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1. Introduction

1.1. Statement of results

Let Bd denote the unit ball in Rd and Σ:Bn−1
!Rn be a smooth(1) parametrisation

of a hypersurface. Further, let a∈C∞c (Rn−1) be non-negative and supported in Bn−1

and suppose that Σ has non-vanishing Gaussian curvature on the support supp a of a.

Analytically, this means that Σ satisfies the following conditions:

(E1) rank ∂ωΣ(ω)=n−1 for all ω∈Bn−1;

(E2) defining the Gauss map G:Bn−1
!Sn−1 by

G(ω) :=
G0(ω)

|G0(ω)|
,

where

G0(ω) :=

n−1∧
j=1

∂ωjΣ(ω),

the curvature condition

det ∂2
ωω〈Σ(ω), G(ω0)〉|ω=ω0

6= 0

holds for all ω0∈supp a.

(1) In view of the methods of the present article it is convenient to work in the C∞ category, but

the forthcoming definitions and questions certainly make sense at lower levels of regularity (in particular,
in the C2 class).



252 l. guth, j. hickman and m. iliopoulou

Here, the wedge product of n−1 vectors in Rn is identified with a vector in the usual

manner.

A central problem in harmonic analysis is to understand the Lebesgue space mapping

properties of the extension operator E associated with such a parameterised hypersurface.

This operator is defined by the formula

Ef(x) :=

�
Bn−1

e2πi〈x,Σ(ω)〉a(ω)f(ω) dω (1.1)

for all integrable f :Bn−1
!C. Thus, E is an oscillatory integral operator with associated

phase function

φ(x;ω) := 〈x,Σ(ω)〉. (1.2)

Observe that the parametrisation Σ can be recovered from the phase by differentiation;

that is,

∂xφ(x;ω) = Σ(ω).

Typically, one is interested in proving local estimates for (1.1) of the form(2)

‖Ef‖Lp(B(0,λ)) .ε λ
ε‖f‖Lp(Bn−1); (1.3)

here, the left-hand norm has been localised to a ball of radius λ>1 and the right-hand

constant is allowed some weak dependence on λ. In particular, the Fourier restriction

conjecture asserts that (1.3) should hold for any ε>0 in the range p>2n/(n−1).

In this article the natural variable coefficient generalisations of such extension oper-

ators (1.1) and estimates (1.3) are studied. In particular, here more general oscillatory

integral operators are considered whose associated phase function φ(x;ω) shares the

property of the extension operator that for each x the map ω 7!∂xφ(x;ω) parameterises

a hypersurface of non-vanishing Gaussian curvature. Crucially, however, the choice of

hypersurface is now allowed to smoothly vary with x.

To formalise this discussion, let n>2, a∈C∞c (Rn×Rn−1) be non-negative and sup-

ported in Bn×Bn−1 and φ:Bn×Bn−1
!R be a smooth function which satisfies the

following conditions:

(H1) rank ∂2
ωxφ(x;ω)=n−1 for all (x;ω)∈Bn×Bn−1;

(H2) defining the map G:Bn×Bn−1
!Sn−1 by

G(x;ω) :=
G0(x;ω)

|G0(x;ω)|
,

(2) Given a (possibly empty) list of objects L, for real numbers Ap, Bp>0 depending on some
Lebesgue exponent p, the notation Ap.LBp or Bp&LAp signifies that Ap6CBp for some constant

C=CL,n,p>0 depending on the objects in the list, n and p. In addition, Ap∼LBp is used to signify that
Ap.LBp and Ap&LBp.
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where

G0(x;ω) :=

n−1∧
j=1

∂ωj∂xφ(x;ω),

the curvature condition

det ∂2
ωω〈∂xφ(x;ω), G(x;ω0)〉|ω=ω0 6= 0

holds for all (x;ω0)∈supp a.

Clearly, (H1) and (H2) agree with (E1) and (E2) when one restricts to phases of

the form (1.2), and this definition therefore leads to a generalisation of the operator E

introduced above.

Suppose φ satisfies (H1) and (H2), for any λ>1 let

aλ(x;ω) := a
(x
λ

;ω
)

and φλ(x;ω) :=λφ
(x
λ

;ω
)
,

and define the operator Tλ by

Tλf(x) :=

�
Bn−1

e2πiφλ(x;ω)aλ(x;ω)f(ω) dω

for all integrable f :Bn−1
!C. In this case, Tλ is said to be a Hörmander-type operator.

Note that the spatial localisation featured in (1.3) is now built into the operator.

Theorem 1.1. (Stein [27], Bourgain–Guth [9]) Suppose Tλ is a Hörmander-type

operator. For all ε>0 the estimate

‖Tλf‖Lp(Rn) .ε,φ,a λ
ε‖f‖Lp(Bn−1) (1.4)

holds uniformly for λ>1 whenever p satisfies

p> 2
n+1

n−1
if n is odd,

p> 2
n+2

n
if n is even.

The odd-dimensional case is due to Stein [27], who in fact showed that the above

estimates are valid for p>2(n+1)/(n−1) in all dimensions without the λε-loss. The

strengthened results in even dimensions were established much later by Bourgain and

the first author [9].(3) A detailed history of this problem is provided later in the intro-

duction. It is remarked that Theorem 1.1 is sharp, in the sense that there are examples

(3) Strictly speaking, in [9] weaker L∞-Lp bounds are proven, but the methods can be used

to establish the Lp-Lp strengthening: see, for instance, [14, §9] where the Lp-Lp argument appears
(although in a slightly disguised form).
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of Hörmander-type operators for which (1.4) fails whenever p does not satisfy (1.5). Such

examples originate from work of Bourgain [5] and are discussed in detail in §1.3 and §2.

The majority of this work concerns the case where the phase satisfies a strengthened

version of (H2), namely

(H2+) for all (x;ω0)∈supp a the matrix

∂2
ωω〈∂xφ(x;ω), G(x;ω0)〉|ω=ω0

is positive-definite.

If φ satisfies (H1) and (H2+), then Tλ is said to be a Hörmander-type operator with

positive-definite phase. Geometrically, this condition implies that the principal curva-

tures of the hypersurface parameterised by ω 7!∂xφ(x;ω) are everywhere positive. A

hypersurface satisfying this condition is said to be positively-curved.

Lee [19] observed that for positive-definite phases one may prove estimates beyond

the range of Theorem 1.1.(4) The main result of this article provides sharp estimates in

this setting.

Theorem 1.2. Suppose Tλ is a Hörmander-type operator with positive-definite phase.

For all ε>0 the estimate

‖Tλf‖Lp(Rn) .ε,φ,a λ
ε‖f‖Lp(Bn−1) (1.5)

holds for all λ>1 whenever p satisfies

p> 2
3n+1

3n−3
if n is odd,

p> 2
3n+2

3n−2
if n is even.

This result improves upon the previous best results of Lee [19] and Bourgain and

the first author [9]. Moreover, it is sharp in the sense that there are Hörmander-type

operators with positive-definite phase for which (1.5) fails whenever p does not satisfy

(1.6). Examples of this kind appear, for instance, in [9], [20] and are discussed in detail in

§1.3 and §2. It is remarked that range of p obtained in [19], [9] agrees with Theorem 1.2

for n=3 and therefore the sharp result in this case is due to Lee [19] and Bourgain and

the first author [9]. In all higher dimensions (1.6) is a strictly larger range of p than what

was previously known. Finally, away from the endpoint values, one may apply ε-removal

techniques to establish (1.5) without the λε-loss in the constant (see §12 below).

(4) In particular, Lee [19] proved that for positive-definite phases (1.4) holds for p>2(n+2)/n in
all dimensions, extending the range in Theorem 1.1 when n is odd.
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1.2. Applications to the Bochner–Riesz problem

By the standard Carleson–Sjölin reduction [10] (see also [17]), Theorem 1.2 implies new

Lp-bounds on Bochner–Riesz multipliers in dimensions n>4. Theorem 1.2 also implies

bounds for the oscillatory integral operators of Minicozzi–Sogge [20] which arise in rela-

tion to the Bochner–Riesz problem on compact manifolds (see [25, Chapter 5]). Moreover,

for certain choices of manifold, these estimates are sharp. In this section these well-known

applications are briefly reviewed.

Euclidean Bochner–Riesz

For α>0 the Bochner–Riesz multiplier of order α is the function

mα(ξ) := (1−|ξ|2)α+

where (t)+ :=t if t>0 and zero otherwise.

Corollary 1.3. If p satisfies the condition in (1.6), then

‖mα(D)f‖Lp(Rn) .α ‖f‖Lp(Rn) for α>α(p) := max

{
n

∣∣∣∣12− 1

p

∣∣∣∣− 1

2
, 0

}
. (1.6)

Here, mα(D) is the multiplier operator associated with mα, defined a priori by

mα(D)f(x) :=

�
R̂n
e2πi〈x,ξ〉mα(ξ)f̂(ξ) dξ,

where f̂ denotes the Fourier transform of f .

Recall that the Bochner–Riesz conjecture asserts that condition (1.6) holds for all

p>2n/(n−1).(5) The conjecture was resolved for n=2 by Carleson–Sjölin [10] but re-

mains open in all higher dimensions. Corollary 1.3 provides some progress towards this

conjecture when n>4, improving over earlier results of Fefferman–Stein (see [12]), Lee

[18], Bourgain–Guth [9] and others. When n=3, the range in Corollary 1.3 matches that

of Lee [19] and Bourgain–Guth [9].

For completeness, here a sketch is provided to show how one may deduce Corol-

lary 1.3 from Theorem 1.2. This follows a standard argument by Carleson and Sjölin [10].

A stationary phase computation shows that the kernel Kα :=(mα)� of mα(D) is

given by

Kα(x) =
∑
±

a±(x)e±2πi|x|

(1+|x|)(n+1)/2+α
,

(5) Once (1.6) is known in the range p>2n/(n−1), it immediately extends to all 16p6∞, by
duality and interpolation with the trivial p=2 case.
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where the a± are symbols of order zero, in the sense that |∂βxa±(x)|.β |x|−|β| for all multi-

indices β∈Nn0 . After applying a dyadic decomposition, the Bochner–Riesz conjecture is

therefore reduced to bounding the Carleson–Sjölin operators

Sλf(x) :=

�
Rn
e2πiλ|x−y|a(x, y)f(y) dy, (1.7)

where a∈C∞(Rn×Rn) has compact support bounded away from the diagonal {(x, x):

x∈Rn}. In particular, Corollary 1.3 is a consequence of the following bound.

Corollary 1.4. If p satisfies the conditions in (1.6) and ε>0, then

‖Sλf‖Lp(Rn) .ε λ
(n−1)/2−n/p+ε‖f‖Lp(Rn) for all λ> 1. (1.8)

Theorem 1.2 can be used to prove estimates of the form (1.8). In particular, one

may write Sλ as a superposition of operators Tλyn for which the yn variable is frozen:

Sλf(x) =

�
R
Tλynfyn(x) dyn, fyn(y′) := f(y′, yn).

It is not difficult to check that each Tλyn is a Hörmander-type operator with positive-

definite phase. Theorem 1.2 can be applied to the Tλyn with a uniform constant (this

uniformity is a consequence of the proof) and Minkowski’s inequality can then be used

to convert these estimates into bounds for Sλ, yielding Corollary 1.3.

Bochner–Riesz over compact manifolds

The classical Bochner–Riesz multipliers have natural analogues defined over compact

Riemannian manifolds (M, g) without boundary. In this setting, one defines the multi-

plier operator mα(D) in terms of spectral projectors associated with an eigenbasis for the

Laplace–Beltrami operator −∆g; see [23] or [25, Chapter 5] for further details. Unlike in

the Euclidean case, Theorem 1.2 does not, in general, directly lead to new Lp bounds for

the spectral multipliers mα(D). Nevertheless, as described presently, Theorem 1.2 does

provide bounds for certain variants of the operator (1.7) which, in some sense, control

the “local behaviour” of the Bochner–Riesz multipliers on (M, g).

When studying Bochner–Riesz multipliers in the manifold setting, one is led to

consider certain variants of the Carleson–Sjölin operator (1.7), defined by

Sλg f(x) :=

�
M

e2πiλ distg(x,y)a(x, y)f(y) dy; (1.9)

here, a∈C∞(M×M) is supported away from the diagonal, whilst distg and dy are,

respectively, the distance function and measure on M induced by the Riemannian metric.
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Operators of this form were studied previously by Minicozzi–Sogge [20] (see also [25,

Chapter 5]).

Working in local coordinates and then arguing as in the Euclidean case, one may

use Theorem 1.2 to prove the following bound.

Corollary 1.5. Suppose (M, g) is a compact Riemannian manifold of dimension

n>2 without boundary. If p satisfies the conditions in (1.6) and ε>0, then

‖Sλg f‖Lp(M) .ε,g λ
(n−1)/2−n/p+ε‖f‖Lp(M) for all λ> 1.

An interesting feature of this result is that there are examples of manifolds (M, g)

for which the range of exponents (1.2) is sharp; see [20].

There is an analogue of the Carleson–Sjölin reduction in the manifold setting, which

relies on the Hadamard parametrix for the wave equation on (M, g). This can be used

to prove Lp bounds for Bochner–Riesz multipliers over (M, g) in the restricted range

p>2(n+1)/(n−1): see [25, Chapter 5]. Unfortunately, the parametrix is only effective

for short time intervals and, as a consequence, Corollary 1.5 does not appear to directly

imply any new bounds for Bochner–Riesz multipliers over general (M, g). In particular, it

seems that it is necessary to combine Corollary 1.5 with global geometric information to

fully understand the Bochner–Riesz problem. For p>2(n+1)/(n−1) such difficulties can

be overcome using Lp eigenfunction estimates of Sogge [24] (see [23] or [25, Chapter 5]),

but the method appears to be tied down to this restricted range of exponents.

Finally, it is remarked that new Bochner–Riesz estimates can be obtained for certain

specific choices of manifold (M, g) which enjoy additional symmetries. The simplest

example is the flat torus Tn; indeed, Corollary 1.3 implies similar Lp bounds in the

toral setting via the classical multiplier transference principle. A more involved example

is the n-dimensional Euclidean sphere Sn.(6) In this case, using the periodicity of the

geodesic flow, one may entirely reduce the Bochner–Riesz problem to bounding operators

essentially of the form (1.9), as observed in [22] (see also [21]). It may be possible to

extend these methods to treat the class of Zoll manifolds, following a line of investigation

initiated in [21].

1.3. Historical remarks

The problem of determining Lp estimates for Hörmander-type operators has an inter-

esting history. Hörmander [17] asked whether (1.5) holds for p>2n/(n−1) (without

ε-loss) under the hypotheses (H1) and (H2) only, and proved that this is indeed the case

(6) The authors are grateful to Christopher D. Sogge for drawing their attention to this example.
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when n=2. This numerology agrees with the Fourier restriction conjecture and also the

Bochner–Riesz multiplier problem, both of which would follow from a positive answer

to Hörmander’s question.(7) Stein [27] provided further evidence for this numerology by

proving the estimate

‖Tλf‖Lp(Rn) .φ,a ‖f‖L2(Bn−1) for all p> 2
n+1

n−1
,

matching what was known about the high-dimensional Fourier restriction and Bochner–

Riesz problems at that time. It was therefore somewhat surprising when Bourgain [5]

showed that, in general, Stein’s theorem is sharp. In particular, he demonstrated that,

for every odd dimension n>3, there exists a Hörmander-type operator for which

‖Tλf‖Lp(Rn) .φ,a ‖f‖L∞(Bn−1) (1.10)

fails to hold uniformly in λ>1 whenever p<2(n+1)/(n−1). Aside from answering

Hörmander’s original question in the negative, Bourgain’s work hinted at an interest-

ing divergence between the odd- and even-dimensional theory. Moreover, it was noted in

[6, p. 87] that in even dimensions the L∞-Lp estimates always hold in a wider range than

that of Stein’s theorem. Thus, in general, the even-dimensional case is better behaved

than the odd-dimensional case. This was further highlighted by Bourgain and the first

author [9], who showed that in even dimensions (1.10) holds for p>2(n+2)/n. Further-

more, in [9] and also implicitly in the work of Wisewell [35], examples were found in

even dimensions which show that (1.10) can fail for p<2(n+2)/n. Thus, the range of

exponents in Hörmander’s original question is valid only when n=2.

At this point, it is useful to describe the nature of the counterexamples of [5], [35]

and [9], and provide some explanation for the difference between the odd- and even-

dimensional cases. Roughly speaking, in the odd-dimensional case Tλ and f can be

chosen so that |Tλf | is concentrated in the 1-neighbourhood of a low-degree algebraic

variety Z of dimension 1
2 (n+1). This is the smallest possible dimension for which such

concentration is possible. In the even-dimensional case, 1
2 (n+1) is no longer an integer,

and it transpires that |Tλf | can only be concentrated into the 1-neighbourhood of a

variety of relatively large dimension 1
2 (n+2). These observations are related to Kakeya

compression phenomena for sets of space curves (see [35] for a thorough introduction to

this topic and [20] for the related problem of Kakeya sets of geodesics in Riemannian

manifolds). They also hint at some underlying algebraic structure in the problem.

So far, the discussion has focused on operators satisfying the original (H1) and (H2)

hypotheses of Hörmander. Lee [19] observed that, under the positive-definite hypothe-

sis (H2+), one can establish improvements over the range given by Stein’s theorem in

(7) The connection with Bochner–Riesz multipliers is made via the classical reduction of Carleson–
Sjölin [10], [17], as discussed in the previous subsection.
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n odd n even

(H2) 2
n+1

n−1
2
n+2

n

(H2+) 2
3n+1

3n−3
2

3n+2

3n−2

Table 1. Endpoint values for p for Hörmander-type operators under various hypotheses.

all dimensions. In particular, he showed that, for any Hörmander-type operator with

positive-definite phase, (1.5) holds for p>2(n+2)/n. This coincides with Theorem 1.2

when n=3, but is weaker in higher dimensions. Wisewell [35] and Minicozzi–Sogge [20]

produced examples (again relying on Kakeya compression phenomena) to show that this

result is sharp when n=3 (see also [9, §6]).

Comparing the sharp examples under the (H2) and (H2+) hypotheses highlights

another important consideration in addition to Kakeya compression phenomena. This

feature relates to how the mass of |Tλf | can be distributed in neighbourhoods of low-

degree varieties. It accounts for the improved behaviour demonstrated by operators with

positive-definite phase and is described in detail in §2.

Given the results of this article, the sharp range of estimates for this problem are

now understood under either the (H2) or (H2+) hypothesis. The corresponding endpoint

values for p are concisely listed in Table 1.

It is remarked that it is possible to prove estimates beyond the range of Theorem 1.2

under additional assumptions on the phase function. For example, the first author [13]

has shown that, for n=3 and all ε>0, the extension operator Epar associated with the

paraboloid satisfies

‖Eparf‖Lp(B(0,λ)) .ε λ
ε‖f‖Lp(B2)

for all p>3+ 1
4 , and this was further improved to p>3+ 3

13 by Wang [33]. Furthermore,

the aforementioned restriction conjecture asserts that the above inequality should be

valid in the wider range p>3.

1.4. Multilinear estimates

The proof of Theorem 1.2 follows the strategy introduced by the first author in [14].

The argument relies on establishing (weakened versions of) multilinear estimates for

Hörmander-type operators. The multilinear approach was introduced in the late 1990s

to study oscillatory integral operators (although it was arguably already implicit in many
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earlier foundational works in the subject [12], [10]) and has proven an invaluable tool.

To describe the k-linear setup, one first requires the notion of transversality.

Definition 1.6. Let 16k6n and Tλ=(Tλ1 , ..., T
λ
k ) be a k-tuple of Hörmander-type

operators, where Tλj has associated phase φλj , amplitude aλj and generalised Gauss map

Gj for 16j6k. Then, Tλ is said to be ν-transverse for some 0<ν61 if

∣∣∣∣ k∧
j=1

Gj(x;ωj)

∣∣∣∣> ν for all (x;ωj)∈ supp aj for 16 j6 k.

The following conjecture is a natural generalisation of an existent conjecture of

Bennett [3] for Fourier extension operators.

Conjecture 1.7. (k-linear Hörmander conjecture) Let 16k6n and let (Tλ1 , ..., T
λ
k )

be a ν-transverse k-tuple of Hörmander-type operators with positive-definite phase func-

tions. For all p>p̄(k, n):=2(n+k)/(n+k−2) and ε>0 the estimate

∥∥∥∥ k∏
j=1

|Tλj fj |1/k
∥∥∥∥
Lp(Rn)

.ε,ν,φ λ
ε

k∏
j=1

‖fj‖1/kL2(Bn−1) (1.11)

holds for all λ>1.

Techniques have been developed by Tao–Vargas–Vega [32] and Bourgain and the first

author [9] to convert k-linear into linear inequalities. There are a number of features of

the multilinear theory which suggest that it is more approachable than directly tackling

the linear estimates. For instance, here the desired inequalities are L2-based, giving

greater scope for orthogonality methods.

Some instances of the conjecture are known.

• The k=1 case corresponds to Stein’s theorem [27] (which holds without the

positive-definite hypothesis).

• The k=2 case was established by Lee [19], who then used the method of Tao–

Vargas–Vega [32] to derive estimates for the linear problem. This approach yields Theo-

rem 1.2 in the n=3 case, but produces strictly weaker results in higher dimensions (see

the discussion in §1.3).

• The k=n case was established by Bennett–Carbery–Tao [4] who also gave partial

results at all levels of multilinearity (see also [3] for further discussion of this work).

Bourgain and the first author [9] later developed a method to deduce improved linear

estimates from these multilinear inequalities.

The precise statement of the Bennett–Carbery–Tao theorem [4] is as follows.



sharp estimates for oscillatory integral operators 261

Theorem 1.8. (Bennett–Carbery–Tao [4]) Let 26k6n and suppose that (Tλ1 , ..., T
λ
k )

is a ν-transverse k-tuple of Hörmander-type operators. For all p>2k/(k−1) and ε>0

the estimate ∥∥∥∥ k∏
j=1

|Tλj fj |1/k
∥∥∥∥
Lp(Rn)

.ε,(φj)kj=1
ν−Cελε

k∏
j=1

‖fj‖1/kL2(Bn−1)

holds for all λ>1.

The positive-definite assumption does not appear in the hypotheses of Theorem 1.8.(8)

Combining Theorem 1.8 with the method of [9] leads to the sharp estimates for Hörmander-

type operators stated in Theorem 1.1. For completeness, the details of this argument are

given in §11.

1.5. k-broad estimates

In [14] it was observed that, in the context of Fourier extension operators, the method

of [9] does not require the full power of the k-linear theory, but rather can take as

its input inequalities of a weaker form than (1.11) known as k-broad estimates. By

applying polynomial partitioning techniques, the first author [14] was further able to

prove the sharp range of L2-based(9) k-broad estimates for the Fourier extension operator

associated with the paraboloid. This led to an improvement on the known range of

estimates for parabolic restriction in dimensions n>4. The main goal of this paper is to

extend the theory of k-broad estimates to the more general context of Hörmander-type

operators with positive-definite phase.

The k-broad setup involves the notion of a k-broad norm, which was introduced

in [14]. Decompose Bn−1 into finitely-overlapping balls τ of radius K−1, where K is a

large constant. These balls will be frequently referred to as K−1-caps. Given a function

f :Bn−1
!C, write f=

∑
τ fτ where fτ is supported in τ . In view of the rescaling φλ of

the phase function, define the rescaled generalised Gauss map

Gλ(x;ω) :=G
(x
λ

;ω
)

for (x;ω)∈ supp aλ.

For each x∈B(0, λ) there is a range of normal directions associated with the cap τ given

by

Gλ(x; τ) := {Gλ(x;ω) :ω ∈ τ and (x;ω)∈ supp aλ}.

(8) In particular, of the results mentioned above only Lee’s bilinear estimate [19] exploits the

positive-definite hypothesis.
(9) These estimates have an L2-norm appearing on the right-hand side. Relaxing L2 to L∞ has

led to further improvements on the Fourier restriction problem for the paraboloid [33], [16].
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If V ⊆Rn is a linear subspace, then let ](Gλ(x; τ), V ) denote the smallest angle between

any non-zero vector v∈V and v′∈Gλ(x; τ).

The spatial ball B(0, λ) is also decomposed into relatively small balls BK2 of ra-

dius K2. In particular, fix BK2 a collection of finitely-overlapping K2-balls which are

centred in and cover B(0, λ). For BK2∈BK2 centred at some point x̄∈B(0, λ), define

µTλf (BK2) := min
V1,...,VA∈Gr(k−1,n)

(
max

τ :](Gλ(x̄;τ),Va)>K−1 for 16a6A
‖Tλfτ‖pLp(BK2 )

)
; (1.12)

here, Gr(k−1, n) is the Grassmannian manifold of all (k−1)-dimensional subspaces in Rn.

It will often be notationally convenient to write τ /∈Va to mean that ](Gλ(x̄; τ), Va)>K−1

(the choice of centre x̄ should always be clear from the context); with this notation the

above expression becomes

µTλf (BK2) := min
V1,...,VA∈Gr(k−1,n)

(
max

τ :τ /∈Va for 16a6A
‖Tλfτ‖pLp(BK2 )

)
.

For U⊆Rn the k-broad norm over U is then defined to be

‖Tλf‖BLpk,A(U) :=

( ∑
BK2∈BK2

BK2∩U 6=∅

µTλf (BK2)

)1/p
. (1.13)

It is remarked that ‖Tλf‖BLpk,A(U) is not a norm in the traditional sense, but it does

satisfy weak variants of certain key properties of Lp-norms, as discussed below in §6.

Theorem 1.2 will be a consequence of certain estimates for k-broad norms. These

estimates are proved under a further technical assumption that the phase is of reduced

form. The details of this condition are postponed until §4.

Theorem 1.9. For 26k6n and all ε>0, there exists a constant Cε>1 and an

integer A such that, whenever Tλ is a Hörmander-type operator with positive-definite

reduced phase, the estimate

‖Tλf‖BLpk,A(Rn) .εK
Cελε‖f‖L2(Bn−1) (1.14)

holds for all λ>1 and K>1 whenever p>p̄(k, n):=2(n+k)/(n+k−2).

The range of p is sharp for this theorem, as can be seen by considering the extension

operator associated with the (elliptic) paraboloid (see [14]). As explained in §6 below,

the k-broad estimate (1.14) is weaker than the corresponding k-linear estimate (1.11),

and so Theorem 1.9 can be viewed as a weak substitute for Conjecture 1.7.

To derive Lp estimates from Theorem 1.9, roughly speaking, one argues as follows.

The global Lp norm is broken up into contributions over balls BK2 ; the problem is to
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estimate each ‖Tλf‖pLp(BK2 ), and then to sum these estimates in BK2 . Fixing one such

ball, there exists a collection of (k−1)-dimensional subspaces V1, ..., VA such that

µTλf (BK2) = max
τ /∈Va for 16a6A

‖Tλfτ‖pLp(BK2 ).

Thus, by the triangle and Hölder’s inequalities,

‖Tλf‖pLp(BK2 ) .AK
O(1)µTλf (BK2)+

A∑
a=1

∥∥∥∥ ∑
τ∈Va

Tλfτ

∥∥∥∥p
Lp(BK2 )

.

The k-broad estimate (1.13) effectively controls the first term on the right-hand side of

the above display, after summing over all BK2 . The problem of estimating ‖Tλf‖pLp(BR)

is therefore reduced to studying expressions of the form∥∥∥∥∑
τ∈V

Tλfτ

∥∥∥∥p
Lp(BK2 )

for each BK2 , where the sum is over caps τ which make a small angle with some (k−1)-

dimensional subspace V . This term can then be controlled using a combination of `p-

decoupling and an induction on scales argument, leading to the proof of Theorem 1.2.

The full details of this argument are given in §11.

Structure of the article

The structure of this article is as follows:

• In §2 sharp examples for Theorems 1.1 and 1.2 are discussed in detail.

• In §3 the key features of the problem are identified in order to motivate the

forthcoming analysis.

• In §4 some basic reductions are described which allow one to assume that the

phase is of a certain reduced form in the proof of Theorem 1.2.

• In §5 and §6 some basic analytic tools are introduced. In particular, the wave

packet decomposition for Hörmander-type operators is defined and studied, some ele-

mentary aspects of the L2-theory for Hörmander-type operators are reviewed, and there

is also a discussion of the basic properties of the k-broad norms and their relation to

k-linear estimates.

• In §7 certain algebraic tools from combinatorial geometry are introduced. In par-

ticular, polynomial partitioning techniques are reviewed and some important geometric

lemmas are proved; these techniques will play a fundamental role in the proof of Theo-

rem 1.9.



264 l. guth, j. hickman and m. iliopoulou

• In §8 and §9 transverse equidistribution estimates for Tλ are introduced and stud-

ied. These estimates rely heavily on the positive-definite hypothesis and partially account

for the improved behaviour exhibited by operators satisfying the (H2+) hypothesis.

• In §10 the proof of k-broad estimates of Theorem 1.9 is given.

• In §11 the linear estimates of Theorem 1.2 are deduced as a consequence of the

k-broad estimates of Theorem 1.9. For completeness, the same methods are also applied

to deduce Theorem 1.1 as a consequence of Corollary 6.5.

• In §12 standard ε-removal lemmas are generalised to the variable coefficient set-

ting. This allows one to strengthen Theorem 1.2 away from the endpoint by removing

the λε-dependence in the constant.

• Appended are some remarks concerning (non)-stationary phase arguments used

throughout the paper.
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2. Necessary conditions

2.1. An overview of the sharp examples

In this section examples of Hörmander-type operators are studied in view of establishing

the necessity of the conditions on the p exponent in the linear estimates of Theorem 1.1

and Theorem 1.2. This analysis will also identify some key features of operators with

positive-definite phase which will later be exploited in the proof of Theorem 1.2. As

discussed in §1.3, such examples first arose in the work of Bourgain [5], [6] and were

later developed by Wisewell [35], Minicozzi–Sogge [20] and Bourgain–Guth [9], amongst

others. The presentation in this section follows the lines of [5], [9].

All the examples considered here are of the following general form: for a fixed

operator Tλ, a function f is chosen so that |f | is constant whilst |Tλf | is concentrated in

Nλσ (Z)∩B(0, λ) for some low-degree algebraic variety Z with dimZ=m; here Nλσ (Z)

is the λσ-neighbourhood of Z. In particular, one has

‖Tλf‖L2(Rn)∼‖Tλf‖L2(Nλσ (Z)∩B(0,λ)). (2.1)
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The examples will further be chosen so that

‖Tλf‖L2(Rn)∼λ1/2‖f‖L2(Bn−1); (2.2)

note that, by Hörmander’s generalisation of the Hausdorff–Young inequality [17], the

inequality ‖Tλf‖L2(Rn).λ1/2‖f‖L2(Bn−1) always holds (see also §5 below).

Playing (2.1) and (2.2) off against one another yields the necessary conditions on p.

Indeed, for f as above,

‖f‖Lp(Bn−1)∼‖f‖L2(Bn−1)∼λ−1/2‖Tλf‖L2(Rn)∼λ−1/2‖Tλf‖L2(Nλσ (Z)∩B(0,λ)).

Now, assuming that the estimate ‖Tλg‖Lp(Rn).ελε‖g‖Lp(Bn−1) holds for all ε>0 and

applying Hölder’s inequality, it follows that

‖f‖Lp(Bn−1) .ε |Nλσ (Z)∩B(0, λ)|1/2−1/pλ−1/2λε‖f‖Lp(Bn−1).

By a theorem of Wongkew [37] (see Theorem 8.10 below),

|Nλσ (Z)∩B(0, λ)|.λm+(n−m)σ, (2.3)

where the implied constant depends only on n. In fact, for the simple varieties used

in the arguments below, (2.3) can be shown by direct inspection. Thus, combining the

previous displays and recalling that λ can be taken arbitrarily large, one concludes that

p> 2
σ(n−m)+m

σ(n−m)+m−1
. (2.4)

This condition depends on the two parameters m and σ, and becomes more restrictive the

more m and σ decrease. Therefore, in order to obtain the strongest possible restriction

on p for a given phase function, one wishes to find the lowest possible m and σ, over all f ,

for which the mass of Tλf can concentrate in the λσ-neighbourhood of an m-dimensional

low-degree algebraic variety.

• The optimal choice ofm is n−
⌊

1
2 (n−1)

⌋
. This value arises directly from the theory

of Kakeya sets of curves, and will be discussed in more detail in the next subsection.

• The optimal choice of σ depends on the signature of the phase. For general

Hörmander-type operators, one may find examples for which σ=0. If one assumes the

positive-definite condition (H2+), then σ= 1
2 is the lowest possible value. This difference

in behaviour is governed by transverse equidistribution estimates for Tλ, which were

introduced in the context of Fourier extension operators in [14]. This will be discussed

in detail in §2.4.

The optimal pairs (m,σ) under the various hypotheses are listed in Table 2. Plugging

these values into (2.4) gives the corresponding sharp range of estimates for Tλ.
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n odd n even

(H2)
(

1
2 (n+1), 0

) (
1
2n+1, 0

)
(H2+)

(
1
2 (n+1), 1

2

) (
1
2n+1, 1

2

)
Table 2. Optimal values of (m,σ) for the sharp examples.

2.2. Model operators

The examples described above will arise from operators with phase of the relatively simple

form

φ(x;ω) := 〈x′, ω〉+ 1
2 〈A(xn)ω, ω〉, (2.5)

where A:R!Sym(n−1,R) is a polynomial function taking values in the class of real

symmetric matrices which satisfies A(0)=0. For such a phase, the condition (H1) always

holds whilst (H2) (resp. (H2+)) holds if and only if the componentwise derivativeA′(xn)∈
GL(n−1,R) (resp.A′(xn) is positive-definite) for all relevant xn∈[−1, 1]. Observe that, if

A(xn):=xnA for some fixed A∈Sym(n−1,R)∩GL(n−1,R), then the resulting operator

is the extension operator associated with the graph of the non-degenerate quadratic form

ω 7! 1
2 〈Aω, ω〉. For the present purpose, one is interested in examples with higher-order

dependence on xn.

Let Tλ be an operator associated with the phase function (2.5) for some A and a

choice of non-negative amplitude function a. The ω -support of a is assumed to lie in

B(0, c), where c>0 is a small constant. Cover Bn−1 by finitely-overlapping balls θ of

radius λ−1/2; these balls will frequently be referred to as λ−1/2-caps. Let ψθ be a smooth

partition of unity adapted to this cover. Consider a wave packet of the form

fθ,vθ (ω) := e−2πiλ〈vθ,ω−ωθ〉ψθ(ω)

for some choice of vθ∈Rn−1 and ωθ the centre of the cap θ. To obtain the necessary

conditions for Lp-boundedness of Tλ, the operator will be tested against functions given

by superpositions of these basic wave packets.

