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1. Introduction

This work examines homotopical and homological properties of groups of automorphisms

of simply connected smooth manifolds Mn with ∂M=Sn−1, for n>5. We study three

types of automorphism groups, namely the homotopy automorphisms aut∂(M), the block

diffeomorphisms D̃iff∂(M) and the diffeomorphisms Diff∂(M). The subscript ∂ indicates

that we consider automorphisms that fix the boundary pointwise. The classifying spaces

are related by maps

BDiff∂(M)
I−−!B D̃iff∂(M)

J−−!B aut∂(M). (1.1)

Let aut∂,�(M) denote the connected component of aut∂(M) that contains the iden-

tity, and write D̃iff∂,�(M) for the subgroup of block diffeomorphisms homotopic to the
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identity. For a vector bundle ξ over M , let aut∗∂,�(ξ) be the topological monoid of dia-

grams

ξ
f̂
//

��

ξ

��

M
f
// M

with f∈aut∂,�(M) and f̂ a fiberwise isomorphism over f that restricts to the identity on

the fiber over the basepoint ∗∈∂M . Then stabilize,

aut∗∂,�(ξ
S) = hocolims aut∗∂,�(ξ×Rs),

where the stabilization maps are given by (f, f̂) 7!(f, f̂×idR).

Theorem 1.1. For a simply connected smooth compact manifold M of dimension

n>5 with ∂M=Sn−1 and tangent bundle τM , the differential gives rise to a map

D:B D̃iff∂,�(M)−!B aut∗∂,�(τ
S
M ).

The spaces B D̃iff∂,�(M) and B aut∗∂,�(τ
S
M ) are nilpotent, and the map D is a rational

homotopy equivalence. In particular,

Hk(B D̃iff∂,�(M);Q)∼=Hk(B aut∗∂,�(τ
S
M );Q),

πk(B D̃iff∂,�(M))⊗Q∼=πk(B aut∗∂,�(τ
S
M ))⊗Q,

for all k.

Thus, from the point of view of rational homotopy and homology, B D̃iff∂,�(M) may

be replaced by B aut∗∂,�(τ
S
M ). Building on Quillen’s and Sullivan’s rational homotopy

theory and subsequent work of Schlessinger–Stasheff and Tanré, we proceed to construct

a differential graded (dg) Lie algebra model of the latter space. Consider the desuspension

of the reduced rational homology,

V = s−1H̃∗(M ;Q).

There is a differential δ on the free graded Lie algebra L(V ) such that (L(V ), δ) is a

minimal dg Lie algebra model for M . Moreover, there is a distinguished cycle ω∈L(V )

that represents the inclusion of the boundary sphere. Write Derω L(V ) for the dg Lie

algebra of derivations θ on L(V ) such that θ(ω)=0, with differential

[δ, θ] = δ�θ−(−1)|θ|θ�δ,
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and let Der+

ω L(V ) denote the sub dg Lie algebra of positive-degree derivations such that

[δ, θ]=0 if θ is of degree 1.

Consider the graded vector space P=π∗(ΩBO)⊗Q and fix generators

qi ∈π4i−1(ΩBO)⊗Q

by the equation

〈pi, σ(qi)〉= 1,

where pi∈H4i(BO;Q) is the ith Pontryagin class and σ(qi)∈π4i(BO)⊗Q is the suspen-

sion. Let pi(τM )∈H4i(M ;Q) denote the Pontryagin classes of the tangent bundle τM

of M . There is a distinguished element of degree −1 in the tensor product H̃∗(M ;Q)⊗P ,

τ =
∑
i

pi(τM )⊗qi.

The action of Der+

ω L(V ) on L(V ) induces an action on

L(V )/[L(V ),L(V )] = s−1H̃∗(M ;Q),

and hence on the tensor product H̃∗(M ;Q)⊗P . We may then form the dg Lie algebra

Mτ = (H̃∗(M ;Q)⊗P )>0oτDer+

ω L(V ),

where the subscript on the left factor indicates that we discard elements of negative

degree. The Lie bracket is given by

[(x, θ), (y, η)] = (x. η+θ. y, [θ, η]),

where x. η is the action above and θ. y=−(−1)|θ| |y|y. θ. The differential is given by

∂τ (x, θ) = (τ. θ, [δ, θ]).

