differential equations (PDEs) for independent unknowns α, α

and P , independently that is of the system of gravitational perturbations. In §7.2, we

shall state a well-posedness theorem for the characteristic initial value problem for these

equations. We then introduce in §7.3 a fundamental transformation mapping solutions α,

α of the spin ±2 Teukolsky equations to solutions P , P of the Regge–Wheeler equation.

This transformation will play a key role in understanding solutions to the Teukolsky

equation itself. As was remarked in §2.1.5, this transformation is a physical space version

of transformations appearing in Chandrasekhar [9] for fixed frequencies. Note that §§7.1–

7.3 are independent of §5 and §6.

The relation of the above PDEs with the full system of linearised gravity is finally

explained in §7.4, where we will see that, given a smooth solution of the system of

gravitational perturbations, the curvature components
(1)
α and

(1)
α satisfy the Teukolsky

equation. By the above transformations, this gives rise to
(1)

P and
(1)

P satisfying the Regge–

Wheeler equation. We shall see also (Proposition 7.4.1) how the latter can be re-expressed

in various ways using the Bianchi identities.

7.1. The spin ±2 Teukolsky equations and the Regge–Wheeler equation

The spin ±2 Teukolsky equations concern symmetric traceless Su,v 2-tensors, which we

shall denote by α and α, in anticipation of §7.4. For now, let these be defined on a subset

D⊂M. Note that, with our normalisations, it is natural to assume that the rescaled

quantities Ω2α and Ω−2α are smooth on D, up to and including the horizon D∩H+.

Definition 7.1. Let α be a symmetric traceless S2
u,v 2-tensor defined on a subset

D⊂M such that Ω2α is smooth on D. We say that α satisfies the (tensorial form of the)
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Teukolsky equation of spin +2, if α satisfies the following PDE:

/∇4 /∇3α+
(

1
2 trχ+2ω̂

)
/∇4α+

(
5
2 trχ−ω̂

)
/∇3α− /∆α

+α(5ω̂ trχ−ω̂ trχ−4%+2K+trχ trχ−4ω̂ω̂) = 0.
(173)

Let α be a symmetric traceless S2
u,v-tensor on D such that Ω−2α is smooth on D. We say

that α satisfies the (tensorial form of the) Teukolsky equation of spin −2, if α satisfies

the following PDE:

/∇3 /∇4α+
(

1
2 trχ+2ω̂

)
/∇3α+

(
5
2 trχ−ω̂

)
/∇4α− /∆α

+α(5ω̂ trχ−ω̂ trχ−4%+2K+trχ trχ−4ω̂ω̂) = 0.
(174)

We note that the Teukolsky equation of spin −2 is obtained from that of spin +2 by

interchanging /∇3 with /∇4 and underlined Schwarzschild quantities with non-underlined

ones.

Let us repeat the explicit characterization of smoothness up to the horizon from §5
in terms of Eddington–Finkelstein double null coordinates u and v: An S2

u,v-tensor Θ

extends smoothly to the horizon if, in the spherical coordinate chart, the components

ΘCD are smooth functions of the double null Eddington–Finkelstein coordinates on the

interior Mo, and if, for any n1, n2, n3∈N0 and A∈{1, 2}, the functions

(eu/2M∂u)n1(∂v)
n2(∂θA)n3ΘCD

extend continuously to the boundary H+.

According to Proposition 7.4.1, it will follow that, given a solution S of linearised

gravity, then the quantities
(1)
α and

(1)
α satisfy the spin ±2 Teukolsky equations, respec-

tively. For now, however, we will study the Teukolsky equation in its own right, inde-

pendently of the full system.

The other equation to be defined in this section is the Regge–Wheeler equation, to

be satisfied again by a symmetric traceless S2
u,v-tensor P .

Definition 7.2. Let P be a smooth, symmetric traceless S2
u,v-tensor on D. We say

that P satisfies the (tensorial form of the) Regge–Wheeler equation, if P satisfies the

following PDE:

/∇3 /∇4P+ /∇4 /∇3P−2 /∆P+(5 trχ+ω̂)· /∇4P+(5 trχ+ω̂) /∇3P

+P (4K−(3 trχ+ω̂)2 trχ−4(trχ)2+2 /∇3 trχ−8ω̂ trχ) = 0.
(175)

In §7.3, we shall show that, given solutions α and α of the spin ±2 Teukolsky

equations, respectively, we can derive two solutions P and P , respectively, of the Regge–

Wheeler equation. In view of the above remarks, it follows that we can associate such
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solutions to a solution S of the full system of linearised gravity. As with (173) and (174),

however, for now we shall consider the equation (175) in its own right. We again note

that the Regge–Wheeler equation was first derived in [61] in the context of the theory of

“metric perturbations”.

To bring (175) in a more familiar form, we define the weighted symmetric traceless

S2
u,v-tensors

Ψ = r5P and Ψ = r5P , (176)

and conclude

Corollary 7.1. If P satisfies the Regge–Wheeler equation, then the weighted sym-

metric traceless S2
u,v-tensor Ψ=r5P satisfies the equation

Ω /∇3(Ω /∇4Ψ)−
(

1− 2M

r

)
/∆Ψ+VΨ = 0 with V =

(
4

r2
− 6M

r3

)(
1− 2M

r

)
. (177)

Proof. Direct computation using the Schwarzschild background values of §4.2.4.

In the context of the proof of Theorem 1, we will do estimates directly at the level

of the tensorial equation (177).

Remark 7.1. In the literature, the Regge–Wheeler equation is typically stated for a

scalar function f as
1

1−2M/r
∂u∂vf− /∆f−

6M

r3
f = 0.

It is not hard to see that, if two smooth functions f and g satisfy the scalar Regge–

Wheeler equation, then the symmetric traceless tensor φ=r2 /D?2 /D
?
1(f, g) satisfies (177),

the additional factor of 4/r2 appearing from the commutation of the angular operators

with /∆. Note also that one can reconstruct f and g uniquely from φ, up to the `=0, 1

modes.

7.2. The characteristic initial value problem

For completeness, we state here a standard well-posedness theorem for both the Teukolsky

and the Regge–Wheeler equation. In view of future applications, we formulate it in

the context of a characteristic problem: We fix a sphere S2
u0,v0

in M and consider the

outgoing Schwarzschild light cone Cu0
={u0}×{v>v0}×S2 and the ingoing light cone

Cv0
={u>u0}×{v0}×S2 on which the data are being prescribed. In our convention, Cv0

includes the horizon sphere S2
∞,v0

.

We begin with the spin ±2 Teukolsky equations.
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Theorem 7.1. (Well-posedness for Teukolsky of spin +2) Given a sphere S2
u0,v0

with corresponding null cones Cu0
and Cv0

, prescribe

• along Cv0
a symmetric traceless S2

u,v-tensor α
�,in, such that Ω2α

�,in is smooth;

• along Cu0
a smooth symmetric traceless S2

u,v-tensor α
�,out satisfying α

�,out=α
�,in

on S2
u0,v0

.

Then, there exists a unique smooth symmetric traceless S2
u,v 2-tensor Ω2α defined

on M∩{u>u0}∩{v>v0} such that

• α satisfies the Teukolsky equation of spin +2 (173) in M∩{u>u0}∩{v>v0};
• Ω2α

∣∣
Cu0

=Ω2α
�,in and α

∣∣
Cv0

=α
�,out.

We emphasise that, in our convention, the set M∩{u>u0}∩{v>v0} includes the

intersection H+∩{v>v0}.

Theorem 7.2. (Well-posedness for Teukolsky of spin −2) Theorem 7.1 holds re-

placing all α by α, all Ω2 by Ω−2 and (173) by (174) in the above statement.

The well-posedness statement for the Regge–Wheeler equation (175) is entirely anal-

ogous.

Theorem 7.3. (Well-posedness for Regge–Wheeler) Given a sphere S2
u0,v0

with cor-

responding null cones Cu0 and Cv0 , prescribe

• along Cv0
a smooth symmetric traceless S2

u,v-tensor P
�,in;

• along Cu0
a smooth symmetric traceless S2

u,v-tensor P
�,out satisfying P

�,out=P
�,in

on S2
u0,v0

.

Then, there exists a unique smooth symmetric traceless Su,v 2-tensor P defined on

M∩{u>u0}∩{v>v0} such that

• P satisfies the Regge–Wheeler equation (175) in M∩{u>u0}∩{v>v0};
• P

∣∣
Cu0

=P
�,in and P

∣∣
Cv0

=P
�,out.

The proof of all theorems above are easily obtained following [12] and [33]. See

also [62].

7.3. The transformation theory: Definitions of ψ, ψ, P and P

We now describe a transformation theory relating solutions of the Teukolsky equations

to solutions of the Regge–Wheeler equation.

Given a solution α of the Teukolsky equation of spin +2, we can define the following
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derived quantities:

ψ :=− 1

2rΩ2
/∇3(rΩ2α), (178)

P :=
1

r3Ω
/∇3(ψr3Ω). (179)

Similarly, given a solution α of the Teukolsky equation of spin −2, we can define the

following derived quantities:

ψ :=
1

2rΩ2
/∇4(rΩ2α), (180)

P :=− 1

r3Ω
/∇4(ψr3Ω). (181)

These quantities are again symmetric traceless S2
u,v 2-tensors.

The following proposition can be proven by a straightforward computation.

Proposition 7.3.1. Let α be a solution of the Teukolsky equation of spin +2 on

M∩{u>u0}∩{v>v0}, as arising from Theorem 7.1. Then, the symmetric traceless ten-

sor P as defined through (178) and (179) satisfies the Regge–Wheeler equation on the

intersection M∩{u>u0}∩{v>v0}.
Now, let α be a solution of the Teukolsky equation of spin −2 on the intersection

M∩{u>u0}∩{v>v0} as arising from Theorem 7.2. Then, the symmetric traceless ten-

sor P as defined through (180) and (181) satisfies the Regge–Wheeler equation on the

intersection M∩{u>u0}∩{v>v0}.

We note that Fourier space analogues of the above transformations were first dis-

covered by Chandrasekhar [9], who also discussed differential transformations mapping

solutions of Regge–Wheeler to solutions of Teukolsky. In this paper, however, it is the

physical space structure of the above transformations which we shall exploit, in particular,

the fact that they can be interpreted as transport equations, which allow α (respectively

α) to be recovered from P (respectively P ) and initial data.

7.4. The connection with the system of gravitational perturbations

We will now finally relate the equations presented above to the full system of linearised

gravity.

Let S be a smooth solution of the system of gravitational perturbations, and recall

the quantities
(1)
α and

(1)
α of §5.2.1. Note that both these symmetric traceless S2

u,v 2-tensors

are gauge invariant in the sense that any of the pure gauge solutions discussed in §6.1

satisfies
(1)
α=

(1)
α=0. The latter fact can be checked directly from (161)–(164). We note
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also that
(1)
α and

(1)
α vanish for the 4-dimensional reference linearised Kerr family of §6.2.

We will in fact show in Appendix B.1 that, provided that S is asymptotically flat (see

§8.3), then the vanishing identically of
(1)
α and

(1)
α implies that S is a sum of a pure gauge

solution and a reference linearised Kerr.

Remarkably, as was first shown by Bardeen–Press [4],
(1)
α and

(1)
α satisfy the Teukolsky

equation of spin +2 and spin −2 respectively. Combining this fact with results of the

previous section yields the following.

Proposition 7.4.1. Let S be a smooth solution of the system of gravitational per-

turbations on a domain D⊂M, and consider the curvature components
(1)
α and

(1)
α which

are part of the solution S. Then,
(1)
α satisfies the Teukolsky equation of spin 2, and

(1)
α satisfies the Teukolsky equation of spin −2. Moreover, the derived quantities (178)–

(181) that are defined for any solution of the Teukolsky equation, now denoted
(1)

ψ,
(1)

P and
(1)

ψ,
(1)

P , can also be re-expressed in terms of derivatives of curvature components and Ricci

coefficients, using the Bianchi and null structure equations. We have

(1)

ψ= /D?2
(1)

β+ 3
2%

(1)

χ̂ and
(1)

ψ= /D?2
(1)

β− 3
2%

(1)

χ̂, (182)

as well as
(1)

P = /D?2 /D
?
1(− (1)

% ,
(1)
σ )+ 3

4% trχ(
(1)

χ̂−
(1)

χ̂), (183)
(1)

P = /D?2 /D
?
1(− (1)

% ,−(1)
σ )+ 3

4% trχ(
(1)

χ̂−
(1)

χ̂). (184)

Proof. The equation for
(1)
α is easily derived from taking a 4-derivative of (148) and

using (149), (139) and (103). The equation for
(1)
α follows from taking a 3-derivative of

(157) and using (156). The identities for
(1)

ψ and
(1)

ψ are immediate from (148) and (157).

To see the identity for
(1)

P , one uses the Bianchi equation (155) and the null structure

equation (141), as well as the formulas of §4.3.2, to obtain

/∇4

(1)

ψ= /D?2(/D?1(
(1)
% ,

(1)
σ )−3

(1)
η%−trχ

(1)

β−ω̂
(1)

β )− 1
2 trχ /D?2

(1)

β

+ 9
4% trχ

(1)

χ̂− 3
2%(−ω̂

(1)

χ̂− 1
2 trχ

(1)

χ̂− 1
2 trχ

(1)

χ̂−2/D?2
(1)
η )

= /D?2 /D
?
1(

(1)
% ,

(1)
σ )− 3

4% trχ (
(1)

χ̂−
(1)

χ̂)− 3
2 trχ (/D?2

(1)

β− 3
2%

(1)

χ̂ )−ω̂(/D?2
(1)

β− 3
2%

(1)

χ̂ ).

(185)

The computation for
(1)

P is completely analogous.

Remark 7.2. In view of the gauge invariance of
(1)
α and

(1)
α in the sense above, it follows

from the definitions (178)–(181) that the quantities
(1)

P ,
(1)

P ,
(1)

ψ and
(1)

ψ are also manifestly

gauge invariant. We note however (see Appendix B.2) that there exist asymptotically

flat solutions S which are not pure gauge such that
(1)

P and
(1)

P identically vanish.
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The fact that
(1)

P and
(1)

P above satisfy the Regge–Wheeler equation (175), together

with the relations (178)–(181), but also (182)–(184), will be the key to estimating the

Teukolsky equations and unlocking the system of linearised gravity.

8. Initial data and well-posedness of linearised gravity

We turn in this section to the well-posedness of the system of linearised gravity of §5.2.

We first describe how to prescribe initial data in §8.1 below. Then, we shall formulate

the well-posedness theorem in §8.2. Finally, in §8.3, we define what it means for data to

be asymptotically flat.

8.1. Seed data on an initial double null cone

In this section, we describe how to prescribe initial data for the system of gravitational

perturbations derived in §5.

The setting will be that of a characteristic initial value problem: We fix a sphere

S2
u0,v0

in M, and consider the outgoing Schwarzschild light cone Cu0
={u0}×{v>v0}×

S2 and the ingoing light cone Cv0
={u>u0}×{v0}×S2 on which the data are being

prescribed. Initial data are determined by so-called “seed data” that can be prescribed

freely. Recall that, in our convention, Cv0
includes the horizon sphere S2

∞,v0
. The

definition of seed data is given below. We remark that this is essentially a linearised

version of the prescription given in [11].

Definition 8.1. Given a sphere S2
u0,v0

with corresponding null cones Cu0
and Cv0

, a

smooth seed initial data set consists of prescribing

• along Cv0
a smooth symmetric traceless S2

u,v 2-tensor
(1)

/̂g�,in(u, θ, φ);

• along Cu0
a smooth symmetric traceless S2

u,v 2-tensor
(1)

/̂g�,out(v, θ, φ);

• along Cv0
a smooth function Ω−1

(1)

Ω
�,in(u, θ, φ);

• along Cu0
a smooth function

(1)

Ω
�,out(v, θ, φ);

• along Cu0
a smooth S2

u,v-1-form
(1)

b
�
(v, θ, φ);

• on the sphere S2
∞,v0

a smooth function Ω−2
(1)

(Ω trχ)
�

(θ, φ);

• on the sphere S2
∞,v0

a smooth function tr/g
(1)

/g �
(θ, φ);

• on the sphere S2
∞,v0

a smooth function
(1)

(Ω trχ)
�

(θ, φ);

• on the sphere S2
∞,v0

a smooth 1-form
(1)
η
�
(θ, φ).
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We emphasise that since by our convention that Cv0
includes S2

∞,v0
, smoothness is

to be understood above geometrically, up to and including the horizon.

8.2. The well-posedness theorem

We can now state the fundamental well-posedness theorem for linearised gravity on

Schwarzschild:

Theorem 8.1. (Well-posedness) Fix a sphere S2
u0,v0

and consider a smooth seed

initial data set as in Definition 8.1. Then, there exists a unique smooth solution

S = (
(1)

/̂g ,
(1)√
/g,

(1)

Ω,
(1)

b,
(1)

(Ω trχ),
(1)

(Ω trχ),
(1)

χ̂,
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω ,

(1)
ω ,

(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α,

(1)

K)

of linearised gravity defined in M∩{u>u0}∩{v>v0} which agrees with the seed data on

Cu0
and Cv0

.

Remark 8.1. Recall that from §5.2.1 that our notion of smoothness includes the

statement that the weighted quantities (130) of S extend smoothly to H+∩{v>v0}.
Note that our initial smoothness assumptions on the weighted quantities Ω−1

(1)

Ω
�,in, etc.,

is indeed consistent with this.

Proof. We give a brief outline, exploiting Theorem 7.1, leaving the details to the

reader.

First, we show that the equations uniquely determine from seed data all dynamical

quantities on Cu0
∪Cv0

such that all tangential equations are satisfied. (This is in fact

implicitly carried out in Appendix A.)

Now, since by Proposition 7.4.1, given a solution S, the quantities
(1)
α and

(1)
α satisfy

the spin ±2 Teukolsky equations, we can determine these globally from their initial values

on Cu0
∪Cv0

by applying Theorem 7.1. Once these are determined we may order a subset

of the remaining equations hierarchically so all remaining quantities are determined by

the previous by integrating transport equations or by taking derivatives. For instance,

given
(1)
α and

(1)
α , then (139) can be integrated as a linear o.d.e. to determine

(1)

χ̂ and
(1)

χ̂ from

seed data. (Note that the projection to the `=0, 1 modes behaves differently to the rest;

cf. §9.5.) Finally, the fact that the tangential equations hold initially on Cu0
∪Cv0

can be

used to show that the complete system of equations, i.e. not just those used to construct

the solution, is satisfied (“propagation of constraints”).
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8.3. Pointwise asymptotic flatness

As we shall see, our main boundedness theorem (Theorem 3) is most naturally formu-

lated in terms of a solution
∨
S arising from Theorem 8.1, where the seed data satisfy

certain “gauge normalisation conditions” (see §9.1) and such that certain weighted en-

ergy quantities are bounded (see the norms in §10.1.1 and §10.3.1). A sufficient condition

which ensures that given a general solution S arising from non-normalised seed data as

in Theorem 8.1, a solution
∨
S can be associated with S (by addition of a pure gauge

solution) satisfying the assumptions of Theorem 3 is to assume pointwise asymptotic

flatness on the seed data. (See the statement of Theorem 9.1.) We give the relevant

definition of this notion in this section.

To keep the notation concise, we first define the following derived quantities along

Cu0
from a smooth seed initial data set as in Definition 8.1:

2
(1)

χ̂
�,out = /∇4

(1)

/̂g�,out−2Ω−1 /D?2
(1)

b
�
,

which is a symmetric traceless S2
u,v 2-tensor,

2
(1)
α
�,out = r−2Ω /∇4(r2Ω−1 /∇4

(1)

/̂g�,out−2Ω−2r2 /D?2
(1)

b
�
),

which is a symmetric traceless S2
u,v 2-tensor,

(1)
ω

�
= ∂v(Ω

−1
(1)

Ω
�,out),

which is a scalar function. Note that these quantities are uniquely determined in terms

of the seed data.

Let us also agree on a shorthand notation to handle higher derivatives. For an

S2
u,v-tensor ξ of rank n on M, we define, for any n1>0 and n2>0,

Dn1,n2
ξ= (r /∇)n1(rΩ /∇4)n2ξ,

producing an S2
u,v-tensor of rank n+n1 on M.

We may now state our pointwise notion of asymptotic flatness.

Definition 8.2. We call a seed initial data set asymptotically flat with weight s to

order n provided the seed data satisfies the following estimates along Cu0
for some 0<s61

and any n1>0 and n2>0 with n1+n26n:

|Ω−1
(1)

Ω
�,out|+|Dn1,n2

(r2+s(1)ω
�
)|6C

�,n1,n2
(186)

|Dn1,n2
(r

(1)

b
�
)|6C

�,n1,n2
, (187)

|
(1)

/̂g�,out|+|Dn1,n2
(r2

(1)

χ̂
�,out)|+|Dn1,n2

(r3+s(1)α
�,out)|6C�,n1,n2

, (188)

for some constant C
�,n1,n2

depending on n1 and n2. We say that the seed data are

asymptotically flat to all orders if the above bounds hold for any n.
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Observe that a trivial choice to construct (physically interesting) asymptotically flat

seed data is to choose
(1)

/̂g�,out of compact support on Cu0 , and

Ω−1
(1)

Ω
�,out≡ 0 and

(1)

b
�
≡ 0

along Cu0
.

We will show in Theorem A.1 of Appendix A that asymptotically flat seed data lead

in particular to a hierarchy of decay for all quantities that moreover propagates under

evolution by Theorem 8.1.

9. Gauge-normalised solutions and identification of the Kerr parameters

In this section, we define the two gauge-normalisations which will play a fundamental

role in this paper and we identify the correct linearised Kerr parameters of a general

asymptotically flat solution S to our system.

We first define in §9.1 what it means for a solution S to be initial-data normalised.

(This condition can be read explicitly from the seed data.) Our main boundedness

theorem (Theorem 3 of §10.3) will then concern such normalised solutions.

We then show, in §9.2, that given a solution S arising from asymptotically flat

seed data in the sense of Definition 8.2 above, we can indeed associate with it an initial

data-normalised solution
∨
S, which is realised by adding to S a pure gauge solution

∨
G .

Importantly,
∨
G can be explicitly determined by the seed data of S and is itself asymp-

totically flat in the sense of Definition 8.2. This result is stated as Theorem 9.1.

We next define in §9.3 a renormalised solution
∧

S realised by the addition of an

additional pure gauge solution
∧

G determined by the behaviour of
∨
S along the event

horizon. We will call
∧

S the horizon-renormalised solution, and it will be the object of

our main decay theorem (Theorem 4 of §10.4). As opposed to the pure gauge solution

defining
∨
S, the pure gauge solution defining

∧
S is not explicitly computable from the

seed data of S. Only in the final proof of the decay theorem will we show that the

pure gauge solution defining
∧

S is itself bounded (with the appropriate weights near null

infinity) by the seed data of
∨
S.

In §9.4, we prove several global properties satisfied by the solutions
∨
S and

∧
S that

will be exploited later.

Finally, in §9.5, we show that the projection of
∨
S to the `=0, 1 modes defines

a unique linearised Kerr solution Km,si . This is the statement of Theorem 9.2. In

particular, the final Kerr parameters can indeed be read off from initial data.



the linear stability of the schwarzschild solution 85

9.1. Initial-data normalised solutions
∨
S

In this section we define the notion of an initial-data normalised solution. As we will

show in Theorem 9.1 below, given a seed initial data set and its associated solution S,

we can find a pure gauge solution G such that the initial data for the sum S +G satisfies

all of these conditions.

Definition 9.1. Consider a seed data set as in Definition 8.1 and let S be the

resulting solution given by Theorem 8.1. We say that the initial data satisfies

• the lapse and shift condition if

∂u(Ω−1
(1)

Ω) =
(1)
ω = 0 along the null hypersurface Cv0 ,

∂v(Ω
−1

(1)

Ω) =
(1)
ω = 0 along the null hypersurface Cu0

,

(189)

(1)

bA = 2
3r

3/ε
AB∂B

(1)
σ `=1 along the null hypersurface Cu0

. (190)

• the round sphere condition at infinity provided

lim
v!∞

r2
(1)

K`>2(u0, v, θ, φ) = 0 along the null hypersurface Cu0
, (191)

lim
v!∞

r2 /D?2 /D2

(1)

/̂g (u0, v, θ, φ) = 0 along the null hypersurface Cu0 . (192)

• the horizon gauge conditions if the following hold on SH :=S2
∞,v0

:

(1)

(Ω trχ) = 0, (193)
(1)
%− (1)

% `=0+ /div
(1)
η = 0, (194)

• the auxiliary gauge conditions if the following holds on SH :=S2
∞,v0

:

2Ω−1
(1)

Ω|`=0 = 4M2 (1)
% `=0, (195)

2Ω−1
(1)

Ω|`=1 = 0, (196)

1

Ω2

(1)

(Ω trχ)
`=0,1

= 0, (197)

(1)√
/g`=1

= 0. (198)

Finally, we call the solution S initial-data normalised if it satisfies all gauge condi-

tions (189)–(198) above. We typically will denote such solutions by
∨
S.

We note that the above conditions can all be written explicitly in terms of the seed

data. The auxilliary gauge conditions are related to chosing a centre of mass frame.

We also immediately note, by straightforward computation, the following result.

Proposition 9.1.1. The reference Kerr solutions K of Definition 6.1 are initial

data normalised.
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9.2. Achieving the initial-data normalisation for a general S

In this section, we prove the existence of a pure gauge solution
∨
G such that, upon

adding these to a given solution S arising from regular asymptotically flat seed data,

the resulting solution
∨
S is generated by data satisfying all conditions of §9.1. This will

define the initial-data normalised solution.

Theorem 9.1. Consider a seed data set as in Definition 8.1 and let S be the

resulting solution given by Theorem 8.1. Assume that the seed data are asymptotically

flat with weight s to order n>10, as in Definition 8.2.

Then there exists a pure gauge solution
∨
G , explicitly computable from the seed data

of S, such that the sum

∨
S

.
= S +

∨
G

is initial-data normalised, i.e. all gauge conditions (189)–(198) of Definition 9.1 hold

for
∨
S. The pure gauge solution

∨
G is unique and arises itself from seed data which are

asymptotically flat to order n−2.

9.2.1. Overview of the proof of Theorem 9.1

The proof of Theorem 9.1 requires a few preparatory propositions, collected in the four

§§9.2.2–9.2.5. The proof proper will then be carried out in §9.2.6. For the propositions,

we make frequent use of Lemmas 6.1.1–6.1.3. Let us describe briefly what is achieved in

each individual section:

(1) In §9.2.2 we prove that the families of Lemmas 6.1.1 and 6.1.2 can generate pure

gauge solutions with arbitrary prescribed linearised lapse Ω−1
(1)

Ω along a double null-cone

Cu0
∪Cv0

emanating from a fixed sphere S2
u0,v0

. Such a solution will clearly be useful to

achieve (189), (195) and (196).

(2) The question of uniqueness of such pure gauge solutions is then addressed in

§9.2.3. In view of the linearity of the theory, this is equivalent to understanding all

gauge solutions generated by Lemmas 6.1.1 and 6.1.2, which do not change Ω−1
(1)

Ω on

Cu0
∪Cv0

. It turns out that uniqueness holds within the class of pure gauge solutions

of Lemmas 6.1.1 and 6.1.2 up to specifying three free functions on a fixed sphere. The

reason for this freedom essentially arises from integration “constants” when imposing

the vanishing of (162) along Cu0
∪Cv0

. These free functions can essentially (up to `=0, 1

modes) be used to prescribe the horizon gauge conditions (193) and (194), and the round

sphere condition (191). We remark that the `=0 modes require a special treatment, as

one needs to address the existence of the reference linearised Schwarzschild solutions,

which requires special care in achieving (195) and (197).
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(3) Having fully exploited the special gauge solutions of Lemmas 6.1.1 and 6.1.2 in

the first two steps above, we turn to Lemma 6.1.3. Note that such pure gauge solutions

only generate non-trivial values for
(1)

/̂g ,
(1)√
/g and

(1)

b , hence they do not interfere with the

gauge conditions in the first two steps above. In §9.2.4 we construct a pure gauge solution

which will allow us to achieve (190), the gauge solution being unique up to a pure gauge

solution changing only
(1)

/̂g and
(1)√
/g.

(4) In §9.2.5 we finally exploit the “residual freedom” mentioned at the end of (3)

to construct a pure gauge solutions allowing us to achieve (198) and (192).

9.2.2. Pure gauge solutions with prescribed initial lapse

We show that we can use Lemmas 6.1.1 and 6.1.2 to obtain a pure gauge solution G with

prescribed linearised lapse Ω−1
(1)

Ω on Cu0
∪Cv0

.

Proposition 9.2.1. Fix a sphere S2
u0,v0

in M with corresponding outgoing cone

Cu0
and ingoing cone Cv0

. Let Ωout(v, θ, φ) be a bounded smooth function on Cu0

and Ωin(u, θ, φ) be a bounded function, smooth in the extended sense on Cv0
, such that

Ωin(u0, θ, φ)=Ωout(v0, θ, φ) holds on the sphere S2
u0,v0

. Then, there exists a pure gauge

solution G of the system of gravitational perturbations such that

2Ω−1
(1)

Ω(u0, v, θ, φ) = Ωout(v, θ, φ) and 2Ω−1
(1)

Ω(u, v0, θ, φ) = Ωin(u, θ, φ).

Proof. Let fout be a function along Cu0
determined as the solution to the ODE (for

each θ and φ)

∂vfout+
2M

r2(u0, v)
fout = Ωout−

1

2
Ωin(u0, θ, φ) fout(v0, θ, φ) = 0. (199)

Let fin be a function along Cv0
determined as the solution to the ODE

∂ufin−
2M

r2(u, v0)
fin = Ωin−

1

2
Ωout(v0, θ, φ) fin(u0, θ, φ) = 0.

We claim that the pure gauge solution generated by applying Lemma 6.1.1 with fout

added to the pure gauge solution generated by applying Lemma 6.1.2 with fin, yields the

desired solution. To see this, we compute

2Ω−1
(1)

Ω = ∂vfout+
2M

r2(u, v)
fout+∂ufin−

2M

r2(u, v)
fin

=− 2M

r2(u0, v)
fout+Ωout−

1

2
Ωin(u0, θ, φ)+

2M

r2(u, v)
fout

+
2M

r2(u, v0)
fin+Ωin−

1

2
Ωout(v0, θ, φ)− 2M

r2(u, v)
fin,
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and hence

2Ω−1
(1)

Ω(u0, v, θ, φ) = Ωout(v, θ, φ) and 2Ω−1
(1)

Ω(u, v0, θ, φ) = Ωin(v0, θ, φ).

Writing out the explicit solution of the ordinary differential equation (199), one also

deduces from Lemma 6.1.1 the following corollary (cf. Remark 6.2).

Corollary 9.1. If the function Ωout on the outgoing cone Cu0
arises as the quan-

tity Ω−1
(1)

Ω
�,out of a seed data set which is asymptotically flat to order n>2, i.e. in partic-

ular (186) holds, then the pure gauge solution G constructed in Proposition 9.2.1 arises

itself from seed data which are asymptotically flat to order n−2.

Proof. For fout one easily checks the required estimates (186)–(188) on Cu0 from

Lemma 6.1.1, in particular that |fout/r| and |r2∂vfout/r| are uniformly bounded. For

fin one uses Lemma 6.1.2 and the fact that fin is uniformly bounded with fin=0 for

u=u0.

For later purposes, we also note the following special case of Proposition 9.2.1.

Corollary 9.2. Let m∈R. The functions

fout(v) = 1
2mΩ−2(u0, v)[r(u0, v)−r(u0, v0)],

fin(u) = 1
2mΩ−2(u, v0)[−r(u, v0)+r(u0, v0)]

generate a (spherically symmetric) pure gauge solution satisfying 2Ω−1
(1)

Ω=m along both

Cu0 and Cv0 . It furthermore satisfies

(1)
% (∞, v0, θ, φ) =− 3

(2M)3

m

2
(r(u0, v0)−2M),

(1)

(Ω trχ)(∞, v0, θ, φ) =− 1

4M2
m(r(u0, v0)−2M),

Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) =− 1

2M
m· r(u0, v0)

2M
.

(200)

Proof. Direct computation using Lemmas 6.1.1 and 6.1.2. For (200) recall that

fout(v0)=0.

9.2.3. Pure gauge solutions with vanishing initial lapse

In this section we explicitly parametrise the space of (the sum of) all special gauge

transformations arising from Lemmas 6.1.1 and 6.1.2, which satisfy the condition

Ω−1
(1)

Ω = 0 along both Cu0
and Cv0

. (201)
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Lemma 9.2.1. Let h1, h2 and h3 be smooth functions on the unit sphere and let

R:=r(u0, v0). Then,

f1(u, θ, φ) =
1

Ω2(u, v0)

(
h2(θ, φ)r(u, v0)+h3(θ, φ)− 2M

r(u, v0)
h1(θ, φ)

)
,

f2(v, θ, φ) =
1

Ω2(u0, v)Ω2(u0, v0)

[
h2(θ, φ)

(
r(u0, v)

(
1− 4M

R

)
− 2M

r(u0, v)
R−R+6M

)
+h1(θ, φ)

(
2M

R2
r(u0, v)+

4M2

Rr(u0, v)
+1− 6M

R

)
+h3(θ, φ)

(
−2M

R2
r(u0, v)− 2M

r(u0, v)
+

4M

R

)]
,

and j3≡j4≡0 generates a pure gauge solution satisfying (201). Moreover, any pure gauge

solution in Proposition 6.1.1 satisfying j3=j4=0 as well as (201) is of the form above.

Before we embark on the proof, note that the function f1(u, θ, φ)·Ω2(u, v) is indeed

smooth in the extended sense on M, since

Ω2(u, v)·Ω−2(u, v0) =
r(u, v0)

r(u, v)
e(−r(u,v)+r(u,v0))/2Me(v−v0)/2M

is smooth in the extended sense.

Proof. We note that f2(v0, θ, φ)=h1(θ, φ), ∂v(f2)(v0, θ, φ)=h2(θ, φ) and

1

Ω2(u, v)
(f1Ω2(u, v))u

∣∣∣∣
v=v0

=−
(
h2(θ, φ)+h1(θ, φ)

2M

r2(u, v0)

)
,

which verifies (162)=0 along Cv0 . Along Cu0 , we compute

1

Ω2(u, v)
(f2Ω2(u, v))v

∣∣∣∣
u=u0

= Ω2(u0, v0)

[
h2(θ, φ)

(
1− 4M

R
+

2M

r2(u0, v)
R

)
+h1(θ, φ)

(
2M

R2
− 4M2

Rr2(u0, v)

)
+h3(θ, φ)

(
−2M

R2
+

2M

r2(u0, v)

)]
,

which verifies (162)=0 along Cu0 , after observing that

(f1)u(u0, θ, φ)− 2M

r2(u0, v)
f1(u0, θ, φ)

=
1

Ω2(u0, v0)

[(
− 2M

r2(u0, v)
+

2M

R2

)(
h2(θ, φ)R+h3(θ, φ)− 2M

R
h1(θ, φ)

)
−
(
h2(θ, φ)+

2M

R2
h1(θ, φ)

)(
1− 2M

R

)]
.
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For the uniqueness assertion note that an arbitrary pure gauge solution f1, f2, j3=0,

j4=0 satisfying (201) is uniquely determined by specifying f2(v0, θ, φ), ∂vf2(v0, θ, φ) and

f1(u0, θ, φ) via elementary ODE theory applied to (162)=0 along Cu0
and Cv0

. On the

other hand, the aforementioned values are seen to be in one-to-one correspondence with

the functions h1, h2 and h3.

Corollary 9.3. The pure gauge solution of Lemma 9.2.1 induces seed initial data

on Cu0
∪Cv0

which is asymptotically flat to any order.

Proof. This follows from carefully going through Lemmas 6.1.1 and 6.1.2. The key

is to note that f1 is uniformly bounded and that f2 satisfies the estimates |f2/r|.1,

|r2∂v(f2/r)|.1 and |r2∂v(r
2∂v(f2/r))|.1, the latter allowing one to obtain the estimates

(186). The statements about higher derivatives in (186)–(188) are then straightforward.

The gauge transformations of Lemma 9.2.1 can be used to prescribe additional geo-

metric quantities on the horizon sphere S2
∞,v0

. We first state the three fundamental

propositions before proving them.

Proposition 9.2.2. Let X1 and X2 be smooth functions on S2
∞,v0

with vanishing

projection to `=0 and `=1. There exists a pure gauge solution G (f1, f2, j3=0, j4=0)

satisfying (201), the round sphere condition (191) and

(1)

(Ω trχ)(∞, v0, θ, φ) =X1,

/div
(1)
η+

(1)
% (∞, v0, θ, φ) =X2.

(202)

Moreover, the functions f1 and f2 of the pure gauge solution (f1, f2, j3=0, j4=0) are

uniquely determined with their projection to `=0 and `=1 vanishing. Finally, the pure

gauge solution induces asymptotically flat (to any order) seed data on Cu0
∪Cv0

.

For the `=1 modes we have an additional degree of freedom which stems from the

fact the round sphere condition is always satisfied as the pure gauge solutions below

cannot alter the linearised Gaussian curvature
(1)

K.

Proposition 9.2.3. Let X1, X2 and X3 be smooth functions on S2
∞,v0

all supported

on `=1 only. There exists a pure gauge solution G (f1, f2, j3=0, j4=0) satisfying (201),

which in addition satisfies

(1)

(Ω trχ)(∞, v0, θ, φ) =X1,

/div
(1)
η+

(1)
% (∞, v0, θ, φ) =X2, (203)

Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) =X3.



the linear stability of the schwarzschild solution 91

Moreover, the functions f1 and f2 of the pure gauge solution (f1, f2, j3=0, j4=0) are

uniquely determined and supported on `=1 only. Finally, the pure gauge solution induces

asymptotically flat (to any order) seed data on Cu0
∪Cv0

.

For the `=0 modes we cannot fix all three geometric quantities on the horizon

independently because of a spherically symmetric degree of freedom that is not pure gauge

and corresponding to a linearised Schwarzschild solution, discussed in §6.2.1. However,

we can combine Lemma 9.2.1 with Corollary 9.2 to prove the following.

Proposition 9.2.4. Let m, X1 and X3 be constants on S2
∞,v0

. There exists a

pure gauge solution G generated by (f1, f2, j3=0, j4=0), with f1 and f2 being spherically

symmetric, which satisfies (189) and in addition

2Ω−1
(1)

Ω(∞, v0, θ, φ) =m, (204)
(1)

(Ω trχ)(∞, v0, θ, φ) =X1, (205)

Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) =X3. (206)

Moreover, f1 and f2 are unique up to a constant f1=f2=λ, and hence the pure gauge so-

lution is unique (as (λ, λ, 0, 0) generates the zero solution). The solution also necessarily

satisfies
(1)
% (∞, v0, θ, φ) =

3

4M
X1.

Finally, the pure gauge solution induces asymptotically flat (to any order) seed data on

Cu0∪Cv0 .

Proof. We will prove Propositions 9.2.2–9.2.4 all at the same time. We first com-

pute from the general solution of Lemma 9.2.1 the following geometric quantities on the

horizon:

(1)

(Ω trχ)(∞, v0, θ, φ) =
1

2M2
[(∆S2−1)(2M ·h2(θ, φ)+h3(θ, φ)−h1(θ, φ))],

( /div
(1)
η+

(1)
% )(∞, v0, θ, φ) =

1

(2M)3
[∆S2(h3(θ, φ)−2h1(θ, φ))

−3(2M ·h2(θ, φ)+h3(θ, φ)−h1(θ, φ))],

Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) =
1

2M2
(∆S2h1(θ, φ)+h1(θ, φ)−h3(θ, φ)).

To prove Proposition 9.2.2, we choose

h3−h1 =h2
R2

2M

(
1− 4M

R

)
. (207)
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One checks that, with this choice, both f1 and f2 (as well as angular derivatives thereof)

are uniformly bounded, hence r3 ·
(1)

K is uniformly bounded and in particular the round

sphere condition (191) holds for any h1, h2 and h3 satisfying (207). Plugging this relation

into the first equation above and recalling that R>2M , we see that the first equation

uniquely determines h2 to satisfy the condition in the proposition. Plugging (207) into

the second equation to isolate h1, we see that we can uniquely solve for h1 to determine

the second condition in the proposition. Of course h3 is determined by (207).

To prove Proposition 9.2.3, we can restrict to `=1. The three equations above then

turn into a simple algebraic system with non-zero determinant which admits a unique

solution for any X1, X2, X3 prescribed.

To prove Proposition 9.2.4, we project to `=0 to see the resulting algebraic system

has 1-dimensional kernel h2=0, h1=h3. It is easy to see that such gauge solutions are

trivial. We now add the pure gauge solution from Corollary 9.2 to the aforementioned

projection to obtain (setting h4=h1−h3)

(1)

(Ω trχ)(∞, v0, θ, φ) =− 1

2M2
(2M ·h2−h4)− 1

4M2
m(R−2M),

Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) =
1

2M2
h4−

1

2M
m
R

2M
,

(1)
% (∞, v0, θ, φ) =− 3

(2M)3
(2M ·h2−h4)− 3

(2M)3

m

2
(R−2M).

Note that the right-hand side of the third is a multiple of the first. It is immediate that

we can solve the first two equations uniquely for h2 and h4, given any left-hand side and

given any m. This provides the statement in the proposition recalling that h2 and h4

do not alter Ω−1
(1)

Ω on Cu0∪Cv0 . The uniqueness follows since (189) and (204) at the

horizon fix Ω−1
(1)

Ω on Cu0∪Cv0 , so the remaining gauge solution must be of the type of

Lemma 9.2.1 projected to `=0. This solution is trivial if

(1)

(Ω trχ)(∞, v0, θ, φ) = Ω−2
(1)

(Ω trχ)(∞, v0, θ, φ) = 0.

Finally, the assertion about asymptotic flatness is a consequence of Corollary 9.3.