Each localised piece Tλfθ,vθ is concentrated in a tubular region in Rn. In particular,

define the curve

γθ,vθ (t) := vθ−A(t)ωθ for t∈ (−1, 1), (2.6)

and let Tθ,vθ be the curved tube

Tθ,vθ :=
{
x∈B(0, λ) :

∣∣∣x′−λγθ,vθ(xnλ )∣∣∣<cλ1/2
}
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for c>0 as above. It is not difficult to show that

|Tλfθ,vθ (x)|&λ−(n−1)/2χTθ,vθ (x) for all x∈B(0, λ), (2.7)

provided that c is chosen suitably small. Indeed, let aλθ be the rescaled amplitude

aλθ (x;ω) := aλ(x;ωθ+λ−1/2ω)ψθ(ωθ+λ−1/2ω)

and φλθ be the phase function

φλθ (x;ω) :=λ−1/2
〈
x′−λγθ,vθ

(xn
λ

)
, ω
〉

+
1

2

〈
A
(xn
λ

)
ω, ω

〉
,

so that, by a linear change of variables,

Tλfθ,vθ (x) =λ−(n−1)/2e2πiφλ(x;ωθ)

�
Rn−1

e2πiφλθ (x;ω)aλθ (x;ω) dω. (2.8)

Taking absolute values in (2.8) and writing e2πiφλθ (x;ω) in terms of its real and imaginary

parts, one deduces that

|Tλfθ,vθ (x)|&λ−(n−1)/2

∣∣∣∣�
Rn−1

cos(2πφλθ (x;ω))aλθ (x;ω) dω

∣∣∣∣ .
Provided c is sufficiently small,

|φλθ (x;ω)|6 1
100 whenever x∈Tθ,vθ and (x;ω)∈ supp aλθ .

Thus, if x∈Tθ,vθ , we have cos(2πφλθ (x;ω))&1, and the desired bound (2.7) follows.

2.3. Kakeya sets of curves

By studying the geometry of the family of tubes Tθ,vθ , one may construct sharp exam-

ples for Theorem 1.2. These examples arise owing to Kakeya compression phenomena,

whereby the tubes are arranged to lie in a neighbourhood of a low-dimensional set. For

n=3, the following example appears in Bourgain–Guth [9] (see also [20], [35] for related

constructions). Let φ be of the form (2.5), where A(t) is taken to be the (n−1)×(n−1)

block-diagonal matrix

A(t) :=

(
t t2

t2 t+t3

)
⊕...⊕

(
t t2

t2 t+t3

)
︸ ︷︷ ︸

b(n−1)/2c-fold

⊕(t).
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Here, it is understood that the final 1×1 block appears only when n is even. Observe

that the resulting phase (2.5) satisfies (H1) and (H2+) on Bn×Bn−1.

Suppose that Tλ is the associated oscillatory integral operator. The estimate

‖Tλf‖Lp(Rn) .ε λ
ε‖f‖Lp(Bn−1) (2.9)

is tested against a superposition of wave packets

f :=
∑

θ:λ−1/2-cap

εθ ·fθ,vθ ,

where εθ∈{1,−1} are uniformly distributed independent random signs. By Khintchine’s

theorem (see, for instance, [26, Appendix D]), the expected value of |Tλf(x)| is given by

E[ |Tλf(x)| ]∼
( ∑
θ:λ−1/2-cap

|Tλfθ,vθ (x)|2
)1/2

&λ−(n−1)/2

( ∑
θ:λ−1/2-cap

χTθ,vθ (x)

)1/2

for all x∈B(0, λ). Thus, by Hölder’s and Minkowski’s inequalities,

λ−(n−1)/2

(� ∑
θ:λ−1/2-cap

χTθ,vθ

)1/2
.

∣∣∣∣ ⋃
θ:λ−1/2-cap

Tθ,vθ

∣∣∣∣1/2−1/p

E[ ‖Tλf‖Lp(Rn) ].

The hypothesis (2.9) together with a direct computation now gives

‖f‖Lp(Bn−1) .ε

∣∣∣∣ ⋃
θ:λ−1/2-cap

Tθ,vθ

∣∣∣∣1/2−1/p

λ−1/2+ε‖f‖Lp(Bn−1), (2.10)

since ‖f‖Lp(Bn−1)∼1 is independent of the outcomes of the εθ.

Varying vθ corresponds to translating the tube Tθ,vθ in space in the x′ direction. In

view of (2.10), one wishes to choose the vθ in order to arrange the tubes so that their

union has small measure. For the above choice of phase, it is in fact possible to select the

vθ so that the tubes all lie in the λ1/2-neighbourhood of a low-dimensional, low-degree

algebraic variety. In particular, let m:=n−
⌊

1
2 (n−1)

⌋
and Z :=Z(P1, ..., Pn−m) be the

common zero set of the polynomials

Pj(x) :=λx2j−x2j−1xn for 16 j6
⌊

1
2 (n−1)

⌋
.

Thus, Z is an algebraic variety of dimension m and degree On(1). If one defines

vθ,2j−1 :=−ωθ,2j and vθ,2j = vθ,n−1 = 0 for 16 j6
⌊

1
2 (n−1)

⌋
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for each cap θ, then a simple computation shows that the curve t 7!(λγθ,vθ (t/λ), t) lies

in Z. Thus, ⋃
θ:λ−1/2-cap

Tθ,vθ ⊆Nλ1/2(Z)∩B(0, λ),

and the desired necessary conditions on p follow from (2.10).

In conclusion, here the necessary conditions arise from the fact that it is possible to

compress an (n−1)-dimensional family of curves into a set of small dimension m. The

value m=n−
⌊

1
2 (n−1)

⌋
is optimal for this kind of behaviour, in view of known estimates

for associated Kakeya maximal functions: see [35] and [9].

2.4. Mass concentration

It will be useful to contrast the behaviour in the positive-definite and indefinite cases by

considering sharp examples for Theorem 1.1 (that is, for the class of operators satisfying

(H1) and the weaker hypothesis (H2)). As before, Kakeya compression plays a significant

role in the argument, but one can introduce additional interference between the wave

packets which leads to stronger necessary conditions. In particular, this interference

causes the mass of |Tλf | to concentrate in a tiny O(1)-neighbourhood of a variety Z;

such tight concentration is not possible under the (H2+) hypothesis (as demonstrated by

Theorem 1.2).

The following example was introduced by Bourgain [5] (see also [6]). Once again, the

phase is taken to be of the form (2.5). This time A(t) is defined to be the (n−1)×(n−1)

block-diagonal matrix

A(t) :=

(
0 t

t t2

)
⊕...⊕

(
0 t

t t2

)
︸ ︷︷ ︸

b(n−1)/2c-fold

⊕(t). (2.11)

Clearly, the corresponding phase satisfies (H1) and (H2), but (H2+) fails. Define the

curves γθ,vθ as in (2.6), so that

|Tλfθ,vθ (x)|&λ−(n−1)/2χTθ,vθ (x) for all x∈B(0, λ).

If one takes

vθ,2j−1 :=−ωθ,2j−1 and vθ,2j = vθ,n−1 = 0 for 16 j6
⌊

1
2 (n−1)

⌋
,

then it follows that the curve t 7!(λγθ,vθ (t/λ), t) lies in Z for all λ−1/2-caps θ, where Z

is the same variety as that appearing in the previous subsection (see Figure 1).
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Figure 1. The Kakeya compression phenomenon for the curves arising from the matrix (2.11).

One may repeat the analysis of §2.3 by taking f to be a linear combination of wave

packets fθ,vθ with random signs. This leads to the same necessary conditions as in

the positive-definite case. However, certain deterministic choices of f lead to stronger

conditions on p. In particular, consider the function

f̃ :=
∑

θ:λ−1/2-cap

e2πiλQ(ωθ)fθ,vθ , (2.12)

where the vθ are as defined above and Q is the quadratic polynomial

Q(ω) :=
1

2

b(n−1)/2c∑
j=1

ω2
2j−1.

Each modulated wave packet appearing in (2.12) has a phase given by

λ(Q(ωθ)−〈vθ, ω−ωθ〉) =λQ(ω)− λ
2

b(n−1)/2c∑
j=1

(ω2j−1−ωθ,2j−1)2.

Since the λ(ω2j−1−ωθ,2j−1)2 terms are bounded functions on the support of ψθ, they do

not contribute any significant oscillation. One may therefore heuristically identify f̃ with

the function

f(ω) := e2πiλQ(ω)ψ(ω),
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where ψ is a bump function supported in Bn−1. Using a simple stationary phase argu-

ment, it was shown in [5] (see also [6], [9]) that

|Tλf(x)|&λ−bn/2c/2χNc(Z)(x) for all x∈B(0, λ). (2.13)

Here 0<c<1 is some small, fixed constant (which is independent of λ) and Z is as defined

in §2.3. With this estimate, one readily deduces the desired necessary conditions on p.

Indeed, testing the inequality

‖Tλf‖Lp(Rn) .ε λ
ε‖f‖Lp(Bn−1)

against the function f as defined above, it follows from (2.13) that

λ−bn/2c/2|Nc(Z)∩B(0, λ)|1/p.ε λε.

Since |Nc(Z)∩B(0, λ)|∼λn−b(n−1)/2c and n=
⌊

1
2n
⌋
+
⌊

1
2 (n−1)

⌋
+1, one deduces that

λ−bn/2c/2+(bn/2c+1)/p.ε λ
ε.

Taking λ>1 large and 0<ε<1 small, this forces
−n−1

2
+
n+1

p
6 0, if n is odd,

−n
2

+
n+2

p
6 0, if n is even,

corresponding to the constraints on p from Theorem 1.1.

For completeness, the details of the argument used in [5], [6] to prove (2.13) are

reviewed. Observe that Tλf(x) is an oscillatory integral with smooth amplitude ψ and

phase

b(n−1)/2c∑
j=1

x2j−1ω2j−1+x2jω2j+
λ

2
(ω2j−1+λ−1xnω2j)

2+δe

(
xn−1ωn−1+

xn
2
ω2
n−1

)
,

(2.14)

where

δe =

{
0, if n is odd,

1, if n is even.

Introduce new variables

zj :=ω2j−1+λ−1xnω2j for 16 j6
⌊

1
2 (n−1)

⌋
.
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If x∈Z, then the phase function (2.14) can be expressed as

b(n−1)/2c∑
j=1

x2j−1zj+
λ

2
z2
j +δe

(
xn−1ωn−1+

xn
2
ω2
n−1

)
.

The integral Tλf can now be reduced to a product of
⌊

1
2 (n−1)

⌋
+δe=

⌊
1
2n
⌋

integrals,

each in a single variable. For x∈Z, the inequality (2.13) follows as a consequence of

standard stationary phase estimates applied to each of these integrals (see, for instance,

[28, Chapter VIII, Proposition 3]). This lower bound can then be extended to some

c-neighbourhood of Z via a simple estimate on the gradient of Tλf(x).

3. Key features of the analysis

The examples of the previous section highlight several key features of Hörmander-type

operators. All these features are exploited in the proofs of the linear and k-broad esti-

mates.

(1) Algebraic structure. The sharp examples were given by arranging collections

of wave packets to lie in a relatively small neighbourhood of a low-degree, low-dimensional

algebraic variety Z. It turns out that this is an essential feature of both the linear and k-

broad problems. To exploit this underlying algebraic structure, the proof of Theorem 1.9

will rely on a variant of the polynomial partitioning method introduced by Katz and the

first author [15]. Roughly speaking, this method allows one to reduce to the case where

|Tλf | concentrates around some low-degree, low-dimensional variety, as in the sharp

examples. This can be thought of as a dimensional reduction and, indeed, the proof

of Theorem 1.9 will proceed by an induction on dimension. Polynomial partitioning

has played an increasingly important role in the theory of oscillatory integral operators,

beginning with the work on the restriction problem in [13], [14] and, more recently, in

[33], [16].

(2) Non-concentration/transverse equidistribution. Suppose one does not

assume the phase is positive-definite. The example of §2.4 then shows that interference

between the wave packets can cause |Tλf | to be concentrated in a tiny neighbourhood

of Z. In order to prove the sharp range of estimates in the positive-definite case, one must

rule out the possibility of such concentration. This is achieved by extending the theory of

so-called transverse equidistribution estimates introduced in [14] to the variable coefficient

setting. These estimates can be interpreted as showing that |Tλf(x)| is morally constant

along transverse directions to Z in a λ1/2-neighbourhood of the variety. Consequently,

|Tλf(x)| cannot concentrate in a smaller neighbourhood.
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(3) Parity of the dimension. Another key feature of the examples discussed in

the previous section is their dependence on the parity of the ambient dimension n. Recall

that this is directly related to the minimal dimension

d(n) :=

{
1
2 (n+1), if n is odd,

1
2 (n+2), if n is even,

of Kakeya sets of curves in Rn. The parity of the dimension does not play an overt role in

the proof of the k-broad estimates, but it becomes a noticeable feature when one wishes

to pass from k-broad to linear estimates in the proof of Theorem 1.2. In particular, for

each fixed value of 26k6n, the method of §11 shows that the k-broad estimates imply

a (possibly empty/trivial) range of linear estimates. It transpires that, to optimise the

range of linear estimates obtained in this manner, one should choose k to correspond to

the dimension d(n) from the Kakeya problem.

The proof of the k-broad estimates follows the same general scheme as that used to

study Fourier extension operators in [14], and heavily exploits the the features (1) and

(2) of the problem highlighted above. A detailed sketch of the argument in the extension

context is provided in [14]; this sketch is likely to be beneficial to readers new to these

ideas.

4. Reductions

4.1. Basic reductions

The prototypical example of a positive-definite phase function is given by

φpar(x;ω) := 〈x′, ω〉+ 1
2xn|ω|

2. (4.1)

This is the phase associated with the extension operator for the (elliptic) paraboloid.

In general, to prove Theorem 1.2, it suffices to only consider phases which are given by

small perturbations of φpar. Observations of this kind have been used previously in the

theory of oscillatory integral operators and the arguments of this section are inspired by

[17], [19].

To understand why such a reduction is possible, first recall that the class of operators

under consideration are those of the form

Tλf(x) :=

�
Rn−1

e2πiφλ(x;ω)aλ(x;ω)f(ω) dω,

where φ satisfies (H1) and (H2+). In addition, one may assume a number of fairly

stringent conditions on the form of φ on the support of a.
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Lemma 4.1. To prove Theorem 1.2 for some fixed ε>0, it suffices to consider the

case where a is supported on X×Ω, where X :=X ′×Xn and X ′⊂Bn−1, Xn⊂B1 and

Ω⊂Bn−1 are small balls centred at zero upon which the phase φ has the form

φ(x;ω) = 〈x′, ω〉+xnh(ω)+E(x;ω). (4.2)

Here h and E are smooth functions, h is quadratic in ω and E is quadratic in x and ω.(10)

Furthermore, letting cpar>0 be a small constant, which may depend on the admissible

parameters n, p and ε, one may assume that

‖∂2
ωx′φ(x;ω)−In−1‖op<cpar, |∂ω∂xnφ(x;ω)|<cpar, (4.3)

‖∂2
ωω∂xkφ(x;ω)−δknIn−1‖op<cpar (4.4)

for all (x;ω)∈X×Ω and 16k6n.

Here, In−1 denotes the (n−1)×(n−1) identity matrix, δij the Kronecker δ-function

and ‖ · ‖op the operator norm.

It is perhaps useful to provide a brief interpretation of the formula (4.2). Since h is

quadratic,

h(ω) = 1
2 〈∂

2
ωωh(0)ω, ω〉+O(|ω|3).

Although unnecessary for the forthcoming analysis, by rotating the ω coordinates, one

may further assume that

h(ω) = 1
2 |ω|

2+O(|ω|3).

Thus, the phase in (4.2) is given by

φ(x;ω) =φpar(x;ω)+higher-order terms,

and is therefore a perturbation of the prototypical example φpar.

The proof of the lemma is based upon three elementary principles:

Localisation. If a property P of a phase holds locally on supp a, then typically one

may assume P holds on the whole of supp a by applying a partition of unity, the triangle

inequality and shifting coordinates.

Parametrisation invariance. By the change of variables formula, one may compose

φ with a smooth change of either the x or ω variables.

(10) Explicitly, if (α, β)∈N0×Nn−1
0 is a pair of multi-indices, then

(i) ∂βωh(0)=∂βω∂αx E(x; 0)=0 whenever x∈X and |β|61;

(ii) ∂βω∂αx E(0;ω)=0 whenever ω∈Ω and |α|61.
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Modulation invariance. One is free to add smooth functions to the phase which

depend only on either the x or on the ω variables. In particular, φ can be replaced by

φ(x;ω)+φ(0; 0)−φ(0;ω)−φ(x; 0),

and therefore one may assume that

∂αxφ(x; 0) = 0 and ∂βωφ(0;ω) = 0 (4.5)

for all multi-indices (α, β)∈Nn0×Nn−1
0 .

The following argument provides an example of these three principles working to-

gether. Rotating the x-coordinates, one may assume that ∂ω∂xnφ(0; 0)=0. By (H2), it

follows that

det ∂2
x′ωφ(0; 0) 6= 0.

The inverse function theorem now implies the existence of local inverses to the functions

ω 7!∂x′φ(x;ω) and x′ 7!∂ωφ(x;ω) in a neighbourhood of 0zero. Thus, by localisation,

one may assume that supp a is contained in X×Ω, where X=X ′×Xn for X ′⊂Bn−1,

Xn⊂B1 and Ω⊂Bn−1 small balls centred at zero, and that there exist smooth functions

Φ and Ψ taking values in X and Ω, respectively, such that

∂x′φ(x; Ψ(x;u)) =u and ∂ωφ(Φ(z′, xn;ω), xn;ω) = z′. (4.6)

The former identity can be thought of as a generalisation of the fact that any hyper-

surface can be locally parameterised as a graph. The latter identity features in the

proof of Lemma 4.1 and it is useful to highlight some further properties of Φ. For each

(xn, ω)∈Xn×Ω the map z′ 7!Φ(z′, xn;ω) is a diffeomorphism from its domain onto X ′;

this provides a useful change of variables on X ′. Furthermore, it is easy to see that zero

lies in the domain of this map when xn=0, ω=0, and that

Φ(0; 0) = 0, ∂xnΦ(0; 0) = 0 and ∂x′Φ(0; 0) = ∂2
x′ωφ(0; 0)−1. (4.7)

Indeed, the first identity follows directly from (4.5), whilst the remaining identities are

obtained by differentiating the defining expression for Φ from (4.6).

Proof of Lemma 4.1. By (4.5), one may assume that

φ(x;ω) = 〈∂ωφ(x; 0), ω〉+%(x;ω),

where % is quadratic in ω and satisfies %(0;ω)=0 for all ω∈Ω. Let Φ be the function de-

fined in (4.6) and, using localisation and parametrisation invariance, perform the change

of variables x′ 7!Φ(x′, xn; 0) on X ′, so that the phase becomes

φ(x;ω) = 〈x′, ω〉+%(Φ(x; 0), xn;ω).
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By (4.7), one has ∂xnΦ(x′, 0; 0)=O(|x|) and, taking a Taylor expansion of % in xn,

%(Φ(x; 0), xn;ω) = %(Φ(x′, 0; 0), 0;ω)+(∂xn%)(Φ(x′, 0; 0), 0;ω)xn+O(|x|2).

Note that the first expression on the right-hand side satisfies

%(Φ(x′, 0; 0), 0;ω) = 〈∂x′ωφ(0; 0)−1x′, (∂x′%)(0;ω)〉+O(|x|2)

whilst, Taylor-expanding now in x′, it follows that

(∂xn%)(Φ(x′, 0; 0), 0;ω) = (∂xn%)(0;ω)+O(|x|).

Combining these observations, and noting, for instance, that (4.5) implies that

∂αx %(x; 0) = 0 for all α∈Nn0 and x∈Bn,

one deduces that

φ(x;ω) = 〈x′, ω+∂x′ωφ(0; 0)−>(∂x′%)(0;ω)〉+xn(∂xn%)(0;ω)+O(|x|2|ω|2);

Here the symbol ( ·)> is used to denote the matrix transpose and ( ·)−> the inverse matrix

transpose.

Since % is quadratic in ω, it follows that ω 7!ω+∂x′ωφ(0; 0)−>(∂x′%)(0;ω) is a well-

defined change of variables in a neighbourhood of the origin and so, once again by lo-

calisation and parametrisation invariance, the problem is reduced to considering phase

functions of the from (4.2). By construction, h and E are quadratic. Finally, the condi-

tion (H2+) implies that the matrix ∂2
ωω∂xnφ(0; 0) is positive definite. Applying a linear

coordinate change, one may therefore suppose that ∂2
ωω∂xnφ(0; 0)=In−1. On the other

hand, clearly ∂ω∂xnφ(0; 0)=0, ∂2
ωx′φ(0; 0)=In−1 and ∂2

ωω∂xkφ(0; 0)=0n−1 for 16k6n−1.

By continuity, if the support of a is sufficiently small, then the conditions of (4.3) and

(4.4) are valid on the support of a.

4.2. Parabolic rescaling

In addition to the reductions of Lemma 4.1, it will be useful to have control over higher-

order derivatives of the phase, and also the amplitude function. Such control is made

possible using a simple scaling argument.

Consider the constant coefficient case φ(x;ω):=〈x′, ω〉+xnh(ω), where

h(ω) = 1
2 |ω|

2+O(|ω|3),
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so that φ is a perturbation of the prototypical phase φpar defined in (4.1). The corre-

sponding operator

Ef(x) :=

�
Bn−1

e2πiφ(x;ω)f(ω) dω

(that is, the extension operator associated with the graph of h) has a special scaling

structure. Let �ω∈Bn−1 and %>1, and note that

φ(x; �ω+%−1ω)−φ(x; �ω) = φ̃(x̃;ω),

where φ̃ is defined the same way as φ, but with h replaced by

h̃(ω) := %2(h(�ω+%−1ω)−h(�ω)−%−1〈∂ωh(�ω), ω〉)

and x̃:=(%−1∂ωφ(x; �ω), %−2xn). The linear map x 7!x̃ is referred to as a parabolic rescal-

ing, owing to the %−1 and %−2 scaling factors.

Now consider the special case where h(ω)=hpar(ω):= 1
2 |ω|

2 (so that φ=φpar), noting

that

|∂βωhpar(ω)|= 0 for all β ∈Nn0 with |β|> 3. (4.8)

Write Epar for the operator E and observe that h̃par=hpar and, consequently, φ̃par=φpar.

Thus, if supp f⊆B(�ω, %−1), then

|Eparf(x)|= |Eparf̃(x̃)|,

where f̃(ω):=%−(n−1)f(�ω+%−1ω) is supported in Bn−1.

For general h, such a clean scaling identity does not hold. In particular, parabolic

rescaling does not preserve E but transforms it into the operator Ẽ associated with the

phase φ̃: that is,

|Ef(x)|= |Ẽf̃(x̃)|.

A useful feature, however, is that the new phase φ̃ more closely resembles the prototypical

example φpar (relative to φ). In particular,

|∂βω h̃(ω)|.β %−(|β|−2) for all β ∈Nn0 with |β|> 3,

so that, as % is large, the function h̃ is ‘closer’ to satisfying (4.8) (relative to h).

These observations can be extended to the variable coefficient setting to prove the

following reduction.
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Lemma 4.2. To prove Theorem 1.2 for some fixed ε>0, it suffices to consider the

case where, in addition to the properties described in Lemma 4.1, the phase satisfies

‖∂βω∂αxφ‖L∞(X×Ω)<cpar for 16 |α|6Npar and 36 |β|6Npar

for some small constant cpar and large integer Npar∈N, which can be chosen to depend

on n, p and ε. Furthermore, one may assume that the amplitude satisfies

‖∂βωa‖L∞(X×Ω) .β 1 for all 06 |β|6Npar.

Proof. One may assume that the phase of Tλ is given by

φλ(x;ω) :=λφ
(x
λ

;ω
)
,

where

φ(x;ω) = 〈x′, ω〉+xnh(ω)+E(x;ω) for (x;ω)∈X×Ω.

Let %>1, f∈L1(Bn−1) and cover Bn−1 by finitely-overlapping %−1-balls. Provided % is

chosen to depend only on φ and ε>0, by the triangle inequality one may assume that f

is supported on one such ball, say B(�ω, %−1), where �ω∈Bn−1. Thus, by a linear change

of variables,

|Tλf(x)|=
∣∣∣∣�
Bn−1

e2πi(φλ(x;�ω+%−1ω)−φλ(x;�ω))aλ(x; �ω+%−1ω)f̃(ω) dω

∣∣∣∣,
where f̃(ω):=%−(n−1)f(�ω+%−1ω). The phase function appearing in the above oscillatory

integral may be expressed as

%−1〈(∂ωφλ)(x; �ω), ω〉+%−2
(
xnh̃(ω)+λẼ1

(x
λ

;ω
))
,

where

h̃(ω) := %2(h(�ω+%−1ω)−h(�ω)−%−1〈∂ωh(�ω), ω〉)

and

Ẽ1(x;ω) := %2(E(x; �ω+%−1ω)−E(x; �ω)−%−1〈∂ωE(x; �ω), ω〉).

These definitions are motivated by the analysis of the constant coefficient case, as in the

discussion prior to the statement of the lemma. Defining

Ẽ(x;ω) := Ẽ1(Φ(%−1x′, xn; �ω), xn;ω),

where Φ is the function introduced in (4.6), under the change of variables

x′ 7−!λΦ

(
%x′

λ
,
%2xn
λ

; �ω

)
and xn 7−! %2xn,
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the phase and amplitude are transformed into φ̃λ/%
2

(x;ω) and ãλ/%
2

(x;ω), respectively,

where

φ̃(x;ω) := 〈x′, ω〉+xnh̃(ω)+Ẽ(x;ω)

and

ã(x;ω) := a(Φ(%−1x′, xn; �ω), xn; �ω+%−1ω).

In particular, defining

T̃λ/%
2

g(x) :=

�
Rn−1

e2πiφ̃λ/%
2
(x;ω)ãλ/%

2

(x;ω)g(ω) dω, (4.9)

it follows that

‖Tλf‖Lp(Rn) . %(n+1)/p‖T̃λ/%
2

f̃‖Lp(Rn).

It is easy to verify that the phase φ̃ satisfies the conditions of Lemma 4.1 and, provided %

is chosen appropriately (depending on φ and a), it also satisfies the additional conditions

described in Lemma 4.2. The same is true for the amplitude ã, except that the ω

support has now been enlarged. However, by applying a partition of unity and translation

argument, it is possible to assume without loss of generality that ã satisfies the desired

support condition. This facilitates the reduction.

4.3. Controlling higher-order x derivatives

A final, elementary scaling argument allows one to control higher-order derivatives in x.

Lemma 4.3. To prove Theorem 1.2 for some fixed ε>0, it suffices to consider the

case where, in addition to the properties described in Lemmas 4.1 and 4.2, the phase

satisfies

‖∂βω∂αxφ‖L∞(X×Ω)<cpar for 26 |α|6Npar and 06 |β|6Npar. (4.10)

Furthermore, one may assume that the amplitude satisfies

‖∂βω∂αx a‖L∞(X×Ω) .α,β 1 for all 06 |α|, |β|6Npar.

Proof. Let Tλ be an operator associated with a phase φ and amplitude a satisfying

the conditions of Lemma 4.2. Let %>1 be a large constant, which will be chosen depending

on a, φ, n and ε only, and define

φ̃(x;ω) := %φ
(x
%

;ω
)

and ã(x;ω) := a
(x
%

;ω
)
.
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One may easily verify that φ̃ and ã satisfy the conditions in Lemma 4.2, except for an

enlargement of the x-support which may be dealt with via a partition of unity. Further-

more,

‖Tλf‖Lp(Rn) = ‖T̃λ/%f‖Lp(Rn),

and so to prove Lp estimates for Tλ it suffices to prove corresponding estimates for T̃λ.

Finally, provided % is suitably chosen, it follows that φ̃ and ã satisfy the additional

conditions in the statement of Lemma 4.3.

Definition 4.4. Henceforth, cpar>0 and Npar∈N are assumed to be fixed constants,

chosen to satisfy the requirements of the forthcoming arguments. A positive-definite

phase satisfying the properties of Lemma 4.3 for this choice of cpar and Npar is said to

be reduced.

This notion of reduced positive-definite phase is precisely that which appears, then

undefined, in the statement of the k-broad estimates of Theorem 1.9.

4.4. Geometric consequences

Henceforth, unless otherwise stated, all positive-definite phase functions φ are assumed

to be reduced in the sense described above. The strategy is to obtain uniform estimates

over this class of phases.

By the definition of Hörmander-type operators, for each x∈X the map ω 7!∂xφ(x;ω)

parameterises a smooth hypersurface Σx. In many respects, these hypersurfaces are

geometrically very similar to the paraboloid ω 7!
(
ω, 1

2 |ω|
2
)
. To see this, recall that

Ψ:U −!Ω

is a smooth function which satisfies

∂x′φ(x; Ψ(x;u)) =u (4.11)

for all (x;u)∈U⊂X×Rn−1. On each of the fibres Ux :={u∈Rn−1 :(x;u)∈U} of the do-

main U , the map u 7!Ψ(x;u) is a diffeomorphism. Thus, (4.11) implies that Σx is the

graph of the function

hx(u) := ∂xnφ(x; Ψ(x;u))

over the fibre Ux. Each hx is a perturbation of 1
2 |u|

2 in the following sense.

Lemma 4.5. The function hx satisfies hx(0)=0, ∂uhx(0)=0 and

‖∂2
uuhx(u)−In−1‖op =O(cpar)

for all u∈Ux.
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Before proving the lemma, some simple properties of Ψ are recorded. By (4.5), it

follows that Ψ(x; 0)=0. The implicit function theorem implies that

∂uΨ(x;u) = ∂2
x′ωφ(x; Ψ(x;u))−1,

so that, by (4.3) and the local Lipschitz continuity of taking matrix inverses,

‖∂uΨ(x;u)−In−1‖op =O(cpar). (4.12)

As a consequence of this identity (and choosing cpar to be sufficiently small),

|Ψ(x;u)−Ψ(x;u′)| ∼ |u−u′| for all u, u′ ∈Ux,

where the implied constant depends only on n. In addition, if 16k6n−1, then by

twice differentiating ∂xkφ(x; Ψ(x;u))=uk in the u variables, one may deduce that the

kth coordinate Ψk of Ψ satisfies

‖∂2
uuΨk(x;u)‖op =O(cpar). (4.13)

The stated properties of hx now easily follow.

Proof of Lemma 4.5. By (4.5), one has

hx(0) = ∂xnφ(x; Ψ(x; 0)) = ∂xnφ(x; 0) = 0.

Similarly, ∂uhx(0)=0 since ∂ω∂xnφ(x; 0)=0. Finally,

∂2
uuhx(u) = (∂uΨ)>(x;u)(∂2

ωω∂xnφ)(x; Ψ(x;u))∂uΨ(x;u)+E(x;u),

where E(x;ω) is the (n−1)×(n−1) matrix whose (i, j)-th entry is given by

Eij(x;u) = 〈(∂ω∂xnφ)(x; Ψ(x;u)), ∂uiujΨ(x;u)〉.

By (4.3) and (4.13), it follows that ‖E(x;u)‖op=O(cpar), whilst (4.4) and multiple ap-

plications of (4.12) imply that

‖(∂uΨ)>(x;u)(∂2
ωω∂xnφ)(x; Ψ(x;u))∂uΨ(x;u)−In−1‖op =O(cpar).

This concludes the proof.

Similar reasoning can be used to provide useful uniform estimates for the generalised

Gauss map associated with Tλ. To state the result, let

Xλ :=
{
x∈Rn :

x

λ
∈X

}
denote the λ-dilate of X, so that aλ is supported in Xλ×Ω.
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Lemma 4.6. For all x, x̄∈Xλ and ω, �ω∈Ω, the estimates

](Gλ(x;ω), Gλ(x; �ω))∼ |ω−�ω| and ](Gλ(x;ω), Gλ(x̄;ω)).λ−1|x−x̄|

hold with implied constants which depend only on the dimension.

The proof, which is an elementary calculus exercise in the style of the proof of

Lemma 4.5, is omitted.

If the parameter x is restricted to a relatively small ball, then the second inequality

in Lemma 4.6 often allows the Gauss map to be treated as if it were constant in x. This is

consistent with the idea that Tλ is a small perturbation of a constant coefficient operator

and can therefore be effectively approximated by constant coefficient operators at certain

spatial scales.

5. Basic analytic preliminaries

5.1. Wave packet decomposition

Throughout the following sections, ε>0 is a fixed small parameter and δ>0 is a tiny

number satisfying(11) δ�ε and δ∼ε1.

A wave packet decomposition is carried out with respect to some spatial parameter

1�R�λ. Cover Bn−1 by finitely-overlapping balls θ of radius R−1/2 and let ψθ be

a smooth partition of unity adapted to this cover. These θ will frequently be referred

to as R−1/2-caps. Cover Rn−1 by finitely-overlapping balls of radius CR(1+δ)/2 centred

on points belonging to the lattice R(1+δ)/2Zn−1. By Poisson summation, one may find

a bump function adapted to B(0, R(1+δ)/2) so that the functions ηv(z):=η(z−v) for

v∈R(1+δ)/2Zn−1 form a partition of unity for this cover. Let T denote the collection

of all pairs (θ, v). Thus, for f :Rn−1
!C with support in Bn−1 and belonging to some

suitable a-priori class, one has

f =
∑

(θ,v)∈T

(ηv(ψθf)�)̂ =
∑

(θ,v)∈T

η̂v∗(ψθf).

For each R−1/2-cap θ, let ωθ∈Bn−1 denote its centre. Choose a real-valued smooth

function ψ̃ so that the function ψ̃θ(ω):=ψ̃(R1/2(ω−ωθ)) is supported in θ, and ψ̃θ(ω)=1

whenever ω belongs to a cR−1/2 neighbourhood of the support of ψθ for some small

constant c>0. Finally, define

fθ,v := ψ̃θ ·[η̂v∗(ψθf)].

(11) For A,B>0 the notation A�B or B�A is used to denote that A is ‘much smaller’ than B; a

more precise interpretation of this is that A6C−1
ε B for some constant Cε>1 which can be chosen to be

large depending on n and ε.
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Definition 5.1. The notation RapDec(R) is used to denote any quantity CR which

is rapidly decaying in R. More precisely, CR=RapDec(R) if

|CR|.εR−N for all N 6
√
Npar.

Here, Npar is the large integer appearing in the definition of reduced phase from Defini-

tion 4.4. By choosing Npar large, one may assume, say,

ε−10n�
√
Npar� ε10nNpar.

The function η̂v(ω) is rapidly decaying for |ω|&R−(1+δ)/2 and, consequently,

‖fθ,v−η̂v∗(ψθf)‖L∞(Rn−1) 6RapDec(R)‖f‖L2(Bn−1).