Theorem 1.2. For a simply connected smooth compact manifold Mn with boundary

∂M=Sn−1, we have that

(1) (Der+

ω L(V ), [δ,−]) is a dg Lie algebra model for B aut∂,�(M);

(2) (Mτ , ∂τ ) is a dg Lie algebra model for B aut∗∂,�(τ
S
M ).

The first part of Theorem 1.2 is proved below as Theorem 3.12 and the second part

as Theorem 4.24.

We next focus attention on highly connected manifolds, for which these models

simplify dramatically: if M is (d−1)-connected and 2d-dimensional for some d>3, then
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δ=0 and the action of Der+

ω L(V ) on the reduced homology of M is trivial, for degree

reasons. In these cases, we can also analyze the spectral sequences of the coverings

B aut∂,�(M)−!B aut∂(M),

B D̃iff∂,�(M)−!B D̃iff∂(M),

which leads to a calculation of the rational cohomology of the base spaces (in a range).

In particular, we consider the generalized surfaces of “genus” g,

Mg,1 = #gSd×Sd\int(D2d).

For 2d>4, the three spaces in (1.1) are radically different (the case 2d=4 is excluded due

to the usual difficulties in dimension 4, but see Remark 1.10 below). Still, in all three

cases, there is a stable range for the rational cohomology: in degrees less than 1
2 (g−4),

the cohomology is independent of g. This was proved in [29] for Diff∂(Mg,1) and we

prove it for D̃iff∂(Mg,1) and aut∂(Mg,1) in this paper.(1) We then proceed to study the

stable cohomologies and the maps between them,

H∗(B aut∂(M∞,1);Q)
J∗−−!H∗(B D̃iff∂(M∞,1);Q)

I∗−−!H∗(BDiff∂(M∞,1);Q). (1.2)

The desuspension of the reduced homology Vg=s−1H̃∗(Mg,1;Q), equipped with the in-

tersection form 〈−,−〉, is a non-degenerate graded anti-symmetric vector space; it admits

a graded basis

α1, ..., αg, β1, ..., βg, |αi|= |βi|= d−1,

such that

〈αi, αj〉= 〈βi, βj〉= 0

and

〈αi, βj〉=−(−1)|αi| |βj |〈βj , αi〉= δij .

It follows directly from Theorem 1.2 that

gg = Der+

ω L(Vg) (1.3)

is a dg Lie algebra model for B aut∂,�(Mg,1), where ω=[α1, β1]+...+[αg, βg]. The differ-

ential δ is zero, so in particular we get a computation of the rational homotopy groups:

π∗+1B aut∂(Mg,1)⊗Q∼= Der+

ω L(Vg), ∗> 0. (1.4)

(1) In an earlier paper [10] we established a stability range that depended on the dimension of the
manifold. The range is greatly improved in this paper.
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The Whitehead product on the left-hand side corresponds to the commutator bracket on

the right-hand side.

The fundamental group of B aut∂(Mg,1), i.e., the homotopy mapping class group,

can be determined up to commensurability. The automorphism group,

Gg(Q) = Aut(Vg, 〈−,−〉),

is the Q-points of an algebraic group, isomorphic to Sp2g(Q) or Og,g(Q), depending on

the parity of d. In §5.1 we introduce an arithmetic subgroup Γg of Gg(Q) commensurable

with the fundamental group of B aut∂(Mg,1). The fundamental group surjects onto Γg,

and under the isomorphism (1.4) the action on the higher homotopy groups corresponds

to the evident action of Γg⊂Gg(Q) on the right-hand side. Note that the Chevalley–

Eilenberg cohomology H∗CE(gg) inherits an action of Γg.

Theorem 1.3. Let 2d>6. The stable cohomology of the homotopy automorphisms

of Mg,1 is given by

H∗(B aut∂(M∞,1);Q)∼=H∗(Γ∞;Q)⊗H∗CE(g∞)Γ∞ .