9.2.4. Pure gauge solutions with prescribed shift

In this section we exploit pure gauge solutions arising from Lemma 6.1.3, which we recall

only generate non-trivial metric components
(1)

/̂g ,
(1)√
/g and

(1)

b , while all Ricci and curvature

coefficients vanish. In particular, any such pure gauge solution will automatically satisfy

all gauge conditions of Definition 9.1, except (190) and (198).
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Proposition 9.2.5. Let b̃ be a smooth S2
u,v-valued 1-form prescribed along Cu0

.

There exists a pure gauge solution of the type of Lemma 6.1.3, which satisfies

(1)

b = b̃ along Cu0
.

Moreover, except for
(1)

/̂g and
(1)√
/g/
√
/g which are potentially non-vanishing, all linearised

Ricci and curvature components of this pure gauge solution vanish. The solution is

unique up to a pure gauge solution generated by functions q1 and q2 depending only on

the angular variables (Proposition 9.2.6).

Proof. By Lemma 6.1.3 we need to determine q1 and q2 solving

∂v(∆S2q1) =− /div b̃ and ∂v(∆S2q2) =− /curl b̃ along Cu0
, (208)

where ∆S2 =r2 /∆ is defined with respect to the round unit sphere. We can solve these

ODEs uniquely prescribing ∆S2q1 and ∆S2q2 freely (as functions with vanishing mean)

initially at v=v0 accounting for the non-uniqueness asserted in the proposition. The

conclusions now follow from Lemma 6.1.3.

Corollary 9.4. If b̃ in Proposition 9.2.5 satisfies |(r /∇)n1(r /∇4)n2 b̃|.v−1 along

Cu0
for n1+n26n (as is the case when b̃ arises as the quantity

(1)

b
�

of a seed data set

which is asymptotically flat to order n; cf. (187)), then the pure gauge solution induces

data on Cu0
∪Cv0

which are asymptotically flat to order n.

9.2.5. Residual pure gauge solutions

We finally give an explicit parametrisation of the kernel in Proposition 9.2.5, which we

recall is generated by q1 and q2 being smooth functions of the unit sphere the proof of

which is immediate from Lemma 6.1.3.

Proposition 9.2.6. Let q1 and q2 be smooth functions on the unit sphere. Then,

there exists a pure gauge solution satisfying

(1)

/̂g (u, v, θ, φ) = 2r2 /D?2 /D
?
1(q1, q2) and

(1)√
/g√
/g

= r2 /∆q1, (209)

and with all other metric and Ricci coefficients and curvature components globally van-

ishing. In particular, the pure gauge solution is asymptotically flat to any order.

Note the above solutions in particular do not change the linearised Gaussian curva-

ture
(1)

K. We will use them below to bring the metric into “standard form” on the sphere

at infinity, i.e. to achieve (192), once we have (191).
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9.2.6. Proof of Theorem 9.1

We can now prove Theorem 9.1. Let S be as in the proposition.

Applying Proposition 9.2.1 with Ωout=−Ω−1
(1)

Ω
�,out and Ωin=−Ω−1

(1)

Ω
�,in, we achieve

that the sum of the original solution S and the pure gauge solution generated by Propo-

sition 9.2.1 satisfies Ω−1
(1)

Ω=0 along Cu0
∪Cv0

. We denote this solution by S1.

The weighted geometric quantity r2
(1)

K`>2 of the solution S1 converges pointwise with

at least n−4 angular derivatives r /∇ to a smooth function X4(θ, φ) on the unit sphere

along the cone Cu0
as v!∞. This follows from (the first part of) Theorem A.1 in the

appendix and the fact that r2
(1)

K has such a limit for the pure gauge solution applied in

the previous step. Let f̄ be the unique solution of the equation ∆S2 f̄+2f̄=X4 on the

unit sphere which has vanishing projection to `=1.

We now apply Proposition 9.2.1 again, this time with Ωout=f̄ and Ωin=f̄ and add

the resulting pure gauge solution to S1. The solution thus obtained will be denoted S2.

The solution S2 clearly satisfies (189) and also (191), in fact it satisfies

lim
v!∞

((r /∇)kr2
(1)

K`>2[S2](u0, v, θ, φ)) = 0 (210)

for k6n−4. To see the last claim, note that the fout associated with Proposition 9.2.1

precisely cancels the weighted Gaussian curvature r2
(1)

K at infinity of the solution S1, as

can be seen directly from Lemma 6.1.1. On the other hand, the contribution from fin

through Lemma 6.1.2 does not affect r2
(1)

K at infinity since fin is uniformly bounded.

Let now

(1)

(Ω trχ)|S2
∞,v0

=X1, ( /div
(1)
η+

(1)
% )|S2

∞,v0
=X2,Ω

−2
(1)

(Ω trχ)|S2
∞,v0

=X3,

for X1, X2 and X3 smooth functions on the sphere S2
∞,v0

, denote the geometric quantities

on the horizon for S2. We apply Proposition 9.2.2 to generate a pure gauge solution G1

satisfying (189) and (191), and in addition
(1)

(Ω trχ)|S2
∞,v0

=X1−(X1)`=0,1 and

( /div
(1)
η+

(1)
% )|S2

∞,v0
=X2−(X2)`=0,1,

where the notation indicates that the projection to `=0 and `=1 has been removed. We

apply Proposition 9.2.3 to generate a pure gauge solution G2 satisfying (189) and (191)

and in addition
(1)

(Ω trχ)|S2
∞,v0

=(X1)`=1, ( /div
(1)
η+

(1)
% )|S2

∞,v0
=(X2)`=1 and

Ω−2
(1)

(Ω trχ)|S2
∞,v0

= (X3)`=1.
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We apply Proposition 9.2.4 to generate a pure gauge solution G3 which satisfies

(1)

(Ω trχ)|S2
∞,v0

= (X1)`=0, Ω−2
(1)

(Ω trχ)|S2
∞,v0

= (X3)`=0,

2Ω−1
(1)

Ω|S2
∞,v0

= 4M2

(
−(X2)`=0+

3

4M
(X1)`=0

)
,

the last holding on all of Cu0∪Cv0 by (189). By Proposition 9.2.4, the solution necessarily

satisfies
(1)
% |S2

∞,v0
=(3/4M)(X1)`=0.

If we now define the solution S3 :=S2−G1−G2−G3, then this solution satisfies (189),

(191) and also (195), (196) as well as the horizon gauge conditions and the auxiliary

condition (197). One also checks directly that any pure gauge solution of the form

(f1, f2, j3=0, j4=0) with these properties is necessarily trivial.

The solution S3 satisfies
(1)

b=b̃ along Cu0 for some smooth v -valued S2
u0,v-1-form

b̃ along Cu0
. We apply Proposition 9.2.5 for b̃A− 2

3r
3/ε
AB∂B

(1)
σ `=1[S3] and subtract (a

representative of) the pure gauge solution generated by it from S3. We denote the

resulting solution by S4.

The solution S4 satisfies all of the desired gauge conditions except (198) and (192)

and any such solution is determined up to a pure gauge solution of Proposition 9.2.6. The

geometric quantity
(1)

/̂g has a smooth limit along the cone Cu0
and converges to a symmetric

traceless S2
u,v-tensor

(1)

/̂g∞(θ, φ) on the unit sphere. This follows from the assumptions in

Proposition A.1 in conjunction with the constraint equations along Cu0
and the fact

that this is true for all pure gauge transformations applied so far. We solve the elliptic

equation

2r2 /D?2 /D
?
1(q1, q2) =

(1)

/̂g∞(θ, φ)

for q1 and q2 on the unit sphere, which can be done uniquely up to `=0 and `=1 modes

of q1 and q2. Noting that `=0 modes and the `=1 mode of q2 generate trivial pure gauge

solutions, we have determined q1 and q2 up to trivial pure gauge solutions and the three

`=1 modes for q1. Let X5 be the value of
(1)√
/g
`=1

on the horizon sphere S2
∞,v0

of the

solution S4 we determine q1 uniquely by solving ∆S2q1=X4. We now subtract the gauge

solution generated by Proposition 9.2.6 for q1 and q2 as above from S4. We denote the

resulting solution by S5. It is easy to see that all of the desired gauge conditions are

now satisfied. The assertion about
∨
G (and hence

∨
S ) being asymptotically flat follows

from Corollaries 9.1, 9.3 and 9.4.
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9.3. The horizon-renormalised solution
∧

S

As discussed already in §2.1.7, our main decay theorem, Theorem 4, will require passing

to a new gauge normalised from the event horizon values of
∨
S. The following proposition

defines and proves the existence of the horizon-renormalised solution
∧

S .

Proposition 9.3.1. Let
∨
S be an initial-data normalised solution as in Defini-

tion 8.1. Then, there exists a unique pure gauge solution
∧

G of the type of Lemma 6.1.1,

computable from the trace of
∨
S on the event horizon H+, such that the sum

∧
S

.
=
∨
S +

∧
G (211)

has the following properties:

(1) The projection to `>2 of the linearised lapse vanishes along the event horizon

for
∧

S , i.e.

Ω−1
(1)

Ω`>2 = 0 holds along the event horizon H+. (212)

(2) The pure gauge solution
∧

G satisfies

Ω−2
(1)

(Ω trχ)|S2
∞,v0

= 0 and Ω−1
(1)

χ̂|S2
∞,v0

= 0 on the horizon sphere S2
∞,v0

. (213)

(3) The function f generating
∧

G has vanishing projection to `=0, 1.

We call
∧

S the horizon-renormalised solution.

Proof. Let f be determined as the unique solution to the ODE

∂vf+
1

2M
f =−2Ω−1

(1)

Ω`>2[
∨
S ](∞, v, θ, φ) with f(v0, θ, φ) = 0, (214)

where the right-hand side of the ODE denotes the projection to `>2 of the trace of the

linearised lapse of
∨
S along the event horizon. Given f as above, we define

∧
G to be the

pure gauge solution associated by Lemma 6.1.1 and
∧

S =
∨
S +

∧
G . It is easy to check that

∧
S satisfies (212) and

∧
G satisfies (213). The uniqueness statement follows since satisfying

the ODE is a necessary condition for (212) to hold and f(v0, θ, φ)=0 is required by the

expression for Ω−2
(1)

(Ω trχ)|S2
∞,v0

in Lemma 6.1.1.

Remark 9.1. Since f is supported for `>2 only one easily sees from Lemma 6.1.1

and Theorem 9.2 below that in fact one also has Ω−1
(1)

Ω`=1=0 on H+ as this holds both

for a reference linearised Kerr solution and for the solution
∧

G .
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Note that
∧

S still satisfies the horizon gauge conditions (193), (194). Note also that

if we apply the proposition for a reference linearised Kerr solution, i.e. with
∨
S =K ,

then
∧

S =
∧

K =K , so the reference Kerr is both in the initial data and in the horizon

normalised gauge. Another way to say this is that the pure gauge solution
∧

G is not

supported on `=0, 1, the terminology being introduced in Definition 9.2 below.

In contrast to Theorem 9.1 concerning the initial-data normalised solution
∨
S which

states asymptotic flatness for
∨
G , at this point, we do not know that

∧
G enjoys this prop-

erty. Thus, a priori the
∧

S defined by Proposition 9.3.1 may have data which are not

asymptotically flat, even if the data corresponding to
∨
S are asymptotically flat.

While showing that
∧

S is asymptotically flat in this case in the sense of Definition 8.2

would require an improvement of our polynomial decay bounds for gauge invariant quan-

tities and decay estimates at all orders of derivatives, we will prove, in the context of the

proof of Theorem 4, weighted boundedness estimates for
∧

G . See Remarks 10.4 and 10.8.

9.4. Global properties of the gauge-normalised solutions

In this section, we collect some global properties of the system of linearised gravity that

follow for the initial data-normalised and horizon-renormalised solutions
∨
S and

∧
S .

9.4.1. Propagation along the event horizon

We first deduce two conservation laws along the event horizon H+.

Proposition 9.4.1. Consider a seed data set as in Definition 8.1, let S be the

resulting solution given by Theorem 8.1. If S satisfies the horizon gauge conditions

(193) and (194), then we have

(1)

(Ω trχ) = 0 and
(1)
%− (1)

% `=0+ /div
(1)
η = 0 pointwise along H+. (215)

The assumption, and hence the conclusion, holds in particular for the solutions
∨
S and

∧
S defined above.

Proof. We write the linearised Raychaudhuri equation (138) as

∂v(e
−v/2Mr2

(1)

(Ω trχ)) = 0 along H+, (216)

and use the assumption that the quantity in brackets is zero on the initial sphere. To

show the second bound, we note that, using the first, we have the following propagation

equation along H+:

/∇4(r3 (1)
%−r3 (1)

% `=0+r3 /div
(1)
η ) = 0, (217)
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and from (194) we conclude r3 (1)
%−r3 (1)

% `=0+r3 /div
(1)
η=0 pointwise on H+. The claim

about
∨
S is immediate as it satisfies (193) and (194) by definition. The claim about

∧
S

follows since
∧

G satisfies
(1)
η=0 and

(1)

(Ω trχ)=
(1)
%=0 on the horizon H+.

9.4.2. The geometric quantities
(1)

Y and
(1)

Z

In this section we will define two auxiliary quantities which will play a key role later in

the analysis. Specifically, we will later assume uniform boundedness of these quantities

on the initial data and show that this is propagated in evolution.

Besides the definition, we also prove two propositions, which show that the initial

uniform boundedness of these quantities can in fact be deduced for the solution
∨
S arising

from Theorem 9.1.

The quantities are defined as follows:

(1)

Y : = r[r2 /D?2 /div(Ω−1r
(1)

χ̂)−Ω−1r3
(1)

ψ ] = r3 /D?2
(1)
η−3Mr

(1)

χ̂Ω−1+
1

2

r4

Ω2
/D?2 /∇

(1)

(Ω trχ), (218)

(1)

ZA : =
r3

Ω2
/∇A

(1)

(Ω trχ)−2r2(
(1)
ηA+

(1)
ηA) =

r3

Ω2
/∇A
(

(1)

(Ω trχ)− 4

r
Ω2Ω−1

(1)

Ω

)
, (219)

where the non-defining equalities hold for solutions for the system of gravitational per-

turbations.

We start with a proposition on
(1)

Y .

Proposition 9.4.2. Consider a seed data set as in Definition 8.1, which is asymp-

totically flat to order n>12. Let S be the resulting solution given by Theorem 8.1 and let

∨
S be as in Theorem 9.1. Then, the geometric quantity

(1)

Y associated with
∨
S is uniformly

bounded along Cu0
.

Before we prove the proposition, let us remark that we will eventually also prove

that
(1)

Y is bounded for
∧

S , but this will require global boundedness estimates on the pure

gauge solution
∧

G . See Theorem 4.

Proof. One first derives a propagation equation for the Gaussian curvature
(1)

K along

Cu0
which follows by taking a ∂v derivative of (147). This reads schematically

∂v((r /∇)kr2
(1)

K) =Q,

where Q satisfies |Q|6Cr−2 for k6n−5 from the seed data being asymptotically flat to

order n>12; cf. Theorem A.1. Using the round sphere condition at infinity, (191), we ob-

tain that r3
(1)

K is uniformly bounded along Cu0
. Commuting with angular derivatives and
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using that the proof of Theorem 9.1 actually gave (210), one obtains that r2 /D?2 /∇Ar3
(1)

K

is similarly uniformly bounded along Cu0
; cf. (210). One finally looks at the commuted

linearised Gauss equation (147),

r2 /D?2 /∇Ar3
(1)

K = r5 /D?2 /∇A
(1)
%−Ω2

(1)

Y −3MrΩ
(1)

χ̂+ 1
2r

4r2 /D?2 /∇A
(1)

(Ω trχ)−Ω2r3 /D?2
(1)
η ,

which when combined with the decay rates (439) yields boundedness of
(1)

Y .

Remarkably, as we will see, the global uniform boundedness of
(1)

Y is actually propa-

gated by the equations; cf. Proposition 13.4.1.

We now turn to the quantity
(1)

Z above.

Proposition 9.4.3. Consider a seed data set as in Definition 8.1, let S be the

resulting solution given by Theorem 8.1 and let
∨
S be as in Theorem 9.1. Then, the

geometric quantity
(1)

ZΩ−2 associated with
∨
S is uniformly bounded along Cv0

. Moreover,

since
(1)

ZA=−2rΩ2 /∇Af near the horizon for pure gauge solutions of Lemma 6.1.1, the

boundedness statement holds equivalently for
(1)

ZΩ−2 associated with
∧

S .

Proof. Note that, along Cv0
, we have

∂u

(
(1)

(Ω trχ)− 4

r
Ω2Ω−1

(1)

Ω

)
=− 1

M2
Ω−1

(1)

Ω+
1

M2
Ω−1

(1)

Ω+O(Ω4) =O(Ω4),

where we have used the horizon gauge conditions and the lapse gauge condition. The

same statement holds for arbitrary angular commutations. Since the quantity in brackets

vanishes initially on the horizon H+, it actually vanishes to order Ω4 by the estimate.

The fact that
(1)

ZA=−2rΩ2 /∇Af for pure gauge solution of Lemma 6.1.1 is read off directly

from this lemma, so that the last statement follows from recalling that
∧

G =
∧

S −
∨
S arises

from Lemma 6.1.1.

Remarkably, as we will see, the uniform boundedness of
(1)

ZΩ−2 near the horizon is

again actually propagated by the equations; cf. Proposition 13.5.6.

9.5. The projection to the `=0, 1 modes and the Kerr parameters

The initial-data normalisation, as we have defined it, will allow to completely understand

the projection of solutions S to their `=0, 1 modes. The main result of this section is

the following.
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Theorem 9.2. Let S and
∨
S be as in Theorem 9.1. Then the projection of

∨
S to

its `=0, 1 modes (see Definition 9.3) is a reference linearised Kerr solution Km,si , where

the parameters m and si are given by

m=−4M2 (1)
% `=0|S2

∞,v0
, s−1 =

(1)
σ `=1,m=−1|S2

∞,v0
,

s0 =
(1)
σ `=1,m=0|S2

∞,v0
, s1 =

(1)
σ `=1,m=1|S2

∞,v0
.

Here,
(1)
σ `=L,m=S denotes the projection of

(1)
σ to the spherical harmonic Y LS . (Thus, in

particular, solutions S supported only on `=0, 1 are a linearised Kerr plus a pure gauge

solution.)

9.5.1. The projection to `=0, 1

We begin with the following definition.

Definition 9.2. We say that a solution S of the system of gravitational perturbations

is supported only on `=0, 1 if

• all scalars s in S are supported on `=0, 1 only (cf. Definition 4.1);

• all 1-forms ξ in S are supported on `=1 only (cf. Definition 4.2);

• all symmetric traceless tensors θ in S vanish (cf. Proposition 4.4.1).

Conversely, we define a solution S to have support outside `=0, 1 if

• all scalars s in S are supported on `>2 only (cf. Definition 4.1);

• all 1-forms ξ in S are supported on `>2 only (cf. Proposition 4.4.1).

Observe that the reference linearised Kerr solutions K are supported only on `=0, 1.

Note also that, by Lemma 4.4.1, a solution that is supported only on `=0, 1 satisfies

r2 /D?2 /∇As= 0 for all scalars s in S and r /D?2ξ= 0 for all 1-forms ξ in S.

In general, it is easy to see that one has the following result.

Lemma 9.5.1. Let S be a smooth solution of the system of gravitational perturba-

tions on M∩{u>u0}∩{v>v0}. We have the unique decomposition

S = S`=0,1+S`>2,

where S`=0,1 and S`>2 are both solutions to the system of gravitational perturbations

with S`=0,1 supported only on `=0, 1 and S`>2 supported outside `=0, 1.

Definition 9.3. We call the map S 7!S`=0,1 in Lemma 9.5.1 the projection of S to

its `=0, 1 modes.
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9.5.2. Proof of Theorem 9.2

Let
∨
S be as in Theorem 9.1. The solution

∨
S satisfies

(1)
% `=0[

∨
S ] =− 1

4M2
m and

(1)
σ `=1[

∨
S ] =

1∑
i=−1

siY
`=1
i

on the sphere S2
∞,v0

for some real numbers m, s−1, s0 and s1. We can hence subtract

from
∨
S a reference linearised Kerr solution Km,si such that the projection to `=0, 1 of

the solution
∨
S −KR,Si

satisfies in particular the following conditions:

• (1)
% `=0=0 and

(1)
σ `=1=0 on S2

∞,v0
;

• Ω−1
(1)

Ω`=0,1=0 on Cu0 and Cv0 ;

• ( /div
(1)

b)`=1=0 and ( /curl
(1)

b)`=1=0 along Cu0
;

•
(1)

(Ω trχ)`=0,1=0 and (
(1)
%+ /div

(1)
η )`=1=0 on S2

∞,v0
;

• Ω−2
(1)

(Ω trχ)
`=0,1

=0 and
(1)√
/g
`=1

=0 on S2
∞,v0

;

where we recall Proposition 9.1.1. Note that the parameters m and si are precisely the

ones claimed in the theorem. We will now show that this implies the following identities

for
∨
S −Km,si globally on M∩{u>u0}∩{v>v0}:

Ω−1
(1)

Ω|`=0,1 =
(1)√
/g`=0,1

=
(1)
σ `=0,1 =

(1)

(Ω trχ)`=0,1 = Ω−2
(1)

(Ω trχ)
`=0,1

=
(1)
% `=0,1 = 0,

( /div
(1)

b)`=0,1 = Ω( /div
(1)
η )`=0,1 = Ω−1( /div

(1)
η )`=0,1 = Ω( /div

(1)

β )`=0,1 = Ω−1( /div
(1)

β )`=0,1 = 0,

( /curl
(1)

b)`=0,1 = Ω( /curl
(1)
η )`=0,1 = Ω−1( /curl

(1)
η )`=0,1 = Ω( /curl

(1)

β )`=0,1 = Ω−1( /curl
(1)

β )`=0,1 = 0.

which in turn implies that
∨
S −Km,si is supported outside `=0, 1 providing the conclusion

of the theorem. It is also easy to see that Km,si is unique, as any other choice of

parameters would make the solution non-trivial on the horizon sphere.

We first obtain the above identities on the initial null hypersurfaces, and then show

how the identities can be propagated globally.

The `=0, 1 modes vanish on Cu0 and Cv0

(1) We first obtain additional identities on the sphere S∞,v0 via elliptic equations.

The linearised Gauss equation simplifies on the horizon H+ to

(1)

K =− (1)
% . (220)

Computing the linearised Gauss curvature in terms of
(1)

/g , we find

2
(1)

K =− /∆(tr/g
(1)

/g )+ /div /div
(1)

/g−
1

r2
tr/g

(1)

/g =−1

2
/∆(tr/g

(1)

/g )+ /div /div
(1)

/̂g−
1

r2
tr/g

(1)

/g . (221)
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Projecting on the `=1 modes, we see that
(1)

K`=1=0; cf. Corollary 4.1. By (220), also
(1)
% `=1=0. From (

(1)
%+ /div

(1)
η )`=1=0 and the fact that Ω−1

(1)

Ω`=1=0 implies /div(
(1)
η+

(1)
η )`=1=0,

we conclude ( /div η)`=1=( /div
(1)
η )`=1=0. Also,

(1)
σ `=1=0 implies

( /curl
(1)
η )`=1 =−( /curl

(1)
η )`=1 = 0.

Taking a divergence (and curl respectively) of the Codazzi equations (145), we find

(Ω /div
(1)

β )`=1=(Ω−1 /div
(1)

β )`=1=0, as well as (Ω /curl
(1)

β )`=1=(Ω−1 /curl
(1)

β )`=1=0 on SH.

Recall also that
(1)√
/g
`=0,1

=0 on S∞,v0
by (198), and the fact that

(1)
% `=0 implies

(1)√
/g
`=0

=0

on SH by combining (220) and (221).

(2) Commuting the Bianchi equation (156) with /div (and /curl), we conclude that

( /div
(1)

β )`=1=0 and ( /curl
(1)

β )`=1=0 hold along v=v0. We then conclude that ( /div
(1)
η )`=1=0

and ( /curl
(1)
η )`=1=−(1)

σ `=1=0 hold along v=v0 from commuting (142).

(3) Propagating from the horizon outwards in the 3-direction, we see from (138)

using Ω−1
(1)

Ω`=0,1=0 that

∂u[
(1)

(Ω trχ)
`=0,1

Ω−2r2] = 0, (222)

and hence, taking into account the projection of (193),

Ω−2
(1)

(Ω trχ)
`=0,1

= 0 along Cv0
. (223)

(4) From (152) and (142) we derive, using that /div(
(1)
η+

(1)
η )`=1= /curl(

(1)
η+

(1)
η )`=1=0

along the cone,

1

Ω
/∇3(r3 (1)

%+r /div(r2(1)η ))|`=0,1 = 0, (224)

where the right-hand side vanishes along Cv0
, by the previous step. Moreover, the quan-

tity in brackets on the left is also zero initially on SH when projected to `=0 and `=1.

We conclude that

(1)
% `=0 = 0 and

(1)
% `=1+( /div

(1)
η )`=1 = 0 along Cv0

. (225)

By item (2) above, this means that
(1)
% `=1=( /div

(1)
η )`=1=( /div

(1)
η )`=1=0 individually on Cv0 .

We can also conclude that
(1)√
/g
`=0

=0 along Cv0
from the projection to `=0 of (131) along

Cv0 .

(5) The previous step allows us to conclude that the condition
(1)

(Ω trχ)`=0,1=0 is

propagated along v=v0. This follows by writing (136) as

1

Ω2
∂u(r

(1)

(Ω trχ)) = 2r /div
(1)
η+2r

(1)
%− 1

2

r

Ω2
Ω trχ

(1)

(Ω trχ)
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and noting that the right-hand side vanishes on Cv0
when projected on `=0, 1.

(6) The commuted (with /div and /curl) Codazzi equation now gives ( /div
(1)

β )`=1=0

and ( /curl
(1)

β )`=1=0 along v=v0. With this, all required identities have been established

on Cv0
.

(7) We finally need to propagate the identities along the outgoing hypersurface Cu0

from the sphere of intersection S2
u0,v0

, where all the desired identities have already been

established. This follows analogously to what we have done before and will only be

sketched. For
(1)

(Ω trχ)`=0,1, this follows from the Raychaudhuri equation (137). For

( /div
(1)

β )`=1 and ( /curl
(1)

β )`=1, this follows from commuting (with /div and /curl) the Bianchi

equation (149). Equation (142) shows that ( /div
(1)
η )`=1=0 and ( /curl

(1)
η )`=1=0 (and, by

the lapse gauge condition, the
(1)
η -analogues). Finally,

(1)
% `=1=0 and

(1)
σ `=1=0 from their

Bianchi equations in the 4-direction and
(1)

(Ω trχ)
`=0,1

=0 from integrating the projection

of (135). Note that, once we have that
(1)
σ `=1 vanishes along Cu0 , we can conclude

(1)

b`=1=0.

The `=0, 1 modes vanish globally

To obtain the identities of Theorem 9.2 globally we first observe that from the `=1-

projection of the Bianchi equation (149) and (156) one concludes that

Ω( /div
(1)

β )`=0,1 = Ω−1( /div
(1)

β )`=0,1 = 0 and Ω( /curl
(1)

β )`=0,1 = Ω−1( /curl
(1)

β )`=0,1 = 0.

Because these identities hold globally, the commuted Bianchi equations (150) and (155)

yield the equations

`(`+1)
(1)
% `=1+3%( /div

(1)
η )`=1 = 0 and −`(`+1)

(1)
% `=1−3%( /div

(1)
η )`=1 = 0,

from which we conclude that ( /div
(1)
η )`=1=( /div

(1)
η )`=1 globally. Note also that the Bianchi

equations for
(1)
σ `=1 ensure that

(1)
σ `=1=0, and hence ( /curl

(1)
η )`=1=( /curl

(1)
η )`=1 globally.

We obtain ( /div
(1)
η )`=1=0=( /div

(1)
η )`=1 individually (and similarly for the /curl) from the

commuted (142). We conclude from (134) that Ω−1
(1)

Ω|`=1=0. This allows to use Ray-

chaudhuri (137), (138) to conclude that
(1)

(Ω trχ)`=1=0=Ω−2
(1)

(Ω trχ)
`=1

globally.

It remains to show that the `=0 modes vanish globally. For this, note first that the
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`=0 projected linearised Raychaudhuri equations(23) can be written as

D

( (1)

(Ω trχ)`=0

Ω2
r−4Ω−1

(1)

Ω|`=0+

(1)√
/g
`=0√
/g

)
= 0

D

( (1)

(Ω trχ)
`=0

Ω2
r+4Ω−1

(1)

Ω|`=0−

(1)√
/g
`=0√
/g

)
= 0.

Hence, the quantities in brackets vanish identically, and in particular
(1)

(Ω trχ)`=0+
(1)

(Ω trχ)
`=0

= 0

globally. With this, we can combine (135) and (143), as well as (136) and (144), as

D(r2
(1)

(Ω trχ)
`=0
−2

(1)
ω `=0) = 0, D(r2

(1)

(Ω trχ)`=0−2
(1)
ω `=0) = 0.

The quantities in brackets vanish, so in particular

(D+D)Ω−1
(1)

Ω|`=0 = 0

and, since Ω−1
(1)

Ω|`=0 is zero on both Cu0
and Cv0

, we can conclude global vanishing of

Ω−1
(1)

Ω|`=0, and hence of
(1)
ω `=0 and

(1)
ω `=0, hence of

(1)

(Ω trχ)`=0 and
(1)

(Ω trχ)
`=0

individually.

Global vanishing of
(1)√
/g
`=0

follows from (131).

10. Precise statements of the main theorems

In this section, we present the precise statements of the main theorems of this paper.

These will correspond to the rough statements already given in the overview §2.2.

§10.1 will concern boundedness and decay statements for general solutions P of the

Regge–Wheeler equation. The main result is Theorem 1.

§10.2 will concern boundedness and decay statements for general solutions α and α of

the spin ±2 Teukolsky equations. The main result is Theorem 2, while in Corollary 10.1

we will apply this to linearised gravity, and infer boundedness and decay for the gauge

invariant quantities (
(1)
α,

(1)

ψ,
(1)

Ψ) and (
(1)
α,

(1)

ψ,
(1)

Ψ) characterizing a solution S of the full system.

§10.3 will concern the boundedness of all quantities (130) associated with an initial-

data normalised solution
∨
S of linearised gravity, not just the gauge invariant quantities.

The main result is Theorem 3 and its pointwise Corollary 10.2.

Finally, §10.4 will concern the decay theorem for the future-renormalised solution
∧

S .

The main result is Theorem 4 and its pointwise Corollary 10.3.

The remainder of the paper will then concern the proofs of these theorems.

(23) We remark that the second holds without projection on `=0, while the first has a /div b-term
in general.
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10.1. Theorem 1: Boundedness and decay for solutions to Regge–Wheeler

Our first theorem (Theorem 1) is concerned purely with solutions of the Regge–Wheeler

equation. We will state the theorem in §10.1.2 below, after first defining in §10.1.1 the

norms and energies appearing in its formulation.

10.1.1. Energies and norms

We begin with the definition of various norms which will appear in Theorem 1. Let P

below denote a solution of the Regge–Wheeler equation, as arising from Theorem 7.3.

We define the following energies for the rescaled solution Ψ=r5P defined in (176).

The energy fluxes

Fu[Ψ](v1, v2) =

∫ v2

v1

dv̄ (‖r−1Ω /∇4Ψ‖2S2
u,v

+‖r−1 /∇Ψ‖2S2
u,v

+r−2‖r−1Ψ‖2S2
u,v

), (226)

Fv[Ψ](u1, u2) =

∫ u2

u1

dūΩ2(‖r−1 Ω−1 /∇3Ψ‖2S2
u,v

+‖r−1 /∇Ψ‖2S2
u,v

+r−2‖r−1Ψ‖2S2
u,v

), (227)

as well as the weighted (near infinity) fluxes

F Iu [Ψ](v1, v2) =

∫ v2

v1

dv̄ (r2‖r−1Ω /∇4Ψ‖2S2
u,v

+‖r−1 /∇Ψ‖2S2
u,v

+r−2‖r−1Ψ‖2S2
u,v

), (228)

F Iv [Ψ](u1, u2) =

∫ u2

u1

dūΩ2(‖r−1Ω−1 /∇3Ψ‖2S2
u,v

+r2‖r−1 /∇Ψ‖2S2
u,v

+‖r−1Ψ‖2S2
u,v

), (229)

where we recall the norms on the spheres S2
u,v defined in (105). From these, we define

F[Ψ] = sup
u
F Iu [Ψ](v0,∞)+sup

v
F Iv [Ψ](u0,∞), (230)

with corresponding initial energies

F0[Ψ] =F Iu0
[Ψ](v0,∞)+F Iv0

[Ψ](u0,∞). (231)

To estimate higher-order energies, we also introduce the following notation, tailored

to the fact that the Regge–Wheeler equation (255) commutes with T and the angular

momentum operators Ωi (cf. §4.2.2):

Fn,T [Ψ] :=

n∑
i=0

sup
u
F Iu [T iΨ](v0,∞)+sup

v

n∑
i=0

F Iv [T iΨ](u0,∞), (232)

Fn,T, /∇[Ψ] :=
∑
i+j6n

sup
u
F Iu [T i(r /∇A)jΨ](v0,∞)+sup

v

∑
i+j6n

F Iv [T i(r /∇A)jΨ](u0,∞),

(233)
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which initially become

Fn,T0 [Ψ] :=

n∑
i=0

F Iu0
[T iΨ](v0,∞)+

n∑
i=0

F Iv0
[T iΨ](u0,∞), (234)

Fn,T, /∇0 [Ψ] :=
∑
i+j6n

F Iu0
[T i(r /∇A)jΨ](v0,∞)+

n∑
i=0

F Iv0
[T i(r /∇A)jΨ](u0,∞). (235)

We also define spacetime energies, which will be used in the integrated local energy

decay estimate. These will be denoted by the letter I. We define (denoting dvolS2 =

sin θ dθ dφ)

Ideg[Ψ] : =

∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ dvolS2 Ω2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2

+
(r−3M)2

r2

(
1

r
| /∇Ψ|2+

1

r2
|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

)]
,

(236)

which degenerates near the trapped set r=3M and a weighted energy localised to r>4M

II,ε[Ψ] : =

∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

du dv dvolS2 ιr>4M [r|Ω /∇4Ψ|2+r−1−ε|Ω /∇3Ψ|2

+r1−ε| /∇Ψ|2+r−1−ε|Ψ|2],

for some 0<ε< 1
8 now fixed once and for all, and ιr>R being the indicator function which

equals 1 for r>R and is zero otherwise. The higher-order analogues are defined in the

obvious way:

In,T, /∇I,ε [Ψ] :=

n∑
i+j6n

II,ε[T i(r /∇A)jΨ], (237)

and similarly for In,T, /∇deg [Ψ].

10.1.2. Statement of the theorem

We are now ready to state the boundedness and decay theorem for solutions P of the

Regge–Wheeler equation.

Theorem 1. Let P be a solution of the Regge–Wheeler equation as arising from

Theorem 7.3. Then, the weighted symmetric traceless S2
u,v-tensor Ψ=r5P satisfies equa-

tion (177) and the following estimates hold, provided the initial energies on the right-hand

sides are finite:

(1) the basic boundedness and integrated decay estimates of Proposition 11.3.1, as

well as the weighted boundedness estimate

F[Ψ].F0[Ψ]; (238)
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(2) the higher-order estimates (for any integer n>0)

Fn,T, /∇[Ψ].Fn,T, /∇0 [Ψ], (239)

(3) the weighted integrated decay estimate (for any integer n>0)

In,T, /∇I,ε [Ψ]+In,T, /∇deg [Ψ].Fn,T, /∇0 [Ψ]. (240)

(4) Finally, the polynomial decay estimates of Proposition 11.5.1 hold.

The proof of the above theorem will be the content of §11.

10.2. Theorem 2: Boundedness and decay for solutions to Teukolsky

Our second theorem is concerned purely with solutions to the spin ±2 Teukolsky equa-

tions. We define relevant energies and norms in §10.2.1 below. We state the theorem in

§10.2.2. We shall then infer an immediate application of the result to the full system of

linearised gravity in §10.2.3.

10.2.1. Energies and norms

Let α be a solution to the Teukolsky equation of spin +2 as arising from Theorem 7.1 and

α be a smooth solution to the Teukolsky equation of spin −2 as arising from Theorem 7.2.

Recall that associated with a solution to the Teukolsky equation of spin +2 are the

derived quantities ψ and P defined in (178) and (179) of §7.3, and associated with a

solution to the Teukolsky equation of spin −2 are the quantities ψ and P defined in

(180) and (181).

We define the following energies for the solution α and its derived quantities ψ and

P , and the solution α and its derived quantities ψ and P :

F[Ψ, ψ] =F[Ψ]+sup
u

∫ ∞
v0

dv ‖r−1 ·ψ‖2S2
u,v
r8−εΩ2,F[Ψ, ψ]

=F[ Ψ]+sup
v

∫ ∞
u0

du ‖r−1 ·ψ‖2S2
u,v
r6,

with the obvious definition for F0[Ψ, ψ] and F0[Ψ, ψ]. Also,

F[Ψ, ψ, α] =F[Ψ, ψ]+sup
u

∫ ∞
v0

dv ‖r−1α‖2S2
u,v
r6−εΩ4,

F[ Ψ, ψ, α ] =F[ Ψ, ψ]+sup
v

∫ ∞
u0

du ‖r−1α‖2S2
u,v

Ω−2,
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again with the obvious definition for F0[Ψ, ψ, α] and F0[ Ψ, ψ, α ]. Finally, the higher-

order norms

F[Ψ,Dψ, α] =F[Ψ, ψ, α]+sup
u

∫ ∞
v0

dv ‖r−1 ·D(ψΩ)‖2S2
u,v
r8−ε,

F[Ψ,Dψ, α ] =F[ Ψ, ψ, α ]+sup
v

∫ ∞
u0

du ‖r−1 ·D(ψΩ−1)‖2S2
u,v

Ω2r6,

F[Ψ,Dψ,Dα] =F[Ψ,Dψ, α]+sup
u

∫ ∞
v0

dv ‖r−1 ·D(αΩ2)‖2S2
u,v
r6−ε,

F[ Ψ,Dψ,Dα ] =F[ Ψ,Dψ, α ]+sup
v

∫ ∞
u0

du ‖r−1 ·D(αΩ−2)‖2S2
u,v

Ω2,

where we have employed the shorthand notation

‖r−1 ·Dξ‖2S2
u,v

:= ‖r−1 ·r /∇Aξ‖2S2
u,v

+‖r−1 ·Ω−1 /∇3ξ‖2S2
u,v

+‖r−1 ·rΩ /∇4ξ‖2S2
u,v

for an S2
u,v-tensor ξ.(24)

We also define a basic spacetime energy measuring some form of integrated decay:

Imaster[Ψ,Dψ,Dα] = Ideg[Ψ]+IIε [Ψ]+

∫ ∞
u0

∫ ∞
v0

dū dv̄Ω2[r7−ε‖r−1 ·D(Ωψ)‖2S2
ū,v̄

+r5−ε‖r−1 ·D(Ω2α)‖2S2
ū,v̄

],

Imaster[Ψ,Dψ,Dα ] = Ideg[Ψ]+IIε [Ψ]+

∫ ∞
u0

∫ ∞
v0

dū dv̄Ω2[r5−ε‖r−1 ·D(Ω−1ψ)‖2S2
ū,v̄

+r1−ε‖r−1 ·D(Ω−2α)‖2S2
ū,v̄

].

The following higher-order energies are then defined in the obvious way

Fn,T, /∇[ Ψ,Dψ,Dα ], Fn,T, /∇0 [ Ψ,Dψ,Dα ] and In,T, /∇master[ Ψ,Dψ,Dα ],

as are their non-underlined counterparts.

10.2.2. Statement of the theorem

We are now ready to state the boundedness and decay theorem for solutions of the spin

±2 Teukolsky equations.

(24) Note that, whenever the argument of F involves underlined quantities, it is generally a different

flux compared to the non-underlined quantities. The only exception is F[Ψ], which is obtained by
inserting Ψ instead of Ψ in F[Ψ].
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Theorem 2. Let α be a solution of the spin +2 Teukolsky equation as arising from

Theorem 7.1. Then, the derived quantity Ψ=r5P , with P defined through (178) and

(179), satisfies the conclusions of Theorem 1. Moreover, provided the initial energies on

the right-hand side of (241)–(242) are finite, we have the following estimates:

(1) the weighted boundedness estimate

F[Ψ, ψ, α].F0[Ψ, ψ, α]; (241)

(2) the higher-order statements (for any integer n>0)

Fn,T, /∇[Ψ,Dψ,Dα].Fn,T, /∇0 [Ψ,Dψ,Dα]; (242)

(3) the weighted integrated decay estimate (for any integer n>0)

In,T, /∇master[Ψ,Dψ,Dα].Fn,T, /∇0 [Ψ,Dψ,Dα]. (243)

(4) Finally, the polynomial decay estimates of Propositions 12.3.4– 12.3.7 and the

L1-estimate of Corollary 12.6 hold.

Now, let α be a smooth solution of the spin −2 Teukolsky equation as arising from

Theorem 7.2. Then, Ψ=r5P , with P defined through (178), (179), satisfies the conclu-

sions of Theorem 1. Moreover, the estimates (1)–(4) above hold replacing the quantities

α, ψ and Ψ by α, ψ and Ψ, respectively, provided the energies on the right-hand side are

finite.

Note that the second sentence of Theorem 2, that Ψ satisfies the conclusions of The-

orem 1, is already immediate from Proposition 7.3.1. The same proposition immediately

yields the analogous statement for Ψ claimed in the second part of the theorem.

The proof of Theorem 2 will be carried out in §12. Key to the proof is to exploit

the transformation formulas of §7.3.

10.2.3. Application to the full system of linearised gravity: Boundedness

and decay for the gauge invariant hierarchy

In view of Proposition 7.4.1, we infer the following application to the full system of

linearised gravity.