It follows that ∥∥∥∥f−∑
θ,v

fθ,v

∥∥∥∥
L∞(Rn−1)

6RapDec(R)‖f‖L2(Bn−1).

The functions fθ,v are almost orthogonal: if S⊆T, then∥∥∥∥ ∑
(θ,v)∈S

fθ,v

∥∥∥∥2

L2(Rn−1)

∼
∑

(θ,v)∈S

‖fθ,v‖2L2(Rn−1).

Let Tλ be an operator with reduced phase φ and amplitude a supported inX×Ω as in

Lemma 4.1. For (θ, v)∈T define the curve γ1
θ,v: I

1
θ,v!Rn−1 by setting γ1

θ,v(t):=Φ(v, t;ωθ),

where Φ is the function introduced in §4 and

I1
θ,v := {t∈Xn : ∂ωφ(x′, t;ωθ) = v for some x′ ∈X ′}.

Thus, ∂ωφ(γ1
θ,v(t), t;ωθ)=v for all t∈I1

θ,v. Moreover, the rescaled curve

γλθ,v(t) :=λγ1
θ,v/λ

(
t

λ

)
satisfies

∂ωφ
λ(γλθ,v(t), t;ωθ) = v for all t∈ Iλθ,v :=

{
t∈R :

t

λ
∈ I1

θ,v/λ

}
.

Let Γλθ,v: I
λ
θ,v!Rn denote the graphing map Γλθ,v(t):=(γλθ,v(t), t); by an abuse of notation,

Γλθ,v will also be used to denote the image of this mapping. The geometry of the curves

Γλθ,v is related to the generalised Gauss map Gλ by the following elementary lemma.

Lemma 5.2. The tangent space TΓλθ,v(t)Γ
λ
θ,v lies in the direction of the unit vector

Gλ(Γλθ,v(t);ωθ) for all t∈Iλθ,v.
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Proof. Differentiating the equation ∂ωφ(Γλθ,v(t);ωθ)=v, it follows that

∂2
ωxφ

λ(Γλθ,v(t);ωθ)(Γ
λ
θ,v)
′(t) = 0.

Thus, (Γλθ,v)
′(t) must be parallel to Gλ(Γλθ,v(t);ωθ) since, by definition, the latter vector

spans the kernel of ∂2
ωxφ

λ(Γλθ,v(t);ωθ).

Define the curved R1/2+δ-tube as

Tθ,v := {(x′, xn)∈B(0, R) :xn ∈ Iλθ,v and |x′−γλθ,v(xn)|6R1/2+δ}.

The curve Γλθ,v is referred to as the core of Tθ,v. Observe that, since φ is of the reduced

form defined in §4, one has

|x′−γλθ,v(xn)| ∼ |∂ωφλ (x;ωθ)−v|, (5.1)

for all x=(x′, xn)∈Xλ with xn∈Iλθ,v (uniformly in λ).

Example 5.3. Let φλ(x;ω):=〈x′, ω〉+xnh(ω) and observe that γλθ,v(t)=v−t∂ωh(ωθ)

parameterises a straight line through v in the direction of ∂ωh(ωθ). The tube is given by

Tθ,v = {x∈B(0, R) : |x′+xn∂ωh(ωθ)−v|6R1/2+δ},

which agrees with those studied in the case of the extension operator.

Lemma 5.4. If 1�R�λ and x∈B(0, R)\Tθ,v, then

|Tλfθ,v(x)|6 (1+R−1/2|∂ωφλ(x;ωθ)−v|)−(n+1) RapDec(R)‖f‖L2(Bn−1). (5.2)

Proof. Observe that

Tλfθ,v(x) =

�
Rn−1

η̂v∗(ψθf)·Gx,

where

Gx(ω) := e−2πiφλ(x;ω)aλ(x;ω)ψ̃θ(ω)

and so, by Plancherel,

Tλfθ,v(x) =

�
Rn−1

ηv ·(ψθf)�· �Gx.

By a simple change of variables, if one defines the phase and amplitude functions

φλ,Rx,z (ω) : =R1/2φλ(x;ωθ+R−1/2ω)−〈z, ω〉,

aλ,Rx (ω) : = aλ(x;ωθ+R−1/2ω)ψ̃(ω),

then

| �Gx(z)|=R−(n−1)/2

∣∣∣∣�
Rn−1

e−2πiR−1/2φλ,Rx,z (ω)aλ,Rx (ω) dω

∣∣∣∣.
This integral is analysed using (non-)stationary phase.
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Claim. Fixing x∈B(0, R)\Tθ,v, z∈supp ηv and R�1, the following estimates hold

on supp aλ,Rx :

(i) R−1/2|∂ωφλ,Rx,z (ω)|∼R−1/2|∂ωφλ(x;ωθ)−v|&Rδ;
(ii) |∂αωφλ,Rx,z (ω)|.|∂ωφλ,Rx,z (ω)| for all 26|α|6Npar;

(iii) |∂αωaλ,Rx (ω)|.ε1 for all |α|6Npar.

Once the claim is established, repeated integration-by-parts yields

| �Gx(z)|= (1+R−1/2|∂ωφλ(x;ωθ)−v|)−(n+1) RapDec(R). (5.3)

Such integration-by-parts or non-stationary phase arguments are standard but, for the

reader’s convenience (and since arguments of this kind will feature repeatedly in the

article), the details are appended. The precise result used here is Lemma A.1. The

desired inequality (5.2) is an immediate consequence of (5.3) together with Young’s

inequality and Plancherel’s theorem.

It remains to establish the claim. Here the stated uniformity in the estimates is a

consequence of the reductions made in §4. In view of Lemma 4.2, the bound (iii) for the

amplitude is immediate, and so it remains to show the bounds for the phase.

Proof of (i)

Computing the derivative of the phase function,

∂ωφ
λ,R
x,z (ω) = ∂ωφ

λ(x;ωθ+R−1/2ω)−z

= [∂ωφ
λ(x;ωθ)−v]+[v−z]+[∂ωφ

λ(x;ωθ+R−1/2ω)−∂ωφλ(x;ωθ)].

Observe that |v−z|.R(1+δ)/2 whenever z∈supp ηv. Moreover,

|∂ωjφλ(x;ωθ+R−1/2ω)−∂ωjφλ(x;ωθ)|6R−1/2

� 1

0

|〈∂ω∂ωjφλ(x;ωθ+tR−1/2ω), ω〉| dt.

Since ∂2
ωiωjφ

λ(0;ω)=0 for all ω∈Ω and 16i, j6n−1, it follows that

|∂2
ωiωjφ

λ(x;ωθ+tR−1/2ω)|6
� 1

0

|〈∂x∂2
ωiωjφ

λ(sx;ωθ+tR−1/2ω), x〉| ds

6 ‖∂x∂2
ωiωjφ

λ‖L∞(Xλ×Ω)|x|.R

(5.4)

for x∈B(0, R)∩Xλ, where the uniformity in the last inequality is due to Lemma 4.1.

Combining these estimates,

|∂ωφλ(x;ωθ+R−1/2ω)−∂ωφλ(x;ωθ)|.R1/2.
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On the other hand, for x∈B(0, R)\Tθ,v, it is claimed that

|∂ωφλ(x;ωθ)−v|&R1/2+δ. (5.5)

If xn∈Iλθ,v, then (5.5) follows directly from the definition of Tθ,v and (5.1). Temporarily

assuming that (5.5) holds in general, it follows that the ∂ωφ
λ(x;ωθ)−v term dominates

in the above expansion of ∂ωφ
λ,R
x,z (ω). In particular, for all z∈supp ηv, one concludes that

R−1/2|∂ωφλ,Rx,z (ω)| ∼R−1/2|∂ωφλ(x;ωθ)−v|&Rδ,

whenever R�1.

It remains to establish (5.5) for x∈B(0, R)\Tθ,v with xn /∈Iλθ,v. The condition on xn

implies that v /∈X̃ ′, where X̃ ′ is defined to be the image of X ′ under the diffeomorphism

z′ 7−!λ∂ωφ
(
z′,

xn
λ

;ωθ

)
.

The set X̃ ′ will contain a ball centred at λ∂ωφ(0, xn/λ;ωθ) of radius 2cλ for some di-

mensional constant c>0. Since |xn|<R and ∂ωφ(0;ωθ)=0, one observes that

λ
∣∣∣∂ωφ(0,

xn
λ

;ωθ

)∣∣∣.R,

and so B(0, cλ)⊆X̃ ′, provided R�λ. Consequently, |v|&λ, whilst, on the other hand,

|∂ωφλ(x;ωθ)|.R

and so, again provided R�λ, the estimate (5.5) immediately follows.(12)

Proof of (ii)

Fix α∈Nn0 with 26|α|6Npar. By arguing as in (5.4), one obtains

|∂αωφλ,Rx,z (ω)|=R−(|α|−1)/2|(∂αωφλ)(x;ωθ+R−1/2ω)|

6R−(|α|−1)/2‖∂x∂αωφλ‖L∞(Xλ×Ω) |x|.R1/2,

where the uniformity in the last inequality is due to Lemmas 4.1 and 4.2. Since

|∂ωφλ,Rx,z (ω)|>R1/2

by (i), this concludes the proof of the claim and of Lemma 5.4.

(12) This argument can also be used to show that, for |v|.λ, the domain Iλθ,v contains an interval
about zero of length ∼λ.
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5.2. An L2 estimate

The following standard L2-bound, which has been mentioned previously in §2, will play

a significant role in the forthcoming analysis.

Lemma 5.5. (Hörmander [17]) If 16R6λ and BR is any ball of radius R, then

‖Tλf‖L2(BR) .R1/2‖f‖L2(Bn−1).

This lemma is a direct corollary of the following lemma which, in turn, is a conse-

quence of Hörmander’s generalisation of the Hausdorff–Young inequality [17].

Lemma 5.6. For any fixed xn∈R, the estimate

‖Tλf‖L2(Rn−1×{xn}) . ‖f‖L2(Bn−1)

holds.

Proof. Defining Sf(x′):=Tλf(λx′, xn), the problem is to show that

‖Sf‖L2(Rn−1) .λ−(n−1)/2‖f‖L2(Rn−1). (5.6)

Observe that

Sf(x′) =

�
Rn−1

e2πiλφ(x′,xn/λ;ω)a
(
x′,

xn
λ

;ω
)
f(ω) dω.

The original hypotheses on the phase φ imply that∣∣∣det ∂2
x′ωφ

(
x′,

xn
λ

;ω
)∣∣∣& 1,

whilst (x′;ω) 7!a(x′, xn/λ;ω) has support in some bounded subset of Rn−1×Rn−1. Both

these conditions hold uniformly in xn and λ. Thus, the operator S satisfies the conditions

of Hörmander’s generalisation of the Hausdorff–Young inequality [17] (see also, for in-

stance, [28, p. 377]), uniformly in xn and λ. Applying Hörmander’s theorem immediately

yields (5.6).

5.3. The locally constant property

As a final analytic preliminary, some simple consequences of the uncertainty principle

are discussed. It is remarked that the result of this subsection (that is, Lemma 5.8)

only plays a role in the proof of Theorem 1.2 much later in the argument (namely, in

the parabolic rescaling argument in §11). It does, however, feature in an independent

discussion in the following section.
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Definition 5.7. A function ζ:Rn![0,∞) is said to be locally constant at scale % for

some %>0 if ζ(x)∼ζ(y) for all x, y∈Rn with |x−y|.%.

Owing to the uncertainty principle, heuristically one expects the following: if f

is supported on a %−1-cap, then |Tλf | is essentially constant at scale %. For extension

operators this is due to the fact that, under the support hypothesis on the input function,

Ef has (distributional) Fourier support inside a %−1-ball. For general Hörmander-type

operators Tλ the Fourier transform of Tλf does not necessarily have compact support.

It will, however, be concentrated in some %−1-ball and this is sufficient to ensure the

locally constant property holds. This discussion is formalised by the following lemma.

Lemma 5.8. Let Tλ be a Hörmander-type operator and 16k6n. There exists a

smooth, rapidly decreasing function ζ:Rn![0,∞) with the following properties:

(1) ζ is locally constant at scale 1.

(2) If δ>0 and 16%6λ1−δ, then the pointwise inequality

|Tλf |1/k . |Tλf |1/k∗ζ%+RapDec(λ)‖f‖1/kL2(Bn−1)

holds whenever f is supported in some %−1-ball. Here, ζ%(x):=%−nζ(x/%).

It is useful to work with the parameter k here, in order to apply the locally constant

property effectively in k-linear settings.

The locally constant property of ζ implies that

|Tλf |1/k∗ζ%(x)∼ |Tλf |1/k∗ζ%(y) for all x, y ∈Rn with |x−y|. %;

namely, |Tλf |1/k∗ζ% is locally constant at scale %. This is a rigorous formulation of the

locally constant heuristic discussed above.

Proof. Suppose that supp f⊂B(�ω, %−1), where �ω∈Ω, and observe that

[e−2πiφλ( · ;�ω)Tλf ]̂ (ξ) =

�
Rn−1

Kλ(ξ;ω)f(ω) dω,

where the function Kλ is given by

Kλ(ξ;ω) =λn
�
Rn
e−2πiλ(〈x,ξ〉−φ(x;ω)+φ(x;�ω))a(x;ω) dx.

This oscillatory integral is estimated via (non-)stationary phase, using the simple esti-

mate

|∂xφ(x;ω)−∂xφ(x; �ω)|. %−1 for (x;ω)∈X×Ω with ω ∈ supp f .



sharp estimates for oscillatory integral operators 289

In particular, if |ξ|>C%−1 for a suitably large constant C>1, then repeated integration-

by-parts, combined with the control on the derivatives of a ensured by Lemma 4.3, shows

that

|Kλ(ξ;ω)|6RapDec(λ)(1+|ξ|)−(n+1).

Let η be a Schwartz function on Rn with η̂(ξ)=1 for all |ξ|<C for a suitable constant

C>1 and support in B(0, 2C). Such a function can further be chosen so that |η|1/k

admits a smooth, rapidly decreasing majorant ζ which is locally constant at scale 1.

From the above observations,

[e−2πiφλ( · ;�ω)Tλf ]̂ (ξ) = [e−2πiφλ( · ;�ω)Tλf ]̂ (ξ)η̂%(ξ)+E(f, λ)(ξ),

where |E(f, λ)(ξ)|6RapDec(λ)(1+|ξ|)−(n+1)‖f‖L2(Bn−1). Applying Fourier inversion

and using the triangle inequality to estimate the error,

e−2πiφλ(x,;�ω)Tλf(x) = [e−2πiφλ( · ;�ω)Tλf ]∗η%(x)+RapDec(λ)‖f‖L2(Bn−1)

and, in particular,

|Tλf(x)|6
�
Rn
|Tλf(x−y)η%(y)| dy+RapDec(λ)‖f‖L2(Bn−1).

Observe that, for fixed x, the function appearing in absolute values in the above integrand

has Fourier support in a ball of radius O(%−1). Bernstein’s inequality(13) may therefore

be applied to dominate the right-hand side by(�
Rn
|Tλf(x−y)|1/kζ%(y) dy

)k
+RapDec(λ)‖f‖L2(Bn−1),

which concludes the proof.

6. Properties of the k-broad norms

6.1. k-broad triangle inequality and logarithmic convexity

The functional f 7!‖Tλf‖BLpk,A(U) is not a norm in a literal sense, but it does exhibit

some properties similar to those of Lp-norms. For instance, the map U 7!‖Tλf‖p
BLpk,A(U)

behaves similarly to a measure.

(13) More precisely, here the proof uses a general form of Bernstein’s inequality, valid for exponents

less than 1. In particular, if 0<p6q6∞ and g is an integrable function on Rn satisfying supp ĝ⊆Br,
then

‖g‖Lq(Rn) . r
n(1/p−1/q)‖g‖Lp(Rn).

This extension follows from the classical Bernstein inequality (that is, the above estimate in the restricted

range 16p6q6∞) in a rather straightforward manner. The classical Bernstein inequality is itself a direct
consequence of Young’s convolution inequality; see, for instance, [36, §5].
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Lemma 6.1. (Finite (sub-)additivity) Let U1, U2⊆Rn and U :=U1∪U2. If 16p<∞
and A is a non-negative integer, then

‖Tλf‖p
BLpk,A(U)

6 ‖Tλf‖p
BLpk,A(U1)

+‖Tλf‖p
BLpk,A(U2)

holds for all integrable f :Bn−1
!C.

This is an immediate consequence of the definition of the k-broad norms. A slightly

less trivial observation is that ‖Tλf‖BLpk,A(U) also satisfies weak versions of the triangle

and logarithmic convexity inequalities.

Lemma 6.2. (Triangle inequality [14]) If U⊆Rn, 16p<∞ and A:=A1+A2 for A1

and A2 non-negative integers, then

‖Tλ(f1+f2)‖BLpk,A(U) . ‖Tλf1‖BLpk,A1
(U)+‖Tλf2‖BLpk,A2

(U)

holds for all integrable f1, f2:Bn−1
!C.

Lemma 6.3. (Logarithmic convexity [14]) Suppose that U⊆Rn, 16p, p1, p2<∞ and

06α1, α261 satisfy α1+α2=1 and

1

p
=
α1

p1
+
α2

p2
.

If A:=A1+A2 for A1 and A2 non-negative integers, then

‖Tλf‖BLpk,A(U) . ‖Tλf‖α1

BL
p1
k,A1

(U)
‖Tλf‖α2

BL
p2
k,A2

(U)

holds for all integrable f :Bn−1
!C.

These estimates are proven in the context of Fourier extension operators in [14]. The

arguments are entirely elementary and readily generalise to the variable coefficient case.

It is remarked that the parameter A appears in the definition of the k-broad norm to

allow for these weak triangle and logarithmic convexity inequalities.

6.2. k-broad versus k-linear

A relationship between k-broad and k-linear estimates is given by the following propo-

sition.
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Proposition 6.4. Let T be a class of Hörmander-type operators which is closed

under translation,(14) 26p<∞, 26k6n and ε>0. Suppose that, for all 1�R6λ and

R-balls BR, the k-linear inequality∥∥∥∥ k∏
j=1

|Tλj fj |1/k
∥∥∥∥
Lp(BR)

.ε,(φj)kj=1
ν−CεRε‖f‖L2(Bn−1)

holds whenever (Tλ1 , ..., T
λ
k )∈T k is a ν-transverse k-tuple of Hörmander-type operators.

Then, for all 1�R6λ and R-balls BR, the k-broad inequality

‖Tλf‖BLpk,1(BR) .ε,φK
CεRε‖f‖L2(Bn−1)

holds for any Tλ∈T .

Recall the notion of ν-transversality was introduced in Definition 1.6. The parameter

K in the above theorem is the same as that which appears in the definition of the k-broad

norms; the Cε denote constants, which may vary from line to line, which depend only on

n and ε.

The (local version of the) Bennett–Carbery–Tao theorem [4] therefore implies a

version of Theorem 1.9 which holds for all Hörmander-type operators (that is, without

the positive-definite hypothesis) with a restricted range of p.(15)

Corollary 6.5. Let Tλ be a Hörmander-type operator. For all 26k6n, all p>

2k/(k−1) and all ε>0 the estimate

‖Tλf‖BLpk,1(BR) .ε,φK
CεRε‖f‖L2(Bn−1)

holds for all λ>1.

For completeness, the proof of Proposition 6.4 is given; the result itself will not be

used in the proof of Theorem 1.2 and is included mainly for expository purposes. Thus,

readers interested only in the proof of Theorem 1.2 may safely skip to the next section.

Proof of Proposition 6.4. Let Z⊂BR be a maximal set of points with the property

that the balls B(z,R/2
CK) for z∈Z are pairwise disjoint. Here, 
C>1 is a suitable

constant, chosen to meet the forthcoming requirements of the proof. Letting

Bz :=B

(
z,

R

CK

)
for z ∈Z,

(14) That is, if Tλ∈T and a∈Rn, then the translated operator Tλa defined by Tλa f(x):=Tλf(x+a)
also belongs to T .

(15) The version of the Bennett–Carbery–Tao theorem used here is not explicitly stated in [4]

(there, the variable coefficient estimates are only presented at the n-linear level). Nevertheless, k-linear

inequalities for Hörmander-type operators are readily obtained by combining the analysis of §5 and §6
of [4]; see [9, §5].
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it follows that #Z.Kn and

‖Tλf‖p
BLpk,1(BR)

6
∑
z∈Z
‖Tλf‖p

BLpk,1(Bz)
.

Fixing z∈Z, it therefore suffices to show that

‖Tλf‖BLpk,1(Bz) .εK
CεRε‖f‖L2(Bn−1),

since summing the contributions from each choice of z∈Z only introduces an acceptable

Kn factor into the estimate. By introducing a bump function into the definition of

the operator, one may further assume that the amplitude aλ has x-support in the ball

concentric to Bz with twice the radius.

Fix a ball BK2 =B(x̄,K2)∈BK2 , with BK2∩Bz 6=∅, and suppose that V is a (k−1)-

dimensional subspace which realises the minimum in µTλf (BK2). Thus, by definition, if

τ is a K−1-cap for which

‖Tλfτ‖pLp(BK2 )>µTλf (BK2),

then τ∈V , where the inclusion symbol is used in the non-standard sense described in the

introduction. Amongst all such subspaces V , choose one which maximises the cardinality

of the set

T (V ) := {τ ∈V : ‖Tλfτ‖pLp(BK2 ) >µTλf (BK2)}.

By definition, there exists some cap τ∗ /∈V such that ‖Tλfτ∗‖pLp(BK2 )=µTλf (BK2).

Suppose there exists a (k−2)-dimensional subspace W⊂Rn such that τ∈W for all

τ∈T (V ). Then, defining V ′ :=span(W∪{Gλ(x̄, ωτ∗)}), where ωτ∗ is the centre of τ∗, it

follows that τ∗∈V ′ and τ∈V ′ for all τ∈T (V ). On the other hand, V ′ also realises the

minimum in the definition in µTλf (BK2), since

‖Tλfτ‖pLp(BK2 ) 6µTλf (BK2) for all τ /∈V ′ with τ ∈V ;

this is immediate by the fact that, if τ /∈V ′, then τ /∈W , so τ does not belong to T (V ).

These observations contradict the maximality of V and, consequently, no such subspace

W can exist.

By the preceding discussion, one may find a family of caps τ∗1 , ..., τ
∗
k−1∈T (V ) satis-

fying ∣∣∣∣ k∧
j=1

Gλ(x̄, ωj)

∣∣∣∣&K−(k−1) for all ωj ∈ τ∗j , 16 j6 k. (6.1)
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Thus,

µTλf (BK2)6
k∏
j=1

‖Tλfτ∗j ‖
p/k
Lp(BK2 ) (6.2)

for τ∗k :=τ∗. To apply the hypothesised multilinear estimate, one wishes to exchange the

order of taking the norm and product on the right-hand side of the above expression;

that is, one wishes to prove an estimate of the form

k∏
j=1

‖Tλfτ∗j ‖
p/k
Lp(BK2 ) .KO(1)

∥∥∥∥ k∏
j=1

|Tλfτ∗j |
1/k

∥∥∥∥p
Lp(BK2 )

.

This is achieved by exploiting the locally constant property of the Tλfτ , as discussed in

§5.3. In particular, by Lemma 5.8 and Hölder’s inequality, there exists a non-negative,

rapidly decreasing, locally constant function ζ such that

|Tλfτ |p/k . |Tλfτ |p/k∗ζK+RapDec(λ)‖f‖p/kL2(Bn−1) (6.3)

holds for all K−1-caps τ . Since rapidly decaying error terms are entirely harmless,

henceforth they will be suppressed in the notation. Observe that, for all z∈B(x̄,K2)

and y∈Rn, one has ζK(z−y).KO(1)wK(x̄−y), where wK(y):=(1+|y|/K)−N for some

suitable choice of large exponent N satisfying N=O(1). Combining these observations

with a second application of (6.3) yields

‖Tλfτ‖p/kLp(BK2 ) .KO(1)

�
Rn
|Tλfτ |p/k∗ζK(y)wK(x̄−y) dy. (6.4)

Temporarily fix x∈B(0,K) and note that the locally constant property of ζ implies that

|Tλfτ |p/k∗ζK(y). |Tλfτ |p/k∗ζK(x+y) for all y ∈Rn. (6.5)

Thus, by (6.2), (6.4) and (6.5), one deduces that

µTλf (BK2).KO(1)

�
(Rn)k

k∏
j=1

|Tλfτ∗j |
p/k∗ζK(x+yj)wK(x̄−yj) dy.

Taking the average of both sides of this estimate over all x∈B(0,K) and shifting the yj

variables,

µTλf (BK2).KO(1)

�
(Rn)2k

�
B(x̄,K)

k∏
j=1

|Tλfτ∗j �σyj ,zj (x)|p/k dxZK(y, z) dy dz,
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where

ZK(y, z) :=

k∏
j=1

wK(yj)ζK(zj)

and

σyj ,zj (x) :=x+yj−zj .

Since both wK and ζK decay (at least) as rapidly as |y|−N away from B(0,K), one

may restrict the integral in y and z from the whole space (Rn)2k to the bounded region

B(0, λ/
CK)2k at the expense of an additional harmless error term.

It is possible to localise to a finer scale than λ/
CK, but this scale suffices for the

purposes of the proof. In particular, if |y|, |z|<λ/
CK, then it follows from Lemma 4.6

that

|Gλ(x, ω)−Gλ(σy,z(x), ω)|. |x−σy,z(x)|
λ

. 
C−1K−1 for all (x, ω)∈ supp a. (6.6)

If 
C is chosen sufficiently large, then this bound is enough to ensure that pre-composing

by σy,z preserves certain transversality properties, as discussed below.

Given a K−1-cap τ , let Tλτ be a Hörmander-type operator given by replacing the

amplitude aλ in the definition of Tλ with some amplitude aλτ which has ω -support in a

2K−1-cap concentric to τ and which satisfies Tλτ fτ=Tλfτ . One now wishes to bound

�
B(0,λ/	CK)2k

�
B(x̄,K)

k∏
j=1

|Tλτ∗j fτ∗j �σyj ,zj (x)|p/k dxZK(y, z) dy dz. (6.7)

For the purposes of this proof, a k-tuple (τ1, ..., τk) of K−1-caps is said to be transverse if

(Tλτ1 , ..., T
λ
τk

) is a cK−(k−1)-transverse k-tuple of Hörmander-type operators, for a suitable

choice of small constant c>0. Now, suppose (x, ω)∈supp a so that, by the original

decomposition, both x and x̄ lie in a ball of radius R/
CK. Since R6λ, if follows from

Lemma 4.6 that

|Gλ(x̄, ω)−Gλ(x, ω)|. |x̄−x|
λ

. 
C−1K−1 for all (x, ω)∈ supp a.

Thus, choosing 
C sufficiently large, in addition to (6.1), one may assume that (τ∗1 , ..., τ
∗
k )

is transverse. The expression (6.7) is therefore dominated by

∑
(τj)kj=1 trans.

�
B(0,λ/	CK)2k

�
B(x̄,K)

k∏
j=1

|Tλτjfτj �σyj ,zj (x)|p/k dxZK(y, z) dy dz,
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where the sum is over all choices of transverse k-tuples of caps. Summing both sides of

this inequality over all B(x̄,K2)∈BK2 with B(x̄,K2)∩Bz 6=∅, it suffices to show that

�
Rn

k∏
j=1

|Tλτjfτj �σyj ,zj (x)|p/k dx.Rε‖f‖pL2(Bn−1)

for any choice of K−(k−1)-transverse tuple (τ1, ..., τk) and any y, z∈B(0, λ/
CK)k. How-

ever, defining Tλj f(x):=Tλτjf �σyj ,zj (x) and again choosing 
C to be sufficiently large, it

follows from (6.6) that these operators are ∼K−(k−1)-transverse in the sense of Defini-

tion 1.6. Thus, the desired estimate is an immediate consequence of the hypothesised

multilinear inequality.

7. Algebraic preliminaries

7.1. Basic definitions and results

Let 06m6n and consider a collection of real polynomials Pj∈R[X1, ..., Xn], 16j6n−m.

Let Z(P1, ..., Pn−m) denote their zero locus; that is,

Z(P1, ..., Pn−m) := {x∈Rn :Pj(x) = 0 for 16 j6n−m}.

Any such set is referred to as a variety and the maximum degree of Z(P1, ..., Pn−m) is

defined to be the number

degZ(P1, ..., Pn−m) := max
16j6n−m

degPj .

Remark 7.1. The notion of maximum degree is unnatural from a geometric perspec-

tive: it is not an intrinsic quantity associated with the variety, but depends on the choice

of defining polynomials P1, ..., Pn−m. Nevertheless, it is a convenient quantity to work

with for the purposes of this article.

Throughout this article, it will be convenient to work with varieties which satisfy

the additional property that the n×(n−m) matrix (∇P1(z) ...∇Pn−m(z)) has full rank

whenever z∈Z(P1, ..., Pn−m). In this case, Z(P1, ..., Pn−m) is said to be a transverse

complete intersection. Clearly, any transverse complete intersection is a smooth m-

dimensional submanifold of Rn.

For zero-dimensional transverse complete intersections, the following well-known

variant of the classical Bézout theorem holds (see, for instance, [11]).

Theorem 7.2. (Bézout’s theorem) Suppose that Z=Z(P1, ..., Pn) is a transverse

complete intersection. Then, Z is finite and #Z6
∏n
j=1 degPj.
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A key tool in the present analysis of Hörmander-type operators is the following

polynomial partitioning result, which is a variant of the polynomial partitioning theorem

introduced in [15], and is based on the classical polynomial ham-sandwich theorem of

Stone and Tukey [29].

Theorem 7.3. (Polynomial partitioning [14]) Suppose that W∈L1(Rn) is non-

negative. For any degree D∈N, there is a polynomial P of degree degP.D such that

the following hold :

(i) The set Z(P ) is a finite union of ∼logD transverse complete intersections;

(ii) If {Oi}i∈I denotes the set of connected components of Rn\Z(P ), then #I.Dn

and �
Oi

W ∼D−n
�
Rn
W for all i∈I.

The connected components Oi of the set Rn\Z(P ) are referred to as cells. It is

remarked that in [14] a stronger version of the above theorem is stated and proved,

which provides further structural information about the polynomial P (in particular, the

full result is stable under certain small perturbations of P ). Whilst the methods of this

article will require this strengthened version of Theorem 7.3, the full statement of the

result is not reproduced here (it is only needed to address certain technical aspects of

the analysis).

It was observed in recent work of the first author [13], [14] that polynomial par-

titioning is a useful tool for studying oscillatory integral operators. Roughly speaking,

Theorem 7.3 can be used to effectively reduce the problem to situations where the mass

of Tλf is concentrated in the neighbourhood of some low-degree algebraic variety; note

that this is precisely the setup in the sharp examples discussed in §2.

7.2. Polynomial approximation

Recall that the operators Tλ are defined with respect to data belonging to the C∞

category. In order to apply algebraic methods to the problem, one must approximate

certain C∞ functions by polynomials. This applies, in particular, to the core curves Γλθ,v
which appear in the definition of the wave packets in §5. Similar issues were addressed in

[9], [38] via a Jackson-type approximation theorem (see, for instance, [1]); for the present

purpose, an entirely elementary Taylor approximation argument is all that is required.

Let ε>0 be a small parameter and define N=Nε :=d1/2εe∈N. Suppose that

Γ: (−1, 1)−!Rn
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is a smooth curve satisfying

‖Γ‖CN+1(−1,1) := max
06k6N+1

sup
|t|<1

|Γ(k)(t)|. 1.

The following lemma implies that

‖Γ1
θ,v‖CN+1(−1,1) . 1,

revealing further properties of the core curves of the tubes defined in §5.

Lemma 7.4. The curves Γ1
θ,v satisfy

|(Γ1
θ,v)
′(t)| ∼ 1 for all t∈ I1

θ,v,

and

sup
t∈I1

θ,v

|(Γ1
θ,v)

(k)(t)|. cpar for 26 k6N .

Proof. This follows from the reductions made in §4. Indeed, recall that Γ1
θ,v(t)=

(γ1
θ,v(t), t) satisfies ∂ωφ(γ1

θ,v(t), t;ωθ)=v. Differentiating this identity yields

(γ1
θ,v)
′(t) =−∂2

ωx′φ(γ1
θ,v(t), t;ωθ)

−1∂ω∂xnφ(γ1
θ,v(t), t;ωθ).

The bounds now follow from (4.3) and (4.10), provided Npar is chosen to be sufficiently

large.

Let [Γ]ε:R!Rn denote the polynomial curve given by the degree-N Taylor approx-

imation of Γ around zero. Observe that

‖[Γ]ε‖C∞(−2,2) 6 e2‖Γ‖CN (−1,1) . 1.

Given λ�1, noting that λ−εN6λ−1/2, Taylor’s theorem yields

|Γ(i)(t)−[Γ](i)ε (t)|.ε λ−1/2|t|1−i for all |t|.ε λ−ε and i= 0, 1.

Letting Γλ: (−λ, λ)!Rn denote the rescaled curve Γλ(t):=λΓ(t/λ), the above inequalities

trivially imply that

‖[Γλ]′ε‖C∞(−2λ,2λ) . 1 and ‖[Γλ]′′ε‖C∞(−2λ,2λ) .λ−1, (7.1)

and

|(Γλ)(i)(t)−([Γλ]ε)
(i)(t)|.ε λ−1/2|t|1−i for all |t|.ε λ1−ε and i= 0, 1. (7.2)

Combining the i=1 case of the above estimate with the elementary inequality(16)

|x∧y|6min{|x|, |y|}|x−y| for all x, y ∈Rn\{0},

together with the fact that |(Γλ)′(t)|∼|[Γλ]′ε(t)|∼1, one observes that the tangent spaces

to the curves Γλ and [Γλ]ε have a small angular separation; more precisely,

](TΓλ(t)Γ
λ, T[Γλ]ε(t)[Γ

λ]ε).ε λ
−1/2 for all |t|.ε λ1−ε. (7.3)

(16) This follows by estimating the area of a triangle with sides of length |x|, |y| and |x−y|, taking
the length of the ‘base’ to be min{|x|, |y|} and bounding the ‘perpendicular height’ by |x−y|.
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7.3. Transverse interactions between curved tubes and varieties

Let Z=Z(P1, ..., Pn−m) be a transverse complete intersection and fix a polynomial curve

Γ:R!Rn. The purpose of this subsection is to study transverse interactions between Γ

and an r-neighbourhood of Z; that is, roughly speaking, one wishes to understand the

set of points at which the curve Γ enters NrZ at a large angle. More precisely, given

α, r>0, the problem is to estimate the size of the set

Z>α,r,Γ := {z ∈Z : there exists x∈Γ with |x−z|<r and ](TzZ, TxΓ)>α}.

It will be convenient to assume that Γ is a polynomial graph, by which it is meant that the

curve can be rotated so that it is given by Γ(t)=(γ(t), t) for some polynomial mapping

γ:R!Rn−1.