The situation for block diffeomorphisms is similar. Let

Π =Q{πi : 4i> d} (=π∗+d(BO)⊗Q), (1.5)

be the graded vector space with basis elements πi in degree 4i−d>0. Next, let

ag = s−1Π⊗H̃d(Mg,1;Q),

considered as an abelian Lie algebra. In the notation of Theorem 1.2, we have that τ=0

and δ=0, and moreover the action of Der+

ω L(V ) on the reduced cohomology H̃∗(Mg,1;Q)

is trivial for degree reasons. It follows that the higher homotopy groups of the block space

are given by

π∗+1B D̃iff∂,�(Mg,1)⊗Q∼= gg⊕ag, (1.6)

and again the fundamental group acts through the projection onto Γg.

Theorem 1.4. Let 2d>6. The stable cohomology of the block diffeomorphism group

of Mg,1 is given by

H∗(B D̃iff∂(M∞,1);Q)∼=H∗(Γ∞;Q)⊗H∗CE(g∞⊕a∞)Γ∞ .
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Thus, the calculation of the stable cohomology is reduced to the calculation of the

cohomology of arithmetic groups and invariant Lie algebra cohomology.

The stable rational cohomology of arithmetic groups was computed by Borel in [15].

For Γg the result reads

H∗(Γ∞;Q) =Q[x1, x2, ... ],

where

|xi|=
{

4i−2, if d is odd,

4i, if d is even.

Serendipitously, the invariant Lie algebra cohomology has been considered by Kont-

sevich, though for entirely different purposes. Indeed, at least for d odd, the Lie algebra

Derω L(Vg) is the same as the one studied by Kontsevich in his work on formal non-

commutative symplectic geometry [39], [38]. Extending Kontsevich’s result, we find that

the fixed set of the Chevalley–Eilenberg cochains,

C∗CE(gg⊕ag)Γg ,

admits an interpretation in terms of graphs, which we describe next.

For s, k>0, let G (s)k denote the rational vector space spanned by connected graphs

with k vertices of valence >3, decorated by elements of the cyclic Lie operad, and s

leaves labeled by 1, ..., s. The graphs are moreover equipped with orientations of the

vertices and of the internal edges. There is an action of the symmetric group Σs given

by permuting the leaf labels. Kontsevich’s differential

∂: G (s)k −!G (s)k−1,

is defined as a sum over edge contractions. The subcomplex G (0) spanned by graphs

without leaves is Kontsevich’s original graph complex. There is a decomposition

G (s) =
⊕
n>0

G (n, s),

where G (n, s)⊆G (s) is the subcomplex spanned by graphs G with rankH1(G)=n. We

remark that G is closely related to the dual of the ‘Feynman transform’ of the Lie

operad [32].

If W is a graded vector space, then let W [n] or snW denote the graded vector space

with W [n]i=Wi−n. Define the suspension ΣG (s) by

ΣG (s) =
⊕
n

(ΣG )(n, s), (ΣG )(n, s) = G (n, s)[2(n−1)+s]⊗sgns,
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and let G d=Σd−1G . For a graded vector space W , we define

G d[W ] =
⊕
s>0

G d(s)⊗ΣsW
⊗s.

With this notation, we establish isomorphisms

CCE
∗ (g∞)Γ∞

∼= ΛG d(0), (1.7)

CCE
∗ (g∞⊕a∞)Γ∞

∼= ΛG d[Π], (1.8)

where Π is the graded vector space from (1.5), and ΛW denotes the free graded commu-

tative algebra on W . Moreover, in each case the Chevalley–Eilenberg differential on the

left-hand side corresponds to Kontsevich’s differential. (The isomorphism (1.7) for d=1

is equivalent to Kontsevich’s theorem.) This leads to the following result.

Theorem 1.5. There are isomorphisms

(1) HCE
∗ (g∞)Γ∞

∼=Λ(H∗(G d(0), ∂)),

(2) HCE
∗ (g∞⊕a∞)Γ∞

∼=Λ(H∗(G d[Π], ∂)).

