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The multiplicative complexity of systems of bilinear forms (and, in particular, the

famous question of fast matrix multiplication) is an important area of research in mod-

ern theory of computation. One of the foundational papers on the topic is the work [42]

by Strassen, who presented an O(nln 7/ ln 2) algorithm for the multiplication of two n×n
matrices. In his subsequent paper [43] published in 1973, Strassen asked whether the

multiplicative complexity of the union of two bilinear systems depending on different vari-

ables is equal to the sum of the multiplicative complexities of both systems. A stronger

version of this problem was proposed in the 1981 paper [19] by Feig and Winograd, who

asked whether any optimal algorithm that computes such a pair of bilinear systems must

compute each system separately. These questions became known as the direct sum con-

jecture and strong direct sum conjecture, respectively, and they were attracting a notable

amount of attention during the four decades. As Feig and Winograd wrote, “either a

proof of, or a counterexample to, the direct sum conjecture will be a major step forward

in our understanding of complexity of systems of bilinear forms.”

A common framework to study the direct sum conjecture is the language of tensors,

so let us give the precise formulation of the problem and then proceed with our short

survey of its background. We recall that a bilinear system can be naturally represented as

a 3-dimensional tensor, that is, an array of elements T (i|j |k) taken from a field F , where

the triples (i, j, k) run over the Cartesian product of finite indexing sets I, J , and K. A

tensor T is called decomposable if there exist vectors a∈FI , b∈FJ , and c∈FK satisfying

T=a⊗b⊗c, which means that T (i|j |k) equals aibjck for all (i, j, k)∈I×J×K. The rank

of a tensor T , or the multiplicative complexity of the corresponding bilinear system, is the

smallest r for which T can be written as a sum of r decomposable tensors with entries

in F . This quantity is denoted by rankF T , and we remark that the rank of a tensor

may change if one allows to take the entries of decomposable tensors as above from an
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extension of F ; see [6]. Taking the union of two bilinear systems depending on disjoint

sets of variables corresponds to the direct sum operation on tensors. More precisely, if T

and T ′ are tensors with disjoint indexing sets I, I ′, J , J ′, K, and K ′, then we can define

the direct sum T⊕T ′ as a tensor with indexing sets I∪I ′, J∪J ′, and K∪K ′ such that

the (I |J |K) block equals T and (I ′ |J ′ |K ′) block equals T ′, and all entries outside of

these blocks are zero. In other words, the direct sums of tensors are a multidimensional

analogue of block-diagonal matrices; a basic result of linear algebra says that the ranks

of such matrices are equal to the sums of the ranks of their diagonal blocks. Our paper

is devoted to the 3-dimensional version of this statement, which has become known as

Strassen’s direct sum conjecture.

Conjecture 1. (See [43].) If T1 and T2 are tensors over an infinite field F , then

rankF (T1⊕T2) = rankF T1+rankF T2.

The “6” inequality in Conjecture 1 is obvious because the direct sum of decompo-

sitions of T1 and T2 is a decomposition of T1⊕T2. If every optimal decomposition of

T1⊕T2 arises in this way, then (T1, T2) are said to satisfy the strong direct sum conjec-

ture; see [3], [9], [10]. Despite having been consistently mentioned and studied during the

last four decades by many researchers representing different branches of mathematics,

including computer science, algebraic geometry, and combinatorics, both Conjecture 1

and its strong form remained completely open to this date. Namely, its status remained

unknown over every field, including the most important and widely studied special case

of fields with zero characteristic.

As said above, the interest of computer scientists to Conjecture 1 stems from its

relation to the complexity of the fundamental operation of the multiplication of matrices.

It became known quite early that the analogue of Conjecture 1 cannot be true for the

border rank, which is defined in the complex case as the smallest r such that a given tensor

is the limit of a sequence of tensors of rank r. A counterexample is due to Schönhage, and

the idea of his construction turned out to be exceptionally fruitful in further algorithms

for matrix multiplication [40], [44]. Later on, the direct sum conjecture has been referred

to and widely studied by the pioneers of the matrix multiplication topic; see the above

mentioned paper [19] by Feig and Winograd, and a monograph [48] of Winograd on

the arithmetic complexity of computation. In his seminal paper [34], Pan refers to

Conjecture 1 as a “famous” problem and disproves its generalization to a more general

class of so-called λ-algorithms; he mentions the direct sum problems in other earlier [33],