Lemma 7.5. Let n>2, 16m6n and Z=Z(P1, ..., Pn−m)⊆Rn be a transverse com-

plete intersection. Suppose that Γ:R!Rn is a polynomial graph satisfying

‖Γ′‖L∞(−2λ,2λ) . 1 and ‖Γ′′‖L∞(−2λ,2λ) 6 δ (7.4)

for some λ, δ>0. There exists a dimensional constant 
C>0 such that, for all α>0 and

0<r<λ satisfying α>
Cδr, the set Z>α,r,Γ∩B(0, λ) is contained in a union of

O(( degZ ·deg Γ)n)

balls of radius r/α.

The case of interest is given by taking Γ:=[Γλθ,v]ε to be the polynomial approximant

of the curve Γλθ,v introduced in the previous subsection. Here, deg Γ.ε1 and, by (7.1), the

condition (7.4) holds with δ∼ε1/λ; thus, Lemma 7.5 implies that, for α>0 and 0<r<λ

satisfying α&r/λ, the set Z>α,r,Γ∩B(0, λ) is contained in a union of Oε(( degZ)n) balls

of radius r/α.

Using Bézout’s theorem (that is, Theorem 7.2), Lemma 7.5 was established in the

case where Γ is a line by the first author in [14, Lemma 5.7]. If Γ=` is a line, then the

condition (7.4) holds for any λ>0 and any δ>0, and therefore the lemma implies that,

for any α, r>0, the set Z>α,r,` is contained in a union of O(( degZ)n) balls of radius

r/α. The result for general curves Γ is, in fact, a rather straightforward consequence of

the special case of lines.

Proof. Since the problem is rotationally invariant, one may assume that

Γ(t) = (γ(t), t),
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where γ:R!Rn−1 is a polynomial mapping.

The function Υ:Rn!Rn given by Υ(x′, xn):=(x′−γ(xn), xn) is clearly a diffeomor-

phism which maps bijectively between Γ and the vertical line `=span{en}. Furthermore,

it easily follows that the image set

Z̃ := Υ(Z(P1, ..., Pn−m)) =Z(P1�Υ
−1, ..., Pn−m�Υ

−1)

is a transverse complete intersection of maximum degree deg Z̃6degZ ·deg Γ.

Let λ, α and r satisfy the hypotheses of the lemma for some suitably large-dimensional

constant 
C>1. The key observation is as follows.

Claim. There exist dimensional constants 0<c61 and C>1 such that

Z>α,r,Γ∩(Rn−1×(−λ, λ))⊆Υ−1(Z̃>cα,Cr,`).

Once this claim is verified, Lemma 7.5 easily follows. Indeed, one may apply the

special case of Lemma 7.5 for lines (which, as previously remarked, is proved in [14,

Lemma 5.7]) to conclude that Z̃>cα,Cr,` is contained in a union of O(( degZ ·deg Γ)n)

balls of radius r/α. On the other hand, as a consequence of the first hypothesis in (7.4),

|Υ(x)−Υ(x′)| ∼ |x−x′| for all x, x′ ∈Rn−1×(−λ, λ). (7.5)

Combining these observations, it follows that the set Z>α,r,Γ∩B(0, λ) can be covered by

O(( degZ ·deg Γ)n) balls of radius r/α, as required.

Turning to the proof of the claim, let z∈Z>α,r,Γ∩B(0, λ) and note that there exists

some x=Γ(xn)∈Γ with |x−z|<r and ](TzZ, TxΓ)>α. Defining

z̃ := Υ(z)∈ Z̃ and x̃ := Υ(x)∈ `,

it follows from (7.5) that |x̃−z̃|.r. Thus, the problem is reduced to showing that

](Tz̃Z̃, en)=](Tz̃Z̃, Tx̃`)&α.

Observe that, provided 
C is sufficiently large depending only on n,

](TzZ, TΓ(zn)Γ)> 1
2α. (7.6)

Indeed, |zn|<λ and |xn|<λ+r<2λ, and so, by the second condition in (7.4),

|Γ′(xn)−Γ′(zn)|6 δ|xn−zn|<δr< 
C−1α.

Thus, if 
C is appropriately chosen, then

](TΓ(xn)Γ, TΓ(zn)Γ)< 1
2α,
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which immediately yields (7.6).

Combining the observations of the previous paragraphs, the claim follows, provided

one can show that ](Tz̃Z̃, en)∼](TzZ, TΓ(zn)Γ). Let η be a smooth curve in Z containing

z and define η̃ :=Υ(η); thus, η̃ is a smooth curve in Z̃ containing z̃. The problem is now

reduced to proving that

](Tz̃ η̃, en)∼](Tzη, TΓ(zn)Γ). (7.7)

If Tzη lies in the hyperplane e⊥n orthogonal to en, then the above estimate easily follows.

Indeed, the tangent space TΓ(zn)Γ is spanned by Γ′(zn)=(γ′(zn), 1) and therefore, by

(7.4), one has ](Tzη, TΓ(zn)Γ)∼1. On the other hand, it is clear from the definition of Υ

that Tz̃ η̃ also lies in e⊥n , and so ](Tz̃ η̃, en)= 1
2π. Thus, (7.7) holds in this case.

If Tzη does not lie in the hyperplane e⊥n , then η can be locally parameterised as a

graph over the xn-variable. By an abuse of notation, let η denote this graph parametri-

sation and η̃ :=Υ�η so that η(zn)=z and η̃(zn)=z̃. One may easily verify that

|η̃′(zn)∧en|= |η′(zn)∧Γ′(zn)|,

and so

sin](Tz̃ η̃, en)|η̃′(zn)|= sin](Tzη, TΓ(zn)Γ)|η′(zn)| |Γ′(zn)|.

By the first hypothesis in (7.4), one has

|η̃′(zn)| ∼ |η′(zn)| and |Γ′(zn)| ∼ 1,

and (7.7) follows.

8. Transverse equidistribution estimates

8.1. Tangential wave packets and transverse equidistribution

In this section the theory of transverse equidistribution estimates, as introduced in [14], is

extended to the variable coefficient setting. This is a key step in the proof of Theorem 1.9,

and here the positive-definite hypothesis (H2+) plays a crucial role in the argument.

The first step is to give a precise definition of what it means for a wave packet to be

‘tangential’ to a transverse complete intersection Z. Throughout this section, let Tλ be

a Hörmander-type operator with reduced positive-definite phase φ and for some R�λ
define the (curved) tubes Tθ,v as in §5. Furthermore, let δm denote a small parameter

satisfying 0<δ�δm�1 (here δ is the same parameter as that which appears in the

definition of the wave packets).
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Definition 8.1. Suppose Z=Z(P1, ..., Pn−m) is a transverse complete intersection.

A tube Tθ,v is R−1/2+δm-tangent to Z in B(0, R) if

Tθ,v ⊆NR1/2+δm (Z)

and

](Gλ(x;ωθ), TzZ)6 c̄tangR
−1/2+δm

for any x∈Tθ,v and z∈Z∩B(0, 2R) with |x−z|6
CtangR
1/2+δm .

Here, c̄tang>0 (resp. 
Ctang>1) is a dimensional constant, chosen to be sufficiently

small (resp. large) for the purposes of the following arguments.

Definition 8.2. If S⊆T, then f is said to be concentrated on wave packets from S if

f =
∑

(θ,v)∈S

fθ,v+RapDec(R)‖f‖L2(Bn−1).

One wishes to study functions concentrated on wave packets from the collection

TZ := {(θ, v)∈T :Tθ,v is R−1/2+δm -tangent to Z in B(0, R)}.

Let B⊆Rn be a fixed ball of radius R1/2+δm with centre x̄∈B(0, R). Throughout

this section, the analysis will be essentially confined to a spatially localised operator

ηB ·Tλg, where ηB is a suitable choice of Schwartz function concentrated on B. For any

(θ, v), a stationary phase argument shows that the Fourier transform of ηB ·Tλgθ,v is

concentrated near the surface

Σ := {Σ(ω) :ω ∈Ω}, where Σ(ω) := ∂xφ
λ(x̄;ω). (8.1)

Now, consider the refined set of wave packets

TZ,B := {(θ, v)∈TZ :Tθ,v∩B 6=∅}.

If (θ, v)∈TZ,B , then the direction Gλ(x̄;ωθ) of the curved tube Tθ,v on the ball B must

make a small angle with each of the tangent spaces TzZ for all z∈Z∩B. It transpires

that this essentially constrains the frequency Σ(ωθ) to lie in a small neighbourhood

of some fixed (depending on the choice of ball B) m-dimensional manifold Sξ (here,

m=dimZ).(17) In the case of the parabolic extension operator Epar, which is studied in

[14], the relationship between the normal direction Gλ(x̄;ωθ) and the frequency Σ(ωθ)

is particularly simple. Here, Σ(ωθ)=
(
ωθ,

1
2 |ωθ|

2
)

is constrained to lie in roughly the

R−1/2-neighbourhood of some affine subspace Aξ.

(17) The subscript ξ is used here to indicate that Sξ lies in the ξ parameter space (that is, R̂n). In

particular, it does not denote a dependence on some choice of ξ. Variants of this notation (such as Aξ,
Sω , Aω , etc.) feature throughout this section with the obvious corresponding intended meaning.
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Example 8.3. Suppose, for simplicity, that Z is an m-dimensional affine plane so

that TzZ=V for all z∈Z, where V is the m-dimensional linear subspace parallel to

Z. To avoid degenerate situations, also assume that V makes a small angle with the

en direction. For the prototypical case of the parabolic extension operator Epar, the

(unnormalised) Gauss map is an affine map: G0(ω)=(−ω, 1). Consequently,

Aω := {ω ∈Rn−1 :G0(ω)∈V }

is an affine subspace of Rn−1 of dimension m−1. Thus, if G0(ω)∈V , then

Σ(ω)∈Aξ :=Aω×R.

Note that, for general Hörmander-type operators, the condition Gλ(x̄;ω)∈V defines

a (possibly curved) submanifold rather than an affine subspace.

In view of this frequency concentration in the case of Epar, the uncertainty principle

then suggests that, if g is concentrated on wave packets from TZ,B , then the function

|Eparg(x)| is morally constant as one varies x by R1/2 in directions perpendicular to Aξ.

Furthermore, it can be shown that the affine subspace Aξ makes a small angle with the

tangent planes TzZ for z∈Z∩B, and so |Eparg(x)| is morally constant as one varies x by

R1/2 in directions transverse to Z∩B.

One wishes to extend the above observations for Epar to the variable coefficient

setting; that is, for g concentrated on wave packets from TZ,B ,(18) the problem is to

show that |Tλg| is morally constant in directions transverse to Z∩B. More precisely,

one wishes to establish an inequality roughly of the form

 
N
%1/2+δm (Z)∩B

|Tλg|2 .
 
B

|Tλg|2 (8.2)

for 0<%<R; this would show that the L2 mass of Tλg is unable to concentrate in a

small neighbourhood of Z∩B. For the parabolic extension operator the observations

of the previous paragraph can be used to prove (8.2) (up to a rapidly decaying error

term). The general case is more complicated, however. First of all, the surface Sξ

described above is no longer necessarily an affine subspace and may possess curvature.

One way to circumvent this issue is to introduce a further constraint on the family of

wave packets. Let R1/2<%�R and, throughout this section, let τ⊂Rn−1 be a fixed cap

of radius O(%−1/2+δm) centred at a point in Bn−1. Now define

TZ,B,τ := {(θ, v)∈TZ : θ∩τ 6=∅ and Tθ,v∩B 6=∅}.

(18) In fact, in the general case, a more stringent hypothesis on g is required, as discussed below.
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The frequencies Σ(ωθ) for (θ, v)∈TZ,B,τ are further constrained to lie in a small region of

Σ upon which the curved space Sξ can be effectively approximated by an affine space Aξ.

Consequently, one can carry out a similar analysis as in the parabolic extension case.

The second issue is to ensure that the resulting affine space Aξ makes a small angle

with the tangent spaces TzZ for z∈Z∩B. This is crucial to ensure that the morally con-

stant property holds in directions transverse to Z. For general Hörmander-type operators

this property can fail (a simple example is given by the extension operator associated with

the hyperbolic paraboloid, as discussed below). In order to ensure the angle condition,

one needs to exploit the additional positive-definite hypothesis (H2+).

In practice, the rigorous formulation of these heuristics is somewhat messier than

(8.2), and it is convenient to state the key estimate in the following manner.

Lemma 8.4. With the above setup, if dimZ.ε1 and g is concentrated on wave

packets from TZ,B,τ , then

�
N
%1/2+δm (Z)∩B

|Tλg|2 .R1/2+O(δm)
( %
R

)(n−m)/2

‖g‖2L2(Bn−1). (8.3)

The inequality (8.3) is related to the heuristic inequality (8.2) via Hörmander’s L2

bound

‖Tλg‖2L2(B) .R1/2+δm‖g‖2L2(Bn−1).

The estimate is presented in this way (rather than in a form more closely resembling

(8.2)) as it provides a relatively clean statement and, moreover, (8.3) happens to be the

precise bound required later in the proof.

8.2. Uncertainty principle preliminaries

If G:Rn!C is frequency supported on a ball of radius r>0, then the uncertainty principle

dictates that G should be essentially constant at spatial scale r−1. In particular, the L2-

mass of G cannot be highly concentrated in any ball of radius %<r−1, and so one has

 
B(x0,%)

|G|2 .
 
B(x0,r−1)

|G|2.

Strictly speaking, for this inequality to hold, the right-hand integral should be taken

with respect to a rapidly decaying weight function, rather than over the compact region

B(x0, r
−1) (see, for instance, [14, §6]). There is a variant of this estimate which is

effective in cases where G has the property that Ĝ is merely concentrated in (rather than

supported in) an r-ball.
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Lemma 8.5. If r−1/26%6r−1, then for any ball B(x0, %), ξ0∈R̂n and δ>0 one has

 
B(x0,%)

|G|2 .δ ‖Ĝw−1
B(ξ0,r)

‖2δ/(1+δ)
∞

1

|B(0, r−1)|

(�
Rn
|G|2

)1/(1+δ)

.

Here, wB(ξ0,r) is a weight concentrated on B(ξ0, r) given by

wB(ξ0,r)(ξ) := (1+r−1|ξ−ξ0|)−N (8.4)

for some large N=Nδ∈N.

Hence, if Ĝ is concentrated in B(ξ0, r) in the sense that |Ĝ(ξ)|.MwB(ξ0,r)(ξ) for

some controllable constant M>0, then the lemma produces a favourable estimate.

Remark 8.6. Lemma 8.5 is not sharp in terms of the dependence on the r and %

parameters. It differs, however, from the sharp inequality only by O(δ) powers and such

losses are negligible for the purposes of this article.

Proof of Lemma 8.5. Define ψ% by (ψ%)�(x):=ψ̌(%−1(x−x0)), where ψ is a Schwartz

function which satisfies |ψ̌(x)|&1 on B(0, 1). Thus, by Plancherel,

�
B(x0,%)

|G|2 .
�
|ψ̌%G|2 =

�
|ψ%∗Ĝ|2.

Using the rapid decay of ψ, one deduces that

|ψ%∗Ĝ(ξ)|.δ %n
�
R̂n
wB(ξ,%−1)(η)δ/(1+δ)|Ĝ(η)| dη

for all ξ∈R̂n. By expressing the right-hand integral as

�
R̂n

(wB(ξ,%−1)(η)wB(ξ0,r)(η)1/2)δ/(1+δ)(|Ĝ(η)|1+δwB(ξ0,r)(η)−δ/2)1/(1+δ) dη

and applying Hölder’s inequality, it follows that

|ψ̂∗Ĝ(ξ)|. |B(x0, %)|·I(ξ)δ/(1+δ) ·II(ξ)1/(1+δ),

where

I(ξ) : =

�
R̂n
wB(ξ,%−1)(η)wB(ξ0,r)(η)1/2 dη,

II(ξ) : =

�
R̂n
|Ĝ(η)|1+δwB(ξ0,r)(η)−δ/2 dη.
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To estimate I(ξ), first perform the variable shift η 7!η+ξ0, and then decompose the

range of integration into the regions |η|< 1
2 |ξ−ξ0| and |η|> 1

2 |ξ−ξ0|. Since

wB(ξ−ξ0,%−1)(η).δ wB(ξ0,%−1)(ξ) for |η|< 1
2 |ξ−ξ0|

and

wB(0,%−1)(η).δ wB(ξ0,%−1)(ξ) for |η|> 1
2 |ξ−ξ0|,

it follows that

I(ξ).δ |B(x0, %)|−1wB(ξ0,%−1)(ξ)
1/2.

To estimate II(ξ) note that, provided Nδ is chosen sufficiently large, by Cauchy–

Schwarz and Plancherel’s theorem one has

II(ξ)6 ‖Ĝw−1
B(ξ0,r)

‖δ∞
�
|Ĝ(η)|wB(ξ0,r)(η)δ/2 dη

.δ |B(0, r−1)|−1/2‖Ĝw−1
B(ξ0,r)

‖δ∞ ‖G‖L2(Rn).

Combining these observations, one obtains the desired estimate but with an ad-

ditional factor of (%r1/2)−2nδ/(1+δ) on the right-hand side. Since 16%r1/2, the result

immediately follows.

8.3. Wave packets tangential to linear subspaces

Here, as a step towards Lemma 8.4, transverse equidistribution estimates are proven for

functions concentrated on wave packets tangential to some fixed linear subspace V ⊆Rn.

As before, let B be a ball of radius R1/2+δm with centre x̄∈Rn, and define

TV,B := {(θ, v) :](Gλ(x̄, ωθ), V ).R−1/2+δm and Tθ,v∩B 6=∅}.

Let R1/2<%<R and, for τ⊂Rn−1 a ball of radius O(%−1/2+δm) centred at a point in

Bn−1, define

TV,B,τ :=
{

(θ, v)∈TV,B : θ∩
(

1
10 ·τ

)
6=∅

}
,

where
(

1
10τ
)

is the cap concentric to τ but with 1
10 th of the radius.

The key estimate is the following.
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Lemma 8.7. If V ⊆Rn is a linear subspace, then there exists a linear subspace V ′

with the following properties:

(1) dimV +dimV ′=n;

(2) V and V ′ are quantitatively transverse, in the sense that there exists a uniform

constant ctrans>0 such that

](v, v′)> 2ctrans for all non-zero vectors v ∈V and v′ ∈V ′;

(3) if g is concentrated on wave packets from TV,B,τ , Π is any plane parallel to V ′

and x0∈Π∩B, then the inequality

�
Π∩B(x0,%1/2+δm )

|Tλg|2 .δ RO(δm)
( %
R

)dimV ′/2

‖g‖2δ/(1+δ)
L2(Bn−1)

(�
Π∩2B

|Tλg|2
)1/(1+δ)

holds, up to the inclusion of a RapDec(R)‖g‖L2(Bn−1) term on the right-hand side.

Proof. The argument is presented in a number of stages.

Constructing the subspace V ′

Recall that

ω 7−!Gλ(x̄;ω) :=
Gλ0 (x̄;ω)

|Gλ0 (x̄;ω)|
is the Gauss map associated with the hypersurface Σ, defined in (8.1). Since G(x; 0)=en

for all x∈X, Lemma 4.6 implies that

](Gλ(x̄;ω), en)∼ |ω| for all ω ∈Ω.

Consequently, by choosing diam Ω to be sufficiently small in the initial reductions, one

may assume that the Gauss map ω 7!Gλ(x̄;ω) always makes a wide angle with the hy-

perplane e⊥n =Rn−1×{0}. In particular,

](Gλ(x̄;ω), e⊥n )& 1 for all ω ∈Ω.

Since the situation is trivial if TV,B=∅, one may assume that

](V, e⊥n ) := max
v∈V ∩Sn−1

](v, e⊥n )& 1. (8.5)

Define Sω⊂Rn−1 by

Sω := {ω ∈Ω :Gλ(x̄;ω)∈V }.

Fixing an orthonormal basis {N1, ..., Nn−dimV } for V ⊥, one has

Sω = {ω ∈Ω : 〈Gλ0 (x̄;ω), Nk〉= 0 for 16 k6n−dimV }.
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Claim 1. If Sω 6=∅, then Sω is a smooth surface in Rn−1 of dimension dimV −1.

Proof. Let ω∈Sω and note that each Nk is tangential to Σ at Σ(ω). Hence, one may

write

Nk =

n−1∑
j=1

N
(j)
k (ω)∂ωj∂xφ

λ(x̄;ω)

for some choice of coefficients N
(j)
k (ω)∈R. A computation now shows that

∂ωi〈Gλ0 (x̄;ω), Nk〉=−
n−1∑
j=1

〈∂2
ωiωj∂xφ

λ(x̄;ω), Gλ0 (x̄;ω)〉N (j)
k (ω).

The condition (H2) implies the invertibility of the (n−1)×(n−1) matrix whose (i, j)

entry is given by

〈∂2
ωiωj∂xφ

λ(x̄;ω), Gλ0 (x̄;ω)〉.

Thus, the Jacobian of ω 7!(〈Gλ0 (x̄;ω), Nk〉)n−dimV
k=1 has maximal rank, and the claim

follows by the implicit function theorem.

At this point, it is convenient to switch to a graph parametrisation of Σ via the

change of variables u 7!Ψλ(x̄;u), where Ψλ is the (appropriate λ-rescaling of the) function

introduced in §4. For convenience, let Ψ:U!Ω denote this mapping; that is,

Ψ(u) := Ψλ(x̄;u).

Recall that the hypersurface Σ coincides with the graph of the function

h̄:U!R, h̄(u) := ∂xnφ
λ(x̄; Ψ(u)). (8.6)

If Sω∩τ=∅, then it follows by Lemma 4.6 that

](Gλ(x̄; θ), V )& %−1/2+δm >R−1/2+δm

whenever θ∩( 1
10 ·τ) 6=∅. Consequently, TV,B,τ=∅ and the situation is trivial. Thus, one

may assume without loss of generality that Sω∩τ 6=∅ and so, letting

Su := Ψ−1(Sω) = {u∈U :Gλ0 (x̄; Ψ(u))∈V },

it follows that Su∩Ψ−1(τ) 6=∅. The properties of the mapping Ψ discussed in §4 imply

that Ψ−1(τ) is roughly a ball of radius O(%−1/2+δm).

Fix some u0∈Su∩Ψ−1(τ) and let Au denote the tangent plane to Su at u0. Here,

the tangent plane is interpreted as a (dimV −1)-dimensional affine subspace of Rn−1

through u0. Now define Aξ :=Au×R⊆Rn, so that dimAξ=dimV , and let Vu and Vξ be

the linear subspaces parallel to Au and Aξ, respectively. Finally, let V ′ :=V ⊥ξ , so that

dimV +dimV ′=n.
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Verifying the transverse equidistribution estimate in (3)

Suppose Π⊆Rn is an affine subspace parallel to V ′ which intersects B, and x0∈Π∩B.

Let ηB(x):=η((x−x̄)/R1/2+δm) where η is a Schwartz function which satisfies η(x)=1

for x∈B(0, 2) and, for any (θ, v)∈T, consider

(ηB ·Tλgθ,v|Π)̂ (ξ) = e−2πi〈x0,ξ〉RdimV ′(1/2+δm)

�
Bn−1

Kλ,R(ξ;ω)gθ,v(ω) dω,

where the kernel Kλ,R is given by

Kλ,R(ξ;ω) :=

�
V ′
e2πiφλ,Rω (z)aλ,Rω (z) dz

for the phase an amplitude functions

φλ,Rω (z) : =φλ(x0+R1/2+δmz;ω)−R1/2+δm〈z, ξ〉,

aλ,Rω (z) : = aλ(x0+R1/2+δmz;ω)η̃(z),

and

η̃(z) := η
(
z+

x0−x̄
R1/2+δm

)
.

Claim 2. Fixing ω∈Ω, ξ∈R̂n such that |ξ−projV ′ Σ(ω)|&R−1/2+δm and R�1, the

following estimates hold on supp aλ,Rz :

(i) |∂zφλ,Rω (z)|∼R1/2+δm |ξ−projV ′ Σ(ω)|&R2δm ;

(ii) |∂αz φλ,Rω (z)|.|∂zφλ,Rω (z)| for all 26|α|6Npar;

(iii) |∂αz aλ,Rω (z)|.ε1 for all |α|6Npar.

Here, Σ(ω):=∂xφ
λ(x̄;ω) is as defined in (8.1).

Once the claim is established, repeated integration-by-parts (see Lemma A.1) shows

that Kλ,R is rapidly decaying whenever |ξ−projV ′ Σ(ω)|&R−1/2+δm and, in particular,

|Kλ,R(ξ;ω)|.ε (1+R1/2|ξ−projV ′ Σ(ω)|)−N for all N 6Npar.

Proof. The uniformity in the estimates is due to the reductions from §4. The bound

(iii) for the amplitude immediately follows from Lemma 4.3, and it remains to prove the

bounds for the phase.

Proof of (i)

The z-gradient of the phase φλ,Rω is equal to

R1/2+δm(projV ′ [(∂xφ
λ)(x0+R1/2+δmz;ω)−(∂xφ

λ)(x̄;ω)]−[ξ−projV ′ Σ(ω)]),

where, by Lemma 4.3, the first term satisfies

|projV ′ [(∂xφ
λ)(x0+R1/2+δmz;ω)−(∂xφ

λ)(x̄;ω)]|. R1/2+δm

λ
�R−1/2+δm .

Thus, if |ξ−projV ′ Σ(ω)|&R−1/2+δm , then the desired bound immediately follows.



sharp estimates for oscillatory integral operators 309

Proof of (ii)

Fix α∈Nn0 with 26|α|6Npar. It follows that

∂αz |φλ,Rω (z)|6λ
(R1/2+δm

λ

)|α|
‖∂αxφ‖L∞(X×Ω) .R2δm ,

and the desired bound now follows from (i).

If ω∈supp gθ,v, then |ω−ωθ|<R−1/2 and so |Σ(ω)−ξθ|.R−1/2, where ξθ :=Σ(ωθ).

Consequently,

|(ηB ·Tλgθ,v|Π)̂ (ξ)|.N RO(1)wB(projV ′ ξθ,R
−1/2)(ξ)‖gθ,v‖L2(Bn−1), (8.7)

where the definition of the weight function

wB(projV ′ ξθ,R
−1/2)(ξ) := (1+R1/2|ξ−ξθ|)−N

agrees with that of Lemma 8.5 (although here the weights are thought of as functions

on V ′), and so N=Nδ is a large integer, depending on δ.

The following geometric observation is key to the proof of property (3).

Claim 3. If (θ, v)∈TB,τ,V , then dist(ξθ, Aξ).R−1/2+δm .

Temporarily assume this claim, and recall that V ′ :=V ⊥ξ , where Vξ is the linear

subspace parallel to the affine subspace Aξ. Thus, if (θ, v)∈TB,τ,V , then projV ′ ξθ lies in

some fixed ball of radius O(R−1/2+δm). Letting ξ∗∈V ′ denote the centre of this ball, it

follows that wB(projV ′ ξθ,R
−1/2).δwB(ξ∗,R−1/2+δm ), and so∑

(θ,v)∈TV,B,τ

wB(projV ′ ξθ,R
−1/2) .δ R

O(1)wB(ξ∗,R−1/2+δm ).

Recalling (8.7),

‖(ηB ·Tλg|Π)̂ w−1
B(ξ∗,R−1/2+δm )

‖∞.RO(1)‖g‖L2(Bn−1)

and, applying Lemma 8.5, one concludes that

�
B(x0,%1/2+δm )∩Π

|Tλg|2 .δ RO(δm)

(
%1/2

R1/2

)dimV ′

‖g‖2δ/(1+δ)
L2(Bn−1)

(�
Π

|Tλg|2|ηB |2
)1/(1+δ)

.

If ξ /∈2B, then ξ /∈
⋃

(θ,v)∈TB Tθ,v, and so

|Tλgθ,v(ξ)|= RapDec(R)‖g‖L2(Bn−1) for all (θ, v)∈TV,B,τ .

Hence, �
Π

|Tλg|2|ηB |2 6
�

2B∩Π

|Tλg|2+RapDec(R)‖g‖L2(Bn−1),

completing the proof of property (3) under the assumption that the above claim holds.
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Proof of Claim 3. Fix (θ, v)∈TB,τ,V and let uθ :=projx⊥n Σ(ωθ). Recalling that Aξ=

Au×R and applying triangle inequality, one deduces that

dist(ξθ, Aξ) = dist(uθ, Au)6dist(uθ, Su∩Ψ−1(τ))+ sup
u∗∈Su∩Ψ−1(τ)

dist(u∗, Au).

Furthermore, by Lemma 4.6,

dist(uθ, Su∩Ψ−1(τ))∼dist(ωθ, Sω∩τ).](Gλ(x̄;ωθ), V ).R−1/2+δm ,

where the last inequality is by the definition of TB,τ,V . On the other hand, fixing u∗∈
Su∩Ψ−1(τ), one wishes to estimate dist(u∗, Au). Provided % is sufficiently large (so that

diam τ is sufficiently small), the surface Su∩Ψ−1(τ) can be parameterised as the graph

of some function ψ:W!V ⊥u ⊆Rn−1, where W⊂Vu is an open set about the origin of

diameter O(%−1/2+δm). In particular, one may write

Su∩Ψ−1(τ) = {w+ψ(w) :w∈W}+u0,

where ψ(0)=0 and ∂wψj(0)=0 for 16j6n−dimVu. Thus, u∗=w∗+ψ(w∗)+u0 for some

w∗∈W and, since w∗∈Vu+u0=Au, it follows that dist(u∗, Au)6|ψ(w∗)|. By Taylor’s

theorem (here using the hypothesis that R1/26%),

|ψj(w∗)|6
� 1

0

(1−t)|〈∂2
wwψj(tw∗)w∗, w∗〉| dt. |w∗|2 . %−1+2δm 6R−1/2+δm

for 16j6n−dimVu, and combining these observations yields the desired estimate.

Verifying the transversality condition in (2)

In the prototypical case of the parabolic extension operator Epar, the transversality con-

dition holds by a straightforward computation and the minimum angle can be explicitly

computed (see [14, Sublemma 6.6] and Figure 2). To establish the result for variable

coefficient operators, one uses the localisation to the cap τ and ball B to show that the

situation is only a slight perturbation of the prototypical case. This argument is carried

out in detail below.

The transversality of the planes V and V ′ heavily relies upon the positive-definite

hypothesis (H2+); the property does not hold in general if one only assumes the weaker

condition (H2).
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ξn

Ω

Vξ

V ′ :=V ⊥ξ

Vω

V

(a) Vω=V ∩e⊥n .

ξn

θ Ω

V ′ :=V ⊥ξ

V

(b) ](v, v′)&1 for v∈V , v′∈V ′ non-zero.

Figure 2. The transversality condition in the prototypical case of the extension operator

Epar. Here Sω is an affine subspace and Vω is defined to be the linear subspace parallel to

Sω . Moreover, Vω coincides with Vu and is given by the intersection of V with the horizontal
slice e⊥n =Rn−1×{0}. From the right-hand diagram it is clear that

θ := min
v∈V \{0},v′∈V ′\{0}

](v, v′) =](V, e⊥n )& 1;

see [14, Sublemma 6.6] for a formal proof of this fact. For general operators Tλ with positive-

definite phase, Claim 4 guarantees that Vu is a slight perturbation of the horizontal slice

V ∩e⊥n (see Figure 3) so that the angle condition still holds.

Example 8.8. For φhyp(x;ω):=〈x′, ω〉+x3ω1ω2 for (x;ω)∈R3×R2 the oscillatory in-

tegral operator

Ehypf(x) :=

�
B2

e2πiφhyp(x;ω)f(ω) dω

is the extension operator associated with the hyperbolic paraboloid. This is the proto-

typical example of a Hörmander-type operator for which (H2+) fails. Here,

G0(ω) = (−ω2,−ω1, 1)>,

and therefore, if V :={x∈R3 :x1=0}, then

Sω := {ω ∈B2 :G0(ω)∈V }= {ω ∈B2 :ω2 = 0}.

It follows that Vξ={ξ∈R̂3 :ξ2=0}, and so V ′ :=V ⊥ξ is a vector subspace of V . Clearly, in

this situation, the desired transversality condition completely fails.

The present analysis concerns Hörmander-type operators with reduced positive-

definite phase φλ, so that φλ is a small perturbation of φpar. Such phases do not exhibit

the phenomenon observed in the above example: the following claim is key to under-

standing this.
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Claim 4. Let cpar be the constant defined in §4. Then,

max
v∗∈V ∩(Sn−2×{0})

](v∗, Vu) =O(cpar).

Here, Vu is identified with a subspace of e⊥n =Rn−1×{0} in the natural manner.

Example 8.9. Returning to the example of the hyperbolic paraboloid with

V := {x∈R3 :x1 = 0},

the spaces V ∩(R2×{0}) and Vu :={x∈R3 :x2=x3=0} are mutually orthogonal, and so

the claim does not hold in this case.

Provided cpar>0 is chosen sufficiently small, the claim implies the transversality con-

dition. Indeed, let {v∗1 , ..., v∗dimV−1} be an orthonormal basis for V ∩e⊥n . Fix a unit vector

v∗dimV ∈V which is perpendicular to V ∩e⊥n , so that {v∗1 , ..., v∗dimV } forms an orthonormal

basis for V . By the above claim, there exist vk∈Vu∩Sn−2⊂e⊥n such that

](v∗k, vk) =O(cpar) for 16 k6dimV −1.

Applying the Gram–Schmidt process, one may further assume that {v1, ..., vdimV−1}
forms an orthonormal basis of Vu; adjoining en to this set then gives an orthonormal

basis of Vξ. Given v∈V ∩Sn−1 and writing

v=

dimV−1∑
k=1

〈v, v∗k〉vk+〈v, v∗dimV 〉v∗dimV +

dimV−1∑
k=1

〈v, v∗k〉(v∗k−vk),

since sin](v, V ′)=|projVξ v|, it follows that

sin](v, V ′) =

( dimV−1∑
k=1

|〈v, v∗k〉|2+|〈v, v∗dimV 〉|2|〈v∗dimV , en〉|2
)1/2
−O(cpar)

>

( dimV∑
k=1

|〈v, v∗k〉|2
)1/2
·|〈v∗dimV , en〉|−O(cpar).

Consequently, provided that cpar is chosen to be sufficiently small,

sin](v, V ′)> |〈v∗dimV , en〉|−O(cpar)& 1;

indeed, the last inequality holds, since (8.5) implies that

|〈v∗dimV , en〉|=](v∗dimV , e
⊥
n ) =](V, e⊥n )& 1;

see Figure 3. This concludes the proof of the transversality condition, conditional on the

above claim.
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V ∩e⊥n

U

V ′ :=V ⊥ξ

Vu
θ

Figure 3. In the variable coefficient case, Claim 4 guarantees that the subspace Vu makes a

small angle with the horizontal slice V ∩e⊥n . This implies that the angle θ is always large
(that is, bounded below by an absolute constant) and thereby ensures that V and V ′ are

transverse.