Corollary 10.1. Let S be a smooth solution of the system of gravitational per-

turbations arising from a smooth seed initial data set on Cu0
∪Cv0

through Theorem 8.1.

Then, the following statements hold :

• the gauge invariant curvature component
(1)
α of the solution S satisfies the Teukol-

sky equation of spin +2, and hence the first part of Theorem 2 applies yielding bounded-

ness and decay for (
(1)

Ψ,
(1)

ψ,
(1)
α).
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• the gauge invariant curvature component
(1)
α of the solution S satisfies the Teukol-

sky equation of spin −2, and hence the second part of Theorem 2 applies yielding bound-

edness and decay for (
(1)

Ψ,
(1)

ψ,
(1)
α).

Let us note that we know more information about
(1)
α and

(1)
α than the statement that

they satisfy the spin ±2 Teukolsky equations. The solutions
(1)
α and

(1)
α are in fact non-

trivially related to each other through the system of linearised Bianchi and null structure

equations. (For fixed frequency solutions, these relations are well known; see [71].) We

stress that the estimates inferred in Corollary 10.1 for S are derived without exploiting

this relation. The above corollary will be the starting point (see §13.1) for the proof of

Theorem 3 to which we now turn.

10.3. Theorem 3: Boundedness for solutions to the full system

We now consider the full system of linearised gravity. Our next theorem (Theorem 3)

asserts boundedness of initial-data normalised solutions
∨
S as in Definition 9.1. In view

of Theorem 9.1, we will be able to apply Theorem 3 to solutions S arising from general,

smooth asymptotically flat seed data. We first define some additional energies and norms

in §10.3.1 before stating the precise formulation of the theorem in §10.3.2.

10.3.1. Energies and norms

Let S be a solution of the system of gravitational perturbations as arising from Theo-

rem 8.1.

Recall that, by Proposition 7.4.1, the components
(1)
α and

(1)
α of the solution satisfy

the spin ±2 Teukolsky equations and thus, by Proposition 7.3.1, the quantities
(1)

P and
(1)

P derived from
(1)
α and

(1)
α , respectively, satisfy the Regge–Wheeler equation. Thus, we

may use the notation of §10.1.1 and §10.2.1 to denote energies associated with these

gauge-invariant quantities. We will augment these with the following combined notation

F[
(1)

Ψ,
(1)

Ψ,
(1)

ψ,
(1)

ψ,
(1)
α,

(1)
α ] :=F[

(1)

Ψ,
(1)

ψ,
(1)
α ]+F[

(1)

Ψ,
(1)

ψ,
(1)
α ].

We proceed to define additional (gauge-dependent) energies.

We define the flux

‖( /∇3)2
(1)

χ̂‖2L∞v L2(Cv) = sup
v>v0

∫ ∞
u0

dū

∫
S2
ū,v

sin θ dθ dφΩ2

[∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2+
1

rε
|r2

(1)

χ̂Ω|2
]
.
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Recall now the two auxiliary quantities
(1)

Y and
(1)

Z defined in (218) and (219). We define

the following energy for the Ricci coefficients on spheres (the superscript (5) stands for

the fact that this energy is at the level of 5 derivatives of the Ricci coefficients):

D[5][
(1)

Y,
(1)

Z] = sup
u,v
‖r−1 ·r3 /D?2 /div /D?2

(1)

Y ‖2S2
u,v

+sup
u,v
‖r−1 ·r2 /div /D?2rΩ /∇4

(1)

Y ‖2S2
u,v

+sup
u,v

r2+ε‖r−1 ·Ω−1r4 /div /D?2 /div /D?2
(1)

Z‖2S2
u,v

+sup
u,v
‖r−1 ·r /∇3(r4 /D?2 /div /D?2 /∇(rΩ−2

(1)

(Ω trχ)))‖2S2
u,v
,

(244)

which, at the level of data, is

D[5]
0 [

(1)

Y,
(1)

Z] = sup
v
‖r−1 ·r3 /D?2 /div /D?2

(1)

Y ‖2S2
u0,v

+sup
v
‖r−1 ·r2 /div /D?2rΩ /∇4

(1)

Y ‖2S2
u0,v

+sup
u
r2+ε‖r−1 ·Ω−1r4 /div /D?2 /div /D?2

(1)

Z‖2S2
u,v0

+sup
u
‖ /∇3(r4 /D?2 /div /D?2 /∇(rΩ−2

(1)

(Ω trχ)))‖2S2
u,v0

.

(245)

Recall Propositions 9.4.3 and 9.4.2, which guarantee that the norm D[5]
0

[(1)
Y,

(1)

Z
]

is

indeed finite for the initial data of the solution
∨
S defined in Theorem 9.1.

Remark 10.1. One should think of the last term in (244) as the /∇3 derivative of
(1)

Z,

but without the (
(1)
η+

(1)
η )-part. There is a small technical advantage in that the quantity

in the energy satisfies a “more decoupled” equation. Note also that, for both
(1)

Z and the

last term, we do not put the optimal weight near the horizon (which would allow another

factor of Ω−1 in both terms of the second line; cf. Proposition 9.4.3).

Let us note finally that, if S is supported on `=0, 1 only, then all the above energies

manifestly vanish. In particular, the above energies vanish for the reference linearised

Kerr solutions Km,si .

10.3.2. Statement of the theorem

We are now ready to state our boundedness theorem for the initial-data normalised

solution
∨
S of the full system of linearised gravity.

Theorem 3. Let
∨
S be a smooth solution of the system of gravitational perturbations

arising from a smooth seed initial data set on Cu0
∪Cv0

through Theorem 8.1, which is

moreover initial-data normalised according to Definition 9.1.
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(In particular, given a general smooth seed initial data set which is asymptotically

flat with weight s to order n>10 according to Definition 8.2, then defining

∨
S = S +

∨
G

by applying Theorem 9.1, it follows that
∨
S satisfies the above assumption.)

Then, the curvature quantities α and α associated with
∨
S satisfy the conclusions

of Theorem 2.

We assume finiteness of the following initial energy, which is at the level of five

derivatives of curvature and five derivatives of the Ricci coefficients

E0 : = ‖ /∇2
3(r3 /div /D?2 /div

(1)

χ̂)‖2L2(Cv0
)+D[5]

0 [
(1)

Z,
(1)

Y ]

+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ]+F2,T, /∇

0 [
(1)

Ψ,D
(1)

ψ,D
(1)
α ]<∞.

(246)

Then, we have the estimates

F2,T, /∇
0

[(1)
Ψ,D

(1)

ψ,D
(1)
α
]
+F2,T, /∇

0

[(1)
Ψ,D

(1)

ψ,D
(1)
α
]
.E0 (247)

and

‖ /∇2
3(r3 /div /D?2 /div

(1)

χ̂)‖2L∞v L2(Cv)+D[5][
(1)

Z,
(1)

Y ].E0, (248)

the first one being already immediate from Theorem 2.

Moreover, the initial data energy (246) controls in addition:

(1) Weighted L∞u,vL
2(S2

u,v)-norms for up to five angular derivatives of the metric

coefficients (
(1)

/̂g ,
(1)√
/g/
√
/g,

(1)

b,Ω−1
(1)

Ω) as in Proposition 13.5.12.

(2) Weighted L∞u,vL
2(S2

u,v)-norms and weighted L2-fluxes on null cones for

• up to five angular derivatives of
(1)

χ̂ as in Corollaries 13.3 and 13.4;

• up to five angular derivatives of
(1)

χ̂ as in Propositions 13.3.1, 13.3.3, 13.3.4

and 13.5.7;

• up to five angular derivatives of
(1)
η as in Propositions 13.5.3 and 13.5.10;

• up to five angular derivatives of
(1)
η as in Propositions 13.5.3 and 13.5.11;

• up to five angular derivatives for
(1)

(Ω trχ) as in Corollaries 13.3 and 13.10;

• up to five angular derivatives of
(1)

(Ω trχ) as in Proposition 13.5.5;

• up to five angular derivatives of
(1)
ω and

(1)
ω as in Proposition13.5.4.

(3) Weighted L∞u,vL
2(S2

u,v)-norms for four angular derivatives and weighted flux es-

timates for five angular derivatives of the curvature components (
(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α) pro-

vided the non-degenerate initial energies F2
0[

(1)

Ψ] and F2
0[

(1)

Ψ] are finite and added (to (248))

on the right-hand side. See Propositions 13.5.1, 13.5.8 and 12.3.1 for the flux estimates

and Propositions 13.5.2 and 12.3.3 for the L∞u,vL
2(S2

u,v) estimates.
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Finally, let Km,si be the initial data normalised Kerr solution as in Theorem 9.2 such

that
∨
S ′=

∨
S −Km,si has support outside `=0, 1. Then, the initial norm (246) coincides

for
∨
S ′, and the above statements of the theorem all hold applied to

∨
S ′ in place of

∨
S ,

where now the derived energy bounds are coercive on all quantities (130) of
∨
S ′.

10.3.3. Remarks and uniform pointwise boundedness

We give a number of remarks concerning the statement of Theorem 3.

Remark 10.2. If
∨
S in Theorem 3 indeed arises through Theorem 9.1 from smooth

asymptotically flat seed initial data of order 1
26s61 and with n>15, the finiteness of

the initial energy (246) is seen to be a direct consequence of the estimates (439) and

Propositions 9.4.3 and 9.4.2.

Remark 10.3. As we shall see, the boundedness and decay estimates proven in The-

orem 3 can be proven also if the conditions (189) and (190) did not hold for
∨
S. The only

difference are additional boundary terms appearing on the right-hand side in the esti-

mates; cf. Proposition 13.5.4. The horizon gauge conditions (198) and (197), the round

sphere condition (191) for
∨
S and the finiteness of (246) are fundamental, however.

Remark 10.4. The propagation of the weighted norm (246) in (247) and (248) and,

intimately related with it, the propagation of the round sphere condition at infinity, can

be viewed as a version of propagation of asymptotic flatness for the solution
∨
S, which

does not lose derivatives.

Remark 10.5. In the course of the proof of Theorem 3, we shall obtain several

other estimates on various derivatives of the Ricci coefficients. We have not stated

these estimates explicitly above but direct the reader to the body of §13. Some of

these estimates are needed to prove Corollary 10.2 below. We also emphasise that the

quantities
(1)

β and
(1)

χ̂ can already be shown to decay to zero in time for
∨
S ′. This is not

true for the other Ricci coefficients and curvature components (except, of course, for the

gauge invariant quantities
(1)
α and

(1)
α for which the conclusions of Theorem 2 hold).

Remark 10.6. The above statements focus on angular derivatives. A version of the

above theorem can be obtained for all derivatives of curvature and Ricci coefficients up

to order five, provided appropriate quantities are assumed to be finite initially. As this

is standard (but lengthy) we leave it to the reader.

Simple Sobolev embedding on the spheres S2
u,v and using the fact that

∨
S ′ of Theo-

rem 3 is supported outside of `=0, 1, together with the boundedness of Km,si , we obtain

in particular the following result (see §13.5.8).
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Corollary 10.2. Let
∨
S and Km,si be as in the statement of Theorem 3. Then,

all quantities (130) of
∨
S ′=

∨
S −Km,si are uniformly pointwise bounded in that

|r7/2−εΩ2(1)
α |+|Ωr7/2−ε

(1)

β |+|r3 (1)
% |+|r3(1)

σ |+|r2Ω−1
(1)

β |+|rΩ−2(1)
α |.

√
E0,

|r2Ω
(1)

χ̂|+|rΩ−1
(1)

χ̂|+|r(1)η |+|r2(1)η |

+|r2Ω−2
(1)

(Ω trχ)|+|rΩ−2
(1)

(Ω trχ)|+|r(5−ε)/2(1)
ω |+|Ω−2(1)

ω |.
√
E0

|
(1)

/̂g |+
∣∣∣∣

(1)√
/g√
/g

∣∣∣∣+r1/2−ε|
(1)

b |+|Ω−1
(1)

Ω|.
√
E0.

The same bounds hold for
∨
S in place of

∨
S ′ if a constant depending on

|m|+|s−1|+|s0|+|s1|

is added to the right-hand side.

Remark 10.7. We indeed control |r2Ω−2
(1)

(Ω trχ)| above, because the regular quantity
(1)

(Ω trχ) vanishes linearly on the event horizon for the gauge
∨
S.

10.4. Theorem 4: Decay for solutions to the full system in the

future-normalised gauge

We may now state our final Theorem 4 giving quantitative decay, measured in appropriate

L2 norms, for all quantities associated with the horizon-renormalised solution
∧

S defined

in Proposition 9.3.1. As a corollary, we shall deduce in particular pointwise polynomial

decay of the metric components of
∧

S to their linearised Kerr values given by Km,si of

Theorem 9.2. The norms appearing below have already been defined in §10.1.1, §10.2.1

and §10.3.1.

Theorem 4. Let
∨
S be as in Theorem 3, in particular (246) holds initially. Let

∧
S =

∨
S +

∧
G

be the horizon-renormalised solution defined in Proposition 9.3.1. Then, the following

statements holds.

(1) The pure gauge solution
∧

G is uniformly bounded and controlled solely by the ini-

tial data energy (246) and the ingoing shear of the solution
∨
S on the initial sphere S2

∞,v0
.

In particular, the geometric quantities of
∧

G satisfy the weighted boundedness esti-

mates of Proposition 14.1.3, which are identical to the weighted boundedness estimates

proven for
∨
S up to four angular derivatives of all geometric quantities.
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In fact, except for a small loss(25) of decay towards null infinity for the highest

angular derivatives of some of the
∧

G quantities, any weighted quantity bounded in
∨
S by

Theorem 3 is also bounded for
∧

G , and hence, by linearity, for
∧

S .

(2) The geometric quantities of
∧

S satisfy the integrated decay estimates of Propo-

sitions 14.2.1, 13.3.3, 14.2.3, 14.2.4, 14.2.5, 14.2.7 and 14.2.8. In particular, we obtain

a degenerate (near r=3M) integrated decay estimate for five angular derivatives of the

linearised curvature components (
(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α) and a non-degenerate estimate for

four (or less) derivatives.

(3) The geometric quantities of
∧

S satisfy the polynomial decay proven in §14.3. In

particular, the metric coefficients satisfy the polynomial decay estimates (with E0 defined

in (246))

‖r−1 ·r2 /D?2 /∇Ω−1
(1)

Ω‖S2
u,v
.

1

v

√
E0, (249)

‖r−1 ·r /D?2
(1)

b‖S2
u,v
.

1

v1/2

√
E0 (250)

‖r−1 ·A[2]
(1)

/̂g‖S2
u,v
.

1

v1/2

√
E0, (251)

∥∥∥∥r−1 ·r2 /D?2 /∇

(1)√
/g√
/g

∥∥∥∥
S2
u,v

.
1

v1/2

√
E0, (252)

to be proven in §14.3.2.

Finally, let Km,si be the reference linearised Kerr solution defined in Theorem 3.

Then,
∧

S ′=
∧

S −Km,si is supported away from `=0, 1 and the above statements of the

theorem hold as stated for
∧

S ′. As in the final statement of Theorem 3, the energies are

now coercive on all quantities (130) of
∧

S ′.

We append a remark analogous to Remark 10.4 in Theorem 3.

Remark 10.8. As one readily checks, statement (1) in Theorem 4 implies in partic-

ular estimate (248) for the geometric quantities of
∧

S on the left-hand side. Therefore,

analogous to Remark 10.4, we can interpret the result as a propagation of asymptotic

flatness for the solution
∧

S .

A simple application of the Sobolev embedding theorem on the round sphere to

(249)–(252) provides the following result.

Corollary 10.3. With
∧

S , Km,si and
∧

S ′=
∧

S −Km,si as in Theorem 4, the metric

components
(1)

Ω[
∧

S ′],
(1)

b [
∧

S ′],
(1)√
/g[

∧
S ′] and

(1)

/̂g [
∧

S ′] of
∧

S ′ satisfy the following uniform bounds

(25) This loss can potentially be avoided with further work. See Remark 14.1.
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on M∩{u>u0}∩{v>v0}:

|Ω−1
(1)

Ω|. 1

v

√
E0 (253)

and

|
(1)

b |+|
(1)√
/g|+|

(1)

/̂g |.
1

v1/2

√
E0. (254)

Thus, the metric components of
∧

S converge pointwise to the linearised Kerr values

of Km,si .

Let us remark that one can also obtain pointwise bounds for all Ricci coefficients

and curvature components from the bounds proven in this paper, but we will not state

these bounds explicitly.

11. Proof of Theorem 1

The present section contains the proof of Theorem 1. As explained in §2.3, this proof

follows closely previous work for the scalar wave equation (48). The reader may wish to

refer to §2.3 for comparison while reading the present section.

We begin in §11.1 with the natural energy identity associated with the Regge–

Wheeler equation. We then show in §11.2 a version of integrated decay which degener-

ates at r=3M , at the horizon H+ and at null infinity I+. The degeneration at H+ is

completely removed in §11.3 using the red-shift, whereas the degeneration at I+ is refined

in §11.4 using an rp hierarchy. Higher-order estimates and polynomial decay estimates

for the energy will be the content of §11.5.

11.1. Energy conservation for Regge–Wheeler

Let Ψ be as in the statement of Theorem 1.

From

Ω /∇3(Ω /∇4Ψ)−
(

1− 2M

r

)
/∆Ψ+VΨ = 0 with V =

(
4

r2
− 6M

r3

)(
1− 2M

r

)
, (255)

we easily derive the following identity:

[Ω /∇3+Ω /∇4]

∫
sin θ dθ dφ

(
|Ω /∇4Ψ|2+|Ω /∇3Ψ|2+2

1−2M/r

r2
|r /∇Ψ|2+2V |Ψ|2

)
+[Ω /∇3−Ω /∇4]

∫
sin θ dθ dφ (|Ω /∇4Ψ|2−|Ω /∇3Ψ|2) = 0.

(256)
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Using the notation 1−µ=1−2M/r, we define the null fluxes

FTu [Ψ](v1, v2) =

∫ v2

v1

dv sin θ dθ dφ (|Ω /∇4Ψ|2+(1−µ)| /∇Ψ|2+V |Ψ|2),

FTv [Ψ](u1, u2) =

∫ u2

u1

du sin θ dθ dφ (|Ω /∇3Ψ|2+(1−µ)| /∇Ψ|2+V |Ψ|2)

Note that

V =

(
1− 2M

r

)(
4

r2
− 6M

r3

)
>

1

r2

(
1− 2M

r

)
,

and hence that these fluxes are manifestly coercive.

Integrating (256) with respect to dudv yields a conservation law.

Proposition 11.1.1. For any u>u0 and v>v0, the Ψ of Theorem 1 satisfies

FTu [Ψ](v0, v)+FTv [Ψ](u0, u) =FTv0
[Ψ](u0, u)+FTu0

[Ψ](v0, v). (257)

The above is the precise analogue of the T -energy identity for solutions ϕ of (48).(26)

11.2. Integrated decay estimate

Let us define the operators

T := 1
2 [Ω /∇3+Ω /∇4] and R? := 1

2 [−Ω /∇3+Ω /∇4].

(We note that T above coincides with Lie-differentiation LT with respect to the Killing

field T of §4.2.2, but the above form will be convenient here.)

Let now f be a function on M� of r? :=(v−u) only, i.e. T (f)=0 and f ′ :=R?(f). We

have the identity

[Ω /∇3+Ω /∇4](f{|Ω /∇4Ψ|2−|Ω /∇3Ψ|2})

+[Ω /∇3−Ω /∇4]

(
f

{
|Ω /∇4Ψ|2+|Ω /∇3Ψ|2−2

1−µ
r2
|r /∇Ψ|2−2V |Ψ|2

})
+2f′(|Ω /∇4Ψ|2+|Ω /∇3Ψ|2)−4R?

(
f
1−µ
r2

)
|r /∇Ψ|2−4R?(fV )|Ψ|2≡ 0,

(258)

where ≡ means that the above becomes an equality after integration over
∫

sin θ dθ dφ,

and the identity

[Ω /∇3+Ω /∇4](f′Ψ·[Ω /∇3+Ω /∇4]Ψ)

−[Ω /∇3−Ω /∇4](f′Ψ·[Ω /∇3−Ω /∇4]Ψ+f′′|Ψ|2)

−2f′′′|Ψ|2−4f′Ω /∇3Ψ·Ω /∇4Ψ+4f′
(

1−µ
r2
|r /∇Ψ|2+V |Ψ|2

)
≡ 0.

(259)

(26) Let us note that one can indeed easily adapt the energy-momentum tensor formalism of §2.3.1
to Regge–Wheeler, but we here prefer to explicitly integrate by parts.
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Adding (258) and (259), yields the identity

0≡ [Ω /∇3+Ω /∇4](f{|Ω /∇4Ψ|2−|Ω /∇3Ψ|2}+f′Ψ·[Ω /∇3+Ω /∇4]Ψ)

+[Ω /∇3−Ω /∇4]

(
f

{
|Ω /∇4Ψ|2+|Ω /∇3Ψ|2−2

1−µ
r2
|r /∇Ψ|2−2V |Ψ|2

}
−f′Ψ·[Ω /∇3−Ω /∇4]Ψ−f′′|Ψ|2

)
+2f′|Ω /∇4Ψ−Ω /∇3Ψ|2+|r /∇Ψ|2

[
−4f

(
1−µ
r2

)′]
+|Ψ|2(−4fV ′−2f′′′).

(260)

Note that, after integration with respect to the measure
∫
du dv sin θ dθ dφ, the term in

the last line is a spacetime term, while all others are boundary terms.

11.2.1. The choice of f

The next lemma shows that we can choose a function f in the identity (260) such that

the last line of the latter is a manifestly non-negative expression. The choice below has

appeared before in [36].

Lemma 11.2.1. If we define

f=

(
1− 3M

r

)(
1+

M

r

)
, (261)

then there exists a constant c such that the Ψ in Theorem 1 satisfies∫
sin θ dθ dφ

{
|r /∇Ψ|2

[
−1

2

f

1−µ

(
1−µ
r2

)′]
+|Ψ|2

[
−1

2

V ′

1−µ
f− 1

4

f′′′

1−µ

]}
>

c

r3

∫
sin θ dθ dφ |Ψ|2

(262)

for all (u, v) with r∈(2M,∞).

Remark 11.1. With the above choice of f, the square bracket multiplying the term

|r /∇Ψ|2 is non-negative. Since (261) implies that f′/(1−µ)>2M/r2, the last line of (260)

is indeed non-negative.

Proof. Since the term |r /∇Ψ|2 is non-negative, applying Proposition 4.4.4 shows that

it suffices to establish

− 1

2

(V +(2/r2)(1−µ))′

1−µ
f− 1

4

f′′′

1−µ
>

c

r3
. (263)
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We compute

fr =
3M

r2

(
1+

M

r

)
+

(
1− 3M

r

)(
−M
r2

)
=

2M

r2
+

6M2

r3
,

frr =−4M

r3
− 18M2

r4
,

frrr =
12M

r4
+

72M2

r5
,

and hence

f′= fr(1−µ) =

(
2M

r2
+

6M2

r3
)(1−µ),

f′′= frr(1−µ)2+fr
2M

r2
(1−µ),

f′′′= frrr(1−µ)3+frr
6M

r2
(1−µ)2−2M fr

2

r3

(
1− 3M

r

)
(1−µ),

(264)

and therefore

expr : =
1

2

(
V +

2

r2
(1−µ)

)′
f+

1

4
f′′′

=

[
3M

r4
+

18M2

r5

]
(1−µ)3− 3

2

M

r2
(1−µ)2

(
4M

r3
+

18M2

r4

)
−M
r3

(
2M

r2
+

6M2

r3

)
(1−µ)

(
1− 3M

r

)
+

1

2

(
1− 3M

r

)(
1+

M

r

)[
−2

r3

(
1− 3M

r

)
(1−µ)

(
6− 6M

r

)
+

6M

r4
(1−µ)2

]
.

We claim that this expression is negative for r∈(2M,∞). To see this, we write the

expression as follows

−(1−µ)−1 expr =−
[

3M

r4
+

18M2

r5

](
1− 4M

r
+

4M2

r2

)
+

3

2

M

r2

(
1− 2M

r

)(
4M

r3
+

18M2

r4

)
+
M

r3

(
2M

r2
+

6M2

r3

)(
1− 3M

r

)
+

(
1− 3M

r

)(
1+

M

r

)[
1

r3

(
1− 3M

r

)(
6− 6M

r

)
− 3M

r4

(
1− 2M

r

)]
,

which is computed to be

−(1−µ)−1 expr =−
[

3M

r4
+

6M2

r5
− 60M3

r6
+

72M4

r7

]
+

3

2

M

r2

(
4M

r3
+

10M2

r4
− 36M3

r5

)
+
M

r3

(
2M

r2
− 18M3

r4

)
+

1

r3

(
1− 5M

r
+

3M2

r2
+

9M3

r3

)(
6− 6M

r

)
− 3M

r4

(
1− 4M

r
+
M2

r2
+

6M3

r3

)
,
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and simplifies further to

−(1−µ)−1 expr>
6

r3
+

1

r4
(−3M−30M−6M−3M)

+
1

r5
(−6M2+6M2+2M2+18M2+30M2+12M2)

+
1

r6
(60M3+15M3+54M3−18M3−3M3)

+
1

r7
(−72M4−54M4−18M4−54M4−18M4).

It thus suffices to establish positivity of the polynomial

6r4−42Mr3+62M2r2+108M3r−216M4, (265)

or equivalently, upon setting r=2Mx, positivity of

p(x) = 12x4−42x3+31x2+27x−27 for x∈ [1,∞). (266)

Using elementary calculus, one easily shows p(x)>1.

11.2.2. The basic estimate

Upon integrating (260) with respect to du dv sin θ dθ dφ over any spacetime region

[u0, u]×[v0, v]×S2
ū,v̄

with f as chosen in Lemma 11.2.1, we see (f is uniformly bounded and (264) holds) that we

can estimate all boundary terms (null-fluxes) by the fluxes FTu [Ψ](v0, v), FTv [Ψ](u0, u),

FTv0
[Ψ](u0, u) and FTu0

[Ψ](v0, v), which, by the conservation law (257), means that all

boundary terms are controlled by a constant times FTu0
[Ψ](v0, v)+FTu0

[Ψ](v0, v) alone.

Exploiting now the statement of Lemma 11.2.1 for the term in the last line of (260), we

obtain the basic Morawetz estimate∫ u

u0

∫ v

v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφΩ2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2

]
6C[FTu0

[Ψ](v0, v)+FTv0
[Ψ](u0, u)].

(267)

The above estimate (267) can be improved immediately. First, integrating (260)

again with respect to du dv sin θ dθ dφ and f as in (261) we (instead of applying the

Poincaré inequality to the angular term) observe that all first-order terms are actually

non-negative and that the order-zero term of Ψ is controlled by (267). This gives∫ u

u0

∫ v

v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφΩ2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

(r−3M)2

r3
| /∇Ψ|2+

1

r3
|Ψ|2

]
6C[FTu0

[Ψ](v0, v)+FTv0
[Ψ](u0, u)].
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A standard argument allows us to recover the missing derivative: For instance, integrating

the identity (258) with a bounded, monotonically increasing f which vanishes to third

order near r=3M , we obtain∫ u

u0

∫ v

v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφΩ2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2

+
(r−3M)2

r2

(
1

r
| /∇ψ|2+

1

r2
|Ω /∇4Ψ+Ω /∇3Ψ|2

)]
6C[FTu0

[Ψ](v0, v)+FTv0
[Ψ](u0, u)].

(268)

The degeneration near r=3M is the familiar trapping phenomenon and cannot be

removed (although it can be improved to logarithmic loss; cf. [52]). The degeneration at

the horizon however can be removed by exploiting the redshift. The weights near infinity

can also be improved. We turn to these two refinements in §11.3 and §11.4 below.

11.3. Improving the weights near the horizon H+: The redshift

Given Proposition 11.1.1 and estimate (268), the argument exploiting the redshift iden-

tity, as described in §2.3.1 and §2.3.2 for the scalar wave equation (48) (cf. [25]), can be

immediately adapted to Ψ.

In particular, one upgrades Proposition 11.1.1 to the non-degenerate boundedness

statement

Fu[Ψ](v0, v)+Fv[Ψ](u0, u).Fv0
[Ψ](u0, u)+Fu0

[Ψ](v0, v), (269)

where these are now non-degenerate null-fluxes defined in (226) and (227), and the esti-

mate (268) itself to the improved(27) integrated decay estimate∫ u

u0

∫ v

v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφΩ2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2

+
(r−3M)2

r2

(
1

r
| /∇Ψ|2+

1

r2
|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

)]
.Fu0

[Ψ](v0, v)+Fv0
[Ψ](u0, u).

(270)

Note that, taking the limit u, v!∞, the left-hand side is precisely Ideg[Ψ]. Hence, (269)

and (270) prove the following result.

(27) In the sense that the regular transversal derivative (1/Ω) /∇3Ψ is also controlled near the
horizon–the degeneracy near r=3M remains.
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Proposition 11.3.1. The Ψ in Theorem 1 satisfies the boundedness estimate

sup
u
Fu[Ψ](v0,∞)+sup

v
Fv[Ψ](u0,∞).Fv0 [Ψ](u0,∞)+Fu0 [Ψ](v0,∞), (271)

and the integrated decay estimate

Ideg[Ψ].Fv0
[Ψ](u0,∞)+Fu0

[Ψ](v0,∞), (272)

provided the initial energies on the right-hand side are finite.

Note that higher-order versions of the above proposition are immediate from Lie

differentation with the Killing fields of §4.2.2, i.e. LT as well as LΩi
. We note also the

following result.

Corollary 11.1. The Ψ in Theorem 1 satisfies

Indeg[Ψ].
1∑
i=0

Fv0 [T iΨ](u0,∞)+

1∑
i=0

Fu0 [T iΨ](v0,∞), (273)

provided the initial energies on the right-hand side are finite. Here, the left-hand side

denotes the non-degenerate (near 3M) integrated decay energy

Indeg[Ψ] :=

∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ dvolS2 Ω2

[
1

r3
|Ψ|2+

1

r
| /∇Ψ|2+

1

r2
|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

]
.

Proof. By the remark following Proposition 11.3.1, the right-hand side of (273) con-

trols Ideg[Ψ]+Ideg[TΨ]. In particular, both |TΨ|2 and |R?Ψ|2 (and of course |Ψ|2) are now

controlled without degeneration at 3M . To control also the term | /∇Ψ|2 non-degenerately

near 3M integrate the multiplier identity (259) with f=1/r and use Proposition 11.3.1

to estimate the boundary terms that appear.

11.4. Improving the weights near null infinity I+: The rp hierarchy

The rp hierarchy of [22] recalled in §2.3.3 in the context of the scalar wave equation (48)

can also now be adapted to Ψ.

From the Regge–Wheeler equation for Ψ we derive the identity (for 16p62 and

k>1)

∂u

[
rp

(1−µ)k
|Ω /∇4Ψ|2

]
+∂v

[
rp

(1−µ)k−1
| /∇Ψ|2

]
+∂v

[
rp

V

(1−µ)k
|Ψ|2

]
−∂u

(
rp

(1−µ)k

)
|Ω /∇4Ψ|2−∂v

(
V rp

(1−µ)k

)
|Ψ|2

+

[
(2−p)rp−1(1−µ)1−k+rp(k−1)(1−µ)−k

2M

r2
rv

]
| /∇Ψ|2≡ 0,

(274)
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where we have used

−2 /∇4Ψ· /∆Ψ≡ /∇4| /∇ψ|2−2[ /∇4, /∇]Ψ· /∇Ψ = /∇4| /∇Ψ|2+trχ| /∇Ψ|2,

and ≡ indicates that (274) becomes an identity after integration against sin θ dθ dφ.

For our current purposes, it will be sufficient to integrate (274) for 16p62 with

respect to the measure du dv sin θ dθ dφ in a region

R= {(u, v)∈M : r(u, v)>R, u06u6ufinal and v06 v6 vfinal},

for sufficiently large R, and ufinal and vfinal arbitrarily large. Precisely, we choose R

sufficiently large (depending only on M) such that

−∂u
(

rp

(1−µ)k

)
>

1

2
rp−1 for all 16 p6 2 and k6 5.

Note also that

−∂v
(

V rp

(1−µ)k

)
=−∂v

(
4rp−2−6Mrp−3

(1−µ)k−1

)
=

rv
(1−µ)k

[
(4(2−p)rp−3−6M(3−p)rp−4)(1−µ)+(k−1)

2M

r2
(4rp−2−6Mrp−3)

]
=

rv
(1−µ)k

[4(2−p)rp−3+Mrp−4(8k+14p−42)+12M2rp−5(4−p−k)]

holds, which means that, given any 16p62, the choice k=4 ensures that also the estimate

−∂v
(

V rp

(1−µ)k

)
> 2Mrp−4

holds in R, for sufficiently large R (depending only on M). Therefore, integrating (274)

for p=2 with respect to the measure du dv sin θ dθ dφ, we first obtain the estimate∫
R
du dv sin θ dθ dφ (r|Ω /∇4Ψ|2+r1−ε| /∇Ψ|2+r−1−ε|Ψ|2)

6C
∫ ∞
v0

dv

∫
S2

sin θ dθ dφ (r2|Ω /∇4Ψ|2)(u0, v)+C(Fu0 [Ψ](v0, v)+Fv0 [Ψ](u0, u)),

(275)

for ε=1, where the last two terms on the right-hand side account for the terms arising

on the timelike hypersurface at r=R, which can be controlled by the Morawetz estimate

(270), after averaging in R. To show that the estimate (275) holds for our fixed 0<ε< 1
8 ,
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we integrate (274) for p=2−ε with respect to the measure du dv sin θ dθ dφ and add it to

the p=2 estimate. Note that the constant in (275) is independent of both ufinal and vfinal,

and that the estimate hence holds for R replaced by M∩{u>u0}∩{v>v0}∩{r>R}.
At the same time, the integration of (274) over R produces good boundary terms

(fluxes) on u=ufinal and v=vfinal from the terms in the first line of (274). Taking suprema,

we deduce both (238) and the n=0 part of (240), after recalling the shorthand notation

(230), (231) for the energies.

With these bounds established, we deduce the following result.

Corollary 11.2. Under the assumptions of Theorem 1, we also have the estimate

sup
u>u0

v>v0

‖r−1 ·Ψ‖2S2
u,v
.F Iu0

[Ψ](v0,∞)+F Iv0
[Ψ](u0,∞). (276)

Proof. The fundamental theorem of calculus in the /∇4-direction and the Cauchy–

Schwarz inequality using the flux (228) gives this bound with an additional (initial) term

supu ‖r−1 ·Ψ‖2S2
u,v0

on the right-hand side. Applying 1-dimensional Sobolev embedding

on v=v0, shows that this initial term is controlled by F Iv0
[Ψ](u0,∞).

We finally note that integrating (274) with p=1 and k=4 (instead of p=2 and k=4,

as done to derive (275)) leads to additional estimates which together with the choice

p=0 and k=0 (for which the identity (274) also holds) constitute the Regge–Wheeler

analogue of the rp-hierarchy for the wave equation in [22].

11.5. Higher-order estimates and polynomial decay

In this section we will extend the above weighted estimates to higher order and then infer

polynomial decay.

We note the trivial fact that the Regge–Wheeler equation (255) commutes with Lie

differentation with the Killing fields of §4.2.2, i.e. LT as well as LΩi
.(28) Recalling the

commuted energies (233), we hence immediately conclude the following corollary, which

provides the estimate (239) and the n>0 part of the estimate (240) in Theorem 1.

Corollary 11.3. If the Ψ in Theorem 1 satisfies Fn,T, /∇0 [Ψ]<∞ for some integer

n>0, then we have the estimate

In,T, /∇I,ε [Ψ]+In,T, /∇deg [Ψ]+Fn,T, /∇[Ψ].Fn,T, /∇0 [Ψ]. (277)

(28) As in [18], we could alternatively commute “tensorially” with r /∇A and estimate the lower-order
terms inductively.
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As an immediate consequence of Corollary 11.2, we also have

sup
u>u0

v>v0

‖r−1 ·A[n]Ψ‖2S2
u,v
.Fn,T, /∇0 [Ψ].

We can in fact show an analogue of the above for an nth-order non-degenerate energy,

where higher derivatives have moreover additional weights in v. This is a straightforward

adaptation of the procedure appearing in [68] and [57] to Ψ, and follows by commuting

the equation with the redshift operator Ω−1 /∇3 near the horizon and with the weighted

operator rΩ /∇4 near null infinity, and observing that the terms non-controllable by (277)

occur with favourable signs. We will simply state the estimate arising. Define the energy

Fn[Ψ] : =
∑

i+j+k6n

sup
u
F Iu [(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ](v0,∞)

+
∑

i+j+k6n

sup
v
F Iv [(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ](u0,∞),

(278)

with initial energy

Fn0 [Ψ] : =
∑

i+j+k6n

F Iu0
[(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ](v0,∞)

+
∑

i+j+k6n

F Iv0
[(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ](u0,∞).

(279)

We have the following result.

Corollary 11.4. If the Ψ in Theorem 1 satisfies Fn0 [Ψ]<∞, then we have, for any

n>0 and non-negative integers i, j and k with i+j+k6n, the estimate

Fn[Ψ].Fn0 [Ψ],

Ideg[(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ]+IIε [(Ω−1 /∇3)i(rΩ /∇4)j(r /∇A)kΨ].Fn0 [Ψ].

We will in fact only use Corollary 11.4 later to optimise decay statements already

obtained.

Exploiting the rp-hierarchy for the Regge–Wheeler equation discussed in §11.4, poly-

nomial decay estimates can be obtained for Ψ exactly as in [22] for the case of the scalar

wave equation (cf. the discussion in §2.3.3). We only give the most elementary statement

here.

Let us fix r0 :=r(u0, v0)>2M and denote by u(v, r0) the u-value corresponding to the

sphere of intersection between the r=r0 hypersurface and the constant v hypersurface.

Note that v∼u(v, r0), for large v. Applying step by step the method of [22] (for details

on the method of [22] in more general settings see [68], [57]), we obtain the following

result.
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Proposition 11.5.1. Fix r0=r(u0, v0) and v>v0 and suppose the Ψ in Theorem 1

satisfies F2,T
0 [Ψ]<∞ initially. Then, for any V >v and any U>u(v, r0), we have

FU [Ψ](v,∞)+FV [Ψ](u(v, r0),∞).
1

v2
·F2,T

0 [Ψ].

The constant implicit in . depends on r0, and we recall the non-degenerate energy fluxes

(226) and (227).

Proof. Since the proof is entirely analogous to that in [22], we only provide a sketch

from which the reader can easily fill in the details. Adding to (275) the estimate of

Corollary 11.1 (and their T -commuted analogues), we find

∫ ∞
u0

∫ ∞
v0

∫ d

S2
ū,v̄

ū dv̄ dvolS2 Ω2

[
1

r2
|Ψ|2+| /∇Ψ|2+r|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

]
+

∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ dvolS2 Ω2

[
1

r2
|TΨ|2+| /∇TΨ|2+r|Ω /∇4TΨ|2+

1

r2
|Ω−1 /∇3TΨ|2

]
.F2,T

0 [Ψ].

From this, we extract a dyadic sequence (vi)i with associated ingoing cone

C̃vi = [u(vi, r0),∞)×{vi}×S2

and outgoing cone C̃u(vi,r0)={u(vi, r0)}×[vi,∞)×S2 such that for each vi we have

∫ ∞
u(vi,r0)

dū dvolS2 Ω2

(
|Ω−1 /∇3Ψ|2+| /∇Ψ|2+

1

r2
|Ψ|2

+|Ω−1 /∇3TΨ|2+| /∇TΨ|2+
1

r2
|TΨ|2

)
(ū, vi)

+

∫ ∞
vi

dv̄ dvolS2

(
r|Ω /∇4Ψ|2+| /∇Ψ|2+

1

r2
|Ψ|2

+r|Ω /∇4TΨ|2+| /∇TΨ|2+
1

r2
|TΨ|2

)
(u(vi, r0), v̄).

F2,T
0 [Ψ]

vi
.

Note that, in particular, the ingoing non-degenerate energy (of both Ψ and TΨ) on C̃vi
and the outgoing energy (of both Ψ and TΨ) on C̃u(vi,r0) are decaying. Hence, applying

Proposition 11.3.1, now from each dyadic pair of cones C̃vi∪C̃u(vi,r0) (instead of from

C̃v0
∪C̃u0

) yields, using the previous estimate for the right-hand side in Proposition 11.3.1



the linear stability of the schwarzschild solution 127

for any v>v0, the estimate∫ ∞
u(v,r0)

dū dvolS2 Ω2

(
|Ω−1 /∇3Ψ|2+| /∇Ψ|2

+
|Ψ|2

r2
+|Ω−1 /∇3TΨ|2+| /∇TΨ|2+

1

r2
|TΨ|2

)
(ū, v)

+

∫ ∞
v

dv̄ dvolS2

(
r |Ω /∇4Ψ|2+| /∇Ψ|2+

|Ψ|2

r2

+ r |Ω /∇4TΨ|2+| /∇TΨ|2+
1

r2
|TΨ|2

)
(u(v, r0), v̄).

F2,T
0 [Ψ]

v

(280)

without the boxed r-weight. In addition, we obtain (cf. (270))

∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū

∫
S2
ū,v̄

dvolS2 Ω2[e[Ψ]+e[TΨ]].
F2,T

0 [Ψ]

v
,

for all v>v0, where

e[Ψ] =
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2+

(r−3M)2

r2

(
1

r
| /∇Ψ|2+

1

r2
|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

)
.

We now integrate (274) (and its T -commuted version) with p=1 and k=4 in R from each

Cu(vi,r0) to improve (280) to include the boxed r-weight. In addition, we obtain a good

spacetime term in the regionR which can be combined with the estimate of Corollary 11.1

(exchange the initial cones C̃v0
∪C̃u0

by the dyadic pair of cones C̃vi∪C̃u(vi,r0), and use

(280) without the boxed r for the right-hand side in Corollary 11.1) to obtain

∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū

∫
S2
ū,v̄

dvolS2 Ω2

[
1

r2
|Ψ|2+| /∇Ψ|2+|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

]
.