[36], [37] and subsequent work [35]. The current research on matrix multiplication does

still employ the ideas similar to the direct sum approach, as can be seen from a discussion

of Conjecture 1 in a recent survey [46] by Vassilevska Williams.
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In algebraic complexity theory, one of the major problems is to find an explicit

family of polynomials that require formulas of super-polynomial size [8], [23], [39]. The

connection to tensor ranks was established by Raz in [39], who proved that an explicit

sequence of d-way n×...×n tensors whose rank grows at least as the (1−o(1))d-th power

of n allows one to produce a family of polynomials needed to solve the above men-

tioned problem. However, the current techniques are not sufficient to get such a strong

lower bound—no explicit family of n×n×n tensors has ever been shown to have rank at

least 3n; see [2], [7], [26], [50]. Conjecture 1, if it was true, would allow one not only to

break the 3n threshold but also to construct an explicit super-linear bound on the rank

of an n×n×n tensor, but in reality the question of lower bounds remains a notorious

wide open problem.

In algebraic geometry, the concepts of rank and border rank admit a natural de-

scription via the secant varieties of the Segre variety ; see [1], [4], [17], [28], [29]. This

approach has led to interesting generalizations and relaxations of Conjecture 1, to fur-

ther sufficient conditions for tensors to satisfy it, and, therefore, to many new classes of

tensors for which the conjecture holds. Let us mention the paper [14] on the so-called

e-computable tensors, the work [13] devoted to symmetric tensors, the paper [45] dealing

with the cactus rank and catalecticant bound, the work [27] proving Conjecture 1 for

tensors whose ranks can be computed by a particular adaptation of the so-called sub-

stitution method, the paper [15] studying the spaces of feasible rank decompositions in

context of the direct sum conjecture, the work [12] containing further reformulations and

generalizations of Conjecture 1 in terms of secant varieties, the monograph [25] contain-

ing a detailed discussion of this conjecture and its consequences for algebraic geometry,

and a recent survey paper [16] on the topic.

Different rank-decomposition problems do also take an important place in linear

algebra and combinatorics. The most famous of these is the matrix rank, the one this

paper is devoted to is the tensor rank, and we can also mention the non-negative matrix

rank, whose importance has been proved in many valuable recent publications [20], [24],

[30], [49]. A version of Conjecture 1 that lies on a borderline of these approaches, that

is, the additivity of the non-negative tensor rank, has been proved by Qi, Comon, and

Lim in [38].

Concerning the positive results towards Conjecture 1, an early progress came from

Winograd [47], who needed to prove the rank additivity for a specific class of bilinear

systems, and his results have been extended by Auslander, Feig, and himself in [3]. In

1986, Ja’Ja’ and Takche [22] proved Conjecture 1 in the case when one of the dimensions

of either T1 or T2 is at most 2, and this result was subsequently generalized and discussed

from the point of view of algebraic geometry by Landsberg and Micha lek in [27]. The
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best currently known positive result on Conjecture 1 seems to be that it is true if one of

the tensors T1 and T2 has rank at most 6 or satisfies |I|=|J |=3; see [11].

1. Preliminaries

In our paper, we construct a counterexample to Conjecture 1. We begin with several

additional definitions, known results, and notational conventions.

1.1. Notation.

Let F be a field; we denote by 
F the algebraic closure of F . For a tensor T in FI×J×K

and k∈K, we define the kth 3-slice as a matrix in FI×J whose (i, j) entry equals T (i|j |k).

For all i∈I and j∈J , we can define the ith 1-slice and jth 2-slice of T in a similar way.

The support of T is the smallest set I0×J0×K0⊂I×J×K containing all the non-zero

entries of T , and the sets I0, J0, and K0 are called the 1-, 2-, and 3-supports of T . Two

tensors are called equivalent if they become equal when restricted to their supports. If

Σ is a non-empty finite set, then we define the Σ-clone of T as the tensor TΣ obtained

from T by taking |Σ| copies of every element in every indexing set. Namely, we define

the tensor TΣ with indexing sets Σ×I, Σ×J , and Σ×K as TΣ(s1, i|s2, j |s3, k)=T (i|j |k)

for all s1, s2, s3∈Σ. Clearly, taking the clone of a tensor does not change its rank. All

these notions can be defined for matrices instead of tensors in an analogous way.