The graph homology can in turn be related to the cohomology of automorphism

groups of free groups. Building on the work of Culler and Vogtmann [22], Kontsevich

expressed the graph homology (for d=1 and s=0) in terms of the cohomology of outer

automorphism groups of free groups. This was extended by Conant, Kassabov and

Vogtmann [21] to include the case s>0. Let An,s be the group of homotopy classes of

homotopy equivalences of a bouquet of n circles relative to s marked points. Then

An,0∼= OutFn, An,1∼= AutFn and An,s∼=F s−1
n oAutFn,

where Fn is the free group on n generators. Note that permutation of the marked points

yields an action of Σs on the homology of An,s.

Theorem 1.6. (Kontsevich (s=0), Conant–Kassabov–Vogtmann (s>0)) For all d,

k and n+s>2, there is a Σs-equivariant isomorphism

Hk(G d(n, s), ∂)∼=H(2(n−1)+s)d−k(An,s;Q)⊗sgnds .

Our results should be compared with the known results for the diffeomorphism

group. The stable cohomology for BDiff∂(Mg,1) was calculated in [44] for 2d=2, verifying

the Mumford conjecture, and in [27] for 2d>4. We recall the description. Let

B⊂Q[p1, ..., pd−1, e] (=H∗(B SO(2d);Q))
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be the set of monomials enpi1 ... pis of degree >2d, with n>0 and 1
4d<iν<d. For each

b∈B there is a cohomology class

κb ∈H∗(BDiff∂(Mg,1);Q), |κb|= |b|−2d,

and these classes are multiplicative generators for the stable cohomology.

Theorem 1.7. (Madsen–Weiss (2d=2), Galatius–Randal–Williams (2d>4)) The

stable cohomology of the diffeomorphism group

H∗(BDiff∂(M∞,1);Q)

is freely generated as a graded commutative algebra by the classes

κenpi1 ...pis ,

where 1
4d<iν<d if n+s>2, and 1

2d<i1<d if (n, s)=(0, 1).

We remark in passing that the proof of this result is different in spirit from the

proofs of the above theorems and does not give any insights into the homotopy groups.

It is an open problem of considerable interest to evaluate π∗Diff∂(Mg,1).

In light of this result, the following reformulation of our main result suggests itself.

Theorem 1.5 combined with Theorem 1.6 imply that elements

ξ ∈H∗(An,s;Q), pi1 , ..., pis ∈Π∨,

give rise to cohomology classes

κ̃ξpi1 ,...,pis ∈H
∗
CE(g∞⊕a∞)Γ∞

of degree 2(n−1)d+4i1+...+4is−|ξ|. These classes, subject to the equivariance and

linearity relations

κ̃aξ+bζpi1 ,...,pis
= aκ̃ξpi1 ,...,pis +bκ̃ζpi1 ,...,pis , a, b∈Q,

κ̃σξpi1 ,...,pis = κ̃ξpiσ1
,...,piσs

, σ ∈Σs,

are the multiplicative generators ofH∗CE(g∞⊕a∞)Γ∞ . The isomorphisms in Theorems 1.3

and 1.4 are not canonical (see the discussion after Lemma 8.7), but after choosing suitable

lifts of the generators κ̃ξpi1 ,...,pis to H∗(B D̃iff∂(M∞,1);Q), our results can be reformulated

as follows.
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Theorem 1.8. Let 2d>6. The stable cohomology of the block diffeomorphism group,

H∗(B D̃iff∂(M∞,1);Q),

is freely generated as a graded commutative algebra by the Borel classes xi, of degree

4i−2 if d is odd and 4i if d is even, and classes

κ̃ξpi1 ,...,pis , ξ ∈H∗(An,s), iν >
1
4d, n+s> 2,

of degree 2(n−1)d+4i1+...+4is−|ξ|.

Theorem 1.9. Let 2d>6. The homomorphism

H∗(B aut∂(M∞,1);Q)
J∗−−!H∗(B D̃iff∂(M∞,1);Q)

is injective. Its image is the subalgebra freely generated by the classes xi and the classes

κ̃ξ of degree 2(n−1)d−|ξ|, for ξ∈H∗(An,0;Q)=H∗(OutFn;Q), for n>2.