F2,T
0 [Ψ]

v

(281)

for all v>v0. From this, we find a (potentially different) dyadic sequence (vi)i along

which ∫ ∞
u(vi,r0)

dū dvolS2 Ω2(|Ω−1 /∇3Ψ|2+| /∇Ψ|2+
|Ψ|2

r2
)(ū, vi)

+

∫ ∞
vi

dv̄ dvolS2 (|Ω /∇4Ψ|2+| /∇Ψ|2+
|Ψ|2

r2
)(u(vi, r0), v̄).

F2,T
0 [Ψ]

(vi)2
.

Finally, applying Proposition 11.3.1 from each of these dyadic pair of cones C̃vi∪C̃u(vi,r0)

towards the future yields the statement of the proposition.



128 m. dafermos, g. holzegel, and i. rodnianski

Corollary 11.5. Under the assumptions of the previous proposition, we have the

integrated decay estimate∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū

∫
S2
ū,v̄

dvolS2 Ω2

[
1

r2
|Ω /∇4Ψ−Ω /∇3Ψ|2+

1

r3
|Ψ|2

+
(r−3M)2

r2

(
1

r
| /∇Ψ|2+

1

r2
|Ω /∇4Ψ|2+

1

r2
|Ω−1 /∇3Ψ|2

)]
.

F2,T
0 [Ψ]

v2
.

Proof. Apply Proposition 11.5.1 to (270) replacing v0 by the fixed v and u0 by the

fixed u(v, r0) in (270).

12. Proof of Theorem 2

In this section we exploit the transformation formulas of §7.3 together with Theorem 1

to prove Theorem 2. The reader can refer to the overview of §2.4.2.

We begin in §12.1 with the most basic estimates for ψ, ψ, α and α that follow straight

from the transport structure of equations (178)– (181), in conjunction with Theorem 1.

In §12.2 we obtain higher-derivative estimates for ψ, ψ, α and α that follow from

commuting the aforementioned transport equations. Sometimes pointwise algebraic iden-

tities (§12.2.1) can be used to avoid the loss of derivatives that is encountered in using

the transport equations. Combining these results, we finally complete the proof of the

first three statements of Theorem 2 in §12.2.6. The final subsection (§12.3) presents some

refinements of the previous results, including higher-order estimates and polynomial de-

cay statements for solutions of the Teukolsky equation, in particular the last statement

in Theorem 2.

12.1. Ascending the hierarchy: basic transport estimates

We will prove the statements of Theorem 2 regarding spin +2 and−2 Teukolsky equations

in parallel. Let α and α be as in the two parts of Theorem 2.

We first define the derived quantities ψ and P from α, and ψ and P from α, from for-

mulas (178)–(179) and (180)–(181), respectively, of §7.3. By Proposition 7.3.1, it follows

that both P and P satisfy the Regge–Wheeler equation. We may thus apply Theorem 1

to both P and P , noting that, by the assumptions of Theorem 2, the corresponding

initial energies appearing in Theorem 1 are finite.

In the subsections that follow, we will show how from control of P and P we can

control ψ and ψ, and then α and α, by estimating transport equations.
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12.1.1. Estimates for ψ and ψ

We begin by estimating ψ and ψ.

Proposition 12.1.1. The derived quantity ψ associated with the solution α of The-

orem 2 satisfies the following estimates. Along any null-hypersurface of constant u>u0,

including the event horizon,∫ ∞
v0

dv ‖r−1ψ‖2S2
u,v
r8−εΩ2(u, v).F0[Ψ, ψ]. (282)

In addition, we have the integrated decay estimate∫ ∞
u0

∫ ∞
v0

du dv ‖r−1ψ‖2S2
u,v
r7−εΩ4.F0[Ψ, ψ], (283)

where the constant in . depends on ε.

The derived quantity ψ associated with the solution α of Theorem 2 satisfies the

following estimates. Along any null hypersurface of constant v>v0, including in the

limit on null infinity, ∫ ∞
u0

du ‖r−1ψ‖2S2
u,v
r6(u, v).F0[ Ψ, ψ].

In addition, we have the integrated decay estimate∫ ∞
u0

∫ ∞
v0

du dv ‖r−1ψ‖2S2
u,v
r5−ε.F0[Ψ, ψ], (284)

where the constant in . depends on ε.

Proof. From (179) we derive

∂u[|ψ|2r6Ω2] = 2r6Ω3(P,ψ), (285)

or, multiplying by rn and using ru=−Ω2,

∂u(|ψ|2r6Ω2 ·rn)+|ψ|2r6Ω4nrn−1 = 2r6+nΩ3Pψ

6
1

2
|ψ|2r6Ω4nrn−1+

2

n
r7+n|P |2Ω2,

(286)

which simplifies to

∂u(|ψ|2r6Ω2 ·rn)+
1

2
|ψ|2r6Ω4nrn−16

2

n
r7+n|P |2Ω2. (287)
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The analogue of (285) is

∂v[|ψ|2r6Ω2] =−2r6Ω3(P , ψ). (288)

We can multiply this by 1/Ω2, which satisfies ∂vΩ
−2=−(1/Ω2)2M/r2:

∂v

[
1

Ω2
|ψ|2r6Ω2

]
+2Mr4|ψ|2 =−2r6Ω(P , ψ), (289)

and hence

∂v

[
1

Ω2
|ψ|2r6Ω2

]
+Mr4|ψ|26 1

M
r8|P |2Ω2. (290)

Multiplying instead by 1/rε, we find similarly

∂v

[
1

rε
|ψ|2r6Ω2

]
+ε·r−1−εr6Ω4|ψ|26Cε ·r7−ε|P |2Ω2. (291)

For the right-hand sides in (287) (applied with n=2−ε for ε>0), as well as (290)

and (291), we already have an integrated decay estimate, i.e. the right-hand side remains

controlled from initial data when integrated over the spacetime region [u0, u]×[v0, v]×S2

(for any u>u0 and v>v0), with respect to the measure du dv sin θ dθ dφ; see (240). Upon

this integration, the left-hand sides of (287), (290) and (291) will provide estimates for

fluxes of ψ and ψ, as well as integrated decay as stated in Proposition 12.1.1.

Corollary 12.1. In addition to the bounds of Proposition 12.1.1, we have, for fixed

u>u0 (including the horizon u=∞) and any v>v0,

‖r−1 ·ψΩ−1r3‖2S2
u,v

+

∫ v

v0

dv̄
1

r2
‖r−1ψΩ−1r3‖2S2

u,v̄
. ‖r−1 ·ψΩ−1r3‖2S2

u,v0
+F0[Ψ].

Proof. Write (289) as ∂v[|ψ|2Ω−2r6]+(4M/r2)r6|ψ|2Ω−2=−2r6Ω−1(P , ψ), then in-

tegrate using Cauchy’s inequality and control on the P -flux from Theorem 1.

Corollary 12.2. In addition to the bounds of Proposition 12.1.1, we have, for

n=1, 2, 3 and any fixed v>v0 and any u>u0 (including the horizon u=∞),

rn‖r−1 ·ψΩr3‖2S2
u,v

+

∫ u

u0

dūΩ2rn−1‖r−1ψΩr3‖2S2
u,v̄
. rn‖r−1 ·ψΩr3‖2S2

u0,v
+F0[Ψ].

Proof. Fix arbitrary v and integrate (286) for n=1, 2, 3 from u=u0 to arbitrary u,

the P -flux being controlled from Theorem 1.
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12.1.2. Estimates for α and α

Now let us obtain decay estimates for α and α. The following proposition (in conjunction

with Proposition 12.1.1) proves the estimate (241) of Theorem 2.

Proposition 12.1.2. The solution α of Theorem 2 satisfies the following estimates:

Along any null hypersurface of constant u>u0, including the event horizon, we have∫ ∞
v0

dv ‖r−1α‖2S2
u,v
r6−εΩ4(u, v).F0[Ψ, ψ, α]. (292)

The solution α of Theorem 2 satisfies the following estimates: Along any null hypersur-

face of constant v>v0, including in the limit on null infinity, we have∫ ∞
u0

du ‖r−1α‖2S2
u,v
r2Ω−2(u, v).F0[Ψ, ψ, α ]. (293)

Finally, we have the integrated decay estimates∫ ∞
u0

∫ ∞
v0

du dv r1−εΩ−2‖r−1α‖2S2
u,v
.F0[Ψ, ψ, α ],∫ ∞

u0

∫ ∞
v0

du dv r5−εΩ6‖r−1α‖2S2
u,v
.F0[Ψ, ψ, α].

Proof. Observe that we can write

/∇3(rΩ2α) =−2ψ ·rΩ2. (294)

It follows that

∂u(r2Ω4|α|2) =−4r2Ω5(ψ, α),

which, upon multiplication by rn, becomes

∂u(rn ·r2Ω4|α|2)+nrn−1r2Ω6|α|2 =−4r3Ω5(ψ, α)rn−1

6
n

2
rn−1r2Ω6|α|2+

4

n
rn−1r4Ω4|ψ|2.

From the resulting

∂u(rn ·r2Ω4|α|2)+
n

2
rn−1r2Ω6|α|26 4

n
rn−1r4Ω4|ψ|2 (295)

we see from (240) that, choosing n=4−ε, after integration with respect to du dv sin θ dθ dφ

over the region [u0, u]×[v0, v]×S2 , the right-hand side is controlled by Proposition 12.1.1

for arbitrary u>u0 and v>v0. Therefore, we obtain the analogue of Proposition 12.1.1

for α. The argument for α is similar. From

/∇4(rΩ2α) = 2ψ ·rΩ2, (296)
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we derive (∂v=Ω /∇4)

∂v((1+r−ε)Ω−6|rΩ2α|2)+

[
ε

Ω2

r1+ε
+3

2M

r2
(1+r−ε)

]
Ω−6|rΩ2α|2 = 4rΩ−1r(ψ, α)(1+r−ε).

(297)

Applying Cauchy’s inequality on the right yields

∂v((1+r−ε)Ω−6|rΩ2α|2)+

[
ε

Ω2

r1+ε
+

2M

r2
(1+r−ε)

]
Ω−6|rΩ2α|2. 1

r2
|ψr3|2, (298)

and integrating as above yields the result for α.

12.2. Higher-derivative estimates

In the following subsections we estimate higher derivatives of the quantities ψ, ψ, α and α

from our control on P and P .

12.2.1. Some useful identities

We begin by computing some useful identities, which we shall write in regular form so

that the behaviour at the horizon can be assessed directly.

Lemma 12.2.1. Consider the solution α of Theorem 2 and the derived quantities ψ

and P defined via (178) and (179). The following identities hold true:

/∇4(rψΩ)+(2 trχ−2ω̂)(rψΩ) = rΩ/D?2 /divα+
3M

r2
Ωα, (299)

Ω /∇4(r5P ) =−2r5 /D?2 /div(ψΩ)+6Mr2ψΩ−2r3ψΩ+3rMΩ2α, (300)

Ω /∇4(r2Ω /∇4(r5P )) = rΩ /∇4(rΩ /∇4(r5P ))+Ω2 ·rΩ /∇4(r5P )

=−2r4 /D?2 /div /D?2 /div(r3αΩ2)−4Mr2 /D?2 /div(r3ψΩ)

−6Mr2 /D?2 /div(r2αΩ2)+

(
−2+

6M

r

)
Ω /∇4(r5ψΩ)

−18MΩ2rψΩ+3MΩ /∇4(r3Ω2α). (301)

Consider the solution α of Theorem 2 and the derived quantities ψ and P defined
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via (180) and (181). Then, the following identities hold true:

/∇3

(
r
ψ

Ω

)
+2 trχ

(
r
ψ

Ω

)
=−rΩ−1 /D?2 /divα− 3M

r2

α

Ω
, (302)

Ω−1 /∇3(r5P ) = 2r5 /D?2 /div(ψΩ−1)−6Mr2ψΩ−1+2r3ψΩ−1+3rMα, (303)

Ω−1 /∇3(Ω−1 /∇3(r5P )) =−2r4 /D?2 /div /D?2 /div

(
rα

Ω2

)
+

4

r
r2 /D?2 /div

(
ψr3

Ω

)
−6Mr2 /D?2 /div(

αr

Ω
)

(
−6M

r
+2

)
Ω−1 /∇3

(
ψr3

Ω

)
− 6M

r2

(
ψr3

Ω

)
+3MΩ−1 /∇3(rα),

(304)

where the last identity could be simplified further by reinserting (303).

Proof. Note that (299) and (302) are just rewritings of the Teukolsky equation of

spin +2 and spin −2 respectively. The identities (300) and (303) follow from inserting

the definitions of P and P , commuting derivatives and inserting the relevant Teukolsky

equation. The identities (301) and (304) follow by combining the estimates already

obtained.

12.2.2. Angular derivatives of ψ and ψ

From (300) and (303) we directly conclude using the bounds of Proposition 12.1.1 and

Theorem 1 the following result.

Proposition 12.2.1. The quantity ψ associated with the solution α of Theorem 2

through (178) satisfies the estimate

sup
u>u0

∫ v

v0

dv̄ r8−ε‖r−1 ·r2 /D?2 /div(ψΩ)‖2S2
ū,v
.F0[Ψ, ψ, α], (305)

and the degenerate integrated decay estimate∫ ∞
u0

du

∫ ∞
v0

dv
Ω2

r3

(
1− 3M

r

)2
‖r−1 ·r2 /D?2 /div(r3ψΩ)‖2S2

u,v
.F0[Ψ, ψ, α].

The quantity ψ associated with the solution α of Theorem 2 through (180) satisfies

the estimate

sup
v>v0

∫ u

u0

dū ‖r−1 ·r2 /D?2 /div(r3ψΩ−1)‖2S2
ū,v

Ω2(ū, v).F0[Ψ, ψ, α ], (306)

and the degenerate integrated decay estimate∫ ∞
u0

du

∫ ∞
v0

dv
Ω2

r3

(
1− 3M

r

)2
‖r−1 ·r2 /D?2 /div(r3ψΩ−1)‖2S2

u,v
.F0[Ψ, ψ, α ].
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Remark 12.1. Note that, in view of (111), we control in particular the flux of first

angular derivatives of ψ on null infinity I+, a fact that will be exploited in the next

proposition.

We now look at the commuted equation

/∇4(r /divψr3Ω) =−r3Ω·r /divP . (307)

From this, we derive

Ω /∇4

((
1

Ω2
− 1

Ω2

∣∣∣∣
r=3M

)
|r /divψr3Ω|2

)
+

2M

r2
|r /divψr3|2

=−2r3Ω2

(
1

Ω2
− 1

Ω2

∣∣∣∣
r=3M

)
(r /divP , r /divψ)r3Ω

= 4r3

(
1− 3M

r

)
(r /divP , r /divψ)r3Ω

6
M

r2
|r /divψr3|2+

4

M

(
1− 3M

r

)2
r8|r /divP |2Ω2,

which yields

Ω /∇4

((
1

Ω2
− 1

Ω2

∣∣∣∣
r=3M

)
|r /divψr3Ω|2

)
+
M

r2
|r /divψr3|26 4

M

(
1− 3M

r

)2
r8|r /divP |2Ω2.

Integrating this over the spacetime region [u0, u]×[v0, v] for arbitrary u>u0 and v>v0,

we observe the following facts:

• the right-hand side is controlled by initial data from (240) for n=0;

• the future boundary term (flux) on the constant-v hypersurface is unsigned. How-

ever, we already control it from initial data through Proposition 12.2.1.

We conclude the following result.

Proposition 12.2.2. The quantity ψ associated with the solution α of Theorem 2

through (178) satisfies the non-degenerate integrated decay estimate∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφ r7−εΩ4|r /divψ|2.F0[Ψ,Dψ, α].

The quantity ψ associated with the solution α of Theorem 2 through (180) satisfies the

non-degenerate integrated decay estimate∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφ r5−ε|r /divψ|2.F0[Ψ,Dψ, α ].
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Proof. The second bound follows with weight r4 instead of r5−ε directly from the

computation below (307). One easily improves the weight a posteriori replacing(
1

Ω2
− 1

Ω2

∣∣∣∣
r=3M

)
in the computation below (307) by (1+r−ε)χ, with χ being a cut-off function which is 1

near infinity and vanishes for r68M .

For the first bound, one repeats this argument for the commuted equation

/∇3(r /divψr3Ω) = r3Ω·r /divP,

now contracting with [r2−ε−(3M)2−ε]·r /divψr3Ω and using that the flux arising on the

horizon is a priori controlled by Proposition 12.2.1.

Similarly, we can directly integrate the equations

Ω /∇4

∣∣∣∣r /div
ψr3

Ω

∣∣∣∣2+
2M

r2

∣∣∣∣r /div
ψr3

Ω

∣∣∣∣2 =−2r3r

(
/divP , r /div

ψr3

Ω

)
and (for any 1>δ>0)

Ω /∇3[r3−δ|r /div(r3Ωψ)|2]+
3−δ
r

Ω2[r3|r /div(r3Ωψ)|2] = r6−δΩ2r( /divP, r /div(ψr3Ω))

from initial data (integrating also over the angular variables) to obtain, after apply-

ing Cauchy–Schwarz to the right-hand side and using the P and P -fluxes the following

proposition.

Proposition 12.2.3. In addition to the estimates of Proposition 12.2.2, we have,

for any u>u0 and v>v0,∥∥∥∥r−1 ·r /div
ψr3

Ω

∥∥∥∥2

S2
u,v

+

∫ ∞
v0

1

r2

∥∥∥∥r−1 ·r /div
ψr3

Ω

∥∥∥∥2

S2
u,v

dv.

∥∥∥∥r−1 ·r /div
ψr3

Ω

∥∥∥∥2

S2
u,v0

+F0[ Ψ]

and, for any 1>δ>0,

r3−δ‖r−1 ·r /div(ψΩr3)‖2S2
u,v

+

∫ ∞
u0

Ω2r2−δ‖r−1 ·r /div(ψΩr3)‖2S2
u,v
du

. r3−δ‖r−1 ·r /div(ψΩr3)‖2S2
u0,v

+F0[Ψ].

Moreover, the first estimate remains true if we replace r /divψ by A[i+1]ψ and F0[Ψ] by

Fi,T, /∇0 [Ψ] for i=1, 2. Similarly, the second estimate remains true if we replace r /divψ by

A[i+1]ψ and F0[Ψ] by Fi,T, /∇0 [Ψ].
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We remark that the higher-order statement of Proposition 12.2.3 follows immediately

from the fact that we can repeat the above transport argument for the commuted equation

/∇4(A[i]ψr3Ω) =−r3Ω·A[i]P .

Corollary 12.3. In addition to the estimates of Proposition 12.2.2, we also have

the estimates

sup
u,v
‖r−1r /divαΩ−2‖2S2

u,v
. sup

u
‖r−1r /divαΩ−2‖2S2

u,v0

+sup
u

∥∥∥∥r−1 ·r /div
ψr3

Ω

∥∥∥∥2

S2
u,v0

+F0[ Ψ],

sup
u,v

r7−δ‖r−1r /divαΩ2‖2S2
u,v
. sup

v
r7−δ‖r−1r /divαΩ2‖2S2

u0,v

+sup
v

r3−δ‖r−1r /div(ψΩr3)‖2S2
u0,v

+F0[Ψ].

Proof. For the second estimate, apply the once angular commuted (295) with n=5−δ
and use the flux in the proposition. For the first one, use (297) (with an additional (Ω−2

weight)) and the flux of the proposition.

12.2.3. Estimating all first derivatives of ψ and ψ

Note that we already control the /∇3ψ and /∇4ψ derivatives directly from the transport

equation they satisfy, (179). To estimate the remaining first derivative we commute these

equations by 2 /∇R? :=−Ω /∇3+Ω /∇4 and recall that /∇R?Ψ satisfies a non-degenerate (near

r=3M) integrated decay estimate; cf. (270). We compute

Ω /∇4( /∇R?ψr3Ω) =− /∇R?(r3Ω2P ), (308)

since Ω /∇3 and Ω /∇4 commute. Since the right-hand side again satisfies a non-degenerate

integrated decay estimate (270) and (240), we can actually repeat the estimate for the

uncommuted equation (leading from (287) to (290)) to immediately obtain the ana-

logue of Proposition 12.1.1,(29) as the same considerations hold for the /∇R? commuted

/∇3(r3Ωψ)-equation.

(29) Note that this would not be possible if the right-hand side satisfied an estimate which degen-
erated near r=3M . The reason is that such a right-hand side would (just as for the angular derivatives
in the previous section) force us to multiply with a weight that changes sign near 3M which gives the

future boundary term the wrong sign. In the angular case, this flux of the wrong sign was controlled a
priori. Here this flux is not available yet.
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Proposition 12.2.4. Consider the quantity ψ associated with the solution α of The-

orem 2 through (178). Then, along any null-hypersurface of constant u>u0 (including

the event horizon), we have∫ ∞
v0

dv ‖r−1 /∇R?(Ωψ)‖2S2
u,v
r8−ε(u, v).F0[Ψ,Dψ, α]. (309)

In addition, we have the integrated decay estimate∫ ∞
v0

∫ ∞
u0

dvdu‖r−1 /∇R?(Ωψ)‖2S2
u,v

Ω2r7−ε.F0[Ψ,Dψ, α]. (310)

Consider the quantity ψ associated with the solution α of Theorem 2 through (180).

Then, along any null hypersurface of constant v>v0, we have∫ ∞
u0

du ‖r−1 /∇R?(Ω−1ψ)‖2S2
u,v
r6Ω2(u, v).F0[ Ψ,Dψ, α ]. (311)

In addition, we have the integrated decay estimate∫ ∞
v0

∫ ∞
u0

dv du ‖r−1 /∇R?(Ω−1ψ)‖2S2
u,v

Ω2r5−ε.F0[ Ψ,Dψ, α ]. (312)

We now exploit the relations (179) and (181) to obtain estimates for all first deriva-

tives of ψ and ψ. From

Ω /∇4(Ωψ) = Ω /∇3(Ωψ)+2 /∇R?(Ωψ) = Ω2P+3
Ω2

r
(Ωψ)+2 /∇R?(Ωψ)

(and similarly for ψ), it is immediate that we can obtain a non-degenerate integrated

decay estimate for all first derivatives of ψ and ψ. In particular, we can replace /∇R? by

both Ω /∇4 or Ω /∇3 in the estimates of Proposition 12.2.4. The estimate for Ω /∇4(Ωψ) will

then still be non-optimal in terms of r-weights at infinity and the estimate for Ω /∇3(Ω−1ψ)

will not be optimal near the horizon. However, this is easily remedied using r-weighted

estimates and the redshift respectively. We indicate this for the r-weight before stating

the final proposition. We have

Ω /∇3[ξ(r)r4−ε|Ω /∇4(r3Ωψ)|2]+
4−ε
r

Ω2ξ(r)[r4−ε|Ω /∇4(r3Ωψ)|2]−ξrΩ2 r4−ε|Ω /∇4(r3Ωψ)|2

= ξr7−εΩ2Ω /∇4P ·Ω /∇4(ψr3Ω)

for a radial cut-off function ξ which we choose to be 1 for r>8M and 0 for r66M . Using

that one already has a non-optimal spacetime estimate for r68M , integrating the above

over a spacetime region improves the weights.(30) We summarise the conclusion in the

following proposition.

(30) Note again that this argument does not apply globally, because /∇4P is only controlled in a
degenerate norm near r=3M .
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Proposition 12.2.5. Consider the quantity ψ associated with the solution α of

Theorem 2 through (178). We have the non-degenerate integrated decay estimate∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφ r7−ε[| /∇3(Ωψ)|2+Ω2|r·Ω /∇4(Ωψ)|2].F0[Ψ,Dψ, α],

as well as, for any u>u0, the flux estimate∫ ∞
v0

dv sin θ dθ dφ r4−ε|Ω /∇4(Ωψr3)|2.F0[Ψ,Dψ, α].

Consider the quantity ψ associated with the solution α of Theorem 2 through (180). We

have the non-degenerate integrated decay estimate∫ ∞
u0

∫ ∞
v0

∫
S2
ū,v̄

dū dv̄ sin θ dθ dφ[r4Ω2(|Ω−1 /∇3(Ω−1ψ)|2+|rΩ /∇4(ψΩ−1)|2)].F0[ Ψ,Dψ, α ]

as well as, for any v>v0, the flux estimate∫ ∞
u0

du sin θ dθ dφΩ2r6|Ω−1 /∇3(Ω−1ψ)|2.F0[Ψ,Dψ, α ].

12.2.4. Estimating second angular derivatives of α and α

Proposition 12.2.5 will directly imply control over two angular derivatives of α and α.

This follows from the identities (302) and (299). We observe that, by Propositions 12.2.5

and 12.1.1, we already control the flux (on constant v) of the left-hand side of (302)

and the flux (on constant u) of the left-hand side of (299). Moreover, by the same

propositions, we have integrated decay for the left hand sides of both (302) and (299).

As α and α itself are already controlled from Proposition 12.1.2, we immediately conclude

the following result.

Proposition 12.2.6. Consider the solution α of Theorem 2. We have the flux

estimate

2∑
i=0

∫ ∞
v0

dv sin θ dθ dφ r6+2i−ε| /∇i(αΩ2)|2.F0[Ψ,Dψ, α] (313)

for any hypersurface of constant u, and the integrated decay estimate

2∑
i=0

∫ ∞
v0

∫ ∞
u0

du dv

∫
S2
u,v

sin θ dθ dφΩ2[Ω4r5−ε+2i| /∇iα|2].F0[Ψ,Dψ, α].
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Consider the solution α of Theorem 2. We have the flux estimate

2∑
i=0

∫ ∞
u0

du sin θ dθ dφΩ2r2+2i| /∇i(αΩ−2)|2.F0[Ψ,Dψ, α ]

on any constant v hypersurface, and the integrated decay estimate

2∑
i=0

∫ ∞
v0

∫ ∞
u0

du dv

∫
S2
u,v

sin θ dθ dφΩ2[Ω−4r2i| /∇iα|2].F0[Ψ,Dψ, α ].

Remark 12.2. The estimates of Proposition 12.2.6 still “loses derivatives”, in that

the norm on the right-hand side involves three derivatives of α (one derivative of Ψ which

itself is two derivatives of α). An improved estimate which does not lose in this sense

will be provided in Proposition 12.3.1 below.

12.2.5. Estimating all first derivatives of α and α

We now establish estimates for (all) first derivatives of α and α. This is very straightfor-

ward, as we can commute /∇3(rΩ2α)=−2ψrΩ2 and the corresponding /∇4(rΩ2α)=2ψrΩ2

equation by any derivative from r /∇4, /∇3 and r /∇, and observe that the right-hand side

satisfies a non-degenerate integrated decay estimate just as the uncommuted equation did

(cf. Propositions 12.2.2 and 12.2.5). Repeating the proof of Proposition 12.1.2 therefore

immediately provides the analogue of that proposition.

Proposition 12.2.7. Consider the solution α of Theorem 2. Along any null hyper-

surface of constant u>u0, including the event horizon, we have∫ ∞
v0

dv ‖r−1Dα‖2S2
u,v
r6−εΩ4(u, v).F0[Ψ,Dψ,Dα]. (314)

In addition, we have the integrated decay estimate∫ ∞
v0

∫ ∞
u0

du dv r5−εΩ6‖r−1Dα‖2S2
u,v
.F0[Ψ,Dψ,Dα].

Consider the solution α of Theorem 2. Along any null hypersurface of constant v>v0,

including in the limit on null infinity, we have∫ ∞
u0

du ‖r−1Dα‖2S2
u,v
r2Ω−2(u, v).F0[Ψ,Dψ,Dα ]. (315)

In addition, we have the integrated decay estimate∫ ∞
v0

∫ ∞
u0

du dv du dv r1−εΩ−2‖r−1Dα‖2S2
u,v
.F0[ Ψ,Dψ,Dα ].



140 m. dafermos, g. holzegel, and i. rodnianski

Remark 12.3. For α (and similarly for α) it should be possible to apply energy es-

timates on the (commuted) Teukolsky equation (173) itself to control all second deriva-

tives, using the fact that two angular derivatives and all first derivatives are already

under control by Propositions 12.2.7 and 12.2.6. Such estimates can alternatively be

derived directly from the Bianchi equations.

12.2.6. Completing the proof of (242) and (243)

We complete the proof of the statements (1)–(3) of Theorem 2 by proving the estimates

(242) and (243), recalling that (241) was proven already in §12.1.2.

Combining the flux and integrated decay estimates of Propositions 12.2.7 and 12.2.5,

and the estimates of Propositions 12.2.3 and 12.2.1, we have established (242) and (243)

for n=0 (in fact also integrated decay and flux estimates on second angular derivatives

of α and α in Proposition 12.2.6 and flux estimates for second angular derivatives of

ψ and ψ in Proposition 12.2.1). Since the Regge–Wheeler equation commutes trivially

with T and angular momentum operators Ωi (cf. §4.2.2), the higher-order statements are

immediate.

12.3. Refinements and polynomial decay estimates

We now obtain the necessary refinements to obtain the final statement (4) of Theorem 2,

namely Propositions 12.3.4–12.3.7 and the estimate of Corollary 12.6 below.

The statement of the first four propositions is contained in §12.3.2 below. To prove

them, we shall first show certain higher-order statements in §12.3.1. Finally, in §12.3.3,

we shall prove Corollary 12.6, which provides an L1-estimate that will be useful in the

proof of Theorem 3.

12.3.1. Top-order statements

Using the previous bounds in conjunction with the identities (304) and (301), we can con-

clude a boundedness (of energy) statement for α and α which does not lose derivatives in

the sense that two derivatives of Ψ=r5P and Ψ=r5P control four derivatives of α and α.

This statement does however require the higher-order estimates of Corollary 11.4, which

we recall include the commuted redshift near the horizon and weighted commutation near

null infinity. Recall the notation (103) and the ellipticity of these operators; cf. (111).
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Proposition 12.3.1. Consider the solution α of Theorem 2. Then, we have the

flux bound

sup
v>v0

∫ ∞
u0

du sin θ dθ dφΩ2

∣∣∣∣A[4]

(
rα

Ω2

)∣∣∣∣2.F1
0[Ψ]+F0[Ψ,Dψ,Dα ]. (316)

Consider the solution α of Theorem 2. Then, we have the flux bound

sup
u>u0

∫ ∞
v0

dv sin θ dθ dφ r6−ε|A[4](αΩ2)|2.F1
0[Ψ]+F0[Ψ,Dψ,Dα]. (317)

Proof. Apply the flux bounds of Propositions 12.2.1, 12.2.5, 12.2.6 and Corollary 11.4

to the identities (304) and (301).

Proposition 12.3.2. Consider the solution α of Theorem 2. We have, for i>4,

the integrated decay estimate∫ ∞
u0

du

∫ ∞
v0

dv
Ω2

r1+ε

(
1− 3M

r

)2
r−1‖r−1 ·A[i](r3αΩ2)‖2S2

u,v

.Fi−3
0 [Ψ]+Fi−4,T, /∇

0 [Ψ,Dψ,Dα]

Consider the solution α of Theorem 2.∫ ∞
u0

du

∫ ∞
v0

dv
Ω2

r1+ε

(
1− 3M

r

)2
‖r−1 ·A[i](rαΩ−2)‖2S2

u,v

.Fi−3
0 [Ψ]+Fi−4,T, /∇

0 [Ψ,Dψ,Dα ].

Moreover, for both estimates, if for any i>5 we replace A[i] by A[i−1] on the left-hand

side (while keeping the right-hand side fixed), the degeneration factor (1−3M/r)2 can

be dropped.

Proof. Apply the integrated decay estimates of Propositions 12.2.1, 12.2.5, 12.2.6,

12.2.2 and Corollary 11.4 to the identities (304) and (301).

We also derive some boundedness estimates on the spheres S2
u,v:

Proposition 12.3.3. The solution α of Theorem 2 satisfies, for any u>u0 and

v>v0, the estimates

r3‖r−1 ·A[3]r3ψΩ‖2S2
u,v
.F2

0[Ψ]+F2,T, /∇
0 [Ψ,Dψ,Dα], (318)

r‖r−1 ·A[4]r3αΩ2‖2S2
u,v
.F2

0[Ψ]+F2,T, /∇
0 [Ψ,Dψ,Dα]. (319)

The solution α of Theorem 2 satisfies, for any u>u0 and v>v0, the estimates

‖r−1 ·A[3]r3ψΩ−1‖2S2
u,v
.F2

0[Ψ]+F2,T, /∇
0 [Ψ,Dψ,Dα ], (320)

‖r−1 ·A[4]rαΩ−2‖2S2
u,v
.F2

0[Ψ]+F2,T, /∇
0 [Ψ,Dψ,Dα ]. (321)

Moreover, if we replace A[3] by A[2] on the left in (318) and (320), the first term on the

right can be dropped.
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Proof. The statements for ψ and ψ follow from Proposition 12.2.3 and the fact

that the term on the data u=u0 (v=v0) can be controlled by F2
0[Ψ] (F2

0[Ψ]) using 1-

dimensional Sobolev embedding. By the same argument, if A[3] is replaced by A[2], we

see that F2,T, /∇
0 [Ψ,Dψ,Dα] (F2,T, /∇

0 [Ψ,Dψ,Dα ]) is sufficient.

Similarly, the bounds on α and α follow from the identities (304) and (301), Corol-

lary 11.4, 1-dimensional Sobolev embedding and the previous estimates. Observe that

the last term in (304) only requires a bound on S2
u,v for Trα/Ω2 and rα/Ω2, which is

again easily derived in terms of the right-hand side from the aforementioned transport

equations.

12.3.2. Polynomial decay for ψ, ψ, α and α

We finally record how the refined decay estimates for Ψ of §11.5 are inherited by the

derived quantities ψ, ψ, α and α. We remark that we are not aiming for the optimal or

exhaustive statement here in terms of rates or regularity.

Proposition 12.3.4. Fix r0 as in Proposition 11.5.1, let v>v0 and recall the nota-

tion u(v, r0). Consider the solution α of Theorem 2 and the derived quantity ψ defined

via (178). Then, ψ and α satisfy the following integrated decay estimates:∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū (‖r−1 ·ψΩ‖2S2
ū,v̄

Ω2r5−ε+‖r−1 ·αΩ2‖2S2
ū,v̄

Ω2r3−ε)

.
1

v2
(F2,T

0 [Ψ]+F0[Ψ, ψ, α]).

Consider the solution α of Theorem 2 and the derived quantity ψ defined via (180).

Then, ψ and α satisfy the following integrated decay estimates:∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū (‖r−1 ·ψΩ−1‖2S2
ū,v̄

Ω2r5−ε+‖r−1 ·αΩ−2‖2S2
ū,v̄

Ω2r1−ε)

.
1

v2
(F2,T

0 [Ψ]+F0[Ψ, ψ, α ]).

Proof. We begin with the ψ -part of the first estimate. We pick a dyadic v -sequence,

vi+1=2vi, with associated u-sequence, ui=u(vi, r0). The spacetime integral of Proposi-

tion 12.1.1 allows us to find in each dyadic interval [ui, ui+1] a slice ũi with∫ ∞
v0

dv̄ r7−εΩ2‖r−1 ·ψΩ‖2S2
ũi,v̄
.

1

ũi
·F0[Ψ, ψ, α],

and hence in particular∫ ∞
ṽi

dv̄ r7−ε‖r−1 ·ψΩ‖2S2
ũi,v̄
.

1

ṽi
·F0[Ψ, ψ, α],
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where ṽi defined implicitly by ũi=u(ṽi, r0). Fix now an arbitrary u>u0. Pick the i

such that ũi<u6ũi+1. Applying the inequality (287) with n=1−ε and integrated over

the spacetime region [ũi, u]×[ṽi,∞]×S2, we export the decay to the slice Cu and finally

obtain ∫ ∞
v

dv̄ r7−ε‖r−1 ·ψΩ‖2S2
u,v

+

∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū ‖r−1 ·ψΩ‖2S2
ū,v̄

Ω2r6−ε

.
1

v
(F2,T

0 [Ψ]+F0[Ψ, ψ, α])

(322)

for any v>v0 and u>u(v, r0). The method to establish decay for α given the decay for

ψ is entirely analogous to the one seen above establishing decay for ψ from P . Hence,∫ ∞
v

dv̄ r5−ε‖r−1 ·αΩ2‖2S2
u,v

+

∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū ‖r−1 ·αΩ2‖2S2
ū,v̄

Ω2r4−ε

.
1

v
(F2,T

0 [Ψ]+F0[Ψ, ψ, α])

(323)

for any v>v0 and u>u(v, r0). It is clear that, repeating the iteration once more, one

obtains the first estimate claimed in the proposition. Note that, once one has generated

a dyadic sequence of slices with the weighted ψ-energy decaying like v−2, one can apply

(287) with n=−ε between two such slices and get the desired integrated decay estimate,

despite the fact that the future boundary terms has the wrong sign.

For the underlined quantities (i.e. the second estimate of the proposition), one pro-

ceeds analogously, except that in this direction we do not have to lose powers of r.

From the spacetime estimate of Proposition 12.1.1, we find in each dyadic interval

[vi, vi+1] a ṽi such that∫ ∞
u0

dū r5−εΩ2‖r−1 ·ψΩ−1‖2S2
ū,ṽi

.
1

ṽi
·F0[ Ψ, ψ, α ].

Fix now an arbitrary v>v0. Pick the ṽi such that ṽi<v6ṽi+1. Integrating (290) over

the region [ũi,∞]×[vi, v]×S2∩{r6r0} (where weights in r are irrelevant) and using

Corollary 11.5 eventually yields∫ ∞
u(v,r0)

dūΩ2‖r−1 ·ψΩ−1‖2S2
u,V

ιr6r0 +

∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dūΩ2‖r−1 ·ψΩ−1‖2S2
ū,v̄
ιr6r0

.
1

v
(F2,T

0 [Ψ]+F0[ Ψ, ψ, α ])

for any V >v>v0 and u>u(v, r0) with ιr6r0 denoting the indicator function. Repeating

the dyadic argument finally improves the power on the right-hand side from 1/v to 1/v2.

To extend the estimate to the region r>r0, we use the estimate (291) in connection with
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the previous bound and again Corollary 11.5. This proves the estimate for ψ claimed in

the proposition.

For α one repeats the above argument now using (298) in conjunction with the

fact that polynomial decay has already been established for the (spacetime integrated)

right-hand side of (298) in the previous step.

The above proof also generates control of various fluxes, in particular.

Corollary 12.4. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (178). Then, on the event horizon H+, we have the flux bound∫ ∞
v

dv̄ [‖αΩ2‖2S2
∞,v̄

+‖ψΩ‖2S2
∞,v̄

].
1

v2
(F2,T

0 [Ψ]+F0[Ψ, ψ, α]). (324)

Corollary 12.5. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (180). Then, for any V >v>v0, we have the flux bound∫ ∞
u(v,r0)

dūΩ2

(
1

rε
‖r−1 ·r3ψΩ−1‖2S2

u,V
+‖r−1 ·αrΩ−2‖2S2

u,V

)
.

1

v2
(F2,T

0 [Ψ]+F0[ Ψ, ψ, α ]).

Remark 12.4. We will refine Corollary 12.5 in §12.3.3, and in particular remove ε.

Polynomial decay for ψ and ψ on spheres S2
u,v

For later purposes, we also note estimates for ψ and ψ on spheres S2
u,v.

Proposition 12.3.5. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (178). The following estimate holds for any u>u0 and v>v0 including the

spheres S2
∞,v:

‖r−1 ·Ωψr3‖2S2
u,v
.

1

v2

(
F2,T

0 [Ψ]+sup
v
‖r−1 ·Ωψr4‖2S2

u0,v

)
.

Proof. Fix v>v0>2u0. From the defining equation (179) we derive the estimate

‖r−1 ·Ωr3ψ‖S2
u,v
. ‖r−1 ·Ωr3ψ‖S2

u0,v
+

∫ u=v/2

u0

duΩ2‖r−1 ·Pr3‖S2
u,v

+

∫ max(v,v/2)

u=v/2

duΩ2‖r−1 ·Pr3‖S2
u,v
.

Applying the Cauchy–Schwarz inequality on the integrals, we obtain

‖r−1 ·Ωr3ψ‖S2
u,v
.

1

v
‖r−1 ·Ωr4ψ‖S2

u0,v
+

√∫ u=v/2

u0

duΩ2‖r−1 ·Ψ‖2S2
u,v

1

v3/2

+

√∫ max(v,v/2)

u=v/2

du
Ω2

r2
‖r−1 ·Ψ‖2S2

u,v
,

which yields the result after observing that the first integral is bounded and the second

controlled by Proposition 11.5.1.
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Proposition 12.3.6. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (180). Then, for (u, v)×S2
u,v in M∩{u>u0}∩{v>v0}∩{r6r0} including

the event horizon, we have

s‖r−1 ·Ω−1r3ψ‖2S2
u,v
.

1

v2
(F2,T

0 [Ψ]+sup
u
‖r−1 ·Ω−1r3ψ‖2S2

u,v0
), (325)

while for (u, v)×S2
u,v in M∩{u>u0}∩{v>v0}∩{r>r0} the above estimate holds replac-

ing 1/v2 by 1/u2 on the right-hand side.

Proof. For the region r>r0 one integrates the estimate (290) and uses a dyadic

argument together with the fact that the flux arising on the right-hand side of (290)

satisfies a polynomial decay estimate from Proposition 11.5.1. For the region r>r0 one

notes that weights of Ω can be ignored and that u∼v on r=r0. One then integrates as

above using again the polynomial decay estimate from Proposition 11.5.1.

Polynomial decay for α and α on spheres S2
u,v

Completely analogously to Propositions 12.3.5 and 12.3.6, one proves the following propo-

sition, now starting from the defining equations for α and α, (178) and (180).

Proposition 12.3.7. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (178). The following estimate holds for any u>u0 and v>v0, including

the sphere S2
∞,v0

:

‖r−1 ·Ω2αr2‖2S2
u,v
.