1.2. Eliminating rank-one slices.

Now let V1⊂FJ×K , V2⊂FI×K , and V3⊂FI×J be F-linear spaces consisting of matrices.

By T mod (V1, V2, V3) we denote the set of all tensors that can be obtained from T

by adding elements of V1 to the 1-slices of T , elements of V2 to the 2-slices of the

resulting tensor, and elements of V3 to the 3-slices of what we obtained after adding the

1- and 2-slices. The following statement is well known; see e.g. Lemma 2 in [21] and

Proposition 3.1 in [27].

Lemma 2. Let T∈FI×J×K and K={1, ..., k}∪{1′, ..., k′}. Denote an i-th 3-slice of

T by Si and let V be the F-linear span of S1′ , ..., Sk′ . Then,

rankF T >min rankF T mod (0, 0, V )+dimV,

and if S1′ , ..., Sk′ are also rank-1, then the equality holds.
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Now let finite setsM1,M2, andM3 be bases of the linear spaces V1, V2, and V3 as

above. We define the tensor T with indexing sets I∪M1, J∪M2, and K∪M3 as

(1) T (α|β |γ)=T (α|β |γ) if (α, β, γ)∈I×J×K;

(2) for any χ∈{1, 2, 3} and any m∈Mχ, the mth χ-slice of T is equivalent to m

(that is, coincides with m up to adding zero rows and columns).

We say that T is obtained from T by adjoining the 1-slices M1, the 2-slices M2,

and the 3-slices M3, or simply by adjoining (M1,M2,M3). The result below follows

from Lemma 2.

Lemma 3. Let T , T , V1, V2, and V3 be as above in this subsection. Then ,

rankF T >min rankF T mod (V1, V2, V3)+dimV1+dimV2+dimV3,

and if the matrices in the Mi’s are rank-1, then the equality holds.

1.3. The main result and our strategy.

We are going to refute Conjecture 1 by proving the following result.

Theorem 4. For any infinite field F , there exist tensors T1 and T2 over F such

that

rankF (T1⊕T2)< rank

F T1+rank


F T2.

Of course, the assertion with 
F replaced by F in the summands of the right-hand

side can only be weaker than the initial one, so Theorem 7 disproves Strassen’s conjecture

in the original formulation, that is, over any infinite field. Our counterexample rests on

the following two claims, which we prove in subsequent sections.

Claim 5. Let T∈FI×J×K and assume that W1, W2, and W3 are 
F-linear subspaces

of J×K, I×K, and I×J matrices, respectively. We assume that W1, W2, and W3 have

bases consisting of matrices with entries in F . Then, there are a finite set Σ and

M1⊂F (Σ×J)×(Σ×K), M2⊂F (Σ×I)×(Σ×K), and M3⊂F (Σ×I)×(Σ×J)

consisting of finitely many rank-1 matrices such that

(1) spanMδ contains the Σ-clone of every wδ∈Wδ, and

(2) the tensor T obtained by adjoining (M1,M2,M3) to the Σ-clone of T satisfies

rank

F T = min rank


F T mod (W1,W2,W3)+

3∑
δ=1

dim spanMδ.
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Claim 6. For any infinite field F , there is T∈F (I1∪I2)×(J1∪J2)×(K1∪K2) such that

rankF T <min rank

F T111 mod (U1, U2, U3)+min rank


F T222 mod (V1, V2, V3),

where the indexing sets I1, I2, J1, J2, K1, and K2 are disjoint, the tensor Tijk is the

(Ii |Jj |Kk) block of T , and U1, U2, U3, V1, V2, and V3 are the 
F-linear spaces spanned,

respectively, by the 1-slices of T211, by the 2-slices of T121, by the 3-slices of T112, by

the 1-slices of T122, by the 2-slices of T212, and by the 3-slices of T221.

Theorem 7. Claims 5 and 6 imply Theorem 4.

Proof. We set T1 and M1
δ to be, respectively, the tensor and matrix sets obtained

by the application of Claim 5 to the tensor T111 and linear spaces U1, U2, and U3, as in

Claim 6. We define T2 and M2
δ similarly, but with T222, V1, V2, and V3 taken instead of

T111, U1, U2, and U3, and we assume without loss of generality that the sets Σ arisen

from the applications of Claim 5 to T111 and T222 are equal. We write %=rankF (T1⊕T2),

and we denote by Wδ the F-linear space spanned by the set of all matrices equivalent to

those in M1
δ and M2

δ of sizes corresponding to the δ-slices of T1⊕T2.