Remark 1.10. The referee has pointed out that Theorem 1.8 might hold also in

dimension 2d=4, because stable surgery works in dimension 4 by [26] and because Theo-

rem 1.5 of [28] does not exclude dimension 4. We leave for the interested reader to work

out the details.

The rational homology of the graph complex G , or equivalently of the groups An,s,

is largely unknown (though see [20] for some recent computations). At any rate, certain

classes present themselves immediately. If we let εn,s denote a generator for H0(An,s),

then, for n+s>2, we have the class κ̃
εn,s
pi1 ,...,pis

of degree 2(n−1)d+4i1+...+4is. We

note that this is the same as the degree of the class κenpi1 ...pis . Thus, the free graded

commutative algebra generated by the Borel classes

xi, 16 i< 1
2d, (1.9)

and the classes

κ̃εn,spi1 ,...,pis
, 1

4d< iν <d, n+s> 2, (1.10)

is abstractly isomorphic to the stable cohomology of the diffeomorphism group.

Conjecture 1.11. The subalgebra of H∗(B D̃iff∂(M∞,1);Q) generated by the classes

(1.9) and suitable lifts of the classes (1.10) maps isomorphically onto the cohomology

ring H∗(BDiff∂(M∞,1);Q) under the homomorphism I∗.
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It was shown in [23] that

I∗:H∗(B D̃iff∂(M∞,1);Q)−!H∗(BDiff∂(M∞,1);Q)

is surjective. It is now an easy count of dimensions to check that

dimHk(BDiff∂(M∞,1);Q) = dimHk(B D̃iff∂(M∞,1);Q)

when k<2d, and that in degree 2d there is a difference in dimensions by 1. We con-

clude that I∗ is an isomorphism in degrees <2d and that the kernel in degree 2d is

1-dimensional. Interestingly, the range of degrees where I∗ is an isomorphism is greater

than expected from the relation of ker I∗ to algebraic K-theory [75]. If the conjecture

is true, then the extra element κ̃ε2,0 , associated with the generator of H0(OutF2;Q),

could be held responsible for the failure of injectivity in degree 2d. It is a bit surprising

that the homology of the groups An,s in some sense measures the difference between the

cohomology of the block diffeomorphism group and that of the diffeomorphism group.

Acknowledgments

We thank the referee for many pertinent comments that led to an improvement of the

paper.

2. Quillen’s rational homotopy theory

In this section we will briefly review Quillen’s rational homotopy theory [56] and set up

a spectral sequence for calculating the rational homology of a simply connected space

from its rational homotopy groups. The existence of this spectral sequence was pointed

out by Quillen [56, §6.9], but we need a version that incorporates group actions that are

not necessarily basepoint preserving, so we need to revisit the construction.

2.1. Quillen’s dg Lie algebra

The Whitehead products on the homotopy groups of a simply connected based topological

space X,

πp+1(X)×πq+1(X)−!πp+q+1(X),

endow the rational homotopy groups,

πQ
∗ (X) =π∗+1(X)⊗Q,
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with the structure of a graded Lie algebra. Rationally homotopy equivalent spaces have

isomorphic Lie algebras, but πQ
∗ (X) is not a complete invariant; two spaces may have

isomorphic Lie algebras without being rationally homotopy equivalent, as witnessed for

instance by CP2 and K(Z, 2)×K(Z, 5).

Quillen [56] constructed a functor λ from the category of simply connected based

topological spaces to the category of dg Lie algebras and established a natural isomor-

phism of graded Lie algebras

H∗(λ(X))∼=πQ
∗ (X). (2.1)

The quasi-isomorphism type of λ(X) is a finer invariant than the isomorphism type of

πQ
∗ (X). The main result of Quillen’s theory is that it is a complete invariant: two simply

connected spaces X and Y are of the same rational homotopy type if and only if the dg

Lie algebras λ(X) and λ(Y ) are quasi-isomorphic. Here, we say that two dg Lie algebras

are quasi-isomorphic if they are isomorphic in the homotopy category of dg Lie algebras.