1

v2

(
F2,T

0 [Ψ]+sup
v
‖r−1 ·Ω2αr3‖2S2

u0,v

)
. (326)

Consider now the solution α of Theorem 2. For (u, v)×S2
u,v in M∩{u>u0}∩{v>v0}∩

{r6r0} including the event horizon, we have

‖r−1 ·Ω−2rα‖2S2
u,v
.

1

v2

(
F2,T

0 [Ψ]+sup
u
‖r−1 ·Ω−2rα‖2S2

u,v0

)
, (327)

while for (u, v)×S2
u,v in M∩{u>u0}∩{v>v0}∩{r>r0} (327) holds replacing 1/v2 by

1/u2 on the right-hand side.

Let us note that from the above estimates and additional commutations by Ωi, one

obtains trivially also pointwise decay estimates on α, with the corresponding commuted

initial data norm on the right-hand side of the estimate.

12.3.3. Some auxiliary decay estimates

We collect here an auxiliary decay estimate for the derived quantity ψ, which will be

useful later when we consider the full system of gravitational perturbations.
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Proposition 12.3.8. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (180). Then, for any V >v>v0, we have the flux bound∫ ∞
u(v,r0)

dūΩ2(‖r−1 ·A[2](r3ψΩ−1)‖2S2
u,V

+‖r−1 · /∇R?(r3ψΩ−1)‖2S2
u,V

)

.
1

v2
< (F2,T

0 [Ψ]+F0[ Ψ,Dψ, α ]).

In view of the relation (181) and Proposition 11.5.1, the estimate remains true replacing

/∇R? by Ω /∇3.

Proof. We write the identity (303) as

2r5 /D?2 /div(ψΩ−1)+2r3ψΩ−1 = Ω−1 /∇3(r5P )+
6M

r
r3ψΩ−1−3rMα. (328)

Taking the ‖ · ‖S2
u,v

norm (using an integration by parts on the left) yields after inte-

grating in u and applying the decay estimate of Propositions 11.5.1 and Corollary 12.5

for the terms on the right the desired estimate for the A[2]-flux of ψ. To obtain the

estimate for the /∇R? -flux, we repeat the proof of Proposition 12.3.4 now starting from

Proposition 12.2.4 to extract a dyadic sequence of good slices in r6r0:∫ ∞
u0

dū ιr6r0Ω2‖r−1 · /∇R?(ψr3Ω−1)‖2S2
ū,ṽi

.
1

ṽi
·F0[ Ψ,Dψ, α ]. (329)

The decay will then be exported to any slice as in the proof of Proposition 12.3.4, now

using the equation

1

2
∂v[Ω

2| /∇R?(ψr3Ω−1)|2]+Ω2M

r2
| /∇R?(ψr3Ω−1)|2 (330)

= Ω2

(
2M

r3
Ω2(ψr3Ω−1)− /∇R?Pr3−3r2Ω2P , /∇R?(ψr3Ω−1)

)
, (331)

which is the commuted version of (289)). Indeed, after applying the Cauchy–Schwarz

inequality on the right-hand side, integrating and using the decay estimates of Propo-

sitions 12.3.4 and 12.3.8, we deduce in particular the desired flux statement (first with

v−1 and after another iteration with v−2, again completely analogous to the proof of

Proposition 12.3.4.

Corollary 12.6. Consider the solution α of Theorem 2 and the derived quantity

ψ defined via (180). We have, for any v>v0, the estimate∫ ∞
u0

duΩ2(‖r−1 ·A[2](r3ψΩ−1)‖S2
u,v

+‖r−1 ·A[2](rαΩ−2)‖S2
u,v

)

.
√

F0[Ψ,Dψ, α ]+

√
F2,T

0 [Ψ].
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Proof. We first show the estimate for ψ. We fix v>v0. Note that it is sufficient to

restrict the integral to r>r0 as otherwise the bound follows directly from the Cauchy–

Schwarz inequality and Proposition 12.3.8. We dyadically decompose the remaining

u-interval, ui+1=2iu0, and estimate∫ ∞
u0

duΩ2ιr>r0‖r−1 ·A[2](r3ψΩ−1)‖S2
u,v

=
∑
i

∫ ui+1

ui

duΩ2‖r−1 ·A[2](r3ψΩ−1)
∥∥
S2
u,v

.
∑
i

√∫ ui+1

ui

duΩ2‖r−1 ·A[2](r3ψΩ−1)
∥∥2

S2
u,v

√
ui.

Using that the integral under the square root decays like u−2
i by Proposition 12.3.8, we

deduce the result.

Obviously this argument can be repeated replacing A[2] by Ω /∇3 using again the

estimate Proposition 12.3.8. The L1-estimate for A[2]α then follows directly from the

identity (302) and the previous bounds.

13. Proof of Theorem 3

In this section we shall prove Theorem 3. The reader can refer to the overview of §2.4.3.

The first ingredient in the proof will be the bounds on gauge invariant quantities

which follow from applying Theorem 2 to the curvature components
(1)
α and

(1)
α , respec-

tively, of our solution to the system of linearised gravity. We shall collect these gauge

invariant estimates in §13.1. We shall then obtain estimates for certain fluxes on the

horizon in §13.2. These, together with a red-shift commutation argument, will be used

in §13.3 to obtain decay estimates for the outgoing shear
(1)

χ̂. We then obtain bounded-

ness estimates for the ingoing shear
(1)

χ̂ in §13.4, and finally boundedness for all remaining

quantities in §13.5.

13.1. Gauge-invariant estimates from Theorem 2

Let

∨
S = (

(1)

/̂g ,
(1)√
/g,

(1)

Ω,
(1)

b,
(1)

(Ω trχ),
(1)

(Ω trχ),
(1)

χ̂,
(1)

χ̂,
(1)
η ,

(1)
η ,

(1)
ω ,

(1)
ω ,

(1)
α,

(1)

β ,
(1)
% ,

(1)
σ ,

(1)

β ,
(1)
α,

(1)

K)

be as in the statement of Theorem 3.
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The linearised curvature components
(1)
α and

(1)
α satisfy the spin ±2 Teukolsky equa-

tions, respectively, by Proposition 7.4.1 in §7.4. Thus, Theorem 2 applies to yield Corol-

lary 10.1. Note also that the assumption (246) of Theorem 3 implies that the initial

norms of Theorem 2, applied to
(1)
α and

(1)
α , respectively, are indeed finite for n=2.

From Proposition 7.4.1, we see also that the gauge-invariant estimates on
(1)

ψ,
(1)

ψ,
(1)

P ,

and
(1)

P arising from Theorem 2 can immediately be re-interpreted as estimates for the

right-hand sides of (182)–(184). These estimates will also be useful in what follows.

13.2. Fluxes on the horizon H+

In this section we exploit the horizon gauge conditions (193) and (194) to control addi-

tional (not necessarily gauge invariant) fluxes in terms of the gauge invariant quantities
(1)

Ψ,
(1)

ψ and
(1)
α .

In §13.2.1 we obtain bounds for the linearised outgoing shear
(1)

χ̂ itself, derived from

the fact that
(1)

ψ is controlled on the horizon. In §13.2.2 we obtain similar bounds for

the transversal derivative Ω−1 /∇3(Ω
(1)

χ̂), derived from the fact that
(1)

Ψ is controlled on the

horizon. Higher-derivative fluxes are obtained in §13.2.3 from the fact that the energy of
(1)

Ψ (cf. Theorem 1) controls also /∇
(1)

Ψ and /∇4

(1)

Ψ on the horizon. Finally, polynomial decay

bounds for
(1)

χ̂ and its transversal derivatives (which are inherited from polynomial decay

bounds of
(1)

ψ and
(1)

Ψ) are stated in §13.2.4.

13.2.1. Obtaining the
(1)

χ̂-flux on H+

Proposition 13.2.1. The geometric quantities associated with
∨
S satisfy on any

sphere on the horizon∫
S2
∞,v

sin θ dθ dφ

[
|/D?2

(1)

βΩ|2+
9

4
%2|Ω

(1)

χ̂|2+
6M

r3
|Ω

(1)

β |2+|/D?2 /div Ω
(1)

χ̂|2
]

. sup
v
‖r−1/2 ·

(1)

ψΩr3‖2S2
u0,v

+F0[
(1)

Ψ].

We also control the horizon flux∫
H(v0,∞)

dv sin θ dθ dφ

[
|/D?2

(1)

βΩ|2+
9

4
%2|

(1)

χ̂|2+
6M

r3
|
(1)

βΩ|2+|/D?2 /div
(1)

χ̂Ω|2
]
.F0[

(1)

Ψ,
(1)

ψ].

Proof. The bounds follow from Proposition 12.1.1 and Corollary 12.2 with n=1. We

compute from (182)

|
(1)

ψ|2 = |/D?2
(1)

β |2+3%
(1)

χ̂· /D?2
(1)

β+
9

4
%2|

(1)

χ̂|2,
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which, since the adjoint of /D?2 is /div, yields∫
sin θ dθ dφ |

(1)

ψ|2 =

∫
sin θ dθ dφ

(
|/D?2

(1)

β |2− 6M

r3
/div

(1)

χ̂·
(1)

β+
9

4
%2|

(1)

χ̂|2
)
. (332)

Multiplying by Ω2 (to obtain expressions regular at the horizon H+) and inserting

the Codazzi equation (145) restricted to the horizon ( /div
(1)

χ̂Ω=−
(1)

βΩ; here, we use that
(1)

(Ω trχ)=0 on H+ for
∨
S; see Proposition 9.4.1) we obtain the first bound from Corol-

lary 12.2 and the second from (282).

Remark 13.1. Note that the above provides a bound on Ω
(1)

β itself. The underlying

reason is that, by Theorem 9.2,
(1)

β `=1 actually vanishes on the horizon, since it vanishes

there for any reference Kerr solution K .

Remark 13.2. By an elliptic estimate (cf. (111)), one obtains Proposition 13.2.1 for

all angular derivatives up to order 2 of Ω
(1)

χ̂.

13.2.2. Obtaining the (1/Ω) /∇3(Ω
(1)

χ̂)-flux on H+

Proposition 13.2.2. The geometric quantities associated with
∨
S satisfy on any

sphere on the horizon∫
S2
∞,v

sin θ dθ dφ

×
[
|/D?2

(1)
η |2+| /div /D?2

(1)
η |2+|/D?2 /div /D?2

(1)
η |2+

∣∣∣∣ 1

Ω
/∇3(Ω

(1)

χ̂)

∣∣∣∣2+

∣∣∣∣/D?2 /div
1

Ω
/∇3(Ω

(1)

χ̂)

∣∣∣∣2]
. sup

v
‖r−1/2 ·

(1)

ψΩr3‖2S2
u0,v

+F0[
(1)

Ψ].

We also control the horizon flux∫
H(v0,∞)

dv sin θ dθ dφ

×
[
|/D?2

(1)
η |2+| /div /D?2

(1)
η |2+|/D?2 /div /D?2

(1)
η |2+

∣∣∣∣ 1

Ω
/∇3(Ω

(1)

χ̂)

∣∣∣∣2+

∣∣∣∣/D?2 /div
1

Ω
/∇3(Ω

(1)

χ̂)

∣∣∣∣2]
.F0[

(1)

Ψ,
(1)

ψ].

Remark 13.3. Note that the above implies that we control
(1)
η up to its `=1 modes;

cf. Corollary 4.2.
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Proof. By our gauge conditions on
∨
S , we have that /div

(1)
η=− (1)

%+
(1)
% `=0 holds on the

horizon (cf. Proposition 9.4.1). This implies that

‖/D?2 /D
?
1( /div

(1)
η , /curl

(1)
η )‖2S2

∞,v
= ‖/D?2 /D

?
1(− (1)

% ,
(1)
σ )‖2S2

∞,v
. ‖

(1)

P‖2S2
∞,v

+‖Ω
(1)

χ̂‖2S2
∞,v

, (333)

by Proposition 7.4.1. Note that the term proportional to Ω−1
(1)

χ̂ in the definition of P

vanishes on the horizon. Using Proposition 13.2.1 as well as Theorem 1 on the right-

hand side and Lemma 4.4.3 on the left, we derive the desired estimates except for the

/∇3(Ωχ̂)-terms. To obtain the latter, note that equation (140), when restricted to the

horizon, yields

1

Ω
/∇3(Ω

(1)

χ̂) =−2/D?2
(1)
η+

1

2M
Ω

(1)

χ̂, (334)

hence control on
(1)

χ̂ (again Proposition 13.2.1) and the /D?2
(1)
η -fluxes implies control on the

normal derivative.

13.2.3. Obtaining higher-order fluxes on H+

We collect some additional flux estimates on the horizon that follow directly from the

horizon fluxes of
(1)

P .

Proposition 13.2.3. The geometric quantities associated with
∨
S satisfy the fol-

lowing estimates on the horizon for any v>v0:

3∑
i=0

∫ v

v0

dv̄ ‖ /∇i(Ω
(1)

β )‖2S2
∞,v̄

+

4∑
i=0

∫ v

v0

dv̄ ‖ /∇i(Ω
(1)

χ̂)‖2S2
∞,v̄
.F0[

(1)

Ψ,
(1)

ψ,
(1)
α ].

Moreover, ∫ v

v0

dv̄ ‖ /div /D?2 /D
?
1(

(1)
% ,

(1)
σ )‖2S2

∞,v̄
.F0[

(1)

Ψ,
(1)

ψ], (335)

as well as ∫ v

v0

dv̄ ‖A[3] /D?2
(1)
η‖2S2

∞,v̄
.F0[

(1)

Ψ,
(1)

ψ]. (336)

Proof. Note that we control, for any v>v0, the horizon flux∫ v

v0

dv̄ (‖Ω /∇4

(1)

P‖2S2
∞,v̄

+‖ /∇
(1)

P‖2S2
∞,v̄

+‖
(1)

P‖2S2
∞,v̄

).F0[
(1)

Ψ] (337)

from Theorem 1. Now restricted to the horizon we have

Ω /∇4

(1)

P = /D?2 /D
?
1(− /div Ω

(1)

β ,−Ω /curl
(1)

β )+
3M

(2M)4
Ω2(1)
α− 6M

(2M)6
Ω

(1)

χ̂,
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which, in view of Propositions 13.2.1 and 12.1.2, yields the estimate for
(1)

β after using

elliptic estimates on S2 and the fact that the order-zero term of
(1)

β is controlled from

Proposition 13.2.1. The estimate involving
(1)

χ̂ is then an immediate consequence of the

/div
(1)

χ̂Ω=−
(1)

βΩ holding on H+. For (335), note that, restricted to the horizon,

/div
(1)

P = /div /D?2 /D
?
1(− (1)

% ,
(1)
σ )− 3M

(2M)4
/div Ω

(1)

χ̂,

and use (337) and Proposition 13.2.1. Finally, for (336), recall the identity (333). Using

the identity (112) and the previous bound (335) and Proposition 13.2.2, the desired

estimate follows.

13.2.4. Obtaining polynomial decay bounds on H+

Using the decay statements for the horizon fluxes in Proposition 11.5.1 and Corollary 12.4,

we can obtain the following result.

Proposition 13.2.4. We have the following flux bounds along the event horizon

H+: ∫ ∞
v

dv̄[‖A[4]
(1)

χ̂Ω‖2S2
∞,v̄

+‖A[3] /D?2
(1)
η‖2S2

∞,v̄
+‖A[3]Ω−1 /∇3(Ω

(1)

χ̂)‖S2
∞,v̄

]

.
1

v2
(F2,T

0 [
(1)

Ψ]+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]).

Proof. From Corollary 12.4, we have decay of the fluxes for
(1)

ψ and
(1)
α . Therefore,

the identity (332) restricted to the horizon H+ (and using /div
(1)

χ̂Ω=−
(1)

βΩ) already pro-

duces the desired estimate for A[2]
(1)

χ̂Ω instead of A[4]
(1)

χ̂Ω. Repeating the proof of Propo-

sition 13.2.2 now using the decay estimate on
(1)

χ̂ just obtained and Proposition 11.5.1

produces a decay estimate for the flux of three derivatives of
(1)
η . Repeating the proof

of Proposition 13.2.3 provides the statement for A[4]
(1)

χ̂ and four derivatives of
(1)
η . The

remaining estimate finally follows from the A[3]-commuted (334).

Proposition 13.2.5. We have the following bounds along the event horizon H+:

‖A[2]
(1)

χ̂Ω‖2S2
∞,v

+‖A[2] /D?2
(1)
η‖2S2

∞,v
+‖A[2]Ω−1 /∇3(Ω

(1)

χ̂)‖S2
∞,v

.
1

v2
(F2,T

0 [
(1)

Ψ]+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]+sup

v
‖r−1 ·

(1)

ψΩr4‖2S2
u0,v

).
(338)

Proof. Use Proposition 12.3.5 and the identity (332) restricted to the horizon to

obtain the estimate on A[2]
(1)

χ̂. For the estimate on
(1)
η we use the identity (333) in con-

junction with the estimate on A[2]
(1)

χ̂ just obtained and (337) plus 1-dimensional Sobolev

embedding. The remaining estimate now follows directly from (334).
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13.3. Decay estimates for the outgoing shear
(1)

χ̂

The main result of this section is the following.

Proposition 13.3.1. Consider the solution
∨
S of Theorem 3. The following esti-

mate holds for any ε>0, and any u>u0 and v>v0:∫ v

v0

dv̄

∫ u

u0

dū

∫
S2
ū,v̄

sin θ dθ dφ
Ω2

r1+ε

(∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2+|r2
(1)

χ̂Ω|2
)

. ‖( /∇3)2
(1)

χ̂‖2L2(Cv0
)+F0[

(1)

Ψ,
(1)

ψ,
(1)
α ].

We also control for any v>v0 the flux∫ ∞
u0

dū

∫
S2
ū,v

sin θ dθ dφΩ2

(∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2+
1

rε
|r2

(1)

χ̂Ω

∣∣∣∣2)
. ‖( /∇3)2

(1)

χ̂‖2L2(Cv0
)+F0[

(1)

Ψ,
(1)

ψ,
(1)
α ]. (339)

We have already discussed in §2.4.3 the main difficulty of estimating
(1)

χ̂ directly: In

equation (139), there is a blue-shift factor. As explained in §2.4.3, this difficulty can

be corrected by commuting twice by the “red-shift” operator (1/Ω) /∇3 (exploiting the

improvement discussed in §2.3.1 in the context of the scalar wave equation), coupled

with our a-priori bound on the flux of the transversal derivative, (1/Ω) /∇3(Ω
(1)

χ̂), on the

horizon–now established in Proposition 13.2.2.

We give a brief outline of this section. In §13.3.1, we will derive the commutation

formulas with the operator (1/Ω) /∇3. The proof of Proposition 13.3.1 will then be carried

out in §13.3.2 (which will obtain bounds near the horizon) and §13.3.3 (which will extend

the bounds globally). Some higher-order estimates which follow from commuting and

repeating the proof of Proposition 13.3.1 will be stated in §13.3.4.

13.3.1. Commuting the /∇4

(1)

χ̂-equation

We write the transport equation for
(1)

χ̂, equation (139), as

Ω /∇4(r2
(1)

χ̂Ω)−2Ωω̂(r2
(1)

χ̂Ω) =−(1)
αΩ2r2. (340)

Note that r2
(1)

χ̂Ω is regular both at the horizon and null infinity and that the second term

in the above is a blue–shift term, i.e. its sign is negative. We easily deduce from §4.3.2

the commutation formulas

[ /∇3,Ω /∇4] = ω̂Ω /∇3 as well as

[
1

Ω
/∇3,Ω /∇4

]
= 2ω̂Ω· 1

Ω
/∇3.
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Hence, commuting (340) with (1/Ω) /∇3 removes the blue-shift term in (340) and we

obtain

Ω /∇4

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)
− 1

Ω
/∇3(2Ωω̂)(r2

(1)

χ̂Ω) =− 1

Ω
/∇3(

(1)
αΩ2r2),

which simplifies to

Ω /∇4

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)
− 4M

r3
(r2

(1)

χ̂Ω) = 2
1

r

(1)

ψr3Ω+
(1)
αrΩ2. (341)

Let us commute again with /∇3 to obtain

Ω /∇4

(
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
+ω̂Ω

(
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
− 4M

r3
/∇3(r2

(1)

χ̂Ω)− 12M

r4
Ω(r2

(1)

χ̂Ω)

=− /∇3

(
1

Ω
/∇3(

(1)
αΩ2r2)

)
= 2r2Ω

(1)

P.

(342)

To derive the above, we have used the identities

− 1

Ω
/∇3(

(1)
αΩ2r·r) =− r

Ω
/∇3(

(1)
αrΩ2)+

(1)
αrΩ2 = 2

1

r

(1)

ψr3Ω+
(1)
αrΩ2, (343)

and

− /∇3

(
1

Ω
/∇3(

(1)
αΩ2r2)

)
= 2

(1)

ψΩ2r+2r2Ω
(1)

P−2
(1)

ψrΩ2 = 2r2Ω
(1)

P.

13.3.2. The main estimate near the horizon

We shall first prove an unconditional estimate for
(1)

χ̂ in a region r6r1 for some r1>2M

close to the horizon, which one may think of as Proposition 13.3.1 restricted to a region

near the horizon. Refer to the diagram in §2.4.3.

Proposition 13.3.2. Consider the solution
∨
S of Theorem 3. There exists an r1,

with 5/2M>r1>2M , such that the following estimate holds for any v>v0:

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2

(∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2+|r2
(1)

χ̂Ω|2
)

.F0[
(1)

Ψ,
(1)

ψ]+
1

2

∫ ∞
u(r1,v0)

dū

∫
S2
ū,v0

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3(

1

Ω
/∇3(r2

(1)

χ̂Ω))

∣∣∣∣2. (344)

Here u(r, v) denotes the u-value of the intersection of the hypersurfaces of constant v and

those of constant r. Moreover, the same estimate holds replacing
∫ v
v0
dv̄ by supv∈(v0,∞).
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Proof. We consider the region r6r1 and v>v0, for some r1>2M close to 2M chosen

below. We let u(r1, v) denote the u-value where the hypersurface of constant v intersects

r=r1 and similarly for v(u, r1).

The following lemma expresses the fact that, in the region r6r1, we control the

spacetime integral of |Ωr2
(1)

χ̂|2 in a neighborhood of the horizon (“a small region in physical

space”) by an ε times the horizon flux and the spacetime integral of the transversal

Ω−1 /∇3-derivative.

Lemma 13.3.1. Let
(1)

χ̂ be a symmetric traceless S2
u,v-tensor. The following estimate

holds in M∩{r6r1}:∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφ Ω2|
(1)

χ̂Ωr2|2(ū, v̄, θ, φ)

6 2|r1−2M |
∫ v

v0

dv̄

∫
S2
∞,v̄

sin θ dθ dφ |
(1)

χ̂Ωr2|2(∞, v̄, θ, φ) (345)

+4|r1−2M |2
∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3(

(1)

χ̂Ωr2)

∣∣∣∣2(ū, v̄, θ, φ).

Proof. By the fundamental theorem of calculus, for any v>v0 we have

∫
S2
u,v

|
(1)

χ̂Ωr2|2(u, v, θ, φ) sin θ dθ dφ

=

∫
S2
∞,v

|
(1)

χ̂Ωr2|2(∞, v, θ, φ) sin θ dθ dφ

−
∫ ∞
u

dū

∫
S2
ū,v

Ω /∇3(|
(1)

χ̂Ωr2|2)(ū, v, θ, φ) sin θ dθ dφ.

We can estimate the last term (LT) for any λ>0 by

|LT |6 1

λ

∫ ∞
u

dū

∫
S2
ū,v

Ω2|
(1)

χ̂Ωr2|2(ū, v, θ, φ) sin θ dθ dφ

+λ

∫ ∞
u

dū

∫
S2
ū,v

Ω2

∣∣∣∣ 1

Ω
/∇3(

(1)

χ̂Ωr2)

∣∣∣∣2(ū, v, θ, φ) sin θ dθ dφ

6
|r1−2M |

λ
sup

ū∈(u(r1,v),∞)

∫
S2
ū,v

|
(1)

χ̂Ωr2|2(ū, v, θ, φ)

+λ

∫ ∞
u

dū

∫
S2
ū,v

Ω2

∣∣∣∣ 1

Ω
/∇3(

(1)

χ̂Ωr2)

∣∣∣∣2(ū, v, θ, φ) sin θ dθ dφ.
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Choosing λ=2|r1−2M | yields, for any u(r1, v)6u6∞,∫
S2
u,v

|
(1)

χ̂Ωr2|2(u, v, θ, φ) sin θ dθ dφ

6 2

∫
S2
∞,v

|
(1)

χ̂Ωr2|2(∞, v, θ, φ) sin θ dθ dφ

+4|r1−2M |
∫ ∞
u

dū

∫
S2
ū,v

Ω2

∣∣∣∣ 1

Ω
/∇3(

(1)

χ̂Ωr2)

∣∣∣∣2(ū, v, θ, φ) sin θ dθ dφ.

Multiplying this by Ω2=−ru and integrating in u from the horizon, we deduce also∫ ∞
u(r1,v)

dūΩ2

∫
S2
u,v

|
(1)

χ̂Ωr2|2(ū, v, θ, φ) sin θ dθ dφ

6 2|r1−2M |
∫
S2
∞,v

|
(1)

χ̂Ωr2|2(∞, v, θ, φ) sin θ dθ dφ

+4|r1−2M |2
∫ ∞
u(r1,v)

dū

∫
S2
ū,v

Ω2

∣∣∣∣ 1

Ω
/∇3(

(1)

χ̂Ωr2)

∣∣∣∣2(ū, v, θ, φ) sin θ dθ dφ,

(346)

and, after integration in v, we obtain (345).

We now obtain the estimate (344) from the doubly commuted equation (342). Upon

contraction of (342) with [ /∇3((1/Ω) /∇3(r2
(1)

χ̂Ω))] and integration over the region r6r1,

the terms from the first line of (342) yield∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
u,v̄

sin θ dθ dφ

(
(first line of (342)), /∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
=

1

2

∫ ∞
u(v,r1)

dū

∫
S2
ū,v

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+positive term on r= r1

− 1

2

∫ ∞
u(v0,r1)

dū

∫
S2
ū,v0

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
u,v̄

sin θ dθ dφΩ2ω̂Ω

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2(ū, v̄, θ, φ).

(347)

Recall that ω̂Ω=M/r2. The right-hand side of (342) after contraction with

/∇3

((
1

Ω

)
/∇3(r2

(1)

χ̂Ω)

)
can be estimated

2r2Ω
(1)

P ·
(
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
6

1

16

M

r2

∣∣∣∣ /∇3(
1

Ω
/∇3(r2

(1)

χ̂Ω))

∣∣∣∣2+16Ω2 r
6

M
|
(1)

P |2,
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so that, after integration over the region r6r1, the first term can be absorbed by the

good term in (347), while the last term is controlled by F0[
(1)

Ψ] from the integrated decay

estimate for
(1)

P=r−5
(1)

Ψ (Theorem 1).

The two remaining terms arising from contraction of (342) can be controlled as

follows. For the second term in the second line of (342) we simply note

−12M

r4
Ω(r2

(1)

χ̂Ω)·
(
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
6
ω̂Ω

2

∣∣∣∣ /∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+
1

2

144

ω̂Ω

M2

r8
·Ω2|r2

(1)

χ̂Ω|2

6
ω̂Ω

2

∣∣∣∣ /∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+
72M

r6
·Ω2|r2

(1)

χ̂Ω|2.

(348)

The first term on the right-hand side of (348) will again be absorbed by the good terms

in (347), while for the second we will eventually apply Lemma 13.3.1. For the first term

in the second line of (342), we note that

−4M

r3
Ω

1

Ω
/∇3(r2

(1)

χ̂Ω)·
(
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

))
=−2M

r3
∂u

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2
=−∂u

(
2M

r3

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2)+
6M

r4
Ω2

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2.
(349)

Upon integration over the spacetime region, the second term has a good sign, while the

first has a bad sign on the horizon and a good sign on the timelike boundary r=r1.

We summarise the resulting estimate as

1

2

∫ ∞
u(v,r1)

dū

∫
S2
ū,v

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2 1

4

M

r2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2 6M

r4

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2
6

1

2

∫ ∞
u(v0,r1)

dū

∫
S2
ū,v0

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫
S2
∞,v

sin θ dθ dφ
2M

r3

∣∣∣∣( 1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφ
72M2

r6
·Ω2|r2

(1)

χ̂Ω|2+C ·F0[
(1)

Ψ].

(350)
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Finally, applying Lemma 13.3.1 will allow us to absorb the last term of (350) by the term

in the third line (for r1−2M sufficiently small; we now fix r1, depending only on m, such

that this is possible) at the cost of another flux-term on the horizon.

1

2

∫ ∞
u(v,r1)

dū

∫
S2
ū,v

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2 1

4

M

r2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2
+

∫ v

v0

dv̄

∫ ∞
u(r1,v̄)

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2 3M

r4

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2
6

1

2

∫ ∞
u(v0,r1)

dū

∫
S2
ū,v0

sin θ dθ dφΩ2

∣∣∣∣ 1

Ω
/∇3

(
1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+CF0[
(1)

Ψ]

+

∫ v

v0

dv̄

∫
S2
∞,v

sin θ dθ dφ

[
1

4M2

∣∣∣∣( 1

Ω
/∇3(r2

(1)

χ̂Ω)

)∣∣∣∣2+|r2Ω
(1)

χ̂|2
]
.

(351)

To obtain the estimate of Proposition 13.3.2, note that the flux term on the horizon in

the last line is controlled from Lemma 13.2.2.

To obtain the last statement of Proposition 13.3.2 concerning the sup, we use the

positive first term in (351) for the highest derivative flux. For the lower-order terms, we

use this flux together with the estimate (346), where in the latter we replace
(1)

χ̂Ωr2 by

Ω−1 /∇3(
(1)

χ̂Ωr2) such that the horizon term in (346) is controlled by Lemma 13.2.2, while

the flux term is controlled by the first term in (351). This gives the Ω−1 /∇3(
(1)

χ̂Ωr2) flux

on any v>v0. To obtain the
(1)

χ̂Ωr2-flux on any v>v0, one again uses (346), now in its

original form, and Lemma 13.2.2.

13.3.3. Completing the proof of Proposition 13.3.1

Proposition 13.3.2 provides integrated decay (and fluxes) in r6r1 from quantities purely

at the level of initial data. One can now generalise this to integrated decay (and fluxes)

globally. Let ξ be a smooth radial cut-off function equal to 0 in
[
2M, 2M+ 1

2 (r1−2M)
)

and equal to 1 in [r1,∞). From (139), we have Ω /∇4(
(1)

χ̂Ω−1r2)=
(1)
αr2 and derive

1

2
∂v

(
ξr−ε

∣∣∣∣
(1)

χ̂

Ω
r2

∣∣∣∣2)− 1

2
(∂rξ)Ω

2

∣∣∣∣
(1)

χ̂

Ω
r2

∣∣∣∣2+
ε

4
ξ

Ω2

r1+ε

∣∣∣∣
(1)

χ̂

Ω
r2

∣∣∣∣26Cε ·ξ ·Ω2r5−ε|(1)αΩ2|2, (352)

where we have used that Ω2 is bounded uniformly below in the support of ξ by a constant

depending on r1 only. Integrating over a spacetime region [u0, u]×[v0, v]×S2, we observe
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that the second term on the left is supported for r∈
[
12r1+M, r1

]
, and can hence be

absorbed by Proposition 13.3.2. Moreover, the future boundary term on constant v is

positive(31) and the term on the right is controlled by F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]. Combining this with

Proposition 13.3.2 results in the estimate

sup
v̄∈(v0,v)

∫ u

u0

dū

∫
S2
ū,v̄

sin θ dθ dφ
Ω2

rε
|r2

(1)

χ̂Ω|2

+

∫ v

v0

dv̄

∫ u

u0

dū

∫
S2
ū,v̄

sin θ dθ d
(1)

ψ
Ω2

r1+ε
|r2

(1)

χ̂Ω|2

.F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]+‖( /∇3)2

(1)

χ̂‖2L2(Cv0
).

(353)

Now that a global integrated decay (and flux) estimate for
(1)

χ̂ has been obtained, we can

revisit (341) and repeat the above argument, in particular deriving

1

2
∂v

(
ξ(1+r−ε)

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2)− 1

2
(∂rξ)Ω

2(1+r−ε)

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2
+
ε

4
ξ

Ω2

r1+ε

∣∣∣∣ 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2
6Cεξ(Ω

2r−5+ε|r2
(1)

χ̂Ω|2+r5+εΩ2|
(1)

ψΩ|2+r3+εΩ2|(1)αΩ2|2).

(354)

Note that the use of the multiplier 1+r−ε instead of r−ε exploits the improved decay

towards infinity of the right-hand side of (341). Upon integration, the second term on

the left can again be absorbed by Proposition 13.3.2, the first term on the right by (353)

and the last two terms on the right by F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]. Finally, we apply the above argument

to the twice commuted equation (342), using again the control on the lower-order terms

from the previous steps and the integrated decay estimate for
(1)

P (Theorem 1) on the

right-hand side. This completes the proof of Proposition 13.3.1.

Corollary 13.1. Consider the solution
∨
S of Theorem 3. We also have L∞u,vL

2(S2)

estimates. In particular, for any u>u0 and v>v0,∫
S2
u,v

sin θ dθ dφ

[
|Ω

(1)

χ̂r2|2+

∣∣∣∣ 1

Ω
/∇3(Ω

(1)

χ̂r2)

∣∣∣∣2]
6F0[

(1)

Ψ,
(1)

ψ,
(1)
α ]+sup

v
‖r−1

(1)

ψΩr3‖2S2
u0,v

+‖( /∇3)2
(1)

χ̂‖2L2(Cv0 ).

(31) This term vanishes in the limit on null infinity. To control the
(1)

χ̂-flux on null infinity, one should

choose f∼1 near infinity. However, in this case one needs to know decay in u of α in order to control
the right-hand side. One can obtain L∞

u,vL
2(S2) bounds with f=1, however. See Corollary 13.1 below.
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Proof. (Sketch) It is straightforward to obtain these bounds in a region r64M (or

globally with weaker r-weights) using the L2
∞,v(S

2) bounds on these quantities on the

horizon (see Propositions 13.2.1 and 13.2.2, accounting for the second term on the right),

and the fluxes of Proposition 13.3.1 together with the fundamental theorem of calcu-

lus. For r>4M one integrates the transport equations /∇4(
(1)

χ̂Ω−1r2)=
(1)
αΩ−1r2 and (341),

respectively, towards infinity using the fluxes (282) and (292).

Using the horizon flux of
(1)

χ̂ (Proposition 13.2.1) in conjunction with the integrated

decay estimate on |(1/Ω) /∇3(Ω
(1)

χ̂r2)|2 of Proposition 13.3.1, one also proves the following.

Corollary 13.2. Consider the solution
∨
S of Theorem 3. For any u>u0,

∫ ∞
v0

dv

∫
S2
u,v

sin θ dθ dφ r−1−ε|Ω
(1)

χ̂r2|26F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]+‖( /∇3)2

(1)

χ̂‖2L2(Cv0 ).

13.3.4. Higher-order estimates and summary

The arguments of the previous sections can be repeated for angular commuted equations.

We have, in particular, the following result.

Proposition 13.3.3. Proposition 13.3.1 holds replacing
(1)

χ̂ on the left by A[3]
(1)

χ̂ and

replacing the right-hand side by
∥∥ /∇2

3(A[3]
(1)

χ̂)
∥∥2

L2(Cv0 )
+F2,T, /∇

0 [
(1)

Ψ,D
(1)

ψ,D
(1)
α ].

Proof. We outline how to repeat the proof of Proposition 13.3.1 for the angular com-

muted equations (340)–(342), noting that A[i] commutes trivially with those equations.

Recall that, to prove Proposition 13.3.1, we first proved Proposition 13.3.2, i.e. the

estimates for r6r1. The key ingredients in the proof of Proposition 13.3.2 were (1) an

integrated decay estimate for
(1)

P ,
(1)

ψ and
(1)
α in r6r1 and (2) control of the fluxes of (

(1)

χ̂Ω)

and Ω−1 /∇3(
(1)

χ̂Ω) on the event horizon. Since F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] provides an integrated

decay estimate for A[3]
(1)

P (away from r=3M), A[3]
(1)

ψ and A[3](1)α , the first ingredient is

present for the A[3] commuted equations. The second ingredient is present as well,

because the fluxes of A[3](
(1)

χ̂Ω) and A[3]Ω−1 /∇3(
(1)

χ̂Ω) on the event horizon are controlled

by the once angular commuted version of Propositions 13.2.1 and 13.2.2. This proves the

A[3]-commuted version of Proposition 13.3.2.

To complete the proof of Proposition 13.3.3, we finally repeat the proof of §13.3.3.

While the proof would go through unchanged for the A[2] commuted equation (replac-

ing F0[
(1)

Ψ,
(1)

ψ,
(1)
α ] by F2,T, /∇

0 [
(1)

Ψ,
(1)

ψ,
(1)
α ] on the right), an additional renormalisation argument

is required when repeating the argument for the A[3]-commuted equation (342), since
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F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] does not provide a non-degenerate (near r=3M) integrated decay es-

timate for three angular derivatives of
(1)

P . We present this argument now. By commuting

(139) and using the identity (299), we derive

Ω /∇4[A[i+2]
(1)

χ̂Ω−1r2+r4A[i]
(1)

ψΩ−1] =−r3A[i]
(1)

ψΩ+3MrA[i](1)α. (355)

Commuting (355) once with Ω /∇3 yields

Ω /∇4[Ω /∇3(A[i+2]
(1)

χ̂Ω−1r2)+r4A[i]
(1)

P−A[i]
(1)

ψr3Ω+2MrΩ−1A[i]
(1)

ψ]

=−A[i]
(1)

Pr3Ω2−6MrA[i]
(1)

ψ+
6M2

r
A[i](1)αΩ2.

(356)

We leave the final Ω /∇3 commutation of (356) to the reader noting that it is already clear

that at most second (one being angular, one being Ω /∇3) derivatives of
(1)

P ,
(1)

ψ and
(1)
α will

appear both in the boundary and in the terms on the right. For such terms, fluxes on

hypersurfaces of constant v, as well as non-degenerate integrated decay estimates, are

available(32) through Theorem 2 and controlled by F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] (noting also that

weights in Ω2 are irrelevant in this part of the argument). We can hence contract (355)

with ξ/rε times the expression in the square bracket, (356) with ξ(1+1/rε) times the

expression in the square bracket and similarly for the double commuted equation, just

as done in §13.3.3 for the uncommuted equations. This completes the proof.

The analogues of Corollaries 13.1 and 13.2 are now deduced just as before. Note

that, from the commuted version of Propositions 13.2.1 and 13.2.2, controlling A[3]
(1)

χ̂Ω

and A[3]Ω−1 /∇3(
(1)

χ̂Ω) in L2(S2) on the horizon (or the fluxes on the horizon, respectively)

requires only one angular derivative of ψ and one derivative of P which is clearly con-

trolled by F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ]. This proves the following result.

Proposition 13.3.4. We have, for any u>u0 and v>v0,

‖r−1 ·A[3]Ω
(1)

χ̂r2‖2S2
u,v

+

∥∥∥∥r−1 ·A[3] 1

Ω
/∇3(Ω

(1)

χ̂r2)

∥∥∥∥2

S2
u,v

. ‖ /∇2
3(A[3]

(1)

χ̂)‖L2(Cv0 )+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ],

and, for any u>u0,∫ ∞
v0

dv

∫
S2
u,v

sin θ dθ dφ r−1−ε|A[3]Ω
(1)

χ̂r2|2. ‖ /∇2
3(A[3]

(1)

χ̂)‖L2(Cv0
)+F2,T, /∇

0 [
(1)

Ψ,D
(1)

ψ,D
(1)
α ].

(32) Note in particular that the /divR?
(1)

Ψ-derivative is controlled non-degenerately already in

F1,T, /∇[
(1)

Ψ], while the /div T
(1)

ψ-derivative is non-degenerately controlled in F2,T, /∇[
(1)

Ψ].
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13.4. Boundedness estimates for the ingoing shear
(1)

χ̂

In this section we will prove boundedness of the quantity
(1)

χ̂ and derivatives thereof. Key

to the boundedness proof is the auxiliary geometric quantity
(1)

Y introduced in (218),

which satisfies a propagation equation with integrable gauge invariant right-hand side.

Remark 13.4. With the redshift estimates on
(1)

χ̂ of §13.3 in mind, one might hope

that a similar argument near null infinity will produce decay estimates for the geometric

quantity
(1)

χ̂ of
∨
S. However, this is not the case and we shall only be able to prove

boundedness. It is only for the horizon-renormalised
∧

S , where the geometric quantity
(1)

χ̂

decays. See Theorem 4.

13.4.1. Control on angular derivatives of
(1)

χ̂

We recall the quantity
(1)

Y , a symmetric traceless S2
u,v-tensor, from (218).

Lemma 13.4.1. We have the propagation equations

/∇3

(1)

Y =
1

2
r trχ

r3
(1)

ψ

Ω
+

3M
(1)
αr

Ω
, (357)

and

/∇3(A[2]
(1)

Y ) = /∇3

(
−1

2

(1)

Ψ−3Mr3
(1)

ψΩ−1

)
+r3

(1)

ψ+3Mr2
(1)

ψ+
3M

2
Ω

(1)
αr−9M2

(1)
α

Ω
, (358)

/∇3(A[4]
(1)

Y ) = /∇3

(
−1

2
r2 /D?2 /div

(1)

Ψ−3Mr5 /D?2 /div
(1)

ψΩ−1

+
1

2

(1)

Ψ+
3M

2r

(1)

Ψ− 3M

2
r3

(1)

ψΩ+
9M2

r
r3

(1)

ψΩ−1

)
+J2,

(359)

where J2 denotes a linear combination of terms r−2
(1)

ΨΩ, r3
(1)

ψ and r
(1)
α/Ω, with uniformly

bounded coefficients depending only on M .