Proof of Claim 4. Fix v∗∈V ∩(Sn−2×{0}) and let v∈Vu∩Sn−2 denote the unit nor-

malisation of the vector projVu v
∗. It suffices to show that ](v∗, v)=O(cpar). Since

v∗−v= (|projVu v
∗|−1)v+projV ⊥u v∗

and
∣∣|projVu v

∗|−1
∣∣6|projV ⊥u v∗|, the problem is further reduced to proving that

|projV ⊥u v∗|=O(cpar). (8.8)

Recall that

Su : = {u∈U :Gλ0 (x̄; Ψ(u))∈V }

= {u∈U : 〈Gλ0 (x̄; Ψ(u)), Nk〉= 0 for 16 k6n−dimV },

where, as above, {N1, ..., Nn−dimV } is a choice of orthonormal basis for V ⊥. If h̄ is

the function introduced in (8.6), then u 7!(u, h̄(u)) is a graph parametrisation of the

surface Σ and u 7!Gλ0 (x̄; Ψ(u)) is the (unnormalised) Gauss map associated with this

parametrisation. Thus, the surface Su is defined by the equations

−〈∂uh̄(u), N ′k〉+Nk,n = 0 for 16 k6n−dimV ,

where Nk=(N ′k, Nk,n)∈Rn−1×R. By differentiating these expressions, one deduces that

a basis for V ⊥u is given by {M1, ...,Mn−dimV }, where

Mk := ∂2
uuh̄(u0)N ′k for 16 k6n−dimV .
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Let 16k6n−dimV , and recall from Lemma 4.5 that

‖∂2
uuh̄(u0)−In−1‖op =O(cpar). (8.9)

Consequently,

|Mk−N ′k|=O(cpar) (8.10)

and, combining this with the fact that 〈v∗, N ′k〉=0 for 16k6n−dimV (where v∗ is

identified with a vector in Rn−1 in the natural manner), it follows that

〈v∗,Mk〉= 〈v∗,Mk−N ′k〉=O(cpar). (8.11)

Let M be the (n−1)×(n−dimV ) matrix whose kth column is given by the vector Mk.

The orthogonal projection of v∗ onto the subspace V ⊥u can be expressed in terms of M

via the formula

projV ⊥u v∗ := M(M>M)−1M>v∗.

By (8.11), the components of the vector M>v∗ are all O(cpar). Thus, to prove (8.8) (and

thereby establish the claim) it suffices to show that ‖M(M>M)−1‖op.1, which would

in turn follow from

‖M‖op . 1 and ‖(M>M)−1‖op . 1.

The bound for M is an immediate consequence of the definition of the Mk and (8.9). The

remaining estimate would follow if one could show that, provided cpar is sufficiently small,

|λ|&1 for every eigenvalue λ of the symmetric matrix M>M. By (8.10) and continuity of

eigenvalues, it suffices to show that the matrix N>N satisfies the same property, where

N is the (n−1)×(n−dimV ) matrix whose kth column is given by the vector N ′k. By

(8.5), the vectors N ′1, ..., N
′
n−dimV ∈Rn−1 are linearly independent and, moreover, satisfy

|det N>N|= |N ′1∧...∧N ′n−dimV |2 & 1.

Therefore, the desired condition on the eigenvalues holds if the spectral radius of N>N is

O(1). But the latter property is an obvious consequence of the Newton–Girard identity

m∑
i=1

a2
i =

( m∑
i=1

ai

)2
−2

∑
16i1<i26m

ai1ai2 , ai ∈R for 16 i6m,

and the fact that the entries of N>N are all O(1).

This concludes the proof of Lemma 8.7.
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8.4. The proof of the transverse equidistribution estimate

It remains to demonstrate how to pass from Lemma 8.7 to Lemma 8.4. At this stage,

the proof is very similar to the argument found in [14], but the details are nevertheless

included for completeness.

There are two additional ingredients needed for the proof of Lemma 8.4. The first

is the following theorem of Wongkew [37] (see also [13], [39]), which controls the size of

a neighbourhood of a variety.

Theorem 8.10. (Wongkew [37]) Suppose Z=Z(P1, ..., Pn−m) is an m-dimensional

transverse complete intersection in Rn with degZ6D. For any 0<%6R and R-ball BR,

the neighbourhood N%(Z∩BR) can be covered by OD((R/%)m) balls of radius %.

The second ingredient is a geometric lemma concerning planar slices of neighbour-

hoods of varieties. The statement of this result requires a general quantitative notion

of transversality for pairs of linear subspaces in Rn. Any m-dimensional linear subspace

V can be expressed as a transverse complete intersection V =Z(PN1
, ..., PNn−m), where

{N1, ..., Nn−m} forms an orthonormal basis of V ⊥ and PNj (x):=〈x,Nj〉. Suppose V1 and

V2 are linear subspaces in Rn satisfying

dimV1+dimV2 >n. (8.12)

It is easy to verify that the subspace V1∩V2 is a transverse complete intersection if and

only if

dim(V1∩V2) = dimV1+dimV2−n

(of course, the inequality dim(V1∩V2)>dimV1+dimV2−n always holds, so the latter

condition says that V1∩V2 is as small as possible).

Definition 8.11. A pair (V1, V2) of linear subspaces in Rn satisfying (8.12) is said to

be quantitatively transverse if the following hold:

(i) dim(V1∩V2)=dimV1+dimV2−n;

(ii) ](v1, v2)>ctrans for all non-zero vectors vj∈(V1∩V2)⊥∩Vj , j=1, 2.

Remark 8.12. In the special case where dimV1+dimV2=n, it follows that the pair

(V1, V2) is quantitatively transverse if and only if ](v1, v2)>ctrans for all non-zero vectors

v1∈V1 and v2∈V2. Thus, up to the minor disparity between the choice of constant ctrans,

this agrees with the transversality condition appearing in the statement of Lemma 8.7.

Lemma 8.13. There exists some dimensional constant C>0 such that the following

holds. Let Br⊆Rn be an r-ball, V ⊆Rn be a linear subspace, Z be a transverse com-

plete intersection and suppose that dimZ+dimV >n and (TzZ, V ) is a quantitatively
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transverse pair for all z∈Z∩2Br. Then,

V ∩Br∩N%(Z)⊆NC%(V ∩Z)

for all 0<%�r.

The proof of this simple lemma is postponed until the end of this section.

Proof of Lemma 8.4. If Tθ,v∩NR1/2+δm (Z)∩B=∅, then it follows that

|Tλgθ,v(x)|= RapDec(R)‖g‖L2(Bn−1) for all x∈N%1/2+δm (Z)∩B.

Consequently, one may assume that g is concentrated on only those wave packets from

TB,τ,Z for which Tθ,v intersects NR1/2+δm (Z)∩B non-trivially. Suppose (θ, v)∈TB,τ,Z
has this property and let x∈Tθ,v∩NR1/2+δm (Z)∩B. If z∈Z∩2B, then |x−z|.R1/2+δm

and, by the R1/2+δm -tangent condition,

](Gλ(x; θ), TzZ).R−1/2+δm .

Since |Gλ(x̄; θ)−Gλ(x; θ)|.|x̄−x|/λ.R−1/2+δm , one concludes that

](Gλ(x̄; θ), TzZ).R−1/2+δm for all z ∈Z∩2B.

Thus, there exists a subspace V ⊆Rn of minimal dimension dimV 6dimZ such that

](Gλ(x̄; θ), V ).R−1/2+δm

for all (θ, v)∈TB,τ,Z for which Tθ,v∩NR1/2+δm (Z)∩B 6=∅. In particular, g is concentrated

on wave packets from TB,τ,V . One may apply Lemma 8.7 to find a subspace V ′ of

dimension n−dimV such that

](v, v′)> 2ctrans for all non-zero vectors v ∈V and v′ ∈V ′, (8.13)

and

�
Π∩B(x0,%1/2+δm )

|Tλg|2 .δ RO(δm)
( %
R

)dimV ′/2

‖g‖2δ/(1+δ)
L2(Bn−1)

(�
Π∩2B

|Tλg|2
)1/(1+δ)

(8.14)

for every affine subspace Π parallel to V ′. More precisely, the above estimate holds,

up to the inclusion of some additional rapidly decreasing term. This small error will

propagate through the remainder of the argument, but in the end it will be harmless and

is therefore suppressed in the notation.
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It is claimed that, for each z∈Z∩2B, the tangent space TzZ forms a quantitatively

transverse pair (TzZ, V
′) with V ′. Indeed, if this fails, then it is easy to see that, for

some z∈Z∩2B, there exists a subspace W⊆TzZ of dimension

dimW >dimZ−dimV

with the property that ](w, V ′)<ctrans for all w∈W \{0}. Consequently, the crucial

angle condition (8.13) guarantees that

](w, V )> ctrans for all w∈W \{0}.

This implies that there exists a linear map L:Rn!V such that L restricted to V is the

identity, L restricted to W is zero and ‖L‖op.1. Recall that, for each (θ, v)∈TB,Z , one

has ](Gλ(x̄, θ), V ).R−1/2+δm , and so

sup
ω,ω′∈θ

|L(Gλ(x̄, ω))−Gλ(x̄, ω′)|.R−1/2+δm .

On the other hand, Gλ(x̄, θ)⊂NC1R−1/2+δm (TzZ)∩Sn−1, and so L(Gλ(x̄, θ)) lies in

L(NC1R−1/2+δm (TzZ)∩Sn−1)⊆NC2R−1/2+δm (L(TzZ)).

This shows that, for all (θ, v)∈TB,Z , one has

](Gλ(x̄, θ), L(TzZ)).R−1/2+δm .

Since L vanishes on W , by rank-nullity L(TzZ) is a subspace of dimension at most

dimZ−dimW <dimV.

This contradicts the minimality of V , and so (TzZ, V
′) is a quantitatively transverse pair

for all z∈Z∩2B.

By Lemma 8.13, one deduces that

Π∩N%1/2+δm (Z)∩B⊆NC%1/2+δm (Π∩Z)∩2B.

Since Π∩Z is a transverse complete intersection of dimension dimV ′+dimZ−n, Wongkew’s

theorem now implies that Π∩N%1/2+δm (Z)∩B can be covered by

O

(
RO(δm)

(
R

%

)(dimV ′+dimZ−n)/2)
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balls of radius %1/2+δm . Applying the estimate (8.14) to each of these balls and summing,

one deduces that

�
Π∩N

%1/2+δm (Z)∩B
|Tλg|2 .δ RO(δm)

( %
R

)(n−m)/2

‖g‖2δ/(1+δ)
L2(Bn−1)

(�
Π∩2B

|Tλg|2
)1/(1+δ)

.

Integrating over planes Π parallel to V ′ and applying Hölder’s inequality (recalling that

δ�δm), it follows that

�
N
%1/2+δm (Z)∩B

|Tλg|2 .δ RO(δm)
( %
R

)(n−m)/2

‖g‖2δ/(1+δ)
L2(Bn−1)

(�
2B

|Tλg|2
)1/(1+δ)

.

Finally, recalling Hörmander’s bound,(�
2B

|Tλg|2
)1/(1+δ)

.R1/2+O(δm)

(�
Bn−1

|g|2
)1/(1+δ)

and absorbing the implied rapidly decaying error into the main term, one concludes that

�
N
%1/2+δm (Z)∩B

|Tλg|2 .δ R1/2+O(δm)
( %
R

)(n−m)/2

‖g‖2L2(Bn−1),

which is the desired estimate.

It remains to prove Lemma 8.13.

Proof of Lemma 8.13. Applying a rotation, one may assume that V is the span of

the coordinate vectors e1, ..., edimV . For the purposes of this proof, γV :=(γ1, ..., γdimV )

and γV ⊥=(γdimV+1, ..., γn) will denote the orthogonal projections of a space curve γ onto

V and V ⊥, respectively.

Suppose that x∈V ∩Br∩N%(Z) and fix some z0∈Z∩N%(Br) with 0<|x−z0|<%.

Let γ:R!Rn be the constant speed parametrisation of the line through γ(0):=z0 and

γ(1):=x. To prove the lemma, it suffices to show that there exists a curve γ̃: [0, 1]!Rn

such that, for all t∈[0, 1], the following hold:

(1) γ̃(0)=γ(0)=z0;

(2) γ̃(t)∈Z;

(3) γ̃V ⊥(t)=γV ⊥(t);

(4) |γ̃′(t)|6
C|γ̃′V ⊥(t)| where 
C :=(sin ctrans)
−1.

Indeed, once this is established, observe that z1 :=γ̃(1)∈Z∩V by properties (2) and

(3). Furthermore, (3) and (4) ensure that

|γ̃′(t)|6 
C|γ̃′V ⊥(t)|6 
C|γ′(t)|< 
C%,
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and so, combining this observation with (1),

|x−γ̃(t)|6 |x−z0|+|z0−γ̃(t)|< (1+
Ct)% (8.15)

for all t∈[0, 1]. In particular, |x−z1|.%, giving the desired conclusion.

The transversality condition implies that the distribution (in the sense of Frobenius;

see, for instance, [34, Chapter 1])

Wz := (TzZ∩V )⊥∩TzZ

has rank n−dimV on Z∩2Br and, moreover, projW⊥z |V :V!W⊥z is an isomorphism for

all z∈Z∩2Br. Smoothly extend Wz to a small neighbourhood U of Z∩2Br, so that

projW⊥x |V :V !W⊥x is an isomorphism for all x∈U . (8.16)

The curve γ̃ will be chosen so that its tangent always lies in this distribution. Given that

γ̃V ⊥ is already defined by property (3), to satisfy this condition γ̃V must be a solution

to the ordinary differential equation (ODE)

{
projW⊥x(t)

(y′(t), γ′V ⊥(t)) = 0,

y(0) = projV z0,

where x(t):=(y(t), γV ⊥(t)). By (8.16), solving the above ODE is equivalent to solving a

system of the form {
y′= g(t, y),

y(0) = projV z0,
(8.17)

for a smooth function g defined on {(t, y)∈R×V :(y, γV ⊥(t))∈U}. Note that g can be

described explicitly in terms of the inverse of projW⊥x |V and, provided U is appropriately

chosen, the derivatives of g are bounded.

The Picard–Lindelöf existence theorem implies that the system (8.17) has a solution

γ̃V defined on an interval [0, T ] for some T>0 such that γ̃ :=(γ̃V , γV ⊥) satisfies γ̃(t)∈2Br

for all t∈[0, T ]. It can be checked that on this interval the curve γ̃ further satisfies (1)

and (3) and, by the tangency condition which motivated the definition of the ODE, (2)

also holds. If t∈[0, T ], then it follows that γ̃(t)∈Z∩2Br and γ̃′(t)∈Wγ̃(t), and so the

transversality hypothesis implies that


C−1 = sin ctrans 6 sin](γ̃′(t), V ) =
|γ̃′V ⊥(t)|
|γ̃′(t)|

.

Rearranging, one concludes that properties (1)–(4) all hold on [0, T ].
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It remains to show that T can be chosen to satisfy T>1. If dist(γ̃(T ), U c)&1,

then the regularity of g implies that the interval of existence can be extended by a

fixed increment. Thus, one may assume that at least one of the following holds: T>1 or

|γ̃(T )−x|> 1
2r.(

19) Supposing the latter holds, by the choice of T and (8.15), one deduces

that
1
2r6 |γ̃(T )−x|6 (1+
CT )%.

Provided r is chosen to be sufficiently large compared to %, the desired bound immediately

follows.

9. Comparing wave packets at different spatial scales

9.1. Wave packet decomposition at scale %

The proof of Theorem 1.9 relies on a multi-scale analysis, and for this it is necessary to

compare wave packets at different scales.

Let 1�R�λ, and recall the decomposition

Tλf(x) =
∑

(θ,v)∈T

Tλfθ,v(x)+RapDec(R)‖f‖L2(Bn−1)

described in §5. Consider a smaller spatial scale(20) R1/26%6R, and fix B(y, %)⊂B(0, R)

with centre y∈Xλ. Each of the Tλfθ,v can be further decomposed into wave packets at

scale % over B(y, %). To do this, first apply a transformation to recentre B(y, %) at the

origin. For g:Bn−1
!C integrable, define g̃ :=e2πiφλ(y;·)g, so that

Tλg(x) = T̃λg̃(x̃) for x̃=x−y, (9.1)

where T̃λ is the Hörmander-type operator with phase φ̃λ and amplitude ãλ given by

φ̃(x;ω) :=φ
(
x+

y

λ
;ω
)
−φ
( y
λ

;ω
)

and ã(x;ω) := a
(
x+

y

λ
;ω
)
. (9.2)

Applying this identity to the wave packet decomposition above,

Tλf(x) =
∑

(θ,v)∈T

T̃λ((fθ,v )̃ )(x̃)+RapDec(R)‖f‖L2(Bn−1).

(19) Indeed, suppose both conditions fail for T . The failure of the latter condition implies that

dist(γ̃(T ), (2Br)c)> 1
2
r. Since γ̃(T )∈Z by property (2), one concludes that γ̃(T ) is far from Uc, and

thus the interval of existence for γ̃ can be extended by a fixed increment. One may redefine T to be

some value in the interval of existence incrementally larger than the original value of T , and repeat this
procedure until at least one of the stated conditions hold.

(20) Later it will be useful to assume the more stringent condition R1/26%6R1−2δ.
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Each Tλfθ,v is (spatially) concentrated on the curved R1/2+δ-tube Tθ,v and, consequently,

each T̃λ(fθ,v )̃ is concentrated on the translate Tθ,v−y. Since(21)

∂ωφ̃
λ((γλω,v(t), t)−y;ω) = ∂ωφ

λ((γλω,v(t), t);ω)−∂ωφλ(y;ω) = v−∂ωφλ(y;ω), (9.3)

the core curve Γλθ,v−y of Tθ,v−y is equal to Γθ,v−v̄(y;ωθ), where

v̄(y;ω) := ∂ωφ
λ(y;ω).

Now, repeat the construction of the wave packets for each T̃λ(fθ,v )̃ , but at scale %.

In particular, cover Ω by finitely overlapping caps θ̃ of radius %−1/2, and Rn−1 by finitely-

overlapping balls of radius %(1+δ)/2 centered at vectors ṽ∈%(1+δ)/2Zn−1. Let T̃ denote

the set of all pairs (θ̃, ṽ). For each (θ, v)∈T one may decompose

(fθ,v )̃ =
∑

(θ̃,ṽ)∈T̃

(fθ,v )̃θ̃,ṽ+RapDec(R)‖f‖L2(Bn−1),

as in §5. The significant contributions to this sum arise from pairs (θ̃, ṽ) belonging to

T̃θ,v := {(θ̃, ṽ)∈ T̃ : dist(θ, θ̃). %−1/2 and |v−v̄(y;ωθ)−ṽ|.R(1+δ)/2},

as demonstrated by the following lemma.

Lemma 9.1. If R1/26%6R, then, with the above definitions, the function (fθ,v )̃ is

concentrated on wave packets from T̃θ,v; that is,

(fθ,v )̃ =
∑

(θ̃,ṽ)∈T̃θ,v

(fθ,v )̃θ̃,ṽ+RapDec(R)‖f‖L2(Bn−1).

Proof. Since (fθ,v )̃ is supported in θ, clearly the wave packets of (fθ,v )̃ at scale %

are all supported in ⋃
θ̃: dist(θ̃,θ).%−1/2

θ̃.

Thus, it suffices to show that, for each (θ, v)∈T and %−1/2-cap θ̃, one has∑
ṽ:|v−v̄(y;ωθ)−ṽ|&R(1+δ)/2

(fθ,v )̃θ̃,ṽ = RapDec(R)‖f‖L2(Bn−1).

(21) For every fixed ω and v, here γλω,v is used to denote the curve satisfying ∂ωφλ((γλω,v(t), t);ω)=v

for all (admissible) t∈(−R,R). In the notation of §5, γλω,v=γλθ,v for a cap θ with ω=ωθ.
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Fixing (θ, v)∈T and (θ̃, ṽ)∈T̃ with |v−v̄(y;ωθ)−ṽ|&R(1+δ)/2, the above estimate would

follow if one could show that

(fθ,v )̃θ̃,ṽ = (1+R−1/2|v−v̄(y;ωθ)−ṽ|)−(n+1) RapDec(R)‖f‖L2(Bn−1).

By definition, (fθ,v )̃θ̃,ṽ=ψ̃θ̃ ·[(ηṽ )̂ ∗(ψθ̃fθ,v)] for the bump functions ψ̃θ̃, ηṽ and ψθ̃ as

defined in §5. Thus, Fourier inversion yields the pointwise bound

|(fθ,v )̃θ̃,ṽ(ω)|6 ‖(ψ̃θ̃)�‖L1(Rn) ‖ηṽ(ψθ̃(fθ,v )̃ )�‖L∞(Rn)

. ‖(ψθ̃)�∗((fθ,v )̃ )�‖L∞(B(ṽ,C%(1+δ)/2))

for all ω∈Rn−1. Since (ψθ̃)� is concentrated in B(0, %1/2), the problem is further reduced

to showing that

((fθ,v )̃ )�(z) = (1+R−1/2|z−v+v̄(y;ωθ)|)−(n+1) RapDec(R)‖f‖L2(Bn−1)

whenever |z−v+v̄(y;ωθ)|&R(1+δ)/2.

Let
˜̃
ψ be a Schwartz function on Rn−1 satisfying

˜̃
ψ(ω)=1 for ω∈Bn−1, and define

˜̃
ψθ(ω):=

˜̃
ψ(R1/2(ω−ωθ)) so that

((fθ,v )̃ )�= (
˜̃
ψθe

2πiφλ(y; ·))�∗(fθ,v)�.

On the one hand, since supp ηv⊂B(v, CR(1+δ)/2), it is not difficult to show that

|(fθ,v)�(z)|= (1+R−1/2|z−v|)−(n+1) RapDec(R)‖f‖L2(Bn−1) (9.4)

whenever |z−v|&R(1+δ)/2. On the other hand, it is claimed that

|( ˜̃
ψθe

2πiφλ(y; ·))�(z)|= (1+R−1/2|z+v̄(y;ωθ)|)−(n+1)RapDec(R) (9.5)

whenever |z+v̄(y;ωθ)|&R(1+δ)/2. A routine argument then shows that (9.4) and (9.5)

imply the desired estimate for ((fθ,v )̃ )�, and so it only remains to prove the claim.

The inverse Fourier transform in (9.5) can be expressed as

R−(n−1)/2

�
Rn−1

e2πi(〈z,ωθ+R−1/2ω〉+φλ(y;ωθ+R−1/2ω)) ˜̃
ψ(ω) dω,

where the ω -gradient of the phase is given by

R−1/2([∂ωφ
λ(y;ωθ+R−1/2ω)−∂ωφλ(y;ωθ)]+[v̄(y;ωθ)+z]). (9.6)

Using the fact that ∂2
ωωφ

λ(0;ω)=0, the first term in (9.6) can thus be estimated by

|∂ωφλ(y;ωθ+R−1/2ω)−∂ωφλ(y;ωθ)|.R−1/2|y|6R1/2.

Consequently, if z /∈B(−v̄(y;ωθ), R
(1+δ)/2), then the second term in (9.6) dominates the

ω -gradient of the phase and (9.6) is &Rδ/2 in norm. Repeated integration by parts now

implies (9.4), concluding the proof.
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9.2. Tangency properties

Let Z be a transverse complete intersection of dimension m, and suppose that h is a

function which is concentrated on wave packets from

TZ,B(y,%) := {(θ, v)∈TZ : Tθ,v∩B(y, %) 6=∅}.

What can be said about the scale % wave packets of h̃? In particular, do the lower scale

wave packets inherit the tangency property; namely, is h̃ concentrated on scale % wave

packets which are %−1/2+δm -tangent to some variety? It transpires that this is not true

in general. It is true, however, that h̃ can be broken up into pieces which are each made

up of scale % wave packets tangential to some translate of Z.

In particular, while all the scale % wave packets in question form very small angle with

Z−y, they can be traced all the way up to distance ∼R1/2+δm (rather than .%1/2+δm)

from Z−y, which means that they generally live too far from Z−y to be tangential to

it at scale %. Translations of Z−y however, up to distance ∼R1/2+δm , are tangential to

such remote wave packets.

To make the above discussion precise, let γ̃λω,v be the curve defined by

∂ωφ̃
λ(γ̃λω,v(t), t;ω) = v for t∈ (−%, %). (9.7)

It is remarked that (9.3) implies the relation

γλω,v(t) = γ̃λω,v−v̄(y;ω)(t−yn)+y′. (9.8)

Let T̃ω,v be the %1/2+δ-tube with core curve Γ̃λω,v=(γ̃λω,v(t), t) (defined analogously to the

R1/2+δ-tube Tθ,v), and for b∈Rn define

T̃Z+b := {(θ̃, ṽ)∈ T̃ : T̃θ̃,ṽ is %−1/2+δm -tangent to Z+b in B(0, %)}.

The key observation is as follows.

Proposition 9.2. Let R1/26%6R1−δ and Z⊆Rn be a transverse complete inter-

section.

(1) Let (θ, v)∈TZ and b∈B(0, 2R1/2+δm). If (θ̃, ṽ)∈T̃θ,v satisfies

T̃θ̃,ṽ∩N%1/2+δm/2(Z−y+b) 6=∅,

then (θ̃, ṽ)∈T̃Z−y+b.

(2) If h is concentrated on wave packets in TZ,B(y,%), then h̃ is concentrated on

wave packets in ⋃
|b|.R1/2+δm

T̃Z−y+b.
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In view of the forthcoming analysis, before proving these statements a simple appli-

cation is discussed. Under the hypotheses of the proposition, if one defines

T̃b :=

{
(θ̃, ṽ)∈

⋃
(θ,v)∈TZ,B(y,%)

T̃θ,v : T̃θ̃,ṽ∩N%1/2+δm/2(Z−y+b) 6=∅
}
,

then it follows that T̃b⊆T̃Z−y+b. Given a function h concentrated on wave packets in

TZ,B(y,%), consider a function of the form

h̃b :=
∑

(θ̃,ṽ)∈T̃b

h̃θ̃,ṽ. (9.9)

Expressions of the form (9.9) will play an important role in later arguments. Proposi-

tion 9.2 implies that

T̃λh̃b (x̃) =Tλhb(x)χN
%1/2+δm (Z+b)(x)+RapDec(R)‖h‖L2(Bn−1) (9.10)

for all x=x̃+y∈B(y, %).

The proof of Proposition 9.2 relies on the following lemma.

Lemma 9.3. If (θ, v)∈T and (θ̃, ṽ)∈T̃θ,v, then

|Γ̃λ
θ̃,ṽ

(t)−(Γλθ,v(t+yn)−y)|.R(1+δ)/2 for all t∈ (−%, %).

Proof. By the identity (9.8) and the definition of T̃θ,v, it suffices to show that, if

(ω1, v1), (ω2, v2)∈Ω×Rn−1 satisfy |ω1−ω2|.%−1/2 and |v1−v2|.R(1+δ)/2, then

|γ̃λω1,v1
(t)−γ̃λω2,v2

(t)|.R(1+δ)/2 for all t∈ (−%, %).

Fixing t∈(−%, %), let xt :=(γ̃λω1,v1
(t), t) and vt :=∂ωφ̃

λ(xt;ω2), and note that, since the

value of γ̃ω,v(t) is uniquely determined by (9.7), xt=(γ̃λω2,vt(t), t). Observe that

|v1−vt|= |∂ωφ̃λ(xt;ω1)−∂ωφ̃λ(xt;ω2)|. |ω1−ω2| |xt|. %1/2.

Since |v1−v2|.R(1+δ)/2, it follows that |vt−v2|.R(1+δ)/2. Therefore,

|γ̃λω1,v1
(t)−γ̃λω2,v2

(t)|= |γ̃λω2,vt(t)−γ̃
λ
ω2,v2

(t)| ∼ |vt−v2|.R(1+δ)/2,

which establishes the lemma.

One may now turn to the proof of Proposition 9.2.

Proof of Proposition 9.2. The proof is broken into stages.
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The angle condition.

Fix (θ, v)∈TZ and (θ̃, ṽ)∈T̃θ,v. Motivated by the definition of tangency, let x∈T̃θ̃,ṽ and

suppose z∈Z and b∈B(0, 2R1/2+δm) are such that

z−y+b∈B(0, 4%) and |x−(z−y+b)|6 
Ctang%
1/2+δm .

It is claimed that

](G̃λ(x;ωθ̃), Tz−y+b(Z−y+b))6 c̄tang%
−1/2+δm , (9.11)

where G̃λ is the generalised Gauss map associated with the phase φ̃λ. It is easy to see

that G̃λ(x;ω)=Gλ(x+y;ω) and Tz−y+b(Z−y+b)=TzZ, so the above estimate can be

written as

](Gλ(x+y;ωθ̃), TzZ)6 c̄tang%
−1/2+δm . (9.12)

By Lemma 9.3, the definition of T̃θ̃,ṽ and the hypothesis %6R1−δ, it follows that

|x+y−Γλθ,v(xn+yn)|.R(1+δ)/2, (9.13)

which, by Lemma 4.6, implies that

](Gλ(x+y;ωθ̃), TzZ).](Gλ(Γλθ,v(xn+yn);ωθ), TzZ)+%−1/2.

Finally,

Γλθ,v(xn+yn)∈Tθ,v,

and this tube is R−1/2+δm-tangent to Z. Note that z∈Z∩B(0, 2R) whilst, recalling

(9.13), one has

|Γλθ,v(xn+yn)−z|6 |x+y−Γλθ,v(xn+yn)|+|x−(z−y+b)|+|b|.R1/2+δm .

Thus, if the constant 
Ctang in Definition 8.1 is appropriately chosen, then the tangency

of Tθ,v implies that

](Gλ(Γλθ,v(xn+yn);ωθ), TzZ)6 c̄tangR
−1/2+δm

and, provided R is sufficiently large, (9.12) (and therefore (9.11)) immediately follows.

Containment properties.

The angle condition (9.11) implies that any tube T̃θ̃,ṽ which intersects

N%1/2+δm/2(Z−y+b)∩B(0, %)
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is actually contained in N%1/2+δm (Z−y+b). To demonstrate this containment property,

continue with the setup of the previous stage, but now assume the slightly stronger

conditions that z−y+b∈B(0, %) and |x−(z−y+b)|6 1
2%

1/2+δm . Define a time-dependent

vector field Xθ̃,ṽ: (−%, %)×Z∩B(0, 2R)!Rm on Z∩B(0, 2R) by

Xθ̃,ṽ(t, z) := projTzZ(Γ̃λ
θ̃,ṽ

)′(t) for all (t, z)∈ [−%, %]×Z∩B(0, 2R).

This can be smoothly extended to a map on [−%, %]×U , where U⊆Rn is a small open

neighbourhood of Z∩B(0, 2R). By the Picard–Lindelöf existence theorem for ODEs,

there exists some smooth mapping Zθ̃,ṽ: (−%, %)!Z such that Zθ̃,ṽ(xn)=z and

Z ′
θ̃,ṽ

(t) =Xθ̃,ṽ(t, Zθ̃,ṽ(t)) for all t∈ (−%, %).

Here, x=(x′, xn)∈T̃θ̃,ṽ are the points fixed above.

Observe that

|Γ̃λ
θ̃,ṽ

(xn)−(z−y+b)|6 |Γ̃λ
θ̃,ṽ

(xn)−x|+|x−(z−y+b)|< 2
3%

1/2+δm .

Let I denote the set of all t∈(−%, %) such that t>xn and

|Γ̃λ
θ̃,ṽ

(s)−(Zθ̃,ṽ(s)−y+b)|6 9
10%

1/2+δm for all xn6 s6 t.

It is claimed that t∗ :=sup I=%. To see this, first note that, if t∗<%, then

9
10%

1/2+δm = |Γ̃λ
θ̃,ṽ

(t∗)−(Zθ̃,ṽ(t∗)−y+b)|.

The angle condition (9.11) implies that

]((Γ̃λ
θ̃,ṽ

)′(t), TZθ̃,ṽ(t)Z)6 c̄tang%
−1/2+δm for all xn6 t6 t∗.

Combining the previous two displays with the identity

Γ̃λ
θ̃,ṽ

(t∗)−Zθ̃,ṽ(t∗) =

� t∗

xn

proj(TZ
θ̃,ṽ

(t)Z)⊥(Γ̃λ
θ̃,ṽ

)′(t) dt+(Γ̃λ
θ̃,ṽ

(xn)−z),

one concludes that

9
10%

1/2+δm <

� t∗

xn

sin]((Γ̃λ
θ̃,ṽ

)′(t), TZθ̃,ṽ(t)Z)|(Γ̃λ
θ̃,ṽ

)′(t)| dt+ 2
3%

1/2+δm

6 2c̄tang%
−1/2+δm |t∗−xn|+ 2

3%
1/2+δm .

Since |t∗−xn|62%, if c̄tang is appropriately chosen, then this yields a contradiction and,

consequently, [xn, %)⊆I. A similar argument shows that (−%, xn]⊆I, and so

Γ̃λ
θ̃,ṽ

((−%, %))⊆N(9/10)%1/2+δm (Z−y+b).

One therefore concludes that T̃θ̃,ṽ⊆N%1/2+δm (Z−y+b).
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Proof of Proposition 9.2 (1)

Let b∈B(0, 2R1/2+δm) and suppose that T̃θ̃,ṽ∩N%1/2+δ/2(Z−y+b)∩B(0, %) 6=∅; the prob-

lem is to show that T̃θ̃,ṽ is %−1/2+δm-tangential to Z−y+b. By hypothesis, there exists

some x∈T̃θ̃,ṽ and z∈Z such that z−y+b∈B(0, %) and |x−(z−y+b)|6 1
2%

1/2+δm . The

preceding analysis therefore implies that T̃θ̃,ṽ⊆N%1/2+δm (Z−y+b), which is the desired

containment condition for tangency. On the other hand, the angle condition for tangency

always holds by (9.11), and so the proof of part (1) is complete.

Proof of Proposition 9.2 (2)

By Lemma 9.1, it suffices to prove that⋃
(θ,v)∈TZ,B(y,%)

T̃θ,v ⊆
⋃

|b|.R1/2+δm

T̃Z−y+b.

Fixing (θ, v)∈TZ,B(y,%) and (θ̃, ṽ)∈T̃θ,v, by (9.11) the problem is further reduced to show-

ing that there exists some |b|.R1/2+δm such that T̃θ̃,ṽ⊆N%1/2+δm (Z−y+b). Lemma 9.3

implies that Γ̃λ
θ̃,ṽ

(t)∈NCR1/2+δm (Z−y) for t∈[−%, %]. Consequently, fixing t0∈[−%, %],

there exists some |b|.R1/2+δm such that Γ̃λ
θ̃,ṽ

(t0)∈Z−y+b. The desired inclusion now

follows from the containment property discussed earlier in the proof.