Concretely, this means that there exists a zig-zag of quasi-isomorphisms that connects

them.

2.2. The Quillen spectral sequence

Let L be a dg Lie algebra. The Chevalley–Eilenberg complex of L is the chain complex

CCE
∗ (L) = (ΛsL, δ).

Here ΛsL denotes the free graded commutative algebra on the suspension of L. Elements

of sL are denoted sx, where x∈L, with |sx|=|x|+1. The differential δ=δ0+δ1 is defined

by the following formulas

δ0(sx1∧...∧sxn) =

n∑
i=1

(−1)1+εisx1∧... sdxi ...∧sxn,

δ1(sx1∧...∧sxn) =
∑
i<j

(−1)|sxi|+ηijs[xi, xj ]∧sx1∧... ŝxi ... ŝxj ...∧sxn,

where

εi = |sx1|+...+|sxi−1|,

and the sign (−1)ηij is determined by graded commutativity:

sx1∧...∧sxn = (−1)ηijsxi∧sxj∧sx1 ... ŝxi ... ŝxj ...∧sxn.

We let HCE
∗ (L) denote the homology of this chain complex.
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If the differential of L is trivial, then there is a decomposition of the Chevalley–

Eilenberg homology as

HCE
n (L) =

⊕
p+q=n

HCE
p,q (L),

where HCE
p,q (L) is the homology in word-length p and total degree p+q:

... // (Λp+1sL)q
δ1 // (ΛpsL)q

δ1 // (Λp−1sL)q // ... .

For arbitrary L, we may filter the Chevalley–Eilenberg complex by word-length;

Fp = Λ6psL.

The associated spectral sequence has

E2
p,q(L) =HCE

p,q (H∗(L)) =⇒HCE
p+q(L). (2.2)

If L is positively graded the filtration is finite in each degree, which ensures strong

convergence of the spectral sequence.

There is a coproduct on ΛsL, called the shuffle coproduct, which is uniquely deter-

mined by the requirement that it makes ΛsL into a graded Hopf algebra with space of

primitives sL. The differential δ is a coderivation with respect to the shuffle coproduct,

making CCE
∗ (L) into a dg coalgebra, and (2.2) is a spectral sequence of coalgebras.

We will now interpret the above for the dg Lie algebra λ(X). A fundamental property

of Quillen’s functor is the existence of a natural isomorphism of graded coalgebras

HCE
∗ (λ(X))∼=H∗(X;Q). (2.3)

By (2.1) and (2.3) the spectral sequence of Quillen’s dg Lie algebra λ(X) may be written

as follows

E2
p,q(X) =HCE

p,q (πQ
∗ (X)) =⇒Hp+q(X;Q). (2.4)

We will refer to this as the Quillen spectral sequence.

2.3. Functoriality for unbased maps

It is evident from the construction that the Quillen spectral sequence is natural for

basepoint-preserving maps. But in fact the functoriality can be extended to unbased

maps. The homotopy groups πn(X)=[Sn, X]∗ depend on the basepoint of X, and are a

priori only functorial for basepoint-preserving maps. However, if X is simply connected,

the canonical map

πn(X)−! [Sn, X]
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is a bijection, and we may use this to extend πQ
∗ (X) to a functor defined on unbased

simply connected spaces. Quillen’s functor λ can also be extended to unbased maps, but

only up to homotopy.

Suppose that X and Y are simply connected spaces with basepoints x0 and y0.

Given a not necessarily basepoint-preserving map f :X!Y , we may choose a path γ

from y0 to f(x0). Then we obtain based maps

(X,x0)
f−−! (Y, f(x0))

ev1
 −− (Y I , γ)

ev0−−! (Y, y0).

The maps evi are weak homotopy equivalences, so the above may be interpreted as a

morphism f̄ from (X,x0) to (Y, y0) in the homotopy category of based spaces. It is

easily checked that f̄ only depends on the homotopy class of f , and that compositions

are respected in the sense that �gf=ḡf̄ as maps in the homotopy category.