Remark 13.5. Recall that the operators A[2]=r2 /D?2 /div and A[4]=r4 /D?2 /div /D?2 /div

acting on symmetric traceless tensors are uniformly elliptic; cf. (111) and Remark 4.2.

Proof. To derive the above, note that, by (302),

/∇3(r4
(1)

ψΩ−1)+ 1
2 trχ(r4

(1)

ψΩ−1) =−r4Ω−1 /D?2 /div
(1)
α−3Mr

(1)
αΩ−1, (360)
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while

/∇3(r2
(1)

χ̂Ω−1) =−r2Ω−1(1)
α and hence /∇3(r4 /D?2 /div

(1)

χ̂Ω−1) =−r4Ω−1 /D?2 /div
(1)
α.

Subtracting (360) from the last identity yields (357). For the second identity, the compu-

tation is straightforward commuting the first identity with A[2] and using the identities

(302) and (303). The third identity is produced by another commutation with A[2] and

using again the identities (302) and (303).

The point of the identity (358) is that the highest derivatives on the right-hand

side appear as a boundary term, while the remaining terms are essentially as in (357),

i.e. loosely speaking commuting with two angular derivatives does not “lose” regularity.

Proposition 13.4.1. Consider the solution
∨
S of Theorem 3. We have, for any

u>u0 and v>v0, the estimate

‖r−1 ·
(1)

Y ‖S2
u,v
. ‖r−1 ·

(1)

Y ‖S2
u0,v

+

√
F2,T

0 [
(1)

Ψ]+

√
F0[

(1)

Ψ,D
(1)

ψ,
(1)
α ] (361)

and

‖r−1 ·A[3]
(1)

Y ‖S2
u,v
. ‖r−1 ·A[3]

(1)

Y ‖S2
u0,v

+

√
F2,T, /∇

0 [
(1)

Ψ]+

√
F0[

(1)

Ψ,D
(1)

ψ,
(1)
α ]

+‖r−1 ·r /div
(1)

ψΩ−1r3‖S2
u,v0

+‖r−1 ·r /div
(1)

Ψ‖S2
u,v0

,

(362)

as well as

‖r−1 ·A[4]
(1)

Y ‖S2
u,v
. ‖r−1 ·A[4]

(1)

Y ‖S2
u0,v

+

√
F2,T, /∇

0 [
(1)

Ψ]+

√
F0[

(1)

Ψ,D
(1)

ψ,
(1)
α ]

+‖r−1 ·A[2]
(1)

ψΩ−1r3‖S2
u,v0

+‖r−1 ·A[2]
(1)

Ψ‖S2
u,v0

,

(363)

where we recall (234) for the definition of F2,T
0 [

(1)

Ψ]. Note that, by assumption (246), all

right-hand sides are finite.

Remark 13.6. We can actually drop the last term on the right-hand side of (362)

and (363), as it is controlled by F2,T, /∇
0 [

(1)

Ψ]. We can also drop the penultimate term in

(362) and (363), provided we replace F0[
(1)

Ψ,
(1)

ψ,
(1)
α ] by F2,T, /∇

0 [
(1)

Ψ,D
(1)

ψ,
(1)
α ]. Both statements

are a direct consequence of 1-dimensional Sobolev embedding and the definition of the

norms.

Proof. It is clear from (357) that the first estimate would follow from boundedness

for the L1-fluxes∫ ∞
u0

duΩ2

∥∥∥∥r−1 ·
r3

(1)

ψ

Ω

∥∥∥∥
S2
u,v

and

∫ ∞
u0

duΩ2

∥∥∥∥r−1 · r
(1)
α

Ω2

∥∥∥∥
S2
u,v

, (364)
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which is guaranteed by Corollary 12.6. For the second estimate, we commute (358) with

r /div and estimate the quantity∥∥r3 /div /D?2 /div
(1)

Y − 1
2r

5r /div
(1)

P+Mr /div r3
(1)

ψΩ−1
∥∥
S2
u,v
,

by integrating the transport equation, using again Corollary 12.6. Afterwards, we use

Corollary 11.2 and Proposition 12.2.3 to deduce the desired estimate. The third estimate

is similar.

Combining Proposition 13.4.1 with the definition of
(1)

Y and Proposition 12.2.3, we

deduce the following corollary whose last claim follows from Proposition 12.3.3.

Corollary 13.3. Consider the solution
∨
S of Theorem 3. We have, for any u>u0

and v>v0 and i=0, 2, 3,∥∥∥∥r−1 ·A[i+2]

(
r
(1)

χ̂

Ω

)∥∥∥∥
S2
u,v

. ‖r−1 ·A[i]
(1)

Y ‖S2
u0,v

+

√
F2,T, /∇

0 [
(1)

Ψ]+

√
F0[

(1)

Ψ,D
(1)

ψ,
(1)
α ]

+‖r−1 ·A[i]
(1)

ψΩ−1r3‖S2
u,v0

.

For i=0, 2, the last three terms can all be controlled by (the square root of )

F2,T, /∇
0 [Ψ,Dψ,Dα ].

Using that we can multiply both the square of (362) and (363) by Ω2/r2 and integrate

in u, we find using the (twice angular commuted) fluxes of Proposition 12.2.1 the following

corollary.

Corollary 13.4. Consider the solution
∨
S of Theorem 3. We have, for any v>v0,

the flux estimates∫ ∞
u0

duΩ2

∥∥∥∥r−1 ·A[5]

(
r
(1)

χ̂

Ω

)∥∥∥∥2

S2
u,v

. ‖r−1 ·A[3]
(1)

Y ‖2S2
u0,v

+F2,T, /∇
0 [

(1)

Ψ]+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,
(1)
α ],

∫ ∞
u0

duΩ2

∥∥∥∥r−1 ·A[6]

(
r
(1)

χ̂

Ω

)∥∥∥∥2

S2
u,v

. ‖r−1 ·A[4]
(1)

Y ‖2S2
u0,v

+F2,T, /∇
0 [

(1)

Ψ]+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,
(1)
α ].

13.4.2. Control on angular derivatives of /∇4

(1)

χ̂

Commuting (357) with Ω /∇4 we derive

/∇3(Ω /∇4

(1)

Y ) = r3Ω
(1)

P+3M(2r
(1)

ψ−2ω̂
(1)
αr) (365)

using (179) and (296).



164 m. dafermos, g. holzegel, and i. rodnianski

Proposition 13.4.2. Consider the solution
∨
S of Theorem 3. We have, for any

u>u0 and v>v0, the estimate

‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u,v
. sup

v
‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u0,v

+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ], (366)

as well as, for any v>v0, the flux estimate∫ ∞
u0

dūΩ2r−1‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
ū,v
. sup

v
‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u0,v

+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]. (367)

We also have the following flux and integrated decay estimate for any v>v0 and u>u0:∫ v

v0

dv̄ r−1−ε‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u,v̄

+

∫ v

v0

dv̄

∫ u

u0

dū r−2−εΩ2‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
ū,v̄

.
1

ε
sup
v
‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u0,v

+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ].

(368)

Proof. From (365), we deduce for γ>0 the estimate

1
2Ω /∇3[(Ω /∇4

(1)

Y )2rγ ]+ 1
4γr

γ−1Ω2(Ω /∇4

(1)

Y )26Ω2rγ−3(|
(1)

Ψ|2+|r3
(1)

ψΩ−1|2+|(1)αrΩ−2|2). (369)

The estimates of the proposition now follow from direct integration over the angular

variables and either the u direction (for the first two estimates, γ=2) or both u and v

(for the last estimate, γ=1−ε).

Remark 13.7. Stronger r-weighted norms are propagated (in particular, we could

apply (369) with γ=3 and γ=2−ε, respectively), but we will not make use of this here.

A simple commutation yields (using that r /∇A commutes trivially) the following.

Corollary 13.5. Consider the solution
∨
S of Theorem 3. Let i∈{1, 2, 3}. The

three estimates (366)–(368) hold replacing /∇4

(1)

Y by A[i] /∇4

(1)

Y everywhere, and F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]

by F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] on the right.

Note that it is indeed F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] appearing on the new right-hand side which

stems from the fact that the estimate invoked in the proof only requires the fluxes of
(1)

Ψ,

and F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ] by definition already contains three angular derivatives of

(1)

Ψ.

Given the estimates for /∇4

(1)

Y , we can obtain estimates for /∇4

(1)

χ̂ from the easily verified

identity

Ω /∇4

(1)

Y =
Ω2

r

(1)

Y +r·r2 /D?2 /div Ω /∇4

(
r
(1)

χ̂

Ω

)
−r4

(1)

P−2Mr2

(1)

ψ

Ω
. (370)

In particular, multiplying the above by r, squaring and integrating over the angular

variable, we deduce the following.
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Corollary 13.6. Consider the solution
∨
S of Theorem 3. We have, for any u>u0

and v>v0, the estimate∥∥∥∥r−1 ·r2 ·r2 /D?2 /div Ω /∇4

(
r
(1)

χ̂

Ω

)∥∥∥∥2

S2
u,v

. sup
v
‖r−1 ·rΩ /∇4

(1)

Y ‖2S2
u0,v

+sup
v
‖r−1 ·

(1)

Y ‖2S2
u0,v

+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]

+sup
u
‖r−1 ·

(1)

ψΩ−1r3‖2S2
u,v0

+sup
u
‖r−1 ·

(1)

ΨΩ−1‖2S2
u,v0

.

The last three terms on the right-hand side could be replaced by F0[
(1)

Ψ,D
(1)

ψ,
(1)
α ], using

Sobolev embedding in dimension 1. Using Corollary 13.5, we also have the following

commuted version.

Corollary 13.7. Consider the solution
∨
S of Theorem 3. We have, for any u>u0

and v>v0, the estimate∥∥∥∥r−1 ·r2 ·A[4]Ω /∇4

(
r
(1)

χ̂

Ω

)∥∥∥∥2

S2
u,v

. sup
v
‖r−1 ·r3 /D?2 /div Ω /∇4

(1)

Y ‖2S2
u0,v

+sup
v
‖r−1 ·r2 /D?2 /div

(1)

Y ‖2S2
u0,v

+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,
(1)
α ].

(371)

The horizon flux estimate of the next corollary follows directly from the (twice

angular commuted) flux of (368) (applied with u!∞), and suggests that, while
(1)

χ̂Ω−1

itself does not decay, applying a T -derivative gives rise to a decaying quantity.

Corollary 13.8. Consider the solution
∨
S of Theorem 3. We control the horizon

flux∫ ∞
v0

dv̄ ‖A[4]Ω /∇4(r
(1)

χ̂Ω−1)‖2S2
∞,v̄
. sup

v
‖r−1 ·A[2]rΩ /∇4

(1)

Y ‖2S2
u0,v

+F2,T, /∇
0 [

(1)

Ψ,
(1)

ψ,
(1)
α ]. (372)

13.4.3. A polynomial decay estimate for /∇4(Ω−1
(1)

χ̂) on the horizon

For later purposes, we derive here a simple polynomial decay estimate for the quantity

/∇4(Ω−1
(1)

χ̂).

Proposition 13.4.3. Consider the solution
∨
S of Theorem 3. We have, along the

event horizon, the estimate

‖A[2]Ω /∇4(r
(1)

χ̂Ω−1)‖2S2
∞,v̄
.

1

v2
E0,

where we recall (246).
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Proof. Starting from equation (365), one repeats the argument (splitting integrals

when integrating the transport equations) of the proof of Proposition 12.3.5 using also

the flux bound of Proposition 12.3.8 (Corollary 12.5 is also sufficient). This yields in

particular

‖Ω /∇4

(1)

Y ‖2S2
∞,v̄
.

1

v2
E0. (373)

One now revisits the identity (370) evaluated on the horizon and uses the fact that v−2-

decay for
(1)

ψ is implied by Proposition 12.3.6, while v−2-decay for
(1)

Ψ (on spheres on the

horizon) is an immediate consequence of Proposition 11.5.1.

13.5. Boundedness for all remaining quantities

In this section we conclude the proof of Theorem 3 by exploiting the estimates derived

on the outgoing linearised shear χ̂ and the ingoing linearised shear
(1)

χ̂ in the previous

two subsections to bound all remaining linearised Ricci and curvature components of the

solution
∨
S.

13.5.1. L∞u,v-estimates on S2
u,v and fluxes on constant v-hypersurfaces

The estimates obtained thus far are sufficient to obtain flux bounds for five angular

derivatives of the curvature components
(1)

β and (
(1)
% ,

(1)
σ ), Note that we already control

the flux of five angular derivatives of
(1)
α by Proposition 12.3.1, as well as six angular

derivatives of
(1)

χ̂ from Corollary 13.4.

Proposition 13.5.1. Consider the solution
∨
S of Theorem 3. We have the following

flux estimates:

sup
v

∫ ∞
u0

duΩ2‖r−1 ·A[3]r2 /D?2 /D
?
1(r3 (1)

% , r3(1)
σ )‖2S2

u,v
.E0,

sup
v

∫ ∞
u0

duΩ2‖r−1 ·A[4]r /D?2(r2
(1)

βΩ−1)‖2S2
u,v
.E0.

Proof. The estimates follow from the identities

A[i]r2 /D?2 /D
?
1(r3 (1)

% , r3(1)
σ ) =A[i](r5

(1)

P )+3MΩr(A[i]
(1)

χ̂−A[i]
(1)

χ̂), (374)

A[i] /D?2(
(1)

βΩ−1) =A[i](Ω−1
(1)

ψ)+ 3
2%A

[i](Ω−1
(1)

χ̂), (375)

the flux-estimates on P obtained in Theorem 1 and the estimates on
(1)

χ̂ and
(1)

χ̂ obtained

in Corollary 13.4 and Proposition 13.3.4.



the linear stability of the schwarzschild solution 167

The next proposition concerns L2-estimates on spheres. Note that below for
(1)

β and
(1)

β we need the redshift (and r /∇4-) commuted energy F2
0[

(1)

Ψ] and F2
0[

(1)

Ψ] on the right-hand

side; see Corollary 11.4. The same is true for the analogous estimates for
(1)
α and

(1)
α

obtained previously in Proposition 12.3.3.

Proposition 13.5.2. Consider the solution
∨
S of Theorem 3. We have, for any

u>u0 and any v>v0, the estimates

‖r−1 ·A[2]r2 /D?2 /D
?
1(r3 (1)

% , r3(1)
σ )‖2S2

u,v
.E0 (376)

and

‖r−1 ·A[3]r /D?2(r2
(1)

βΩ−1)‖2S2
u,v

+‖r−1 ·A[3]r /D?2(r7/2
(1)

βΩ)‖2S2
u,v
.E0+F2

0[
(1)

Ψ]+F2
0[

(1)

Ψ],

provided F2
0[

(1)

Ψ]+F2
0[

(1)

Ψ]<∞. Moreover, if on the left-hand side of the second estimate A[3]

is replaced by A[2] and the exponent 7
2 by 7

2−ε, then the last term on the right-hand side

can be dropped.

Proof. Use the identities (374), (375) and (395) now with Corollary 13.3, applied

with i=0 and i=2, and Propositions 13.3.4 and 12.3.3. For the final remark, use the once

angular commuted Proposition 12.2.3 with δ=ε and observe that the right-hand side of

the latter is controlled by the E0 alone via 1-dimensional Sobolev embedding.

13.5.2. Estimates for four angular derivatives of
(1)

η and
(1)

η

With the estimates at our disposal we can already prove the following result.

Proposition 13.5.3. Consider the solution
∨
S of Theorem 3. For any u>u0 and

v>v0, we have, for i=1, 2, 3, the estimate∫
S2
u,v

sin θ dθ dφ·[r6|A[i] /D?2
(1)
η |2+r4|A[i] /D?2

(1)
η |2]

. ‖ /∇2
3(r3 /div /D?2 /div

(1)

χ̂)‖L2(Cv0
)+D[5]

0 [
(1)

Y,
(1)

Z]+F2,T, /∇
0 [

(1)

Ψ,D
(1)

ψ,D
(1)
α ]+F2,T, /∇

0 [
(1)

Ψ,D
(1)

ψ,D
(1)
α ]

.E0. (377)

For
(1)
η we have in addition the flux estimate(33)∫ ∞

u0

du

∫
S2
u,v

sin θ dθ dφΩ2r4|A[3] /D?2
(1)
η |2.E0. (378)

(33) Note that this flux estimate does not lose in r compared with the estimate (377) on spheres.



168 m. dafermos, g. holzegel, and i. rodnianski

Proof. Consider the estimate

r2|A[i]r /D?2
(1)
η |2.

∣∣∣∣A[i] 1

Ω
/∇3(r2

(1)

χ̂Ω)

∣∣∣∣2+
1

r2
|A[i]r2

(1)

χ̂Ω|2+|A[i]r
(1)

χ̂Ω|2, (379)

which is an easy consequence of (140) and trivial angular commutation with the A[i]

defined in (103), and

r4|A[i]r /D?2
(1)
η |2.

∣∣∣∣A[i]r2Ω /∇4

(
r
(1)

χ̂

Ω

)∣∣∣∣2+|A[i]r2
(1)

χ̂Ω|2+|A[i]r
(1)

χ̂Ω−1|2, (380)

which is easily derived from (141). For i=1, 2, 3, the terms on the right-hand sides are

controlled by Proposition 13.3.4 and Corollaries 13.3 and 13.7. For the flux estimate, we

need to use in addition Proposition 13.3.3 and Corollaries 13.4 and 13.8.

13.5.3. Control on five angular derivatives of
(1)

ω and
(1)

ω

We turn to estimates for
(1)
ω and

(1)
ω .

Proposition 13.5.4. Consider the solution
∨
S of Theorem 3. For any u>u0 and

v>v0, we have the estimate

‖r−1 ·A[3]r2 /D?2 /∇A
(1)
ω‖S2

u,v
. r−(5−ε)/2(u, v)·E0. (381)

We also have the estimate

‖r−1 ·A[2]r2 /D?2 /∇A
(1)
ωΩ−2‖S2

u,v
.E0. (382)

Proof. Commuting equation (144) we can write, for i=0, 1, 2, 3,

Ω /∇3(A[i]r2 /D?2 /∇A
(1)
ω )

= Ω2

(
A[i]r2

(1)

P−A[i]r2
(1)

P+
6M

r2
A[i](Ω

(1)

χ̂−Ω
(1)

χ̂)

)
+Ω2 2M

r
A[i] /D?2(

(1)
η+

(1)
η ).

Integrating this transport equation using the Cauchy–Schwarz inequality in conjunction

with Theorem 1 and Corollary 11.3, Proposition 13.3.4 and Corollary 13.4, as well as

Proposition 13.5.3, yields the result. Note that the initial term on u=u0 vanishes in

view of
∨
S satisfying the gauge condition (189). It is easy to see how to incorporate a

non-vanishing boundary term if (189) did not hold on the data; cf. Remark 10.3.

For
(1)
ω the argument is similar, now integrating in the 4-direction and starting from

(144) written in the red-shifted form

Ω /∇4(
(1)
ωΩ−2)+

2M

r2

(1)
ωΩ−2 =− (1)

%+
4M

r3
Ω−1

(1)

Ω,

from which after angular commutation as above, one proves the boundedness statement.



the linear stability of the schwarzschild solution 169

13.5.4. Control on five angular derivatives of
(1)

(Ω trχ)

The control obtained on four angular derivatives of
(1)
η is sufficient to estimate all angular

derivatives of
(1)

(Ω trχ). For this, we write the Codazzi equation (145) as

A[i] /D?2 /div Ω−1
(1)

χ̂=
1

r
A[i] /D?2

(1)
η+A[i]Ω−1

(1)

ψ+
3

2
%A[i]

(1)

χ̂Ω−1+
1

2Ω2
A[i] /D?2 /∇

(1)

(Ω trχ). (383)

Proposition 13.5.5. Consider the solution
∨
S of Theorem 3. For any u>u0 and

v>v0, we have the estimate∥∥∥∥r−1 ·r3A[3] /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
u,v

.E0. (384)

Moreover, we have the flux estimate

sup
v

∫ ∞
u0

duΩ2

∥∥∥∥r−1 ·r3A[3] /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
u,v

.E0. (385)

Proof. This is a consequence of the identity (383), Corollaries 13.3 and 13.4, Propo-

sition 13.5.3 and the estimates on
(1)

ψ obtained in Propositions 12.2.1 and 12.3.3 (the latter

only for the first bound).

13.5.5. Top-order estimates for angular derivatives of
(1)

χ̂ and
(1)

(Ω trχ): The

role of
(1)

Z

At this point we have estimated all Ricci coefficients except
(1)

(Ω trχ). Estimates for the

latter could be obtained directly from the estimates on
(1)

χ̂ of §13.3 (cf. Propositions 13.3.3

and 13.3.4) and the Codazzi equation (389). However, the estimates of §13.3 “lose” /∇3

derivatives, in the sense that we could only estimate
(1)

χ̂ after commutation (twice!) with

the redshift vectorfield. In this section we show how to avoid this loss of derivatives and

how to estimate five angular derivatives of
(1)

χ̂.

Key to the argument is the auxiliary quantity
(1)

Z defined in (219) which essentially

allows to prove that, given estimates on
(1)
η and

(1)
η , the quantity

(1)

(Ω trχ) can be estimated

without a loss near the horizon. The Codazzi equation (389) can then be used to estimate

angular derivatives of
(1)

χ̂. The weights near infinity obtained in the process are not

optimal. However, once estimates for angular derivatives of
(1)

χ̂ are available near the

horizon, one can use the angular commuted transport equation for
(1)

χ̂, (139), to optimise

the weights for (angular derivatives of)
(1)

χ̂ and then use once again (389) to optimise them

for (angular derivatives of)
(1)

(Ω trχ).
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Angular derivatives of
(1)

(Ω trχ). Observe that we can write

Ω /∇4(
(1)

(Ω trχ)
r2

Ω2
−4rΩ−1

(1)

Ω) =−4Ω2Ω−1
(1)

Ω. (386)

Recall the quantity
(1)

Z=(r3/Ω2) /∇
(1)

(Ω trχ)−2r2(
(1)
η+

(1)
η ) defined in (219). Commuting, we

can write

Ω /∇4(A[i]r /D?2
(1)

Z) =−2Ω2A[i]r2 /D?2(
(1)
η+

(1)
η ), (387)

where we recall the definition of A[i] in (103). Contracting (387) with (r−n/Ω2)A[i]r /D?2
(1)

Z

(with the appropriate i) we find(34)

∂v

[
|A[i]r /D?2

(1)

Z|2

rnΩ2

]
+

(
nΩ2

r1
+

2M

r2

)
|A[i]r /D?2

(1)

Z|2

rnΩ2
=−2r2−n(A[i] /D?2(

(1)
η+

(1)
η ),A[i]r /D?2

(1)

Z).

Integrating and using the Cauchy–Schwarz inequality (note that, by Proposition 9.4.3,

the quantity r /D?2
(1)

Z vanishes like Ω2 on the sphere S2
∞,v0

in our gauge), one finds the

following.

Proposition 13.5.6. Consider the solution
∨
S of Theorem 3. We have, for n>0,

any i∈N and any u>u0 and v>v0, the estimate∫
S2
u,v

sin θ dθ dφ
|A[i]r /D?2

(1)

Z|2

rnΩ2
+

∫ v

v0

dv̄

∫
S2
u,v̄

sin θ dθ dφ
1

r
· |A

[i]r /D?2
(1)

Z|2

rnΩ2

.
∫
S2
u,v0

sin θ dθ dφ
|A[i]r /D?2

(1)

Z|2

rnΩ2
+

∫ v

v0

dv̄

∫
S2
u,v̄

sin θ dθ dφ r5−nΩ2|A[i] /D?2(
(1)
η+

(1)
η )|2.

Applying the proposition we can reinsert the definition of
(1)

Z and obtain an estimate

for i angular derivatives of
(1)

(Ω trχ) in terms of i−1 angular derivatives of
(1)
η+

(1)
η .

Corollary 13.9. Consider the solution
∨
S of Theorem 3. We have, for n>0, any

i∈N and any u>u0 and v>v0, the estimate∫
S2
u,v

sin θ dθ dφ r8−n
∣∣∣∣A[i] /D?2 /∇

(1)

(Ω trχ)

Ω2

∣∣∣∣2

.
∫
S2
u,v0

sin θ dθ dφ
|A[i]r /D?2

(1)

Z|2

rnΩ2
+sup

v

∫
S2
u,v

sin θ dθ dφ r6−n|A[i] /D?2(
(1)
η+

(1)
η )|2

+

∫ v

v0

dv̄

∫
S2
u,v̄

sin θ dθ dφ r5−nΩ2|A[i] /D?2(
(1)
η+

(1)
η )|2.

(34) In principle, we could contract with (1/Ω4)A[i]r /D?
2

(1)

Z to estimate a stronger norm, but since

in our gauge
(1)
η and

(1)
η do not decay along the event horizon, we need an additional Ω2 to perform the v

integration in the estimate below.
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This estimate is crucial, as it allows us to estimate i+1 angular derivatives of
(1)

(Ω trχ)

in terms of i angular derivatives of
(1)
η and

(1)
η . We now apply Corollary 13.9 with i=3 and

n=2+ε (to make the right-hand side integrable), using the bounds of Proposition 13.5.3

to conclude that

sup
u,v

r2−ε∥∥r−1 ·Ω−2 ·A[3]r2 /D?2 /∇
(1)

(Ω trχ)
∥∥2

S2
u,v
.E0. (388)

Note the factor of Ω−2. The estimate is clearly not optimal near infinity, as 2−ε should

be replaced by 4. This will be achieved below.

Higher angular derivatives of
(1)

χ̂. We now write the Codazzi equation (145) as

A[i] /D?2 /div Ω
(1)

χ̂=−Ω2

r
A[i] /D?2

(1)
η−A[i]Ω

(1)

ψ− 3

2
%A[i]

(1)

χ̂Ω+
1

2
A[i] /D?2 /∇

(1)

(Ω trχ). (389)

Using the estimates available for the terms on the right-hand side we conclude the fol-

lowing.

Proposition 13.5.7. Consider the solution
∨
S of Theorem 3. We have, for any

u>u0 and v>v0, the estimate

‖r−1 ·A[2]r2 /D?2 /div(Ω
(1)

χ̂r2)‖2S2
u,v
.E0, (390)

and

sup
u>u0

∫ ∞
v0

dvr−1−ε‖r−1 ·A[2]r2 /D?2 /div(Ω
(1)

χ̂r2)‖2S2
u,v
.E0. (391)

Suppose now also that the initial norm F2
0[

(1)

Ψ]<∞. Then, we can replace A[2] by A[3] in

both (390) and (391) provided we add the expression F2
0[

(1)

Ψ] on the right.

Proof. A weaker version of (390), namely with weight r−2−ε on the left-hand side,

follows directly from the identity (389) after applying the estimates (388), Proposi-

tions 13.3.4, 12.2.3 and 12.2.1 and 13.5.3. To optimise the weight near infinity, one

recalls (355)

Ω /∇4

(
A[i+2]

(1)

χ̂Ω−1r2+
r4A[i]

(1)

ψ

Ω

)
=−r3A[i]

(1)

ψΩ+3MrA[i](1)α.

Note that the quantity in brackets is not regular on the horizon. However, we can

integrate from the hypersurface of constant r0=r(u0, v0) (where we know that

‖A[4]
(1)

χ̂Ω−1r2‖S2
u,v

+‖r2A[2]
(1)

ψΩ−1‖S2
u,v
.
√
E0
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holds, by the estimate just established and Proposition 12.3.3) forward using the fluxes

on A[2]
(1)

ψ and A[2](1)α of Theorem 2. To obtain (390) with A[3], one follows the same

argument with i=3. Proposition 12.3.3 will now lead to the extra term.

To prove the inequality (391), note first that restricting the integral to r>r0, (391)

follows immediately from (390). For r6r0, use (389) and apply Proposition 13.3.4, the

fluxes for ψ of Theorem 2, and observe that (388) gains a power in Ω2.

Revisiting again (389) immediately improves the estimate (388).

Corollary 13.10. Consider the solution
∨
S of Theorem 3. We have

sup
u,v

∥∥r−1 ·Ω−2 ·A[2]r4 /D?2 /∇
(1)

(Ω trχ)
∥∥2

S2
u,v
.E0. (392)

Moreover, provided the initial norm F2
0[

(1)

Ψ] is finite, the estimate remains true if we replace

A[2] by A[3] on the left and add F2
0[

(1)

Ψ] on the right.

Proposition 13.5.7 without the improvement mentioned in the second part of its

statement is already sufficient to prove the analogue of Proposition 13.5.1, i.e. flux esti-

mates on constant u-hypersurfaces for the quantities
(1)
% and

(1)

β .

Proposition 13.5.8. Consider the solution
∨
S of Theorem 3. We have the following

flux estimates:

sup
u

∫ ∞
v0

dv
1

r2
‖r−1 ·A[3]r2 /D?2 /D

?
1(r3 (1)

% , r3(1)
σ )‖2S2

u,v
.E0, (393)

sup
u

∫ ∞
v0

dv
1

r2
‖r−1 ·A[4]r /D?2(r3

(1)

βΩ)‖2S2
u,v
.E0. (394)

Proof. The estimates follow from the identities

A[i]r2 /D?2 /D
?
1(r3 (1)

% , r3(1)
σ ) =A[i](r5

(1)

P )+3MΩr(A[i]
(1)

χ̂−A[i]
(1)

χ̂),

A[i] /D?2(
(1)

βΩ) =A[i](Ω
(1)

ψ)− 3
2%A

[i](Ω
(1)

χ̂), (395)

and the estimate on
(1)

χ̂ obtained in (391), as well as Corollary 13.3.

13.5.6. Refined estimates for higher angular derivatives

We finally prove some refined estimates for higher angular derivatives which will eventu-

ally allow us to prove the estimate (248), i.e. to show the propagation of the D[5]-norm

in §13.5.8 below.
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Higher angular derivatives of /∇3

(1)

(Ω trχ) and /∇3(
(1)

χ̂Ω). Now that we have esti-

mated five angular derivatives of
(1)

χ̂, we can apply the identity (380) with i=4 to estimate

five angular derivatives of
(1)
η . This is Proposition 13.5.11 below. To estimate five deriva-

tives of
(1)
η , we first estimate A[4]Ω−1 /∇3

(1)

(Ω trχ), and then revisit (389) with i=2 and one

Ω /∇−1
3 derivative applied to it, to obtain a bound on A[4]Ω−1 /∇3

(1)

χ̂. Finally, revisiting

(379) now with i=4 will then control five derivatives of
(1)
η .

Proposition 13.5.9. Consider the solution
∨
S of Theorem 3. We have the estimate

sup
u,v

∥∥∥∥r−1 ·r /∇3

(
A[2]r2 /D?2 /∇

r
(1)

(Ω trχ)

Ω2

)∥∥∥∥2

S2
u,v

.E0. (396)

The estimate also holds with A[3] replacing A[2], provided the term F2
0[

(1)

Ψ]<∞ is added

on the right. Finally,

sup
u,v
‖r−1 ·Ω−1 /∇3(A[2]r2 /D?2 /div(Ω

(1)

χ̂r2))‖2S2
u,v
.E0. (397)

Proof. Starting from (136) and using (137), (135), (142) and (151), we derive

Ω /∇4

(
rΩ−1 /∇3

[
A[i]r2 /D?2 /∇

r
(1)

(Ω trχ)

Ω2

])
+

2M

r2

(
rΩ−1 /∇3

[
A[i]r2 /D?2 /∇

r
(1)

(Ω trχ)

Ω2

])

=
8M

r2
A[i]r2 /D?2(

(1)
η+

(1)
η )−4A[i]r3 /D?2 /∇

(1)
%+

(
2M

r
−Ω2

)
A[i]r2 /D?2 /∇

(1)

(Ω trχ)

Ω2
,

from which the redshift is manifest. Since for
∨
S the quantities

(1)
η and

(1)
η are not expected

to decay, we contract the above by

Ω2 ·
(
rΩ−1 /∇3

[
A[i]r2 /D?2 /∇

r
(1)

(Ω trχ)

Ω2

])
.

Using the flux of Proposition 13.5.8 and L∞u,vL
2(S2

u,v) bounds on
(1)
η and

(1)
η of Proposi-

tion 13.5.3, as well as Corollary 13.10, we conclude the first estimate.

The estimate (397) now follows from the identity arising from (389) with i=2, mul-

tiplied by r4 and (1/Ω) /∇3, applied to it. After inserting (142), (140) and (179) (and

noting the relation (182)) all terms on the right-hand side can be controlled on spheres

by Corollary 11.3, Propositions 12.3.3 and 13.5.3, Corollary 13.3 (with i=2) and the

bounds (390), (392) and (396).
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Top-order angular derivatives of
(1)

η and
(1)

η With the results above, we immediately

obtain estimates for the highest derivatives of
(1)
η and

(1)
η .

Proposition 13.5.10. Consider the solution
∨
S of Theorem 3. For any u>u0 and

v>v0 we have ∫
S2
u,v

sin θ dθ dφ r6|A[4] /D?2
(1)
η |2.E0. (398)

Proof. Apply (380) with i=4 and use (390) and (371), as well as Corollary 13.3 with

i=2.

Proposition 13.5.11. Consider the solution
∨
S of Theorem 3. For any u>u0 and

v>v0, we have the estimate∫
S2
u,v

sin θ dθ dφ r4|A[4] /D?2
(1)
η |2.E0. (399)

Proof. Apply (379) with i=4 and use (390), Corollary 13.3 with i=2 and (397).

13.5.7. Boundedness of the metric components

Proposition 13.5.12. Consider the solution
∨
S of Theorem 3. We have, for any

v>v0 and u>u0 and i=0, 1, 2, 3,

∥∥∥∥r−1 ·
√
rA[i]r2 /D?2 /∇

(1)√
/g√
/g

∥∥∥∥2

S2
u,v

.

∥∥∥∥r−1 ·
√
rA[i]r2 /D?2 /∇

(1)√
/g√
/g

∥∥∥∥2

S2
u0,v

+E0, (400)

and also

‖r−1 ·
√
rA[i+2]

(1)

/̂g‖2S2
u,v
. ‖r−1 ·

√
rA[i+2]

(1)

/̂g‖2S2
u0,v

+E0. (401)

For the metric component
(1)

b we have, for i=0, 1, 2, 3, the estimate

r‖r−1 ·A[i]r /D?2
(1)

b‖2S2
u,v
.E0, (402)

while, for i=4, the estimate (402) holds replacing the first r by r−ε. For Ω−1
(1)

Ω we have,

for i=0, 1, 2, 3, 4,

‖r−1 ·A[i]r2 /D?2 /∇Ω−1
(1)

Ω‖2S2
u,v
.E0. (403)
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Remark 13.8. Note that the initial term vanishes for (402).

We remark also that the first term on the right-hand side of (400) and the first term

on the right-hand side of (401) are in fact also controlled by E0, and could hence be

dropped. This follows easily from the round sphere conditions (191) and (192), and the

boundedness of the initial energy (248): Integrate (131) and (132) from infinity.

The estimates above hence show in particular that the round sphere conditions (191)

and (192) are preserved in evolution.

Proof. From (131) we derive, for any n∈R,

1

2
∂u

[
rn
∣∣∣∣A[i]r2 /D?2 /∇

(1)√
/g√
/g

∣∣∣∣2]+
Ω2n

2r

[
rn
∣∣∣∣A[i]r2 /D?2 /∇

(1)√
/g√
/g

∣∣∣∣2]

= rnA[i]r2 /D?2 /∇
(1)

(Ω trχ)·A[i]r2 /D?2 /∇

(1)√
/g√
/g
,

which we apply with n=1 from initial data, use the Cauchy–Schwarz inequality on the

right-hand side and the flux of Proposition 13.5.5. Similarly, from (132) we have

1

2
∂u(rn|A[i+2]

(1)

/̂g |2)+
1

2

nΩ2

r
(rn|A[i+2]

(1)

/̂g |2) = 2rn−1Ω2A[i+2](r
(1)

χ̂Ω−1)·A[i+2]
(1)

/̂g ,

which we apply with n=1 from initial data, use the Cauchy–Schwarz inequality on the

right-hand side and the flux of Corollary 13.4. From the transport equation (133), we

derive

1

2
∂u

(
rn
∣∣∣∣A[i]r /D?2

(1)

b

r

∣∣∣∣2)+
nΩ2

2r

(
rn
∣∣∣∣A[i]r /D?2

(1)

b

r

∣∣∣∣2)= 2Ω2 1

r
A[i]r /D?2(

(1)
η−(1)

η )· A
[i]r /D?2

(1)

b

r
·rn,

(404)

which, for i=0, 1, 2, 3, we apply with n=3, use the Cauchy–Schwarz inequality on the

right-hand side and Proposition 13.5.3 the flux estimate (378) and the estimate (377).

For i=4 we can still apply the above with n=2−ε, and use the higher-order estimates

of Propositions 13.5.10 and 13.5.11. Note the loss arises from not having the top-order

flux estimate (378) for η.

The last estimate follows directly from (134) and Propositions 13.5.10 and 13.5.11.

Remark 13.9. The loss in r-weight in the top-order estimate for
(1)

b can be removed,

once one derives the top-order analogue of the flux estimate (378). The latter in turn

requires a flux estimate on four angular derivatives (1/Ω) /∇3

(1)

χ̂. This is most easily done

from an estimate on (1/Ω) /∇3

(1)

(Ω trχ) in the context of the future gauge of Theorem 4.

We will not pursue this further here.
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13.5.8. Proof of (248) and Corollary 10.2

The statement (248) in the boundedness theorem now follows from (362) and Corol-

lary 13.5 with i=2 for the
(1)

Y -part in the D[
(1)

Y,
(1)

Z]-norm, from Proposition 13.5.6 applied

with n=2+ε for the
(1)

Z-part in the D[
(1)

Y,
(1)

Z]-norm, and finally from Proposition 13.5.9 for

the remaining part in (244).

For Corollary 10.2, one uses the classical Sobolev embedding on S2
u,v in conjunction

with the estimates of Corollary 13.3 for χ̂, Proposition 13.3.4 for
(1)

χ̂, Proposition 13.5.3 for
(1)
η and

(1)
η (recall that the `=0, 1 modes vanish for

∨
S ′), Proposition 13.5.12 for all metric

quantities, Proposition 13.5.5 for
(1)

(Ω trχ), Corollary 13.10 for
(1)

(Ω trχ), Proposition 13.5.2

for
(1)
% ,

(1)
σ ,

(1)

β and
(1)

β , and Corollary 12.3 for
(1)
α and

(1)
α . The pointwise bounds for

∨
S

itself follow from the identity
∨
S =

∨
S ′+Km,si , together with the fact that, as is checked

by direct computation, reference Kerr solutions Km,si indeed satisfy the boundedness

property of the corollary with right-hand side controlled by a constant depending only

on the parameters m and si.

14. Proof of Theorem 4

In this final section of the paper, we turn to the proof of Theorem 4. The reader can

again refer to the overview in §2.4.4.

In §14.1, we shall show that the pure gauge solution
∧

G , and thus also
∧

S , satisfies

a uniform boundedness statement and an asymptotic flatness statement. This gives

statement (1) of Theorem 4. In §14.2, we obtain statement (2) of the theorem concerning

integrated local energy decay. Finally, we prove the final statement (3) of the theorem

concerning polynomial decay in §14.3.

14.1. Boundedness of the pure gauge solution
∧

G

Let
∧

G denote the pure gauge solution in the statement of Theorem 4. The goal of this

section is to prove the boundedness of
∧

G , from which a similar statement will follow for
∧

S =
∨
S +

∧
G , in view of Theorem 3 applied to

∨
S.

We will begin in §14.1.1 below with certain preliminary estimates for
∧

S on the

horizon. We shall then use these in §14.1.2 to infer estimates for the function f defining
∧

G .

The precise boundedness statements that follow will be given in §14.1.3.

To distinguish between the quantities (129) associated with
∨
S or

∧
S , we agree on

the following convention: The geometric quantities of the solution
∨
S will, from now on,
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be denoted with an additional [
∨
S ] next to them, while those of

∧
S will appear without

any additional notation, unless there is potential confusion, in which case we add [
∧

S ].

The general rationale is to always write an estimate for a quantity of
∧

S on the left in

terms of initial quantities of
∨
S on the right.

For the geometric quantities associated with the pure gauge solution
∧

G , we shall

always add [
∧

G ].

14.1.1. Decay bounds on the ingoing shear
(1)

χ̂ at the horizon

Recall from §13.4 (part of the proof of Theorem 3) that the “first” obstruction to proving

decay for
∨
S arose from the quantitity

(1)

χ̂[
∨
S ]. We will show in this section that our choice

of
∧

G ensures that
(1)

χ̂=
(1)

χ̂[
∧

S ] does indeed decay along the event horizon H+. The estimates

obtained will then allow us in the next section to infer bounds for the gauge function f

defining
∧

G .

First, some preliminary remarks: We note that the pure gauge solution
∧

G has van-

ishing linearised shear
(1)

χ̂[
∧

G ]=0. Therefore, in addition to the estimates on the gauge

invariant quantities, also the estimates on
(1)

χ̂ proven in §13.3 remain valid as stated for
(1)

χ̂=
(1)

χ̂[
∧

S ]. We also recall from Proposition 9.3.1 that Ω−2
(1)

(Ω trχ)[
∧

G ]=0 and Ω−1
(1)

χ̂[
∧

G ]=0

on S2
∞,v0

, and thus

Ω−2
(1)

(Ω trχ)[
∧

S ] = Ω−2
(1)

(Ω trχ)[
∨
S ] and Ω−1

(1)

χ̂[
∧

S ] = Ω−1
(1)

χ̂[
∨
S ] on S2

∞,v0
. (405)

Finally, again by Proposition 9.3.1 and Lemma 6.1.1, we have

(1)
η [
∧

G ] = 0,
(1)
% [

∧
G ] = 0 on the event horizon H+. (406)

Hence, in particular, the gauge condition (194) holds for both
∨
S and

∧
S . Since (406)

and (212) hold on the horizon H+, we conclude

/D?2
(1)
η [

∧
S ] =−/D?2

(1)
η [

∧
S ] =−/D?2

(1)
η [
∨
S ]. (407)

We now deduce the following flux bounds on the horizon.