We prove Theorem 4 by checking that %<rank

F T1+rank


F T2, or, equivalently,

%−D<min rank

F T111 mod (U1, U2, U3)+min rank


F T222 mod (V1, V2, V3), (1.1)

where D=
∑3
δ=1 dimWδ. Since T1⊕T2 is obtained from TΣ1⊕TΣ2 by adjoining the bases

of linear spaces (W1,W2,W3), the left-hand side of (1.1) equals

min rankF (TΣ1⊕TΣ2) mod (W1,W2,W3) (1.2)

by Lemma 3 (where TΣχ denotes the Σ-clone of Tχχχ).

According to item (1) of Claim 5, the matrices equivalent to the Σ-clones of the

1-slices of T122 and T211 belong to W1, the matrices equivalent to the Σ-clones of the

2-slices of T121 and T212 belong toW2, and the matrices equivalent to the Σ-clones of the

3-slices of T112 and T221 belong to W3, so we see that the Σ-clone of T belongs to (TΣ1⊕
TΣ2) mod (W1,W2,W3). In other words, the value (1.2) does not exceed rankF T , and

since this value equals %−D, we complete the proof of (1.1) by applying the conclusion

of Claim 6.

Now we need to check the validity of Claims 5 and 6; in the following section, we

prove the former of them by developing the construction as in [41]. In §3, we prove

Claim 6 by using results on ranks of generic tensors and sufficient conditions of algebraic

independence in fields.
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2. The proof of Claim 5

In this section, we follow the notation of Claim 5 and work over a field F . Let T∈FI×J×K

be a tensor as in Claim 5; we begin by constructing the corresponding tensor T in the

special case when W1=W2=0 and W3 is the 1-dimensional subspace spanned by a rank-r

matrix W which has ones at the positions (a1, b1), ..., (ar, br)∈I×J and zeros everywhere

else. We set %=2|I×J×K|+1, θ=dlog2 re, and σ=2%2r. We define the trivial partition

of a σ×σ matrix into σ2 submatrices of size 1×1 as follows. Any number s∈{0, ..., σ2−1}
can be written as s=u1sσ+u2s with u1s, u2s∈{0, ..., σ−1}. We will write u(1, s)={u1s}
and u(2, s)={u2s}. Clearly, the σ2 sets u(1, t)×u(2, t) are a trivial partition of a σ×σ
matrix. We proceed with the definition of the sets Σ and Mδ as in Claim 5.

Definition 8. We set Σ={0, ..., σ−1}θ; we set πi to be a function from {1, ..., θ}
to {1, 2} and assume that these functions are pairwise different for i∈{1, ..., r}. For

any function Φ from {1, ..., θ} to {0, ..., σ2−1}, we define the rank-1 zero-one matrix

MΦ∈F (I×Σ)×(J×Σ) with 1-support equal to

r⋃
i=1

{ai}×u(πi1,Φ1)×...×u(πiθ,Φθ),

and 2-support equal to

r⋃
j=1

{bj}×u(3−πj1,Φ1)×...×u(3−πjθ,Φθ).

Here, the notation πit and Φt stands for the images of t under πi and Φ, respectively.

Also, we call an (ai×Σ)×(bj×Σ) block of MΦ diagonal if i=j. We define M as the set

of all such MΦ and those matrix units that correspond to entries which are non-zero in

at least one of the non-diagonal blocks in any of the MΦ.

Observation 9. The diagonal blocks of
∑

ΦMΦ are matrices of all ones.

Proof. If {S1
1 , ..., S

1
k}, ... , {S

q
1 , ..., S

q
k} are partitions of a set S, then

{S1
1 , ..., S

1
k}×...×{S

q
1 , ..., S

q
k}

is a partition of Sq.

Observation 10. The Σ-clone of W lies in the span of M.

Proof. Follows from Observation 9 because we can turn the entries in the non-

diagonal blocks to zeros thanks to the matrix units as in Definition 8.

Let us look at the structure of linear combinations of matrices in M.
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Lemma 11. For any M∈spanM and i 6=j, there is a permutation of rows and

columns that sends the submatrix M(ai×Σ|bj×Σ) to a σ×σ block-diagonal matrix with

blocks of size σθ−1×σθ−1.