9.3. Sorting the wave packets

If (θ, v)∈T and (θ̃, ṽ)∈T̃θ,v, then Lemma 9.3 implies that(22)

distH(Tθ,v∩B(y, %), T̃θ̃,ṽ+y).R1/2+δ. (9.14)

In particular, if a pair of wave packets (θ1, v1), (θ2, v2)∈T are such that

T̃θ1,v1
∩T̃θ2,v2

6=∅,

then the tubes Tθ1,v1
and Tθ2,v2

are approximately equal on B(y, %).(23) This suggests

sorting the scale R wave packets (θ, v)∈T into disjoint sets for which the associated tubes

essentially agree on B(y, %).

Let T denote the collection of all pairs (θ̃, w) formed by a %−1/2-cap θ̃ and w∈
R(1+δ)/2Zn−1. For each (θ̃, w)∈T , choose some

Tθ̃,w ⊆{(θ, v)∈T : dist(θ, θ̃). %−1/2 and |v−v̄(y;ωθ)−w|.R(1+δ)/2}

(22) Here, distH denotes the Hausdorff distance.
(23) More precisely, enlarging the radius of either one of the Tθj ,vj by a constant factor produces a

tube which contains (Tθ1,v1
∪Tθ2,v2

)∩B(y, %).
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Tθ̃,w

B(x0, CR
1/2+δ)

B(y, %)

Figure 4. The set Tθ̃,w :=
⋃

(θ,v)∈T
θ̃,w

Tθ,v∩B(y, %) is highlighted in yellow. Fixing x0∈Tθ̃,w,

for every (θ, v)∈Tθ̃,w the tube Tθ,v intersects the ball B(x0, CR1/2+δ).

so that the family {Tθ̃,w :(θ̃, w)∈T } forms a covering of T by disjoint sets. Defining

Tθ̃,w :=
⋃

(θ,v)∈Tθ̃,w

Tθ,v∩B(y, %),

one obtains the following corollary to Lemma 9.3.

Corollary 9.4. If (θ̃, w)∈T and (θ, v)∈Tθ̃,w, then

distH(Tθ,v∩B(y, %), Tθ̃,w).R1/2+δ.

Let g:Bn−1
!C be integrable and define

gθ̃,w :=
∑

(θ,v)∈Tθ̃,w

gθ,v for all (θ̃, w)∈T .

Since the Tθ̃,w cover T and are disjoint, it follows that

g=
∑

(θ̃,w)∈T

gθ̃,w+RapDec(R)‖g‖L2(Bn−1); (9.15)
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furthermore, the functions gθ̃,w are almost orthogonal and, consequently,

‖g‖2L2(Bn−1)∼
∑

(θ̃,w)∈T

‖gθ̃,w‖
2
L2(Bn−1). (9.16)

By Lemma 9.1, the function (gθ̃,w )̃ is concentrated on scale % wave packets belonging

to
⋃

(θ,v)∈Tθ̃,w
T̃θ,v. This union is contained in

T̃θ̃,w := {(θ̃′, ṽ)∈ T̃ : dist(θ̃′, θ̃). %−1/2 and |ṽ−w|.R(1+δ)/2},

and therefore each (gθ̃,w )̃ is concentrated on wave packets from T̃θ̃,w. The family

{T̃θ̃,w : (θ̃, w)∈T }

forms a covering of T̃ by almost disjoint sets. This implies almost orthogonality between

the scale % wave packets of the different functions (gθ̃,w )̃ . A particular consequence of

this observation is that∥∥∥∥ ∑
(θ̃,w)∈T

(gθ̃,w)b̃

∥∥∥∥2

L2(Bn−1)

∼
∑

(θ̃,w)∈T

‖(gθ̃,w)b̃ ‖2L2(Bn−1), (9.17)

where h̃b is defined for a given function h as in (9.9).

9.4. Transverse equidistribution revisited

Let Z be an m-dimensional transverse complete intersection, (θ̃, w)∈T and h be a func-

tion concentrated on wave packets in TZ∩B(y,%)∩Tθ̃,w. Here, the key example to have in

mind is h=gθ̃,w, for some function g concentrated on wave packets in TZ,B(y,%).

Every scale R wave packet of h intersects B(y, %) on the set Tθ̃,w which, by Corol-

lary 9.4, is comparable to Tθ,v∩B(y, %) for any (θ, v)∈Tθ̃,w.(24) Consequently, if x0∈Tθ̃,w,

then all the scale R wave packets of h intersect B(x0, CR
1/2+δm) (see Figure 4). More-

over, (9.14) implies that the scale % wave packets of h̃ will intersect B(x0−y, CR1/2+δm).

Under these conditions, a useful reverse-type version of Hörmander’s L2 bound holds.

Lemma 9.5. Let Tλ be a Hörmander-type operator with phase φλ given by a translate

of a reduced phase in the sense of (9.2) and 16R1/2+δ6r.λ1/2. There exists a family

of Hörmander-type operators Tλ all with phase φλ such that the following hold :

(i) each Tλ∈Tλ is again an operator with phase given by a translate of a reduced

phase in the sense of (9.2) (in particular, all the relevant bounds from §4 hold on the

support of the amplitude);

(24) Here, ‘the scale R wave packets of h’ refers to the scale R wave packets upon which h is
concentrated.
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(ii) #Tλ=O(1);

(iii) if f is concentrated on wave packets (with respect to Tλ) which intersect some

B(x̄, r)⊆B(0, R), then

‖f‖2L2(Bn−1) . r−1‖Tλ∗ f‖2L2(B(x̄,Cr))

holds for some Tλ∗ ∈Tλ.

Lemma 9.5 can be proven for extension operators fairly directly via Plancherel’s

theorem (see [14, §3]). Establishing the general (variable coefficient) version of Lemma 9.5

involves a number of additional technicalities, and the proof is therefore postponed until

the end of the section.

For h as above, x0∈Tθ̃,w and |b|.R1/2+δm , the preceding discussion implies that the

function h̃b, as defined in (9.9), is a sum of wave packets which intersect

B(x0−y, CR1/2+δm).

Lemma 9.5 can therefore be applied at scale % with r∼R1/2+δm to yield

‖h̃b‖2L2(Bn−1) .R−1/2−δm‖T̃λ∗ h̃b‖2L2(B(x0−y,CR1/2+δm )).

The wave packets defined by Tλ and Tλ∗ will have identical geometric properties (since

these properties are essentially independent of the precise choice of amplitude). By (9.10),

one concludes that

‖h̃b‖2L2(Bn−1) .R−1/2−δm‖Tλ∗ hb‖2L2(N
%1/2+δm (Z+b)∩B(x0,CR1/2+δm )). (9.18)

This observation has several useful consequences. First of all, by applying Hörmander’s

L2 bound, one obtains the following.

Lemma 9.6. Let h be concentrated on wave packets from TZ∩B(y,%)∩Tθ̃,w, for some

(θ̃, w)∈T . Let B⊂B(0, CR1/2+δm) be such that the sets

N%1/2+δm (Z+b)∩B(x0, CR
1/2+δm)

are pairwise disjoint over all b∈B. Then,∑
b∈B

‖h̃b‖2L2(Bn−1) . ‖h‖
2
L2(Bn−1).

A further consequence of (9.18) is the following transverse equidistribution result.
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Lemma 9.7. Let (θ̃, w)∈T , |b|.R1/2+δm and Z be an m-dimensional transverse

complete intersection with degZ.ε1. If h is concentrated on wave packets from

TZ∩B(y,%)∩Tθ̃,w,

then

‖h̃b‖2L2(Bn−1) .RO(δm)
( %
R

)(n−m)/2

‖h‖2L2(Bn−1).

Proof. The transverse equidistribution estimate in Lemma 8.4 implies that

‖Tλ∗ h̃b‖2L2(N
%1/2+δm (Z+b)∩B(x0,CR1/2+δm )) .R1/2+O(δm)

( %
R

)(n−m)/2

‖h‖2L2(Bn−1).

Combining this with (9.18) completes the proof.

Let g be concentrated on wave packets of TZ,B(y,%). For each (θ̃, w)∈T the function

gθ̃,w is concentrated on wave packets in TZ∩B(y,%)∩Tθ̃,w. It follows that Lemma 9.6 and

Lemma 9.7 hold for h=gθ̃,w. Combining the contributions from distinct Tθ̃,w, one obtains

the following.

Lemma 9.8. Let |b|.R1/2+δm and Z be an m-dimensional transverse complete in-

tersection with degZ.ε1. If g is concentrated on wave packets from TZ,B(y,%), then

‖g̃b‖L2(Bn−1) .RO(δm)
( %
R

)(n−m)/4

‖g‖L2(Bn−1).

Proof. By (9.15) and the linearity of the map h 7!h̃b, it follows that

g̃b =
∑

(θ̃,w)∈T

(gθ̃,w)b̃+RapDec(R)‖g‖L2(Bn−1).

The almost orthogonality relation (9.17) between the (gθ̃,w)b̃ implies that

‖g̃b‖2L2(Bn−1) .
∑

(θ̃,w)∈T

‖(gθ̃,w)b̃ ‖2L2(Bn−1)+RapDec(R)‖g‖2L2(Bn−1).

By Lemma 9.7, the right-hand side of the above display is in turn dominated by

RO(δm)
( %
R

)(n−m)/2 ∑
(θ̃,w)∈T

‖gθ̃,w‖
2
L2(Bn−1)+RapDec(R)‖g‖2L2(Bn−1).

An application of (9.16) yields the desired estimate.
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9.5. The proof of the reverse L2 bound

Proof of Lemma 9.5. One may assume without loss of generality that x̄=0 and r=

R1/2+δ. Indeed, the first reduction follows from the formula (9.1), which can be used to

replace Tλ and f , respectively, by T̃λ and f̃ , here defined with y :=x̄. Lemma 9.1 and

the identity (9.8) imply that f̃ is concentrated on scale R wave packets associated with

T̃λ which intersect B(0, r). For the second reduction, suppose the result is known for

r=R1/2+δ, and let R1/2+δ6r6R and f be as in the statement of the theorem. For a∈R
consider the slab

Sa :=Rn−1×[a−R1/2+δ, a+R1/2+δ] ∩B(0, Cr),

where C>2 is a constant, chosen large enough for the purposes of the argument. Cover

Sa with a collection {Bj}j∈J of finitely-overlapping R1/2+δ-balls satisfying Bj∩Sa 6=∅
for all j∈J . By the initial reductions, any tube Tθ,v makes a small angle with the en

direction, and thus intersects at most O(1) of these balls. Orthogonality of the wave

packets together with the hypothesised estimate therefore imply that

‖g‖2L2(Bn−1) .R−1/2−δ‖Tλg‖2L2(N
CR1/2+δ (Sa)) (9.19)

for any g concentrated on wave packets at scale R which intersect Sa. If (θ, v)∈TB(0,r),

then the aforementioned angle condition implies that Tθ,v intersects every slab Sa for

which Sa∩B(0, r) 6=∅. Hence, if f is concentrated on wave packets from TB(0,r), then

one may sum (9.19) over a collection of ∼r/R1/2+δ slabs which cover B(0, r) to obtain

the desired result.

Fix a function f satisfying the hypotheses of the lemma with x̄=0 and r=R1/2+δ,

and note that

‖f‖L2(Bn−1)∼
∥∥∥∥ ∑

(θ,v):Tθ,v∩B(0,R1/2+δ)6=∅

fθ,v

∥∥∥∥
L2(Bn−1)

.

Recall that the change of variables u 7!Ψ(x̄/λ;u), where Ψ is the function intro-

duced in §4, reparametrises the surface {∂xφλ(x̄;ω):ω∈Ω} as the graph of the function

∂xnφ
λ(x̄; Ψ(x̄/λ;u)), for any x̄∈Xλ. With an abuse of notation for the sake of sim-

plicity, let Ψ denote the above change of variables for x̄=0; that is, Ψ(u):=Ψ(0;u).

Thus, Ψ:U!Ω is a diffeomorphism that reparametrises the surface {∂xφλ(0;ω):ω∈Ω}
as the graph of the function h̄(u):=∂xnφ

λ(0; Ψ(u)); in particular, ∂x′φ
λ (0; Ψ(u))=u for

all u∈U .
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Applying the change of variables u 7!Ψ(u), denoting by JΨ the absolute value of the

determinant of the corresponding Jacobian matrix and recalling that JΨ∼1 by (4.12),

one obtains

‖g‖L2(Bn−1)∼‖g�Ψ·J
1/2
Ψ ‖L2(Bn−1)∼‖g�Ψ·JΨ‖L2(Bn−1)

for all g∈L2(Bn−1). It follows that

‖f‖L2(Bn−1)∼‖fΨ‖L2(Bn−1),

where

fΨ :=

( ∑
(θ,v):Tθ,v∩B(0,R1/2+δ)6=∅

fθ,v �Ψ

)
·JΨ.

Let E denote the extension operator

Eg(x) :=

�
U

e2πi(〈x′,u〉+xnh̄(u))g(u) du

associated with the graph u 7!(u, h̄(u)). For any xn∈R and a square integrable function

g supported on U , Plancherel’s theorem implies that

‖g‖2L2(Bn−1) = ‖e2πixnh̄g‖2L2(Bn−1) = ‖Eg‖2L2(Rn−1×{xn}).

Hence, averaging this estimate over |xn|<R1/2+δ, one obtains

‖g‖2L2(Bn−1)∼R
−1/2−δ‖Eg‖2L2(Rn−1×(−R1/2+δ,R1/2+δ)). (9.20)

The key observation is that the hypothesis on f implies that the right-hand L2-norm can

be localised.

Claim. If |xn|<R1/2+δ and x′ /∈B(0, CR1/2+δ), then

EfΨ(x) = (1+R−1/2|x′|)−(n+1) RapDec(R)‖f‖L2(Bn−1).

This concentration property is very similar to that detailed in Lemma 5.4, the main

difference being that the condition (θ, v)∈TB(0,R1/2+δ) is defined with respect to the

operator Tλ, whilst the above identity concerns the linearised version E. The proof is a

minor adaptation of the stationary phase analysis used to establish Lemma 5.4, and is

therefore omitted.

For the specific choice of function g=fΨ, the claim implies that (9.20) may be

strengthened to

‖f‖2L2(Bn−1)∼‖fΨ‖2L2(Bn−1)∼R
−1/2−δ‖EfΨ‖2L2(B(0,CR1/2+δ)). (9.21)
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This is easily seen to imply the lemma. Indeed, reversing the earlier change of variables,

EfΨ(z) =

�
Ω

e2πiφλ(z;ω)e−2πiλE(z/λ;ω)f(ω) dω+RapDec(R)‖f‖L2(Bn−1)

for all z∈B(0, CR1/2+δ), where E is the error term in the Taylor expansion

φ(z;ω) =φ(0;ω)+〈∂xφ(0;ω), z〉+E(z;ω).

Were it not for the factor e−2πiλE(z/λ;ω), the functions EfΨ(z) and Tλf(z) would be

equal, up to a negligible error term, and (9.21) would directly imply the desired estimate.

This unwanted additional factor can be removed via a Fourier series decomposition.

More precisely, it holds by the integral form of the remainder that

∂βωE(z;ω) =
∑
|γ|=2

2

α!

� 1

0

(1−t)∂γx∂βωφ(tz;ω) dt zγ for all β ∈Nn−1
0 . (9.22)

Applying the uniform bounds on the derivatives of the reduced phase function φ as

described in §4, and recalling the hypothesis R1/2+δ.λ1/2, (9.22) implies that∣∣∣∣∂βω∂αz λE(R1/2+δz

λ
;ω

)∣∣∣∣. cpar for 06 |α|, |β|6Npar and |z|. 1. (9.23)

Let ψ∈C∞c (Rn×Rn−1) be supported on X×Ω and equal to 1 on supp a. By forming the

Fourier series expansion in both the x and ω variables, one obtains

e−2πiλE(z/λ;ω)ψ
( z

R1/2+δ
;ω
)

=
∑

k∈Zn×Zn−1

k=(k1,k2)

(1+|k|)−2ncke
2πi(〈z/R1/2+δ,k1〉+〈ω,k2〉),

where the ck are weighted Fourier coefficients. Observe that (9.23) implies that |ck|.1

for all k∈Zn×Zn−1. Thus, (9.21) now yields

‖f‖L2(Bn−1) .R−(1/4+δ/2)
∑

k∈Zn×Zn−1

k=(k1,k2)

(1+|k|)−2n‖Tλ(e2πi〈· ,k2〉f)‖L2(B(0,CR1/2+δ)).

The above sum is split into a sum over k=(k1, k2) satisfying |k|>Cn and a sum over the

remaining k, where Cn is a dimensional constant, chosen large enough for the present

purpose. The sum over large k is bounded above by

A
∑
|k|>Cn

(1+|k|)−2n‖f‖L2(Bn−1) (9.24)
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for some dimensional constant in A; indeed, this follows by applying Hörmander’s L2-

estimate from Lemma 5.5 to each of the summands (the constant in Hörmander’s theorem

can be made uniform over the class of reduced phases). By choosing Cn to be sufficiently

large so that A
∑
|k|>Cn(1+|k|)−2n6 1

2 , the term (9.24) can be absorbed into the left-hand

side of the inequality. Thus, one obtains

‖f‖L2(Bn−1) .R−(1/4+δ/2)
∑

k∈Zn−1

|k|6Cn

‖Tλ(e2πi〈· ,k〉f)‖L2(B(0,CR1/2+δ)).

Finally, define the class of operators


Tλ := {Tλk : k∈Zn−1 and |k|6Cn},

where Tλk has phase φλ and amplitude aλk , for

ak(z;ω) :=ψ(z;ω)e2πi〈ω,k〉.

It is easy to see that each such amplitude ak can be written as a linear combination

of O(1) amplitudes satisfying the conditions of Lemma 4.3, with complex coefficients of

order of magnitude O(1). Defining Tλ to be the union, over all |k|6Cn, of the operators

with phase φλ and the corresponding rescaled amplitudes, it follows by the pigeonhole

principle that there exists at least one operator Tλ∗ ∈Tλ for which the desired inequality

holds.

10. Proof of the k-broad estimate

10.1. A more general result

In this section the proof of the k-broad estimate in Theorem 1.9 is given. In order

to facilitate an inductive argument, a more general result will be established, which is

described presently.

Throughout this section, Tλ denotes an arbitrary choice of a translate of a Hörmander-

type operator with reduced positive-definite phase. That is, Tλ is of the form of the

operator T̃λ discussed in the previous section, with phase and amplitude of the type

described in (9.2). Many of the estimates involving Tλ, such as (10.1) below, are under-

stood to hold uniformly for the entire class of such operators; it is important to work

with the whole class rather than a single choice of Tλ in order to run certain induction

arguments.
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In order to state the result, first define the exponent

ek,n(p) :=
1

2

(
1

2
− 1

p

)
(n+k),

and note that −ek,n(p)+ 1
260 if and only if p>p̄(k, n), where

p̄(k, n) =
2(n+k)

n+k−2

is the exponent appearing in Theorem 1.9.

Proposition 10.1. Given ε>0 sufficiently small and 16m6n, there exist

0<δ� δn−1� δn−2� ...� δ1� ε

and constants 
Cε and Āε dyadic, Dm,ε.ε1 and ϑm<ε such that the following holds.

Suppose Z=Z(P1, ..., Pn−m) is a transverse complete intersection with degZ6Dm,ε.

For all 26k6n, 16A6Āε dyadic and 16K6R6λ, the inequality

‖Tλf‖BLpk,A(B(0,R)) .εK
	CεRϑm+δ(log Āε−logA)−ek,n(p)+1/2‖f‖L2(Bn−1) (10.1)

holds whenever f is concentrated on wave packets from TZ and

26 p6 p̄0(k,m) :=

{
p̄(k,m), if k <m,

p̄(m,m)+δ, if k=m.

Here, TZ is defined as in §8; that is,

TZ := {(θ, v)∈T : Tθ,v is R−1/2+δm -tangent to Z in B(0, R)}.

Proposition 10.1 immediately yields the desired k-broad estimate.

Proof of Theorem 1.9. Theorem 1.9 is a special case of Proposition 10.1. Indeed,

Z=Rn is a transverse complete intersection of dimension n, and TZ contains all wave

packets in B(0, R). Thus, taking A=Āε and p=p̄(k, n) yields the endpoint case of The-

orem 1.9. The general result follows by interpolating with the trivial p=∞ estimate via

the logarithmic convexity of the k-broad norms (that is, Lemma 6.3).

10.2. Reducing to R.λ1−ε.

Turning to the proof of Proposition 10.1, the first step is a technical reduction on the radii

R which is needed to facilitate certain polynomial partitioning arguments. In particular,
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it will be necessary to approximate the curves Γλθ,v by polynomial curves of degree inde-

pendent of R; by the observations of §7.2, this is possible when 16R.ελ1−ε, and thus

(10.1) will first be proved for this restricted range of R. The result can then be extended

to the full R6λ range by a triangle inequality argument (incurring a permissible RO(ε)

loss). The concentration hypothesis on f in Proposition 10.1 creates some difficulties

here, which are addressed by the following lemma.

Lemma 10.2. Let 16%6R6λ and assume that, for any transverse complete inter-

section Z=Z(P1, ..., Pn−m) with degZ6D, the inequality

‖Tλf‖BLpk,A(B(0,%)) 6E‖f‖L2(Bn−1) (10.2)

holds with some constant E>0 whenever f is concentrated on wave packets from T̃Z .

Then for all Z as above, the inequality

‖Tλf‖BLpk,A(B(0,R)) .

(
R

%

)O(1)

E‖f‖L2(Bn−1)

holds for all functions f concentrated on wave packets in TZ .

Here, T̃Z denotes the collection of wave packets at scale % that are %1/2+δm-transverse

to Z in B(0, %); this notation is consistent with that used in §9.

Proof. Let f be a function concentrated on wave packets in TZ for some transverse

complete intersection Z, as in the statement of the lemma. Fix a cover B% of B(0, R) by

finitely overlapping %-balls. By the sub-additivity of the k-broad norms and Lemma 5.4,

there exists some B=B(y, %)∈B% such that

‖Tλf‖p
BLpk,A(B(0,R))

.

(
R

%

)O(1)

‖Tλh‖p
BLpk,A(B)

+RapDec(R)‖f‖pL2(Bn−1),

where h:=
∑

(θ,v)∈TZ,B fθ,v; here and below, the notation TZ,B is consistent with that

used in §8. As in §9, write Tλh(x+y)=T̃λh̃(x) so that, suppressing the harmless rapidly

decaying term in the notation, one has(25)

‖Tλf‖p
BLpk,A(B(0,R))

.

(
R

%

)O(1)

‖T̃λh̃‖BLpk,A(B(0,%)). (10.3)

In general, h̃ is not concentrated on wave packets which are %−1/2+δm -tangential to a

suitable variety inside B(0, %); thus, hypothesis (10.2) cannot be applied directly to esti-

mate the right-hand side of (10.3). Rather, one approaches the problem via the methods

(25) Strictly speaking, in order for (10.3) to hold, the k-broad norm on the right-hand side should

be defined with respect to a translate of the family of balls BK2 . Since the estimates will be uniform over
all choices of families BK2 of bounded multiplicity, this slight technicality does not affect the argument.
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of §9. By Proposition 9.2, h̃ is concentrated on wave packets in
⋃
b∈B T̃Z−y+b, where B

is a discrete set of cardinality .(R/%)O(1) such that |b|.R1/2+δm for all b∈B. Conse-

quently, by the sub-additivity of the k-broad norms and Lemma 5.4 and Proposition 9.2,

there exists some b∈B such that

‖T̃λh̃‖p
BLpk,A(B(0,%))

.

(
R

%

)O(1)

‖T̃λh̃b‖pBLpk,A(B(0,%))
, (10.4)

for h̃b as defined in §9. Recall from Proposition 9.2 that h̃b is concentrated on wave

packets in T̃Z−y+b and satisfies

‖h̃b‖L2(Bn−1) . ‖f‖L2(Bn−1). (10.5)

Combining (10.3) and (10.4), the desired estimate now follows by applying hypothe-

sis (10.2) to the function h̃b, and then using (10.5) to bound the resulting right-hand

expression.

10.3. Setting up the induction argument

Henceforth it is assumed that 16R.ελ1−ε. Under this hypothesis, given ε>0 sufficiently

small, Proposition 10.1 will be established for the following choice of parameters:

Dm,ε := ε−δ
−(2n−m)

, ϑ(ε) := ε−cnδm, Āε := de10n/δe, (10.6)

δi = δi(ε) := ε2i+1 for all i= 1, ..., n−1.

Here, 0<δ=δ(ε)�δn−1(ε) and cn>0 is a fixed dimensional constant.

The proof is by induction on the radius R and the dimension m; presently the base

cases for this induction are established.

Base case for the radius: R.εKn

Provided that the implied constant in (10.1) and Cε are chosen to be sufficiently large,

in this case Proposition 10.1 follows immediately from the trivial inequality

‖Tλf‖BLpk,A(B(0,R)) .Rn/p‖f‖L2(Bn−1), (10.7)

valid for all A∈N and 16p6∞.
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Base case for the dimension: m6k−1

Assuming (without loss of generality) that K.εR1/n, one can show in this case that

‖Tλf‖BLpk,A(B(0,R)) = RapDec(R)‖f‖L2(Bn−1). (10.8)

Indeed, fix a ball BK2∈BK2 with BK2∩B(0, R) 6=∅; here, BK2 denotes the collection of

K2-balls featured in the definition of the k-broad norm (1.13). Let TBK2 denote the

collection of all K−1-caps τ for which there exists some (θ, v)∈TZ,BK2 with θ∩τ 6=∅.

Observe that, if τ /∈TBK2 , then
�
BK2

|Tλfτ |p = RapDec(R)‖f‖pL2(Bn−1), (10.9)

since f is concentrated on wave packets in TZ .

It is claimed that there exists some V ∈Gr(k−1, n) such that

](Gλ(x̄; τ), V )6K−1 for all τ ∈TBK2 , (10.10)

where x̄∈Rn denotes the centre of BK2 . Indeed, by (10.9), one may assume without loss

of generality that TBK2 6=∅, and hence TZ,BK2 6=∅. Thus, there exists z∈Z∩B(0, R)

with |z−x̄|.R1/2+δm and, taking V ∈Gr(k−1, n) to be any subspace that contains TzZ,

the claim is easily deduced from the definition of R1/2+δm -tangency (see Definition 8.1),

together with the hypothesis K.R1/n.

Recalling the definition of µTλf (BK2) from (1.12), it follows from (10.10) that

µTλf (BK2)6max
τ /∈V

�
BK2

|Tλfτ |p6 max
τ /∈TB

K2

�
BK2

|Tλfτ |p,

and the desired estimate (10.8) is now a consequence of (10.9).

Reduction to A>2

Recall that Āε>e10n/δ, so that δ log Āε>10n. Although the argument does not require

one to induct on A, it is useful to note that (10.7) implies that Proposition 10.1 holds for

A=1. This allows one to assume A>2 throughout the following argument, and therefore

permits the use of the k-broad triangle and logarithmic-convexity inequalities.

10.4. An overview of the inductive step

Let 26k6n−1, k6m6n and R&εKn. Assume, by way of induction hypothesis, that

(10.1) holds whenever the dimension of the transverse complete intersection Z is at most

m−1 or the radial parameter is at most 1
2R.
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Fix ε>0, 1<A6Āε and a transverse complete intersection Z=Z(P1, ..., Pn−m) with

degZ6Dm,ε, where the parameters Āε and Dm,ε are as defined in (10.6). Let f be

concentrated on wave packets from TZ .

It suffices to show that (10.1) holds at the endpoint p=p̄0(k,m). Indeed, observe

that Lemma 5.5 implies the L2-bound

‖Tλf‖2BL2
k,A(B(0,R)) .

∑
τ :K−1-cap

‖Tλfτ‖2L2(B(0,R)) .R‖f‖2L2(Bn−1).

Once (10.1) is established for p=p̄0(k,m), one may use the logarithmic convexity of the

k-broad norms to interpolate the p=p̄0(k,m) estimate against the above inequality, and

thereby obtain (10.1) in the desired range.

The analysis proceeds by considering two different cases.

The algebraic case

There exists a transverse complete intersection Y l⊆Z of dimension 16l6m−1 of maxi-

mum degree at most (Dm,ε)
n such that

‖Tλf‖p
BLpk,A(N

R1/2+δm/4
(Y l)∩B(0,R))

> calg‖Tλf‖pBLpk,A(B(0,R))
. (10.11)

Here calg>0 is a constant depending only on n and ε which is chosen to be sufficiently

small to suit the needs of the forthcoming argument.

The cellular case

The negation of the algebraic case: for every transverse complete intersection Y l⊆Z of

dimension 16l6m−1 and maximum degree at most (Dm,ε)
n, the inequality

‖Tλf‖p
BLpk,A(N

R1/2+δm/4
(Y l)∩B(0,R))

<calg‖Tλf‖pBLpk,A(B(0,R))
(10.12)

holds.

The cellular case is the simplest situation and will be treated first. Here a polynomial

partitioning argument is employed which splits the mass of the k-broad norm into small

pieces; these pieces can then be treated individually using the radial induction hypothesis.

The algebraic case is the most involved situation; it encapsulates the kind of behaviour

exhibited by the sharp examples in §2. In this case, Tλf can be thought of as concentrated

near a low-dimensional and low-degree variety Y l (in a k-broad sense). If the wave packets

of f are also tangential to this variety, then one may use induction on the dimension to
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conclude the argument. This might not be the case, however, and if many of the wave

packets of f are transverse to Y l, then an alternative argument is required. Thus, the

algebraic case naturally splits into two sub-cases, a tangential and a transverse sub-case,

which are discussed in detail below. Lemma 7.5 can be applied to show that a given

tube Tθ,v can only interact transversely with the variety Y l inside a small number of

finitely overlapping balls of some fixed radius %�R (more precisely, the radius is chosen

to satisfy %1/2+δl=R1/2+δm); this eventually allows one to also close the induction in the

transverse situation.

10.5. The cellular case

The cellular case can be treated using polynomial partitioning. Roughly speaking, since

by hypothesis Tλf is concentrated in a neighbourhood of an m-dimensional transverse

complete intersection, for any D>1 Theorem 7.3 can be applied in m dimensions to show

that there exists a non-zero polynomial P of degree at most D such that, letting {Oi}i∈I
denote the connected components of Rn\Z(P ) (which, recall, are referred to as cells),

one has #{Oi :i∈I}∼Dm and

‖Tλf‖p
BLpk,A(Oi)

∼D−m‖Tλf‖p
BLpk,A(B(0,R))

for all i∈I. (10.13)

Thus, the mass of the k-broad norm is essentially equally distributed amongst the cells.

Moreover, using the hypothesis of the cellular case, one can construct P so that very

little of the mass lies near the cell wall

W :=N2R1/2+δ(Z(P ))∩B(0, R).

In particular, the estimate (10.13) essentially still holds if the Oi are replaced with the

shrunken cells O′i :=Oi\W . The O′i can be thought of as well separated,(26) and this

facilitates a divide-and-conquer-style argument. More precisely, the fact that a non-zero

univariate polynomial of degree at most D has at most D roots quickly leads to the

following observation.

Lemma 10.3. If P is a polynomial of degree degP6D and {O′i}i∈I are defined as

above, then each tube Tθ,v enters at most D/ε of the cells O′i.

It is important to note that, in general, Lemma 10.3 does not hold if the O′i are

replaced with the cells Oi.

(26) In particular, the distance between a pair of distinct O′i is wider than the width R1/2+δ of any
tube Tθ,v .
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Proof. Let [Γλθ,v]ε :R!Rn−1 denote the polynomial approximant of Γλθ,v, as defined

in §7.2. Thus, deg[Γλθ,v]ε6d1/2εe and (7.2) implies that

|[Γλθ,v]ε(t)−Γλθ,v(t)|6R1/2 for all t∈ (−R,R).

Suppose that x∈O′i∩Tθ,v. By the definition of O′i, the ball B
(
x, 2R1/2+δ

)
con-

tains no points of Z(P ), and is therefore contained in Oi. On the other hand, we have

dist(x,Γλθ,v)<R
1/2+δ, and therefore dist(x, [Γλθ,v]ε)<2R1/2+δ. Consequently, [Γλθ,v]ε en-

ters B(x, 2R1/2+δ)⊆Oi. Thus, if Tθ,v enters a cell O′i, then the polynomial curve [Γλθ,v]ε

enters Oi whilst, by the simple property of univariate polynomials quoted above, [Γλθ,v]ε

can enter at most degP ·deg[Γλθ,v]ε+16D/ε cells Oi.

Some aspects of the discussion prior to Lemma 10.3 are not entirely precise; for

instance, to apply the polynomial partitioning theorem, one must work with an L1 func-

tion, rather than a k-broad norm. In view of this, let µ denote the measure on Rn with

Radon–Nikodym derivative

∑
BK2∈BK2

µTλf (BK2)
1

|BK2 |
χBK2

with respect to the Lebesgue measure. One may easily verify that

µ(U)6 ‖Tλf‖p
BLpk,A(U)

and ‖Tλf‖p
BLpk,A(B(0,R))

6µ(B(0, 2R)) (10.14)

for all Lebesgue measurable sets U⊆Rn. These inequalities ensure that the measure

µ acts as an effective surrogate for the k-broad norm in the polynomial partitioning

argument.

By combining the cellular hypothesis with Theorem 7.3, one obtains the following

partitioning result.

Lemma 10.4. (Polynomial partitioning [14]) There exists a polynomial P of degree

degP6Dm,ε such that, if {Oi}i∈I and W are defined as above and O′i :=Oi\W for all

i∈I, then #I.(Dm,ε)
m and

µ(O′i)∼ (Dm,ε)
−mµ(B(0, 2R)) (10.15)

for at least 99% of the cells O′i.

This lemma is contained in the work of the first author [14, §8.1], and the details of

the proof are not reproduced here. The basic idea is as follows: by hypothesis, the mass

of µ is concentrated in NR1/2+δm (Z), where Z is an m-dimensional algebraic variety; this
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allows one to apply Theorem 7.3 in m-dimensions to construct a polynomial P which

satisfies the desired properties, with Oi in place of O′i. The hypothesis of the cellular

case implies that the mass of µ cannot concentrate in a neighbourhood of a certain type

of algebraic variety, and this can be used to show, in particular, that the mass cannot

concentrate around the cell wall W . Provided the constant calg is chosen to be sufficiently

small, this allows one to pass to the shrunken cells O′i in (10.15) (at least for 99% of the

cells).