Proposition 14.1.1. On the horizon H+, the geometric quantities of
∧

S in Theo-

rem 4 satisfy, for i>3 and any v>v0,

‖A[i]Ω−1
(1)

χ̂‖2S2
∞,v

+

∫ v

v0

dv̄‖A[i]Ω−1
(1)

χ̂‖2S2
∞,v̄
. ‖A[i]Ω−1

(1)

χ̂[
∨
S ]‖2S2

∞,v0
+Fi−3,T, /∇

0 [
(1)

Ψ,
(1)

ψ,
(1)
α ]
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and ∥∥∥∥A[i−2] /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
∞,v

+

∫ v

v0

dv̄

∥∥∥∥A[i−2] /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
∞,v̄

.

∥∥∥∥A[i−2] /D?2 /∇

(1)

(Ω trχ)[
∨
S ]

Ω2

∥∥∥∥2

S2
∞,v0

+Fi−3,T, /∇
0 [

(1)

Ψ].

Proof. Restricting the angular commuted (141) to the horizon, we have, on H+,

Ω /∇4

(
A[i]

(1)

χ̂

Ω

)
+

1

2M
A[i]

(1)

χ̂

Ω
=

Ω

2M
A[i]

(1)

χ̂−2A[i] /D?2
(1)
η . (408)

Hence, contracting with A[i]
(1)

χ̂/Ω and applying the Cauchy–Schwarz inequality on the

right, in particular

1

2
∂v

∣∣∣∣A[i]

(1)

χ̂

Ω

∣∣∣∣2+
1

4M

∣∣∣∣A[i]

(1)

χ̂

Ω

∣∣∣∣2. |A[i](Ω
(1)

χ̂)|2+|A[i] /D?2
(1)
η |2. (409)

Taking into account (405) on the sphere S2
∞,v0

, integration yields

∥∥∥∥A[i]

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,V

+

∫ V

v0

dv̄

∥∥∥∥A[i]

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,v̄

.

∥∥∥∥A[i]

(1)

χ̂[
∨
S ]

Ω

∥∥∥∥2

S2
∞,v0

+

∫ V

v0

dv̄ [‖A[i](Ω
(1)

χ̂)‖2S2
∞,v̄

+‖A[i] /D?2
(1)
η‖2S2

∞,v̄
].

We now use (407), recall
(1)

χ̂[
∧

S ]=
(1)

χ̂[
∨
S ] and use Proposition 13.2.3 (recalling /div

(1)

χ̂=−
(1)

β

holds on H+ from (145)) to obtain the first estimate.

For the second, we proceed similarly. Commuting (135) and restricting to the horizon

H+ yields

Ω /∇4

[
A[i−3] /D?2 /∇A

(1)

(Ω trχ)

Ω2

]
+

1

2M
A[i−3] /D?2 /∇A

(1)

(Ω trχ)

Ω2
= 4A[i−3] /D?2 /∇A

(1)
% , (410)

where we have used /D?2 /∇AΩ−1
(1)

Ω[
∧

S ](∞, v, θ, φ)=0 by (407) and /D?2 /∇A( /div
(1)
η+

(1)
% )=0 on

H+ (for both
∨
S and

∧
S ). Integrating the identity (410) as in the previous case yields the

second estimate after applying Proposition 13.2.3 to control the flux on the right-hand

side (recall (406)).
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Corollary 14.1. On the horizon H+, the geometric quantities of
∧

S in Theorem 4

satisfy, for i>3,∫ ∞
v0

dv̄

∥∥∥∥Ω /∇4A[i]

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,v̄

.

∥∥∥∥A[i]

(1)

χ̂[
∨
S ]

Ω

∥∥∥∥2

S2
∞,v0

+Fi−3,T, /∇
0 [

(1)

Ψ,
(1)

ψ,
(1)
α ].

Proof. Follows directly from (408), recalling (407) and using the flux bounds of

Propositions 14.1.1 and 13.2.3.

Corollary 14.2. On the horizon H+, the geometric quantities of
∧

S in Theorem 4

satisfy in addition the L∞v L
2(S2
∞,v)-bound, for i>2,

sup
v

∥∥∥∥Ω /∇4A[i]

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,v

.

∥∥∥∥A[i]

(1)

χ̂[
∨
S ]

Ω

∥∥∥∥2

S2
∞,v0

+sup
v
‖r−1/2 ·A[i−2]

(1)

ψΩr3‖2S2
u0,v

+Fi−2,T, /∇
0 [

(1)

Ψ,
(1)

ψ,
(1)
α ].

Proof. Revisit (408) and use the L∞u,v-bound of Proposition 14.1.1, the L∞u,v-bound

on A[i]
(1)

χ̂=A[i]
(1)

χ̂[
∨
S ] of Proposition 13.2.1 and the L∞u,v bound on A[i] /D?2

(1)
η=−A[i] /D?2

(1)
η [
∨
S ]

of Proposition 13.2.2.

If we use the polynomial decay estimates of Propositions 11.5.1 and 12.3.4, we also

have, using Proposition 14.1.1 in conjunction with a pigeonhole principle, the following

corollary.

Corollary 14.3. On the horizon H+, the geometric quantities of
∧

S in Theorem 4

satisfy the decay estimate∥∥∥∥A[3]

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,v

+

∥∥∥∥A[2]Ω /∇4

(1)

χ̂

Ω

∥∥∥∥2

S2
∞,v

.
1

v2

(∥∥∥∥A[3]

(1)

χ̂[
∨
S ]

Ω

∥∥∥∥2

S2
∞,v

+F2,T
0 [

(1)

Ψ]+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]

)
.

Proof. For the bound on
(1)

χ̂, we combine Proposition 14.1.1 with a simple dyadic

argument. In particular, we use the fact that the fluxes appearing on the horizon on

the right-hand side of (409) (after integration) satisfy the polynomial decay estimates

of Proposition 13.2.4. To derive the bound for /∇4

(1)

χ̂, we revisit the identity (408) with

i=2 and show that all other terms have the desired decay. The bound for two angular

derivatives of
(1)

χ̂ has just been obtained. From Proposition 12.3.5 and the identity (332)

restricted to the horizon, we see we have the decay bound for two angular derivatives of
(1)

χ̂ on S2
∞,v. Finally, to estimate the term involving three derivatives of

(1)
η=−(1)

η=−(1)
η [
∨
S ]

in (408), we use the identity (333) and the fact that an estimate for ‖Ψ‖S2
∞,v

follows

directly from Proposition 11.5.1 and 1-dimensional Sobolev embedding.
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14.1.2. Controlling the gauge function

With Proposition 14.1.1 controlling
(1)

χ̂ on the horizon (from data in
∨
S ) and Corollary 13.3

controlling
(1)

χ̂[
∨
S ] on the horizon (also from data in

∨
S ), we can infer boundedness of the

gauge function.

Proposition 14.1.2. The gauge function f=f(v, θ, φ) associated with the pure gauge

solution
∧

G in Theorem 4 via Proposition 9.3.1 satisfies, for i=5,∫
S2

sin θ dθ dφ |A[i]r2 /D?2 /∇f |2. ‖A[i]Ω−1
(1)

χ̂[
∨
S ]‖2S2

∞,v0
+E0, (411)∫

S2

sin θ dθ dφ |A[i−1]r2 /D?2 /∇∂vf |2. ‖A[i−1]Ω−1
(1)

χ̂[
∨
S ]‖2S2

∞,v0
+E0, (412)

where we have introduced the shorthand notation /D?2 /∇f= /D?2 /D
?
1(−f, 0). We also have

the flux bound∫ ∞
v0

dv̄

∫
S2

sin θ dθ dφ |A[i−1]r2 /D?2 /∇∂vf |2. ‖A[i−1]Ω−1
(1)

χ̂[
∨
S ]‖2S2

∞,v0
+E0 (413)

and the decay bound

v2

∫
S2

sin θ dθ dφ |A[2]r2 /D?2 /∇∂vf |2. ‖A[3]Ω−1
(1)

χ̂[
∨
S ]‖2S2

∞,v0
+E0. (414)

Proof. We have, from Lemma 6.1.1,

r·Ω−1r
(1)

χ̂[
∧

S ]−r·Ω−1r
(1)

χ̂[
∨
S ] = r·Ω−1r

(1)

χ̂[
∧

G ] =−2r2 /D?2 /∇f, (415)

which, when restricted to the horizon u=∞ (where r=2M), leads to (411) after us-

ing Proposition 14.1.1 and Corollary 13.3. For the second estimate, we commute the

defining equation (214) with A[i−1]r2 /D?2 /∇, and estimate f by (411) and the quan-

tity Ai−1r /D?2(
(1)
η+

(1)
η ) from Proposition 13.5.11 and (the twice angular commuted S2

∞,v-

estimate of) Proposition 13.2.2. For the third estimate, we use again Lemma 6.1.1 to

conclude that, on the horizon H+,

Ω /∇4(r
(1)

χ̂[
∧

S ]Ω−1)−Ω /∇4(r
(1)

χ̂[
∨
S ]Ω−1) =− 2

2M
r2 /D?2 /∇∂vf.

The flux estimates of Corollary 14.1 (with i=4) and Corollary 13.8 produce (413). Com-

bining Proposition 13.4.3 with Corollary 14.3 yields the bound (414).
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14.1.3. Boundedness of the pure gauge and horizon-renormalised solution

Combining the estimates of Proposition 14.1.2 with Lemma 6.1.1, we can easily deduce

the uniform boundedness of
∧

G in Theorem 4, as well as deduce a uniform boundedness

statement for
∧

S from the estimate on
∨
S and

∧
G .

Proposition 14.1.3. The curvature components
(1)
% ,

(1)
σ ,

(1)

β and
(1)

β of the pure gauge

solution
∧

G in Theorem 4 satisfy the same boundedness estimates as these quantities for

∨
S in Proposition 13.5.2, provided the term

∥∥A[5]Ω−1
(1)

χ̂[
∨
S ]
∥∥2

S2
∞,v0

is added on all right-hand sides of that proposition. Furthermore, the Ricci and metric

coefficients of the solution
∧

G satisfy, for all u and v,

r‖r−1 ·A[4]r /D?2
(1)
η‖S2

u,v
+r2‖r−1 ·A[2]r /D?2

(1)
η‖S2

u,v
+r‖r−1 ·A[4]r /D?2

(1)
η‖S2

u,v

+‖r−1 ·A[5]rΩ−1
(1)

χ̂‖S2
u,v

+‖r−1 ·r3A[3] /D?2 /∇Ω−2
(1)

(Ω trχ)‖S2
u,v

+‖r−1 ·Ω−2A[2]r4 /D?2 /∇
(1)

(Ω trχ)‖S2
u,v

+

∥∥∥∥r−1 ·
√
rA[3]r2 /D?2 /∇

(1)√
/g√
/g

∥∥∥∥
S2
u,v

+‖r−1 ·
√
rA[5]

(1)

/̂g‖S2
u,v

+r‖r−1 ·A[2]r /D?2
(1)

b‖S2
u,v

+r−ε‖r−1 ·A[4]r /D?2
(1)

b‖S2
u,v

. ‖A[5]Ω−1
(1)

χ̂[
∨
S ]‖S2

∞,v0
+
√

E0.

Proof. Use Lemma 6.1.1 in conjunction with Corollary 14.1.2.

We leave stating the estimate for five angular derivatives of
(1)

(Ω trχ) arising from

Corollary 13.10 and more refined estimates for the metric coefficients to the reader. Note

that the estimate for
(1)

χ̂ is unchanged, as
∧

G has
(1)

χ̂=0. We finally remark that, for
(1)

b ,

stronger estimates hold, but Corollary 14.4 would not be true.

In view of
∧

S =
∨
S +

∧
G , we immediately conclude the following.

Corollary 14.4. The estimates of Proposition 14.1.3 hold also for the solution
∧

S .

Proof. Compare the estimates with

• Propositions 13.5.3 and 13.5.10 for
(1)
η ;

• Propositions 13.5.3 and 13.5.11 for
(1)
η ;

• Corollary 13.3 for
(1)

χ̂;

• Proposition 13.5.5 for
(1)

(Ω trχ);
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• Corollary 13.10 for
(1)

(Ω trχ);

• Proposition 13.5.12 for the metric coefficients. Note that the initial terms appear-

ing in (400) and (401) can be estimated by E0 using the round sphere condition (191)

and (192).

Remark 14.1. Proposition 14.1.3 and Corollary 14.4 can be paraphrased by saying

that the solution in the future gauge
∧

S =
∨
S +

∧
G satisfies the same boundedness estimates

as the solution
∨
S in the initial data gauge. In particular, there is no loss of derivatives

at the level of flux bounds. It is important to note, however, that the estimates we

obtain for five angular derivatives of
(1)
η and Ω−1

(1)

Ω are slightly weaker in terms of their

r-decay towards null infinity than those for
(1)
η [
∨
S ] and Ω−1

(1)

Ω[
∨
S ]. This is because the

estimate establishing decay of fv (413) is not optimal in terms of regularity. Compare

the estimates (412) and (414).

14.2. Integrated local energy decay

We now turn to show integrated decay statements for the quantities associated with
∧

S .

Recall from our comments above that, in addition to the estimates for the gauge-

invariant quantities, the results of §13.3, in particular the integrated decay statement

Proposition 13.3.1, remain valid for
(1)

χ̂[
∧

S ].

The first quantity for which one could not obtain integrated decay in the initial data

normalised gauge was the quantity
(1)

χ̂[
∨
S ]. In §14.2.1 below, we will succeed to obtain an

integrated local energy decay statement for
(1)

χ̂[
∧

S ], obtaining also a similar estimate for

/∇4

(1)

χ̂ in §14.2.2. We will then finally unravel the decay hierarchy, proving successively

integrated local energy decay for
(1)
% ,

(1)
σ and

(1)

β in §14.2.3,
(1)
η and

(1)
η in §14.2.4 and

(1)

(Ω trχ) in

§14.2.5. Finally, we will obtain various refined statements for higher angular derivatives

in §14.2.6, which allow to infer integrated local energy decay for
(1)

β .

14.2.1. Integrated decay for angular derivatives of
(1)

χ̂

Using the new horizon fluxes obtained in the previous section, we will now obtain global

control on angular derivatives of
(1)

χ̂.
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Proposition 14.2.1. We have the following integrated decay estimate for the ingo-

ing shear χ̂ of the solution
∧

S in Theorem 4. For any v>v0 and i=4, 5, we have

∫ v

v0

dv̄

∫ ∞
u

dū

∫
S2
u,v̄

sin θ dθ dφ
Ω2

r1+ε

∣∣∣∣A[i]

(
r
(1)

χ̂

Ω

)∣∣∣∣2. ‖A[i−2]
(1)

ψΩ−1‖2S2
∞,v0

+E0.

In view of Proposition 12.3.3, the first term can be dropped for i=4.

Proof. To show the statement for i=5, we contract the r /D?2-commuted (358) by

r−2−εA[3]
(1)

Y , to obtain

1

2
∂u[−r−2−ε|A[3]

(1)

Y |2]+
2+ε

2r3+ε
Ω2|A[3]

(1)

Y |2

6
1

2

1

r3+ε
Ω2|A[3]

(1)

Y |2

+C · Ω2

r1+ε
(|Ω−1 /∇3(r /div

(1)

Ψ)|2+|Ω−1 /∇3(r /div Ω−1
(1)

ψr3)|2

+|r /div Ω−1
(1)

ψr3|2+|r /div Ω−2(1)
αr|2).

Absorbing the first term on the right by the left-hand side, and using the estimate (243)

of Theorem 2 (for the underlined quantities), we obtain an integrated decay estimate for

A[3]
(1)

Y after integrating the estimate over spacetime, observing that the flux term on the

horizon has the wrong sign, but is controlled from Propositions 12.2.3 and 14.1.1 using

the definition of
(1)

Y , (218). On the left-hand side, we use again (218) and that we control

A[3]
(1)

ψ from the integrated decay statement of Theorem 2 applied with n=2 to descend to

the desired estimate for angular derivatives of
(1)

χ̂. This establishes the estimate claimed

with an additional term ‖A[5]Ω−1
(1)

χ̂[
∨
S ]‖2S2

∞,v0

on the right-hand side, which entered when

we applied Proposition 14.1.1. Corollary 13.3 allows to replace it by
∥∥A[3]

(1)

ψΩ−1
∥∥2

S2
∞,v0

.

The statement for i=4 is proven entirely analogously directly from (358), without an

additional r /D?2-commutation.

14.2.2. Integrated decay for angular derivatives of /∇4

(1)

χ̂

Proposition 14.2.2. We have the following integrated decay estimate for the quan-

tity /∇4χ̂ of the solution
∧

S in Theorem 4. For any v>v0,

∫ v

v0

dv̄

∫ ∞
u

dū

∫
S2
u,v̄

sin θ dθ dφΩ2r−1−ε
∣∣∣∣A[4]rΩ /∇4

(
r
(1)

χ̂

Ω

)∣∣∣∣2.E0.
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Proof. We commute (365),

/∇3(A[2]Ω /∇4

(1)

Y ) = r3ΩA[2]
(1)

P+3M(2rA[2]
(1)

ψ−2ω̂A[2](1)αr),

which we contract with r−εA[2]Ω /∇4

(1)

Y , to obtain

1

2
∂u[−r−ε|A[2]Ω /∇4

(1)

Y |2 ]+
ε

2r1+ε
Ω2|A[2]Ω /∇4

(1)

Y |2

6
ε

4

1

r1+ε
Ω2|A[2]Ω /∇4

(1)

Y |2

+CεΩ
2r1−εr−4(|A[2]

(1)

Ψ|2+|A[2]
(1)

ψr3Ω−1|2+|A[2](1)αrΩ−2|2).

We absorb the first term on the right by the left-hand side. Upon integration over a

spacetime region, for the last term on the right we use the integrated decay estimate on
(1)

Ψ of Theorem 1, and the integrated decay estimates on
(1)

ψ and
(1)
α of Theorem 2. The

flux term on the horizon (which has a bad sign) arising from the first term on the left is

controlled by inserting the commuted (370), which reads

A[2]Ω /∇4

(1)

Y =
Ω2

r
A[2]

(1)

Y +r·A[4]Ω /∇4

(
r
(1)

χ̂

Ω

)
−r4A[2]

(1)

P−2Mr2A[2]

(1)

ψ

Ω
. (416)

Note that, when considering the horizon flux, the first term on the right vanishes, the

second is controlled by Corollary 14.1 with i=4, and the last two by (242) of Theorem 2

for n=1. This produces an integrated decay for /∇4

(1)

Y . To descend to the desired quantity

A[4]rΩ /∇4(r
(1)

χ̂/Ω), we use once more the identity (416), now expressing the second term on

the right in terms of everything else, in conjunction with the integrated decay estimate of

Proposition 14.2.1, the definition of
(1)

Y (see (218)), and the estimate (243) of Theorem 2

(again n=1 is actually sufficient). This establishes the estimate with the additional term

‖A[4]
(1)

χ̂[
∨
S ]Ω−1‖2S2

∞,v0

on the right (having entered through Corollary 14.1). Using (218)

to re-express
(1)

χ̂ in terms of
(1)

Y and
(1)

ψ, and applying Propositions 12.3.3 and 13.4.1 (note

Remark 13.6) we deduce ‖A[4]
(1)

χ̂[
∨
S ]Ω−1‖2S2

∞,v0

.E0.

14.2.3. Integrated decay for
(1)

% ,
(1)

σ and
(1)

β

With the integrated decay estimates on
(1)

χ̂, we can easily show decay of all curvature

components. Recall that, for
(1)
α and

(1)
α , we already have these statements from Propo-

sition 12.3.2. The estimate for
(1)

β will be proven in Proposition 14.2.8 after we have

estimated four angular derivatives of
(1)

χ̂. (The i=2 non-degenerate version for
(1)

β can be

proven at this point already; cf. the proof of Proposition 14.2.8.)
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Proposition 14.2.3. For i=3 the following holds for the geometric quantities of
∧

S in Theorem 4:∫ ∞
v0

dv

∫ ∞
u0

du
Ω2

r1+ε

(
1− 3M

r

)2
×(‖r−1 ·A[i] /D?2 /D

?
1(r3 (1)

% , r3(1)
σ )‖2S2

u,v
+‖r−1 ·A[i+1] /D?2(

(1)

β r2Ω−1)‖2S2
u,v

).E0.

For i=2, this estimate holds without the degenerating factor of (1−3M/r)2.

Proof. The bound on (r3 (1)
% , r3(1)

σ ) is a direct consequence of the identity (374) applied

with i=3 (or i=2), the estimate (240) of Theorem 1 applied with n=2 (note this provides

a degenerate (near r=3M) integrated decay estimate for A[3]P and a non-degenerate

estimate for A[2]P ), Propositions 14.2.1 (applied with i=4) and 13.3.3.

For the bound on
(1)

β , we use the identity (375) applied with i=4 (i=3) and rewrite

the term A[4]
(1)

ψ (A[3]
(1)

ψ) using the A[2] (A[1]) commuted (303). All terms can then be

estimated by the integrated decay estimates of Theorems 1 and 2 and Proposition 14.2.1

applied with i=4.

14.2.4. Integrated decay for /D?2
(1)

η and /D?2
(1)

η

Proposition 14.2.4. We have the following integrated decay estimate on the solu-

tion
∧

S in Theorem 4:∫ ∞
v0

dv

∫ ∞
u0

duΩ2r1−ε(‖r−1 ·A[3]r /D?2
(1)
η‖2S2

u,v
+‖r−1 ·A[3]r /D?2

(1)
η‖2S2

u,v
).E0.

Proof. This follows directly from (379) and (380) applied with i=3 using the inte-

grated decay estimates of Propositions 14.2.1 (with i=4), 14.2.2 and 13.3.3.

14.2.5. Integrated decay for angular derivatives of
(1)

(Ω trχ)

Proposition 14.2.5. We have the following integrated decay estimate for the solu-

tion
∧

S in Theorem 4: for i=2, 3,∫ ∞
v0

dv

∫ ∞
u0

du
Ω2

r1+ε

∥∥∥∥r−1 ·
A[i]r3 /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
u,v

. ‖A[i]
(1)

ψΩ−1‖2S2
∞,v0

+E0.

In view of Proposition 12.3.3, the first term can be dropped for i=3.

Proof. Follows directly from (383) using the integrated decay estimates of Proposi-

tions 14.2.1, 14.2.4 and (the A[2] commuted version of) 12.2.2 (or apply Theorem 2).
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14.2.6. Refined estimates for higher angular derivatives and integrated

decay for
(1)

β

We easily derive the following analogue of Proposition 13.5.6 by integrating both in u

and v (and not in v only as in the derivation of Proposition 13.5.6).

Proposition 14.2.6. We have, for n>0, any i∈N and any u>u0, the estimate

(dω=sin θ dθ dφ)

∫ ∞
u0

dū

∫
S2
ū,v

dω
|A[i]r /D?2

(1)

Z|2

rnΩ2
+

∫ ∞
u0

dū

∫ v

v0

dv̄

∫
S2
ū,v̄

dω
1

r
· |A

[i]r /D?2
(1)

Z|2

rnΩ2

.
∫ ∞
u0

dū

∫
S2
ū,v0

dω
|A[i]r /D?2

(1)

Z[
∨
S ]|2

rnΩ2
+

∫ ∞
u0

dū

∫ v

v0

dv̄

∫
S2
ū,v̄

dω r5−nΩ2|A[i] /D?2(
(1)
η+

(1)
η )|2

for the solution
∧

S in Theorem 4.

We remind the reader that, following our notation,
(1)
η+

(1)
η on the right denote the

geometric quantities of
∧

S . In the above Proposition we have used that
(1)

Z[
∧

S ]=
(1)

Z[
∨
S ] holds

on v=v0. To deduce the latter, note that
(1)

Z[
∧

G ]=0 holds on v=v0, which follows from

Proposition 9.3.1 and Lemma 6.1.1. (Indeed, note that η[
∧

G ]=0 on v=v0 by (214) and that

the expression r /∇A
(1)

(Ω trχ)−2Ω2(1)η vanishes for any pure gauge solution in Lemma 6.1.1.)

Recall also that
(1)

Z∼Ω2 holds on v=v0 near the horizon by Proposition 9.4.3, so the first

term in the second line is indeed finite for smooth data. We can reinsert the definition

of
(1)

Z for the second term on the left to obtain an estimate for i angular derivatives of
(1)

(Ω trχ) in terms of i−1 angular derivatives of
(1)
η+

(1)
η .

Corollary 14.5. We have, for n>0, any i∈N and any (u>u0, v>v0), the estimate

∫ ∞
u0

dū

∫ v

v0

dv̄

∫
S2
ū,v̄

dω r7−nΩ2

∣∣∣∣A[i] /D?2 /∇
(1)

(Ω trχ)

Ω2

∣∣∣∣2

.
∫ ∞
u0

dū

∫
S2
ū,v0

dω
|A[i]r /D?2

(1)

Z[
∨
S ]|2

rnΩ2
+

∫ ∞
u0

dū

∫ v

v0

dv̄

∫
S2
ū,v̄

dωr5−nΩ2|A[i] /D?2(
(1)
η+

(1)
η )|2

for the solution
∧

S in Theorem 4.

Again, consistent with our notation,
(1)
η+

(1)
η above denotes the geometric quantities

of
∧

S . We conclude the following result.
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Proposition 14.2.7. We have the integrated decay estimate∫ ∞
u0

dū

∫ ∞
v0

dv̄
Ω2

r3+ε

(∥∥∥∥r−1 ·A[3]r2 /D?2 /∇
r2

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
ū,v̄

+‖r−1 ·A[3]r2 /D?2 /div(Ω
(1)

χ̂r2)‖2S2
ū,v̄

)

.E0+

∫ ∞
u0

dū

∫
S2
ū,v0

dω
|A[i]r /D?2

(1)

Z[
∨
S ]|2

rnΩ2

for the geometric quantities of
∧

S in Theorem 4.

Proof. Apply Corollary 14.5 with n=2+ε and i=3, and use Proposition 14.2.4 to

obtain the first part of the estimate. Then, use identity (389) in conjunction with Propo-

sition 14.2.4, Theorem 2 and Proposition 13.3.3 to obtain the second part.

Remark 14.2. The weights near infinity are far from optimal. The weight near

infinity for A[5]
(1)

χ̂ can be improved a posteriori from the transport equation (139) and the

(degenerate near r=3M) integrated decay estimate for A[5](1)α . See also Corollary 13.10.

The weights are sufficient to prove the integrated decay estimate of Proposition 14.2.3

for the missing curvature component
(1)

β .

Proposition 14.2.8. For the geometric quantities of
∧

S in Theorem 4, we have the

following integrated decay estimate for i=3:∫ ∞
u0

du

∫ ∞
v0

dv
Ω2

r1+ε

(
1− 3M

r

)2
(‖r−1 ·A[i+1]r /D?2(

(1)

β r3Ω)‖2S2
u,v

) (417)

.E0+

∫ ∞
u0

dū

∫
S2
ū,v0

sin θ dθ dφ
|A[i]r /D?2

(1)

Z[
∨
S ]|2

rnΩ2
.

For i=2, this estimate holds without the degenerating factor of (1−3M/r)2 on the left,

and without the last term on the right.

Proof. For i=3, this follows from the identity (395) and application of Proposi-

tion 14.2.7 (to estimate the 3
2%A

[4](Ω
(1)

χ̂) term), as well as using the identity (300) com-

muted with A[2] to estimate the A[4](Ω
(1)

ψ) term (through application of Theorems 1

and 2). For i=2, this also follows from (395), but observing that now Proposition 13.3.3

already estimates three angular derivatives of
(1)

χ̂, while (the twice angular commuted)

Proposition 12.2.2 estimates (non-degenerately) three angular derivatives of
(1)

ψ.

Finally, repeating the arguments(35) leading to Propositions 13.5.9, 13.5.10 and

13.5.11, we can prove integrated decay for five derivatives of
(1)
η and

(1)
η of the solution

∧
S ,

(35) All that is required is to insert an additional u-integration everywhere.
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i.e. the estimate∫ ∞
v0

dv̄

∫ ∞
u0

dū

∫
S2
ū,v̄

sin θ dθ dφΩ2r3−ε(|A[4] /D?2
(1)
η |2+|A[4] /D?2

(1)
η |2)

.E0+

∫ ∞
u0

dū

∫
S2
ū,v0

sin θ dθ dφ
|A[i]r /D?2

(1)

Z[
∨
S ]|2

rnΩ2
.

(418)

14.3. Polynomial decay estimates and conclusions

Finally, in this section we prove appropriate L2 polynomial decay of all quantites asso-

ciated with
∧

S . This corresponds to statement (3) of Theorem 4. We shall then infer

Corollary 10.3 giving pointwise estimates.

We will consider first Ricci coefficients in §14.3.1, and then the metric components

themselves in §14.3.2. We shall treat Corollary 10.3 in §14.3.3.

14.3.1. Polynomial decay for
(1)

χ̂,
(1)

χ̂,
(1)

η and
(1)

η

Proposition 14.3.1. Fix r0 as in Proposition 11.5.1, let v>v0 and recall the nota-

tion u(v, r0). We have the following decay estimates for the geometric quantities of
∧

S

(and equivalently
∨
S ) in Theorem 4:∫ ∞

u(v,r0)

dū

(
Ω2

r2+ε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,V

+
Ω2

rε
‖r−1 ·Ω−1 /∇3(r2

(1)

χ̂Ω)‖2S2
ū,V

+
Ω2

rε
‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2

(1)

χ̂Ω))‖2S2
ū,V

)
.

1

v2
E0

(419)

for all V >v0 and∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū

(
Ω2

r3+ε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,v̄

+
Ω2

r1+ε
‖r−1 ·Ω /∇3(r2

(1)

χ̂Ω)‖2S2
ū,v̄

+
Ω2

r1+ε
‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2

(1)

χ̂Ω))‖2S2
ū,v̄

)
.

1

v2
E0. (420)

Proof. Recall that
(1)

χ̂[
∧

S ]=
(1)

χ̂[
∨
S ]. By Proposition 13.2.4, we have, on the horizon,∫ ∞

v

dv̄ (‖Ω
(1)

χ̂‖2S2
∞,v̄

+‖Ω−1 /∇3(Ω
(1)

χ̂)‖2S2
∞,v̄

).
1

v2
(F2,T

0 [
(1)

Ψ]+F0[
(1)

Ψ,
(1)

ψ,
(1)
α ]). (421)

The boundedness of these fluxes was crucial in the proof of Proposition 13.3.1. We

now repeat this proof using instead (421) to generate the desired decay estimates. The

procedure is outlined below.
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Choosing a dyadic sequence vi=2iv0, we can, by Proposition 13.3.1 and the mean

value theorem, extract a sequence ṽi of slices vi6ṽi6vi+1 with the property that∫ ∞
u0

dū

(
Ω2

rε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,ṽi

+Ω2‖r−1 ·Ω−1 /∇3(r2
(1)

χ̂Ω)‖2S2
ū,ṽi

+Ω2‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2
(1)

χ̂Ω))‖2S2
ū,ṽi

)
.

1

vi
E0

(422)

Repeating the proof of Proposition 13.3.2 starting now from the slices ṽi and using

(421) and the integrated decay estimates on Ψ,
(1)

ψ and
(1)
α of Proposition 12.3.4 and

Corollary 11.5 yields, for any v>v0,∫ ∞
u(v,r1)

dū

(
Ω2

rε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,v

+Ω2‖r−1 ·Ω−1 /∇3(r2
(1)

χ̂Ω)‖2S2
ū,v

+Ω2‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2
(1)

χ̂Ω))‖2S2
ū,v

)
.

1

v
E0,

(423)

and the localised integrated decay estimate∫ ∞
v

dv̄

∫ ∞
u(v̄,r1)

dū

(
Ω2

r1+ε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,v̄

+
Ω2

r1+ε
‖r−1 ·Ω /∇3(r2

(1)

χ̂Ω)‖2S2
ū,v̄

+
Ω2

r1+ε
‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2

(1)

χ̂Ω))‖2S2
ū,V

)
.

1

v
E0.

Note that r-weights do not play any role in the region r6r1 under consideration. To

obtain the global estimate, we repeat the transport argument of §13.3.3 using now the

multiplier ξr−1−ε (instead of ξr−ε) in (352) and (as before) the multiplier ξr−ε for (341)

and (342). (The reason one needs r−1−ε is to be able to replace r5+ε to r4+ε on the

right-hand side of (352) so that the decay estimate (323) can be used for the right-hand

side of (352). Note that, for (354), the right-hand side can be estimated directly by

(322), (323) and the previous estimate.) This gives, for any v>v0 and V >v,∫ ∞
u(v,r0)

dū

(
Ω2

r2+ε
‖r−1 ·r2

(1)

χ̂Ω‖2S2
ū,V

+Ω2‖r−1 ·Ω−1 /∇3(r2
(1)

χ̂Ω)‖2S2
ū,V

+Ω2‖r−1 ·Ω−1 /∇3(Ω−1 /∇3(r2
(1)

χ̂Ω))‖2S2
ū,V

)
.

1

v
E0

(424)

and (420) with v−1 instead of v−2 on the right-hand side. It is clear that we can iterate

this argument. There is an ε-loss in the second iteration (corresponding to using the

multipliers ξr−ε instead of ξr−1−ε), because Proposition 12.3.4 and Corollary 11.5 have

to be applied to control the terms on the right-hand side of (354) and the two-times-

commuted equation. We leave the details to the reader and end the proof, by noting that
∧

G has
(1)

χ̂=0 globally, so indeed the statement holds equivalently for
∧

S and
∨
S.
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Repeating the proof of Corollary 13.1, using now the decay estimates of Proposi-

tion 13.2.5 and the decaying fluxes (419) of Proposition 14.3.1, we also have the following

result.

Corollary 14.6. Fix v>v0. Then, for all u>u(v, r0) and V >v, we have

1

r1+ε
‖Ωr2

(1)

χ̂‖2S2
u,V

+
1

rε
‖Ω−1 /∇3(r2Ω

(1)

χ̂)‖2S2
u,V
.

1

v2
E0

for the geometric quantities of
∧

S (and equivalently
∨
S ) in Theorem 4.

For the shear in the ingoing direction,
(1)

χ̂, we obtain the following result.

Proposition 14.3.2. Fix r0 as in Proposition 11.5.1 and let v>v0 and recall the

notation u(v, r0). We have the following decay estimate for the geometric quantities of
∧

S in Theorem 4:∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū
Ω2

r1+ε
(‖r−1 ·A[2]r

(1)

χ̂Ω−1‖2S2
ū,v̄

+‖r−1 ·A[2]rΩ /∇4(r
(1)

χ̂Ω−1)‖2S2
ū,v̄

).
1

v2
E0.

Proof. We first establish the following estimate for the horizon flux:∫ ∞
v

dv̄ (‖A[3]Ω−1
(1)

χ̂‖2S2
∞,v̄

+‖A[3]Ω /∇4(Ω−1
(1)

χ̂)‖2S2
∞,v̄

+‖Ω−1
(1)

ψ‖2S2
∞,v̄

).
1

v2
E0. (425)

Indeed, integrating (290) written as ∂v[Ω
−2|

(1)

ψ|2r6]+3Mr4Ω−2|
(1)

ψ|2.r8|
(1)

P |2 from v to ∞,

using Proposition 11.5.1 for the right-hand side and Proposition 12.3.6 for the boundary

terms, the estimate for
(1)

ψ follows. Integrating (409) for i=3 from v to ∞, using Propo-

sition 13.2.4 for the terms on the right-hand side and Corollary 14.3 for the boundary

terms, the estimate for A[3]
(1)

χ̂ follows. Now use (408) pointwise with i=3 and the bounds

just obtained to establish the desired estimate for the second term. (Observe that the

term A[3]
(1)

χ̂ on S2
u0,∞ entering through Corollary 14.3 is controlled by E0 from Corol-

lary 13.3; similarly for the term involving
(1)

ψ on S2
u,v0

entering via Proposition 12.3.6).

With (425) established, we can repeat the proofs of Proposition 14.2.1 (integrating

now (357) itself from the horizon and using the decay estimates of Proposition 12.3.4) and

Proposition 14.2.2 (without the additional A[2] commutation and using now the decay

estimates of Proposition 12.3.4 and Corollary 11.5) to deduce the desired bounds.

We also directly prove the following result.

Proposition 14.3.3. Fix r0 as in Proposition 11.5.1 and fix v>v0. We have, for

all V >v, the estimate∫ ∞
u(v,r0)

dūΩ2‖r−1 ·r2 /D?2 /div(r
(1)

χ̂Ω−1)‖2S2
ū,V
.

1

v2
E0 (426)
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for the geometric quantities of
∧

S in Theorem 4. In addition, for all V >v and any

u>u(v, r0),

‖r−1 ·r2 /D?2 /div(r
(1)

χ̂Ω−1)‖2S2
u,V
.

1

v2
E0.

Proof. Note first that, from the definition of Y , Corollary 14.3 and Proposition 12.3.6

(and Proposition 12.3.3 allowing to incorporate all terms on the right into E0), we can

deduce for any v>v0 the horizon bound∫
S2
∞,v

|
(1)

Y |2 sin θ dθ dφ.
1

v2
E0.

Next, from (357), we have

−1

2
∂u
|
(1)

Y |2

r
+

1

4
Ω2 |

(1)

Y |2

r2
.Ω2(|(1)αrΩ−2|2+|

(1)

ψr3Ω−1|2), (427)

which we integrate from the horizon. Using the previous bound for the boundary term

on the horizon, and noting that we control the right-hand side by Proposition 12.3.8 and

Corollary 12.5, we deduce both a flux and a bound on spheres for
(1)

Y . To convert from
(1)

Y

to r2 /D?2 /div(r
(1)

χ̂Ω−1), we use once more the definition of
(1)

Y and again Propositions 12.3.8

and 12.3.6, respectively, on
(1)

ψ.

Corollary 14.7. Fix r0 as in Proposition 11.5.1, let v>v0 and recall the notation

u(v, r0). We have the following integrated decay estimate for the geometric quantities of
∧

S in Theorem 4:∫ ∞
v

dv̄

∫ ∞
u(v,r0)

dū
Ω2

r1+ε
(‖r−1 ·r2 /D?2

(1)
η‖2S2

ū,v̄
+‖r−1 ·r2 /D?2

(1)
η‖2S2

ū,v̄
).

1

v2
E0.

We also have the flux estimates, for any V >v,∫ ∞
u(v,r0)

dū
Ω2

rε
‖r−1 ·r2 /D?2

(1)
η‖2S2

ū,V
.

1

v2
E0, (428)

∫ ∞
u(v,r0)

dū
Ω2

rε

∥∥∥∥r−1 ·r3 /D?2 /∇

(1)

(Ω trχ)

Ω2

∥∥∥∥2

S2
u,V

.
1

v2
E0. (429)

In addition, for any V >v and u>u(v, r0), we have

‖r−1 ·r2 /D?2
(1)
η‖2S2

ū,V
.

1

v2
E0. (430)

Finally, the ε in (428) and (429) can be removed if the decay rate is changed from v−2

to v−1 on the right-hand side.
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Proof. The first two and the last estimate follow directly from Propositions 14.3.1–

14.3.3 and the identities (379) and (380). The remaining estimate follows similarly from

(383) using (428) and Propositions 12.3.8 and 14.3.3. To avoid the ε-loss in (428) and

(429), use the estimate (424) for the Ω−1 /∇3(r2
(1)

χ̂Ω)-flux. [A decay rate of v−2+ε can be

shown in this case using interpolation, but this will not be done here.]

We finally derive an estimate for
(1)
η on the spheres.

Proposition 14.3.4. Fix v>v0. For any V >v and u>u(v, r0), we have

‖r−1 ·r2 /D?2
(1)
η‖2S2

u,V
.

1

v2
E0 (431)

for the geometric quantity
(1)
η of

∧
S in Theorem 4.

Proof. Recalling (407) and Proposition 13.2.5, we deduce

‖/D?2
(1)
η‖2S2

∞,v
= ‖/D?2

(1)
η [
∨
S ]‖2S2

∞,v
.

1

v2
E0

after controlling the last (initial data) term in (338) from E0 using 1-dimensional Sobolev

embedding. We now integrate

Ω /∇3(r2 /D?2
(1)
η ) =−Ω2r /D?2

(1)
η+r2Ω2

((1)
ψΩ−1+ 3

2%
(1)

χ̂Ω−1
)

(432)

backwards from the horizon and use (428), (426) and Corollary 12.5 to control the terms

on the right.

14.3.2. Polynomial decay of the metric coefficients: Proof of (249)–(252)

In this final subsection we prove the estimates (249)–(252) on the metric quantities of
∧

S .

The estimate (249) is a direct consequence of Corollary 14.7, Proposition 14.3.4 and

the definition (134).

For (251) we present the proof without the (trivial) commutation with A[2] which

can be inserted into all formulas below. We write (132) in the form

Ω /∇3/̂g
(1) = 2Ω

(1)

χ̂, (433)

and derive, for any fixed u>u0 and v>v0,

∥∥r−1 ·
(1)

/̂g
∥∥
S2
u,v
.
∥∥r−1 ·

(1)

/̂g
∥∥
S2
u0,v

+

∫ u

u0

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v
. (434)
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Consider the first term on the right-hand side. Recall that the solution
∨
S had

(1)

b=0 on

Cu0
. By Lemma 6.1.1 and the estimates on the gauge function in Proposition 14.1.2, the

pure gauge solution
∧

G generates a b satisfying |/D?2
(1)

b |.r−2 along Cu0 . Moreover, again

by the boundedness estimates on f in Proposition 14.1.2, the pure gauge solution
∧

G also

satisfies the round sphere condition (192) at infinity. Therefore, integrating equation

(132) from infinity along Cu0
using Corollary 13.1 and the aforementioned bound on

(1)

b

yields

∥∥r−1 ·
(1)

/̂g
∥∥
S2
u0,v
.