Proof. We can consider linear combinations of the matrices MΦ only, because the

union of their supports contains the support of any other matrix in M. Since the

functions πi and πj as in Definition 8 are different, we have πiτ=3−πjτ for some τ∈
{1, ..., θ}. Therefore, the τth element in the tuple of I -coordinates of any non-zero entry

of M(ai×Σ|bj×Σ) should coincide with the τth element in the tuple of its J -coordinates.

This τth element can take σ different values, which determine a desired partition of the

indexing set.

Observation 12. Let S1, ..., Sr be disjoint sets of cardinality c, and let their union

be partitioned into c sets D1, ..., Dc each of which has exactly one element in every of

the Si’s. Let us assume that a subset of less than c/r elements was removed from every

Si. Then there is a δ such that none of the elements of Dδ were removed.

Proof. Trivial.

Lemma 13. Let M0 be a set of |K| elements in spanM. Then either

(1) M0 contains a matrix of rank at least %, or

(2) there are ϕ1, ..., ϕr, ψ1, ..., ψr∈Σ such that, for every M∈M0, the matrix

M(a1×ϕ1, ..., ar×ϕr | b1×ψ1, ..., br×ψr)

is scalar.

Proof. Assuming that (1) is false, we apply Lemma 11 to a non-diagonal block

(ai×Σ|bj×Σ) of a matrix inM0, and we conclude that at most %σθ−1 rows are non-zero

in this block. For every fixed i, we get an upper bound of

r%σθ−1|K|<%2σθ−1 =
|Σ|
2r

for the quantity of those elements ξ∈ai×Σ such that the ξth row is non-zero in at least

one of the non-diagonal (ai, bj) blocks in at least one of the matrices in M0. In other

words, all the matrices obtained from those inM0 by removing at most |Σ|/2r elements

from every ai×Σ will have zero non-diagonal blocks.

Now, we are going to find an MΦ̄ whose non-zero entries of the diagonal blocks do

not fall into the rows removed in the previous paragraph, and then we will take the

values ϕ1, ..., ϕr, ψ1, ..., ψr∈Σ which correspond to every (ai×ϕi |bi×ψi) being the non-

zero entry of the ith diagonal block of MΦ̄. This will complete the proof, because these
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are the MΦ matrices only among those inM that can contribute to the diagonal blocks,

and the support of any matrix MΦ with Φ 6=Φ̄ does not intersect with that of MΦ̄ at a

diagonal block. An appropriate Φ̄ can be found with the use of Observation 12, because

the intersections of the supports of the c:=|Σ|2 matrices MΦ with the set

Si := (ai×Σ)×(bi×Σ)

are singletons and partition Si, and the removed rows contain at most

|Σ|2

2r
<
c

r

entries in Si.

Corollary 14. min rank

F TΣ mod (0, 0, spanM)=min rank


F T mod (0, 0,W ).

Proof. The “6” inequality follows from Observation 10. In order to prove the “>”

part, we note that adding a matrix M∈spanM to a 3-slice of TΣ will only increase the

rank of the tensor provided that the rank of M is at least %. Therefore, we can use

Lemma 13 and find, for any tensor T0 of the minimal rank in TΣ mod (0, 0, spanM) and

any i∈I and j∈J , elements α(i)∈i×Σ and β(j)∈j×Σ such that the restriction of T0 to

(α(I)|β(J)|K) belongs to T mod (0, 0,W ).

Let us now see how the construction ofM allows us to prove Claim 5. In particular,

we can define the tensor T in the case when W1=W2=0 and dimW3=1. In other words,

this is the case when W3 is spanned by a single matrix W ′ which can be written as PWQ,

where W is the matrix as in the beginning of the section, and P and Q are invertible

I×I and J×J matrices with entries in F . Namely, we set T (T, 0, 0,W ′) to be the tensor

obtained from the Σ-clone of T by adjoining the matrices PΣMQΣ as 3-slices, where

M runs over M and PΣ stands for the Kronecker product of P and the Σ×Σ unity

matrix.(1)