We may apply Quillen’s functor to get a diagram of dg Lie algebras

λ(X,x0)
f∗−−−!λ(Y, f(x0))

(ev1)∗
 −−−−λ(Y I , γ)

(ev0)∗−−−−!λ(Y, y0),

where the maps (evi)∗ are quasi-isomorphisms. In homology, we obtain an induced

morphism of graded Lie algebras

(ev0)∗(ev1)−1
∗ f∗:π

Q
∗ (X)−!πQ

∗ (Y ).

Under the identification πn(X)∼=[Sn, X], this map agrees with f∗: [Sn, X]![Sn, Y ], be-

cause ev0 and ev1 are homotopic as unbased maps. Since the spectral sequence (2.2) is

natural with respect to morphisms of dg Lie algebras, the above considerations imply

the following.

Proposition 2.1. Let X be a simply connected space. There is a spectral sequence

of coalgebras

E2
p,q =HCE

p,q (πQ
∗ (X)) =⇒Hp+q(X;Q).

The spectral sequence is natural with respect to unbased maps of simply connected spaces.

In particular, if X has a not necessarily basepoint-preserving action of a group π,

then the Quillen spectral sequence (2.4) is a spectral sequence of π-modules (from the

E1-page and on). An important special case is when X=Ỹ is the universal cover of a

path connected space Y and π is the group of deck transformations. By the above, we

obtain a spectral sequence of coalgebras with a π-action,

E2
p,q =HCE

p,q (πQ
∗ (Ỹ )) =⇒Hp+q(Ỹ ;Q).

It is an exercise in covering space theory to check that, under the standard identifications

π∼=π1(Y ), πn(Ỹ )∼=πn(Y ), n> 2,

the action of π on πn(Ỹ ) obtained as above corresponds to the usual action of π1(Y ) on

the higher homotopy groups πn(Y ).
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2.4. Formality and collapse of the Quillen spectral sequence

The spectral sequence (2.2) is natural with respect to morphisms of dg Lie algebras.

Evidently, a quasi-isomorphism induces an isomorphism from the E1-page and on, so

quasi-isomorphic dg Lie algebras have isomorphic spectral sequences. It is also evident

that the spectral sequence of a dg Lie algebra with trivial differential collapses at the E2-

page. These simple observations have an interesting consequence. Namely, if the dg Lie

algebra L is formal, meaning that it is quasi-isomorphic to its homology H∗(L) viewed

as a dg Lie algebra with trivial differential, then the spectral sequence for L collapses

at the E2-page. Collapse of the spectral sequence is weaker than formality in general,

although the difference is subtle.

Definition 2.2. Let us say that a group π is rationally perfect if H1(π;V )=0 for

every finite-dimensional Q-vector space V with an action of π.

For a rationally perfect group π, every short exact sequence of finite-dimensional

Q[π]-modules splits; cf. Appendix B.

Proposition 2.3. Let π be a group acting on a simply connected space X with

degree-wise finite-dimensional rational cohomology groups. If π is rationally perfect and

if Quillen’s dg Lie algebra λ(X) is formal, then there is an isomorphism of graded π-

modules

Hn(X;Q)∼=
⊕
p+q=n

HCE
p,q (πQ

∗ (X)),

for every n.

Proof. If the rational cohomology groups of a simply connected space are finite-

dimensional, then so are the rational homotopy groups. It follows that the Quillen

spectral sequence (2.4) is a spectral sequence of finite-dimensional Q[π]-modules. Since

λ(X) is formal, the Quillen spectral sequence collapses, and since π is rationally perfect,

all extensions relating E∞∗,∗ and H∗(X;Q) are split.

Remark 2.4. A simply connected space X such that Quillen’s dg Lie algebra λ(X) is

formal is called coformal in the literature. The name formal is reserved for spaces where

Sullivan’s minimal model is formal. The two notions are not the same, they are Eckman–

Hilton dual. Spaces that are simultaneously formal and coformal can be characterized in

terms of Koszul algebras; see [7].