There are a number of technicalities involved in rigorously carrying out this argu-

ment. In particular, one must justify the application of Theorem 7.3 in dimension m;

this requires locally approximating Z by some tangent plane TzZ and applying the the-

orem to the push-forward of µ onto TzZ under orthogonal projection. The partitioning

variety in TzZ is lifted to a variety Z̃ in Rn by taking the pre-image under the orthogonal

projection; it is possible to define Z̃ in this way, so that it is transverse to Z. The cells

Oi are then defined with respect to Z̃.(27)

Presently, it is shown how together Lemmas 10.3 and 10.4 easily yield the proof of

Proposition 10.1 in the cellular case. Applying Lemma 10.4 one obtains a partition of

Rn\W into disjoint cells {Oi}i∈I . For each i∈I let

Ti := {(θ, v)∈TZ : Tθ,v∩O′i 6=∅} and fi :=
∑

(θ,v)∈Ti

fθ,v.

By Lemma 5.4 one has

‖Tλf‖p
BLpk,A(O′i)

6 ‖Tλfi‖pBLpk,A(O′i)
+RapDec(R)‖f‖pL2(Bn−1).

Combining this inequality with (10.14) and Lemma 10.4, one deduces that at least 99%

of the cells O′i have the property that

‖Tλf‖p
BLpk,A(B(0,R))

. (Dm,ε)
m‖Tλfi‖pBLpk,A(O′i)

+RapDec(R)‖f‖pL2(Bn−1). (10.16)

On the other hand, by Lemma 10.3 and orthogonality between the fθ,v, one has∑
i∈I
‖fi‖2L2(Bn−1)∼

∑
(θ,v)∈TZ

#{i∈I : (θ, v)∈Ti}‖fθ,v‖2L2(Bn−1) .εDm,ε‖f‖2L2(Bn−1).

Since there are roughly (Dm,ε)
m cells in total, Markov’s inequality shows that at least

99% of the cells O′i have the property that

‖fi‖2L2(Bn−1) .εD
−(m−1)
m,ε ‖f‖2L2(Bn−1). (10.17)

(27) To carry out this argument rigorously, one must further ensure that all the relevant varieties
are transverse complete intersections of dimension at most m−1 and controlled degree in order to invoke

(10.12). Such technicalities account for the choice of maximum degree (Dm,ε)n in the definition of the
algebraic and cellular cases.
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Therefore, there exists some cell O′i for which (10.16) and (10.17) simultaneously hold;

henceforth, attention is focused on a single such cell O′i.

Let Em,A(R) denote the constant appearing on the right-hand side of (10.1); namely,

Em,A(R) :=Cm,εK
	CεRε−cnδm+δ(log Āε−logA)−ek,n(p)+1/2.

By the radial induction hypothesis, Proposition 10.1 holds for the radius 1
2R. For the

fixed choice of i as above, cover O′i with O(1) balls of radius %= 1
2R. Applying Lemma 10.2

to fi on each of these balls, one obtains

‖Tλfi‖BLpk,A(B(0,R)) .Em,A
(

1
2R
)
‖fi‖L2(Bn−1) .Em,A(R)‖fi‖L2(Bn−1).

Combining the above estimate with (10.16) and (10.17), one deduces that

‖Tλf‖BLpk,A(B(0,R)) 6Cε(Dm,ε)
−(m−1)/2+m/pEm,A(R)‖f‖L2(Bn−1)

for some constant Cε>0. The Dm,ε exponent is negative if and only if p>2m/(m−1);

note this is the case for the choice of exponent p=p̄0(k,m).(28) Thus, recalling the

definition of D=Dm,ε and assuming ε is sufficiently small depending on n, it follows that

Cε(Dm,ε)
−(m−1)/2+m/p61. This establishes the desired estimate (10.1) and closes the

induction in the cellular case.

10.6. The algebraic case

Fix a transverse complete intersection Y l of dimension 16l6m−1 and maximum degree

deg Y l6(Dm,ε)
n which satisfies (10.11). Let R1/2�%�R be such that %1/2+δl=R1/2+δm ,

and note that

R6R2δl% and %6R−δl/2R. (10.18)

Let B% be a finitely-overlapping cover of B(0, R) by %-balls, and for each B∈B%
define

TB := {(θ, v)∈T :Tθ,v∩NR1/2+δm/4(Y l)∩B 6=∅}

and

fB :=
∑

(θ,v)∈TB

fθ,v.

Thus, by (10.11) and Lemma 5.4,

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈B%

‖TλfB‖pBLpk,A(N
R1/2+δm/4

(Y l)∩B)

(28) It is for this reason that one works with the modified exponent p̄0(k,m) rather than p̄(k,m).
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holds, up to the inclusion of a rapidly decreasing error term. In what follows, such error

terms, which are harmless, are suppressed in the notation.

For B=B(y, %)∈B%, let TB,tang denote the set of all (θ, v)∈TB with the property

that, whenever x∈Tθ,v and z∈Y l∩B(y, 2%) satisfy |x−z|62
Ctang%
1/2+δl , it follows that

](Gλ(x;ωθ), TzY
l)6 1

2 c̄tang%
−1/2+δl ,

where 
Ctang and c̄tang are the constants appearing in the definition of tangency. Further-

more, let TB,trans :=TB\TB,tang and define

fB,tang :=
∑

(θ,v)∈TB,tang

fθ,v and fB,trans :=
∑

(θ,v)∈TB,trans

fθ,v.

It follows that fB=fB,tang+fB,trans and, by the triangle inequality for broad norms (that

is, Lemma 6.2), one concludes that

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈B%

‖TλfB,tang‖pBLpk,A/2(B)
+
∑
B∈B%

‖TλfB,trans‖pBLpk,A/2(B)
.

Either the tangential or transverse contribution to the above sum dominates, and each

case is treated separately.

The tangential sub-case

Suppose that the tangential term dominates; that is,

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈B%

‖TλfB,tang‖pBLpk,A/2(B)
. (10.19)

Each term in the right-hand sum is bounded using the dimensional induction hypothesis.

Fix B=B(y, %)∈B% and, as in §9, let

T̃λ(fB,tang )̃ (x) =TλfB,tang(x+y),

so that(29)

‖TλfB,tang‖BLpk,A/2(B(y,%)) = ‖T̃λ(fB,tang )̃ ‖BLpk,A/2(B(0,%)). (10.20)

Since deg Y l6Dl,ε, in order to apply the induction hypothesis, one must verify that

(fB,tang )̃ is concentrated on scale % wave packets that are %−1/2+δl -tangent to Y l−y in

B(0, %). By Lemma 9.1, (fB,tang )̃ is concentrated on scale % wave packets from

T̃B,tang :=
⋃

(θ,v)∈TB,tang

T̃θ,v,

(29) See footnote 25 on page 337.
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where the T̃θ,v are as defined in §9. Fix (θ̃, ṽ)∈T̃B,tang and recall from (9.14) that

distH(T̃θ̃,ṽ, (Tθ,v−y)∩B(0, %)).R1/2+δ� %1/2+δl . (10.21)

Combining this with the definition of TB,tang, it is easy to see that T̃θ̃,ṽ satisfies the angle

condition for tangency, and it remains to verify the containment property

T̃θ̃,ṽ ⊆N%1/2+δl (Y
l−y).

The definition of TB and (10.21) imply that

T̃θ̃,ṽ∩N%1/2+δl/2(Y l−y)∩B(0, %) 6=∅,

and so the containment property follows from the angle condition, as in the proof of

Proposition 9.2.

Thus, the dimensional induction hypothesis may be applied to (fB,tang )̃ , and one

therefore deduces that

‖T̃λ(fB,tang )̃ ‖BLpk,A/2(B(0,%)) 6El,A/2(%)‖fB,tang‖L2(Bn−1).

Combining this estimate with (10.19) and (10.20), one concludes that

‖Tλf‖BLpk,A(B(0,R)) 6RO(δl)El,A/2(%)‖f‖2L2(Bn−1).

To close the induction in this case, it remains to show that

RO(δl)El,A/2(%)6Em,A(R).

By (10.18),

%δ(log Āε−log(A/2)) 6RO(δl)Rδ(log Āε−logA),

%−ek,n(p)+1/2 6RO(δl)R−ek,n(p)+1/2.

Combining these observations, the problem is further reduced to showing that

%ε−cnδl 6R−cδlRε−cnδm ,

where c>1 is a suitably large-dimensional constant. By (10.18), one may ensure that this

inequality holds by choosing the constant cn in (10.6) at the outset to be large relative

to c.
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The transverse sub-case

Now suppose the transverse term dominates; that is,

‖Tλf‖p
BLpk,A(B(0,R))

.
∑
B∈B%

‖TλfB,trans‖pBLpk,A/2(B)
. (10.22)

The idea here is somewhat similar to that used in the cellular case. Recall, in the

cellular case the number of cells a given tube can enter is controlled by Bézout’s theorem.

In the transverse case, the number of balls B∈B% inside which a given tube can be

transverse to Y l is again controlled due to Bézout’s theorem, this time by Lemma 7.5.

This yields the following key inequality.

Claim. ∑
B∈B%

‖fB,trans‖2L2(Bn−1) .ε ‖f‖
2
L2(Bn−1). (10.23)

Proof. This is a fairly direct consequence of the hypothesis of the transverse case

together with Lemma 7.5. Indeed, note that∑
B∈B%

‖fB,trans‖2L2(Bn−1)∼
∑

(θ,v)∈T

#{B ∈B% : (θ, v)∈TB,trans}‖fθ,v‖2L2(Bn−1),

and so, to prove (10.23), it suffices to fix an arbitrary (θ, v)∈TB,trans and show that

#{B ∈B% : (θ, v)∈TB,trans}.ε 1. (10.24)

Let Γ:=[Γλθ,v]ε:R!Rn be the polynomial approximant of the core curve Γλθ,v defined in

§7.2. Thus, deg Γ.ε1 and, recalling that R.ελ1−ε, property (7.2) of the approximant

implies that

|Γ(t)−Γλθ,v(t)|6R1/2 for all t∈ (−R,R). (10.25)

Let u∈Tθ,v and x∈Γ∩B(0, R) with |u−x|.R1/2+δ. It follows from the definition of Tθ,v

and (10.25) that there exists some t∈(−R,R) such that

|u−Γλθ,v(t)|.R1/2+δ and |x−Γ(t)|.R1/2+δ.

Consequently, recalling Lemma 4.6,

](Gλ(u;ωθ),TxΓ).](TΓλθ,v(t)Γ
λ
θ,v, TΓ(t)Γ)+

R1/2+δ

λ
,

and therefore, by property (7.3) of the approximant,

](Gλ(u;ωθ),TxΓ).ε λ
−1/2+

R1/2+δ

λ
<
c̄tang

4
%−1/2+δl .
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Using the above inequality, one may easily verify that, if B=B(y, %)∈B% and (θ, v)∈
TB,trans, then Y l>α,r,Γ∩B(y, 2%) 6=∅ for α∼%−1/2+δl and r∼%1/2+δl . Here, Y l>α,r,Γ is as

defined in §7; that is

Y l>α,r,Γ := {z ∈Y l : there exists x∈Γ with |x−z|<r and ](TzY
l, TxΓ)>α}.

By Lemma 7.5, the number of balls B=B(y, %)∈B% for which B(y, 2%) intersects Y l>α,r,Γ
non-trivially is at most O((deg Γ)n ·( deg Y l)n)=Oε(1). Combining these observations,

one immediately deduces (10.24), as required.

In view of (10.23), the strategy in the transverse case is to use the radial induction

hypothesis to show that, for some constant c̄ε>0, one has

‖TλfB,trans‖BLpk,A/2(B) 6 c̄εEm,A(R)‖fB,trans‖L2(Bn−1) for all B ∈B%. (10.26)

Indeed, provided c̄ε>0 is sufficiently small, depending only on n and ε, the preceding

inequality may be combined with (10.22), (10.23) and the simple estimate

‖fB,trans‖L2(Bn−1) . ‖f‖L2(Bn−1),

to yield

‖Tλf‖BLpk,A/2(B(0,R)) .ε c̄εEm,A(R)‖f‖1−2/p
L2(Bn−1)

( ∑
B∈B%

‖fB,trans‖2L2(Bn−1)

)1/p
6Em,A(R)‖f‖L2(Bn−1),

closing the induction in this case.

The main obstacle in carrying out this programme is that the fB,trans do not, in

general, satisfy the hypothesis of Proposition 10.1 at scale %, and therefore one cannot

directly apply the radial induction hypothesis to these functions. However, one can

appeal to the theory developed in §9, which essentially allows fB,trans to be broken into

pieces fB,trans,b which do satisfy the hypothesis of the proposition at scale %. Here is a

sketch of how the argument works. By choosing a suitable set of translates B, one may

essentially write

‖TλfB,trans‖BLpk,A/2(B) .

(∑
b∈B

‖TλfB,trans,b‖pBLpk,A/2(B)

)1/p
, (10.27)

where each piece fB,trans,b is defined so that it is concentrated on scale % wave packets

which are tangential to some translate Z−y+b of Z. By the theory of transverse equidis-

tributions developed in §8 and §9, the fB,trans,b satisfy favourable L2 estimates and, in
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particular, the inequality (10.30) below holds. The radial induction hypothesis is applied

to each of the TλfB,trans,b. To close the induction, one must estimate the resulting sum

(∑
b∈B

‖fB,trans,b‖2L2(Bn−1)

)1/2

in terms of ‖fB,trans‖L2(Bn−1). Here, the gain in %/R in (10.30), afforded by transverse

equidistribution, is crucial to the argument: it allows one to sum up the contributions

from the individual pieces fB,trans,b without any (significant) loss in R. It is this gain

which accounts for the improved range of estimates for the k-broad inequalities under

the positive-definite hypothesis (recall, the proof of the transverse equidistribution lemma

relied heavily on the positive-definite condition).

As part of this argument, to ensure that the fB,trans,b form a reasonable decompo-

sition of fB,trans so that (10.27) essentially holds, the set of translates B must be chosen

so that
⋃
b∈BN%1/2+δm (Z−y+b) covers NR1/2+δm (Z) (recall, by hypothesis fB,trans is

concentrated on wave packets in TZ , and so the mass of TλfB,trans is concentrated in

NR1/2+δm (Z)), and so that the N%1/2+δm (Z−y+b) are essentially disjoint. This can be

achieved using a probabilistic construction. More precisely, fixing B=B(y, %)∈B%, one

may show the following.

Lemma 10.5. There exist a finite set B⊂B(0, 2R1/2+δm) and a collection

B′⊆{BK2 ∈BK2 :BK2∩B(y, %) 6=∅}

such that, up to inclusion of a rapidly decreasing error term,

‖TλfB,trans‖BLpk,A/2(B) . (logR)2

( ∑
BK2∈B′

µTλfB,trans(BK2)

)1/p
, (10.28)

and for each BK2∈B′ the following hold :

(i) there exists some b∈B such that

BK2 ⊂N%1/2+δm/2(Z+b); (10.29)

(ii) there exist at most O(1) vectors b∈B for which

BK2∩N%1/2+δm (Z+b) 6=∅.
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The proof of the lemma, which is slightly technical, is postponed until the end of

the section. Temporarily assuming this result, one may argue as follows to complete the

proof of Proposition 10.1.

For each b∈B, let B′b denote the collection of all BK2∈B′ for which (10.29) holds.

Thus, by (10.28) and property (i) in the lemma,

‖TλfB,trans‖BLpk,A/2(B) . (logR)2

(∑
b∈B

∑
BK2∈B′b

µT̃λ(fB,trans)˜(BK2−y)

)1/p
,

up to a rapidly decreasing error term.

Define the collection of wave packets

T̃′b :=

{
(θ̃, ṽ)∈

⋃
(θ,v)∈TB(y,%),trans

T̃θ,v : T̃θ̃,ṽ∩
⋃

BK2∈B′b

(BK2−y) 6=∅
}

;

note this set is a subset of the collection T̃b defined in §9 and so, by Proposition 9.2, one

has T̃′b⊆T̃Z−y+b. Therefore, if fB,trans,b is defined by

(fB,trans,b)̃ =
∑

(θ̃,ṽ)∈T̃′b

(fB,trans)̃θ̃,ṽ ,

then (fB,trans,b)̃ is concentrated on wave packets that are %−1/2+δm -tangent to Z−y+b.

Furthermore, again up to a rapidly decreasing error term, one has

‖TλfB,trans‖BLpk,A/2(B) . (logR)2

(∑
b∈B

‖T̃λ(fB,trans,b)̃ ‖pBLpk,A/2(B(0,%))

)1/p
.

The function (fB,trans,b)̃ satisfies the hypotheses of Proposition 10.1 at scale %, and

therefore the radial induction hypothesis yields(∑
b∈B

‖T̃λ(fB,trans,b)̃ ‖pBLpk,A/2(B(0,%))

)1/p
6Em,A/2(%)

(∑
b∈B

‖fB,trans,b‖pL2(Bn−1)

)1/p
.

On the other hand, it is claimed that(∑
b∈B

‖fB,trans,b‖pL2(Bn−1)

)1/p
.RO(δm)

( %
R

)(n−m)(1/4−1/2p)

‖fB,trans‖L2(Bn−1).

Clearly, it suffices to prove the above inequality for p=2 and p=∞; the desired estimate

for p=p̄0(k,m) then follows by interpolation (via Hölder’s inequality).
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p=2

Observe that, by the orthogonality between the wave packets,∑
b∈B

‖fB,trans,b‖2L2(Bn−1)∼
∑

(θ̃,ṽ)∈T̃

#Bθ̃,ṽ ·‖(fB,trans)̃θ̃,ṽ ‖
2
L2(Bn−1),

where Bθ̃,ṽ :={b∈B:(θ̃, ṽ)∈T̃′b}. Fixing (θ̃, ṽ)∈T̃, it suffices to show that #Bθ̃,ṽ.1. Sup-

posing Bθ̃,ṽ 6=∅, there exists some BK2∈B′ with T̃θ̃,ṽ∩(BK2−y) 6=∅. For any b∈Bθ̃,ṽ,

it follows that (θ̃, ṽ)∈T̃b, and so T̃θ̃,ṽ⊆N%1/2+δm (Z−y+b) by Proposition 9.2. Conse-

quently, BK2∩N%1/2+δm (Z+b) 6=∅ for all b∈Bθ̃,ṽ, and so the desired bound follows from

property (ii) of Lemma 10.5.

p=∞

In this case, the estimate is a direct consequence of the transverse equidistribution es-

timates established in §8 and §9. In particular, the function fB,trans is concentrated on

wave packets belonging to TZ,B and so, by Lemma 9.8, one deduces that

‖fB,trans,b‖L2(Bn−1) .RO(δm)
( %
R

)(n−m)/4

‖fB,trans‖L2(Bn−1), (10.30)

as required.

The preceding analysis shows that ‖TλfB,trans‖BLpk,A/2(B(0,R)) is bounded above by

RO(δm)Em,A(%)
( %
R

)(n−m)(1/4−1/2p)

‖fB,trans‖L2(Bn−1)

and therefore, to prove (10.26) and thereby close the induction argument in this case, it

suffices to show that

RO(δm)Em,A(%)
( %
R

)(n−m)(1/4−1/2p)

6 c̄εEm,A(R). (10.31)

For the exponent p=p̄(k,m), one has

%−ek,n(p)+1/2
( %
R

)(n−m)(1/4−1/2p)

6R−ek,n(p)+1/2,

whilst for the perturbed exponent p=p̄0(k,m) the same inequality holds up to a RO(δ)

factor. Thus, the left-hand side of (10.31) is dominated by

RO(δm)
( %
R

)ε
Em,A(R).

Recalling (10.18) and the choice of parameters δl and δm, one obtains the desired in-

equality.
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The probabilistic argument

The above argument establishes Proposition 10.1, except for the details of the proba-

bilistic argument used to prove Lemma 10.5.

Proof of Lemma 10.5. Before commencing the argument proper, a few technical re-

ductions are necessary. By a standard dyadic pigeonholing argument, one may assume

that

‖TλfB,trans‖BLpk,A/2(B) . logR

( ∑
BK2∈B′′

µTλfB,trans
(BK2)

)1/p
(10.32)

for some sub-collection B′′⊆BK2 with the property that

µTλfB,trans
(BK2)∼µTλfB,trans

(
BK2) for all BK2 , 
BK2 ∈B′′. (10.33)

Since fB,trans is concentrated on wave packets from TZ,B , one may further assume that

BK2∩B(y, %)∩NR1/2+δm (Z) 6=∅ for all BK2∈B′′, at the cost of a rapidly decaying term

on the right-hand side of (10.32).

A set of translates B will be selected at random from Rn according to a probability

measure P. The distribution P is taken to be a mollified version of the uniform prob-

ability distribution Punif on B(0, R1/2+δm). In particular, let ω:Rn![0,∞) be given

by(30)

ω(x) := exp
(−(|x|−R1/2+δm)+

%1/2+δm

)
for all x∈Rn,

and P be the continuous probability measure on Rn with Radon–Nikodym derivative

(
�
Rn ω)−1ω (with respect to Lebesgue measure). This measure approximates Punif, in

the sense that

P(Rn\B(0, 2R1/2+δm)) = RapDec(R). (10.34)

The motivation behind the definition of P is that, in contrast with Punif, it enjoys the

doubling property

P(B(x, 2r)).P(B(x, r)) for all x∈Rn and 0<r. %1/2+δm .

Consequently, by the Vitali covering lemma, for any E⊆Rn one has

P(N2r(E)).P(Nr(E)) for all 0<r. %1/2+δm . (10.35)

Recall, if B(x,K2)∈B′′, then B(x,K2)∩NR1/2+δm (Z) 6=∅, and so

|B(0, R1/2+δm)∩N%1/2+δm (Z−x)|& |B(0, %1/2+δm)|,

(30) Here (u)+ :=
{ u, if u>0,

0, if u<0,
for all u∈R.
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which implies that

P(N%1/2+δm (Z−x))&
|B(0, %1/2+δm)|
|B(0, R1/2+δm)|

.

For any s∈N with 2s&|B(0, %1/2+δm)|, define

Bs :=

{
B(x,K2)∈B′′ : P(N%1/2+δm (Z−x))∼ 2s

|B(0, R1/2+δm)|

}
.

By a further pigeonholing argument, there exists some value of s as above such that

(10.28) holds with Bs in place of B′.
Let 
C>1 be a dimensional constant, chosen to be sufficiently large for the purposes

of the following argument, and define N :=d
C2−s|B(0, R1/2+δm)|e∈N. Recalling (10.18),

it follows that

N .
|B(0, R1/2+δm)|
|B(0, %1/2+δm)|

.R2nδl . (10.36)

Suppose that B={b1, ..., bN} is a sequence of vectors in Rn formed by choosing each

term independently at random, according to the probability distribution P. The problem

is to show that B satisfies each of the desired properties with high probability.

The containment property B⊂B(0, 2R1/2+δm)

Recalling (10.34) and (10.36), it follows that

P(B⊆B(0, 2R1/2+δm)) = 1+

N∑
k=1

(
N

k

)
(−1)kP(Rn\B(0, 2R1/2+δm))k

= 1+RapDec(R).

Indeed, for the second equality we use the elementary bound

∣∣∣∣ N∑
k=1

(
N

k

)
(−1)kuk

∣∣∣∣= |(1−u)N−1|6N |u| for all 06u6 1,

which follows from the mean value theorem. Thus, if R>1 is sufficiently large depending

only on n and ε, then

P(B⊆B(0, 2R1/2+δm))> 99
100 , (10.37)

which verifies that the desired containment property holds with high probability.
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Property (i)

Let B(x,K2)∈Bs and observe that

P

(
B(x,K2)⊆

N⋃
j=1

N%1/2+δm/2(Z+bj)

)
>P

(
x∈

N⋃
j=1

N%1/2+δm/4(Z+bj)

)
= 1−(1−P(N%1/2+δm/4(Z−x)))N .

By the definition of Bs and the doubling property (10.35) of P, it follows that

P(N%1/2+δm/4(Z−x)) =
c
C

N

for some dimensional constant c>0 and, consequently,

P

(
B(x,K2)⊆

N⋃
j=1

N%1/2+δm/2(Z+bj)

)
> 1−

(
1− c


C

N

)N
> 1−e−c	C .

Let X denote the random variable that counts the number of BK2∈Bs for which BK2⊆
N%1/2+δm/2(Z+b) for some b∈B. If 
C is suitably chosen, then the above inequality implies

that the expected value of X satisfies E[X]>(1−10−4)#Bs. By Markov’s inequality,

P

(
X >

99

100
#Bs

)
> 1− 100

#Bs
E[#Bs−X]>

99

100
, (10.38)

which verifies that property (i) of the lemma holds with high probability.

Property (ii)

For each x∈Rn, let Mx denote the random variable that counts the number of sets

N%1/2+δm (Z+bj) containing x; that is,

Mx(b1, ..., bN ) :=

N∑
j=1

χN
2%1/2+δm (Z+bj)(x).

If B(x,K2)∈Bs, then

E[Mx] =

N∑
j=1

P(N2%1/2+δm (Z−x))∼N 2s

|B(0, R1/2+δm)|
∼ 1.

Now, let C>1 be a dimensional constant and Y denote the random variable that counts

the number of B(x,K2)∈Bs for which Mx6C. By a 2-fold application of Markov’s

inequality, if C is chosen to be sufficiently large, then

P

(
Y >

99

100
#Bs

)
>P

(
#Bs− 1

C

∑
B(x,K2)∈Bs

Mx>
99

100
#Bs

)
>

99

100
, (10.39)
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which verifies that property (ii) of the lemma holds with high probability.

In view of (10.37), (10.38) and (10.39), there exists a choice of B⊆B(0, 2R1/2+δm)

and a subset B′⊆Bs of cardinality comparable to that of Bs for which the desired prop-

erties (i) and (ii) hold. Finally, by (10.33), the inequality (10.28) also holds for the

sub-collection B′.

11. Going from k-broad to linear estimates

11.1. Applying the Bourgain–Guth method

Theorem 1.2 can be deduced as a consequence of the k-broad estimates via the method

of [9]. The key proposition is as follows.

Proposition 11.1. Suppose that for all K>1 and all ε>0 any Hörmander-type

operator Tλ with reduced positive-definite phase obeys the k-broad inequality

‖Tλf‖BLpk,A(B(0,R)) .εK
CεRε‖f‖Lp(Bn−1) (11.1)

for some fixed k, A, p, q, Cε and all R>1. If

2
2n−k+2

2n−k
6 p6 2

k−1

k−2
,

then any Hörmander-type operator Tλ with positive-definite phase satisfies

‖Tλf‖Lp(B(0,R)) .φ,εR
ε‖f‖Lp(Bn−1).

Theorem 1.2 is now a direct consequence of Proposition 11.1 and Theorem 1.9.

Proof of Theorem 1.2. Theorem 1.9 implies that, for each 26k6n, the estimate

(11.1) is valid for all p>p̄(n, k). Thus, for each k satisfying the constraint

2
2n−k+2

2n−k
6 p̄(n, k) = 2

n+k

n+k−2
, (11.2)

one may apply Proposition 11.1 with p̄(n, k)6p62(k−1)/(k−2) to obtain a (potentially

empty) range of estimates for the linear problem. Since p̄(n, k) is a decreasing function

of k, the optimal estimate is given by applying Proposition 11.1 as above with k chosen to

be as large as possible, subject to (11.2). Rearranging (11.2) yields k6 1
2n+1. Defining

k∗ :=

{ 1
2n+1, if n is even,

1
2 (n+1), if n is odd,

one may readily verify that

p̄(n, k∗)6 2
k∗−1

k∗−2
,

and so the linear estimate holds for all p>p̄(n, k∗). A simple computation shows that

this corresponds to the range of estimates stated in Theorem 1.2.
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For contrast, it is noted that there is also a version of Proposition 11.1 which holds

without the positive-definite assumption. This can be combined with the multilinear esti-

mates of Bennett–Carbery–Tao [4] to prove Theorem 1.1 (this is essentially the argument

used in [9]).

Proposition 11.2. Suppose that, for all K>1 and all ε>0, any Hörmander-type

operator Tλ with reduced phase(31) obeys the k-broad inequality

‖Tλf‖BLpk,A(B(0,R)) .εK
CεRε‖f‖Lp(Bn−1)

for some fixed k, A, p, q, Cε and all R>1. If

2
n−k+2

n−k+1
6 p,

then any Hörmander-type operator Tλ satisfies

‖Tλf‖Lp(B(0,R)) .φ,εR
ε‖f‖Lp(Bn−1).

Theorem 1.1 is now a direct consequence of Proposition 11.2 and the Bennett–

Carbery–Tao theorem.

Proof of Theorem 1.1. The proof is precisely the same as that of Theorem 1.2 above,

but with the exponent 2k/(k−1) from the Bennett–Carbery–Tao theorem (that is, The-

orem 1.8 or, more precisely, the k-broad version given by Corollary 6.5) playing the role

of p̄(n, k).

Remark 11.3. From the above, the narrow range of exponents in Theorem 1.1 com-

pared with Theorem 1.2 can be broadly attributed to:

(1) The weaker k-broad estimates coming from the Bennett–Carbery–Tao theorem

compared with Theorem 1.9. One cannot work with stronger k-broad estimates than

those given by Corollary 6.5, due to the failure of transverse equidistribution in the

mixed-signature case.

(2) The more stringent constraints on p in Proposition 11.2 compared with Proposi-

tion 11.1. These additional constraints arise due to the fact that hyperbolic paraboloids

contain linear subspaces, as discussed below.

(31) The notation of a reduced phase under a general signature hypothesis has not been introduced
but is almost identical to that used in the positive-definite case. Indeed, the only difference is that

the first condition in (4.3) is suitably modified, with In−1 replaced by a diagonal matrix with diagonal
entries 1 and −1.
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To establish the main result, Theorem 1.2, it remains to prove Proposition 11.1.

Both Propositions 11.1 and 11.2 can be established using very similar arguments: in

fact, the proofs differ only at one (crucial) point. To highlight the essential differences

between the positive-definite and mixed-signature cases, at the end of this subsection it

is indicated how one may adapt the proof of Proposition 11.1 to yield Proposition 11.2.

The proof of Proposition 11.1 is an induction on scales argument. The induction

quantity is defined as follows.

Definition 11.4. For 16p6∞ and R>1 let Qp(R) denote the infimum over all con-

stants C for which the estimate

‖Tλf‖Lp(B(0,r)) 6C‖f‖Lp(Bn−1)

holds for 16r6R and all Hörmander-type operators Tλ with reduced positive-definite

phase and all λ>R.

With this definition, the problem is now to show that, under the hypotheses of

Proposition 11.1, one has

Qp(R).εR
ε (11.3)

for all ε>0 and 16R6λ. Indeed, this establishes the linear estimates in the case of

reduced phases, and then the arguments of §4 extend the result to general Hörmander-

type operators with positive-definite phase.

It is useful to introduce some of the ingredients of the proof of (11.3). Decompose

B(0, R) into balls BK2 of radius K2 and consider ‖Tλf‖Lp(BK2 ) for some fixed BK2 with

centre x̄. To bound this quantity, one expresses f as a sum of two terms: a “narrow”

and a “broad” term. The narrow term is of the form∑
τ∈Va for some a

fτ , (11.4)

consisting of contributions to f from caps for which Gλ(x̄; τ) makes a small angle with

some member of a family of (k−1)-planes. The broad term consists of the contributions

to f from all the remaining caps. One may choose the planes V1, ..., VA so that the broad

term can be bounded by the k-broad inequality from the hypothesis. Thus, the problem

is roughly reduced to studying the case where f is of the form (11.4). To treat this case,

the first step is to apply an `p-decoupling inequality to isolate the contributions of the

different fτ .

Theorem 11.5. Suppose that Tλ is a Hörmander-type operator with reduced positive-

definite phase. If V ⊆Rn is an m-dimensional linear subspace, then for 26p62m/(m−1)
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and δ>0 one has∥∥∥∥∑
τ∈V

Tλgτ

∥∥∥∥
Lp(BK2 )

.δK
(m−1)(1/2−1/p)+δ

(∑
τ∈V
‖Tλgτ‖pLp(wB

K2
)

)1/p
.

Here, the sums are over all caps τ for which ](Gλ(x̄, τ), V )6K−1, where x̄ is the centre

of BK2 , and wBK2 is a rapidly decaying weight of the form of that defined in (8.4).

This theorem is a variable coefficient generalisation of a decoupling inequality due

to Bourgain [7]. It can be established by adapting the argument of [7] using many of the

techniques employed in the current article: see also [2].(32)

Summing together the contributions from the various spatial balls BK2 , it remains

to estimate the decoupled contributions ‖Tλfτ‖Lp(BR). Since each fτ has small support,

after rescaling one obtains favourable estimates for ‖Tλfτ‖Lp(B(0,R)) by invoking the

induction hypothesis. This is made precise by the following lemma.

Lemma 11.6. (Parabolic rescaling) Let 16R6λ, and suppose that f is supported

on a ball of radius %−1, where 16%6R. For all p>2 and δ>0, one has

‖Tλf‖Lp(B(0,R)) .δ Qp(R)Rδ%2n/p−(n−1)‖f‖Lp(Bn−1).

The proof of the parabolic rescaling lemma is based on the changes of variables

previously encountered in §4.2. For extension operators the argument is simple, consisting

of an affine change of variables. In the variable coefficient case, some significant additional

complications arise; the details are therefore postponed until the following subsection.

Having introduced the main tools, the proof of Proposition 11.1 easily follows.

Proof of Proposition 11.1. It suffices to demonstrate the linear estimate for p satis-

fying the additional condition

2
2n−k+2

2n−k
<p; (11.5)

the result for the remaining value of p then follows immediately by Hölder’s inequality.

Let ε>0 be given. By hypothesis,

∑
BK2∈BK2

BK2∩B(0,R)6=∅

min
V1,...,VA

max
τ /∈Va

�
BK2

|Tλfτ |p6C(K, ε)Rpε/2‖f‖pLp(Bn−1),

(32) It is remarked that, since the decoupling estimate is applied at a small spatial scale K2�λ1/2,
one can avoid the use of the full statement of Theorem 11.5 by appealing to an approximation argument.

If one argues in this way, then only Theorem 11.5 for extension operators associated with elliptic-type
hypersurfaces is required.
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where V1, ..., VA are (k−1)-planes and the notation τ /∈Va signifies that

](Gλ(x̄, τ), Va)>K−1,

with x̄ being the centre of the corresponding K2-ball BK2 .