We now assume that (W1,W2, U3) are as in Claim 5 and W∈FI×J \U3; we de-

note the 
F-linear span of U3∪{W} by W3. We set T (T, 0, 0, 0)=T and recursively

define T (T,W1,W2,W3) as T (T0,W1Σ,W2Σ, U3Σ), where T0=T (T, 0, 0,W ) is the tensor

as above, and W1Σ, W2Σ, and U3Σ are the linear spaces consisting of the Σ-clones of

matrices in W1, W2, and U3, respectively. As we see, the tensor T (T,W1,W2,W3) is

obtained from a clone TΞ of T by adjoining matrices generating certain linear spaces

(L1,L2,L3), and each of these linear spaces contains the Ξ-clones of matrices in the cor-

responding Wδ by Observation 10. This proves item (1) in Claim 5, and item (2) follows

from Lemma 2 because the minimal rank of TΞ mod (L1,L2,L3) equals the minimal rank

of T mod (W1,W2,W3) by Corollary 14.

(1) This definition corresponds to writing T with respect to the basis in which W ′ has the form W ,
then adjoining the matrices in M, and then going back to the initial basis.
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3. The proof of Claim 6

Throughout this section, we assume that F is an infinite field; we also fix a purely

transcendental extension of F with an infinite basis. The elements of this basis are to

be called variables, and one may actually think of them as variables changing in F . We

denote by n a sufficiently large integer, and we write r(n)=b0.34n2c. We say that a

tensor T with entries in an extension of a field F has τ degrees of freedom over F if

the transcendence degree of the extension obtained from F by adjoining the entries of T

equals τ . If τ equals the total number of entries of T , then T is called generic over F .

We define the 2n×2n×2n tensor as

T =

r(n)∑
α=1

(xα, ξα)⊗(yα, γα)⊗(zα, ζα),

where xα, ξα, yα, γα, zα, and ζα are n-vectors whose entries are pairwise different

variables denoted by xαi , ξαi , yαi , γαi , zαi , and ζαi —and we denote the algebraic closure of

the field obtained from F by adjoining all these variables by F. We define the n-element

indexing sets I1, J1, and K1 corresponding to xα1 , ..., x
α
n, to yα1 , ..., y

α
n , and to zα1 , ..., z

α
n ,

respectively. Similarly, the sets I2, J2, and K2 correspond to ξα1 , ..., ξ
α
n , to γα1 , ..., γ

α
n , and

to ζα1 , ..., ζ
α
n . The rank of T does not exceed r(n) for any assignment of values in F to

the variables xαi , ξαi , yαi , γαi , zαi , and ζαi . So, we will conclude the proof of Claim 6 if we

produce an assignment satisfying

r(n)<min rankF T111 mod (U1, U2, U3)+min rankF T222 mod (V1, V2, V3), (3.1)

where Tijk denotes T (Ii |Jj |Kk), and U1, U2, U3, V1, V2, and V3 are the F-linear spaces

spanned, respectively, by the 1-slices of T211, by the 2-slices of T121, by the 3-slices of

T112, by the 1-slices of T122, by the 2-slices of T212, and by the 3-slices of T221.

We keep working with generic tensors and consider Φ∈T111 mod (U1, U2, U3). Every

such Φ can be obtained by adding F-linear combinations of the 3-slices of T112 to every

of the 3-slices of T111, then F-linear combinations of the 2-slices of T121 to the 2-slices

of the resulting tensor, and finally F-linear combinations of the 1-slices of T211 to the

1-slices of what was obtained. Denoting by Aτi , Bτj , and Cτk the coefficients of these

linear combinations, we get the expression

ϕijk =

r(n)∑
α=1

(xαi y
α
j z

α
k +aαi y

α
j z

α
k +xαi b

α
j z

α
k +xαi y

α
j c
α
k )

for the (i, j, k) entry of Φ. Here, xαi , yαj , and zαk are variables defined above, and

aαi =

n∑
τ=1

Aτi ξ
α
τ , bαj =

n∑
τ=1

Bτj γ
α
τ , and cαk =

n∑
τ=1

Cτk ζ
α
τ
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are elements of F. We write

K=F(Aτi , B
τ
i , C

τ
i , ξ

α
i , γ

α
i , ζ

α
i ), (3.2)

and we are going to prove the following.

Proposition 15. The tensor Φ has at least n3−6
√

3n2.5 degrees of freedom over K.

Let us see that Proposition 15 implies Claim 6 before we proceed with its proof. We

say that a property Π holds for almost all m-vectors over an infinite field F , if there is a

non-zero polynomial ψ with m variables and coefficients in an extension of F such that

ψ(v)=0 is a necessary condition for v not to possess Π.