1

r(u0, v)
·
√

E0. (435)

For the second term, we define u? :=min
(
u, 3

4v
)

and split the integral as∫ u

u0

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v

=

∫ u?

u0

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v

+

∫ u

u?

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v
.

Now, for the first integral, we have by Proposition 14.3.3 (applied with v=v0)∫ u?

u0

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v
.

√∫ u?

u0

dūΩ2‖r−1 ·(r
(1)

χ̂Ω−1)‖2
S2
ū,v

√∫ u?

u0

dū
Ω2

r2

.
√
E0

[
r

(
3

4
v, v

)]−1/2

.

For the second integral (which vanishes if u6 3
4v), we have

∫ u

u?

dū ‖r−1 ·
(1)

χ̂Ω‖S2
ū,v
.

√∫ ∞
3/4v

dūΩ2‖r−1 ·(r
(1)

χ̂Ω−1)‖2
S2
ū,v

√∫ ∞
u0

dū
Ω2

r2
.
√

E0 ·v−1,

where we have used the decay estimate of Proposition 14.3.3 and boundedness of the

integral in the second square root. Combining the estimates yields (251).

The argument to prove (252) is analogous now starting from (131), which reads

Ω /∇3

(1)√
/g√
/g

=
(1)

(Ω trχ). (436)

We use the estimate on | /div
(1)

b |.r−2 for the pure gauge solution and the fact that the

round sphere condition (191) in conjunction with (192) implies that
(1)√
/g/
√
/g vanishes for

`>2 at infinity (see (221)) to derive the analogue of (435). Using then the bound (429)

of Corollary 14.7 without the r−ε, we derive (252) following the integration argument

above.
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To derive (250), we first note that (402) yields

‖r−1 ·r /D?2
(1)

b [
∨
S ]‖2S2

u,v
.

1

v
E0 for r(u, v)&

1

4
v.

Using the estimates on the gauge function of Corollary 14.1.2 and Lemma 6.1.1, we

conclude

‖r−1 ·r /D?2
(1)

b [
∧

S ]‖2S2
u,v
.

1

v
E0 for r(u, v)&

1

4
v. (437)

Fix now v>2v0 large (for smaller v the estimate (250) is implied by Proposition 14.1.3).

Define the tortoise coordinate r?=v−u−(v0−u0−1) so that r?(r0)=1 and also r?∼r for

large r. Let ū=u
(
r0,

3
4v
)
. Then, on the hypersurface [u0, ū]×{v}, we have r∼r?> 1

4v,

and hence (437) holds. From (ū, v) we apply the transport estimate (404), this time for

the geometric quantities of
∧

S with n=2−ε. After inserting the bound (437) for the

initial term and the bounds on
(1)
η and

(1)
η (Corollary 14.7 and Proposition 14.3.4) on the

right-hand side, we conclude that

‖r−1 ·r /D?2
(1)

b‖2S2
u,v
.

1

v
E0. (438)

also for [ū,∞)×{v}.

14.3.3. Proof of Corollary 10.3

The proof of Corollary 10.3 is now immediate: We consider
∧

S ′=
∧

S −Km,si . Using the

bounds (249)–(252), we apply the classical Sobolev embedding on the spheres S2
u,v to

the left-hand side. Note that the quantities
(1)√
/g,

(1)

/̂g ,
(1)

b and Ω−1
(1)

Ω associated with
∧

S ′

are supported on `>2, and that Proposition 4.4.2 and Corollary 4.2 guarantee that all

second-order derivatives are indeed controlled in L2(S2
u,v). The estimates (253)–(254)

follow immediately.

Appendix A. Construction of data and propagation of asymptotic flatness

In this appendix we construct and estimate from a smooth seed initial data set (Def-

inition 8.1) which is asymptotically flat with weight s to order n (Definition 8.2) all

quantities of the solution S associated with the data set through Theorem 8.1, first on

the initial cones Cu0
∪Cv0

and then globally in the spacetime. The main result is the

following.
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Theorem A.1. Consider a smooth seed initial data set which is asymptotically flat

with weight s to order n>11, and the corresponding smooth solution S arising from

Theorem 8.1. For an element ξ of S , we denote

|Dkξ|=
∑

06j1+j2+j36k

|(Ω−1 /∇3)j1(r /∇)j2(rΩ /∇4)j3ξ|.

The solution S has the following property : On the initial cones Cu0
∪Cv0

, the estimates

|Dk(r3+s(1)αΩ2)|+|Dk(r3+s
(1)

βΩ)|+|Dk(r3 (1)
% )|+|Dk(r3(1)

σ )|+|Dk(r2
(1)

βΩ−1)|6Ck,

|Dk(r
(1)
αΩ−2)|+|Dk(r2

(1)

K)|+|Dk(r2
(1)

χ̂Ω)|+|Dk(r
(1)

χ̂Ω−1)|+|Dk(r
(1)
η )|+|Dk(r2(1)η )|6Ck,

|Dk(r2+s(1)ω )|+|Dk(Ω−2(1)
ω )|+|Dk(r2

(1)

(Ω trχ))|+|Dk(rΩ−2
(1)

(Ω trχ))|6Ck,

|Dk(Ω−1
(1)

Ω)|+|Dk
(1)

/̂g |+|Dk(tr/g
(1)

/g )|+|Dk(r
(1)

b)|6Ck
(439)

hold for any k6n−3 and a constant Ck which can be computed explicitly and depends

only on finitely many constants C
�,n1,n2 appearing in Definition 8.2. In particular, the

constants C
�,n1,n2

with n1+n26k+3 are sufficient. For any k6n−4 the quantities on

the left-hand side with of (439) with s=0 have well-defined limits on null infinity.

Moreover, given any u0<U<∞, the estimates (439) actually hold for any k6n−10

in any spacetime region M∩{u06u6U}, where Ck now also depends on the choice of

U and the constants C
�,n1,n2

with n1+n26k+10 appearing in Definition 8.2. For any

k6n−11 the quantities on the left-hand side of (439) with s=0 have well-defined limits

on null infinity.

We remark that the conditions n1+n26k+3 in the first part and n1+n26k+10 in

the second part of the theorem account for the loss of derivatives in the characteristic

initial value problem and losses from applying Sobolev embedding. It is of course not

optimal. We also remark that we have stated (439) for quantities regular at the horizon

(cf. (130)). Since Ck is allowed to depend on U in the second part of the theorem this is

not essential.

The proof of Theorem A.1 will proceed in two steps. In §A.1 we prove that the

estimates (439) hold on the initial cone Cu0
∪Cv0

by constructing from an asymptotically

flat seed initial data set of Definition 8.2 all quantities of the solution S on Cu0
∪Cv0

. In

the second step, we show that these bounds are in fact propagated by the evolution. The

statement about the limit at null infinity will follow from the fact that the Ω /∇4-derivative

of any of the quantities in the round brackets of (439) is always integrable in v. Note

that
(1)
α and

(1)
ω are part of the seed data, and we gain integrability from taking the limit

of r3(1)
α and r2(1)

ω .
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Remark A.1. Observe that all quantities in S except
(1)
ω decay at least as fast to-

wards null infinity as their background Schwarzschild value. For
(1)
ω we can only propagate

boundedness, while ω decays like r−2 towards null infinity. This exceptional behaviour

is rooted in our choice of null frame for the linearisation. If we compare the components

linearised with respect to the frame NEF? , where ω=0 and hence
(1)
ω=0 identically

(cf. §5.1.4) all linearised quantities decay as fast as their Schwarzschild value.

A.1. Proof of the first part: Constructing the data

In this section we shall prove the first part of Theorem A.1, i.e. the statement that the

solution is determined from seed data with the bounds (439) holding on Cu0∪Cv0 . We

will focus on establishing the latter bounds for k=0. The statement for arbitrary angular

commutations is then easily obtained from the fact that r /∇ commutes with Ω /∇3 and

Ω /∇4 and has good commutation properties with angular derivatives in the sense that

|[r /∇A, r /∇B ]ξ|6C|ξ|.

To obtain the remaining tangential derivatives and the transversal derivatives, we will

use the null structure and Bianchi equations directly in conjunction with an inductive

procedure which is outlined below.

For the remainder of the proof, we will allow ourselves to drop the � subscript from

all quantities as well as the “in” and “out” from
(1)

/g , as it will be clear from the context

which cone we are on.

Elliptic equations on the horizon sphere S2
∞,v0

We first note that the seed data determines on the horizon sphere:

• (1)
σ uniquely from (146);

•
(1)

K uniquely from the fact that
(1)

/̂g and
(1)√
/g/
√
/g are part of the seed data and (221);

• (1)
% uniquely from (147);

•
(1)

β uniquely from (145);

• (1)
η uniquely from

(1)
η=−(1)

η+2 /∇AΩ−1
(1)

Ω (equation (134)).

Transport equations along Cv0 : Part I

We now integrate our seed data from S2
∞,v0

along the cone Cv0
.
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Along Cv0
, the tensor

(1)

/̂g is part of the seed data. Note that this determines uniquely,

along Cv0
, the quantities Ω−1

(1)

χ̂ via (131) and Ω−2(1)
α via (139).

Next, from (137), we have

∂u

[
r2

Ω2

(1)

(Ω trχ)

]
=−4r

(1)
ω .

Since
(1)
ω is prescribed along Cv0

as part of the seed data, as is the value of Ω−2r2
(1)

(Ω trχ)

on S2
∞,v0

, the above ODE determines
(1)

(Ω trχ) uniquely along Cv0
. Note that now

(1)√
/g/
√
/g

is now uniquely determined along Cv0
by (131).

Since
(1)

β was already uniquely determined on S2
∞,v0

above, we can integrate the

Bianchi equation (156) written as

Ω /∇3[r4Ω−1
(1)

β ] =−r4 /div
(1)
α

along Cv0 , which, since the right-hand side is uniquely determined from seed data, de-

termines
(1)

β uniquely on Cv0
. The Bianchi equations (151) and (154) read as ODEs along

Cv0 now uniquely determine
(1)
% and

(1)
σ , since the initial value of these quantities on S2

∞,v0

were already determined by seed data above. Similarly,
(1)
η is determined uniquely from

(142). Using (134) we conclude that
(1)
η is also uniquely determined along Cv0

. We finally

use (136) written as

∂u(r
(1)

(Ω trχ)) =Q,

with Q uniquely determined on Cv0 to determine uniquely r
(1)

(Ω trχ) along Cv0 . Noting

that
(1)

K is uniquely determined by (147) along Cv0
, we conclude that we have determined

all geometric quantities of a solution S uniquely along Cv0 except
(1)

χ̂,
(1)

β ,
(1)
α ,

(1)

b and
(1)
ω

along Cv0
.

Estimates on the sphere S2
u0,v0

We note that, since
(1)

/̂g , Ω−1
(1)

Ω and
(1)

b are part of the seed data on Cu0
,

• the quantity
(1)

χ̂ is determined uniquely on S2
u0,v0

by (132);

• the quantity
(1)
α is determined uniquely on S2

u0,v0
by (139);

• the quantity
(1)
ω is determined uniquely on S2

u0,v0
by (134).

Hence, by (145) and the fact that we already determined
(1)
η and

(1)

(Ω trχ) uniquely on

S2
u0,v0

above, the quantity
(1)

β is also uniquely determined on S2
u0,v0

.
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Transport equations along Cv0 : Part II

We can now determine the missing quantities
(1)

χ̂,
(1)

β ,
(1)
α ,

(1)

b and
(1)
ω along Cv0 , recalling

that they have been determined uniquely on S2
u0,v0

: Use (133) to determine
(1)

b , (140) to

determine
(1)

χ̂, (150) to determine
(1)

β , (148) to determine
(1)
α and finally

(1)
ω from (144) all

uniquely along Cv0
.

We have determined all geometric quantities in terms of seed data and uniform

bounds for all quantities which extend smoothly to the horizon H+ along Cv0
.

Transport equations along Cu0

We finally turn to the conjugate cone Cu0 . Recall that all geometric quantities have been

determined uniquely on the sphere S2
u0,v0

, and that moreover the seed data
(1)

/̂g along Cu0

determines uniquely
(1)

χ̂ by (132) and
(1)
α by (139) along Cu0 .

We now determine all quantities along Cu0
. Starting with (137), we have

∂v

(
r2

Ω2

(1)

(Ω trχ)

)
= 4r

(1)
ω .

We see that the right-hand side is integrable by the asymptotic flatness condition there-

fore, producing the bound

|r2
(1)

(Ω trχ)|<C,

where C can be computed explicitly from the seed data (and depends on 0<s61). From

(131) and the asymptotic flatness condition on
(1)

b , we immediately conclude

∣∣∣∣
(1)√
/g√
/g

∣∣∣∣<C.
Of course, the same bounds hold for arbitrary many angular derivatives r /∇ of these

quantities.

Remark A.2. One also sees that the quantities
(1)

/̂g and
(1)√
/g/
√
/g (as well as angular

derivatives r /∇ of these quantities) have smooth limits at null infinity. By this, we mean

that there exists a symmetric 2-tensor
(1)

/̂g∞ and a scalar
(1)√
/g∞/

√
/g on M satisfying in

any spherical coordinate patch

∂u
(
(1)

/̂g∞)AB√
/g

= ∂v
(
(1)

/̂g∞)AB√
/g

= 0, ∂u

(1)√
/g∞√
/g

= ∂v

(1)√
/g∞√
/g

= 0
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and

lim
v!∞

(1)

/̂gAB√
/g

=
(
(1)

/̂g∞)AB√
/g

, lim
v!∞

(1)√
/g√
/g

=

(1)√
/g∞√
/g
,

in the limit along the cone Cu0
.

We now note that
(1)

β is uniquely determined from (149) producing the uniform bound

|r3+s
(1)

β |<C.

Similarly, we can determine
(1)
η and

(1)
η . For this, we note the equations (following from

(142) and (134)):

/∇4(r2(1)η ) = /∇4(r2(1)
η )− /∇4(r2(1)η+r2(1)

η )

= 2
Ω

r
(
(1)
η+

(1)
η )−r2

(1)

β−2 /∇4 /∇Ar2(Ω−1
(1)

Ω) =−r2
(1)

β−2r2 /∇(1)
ω .

(440)

Note that the right-hand side is uniquely determined along Cu0
and integrable, leading

to
(1)
η being uniquely determined along Cu0

with the uniform bound

|r2(1)η |<C.

We also have, by the relation (134), that
(1)
η is uniquely determined along Cu0

with the

uniform bound

|r(1)η |<C.

We turn to (151) and (153), which clearly determine
(1)
% and

(1)
σ uniquely along Cu0

with

the uniform bounds

|r3 (1)
% |+|r3(1)

σ |<C.

In fact, since we can repeat the above procedure commuting with angular derivatives,

we also have in particular

|r /∇(r3 (1)
% )|+|r /∇(r3(1)

σ )|<C.

It is now easy to see that (155) determines
(1)

β uniquely with the uniform bound

|r2
(1)

β |<C,

and that (141) determined
(1)

χ̂ uniquely with the uniform bound

|r
(1)

χ̂|<C.
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Similarly, (157) determines
(1)
α uniquely with the uniform bound

|r(1)α |<C.

For the remaining components, note that (144) determines
(1)
ω uniquely with the uniform

bound

|(1)ω |<C.

The quantity
(1)

(Ω trχ) is determined uniquely from (136) with the bound

|r
(1)

(Ω trχ)|<C,

where we have used that we can write (136) as

∂v(r
(1)

(Ω trχ)) = RHS

with the right-hand side uniquely determined and integrable along Cu0 . Finally, equation

(147) determines
(1)

K uniquely along Cu0 , with the uniform bound

|r2
(1)

K|<C.

In fact, by the remark above and the fact that the right-hand side in /∇4(r2
(1)

K)=RHS

is integrable, the weighted linearised Gaussian curvature r2
(1)

K extends smoothly to null

infinity.

We note once more that the same bounds hold for arbitrarily many angular deriva-

tives r /∇ of the quantities estimated either by trivial commutation with angular momen-

tum operators Ωi or, if the reader prefers, tensorial commutation with r /∇ and inductively

estimating lower-order terms.

We conclude the proof by estimating the remaining weighted tangential derivatives

r /∇4 and the transversal derivative /∇3 on the cone Cu0
. The procedure on Cv0

is analo-

gous (but easier, since there are no weights at null infinity) and is hence omitted.

For the remaining weighted tangential derivative r /∇4, we use

• equation (149) pointwise for r /∇4

(1)

β ;

• equation (151) pointwise for r /∇4

(1)
% ;

• equation (151) pointwise for r /∇4

(1)
σ ;

• equation (155) pointwise for r /∇4

(1)

β ;

• equation (157) pointwise for r /∇4

(1)
α ;
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which estimates the first derivative of all linearised curvature components. Similarly one

can use the null structure equations to exchange a 4-derivative by an angular derivative,

to estimate all linearised Ricci coefficients and the linearised metric components. This

estimates all (first) derivatives tangential to the cone, and it is easy to see how to continue

inductively to estimate tangential derivatives of arbitrary high order.

To estimate the transversal derivatives on Cu0
, one follows a similar procedure, now

using the null structure and Bianchi equations in the /∇3-direction: More specifically, one

• uses the null structure equations, which express the transversal derivatives of

all Ricci coefficients in terms of angular derivatives or curvature components that have

already been obtained;

• uses the Bianchi equations, which express the transversal derivatives of all curva-

ture components in term of angular derivatives of curvature and Ricci coeffcients that

have already been obtained. For instance, (148) for
(1)
α , (150) for

(1)

β , (152) for
(1)
% , (154)

for
(1)
σ and (156) for the transversal derivatives of

(1)

β along Cu0
. Finally, for /∇3

(1)
α , one

needs to commute (157) and use the fact that the transversal derivative of β has just

been obtained.

A simple induction allows to estimate all derivatives of all quantities on Cu0
∪Cv0

. Fi-

nally, counting derivatives in the above procedure, one observes that the bounds claimed

in Theorem A.1 hold on the hypersurface Cv0
∪Cu0

for a constant Ck which only depends

on the constants C
�,n1,n2 with n1+n26k+3 in the definition of an asymptotically flat

seed initial data set and the size of the data on the compact hypersurface Cv0 . One

also sees that applying a Ω /∇4-derivative to any quantity in the round brackets of (439)

the right-hand side is integrable, which ensures the existence of the limit at null infinity.

This generally loses a derivative, e.g. (440), explaining the k6n−4.

A.2. Proof of the second part: Propagation of decay

Knowing that the desired bounds hold on Cv0
∪Cu0

, we continue with the proof of The-

orem A.1.

As noted in §7.3 and §7.4, the derived quantities
(1)

P and
(1)

P of the solution S, which

can be expressed through (183) and (184), satisfy the Regge–Wheeler equation. It is

easy to see that, for asymptotically flat seed initial data with weight s of order n>10,

the initial energies of Corollary 11.4, Fk0 [
(1)

Ψ=r5
(1)

P ] and Fk0 [
(1)

Ψ=r5
(1)

P ] are indeed finite for

every k6n−6 with the bound depending only constants C
�,n1,n2

in the definition of

asymptotically flat seed data with n1+n26k+6. Corollary 11.2 and standard Sobolev
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embedding hence yield the bound

|Dk(
(1)

Pr5)|+|Dk(
(1)

Pr5)|<Ck(U)

in any spacetime region M∩{u06u6U} with Ck(U) as claimed. We now use the defi-

nition of
(1)

P and
(1)

P via the transport equations (178)–(181) to obtain the bounds

|Dk(
(1)

ψr4+s))|+|Dk(
(1)

ψr3)|+|Dk(
(1)
αr3+s)|+|Dk(

(1)
αr)|<Ck(U)

in any spacetime region M∩{u06u6U} with Ck(U) as claimed. Indeed, these bounds

hold initially on Cu0
∪Cv0

, and are propagated by the transport equations. Note that

weights near the horizon are irrelevant, as U<∞ and the constants are allowed to depend

on U . We can now use the equations (139) to obtain

|Dk(
(1)

χ̂r2))|+|Dk(
(1)

χ̂r)|<Ck(U),

and the expressions for
(1)

ψ and
(1)

ψ in (182) to deduce

|Dk(/D?2
(1)

β r4+s))|+|Dk(/D?2
(1)

β r3)|<Ck(U),

both in any spacetime region M∩{u06u6U} with Ck(U) as claimed. To derive the

above, note that r(u0, v)6r(U, v)+C(U) for U<∞. Using (140) pointwise and then

(142) in the 3-direction, as well as (154) in the 3-direction and the definition of
(1)

P , we

obtain the estimates

|Dk(/D?2
(1)
ηr2))|+|Dk(/D?2

(1)
ηr3))|+|Dk(r5(/D?2 /∇A(

(1)
% ,

(1)
σ ))|<Ck(U).

The Codazzi equations (145) and equation (134) now provide the bounds

|Dk(r3 /D?2 /∇A
(1)

(Ω trχ))|+|Dk(r4 /D?2 /∇A
(1)

(Ω trχ))|+|Dk(r2 /D?2 /∇AΩ−1
(1)

Ω)|<Ck(U)

in any spacetime region M∩{u06u6U} with Ck(U) as claimed. Note this implies

already the desired bound for
(1)
ω=∂u(Ω−1

(1)

Ω). For
(1)
ω we use (144) to obtain the improved

bound

|Dk(r4+s /D?2 /∇A
(1)
ω )|<Ck(U).

Finally, we use (131), (132) in the 3-direction and (133) to deduce also

|Dk
(1)

/̂g |+|Dk(r2 /D?2 /∇A(tr/g
(1)

/g ))|+|Dk(r2 /D?2
(1)

b)|6Ck(U)



the linear stability of the schwarzschild solution 203

in any spacetime region M∩{u06u6U} with Ck(U) as claimed.

In view of Corollaries 4.4.2 and 4.2, we have proven Theorem A.1 except for the

`=0 and `=1 modes of the solution S. The latter have been understood in detail in §9,

Theorem 9.2. Specifically, we can now add to S a pure gauge solution G (generated by

a gauge function supported on `=0, 1 only) and a member of the Kerr family K with

the following properties:

• both G and K satisfy the desired bounds of Theorem A.1;

• both G and K do not alter any of the bounds proven in this section;

• S +G +K is supported on `>2 only

This finishes the proof, up to the claim concerning the limits on null infinity. These

follow by the argument given in the first part of the proof, which can be repeated on any

cone Cu with u6U .

A.3. Propagation of roundness at infinity

In this section we state a corollary to Theorem A.1, which can be understood as the

propagation of the round sphere condition (191) at null infinity. It states that, if the

linearised Gaussian curvature
(1)

K behaves like r−3 on the outgoing cone Cu0
, then

(1)

Kr3

remains bounded on any cone which is a finite u distance away.

Note that Theorem 9.1 stated in particular that, given any solution S as in Theo-

rem A.1, we can construct a pure gauge solution G such that the sum S +G satisfies on

Cu0 the stronger bounds in the Corollary below.(36) The corollary then shows that these

stronger bounds are propagated. Of course, this is directly related to the propagation of

uniform boundedness for the quantity
(1)

Y in our Theorems 3 and 4.

Corollary A.1. With the assumptions of Theorem A.1, assume in addition that

|(r /∇)m(r3
(1)

K)|6Cm (441)

holds for all m6n−9 on Cu0
. Then, given any u0<U<∞, the estimate (441) actually

holds for any m6n−10 in any spacetime region M∩{u06u6U}, where Cm now also

depends on the choice of U and the constants Cm appearing in Theorem A.1.

Proof. Compute from (147)

/∇3((r /∇)m
(1)

Kr3) =Qm,

and deduce that Qm is pointwise uniformly bounded using the bounds (439) of Theo-

rem A.1.

(36) At the non-linear level this can be interpreted as refoliating the cone such that the sphere at
infinity becomes round.
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We finally remark that a similar corollary is easily deduced for the quantities

(r /∇)m

(1)√
/g
√
g

and (r /∇)m
(1)

/̂g .

Appendix B. Characterizing the vanishing of gauge invariant quantities

In this appendix, we discuss solutions characterized by the vanishing of gauge invariant

quantities.

We first show in Appendix B.1 that the vanishing of
(1)
α and

(1)
α identically implies

that a solution S is the sum S =G +K of a pure gauge solution and a linearised Kerr

solution, provided that S is asymptotically flat. We then consider in Appendix B.2 the

larger class of solutions such that
(1)

P and
(1)

P vanish identically. We shall show that this

class corresponds precisely to the linearised Robinson–Trautman solutions, again up to

the addition of a pure gauge solution.

B.1.
(1)

α=
(1)

α=0 implies S =G +K

In this section we prove that any solution S which is asymptotically flat and satisfies
(1)
α=

(1)
α≡0 globally is necessarily a pure gauge solution G plus a reference linearised Kerr

solution K .

Theorem B.1. Let S be a smooth solution of the full system of linearised gravity

arising from a smooth seed initial data set on Cu0∪Cv0 through Theorem 8.1. Assume

that the data are asymptotically flat with weight s, as in Definition 8.2. Assume further

that

(1)
α =

(1)
α = 0 (442)

holds globally on M∩{u>0}∩{v>0}. Then, S is the sum of a pure gauge solution G

and a reference linearised Kerr solution K .

We remark that the assumption (188) in Definition 8.2 can actually be deduced from

(442), so the assumptions (186) and (187) on the data suffice in conjunction with (442).

Proof. We let
∨
S be as in Theorem 9.1, i.e. we put the solution S in the initial

data gauge. Moreover, let us subtract Km,si of Theorem 9.2, so that
∨
S ′

.
=
∨
S −Km,si is

supported outside of `=0, 1. Below, we shall consider quantities associated with
∨
S ′.
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From the fact that
(1)

Y is bounded for asymptotically flat initial data and
(1)

ψ=0 globally

we deduce, noting that
(1)
α=0 implies

(1)

ψ=0, the bound

|r2
(1)

χ̂|6C along Cu0

for a constant determined purely by the seed initial data. Let fout(v, θ, φ) be a solution

of the elliptic equation along Cu0
:

r2 /D?2 /∇Afout(v, θ, φ) =
r2

2Ω2
(u0, v)·

(1)

χ̂(u0, v, θ, φ).

The solution is uniquely determined, once we insist that fout has vanishing `=0 and `=1

modes. It is also clear that fout is uniformly bounded.

We add the pure gauge solution generated by Lemma 6.1.1 through fout to
∨
S ′,

and call the resulting solution S1. The solution S1 satisfies
(1)

χ̂=0 along Cu0 , and hence

globally onM∩{u>0}∩{v>0} by the transport equation (139). Importantly, since fout

is uniformly bounded, the solution S1 also still satisfies the round sphere condition (191)

and (192).

Let now Ω2fin(u, θ, φ) be determined by the following elliptic equation along Cv0
:

r2 /D?2 /∇Afin(u, θ, φ)Ω2(u, v0) = 1
2Ωr2(u, v0)

(1)

χ̂[S1](u, v0, θ, φ).

We add the pure gauge solution generated by Lemma 6.1.3 through fin to S1, and

call the resulting solution S2. The solution S2 satisfies
(1)

χ̂=0 on Cv0 , which implies
(1)

χ̂=0

globally through the transport equation (139). Importantly, since Ω2fin is uniformly

bounded, the solution S2 also still satisfies the round sphere condition (191) and (192).

Note also that the pure gauge solution added through Lemma 6.1.3 has
(1)

χ̂=0, so S2

satisfies

(1)
α =

(1)
α =

(1)

χ̂=
(1)

χ̂= 0 on M∩{u> 0}∩{v> 0}. (443)

Note that both pure gauge transformation added to
∨
S do not change the conclusions of

Theorem 9.2, as fout and fin both have vanishing projection to `=0, 1. From (140) and

(141) one now concludes that /D?2
(1)
η= /D?2

(1)
η=0, and hence, since S2 satisfies

( /div
(1)
η )`=1 = ( /curl

(1)
η )`=1 = 0

(and similarly for
(1)
η ), that in fact

(1)
η=

(1)
η=0 on M∩{u>0}∩{v>0}. Since

(1)
α=

(1)
α=0

implies
(1)

ψ=
(1)

ψ=0, we have from the formulas (182) that
(1)

β=
(1)

β=0, after using the fact that

( /div
(1)

β )`=1 = ( /curl
(1)

β )`=1 = 0
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(and similarly for
(1)

β ). The Codazzi equations (145) and the fact that the `=0, 1 modes

of
(1)

(Ω trχ) and
(1)

(Ω trχ) vanish then yield
(1)

(Ω trχ)=
(1)

(Ω trχ)=0 identically. Equation (134)

and the vanishing of the `=0, 1 modes allows the conclusion for Ω−1
(1)

Ω, and hence
(1)
ω

and
(1)
ω . Finally, global vanishing of % and σ is now a consequence of (135) and (146).

So far, we have shown that all linearised curvature and all linearised Ricci coefficients

of the solution vanish for S2. To conclude also the vanishing of the linearised metric

components, we need to add another pure gauge solution.

The geometric quantity
(1)

b of the solution S2, while having globally vanishing pro-

jection to `=1,(37) has a potentially non-vanishing trace on Cu0
, which we denote by b̃.

It satisfies the bound | /∇b̃|.v−2 along Cu0
, following from the fact that S satisfies it

and that all pure gauge solutions added so far do.

Propositions 9.2.5 and 9.2.6 construct a pure gauge solution G , generated by bounded

q1(v, θ, φ) and q2(v, θ, φ) having vanishing projection to `=0, 1, with the property that

G satisfies the round sphere condition (192), and moreover
(1)

b [G ]=−b̃ along Cu0
. Finally,

all linearised Ricci coefficients and curvature components vanish for G .

It is easy to see that the solution S3=S2+G is the trivial solution: One uses the

propagation equation (132) from infinity to first conclude that
(1)

/̂g=0 identically along Cu0

and then that
(1)

/̂g=0 identically on M∩{u>0}∩{v>0} by using the propagation in the

3-direction of (132).

We have shown thus that
∨
S ′ is the sum of pure gauge solutions, and thus the original

S =
∨
S ′−

∨
G +K is the sum of a pure gauge solution and a reference linearised Kerr.

B.2.
(1)

P=
(1)

P=0 implies linearised Robinson–Trautman

While global vanishing of
(1)
α and

(1)
α together with asymptotic flatness implies that the

solution is the sum of a pure gauge solution and linearised Kerr solution by Theorem B.1,

one may ask whether vanishing of the derived quantities P and
(1)

P is sufficient for this

conclusion. As we shall see in this section, this is not the case. The non-trivial solutions

arising can however be completely described: They are given by the linearisation of a

family of algebraically special solutions to the Einstein vacuum equations, the celebrated

Robinson–Trautman metrics [63]. These vacuum metrics can be characterized geometri-

cally by the fact that they admit a shear-free congruence of null-geodesics which is also

hypersurface orthogonal. See [63], [16] and also §10 of [18] for an introduction to this

family.

(37) Recall that, by this, we mean that ( /div
(1)

b)`=1=( /curl
(1)

b)`=1=0 hold.
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We shall only sketch here the relevant computations.

B.2.1. The Calabi equation

Suppose first
(1)

P=0 or
(1)

P=0. Then, we have one of

r2 /D?2 /D
?
1(r3 (1)

% ,∓r3(1)
σ )−3Mr

(1)

χ̂+W = 0,

with the upper sign in case
(1)

P=0 and the lower sign if
(1)

P=0, where W indicates a term

that vanishes in the limit on null infinity by asymptotic flatness. Taking a 3-derivative

yields

r2 /D?2 /D
?
1(−r3 /div

(1)

β ,±r3 /curl
(1)

β )+3Mr
(1)
α+W = 0.

Application of another 3-derivative yields the equation

r4 /D?2 /D
?
1( /div /div(r

(1)
α),∓ /curl( /div r

(1)
α))+3M /∇3(r

(1)
α)+W = 0.

Therefore, if
(1)

P=0 then the fourth-order parabolic equation (cf. the Calabi equation in

[63])

/∇3(r
(1)
α)I =− 1

3M
r4 /D?2 /D

?
1 /D1 /D2(r

(1)
α)I (444)

has to hold along null infinity. Here (r
(1)
α)I is the symmetric traceless tensor obtained as

the limit at null infinity v!∞ of the quantity r
(1)
α(u, v, θ) measured in an orthonormal

frame on the spheres S2
u,v. We can interpret (r

(1)
α)I either as a symmetric traceless

spacetime S2
u,v-tensor whose components in an orthonormal frame do not depend on

v, or as a symmetric traceless S2
u-tensor defined on the cylinder [u0,∞)×S2 equipped

with the metric −du2+dθ2+sin2 θ dφ2. Taking the latter point of view and considering

r4 /D?2 /D
?
1 /D1 /D2 in (444) as an operator on the unit sphere, equation (444) becomes a

parabolic equation on the cylinder [u0,∞)×S2 whose solution is uniquely determined if

data are prescribed on the “initial” sphere S2
u0

.

A priori, it seems that we have the full freedom of specifying a symmetric traceless

tensor. However, if in addition P=0, then /D?2 /D
?
1(0,

(1)
σ )= 1

2 (
(1)

P−
(1)

P )=0 everywhere, and

hence
(1)
σ≡0 globally, provided the `=0, 1 modes of

(1)
σ also vanish. This implies that

r4 /D?2 /D
?
1 /curl /div(r

(1)
α)I=0 on null infinity. It follows that we can prescribe (r

(1)
α)I initially

on one sphere, subject to the condition r4 /D?2 /D
?
1 /curl /div(r

(1)
α)I=0 (which then propa-

gates), which reduces the number of degrees of freedom to one function on the initial

sphere, just as it is the case for the Robinson–Trautman class [63].
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It is useful to scalarise equation (444) by setting (r
(1)
α)I=r2 /D?2 /D

?
1(f, 0), determining

uniquely (up to projection to `=0, 1) a function f on [u0,∞)×S2. If (r
(1)
α)I satisfies

(444), then f satisfies

∂uf =− 1

6M
(∆S2∆S2 +2∆S2f). (445)

This should be compared with equations (2.4) and (2.5) in [16], which, upon linearisation

f=1+ε
(1)

f +O(ε2) and setting M=2m, yields (445).

We can solve (445) mode by mode obtaining the solution

f`,m(u) = e−(u/2M)(`−1)`(`+1)(`+2)/3Y `m.

Note that, for fixed v, this behaves like an integer power of Ω2(u, v)∼e−u/2M near the

event horizon.

B.2.2. Constructing the full solution in the horizon-normalised gauge

We now outline the argument that assuming
(1)

P=
(1)

P=0 and specifying such an (r
(1)
α)I

initially on the sphere S2
u0,∞ determines a solution of the system of gravitational pertur-

bations which is unique up to pure gauge solutions. It is important to note that (444)

will produce solutions (r
(1)
α)I , which decay exponentially in u.

Suppose we have an asymptotically flat seed initial data set for which
(1)

P and
(1)

P are

zero on Cu0
∩Cv0

. Since
(1)

P and
(1)

P satisfy the Regge–Wheeler equation,
(1)

P≡0 and
(1)

P≡0

in M∩{u>u0}∩{v>v0}. We construct the full solution
∧

S ′=
∧

S −Km,si directly in the

horizon-normalised gauge of Theorem 4.

(1) From the discussion above, we have

(1)
σ = 0 in M∩{u>u0}∩{v> v0}.

(2) On the horizon H+, we have

0 =

∫ ∞
v0

dv

∫
S2

sin θ dθ dφ |
(1)

P |2

=

∫ v

v0

dv

∫
S2

sin θ dθ dφ

∣∣∣∣/D?2 /D?1(
(1)
% , 0)+

3

8M3
Ω

(1)

χ̂

∣∣∣∣2
=

∫ ∞
v0

dv

∫
S2

sin θ dθ dφ

[
|/D?2 /D

?
1(

(1)
% , 0)|2+

9|Ω
(1)

χ̂|2

64M6
+

3

4M3
D?1(

(1)
% , 0)(−Ω

(1)

β )

]
=

∫ ∞
v0

dv

∫
S2

sin θ dθ dφ

[
|/D?2 /D

?
1(

(1)
% , 0)|2+

9

64M6
|Ω

(1)

χ̂|2+
3

4M3

(
−1

2

)
∂v|

(1)
% |2
]
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and, since
(1)
%!0 as v!∞ by Theorem 4 (recall Corollary 14.6, the restriction of

(1)

P on

the horizon and the fact that
(1)
% `=0,1=0), we conclude Ω

(1)

χ̂=0, Ω
(1)

β=0 (Codazzi) and
(1)
%=0

along H+. Therefore, also Ω2(1)
α=0 and Ω

(1)

ψ=0 on H+. We also have
(1)
η=0 on H+, since

/curl
(1)
η=0 holds from

(1)
σ=0 and /div

(1)
η=0 by the horizon gauge condition (194). Note

that these bounds hold both for the solution
∧

S of Theorem 4 and the solution
∨
S of

Theorem 3.

(3) The equations Ω−1 /∇3(
(1)

ψr2Ω)=0 and Ω−1 /∇3(
(1)
αrΩ2)=0 following from (178) and

(179) now imply

(1)

ψΩ =
(1)
αΩ2≡ 0 in M∩{u>u0}∩{v> v0}. (446)

(4) On null infinity, we know that r
(1)
α=(r

(1)
α)I(u, θ) is entirely determined by the par-

abolic equation and exponentially decaying. The solution decays at least like e−4u/M (as

follows from the fact that α has at least `>2; see also [15] and compare with Ω2∼e−u/2M ).

Therefore (recalling
(1)
σ=0)

lim
v!∞

(r2
(1)

β ) = (r2
(1)

β )I(u, θ) =

∫ ∞
u

r /div(r
(1)
α)I(ū, θ) dū,

lim
v!∞

(r3 (1)
% ) = (r3 (1)

% )I(u, θ) =

∫ ∞
u

r /div(r2
(1)

β )I(ū, θ) dū,

lim
v!∞

(r4
(1)

β ) = (r4
(1)

β )I(u, θ) =−
∫ ∞
u

r /D?1(−(r3 (1)
% )I , 0)(ū, θ) dū

are all determined on null infinity. The existence of these limits and their vanishing as

u!∞ is a consequence of Theorem 4 (Propositions 12.3.6 and 14.3.3) for (r2
(1)

β )I and

(r3 (1)
% )I . For (r4

(1)

β )I , it follows from
(1)
α globally vanishing, (149) and the fact that

(1)

βΩ

vanishes on the horizon. We also see from (139)

lim
v!∞

(r
(1)

χ̂) = (r
(1)

χ̂)I =

∫ ∞
u

(r
(1)
α)I(ū, θ) dū.

(5) Integrating backwards from null infinity (151) now yields from (446)

(1)

β (v, u, θ) =
Ω

r4
[(r4

(1)

β )I(u, θ)],

(1)

χ̂(v, u, θ) =
4M

3
Ωr3 /D?2

(1)

β =
4M

3
r−2Ω·r /D?2((r4

(1)

β )I(u, θ)),

valid in an orthonormal frame on the spheres S2
u,v.(

38)

(38) Recall that the statement that the spacetime tensor (r4
(1)

β )I does not depend on v is true only
in an orthonormal frame. Otherwise factors of r appear from raising and lowering indices.
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(6) Recall now the equations

/∇4(
(1)

ψr3Ω) =−r3Ω
(1)

P and /∇4(rΩ2(1)
α) = 2rΩ2

(1)

ψ,

from which we conclude that

r3Ω
(1)

ψ(v, u, θ) =

∫ ∞
u

r2 /D?2 /div(r
(1)
α)I(ū, θ) dū

and

rΩ2(1)
α(v, u, θ) = (r

(1)
α)I(u, θ)− 2

r(u, v)

∫ ∞
u

r2 /D?2 /div(r
(1)
α)I(ū, θ) dū, (447)

again valid in an orthonormal frame. Note that (r
(1)
α)I(u, θ) needs to decay at least as

fast as Ω4 towards the event horizon for
(1)
α , to extend regularly to H+.

(7) Since in the horizon-normalised gauge we also have
(1)
η=0 on H+, we conclude

using (141) and the fact that Ω−1
(1)

χ̂!0 alongH+ that Ω−1
(1)

χ̂=0 onH+. We now determine
(1)

χ̂ globally from (139) using (447) as

(1)

χ̂r2Ω−1(v, u, θ) =

∫ ∞
u

r2(1)
α(v, ū, θ) dū.

With
(1)

χ̂ and
(1)

χ̂ determined globally, (140) and (141) allow us to obtain
(1)
η and

(1)
η , since the

`=0, 1 modes of all quantities vanish for
∧

S (cf. Corollary 4.2). Codazzi (145) implies

expressions for
(1)

(Ω trχ) and Ω−2
(1)

(Ω trχ). Finally, (134) implies an expression for Ω−1
(1)

Ω.

(8) To determine the remaining metric quantities (
(1)

b,
(1)√
/g,

(1)

/̂g ), it is most convenient to

add to
∧

S ′ another pure gauge solution which achieves
(1)

b=0 on Cu0
, while preserving the

condition (192) and not changing any of the quantities discussed in (1)–(7) above. The

existence of such a solution follows from Proposition 9.2.5. One can then use (131)–(133)

to determine explicit formulas for (
(1)

b,
(1)√
/g,

(1)

/̂g ).

B.2.3. Regularity

To determine the smoothness properties of the solution constructed, it suffices to check

its regularity at the level of the seed initial data, i.e. whether the following quantities

extend to the horizon on Cv0
:

(e−u/2M∂u)n(
(1)

χ̂r2Ω−1), (e−u/2M∂u)n(
(1)

(Ω trχ)Ω−2), (e−u/2M∂u)n(Ω−1
(1)

Ω). (448)

Since all quantities of the solution determined above behave like [Ω2(u, v0)]k for some

integer k, the solution is smooth in the extended sense.

Interestingly, the non-smoothness that was observed in [16] for the class of Robinson–

Trautman metric seems to be a feature of the non-linear terms in the parabolic equation,

and is not seen at the linearised level.
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