For each BK2 fix a choice of V1, ..., VA which achieves the minimum above. Then

one may write

�
BK2

|Tλf |p.KO(1) max
τ /∈Va

�
BK2

|Tλfτ |p+

A∑
a=1

�
BK2

∣∣∣∣ ∑
τ∈Va

Tλfτ

∣∣∣∣p.
The first term can be estimated using the hypothesised k-broad estimate; in particular,

�
B(0,R)

|Tλf |p.KO(1)C(K, ε)Rpε/2‖f‖pLp(Bn−1)+
∑

BK2∈BK2

BK2∩B(0,R)6=∅

A∑
a=1

�
BK2

∣∣∣∣ ∑
τ∈Va

Tλfτ

∣∣∣∣p.
It remains to bound the narrow term, where the contributions come from caps whose

directions make a small angle with one of planes Va. By Theorem 11.5, for any δ′>0 one

has �
BK2

∣∣∣∣ ∑
τ∈Va

Tλfτ

∣∣∣∣p.δ′ K(k−2)(p/2−1)+δ′
∑
τ∈Va

�
Rn
|Tλfτ |pwBK2

for each 16a6A. Thus, summing over the a and all the relevant balls BK2 , one concludes

that

∑
BK2∈BK2

BK2∩B(0,R)6=∅

A∑
a=1

�
BK2

∣∣∣∣ ∑
τ∈Va

Tλfτ

∣∣∣∣p.δ′ K(k−2)(p/2−1)+δ′
∑

τ :K−1-cap

�
B(0,2R)

|Tλfτ |p.

Since each fτ is supported on a K−1-cap, the summands appearing in the right-hand

expression are amenable to parabolic rescaling. In particular, letting δ>0 be a small

number chosen to satisfy the requirements of the forthcoming argument, Lemma 11.6

implies that �
B(0,2R)

|Tλfτ |p.δ Qp(R)pRδK2n−(n−1)p‖fτ‖pLp(Bn−1).

Defining

e(k, p) := (k−2)
(
1− 1

2p
)
−2n+(n−1)p,

and combining these estimates,

�
B(0,R)

|Tλf |p6 (KO(1)C(K, ε)Rpε/2+Cδ,δ′Qp(R)pRδK−e(k,p)+δ
′
), ‖f‖pLp(Bn−1)
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and so, by definition,

Qp(R)p6KO(1)C(K, ε)Rpε/2+Cδ,δ′Qp(R)pRδK−e(k,p)+δ
′
.

Since p satisfies (11.5), it follows that e(k, p)>0, and one may choose δ′= 1
2e(k, p), so

that the K exponent in the right-hand term is negative. Thus, if K=K0R
2δ/e(k,p) for a

sufficiently large constant K0, depending only on ε, δ, p and n, it follows that

Qp(R)p6KO(1)C(K0R
2δ/e(k,p), ε)Rpε/2+ 1

2Qp(R)p.

Recall that, by hypothesis, the constant C(K, ε) arising from the k-broad estimate grows

at most polynomially in K. Consequently, one may choose δ to be small enough (de-

pending only on admissible parameters) so that Qp(R).εRε, as required.

As mentioned above, this argument can be adapted to study the case of general

Hörmander-type operators (with potentially mixed signature) to prove Proposition 11.2.

The induction quantity Qp(R) is defined as before, but now the supremum is taken over

the larger class of all Hörmander-type operators Tλ which are in a suitably reduced form.

The proof of the parabolic rescaling lemma then extends to this setting, mutatis mutan-

dis. The key differences arise in the decoupling inequality. In particular, Theorem 11.5

does not hold at the required level of generality. To see why this is so, consider the

example of the extension operator E associated with (a compact piece of) the hyper-

bolic paraboloid given by the graph of h(ω):=ω1ω2. If V :={x∈R3 :x1=0} and G is the

relevant Gauss map, then

Sω := {ω ∈B2 :G(ω)∈V }= {ω ∈B2 :ω2 = 0}.

Thus, the Egτ for τ∈V are (distributionally) Fourier supported in a neighbourhood

of the ξ1-axis (which is, in particular, a curve of everywhere zero curvature); here the

notation τ∈V is used to denote that ](G(τ), V )6K−1, consistent with the non-standard

notion of containment used in §1.5 and Theorem 11.5. As is well known, in the absence

of curvature, no non-trivial decoupling estimates are possible.(33)

The following simple result acts as a substitute for Theorem 11.5.

Lemma 11.7. (Bourgain–Guth [9]) Suppose that Tλ is a Hörmander-type operator

with reduced phase. If V ⊆Rn is an m-dimensional linear subspace, then for all p>2

and δ>0 one has∥∥∥∥∑
τ∈V

Tλgτ

∥∥∥∥
Lp(BK2 )

.δK
(m−1)(1−2/p)+δ

(∑
τ∈V
‖Tλgτ‖pLp(wB

K2
)

)1/p
.

(33) It is remarked that non-trivial `p-decoupling estimates are known to hold for the full hyperbolic

paraboloid; see [8]. The problem here arises because one is forced to consider decoupling along the lower-
dimensional submanifold Sω×{0}.
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Here, the sums are over all caps τ for which ](Gλ(x̄, τ), V )6K−1, where x̄ is the centre

of BK2 .

This lemma provides much weaker estimates than those guaranteed by the `p-

decoupling theorem in the positive-definite case: here, the K exponent is larger by a

factor of 2 than that appearing in Theorem 11.5. The proof is implicitly contained in

the proof of Theorem 4 in [9, §5].

To prove Proposition 11.2, one proceeds as in the proof of Proposition 11.1, first

decomposing B(0, R) into balls of radius K2. For each such ball, the broad term is

bounded using the hypothesised k-broad estimate, whilst the narrow term is bounded by

Lemma 11.7 together with the induction hypothesis (via parabolic rescaling). The larger

exponent incurred by Lemma 11.7 propagates through the argument until one arrives at

the estimate

Qp(R)p6KO(1)C(K, ε)Rpε/2+Cδ,δ′Qp(R)pRδK(k−2)(p−2)+2n−(n−1)p+δ′ .

In order to close the induction, once again one must ensure that the K exponent is neg-

ative. By choosing δ′ appropriately, this is possible if p satisfies the stronger hypothesis

p>2(n−k+2)/(n−k+1), which is precisely the condition featured in the statement of

Proposition 11.2.

11.2. Proof of Lemma 11.6

It remains to establish the parabolic rescaling lemma, which is achieved by adapting

arguments implicit in [9, §5]. As mentioned in the previous section, some additional

complications arise in the case of Hörmander operators (as opposed to the extension

case), and the proof of the parabolic rescaling is slightly involved.

It will be useful to work with the following discrete reformulation of the main esti-

mate for the operator Tλ.

Lemma 11.8. If D is a maximal R−1-separated discrete subset of Ω, then∥∥∥∥ ∑
ωθ∈D

e2πiφλ( · ;ωθ)F (ωθ)

∥∥∥∥
Lp(B(0,R))

.Qp(R)R(n−1)/p′‖F‖`p(D) (11.6)

for all F :D!C.

Proof. Fix ψ∈C∞c (Rn−1) supported on B(0, 2) which satisfies 06ψ61 and ψ(ω)=1

for all ω∈Bn−1, and for each ωθ∈D define ψθ(ω):=ψ(10R(ω−ωθ)). Thus, for all x∈
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B(0, R), the exponential sum appearing in the left-hand side of (11.6) can be expressed

as a constant multiple of

Rn−1

�
Rn−1

e2πiφλ(x;ω)aλ(x;ω)

[
ψ̃
( x
R

) ∑
ωθ∈D

e−2πiλΩθ(x/λ;ω)F (ωθ)ψθ(ω)

]
dω,

where Ωθ(x;ω):=φ(x;ω)−φ(x;ωθ), ψ̃∈C∞c (Rn) is a function of n variables which enjoys

properties similar to those of ψ and aλ is a suitable choice of amplitude. Since

sup
ω∈suppψθ

|∂βxΩθ(x;ω)|.β R−1|x| for all β ∈Nn0 and x∈X,

one may safely remove the λΩθ(x/λ;ω) term from the phase. More precisely, by expand-

ing ψ̃(x)e−2πiλΩθ(Rx/λ;ω) as a Fourier series in the variable x, one can show that∣∣∣∣ ∑
ωθ∈D

e2πiφλ(x;ωθ)F (ωθ)

∣∣∣∣.Rn−1
∑
k∈Zn

(1+|k|)−(n+1)|Tλfk(x)|,

where Tλ is a Hörmander-type operator with phase φλ and

fk(ω) :=
∑
ωθ∈D

F (ωθ)ck,θ(ω)ψθ(ω)

for some choice of smooth functions ck,θ satisfying the uniform bound ‖ck,θ‖L∞(Bn−1).1.

Thus, by the definition of Qp(R), it follows that∥∥∥∥ ∑
ωθ∈D

e2πiφλ( · ;ωθ)F (ωθ)

∥∥∥∥
Lp(B(0,R))

.Qp(R)Rn−1
∑
k∈Zn

(1+|k|)−(n+1)‖fk‖Lp(Bn−1)

and, since the ψθ are supported on pairwise disjoint sets,

‖fk‖Lp(Bn−1) .R−(n−1)/p

( ∑
ωθ∈D

|F (ωθ)|p
)1/p

,

concluding the proof.

Proof of Lemma 11.6. Recall that the phase of Tλ is given by

φλ(x;ω) :=λφ
(x
λ

;ω
)
,

where

φ(x;ω) = 〈x′, ω〉+xnh(ω)+E(x;ω). (11.7)
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Let B(�ω, %−1) be a ball supporting f , where �ω∈Bn−1. If T̃λ/%
2

denotes the parabolically

rescaled operator defined in (4.9), with rescaled phase function

φ̃(x;ω) := 〈x′, ω〉+xnh̃(ω)+Ẽ(x;ω), (11.8)

then it follows that

‖Tλf‖Lp(B(0,R)) . %(n+1)/p‖T̃λ/%
2

f̃‖Lp(D̃R)

where now D̃R is an ellipse with principal axes parallel to the coordinate axes and

dimensions O(R/%)×...×O(R/%)×O(R/%2) and f̃(ω):=%−(n−1)f(�ω+%−1ω). Since

‖f̃‖Lp(Bn−1) = %−(n−1)+(n−1)/p‖f‖Lp(Bn−1),

given δ>0, the problem is to show that

‖T̃λ/%
2

f̃‖Lp(D̃R) .δ Qp(R)Rδ‖f̃‖Lp(Bn−1).

Observe that the phase φ̃ defined in (11.8) is also positive-definite and of reduced form.

To lighten the notation, consider once again a general positive-definite reduced phase φ

as in (11.7), and let Tλ is a Hörmander-type operator associated with φλ. It suffices to

show that

‖Tλf‖Lp(DR) .δ Qp(R)Rδ‖f‖Lp(Bn−1)

for all 1�R6R′6λ and δ>0, where

DR :=

{
x∈Rn :

(
|x′|
R′

)2
+

(
|xn|
R

)2
6 1

}
is an ellipse. Of course, if R=R′, then this inequality is immediate from the definition

of Qp(R).

Cover Bn−1 by a collection of essentially disjoint R−1-caps θ, and decompose f as

f=
∑
θ fθ. Define

Tλθ f(x) := e−2πiφλ(x;ωθ)Tλf(x),

so that

Tλf(x) =
∑

θ:R−1-cap

e2πiφλ(x;ωθ)Tλθ fθ(x).

Fix δ>0 to be sufficiently small for the purposes of the forthcoming argument. Each

fθ is supported on an R−1-ball and is therefore, of course, supported on an R−1+δ-ball.

Since (R−1+δ)−16λ1−δ, one may argue as in the proof of Lemma 5.8 to deduce that

Tλθ fθ(x) =Tλθ fθ∗ηR1−δ(x)+RapDec(λ)‖f‖L2(Bn−1)
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for some choice of smooth, rapidly decreasing function η such that |η| admits a smooth,

rapidly decreasing majorant ζ:Rn![0,∞) which is locally constant at scale 1. In par-

ticular, it follows that

ζR1−δ(x).RδζR1−δ(y) if |x−y|.R. (11.9)

Cover DR by finitely-overlapping R-balls, and let BR be some member of this cover.

Combining the above observations, if x̄ denotes the centre of BR and z∈B(0, R), then

|Tλf(x̄+z)|.Rδ
�
Rn

∣∣∣∣ ∑
θ:R−1-cap

e2πiφ̃λ(z;ωθ)e2πiφλ(x̄;ωθ)Tλθ fθ(y)

∣∣∣∣ζR1−δ(x̄−y) dy,

where

φ̃λ(z;ωθ) :=φλ(x̄+z;ωθ)−φλ(x̄;ωθ).

Taking the Lp-norm in z, it follows from Minkowski’s inequality that ‖Tλf‖Lp(BR) is

dominated by

Rδ
�
Rn

∥∥∥∥ ∑
θ:R−1-cap

e2πiφ̃λ( · ;ωθ)e2πiφλ(x̄;ωθ)Tλθ fθ(y)

∥∥∥∥
Lp(B(0,R))

ζR1−δ(x̄−y) dy.

By Lemma 11.8, the Lp-norm appearing in the above integrand is bounded by a constant

multiple of

Qp(R)R(n−1)/p′
( ∑
θ:R−1-cap

|Tλθ fθ(y)|p
)1/p

.

Applying Hölder’s inequality and the locally-constant property (11.9), one deduces that

‖Tλf‖Lp(BR) .Qp(R)R(n−1)/p′+O(δ)

(�
Rn

∑
θ:R−1-cap

|Tλfθ(x̄+z−y)|pζR1−δ(y) dy

)1/p
for all z∈B(0, R). By raising both sides of this estimate to the pth power, averaging in z

and summing over all balls BR in the covering, it follows that ‖Tλf‖Lp(DR) is dominated

by

Qp(R)R(n−1)/p′−n/p+O(δ)

(�
Rn

∑
θ:R−1-cap

‖Tλfθ‖pLp(DR−y)ζR1−δ(y) dy

)1/p
.

Observe that, by Hörmander’s theorem (Lemma 5.6) and Hölder’s inequality, one has

‖Tλfθ‖L2(DR−y) .R−(n−1)(1/2−1/p)+1/2‖fθ‖Lp(Bn−1).

On the other hand, the trivial estimate

‖Tλfθ‖L∞(DR−y) .R−(n−1)/p′‖fθ‖Lp(Bn−1)

holds, simply due to Hölder’s inequality. Combining the above,

‖Tλfθ‖Lp(DR−y) .R−(n−1)/p′+n/p‖fθ‖Lp(Bn−1).

The desired inequality is now immediate.
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12. An ε-removal lemma

The λε-loss in the linear estimates of Theorems 1.1 and 1.2 can be removed away from

the endpoint by an appeal to an ε-removal lemma of the type introduced in [31] (see also

[9], [30]). The precise form of the required lemma does not appear in the literature, but

it can be deduced by a minor modification of an argument from [31]. For completeness,

the details are given presently.

Suppose that Tλ is a Hörmander-type operator with associated phase function φλ

(note that here no additional positive-definite assumption is assumed). Let p̄>2 and

suppose for all ε>0 the estimate

‖Tλf‖Lp(BR) .ε,φ,aR
ε‖f‖Lp(Bn−1) (12.1)

holds for all p>p̄, all R-balls BR for 16R6λ, and any choice of amplitude function.

Under this hypothesis, one wishes to show that the global estimate

‖Tλf‖Lp(Rn) .φ,a ‖f‖Lp(Bn−1) (12.2)

is valid for all p>p̄.

Definition 12.1. (Tao [31]) Let R>1. A collection {B(xj , R)}Nj=1 of R-balls in Rn

is sparse if the centres {x1, ..., xN} are (RN)
	C-separated. Here 
C>1 is a fixed constant,

chosen large enough for the purposes of the proof.

Following [31], the first step towards establishing (12.2) is to reduce the problem to

proving estimates for Tλ over sparse families of balls.

Lemma 12.2. To prove (12.2) for all p>p̄, it suffices to show that for all ε>0 the

estimate

‖Tλf‖Lp̄(S) .ε,φ,aR
ε‖f‖Lp̄(Bn−1) (12.3)

holds whenever R>1 and S⊆Rn is a union of R-balls belonging to a sparse collection,

for any choice of amplitude function.

The key step in the proof of Lemma 12.2 is the following covering lemma.

Lemma 12.3. (Tao [30], [31]) Suppose that E⊆Rn is a finite union of 1-cubes and

N>1. Define the radii Rj inductively by

R0 := 1 and Rj :=R
	C
j−1|E|

	C for 16 j6N−1.

Then, for each 06j6N−1, there exists a family of sparse collections (Bj,α)α∈Aj of balls

of radius Rj such that the index sets Ak have cardinality O(|E|1/N ) and

E⊆
N−1⋃
j=0

⋃
α∈Aj

Sj,α,

where Sj,α is the union of all the balls belonging to the family Bj,α.
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Proof of Lemma 12.2. Let E⊆Rn be a finite union of 1-cubes. For N>1, the cov-

ering lemma together with the hypothesis (12.3) imply that

‖Tλf‖Lp̄(E) .ε,φ,aN |E|1/N+ε	CN ‖f‖Lp̄(Bn−1).

Choosing N∼log(1/ε), it follows that

‖Tλf‖Lp̄(E) .ε,φ,a |E|
	C/ log(1/ε)‖f‖Lp̄(Bn−1).

It will be convenient to work with the dual operator

T ∗g(ω) :=

�
Rn
e−2πiφλ(x;ω)aλ(x;ω)g(x) dx,

so that the above estimate can be reformulated as

‖T ∗g‖Lp̄′ (Bn−1) .ε,φ,a |E|
	C/ log(1/ε)‖g‖Lp̄′ (E), (12.4)

for g supported on the set E.

Fix p>p̄ and τ∈
[
− 1

2 ,
1
2

]n
. Suppose that g∈Lp′(Rn) satisfies ‖g‖Lp′ (Rn)=1 and is

constant on the mesh of 1-cubes centred on points of the lattice τ+Zn. Form a level set

decomposition of g by writing g=
∑
k∈Z gk, where gk :=gχEk for

Ek := {x∈Rn : 2−k 6 |g(x)|< 2−k+1}.

Chebyshev’s inequality implies that |Ek|62kp
′

for all k∈Z. Furthermore, each set Ek is

a union of 1-cubes and therefore, if Ek 6=∅, then |Ek|>1. Combining these observations,

one deduces that Ek=∅ for all k<0. Since gk is supported on Ek, one may apply (12.4)

to conclude that

‖T ∗gk‖Lp̄′ (Bn−1) .ε,φ,a |Ek|
	C/ log(1/ε)‖gk‖Lp̄′ (Rn). (12.5)

Using a simple base-times-height estimate, the right-hand side of (12.5) can be bounded

by (a constant multiple of)

2−k|Ek|
	C/ log(1/ε)+1/p̄′ . 2−k(1−	Cp′/ log(1/ε)−p′/p̄′).

Since p′<p̄′, by choosing ε sufficiently small, one can ensure that the right-hand exponent

is negative, and therefore

‖T ∗g‖Lp′ (Bn−1) . ‖T
∗g‖Lp̄′ (Bn−1) 6

∑
k>0

‖T ∗gk‖Lp̄′ (Bn−1) .φ,a 1 = ‖g‖Lp′ (Rn).
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This establishes the dual of the desired estimate (12.2) under the additional hypothesis

that the function g is constant on 1-cubes.

It remains to remove the condition that g is constant on 1-cubes. The key observation

is that this special case of (12.2) implies the discrete inequality∥∥∥∥ ∑
σ∈Zn

e−2πiφλ(σ+τ ; ·)aλ(σ+τ ; ·)G(σ)

∥∥∥∥
Lp′ (Bn−1)

.φ,a ‖G‖`p′ (Zn) (12.6)

for all G∈`p′(Zn) and τ∈
[
− 1

2 ,
1
2

]n
. Indeed, once (12.6) is established, taking g∈Lp′(Rn)

belonging to a suitable a-priori class and applying Minkowski’s inequality, one deduces

that

‖T ∗g‖Lp′ (Bn−1) 6
�

[−1/2,1/2]n

∥∥∥∥ ∑
σ∈Zn

e−2πiφλ(σ+τ ; ·)aλ(σ+τ ; ·)g(σ+τ)

∥∥∥∥
Lp′ (Bn−1)

dτ.

Combining this with (12.6) and Hölder’s inequality yields (12.4).

Thus, the problem is now reduced to proving (12.6). Fix G∈`p′(Zn) and define

g̃(x) :=
∑
σ∈Zn

G(σ)χ(x−σ−τ),

where χ is the characteristic function of
[
− 1

2 ,
1
2

]n
. Since g̃ is constant on 1-cubes, one is

free to apply (12.4) to this function. In particular, let T̃ ∗ be the dual of a Hörmander-type

operator with phase φλ and amplitude ãλ, where

ã(x;ω) :=

( n∏
j=1

sinπ(∂xjφ)(x;ω)

π(∂xjφ)(x;ω)

)−1

a0(x;ω),

for a0 a smooth amplitude which is supported on X×Ω and satisfies a0(x;ω)=1 for

(x;ω)∈supp a. By the usual reductions (see §4), one may assume from the outset that

|(∂xjφ)(x;ω)|6 1
2 for (x;ω)∈X×Ω and 16j6n, and hence ã is a well-defined, smooth

function. Thus, the estimate

‖T̃ ∗g̃‖Lp′ (Bn−1) .φ,a ‖g̃‖Lp′ (Rn)

holds, which can be rewritten as∥∥∥∥ ∑
σ∈Zn

e−2πiφλ(σ+τ ; ·)(Aλ)λ(σ+τ ; ·)G(σ)

∥∥∥∥
Lp′ (Bn−1)

.φ,a ‖G‖`p′ (Zn), (12.7)

where

Aλ(x;ω) :=

�
[−1/2,1/2]n

e−2πiλ(φ(x+y/λ;ω)−φ(x;ω))ã
(
x+

y

λ
;ω
)
dy.



368 l. guth, j. hickman and m. iliopoulou

Note that (12.7) is almost the desired expression (12.6), except for the disparity between

the amplitude functions. To deal with this slight technicality, observe that, since

lim
λ!∞

Aλ(x;ω) = a0(x;ω) uniformly,

one may assume that λ is sufficiently large so that |Aλ(x;ω)|&1 for all (x;ω)∈supp a.

Furthermore, by applying the mean value theorem to the phase,

‖∂αxAλ‖L∞(Rn×Rn−1) .α,φ,a 1 for all α∈Nn0 ,

the important observation here being that the derivatives are independent of λ. Thus,

the expression appearing in the norm on the left-hand side of (12.6) is given by∑
σ∈Zn

e−2πiφλ(σ+τ ;ω)(Aλ)λ(σ+τ ;ω)G(σ)(%λ)λ(σ+τ ;ω),

where the ratio %λ(x;ω):=a(x;ω)Aλ(x;ω)−1 satisfies

‖∂αx %λ‖L∞(Rn×Rn−1) .α,φ,a 1 for all α∈Nn0 .

Taking a Fourier series expansion of %λ in the x variable and using repeated integration-

by-parts to estimate the Fourier coefficients, it follows that

%λ(x;ω) =
∑
k∈Zn

(1+|k|)−(n+1)cλ,k(ω)e2πi〈x,k〉,

where the cλ,k are bounded functions, uniformly in λ and k (they do, however, depend

on n, φ and a). One may therefore bound the left-hand side of (12.6) by a (1+|k|)−(n+1)-

weighted sum of the left-hand side of (12.7) applied to modulated versions of G. Esti-

mating each summand using (12.7) and summing in k concludes the proof.

Given the above reduction, it remains to establish the estimates for Tλ over sparse

collections of R-balls.

Lemma 12.4. Under the hypothesis (12.1), if p>p̄, then the estimate

‖Tλf‖Lp(S) .ε,φ,aR
ε‖f‖Lp(Bn−1)

holds for all ε>0 whenever S⊆Rn is a union of R-balls belonging to a sparse collection.

Proof. The proof uses a crude form of wave packet analysis and has much in common

with the arguments described in §5. Let {B(xj , R)}Nj=1 be the sparse collection of balls

whose union is the set S. Clearly it suffices to assume that R�λ and that all the B(xk, R)
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intersect the x-support of aλ. Furthermore, letting cdiam>0 be a small constant chosen

to satisfy the requirements of the forthcoming argument, by applying a partition of unity

one may assume that diamX<cdiam, and so

|xj1−xj2 |
λ

. cdiam for all 16 j1, j2 6N . (12.8)

Fix η∈C∞(Rn−1) satisfying 06η61, supp η∈Bn−1 and η(z)=1 for all z∈B
(
0, 1

2

)
.

For R1 :=CNR, where C>1 is a large constant, define ηR1(z):=η(z/R1). Further, let

ψ∈C∞c (Rn−1) satisfy 06ψ61, suppψ⊂Ω and ψ(ω)=1 for ω belonging to the ω -support

of aλ. Fix 16j6N and write

e2πiφλ(xj ; ·)ψf =Pjf+(e2πiφλ(xj ; ·)ψf−Pjf) =:Pjf+fj,∞,

where Pjf :=η̂R1 ∗[e2πiφλ(xj ; ·)ψf ]. If one defines

Err(x) :=

�
Rn−1

e2πi(φλ(x;ω)−φλ(xj ;ω))aλ(x;ω)fj,∞(ω) dω,

then it follows that

Tλf(x) =Tλ[e−2πiφλ(xj ; ·)Pjf ](x)+Err(x).

For x∈B(xj , R), the term Err(x) is negligible. Indeed, by Plancherel’s theorem,

Err(x) =

�
Rn−1

�Gx(z)·(1−ηR1
(z))[e2πiφλ(xj ; ·)ψf ]�(z) dz,

where

�Gx(z) =

�
Rn−1

e2πi(〈z,ω〉−φλ(x;ω)+φλ(xj ;ω))aλ(x;ω) dω.

Taking the ω -derivatives of the phase of �Gx(z), one obtains

z−λ
(
∂ωφ

(x
λ

;ω
)
−∂ωφ

(xj
λ

;ω
))

= z+O(R),

−λ
(
∂αωφ

(x
λ

;ω
)
−∂αωφ

(xj
λ

;ω
))

=O(R) for |α|> 2.

Thus, if z belongs to the support of 1−ηR1
, then integration-by-parts (see Lemma A.1)

shows that Gx(z) is rapidly decaying in R1, and therefore

|Err(x)|6RapDec(R1)‖f‖Lp(Bn−1).
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It remains to bound the contributions arising from the frequency localised pieces.

By applying the estimate for Tλ with Rε-loss over each ball B(xj , R), one obtains

‖Tλf‖Lp(S) 6

( N∑
j=1

‖Tλ[e−2πiφλ(xj ; ·)Pjf ]‖pLp(B(xj ,R))

)1/p
+RapDec(R1)‖f‖Lp(Bn−1)

.ε,φ,aR
ε

( N∑
j=1

‖Pjf‖pLp(Bn−1)

)1/p
+‖f‖Lp(Bn−1).

Thus, it now suffices to show that( N∑
j=1

‖Pjf‖pLp(Rn−1)

)1/p
. ‖f‖Lp(Bn−1).

This estimate follows via interpolation between the endpoint cases p=2 and p=∞, which

are established presently. The p=∞ case is a trivial consequence of Young’s inequality,

and so it suffices to consider p=2. By duality, the desired inequality is equivalent to∥∥∥∥ N∑
j=1

e−2πiφλ(xj ; ·)ψ ·[η̂R1 ∗gj ]
∥∥∥∥
L2(Rn−1)

.

( N∑
j=1

‖gj‖2L2(Bn−1)

)1/2
. (12.9)

By squaring the left-hand side of (12.9), one obtains

N∑
j1,j2=1

�
Rn−1

Gj1,j2(ω)η̂R1
∗gj1(ω)η̂R1

∗gj2(ω) dω,

where

Gj1,j2(ω) := e2πi(φλ(xj1 ;ω)−φλ(xj2 ;ω))ψ(ω)2.

By Plancherel’s theorem, each summand of the above expression can be written as
�
Rn−1

�Gj1,j2(z)(ηR1
ǧj1)∗(ηR1

ǧj2)∼(z) dz; (12.10)

here, (ηR1
ǧj2)∼(z):=(ηR1

ǧj2)(−z). Note that the integrand in (12.10) is supported on a

ball of radius O(R1) about the origin.

Fix 16j1, j26N with j1 6=j2, let z∈Rn−1 with |z|.R1<|xj2−xj1 |, and consider

�Gj1,j2(z) =

�
Rn−1

e2πi(〈z,ω〉+φλ(xj1 ;ω)−φλ(xj2 ;ω))ψ(ω)2 dω.

This oscillatory integral can be bounded by a simple stationary phase analysis. For

α∈Nn−1 with |α|62, consider the function

∂αω [φλ(xj1 ;ω)−φλ(xj2 ;ω)] = ∂αω 〈∂λxφ(xj1 ;ω), xj2−xj1〉+O(cdiam|xj2−xj1 |),
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where the remainder term has been estimated using (12.8).

Let ccrit>0 be another small constant, chosen to satisfy the requirements of the

forthcoming argument, and ω0∈Ω. Suppose that∣∣∣∣± xj2−xj1
|xj2−xj1 |

−Gλ(xj1 ;ω0)

∣∣∣∣> ccrit, (12.11)

where the estimate is interpreted as holding for both choices of sign. Condition (H1)

on the phase implies that, for each ω0∈Ω, the vector Gλ(x;ω0) spans the kernel of

∂2
ωxφ

λ(x;ω0). Consequently, in view of (12.11), one has∣∣∂ω[〈∂xφλ(xj1 ;ω), xj2−xj1〉]|ω=ω0

∣∣& |xj2−xj1 |,
and therefore ∣∣∂ω[φλ(xj1 ;ω)−φλ(xj2 ;ω)]|ω=ω0

∣∣& |xj2−xj1 |,
provided cdiam is sufficiently small. On the other hand, if (12.11) fails, then

∂αω

〈
∂xφ

λ(xj1 ;ω),
xj2−xj1
|xj2−xj1 |

〉∣∣∣∣
ω=ω0

= ∂αω 〈∂xφλ(xj1 ;ω), Gλ(x;ω0)〉|ω=ω0
+O(ccrit).

If ccrit and cdiam are both chosen to be sufficiently small, then condition (H2) implies

that ∣∣det ∂2
ωω[φλ(xj1 ;ω)−φλ(xj2 ;ω)]|ω=ω0

∣∣& |xj2−xj1 |n−1.

Thus, any critical point of the phase must be (quantitatively) non-degenerate, and one

may apply higher-dimensional versions of van der Corput’s lemma (see, for instance, [28,

Chapter VIII, Proposition 6]) to estimate the oscillatory integral. In particular,

| �Gj1,j2(z)|. |xj2−xj1 |−(n−1)/2 .R
−	C/2
1 ,

so that the absolute value of (12.10) is bounded by

R
−	C/2
1 ‖(ηR1

ǧj1)∗(ηR1
ǧj2)∼‖L1(Rn−1) .R

−	C/2
1

2∏
i=1

‖ηR1
ǧji‖L1(Rn−1)

.R
−	C/2+n−1
1

2∏
i=1

‖gji‖L2(Rn−1).

Since there are only O(N2) choice of indices j1 and j2, one may invoke the trivial estimate

2∏
i=1

‖gji‖L2(Rn−1) .
N∑
j=1

‖gj‖2L2(Bn−1),
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and then sum all the contributions from all pairs (j1, j2) to bound the off-diagonal terms

arising from the left-hand side of (12.9). On the other hand, the diagonal terms provide

a favourable contribution of( N∑
j=1

‖η̂R1
∗gj‖2L2(Bn−1)

)1/2
.

( N∑
j=1

‖gj‖2L2(Bn−1)

)1/2
.

Combining these observations concludes the proof of (12.9), and thereby establishes the

lemma.

Appendix A. The integration-by-parts argument

In this appendix, further details of the integration-by-parts argument frequently used in

the paper are presented.

Lemma A.1. Let φ∈C∞(Rn) be real valued and a∈C∞(Rn) be supported in Bn.

Suppose that, for some λ,M>1, N∈N and all z∈supp a, these functions satisfy the

following conditions:

(i) |∂zφ(z)|>λ;

(ii) |∂αz φ(z)|6M |∂zφ(z)| for all α∈Nn0 with 26|α|6N ;

(iii) |∂αz a(z)|6M |α| for all α∈Nn0 with |α|6N .

Then, ∣∣∣∣�
Rn
eiφ(z)a(z) dz

∣∣∣∣.N MNλ−N .

The lemma is a standard application of integration-by-parts and the Leibniz rule.

Nevertheless, the details of the proof are provided for completeness.

Proof. Define Q:Rn!R by Q(z):=|∂zφ(z)|2 and consider the mutually adjoint(34)

differential operators

Du :=
〈∂zu, ∂zφ〉

iQ
and D∗u := i

n∑
k=1

∂zk [(∂zkφ)Q−1u].

Note that D fixes the function eiφ and, consequently,
�
Rn
eiφ(z)a(z) dz=

�
Rn

[DNeiφ(z)]a(z) dz=

�
Rn
eiφ(z)(D∗)Na(z) dz.

Thus, it suffices to show that

|(D∗)Na(z)|.N MNλ−N .

(34) In the sense that
�
Ω(Du)v=

�
Ω u(D∗v), whenever at least one of the functions u, v∈C∞(Ω)

has compact support.
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It is useful to work with the more general statement

|∂αz (D∗)µa(z)|.N,αMµ+|α|λ−µ for all µ∈N0 and α∈Nn0 satisfying µ+|α|6N,

which is amenable to induction on µ. The base case µ=0 follows directly from hypothesis

(iii). The inductive step is established by appropriate application of the Leibniz rule and

the hypothesised bounds for φ.

Fix 06µ6N−1 and α∈Nn0 such that µ+1+|α|6N . Denoting by ek the standard

coordinate vectors for k=1, ..., n, it follows by the definition of D∗ and the Leibniz rule

that

∂αz (D∗)µ+1a= i

n∑
k=1

∑
β6α+ek

(
α+ek
β

)
∂α−β+ek
z [(∂zkφ)Q−1]∂βz (D∗)µa,

where, for every fixed k, the second sum is over all multi-indices β∈Nn0 satisfying βj6

αj+δjk for 16j6n. For each such multi-index, µ+|β|6µ+1+|α|6N , and therefore the

induction hypothesis yields

|∂βz (D∗)µa(z)|.N Mµ+|β|λ−µ. (A.1)

On the other hand, condition (ii) together with the Leibniz rule implies that

|∂γzQ−1(z)|.N M |γ||Q(z)|−1 for all γ ∈Nn0 with |γ|6N .

Thus, again using (ii) and the Leibniz rule,

|∂γz [(∂zkφ(z))Q−1(z)]|.N M |γ||∂zφ(z)|−1 6M |γ|λ−1,

where the last step is by (i). Applying the above estimate with γ=α−β+ek and com-

bining this with (A.1), one deduces that

|∂αz (D∗)k+1a(z)|.N
n∑
k=1

∑
β6α+ek

M |α|−|β|+1λ−1Mµ+|β|λ−µ.N M
µ+1+|α|λ−(µ+1),

which closes the induction.
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[15] Guth, L. & Katz, N.H., On the Erdős distinct distances problem in the plane. Ann. of

Math., 181 (2015), 155–190.
[16] Hickman, J. & Rogers, K.M., Improved Fourier restriction estimates in higher dimen-

sions. Camb. J. Math., 7 (2019), 219–282.
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