Lemma 16. Proposition 15 implies Claim 6.

Proof. We write (3.1) as a first-order formula Ψ in the language of fields with free

variables V=(xαi , ξ
α
i , y

α
i , γ

α
i , z

α
i , ζ

α
i ). The quantifier elimination (see Theorem 1.23 in [5])

allows us to assume that Ψ is a conjunction of clauses (f1∗10)∨...∨(fk∗k0), where ∗k is

either = or 6=, and fi is a polynomial that depends on V and has integral coefficients.

Therefore, inequality (3.1) does either hold for almost all assignments of V or fail for

almost all such assignments. Now, it is enough to prove (3.1) for generic V, that is, for

the tensor T defined in the beginning of this section. Note that the summands in the

right-hand side of (3.1) are equal, so it remains to prove that rankF Φ> 1
2r(n). Since

the entries of any rank-1 n×n×n tensor are products of 3n elements, the quantity as

in Proposition 15 cannot be greater than 3n rankF Φ. Therefore, Proposition 15 implies

that rankF Φ is at least 1
3n

2−2
√

3n1.5, which is greater than 1
2r(n) for large n.

The following is a very well-known result in algebraic complexity theory; see Theo-

rem 2.2 in [18] for a simple elementary proof in characteristic zero and also Theorem 22

and Remark 23 in [32] for a more advanced treatment for positive characteristic. In

particular, the first two paragraphs of the proof of Theorem 2.2 in [18] remain valid even

if one replaces C in the formulation by arbitrary field F ; this is so because it is sufficient

to consider the case when F is algebraically closed, and in this case the polynomial G as

in their proof should be separable.

Lemma 17. (See Theorem 2.2 in [18] and Remark 23 in [32].) Let F be a field, and

let p1, ..., pq be elements of the algebraic closure of F (s1, ..., sq). Looking at p1, ..., pq

as algebraic functions of variables s1, ..., sq, we define their Jacobian to be the q×q ma-

trix with (i, j) entry given by ∂pi/∂sj. If this Jacobian has non-zero determinant, then

p1, ..., pq are algebraically independent over F .
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Lemma 18. Let F be an infinite field, let q<n be positive integers, and let µ be an

n-vector that has at least q degrees of freedom over F . Then the q-vector Qµ is generic

over F for almost all q×n matrices Q with entries in F .

Proof. We pick a transcendence basis µs1 , ..., µsk of the entries of µ. Every coordinate

of µ is now an algebraic function of this basis, so we can define the Jacobian as the q×k
matrix with (i, j) entry given by ∂(Qµ)i/∂(µsj ). According to Lemma 17, the Jacobian

having rank q is a sufficient condition for Qµ to be generic. This condition is valid when

Q is the matrix with ones at the positions (t, st) and zeros everywhere else, so one of the

q×q minors of the Jacobian is really a non-zero polynomial in the entries of Q.

Lemma 19. Let F be an infinite field, let d<n be positive integers, and let M be

an n×m matrix that has at least mn−δ degrees of freedom over F . Let Q be an almost

arbitrary (n−d)×n matrix over F . Then, there are at most δ/d columns in QM whose

removal leaves a matrix that is generic with respect to F .

Proof. First, we assume m=1. If d6δ, then there is nothing to prove because the

assumption of the lemma allows us to remove the only column of QM . Otherwise, we

apply Lemma 18 and conclude the consideration of the case m=1.

Now, we assume m>1 and proceed by induction; we define Fj and F ′j as the fields

obtained from F by adjoining the entries of the first j columns of M and QM , respec-

tively. A ̂th column is called weak if the transcendence degree of F̂ over F̂−1 is at

most n−d. The removal of any weak column of M leaves us a matrix having at least

mn−δ−n+d degrees of freedom, and then we can complete the proof by induction. If

no weak columns exist, then Lemma 18 shows that the jth column of QM is generic with

respect to Fj−1 (and consequently with respect to the field F ′j−1⊆Fj−1). In particular,

the extension F ′j⊃F ′j−1 has transcendence degree n−d, so F ′m has transcendence degree

m(n−d) over F=F ′0, which means that QM is generic.

Theorem 20. (See Theorem 4.4 in [31].) Let u1, ..., uk, v1, ..., vk, and w1, ..., wk be

n-vectors whose coefficients are algebraically independent over a field F in common. If

k>n3/(3n−2), then the tensor
∑k
α=1 u

α⊗vα⊗wα is generic over F .

Observation 21. Let p1, ..., pq be polynomials of the same total degree d over a

field F . If (pin1 , ..., p
in
q ) are generic over F , then (p1, ..., pq) are generic over F as well,

where pin denotes the sum of all monomials of p whose degree is maximal.

Proof. If h(p1, ..., pq)=0, then hin(pin1 , ..., p
in
q )=0.

Let P=
∑
α u

α⊗vα⊗wα be an n×n×n tensor over a field F , and let Q be a q×n
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matrix over a subfield K⊂F . We define

PQ =
∑
α

(Quα)⊗(Qvα)⊗(Qwα),

and we note that PQ is obtained from T by a sequence of K-linear transformations of its

1-slices, 2-slices, and 3-slices. In particular, P has at least as many degrees of freedom

over K as PQ does have. We are now ready to prove Proposition 15.

Proof of Proposition 15. Let M be the n×3r(n) matrix formed by the vectors xα,

yα, and zα as in the definition of T . Since the field K defined in (3.2) has at most

3nr(n)+3n2 degrees of freedom over F , and since K(xα, yα, zα) contains

F(xα, yα, zα, ξα, γα, ζα),

the matrix M has at least

6nr(n)−(3nr(n)+3n2) = 3nr(n)−3n2

degrees of freedom over K. Now, we take d=b
√

3nc and apply Lemma 19 to the matrix

M and field K; we denote the vector Qπα by π̄α, where π may stand for a, b, c, x, y,

or z. The (n−d)×(n−d)×(n−d) tensor ΦQ equals

r(n)∑
α=1

(x̄αȳαz̄α+āαȳαz̄α+x̄αb̄αz̄α+x̄αȳαc̄α). (3.3)

We denote by A the set of all α such that none of the three columns xα, yα, and

zα were identified as “weak” and removed while applying Lemma 19. According to this

lemma, the union of the vectors x̄α, ȳα, and z̄α, where α∈A is generic over K. The

number of weak columns is at most 3n2/d, so that |A|>n2/(3n−2), and the A-part of

the sum in (3.3) is a tensor generic over K, according to Theorem 20 and Observation 21.

(In order to use these, we look at the coordinates of x̄α, ȳα, and z̄α, with α∈A, as

variables, and note that āα, b̄α, and c̄α have coordinates in K.) Therefore, ΦQ is the sum

of a tensor generic over K and a tensor of rank at most 3n2/d, so it has at least

(n−d)3−3n
3n2

d
>n3−6

√
3n2.5

degrees of freedom over K.

Therefore, we completed the proof of Proposition 15, which implies Claim 6, ac-

cording to Lemma 16. Since Claim 5 was proved in the previous section, we can use

Theorem 7 and complete the proof of Theorem 4.
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4. Concluding remarks

As said above, the author disproved the direct sum conjecture in the original formulation,

that is, over any infinite field. In fact, his proof is going to work for sufficiently large

finite fields as well (although he did not try to give an effective upper bound on the

size of the smallest field for which it may not work). The author thinks that the direct

sum conjecture is false over any field, but in order to construct a counterexample in the

way similar to this paper, one would need to estimate the cardinalities of the arising

sets of matrices instead of the corresponding dimensions, as it is done in the current

proof. Actually, it seems possible to achieve a counterexample in this way, despite a

much greater amount of technical difficulties.

A multidimensional analogue of the direct sum conjecture states that the rank of

d-dimensional tensors is additive with respect to direct sums. This problem remains open

for d>4, and the author is not sure that the present approach can lead to a progress

on the multidimensional version. The analogous statement but restricted to symmetric

tensors is open already for d>3; see [13], [14], [45] for a review of the current state of

art and new results on this problem. As said above, the border rank version of the direct

sum conjecture is known to fail for d-tensors at least when d=3; see also a discussion in

Chapter 11 of [25].
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[9] Bshouty, N. H., On the extended direct sum conjecture, in Proc. 21st Annual ACM
Symposium on Theory of Computing, pp. 177–185. ACM, New York, NY, 1989.

[10] — On the direct sum conjecture in the straight line model. J. Complexity, 14 (1998), 49–62.
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