3. Classification of fibrations

The purpose of this section is to review some fundamental results on the classification of

fibrations in the categories of topological spaces and dg Lie algebras.
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The classification of fibrations up to fiber homotopy equivalence was pioneered by

Stasheff [64] and given a systematic treatment by May [48]. For a more recent modern

approach, see [12]. The classification of fibrations for dg Lie algebras is implicit in the

work of Sullivan [67] and in a widely circulated preprint of Schlessinger–Stasheff (recently

made available [62]). A detailed account is given in Tanré’s book [68]. There is also a

more recent approach due to Lazarev [41], which uses the language of L∞-algebras.

3.1. Fibrations of topological spaces

Let X be a simply connected space of the homotopy type of a finite CW-complex.

Let aut(X) denote the topological monoid of homotopy automorphisms of X, with the

compact-open topology, and let aut∗(X) denote the submonoid of basepoint-preserving

homotopy automorphisms. It is well known that the classifying space B aut(X) classifies

fibrations with fiber X. Let us recall the precise meaning of this statement.

An X-fibration over a space B is a fibration E!B such that for every point b∈B
there is a homotopy equivalence X!Eb. An elementary equivalence between two X-

fibrations E!B and E′!B is a map E!E′ over B such that for every b∈B the induced

map Eb!E
′
b is a homotopy equivalence. We let F ib(B,X) denote the set of equivalence

classes of X-fibrations over B under the equivalence relation generated by elementary

equivalences.

Theorem 3.1. (See [48]) There is an X-fibration

EX −!BX , (3.1)

which is universal, in the sense that the map

[B,BX ]−!F ib(B,X),

[ϕ] 7−! [ϕ∗(EX)!B],

is a bijection for every space B of the homotopy type of a CW-complex. Furthermore,

the universal fibration (3.1) is weakly equivalent to the map

B aut∗(X)−!B aut(X)

induced by the inclusion of monoids aut∗(X)!aut(X).

3.2. Fibrations of dg Lie algebras

There is a parallel story for dg Lie algebras. According to Quillen [56, §5], the category of

positively graded dg Lie algebras admits a model structure where the weak equivalences
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are the quasi-isomorphisms and the fibrations are the maps that are surjective in degrees

>1. The cofibrations are the ‘free maps’; see [56, Proposition II.5.5]. In particular, a dg

Lie algebra is cofibrant if and only if its underlying graded Lie algebra is free. Schlessinger

and Stasheff have given an explicit construction of a classifying space for fibrations in

this context, which we now will recall.

Let L be a dg Lie algebra. A derivation of degree p is a linear map θ:L∗!L∗+p

such that

θ[x, y] = [θ(x), y]+(−1)p|x|[x, θ(y)],

for all x, y∈L. The derivations of L are the elements of a dg Lie algebra DerL, whose

Lie bracket and differential D are defined by

[θ, η] = θ�η−(−1)|θ| |η|η�θ, D(θ) = d�θ−(−1)|θ|θ�d,

where d is the differential in L.

Given a morphism of dg Lie algebras f :L!L′, an f -derivation of degree p is a map

θ:L∗!L
′
∗+p such that

θ[x, y] = [θ(x), f(y)]+(−1)p|x|[f(x), θ(y)],

for all x, y∈L. The f -derivations assemble into a chain complex Derf (L,L′), whose

differential D is defined by

D(θ) = dL′ �θ−(−1)|θ|θ�dL.

In general there is no natural Lie algebra structure on Derf (L,L′).

The Jacobi identity for L implies that the map adx:L!L, sending y to [x, y], is

a derivation of degree |x| for each x∈L. The map ad:L!DerL sending x to adx is a

morphism of dg Lie algebras. Let DerL// adL denote the mapping cone of ad:L!DerL,

i.e.,

DerL// adL= sL⊕DerL,

with differential given by

D̃(θ) =D(θ), D̃(sx) = adx−sd(x),

for θ∈DerL and x∈L. There is a Lie bracket on DerL// adL, which is defined as the

extension of the Lie bracket on DerL that satisfies

[θ, sx] = (−1)|θ|sθ(x), [sx, sy] = 0,
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for θ∈DerL and x, y∈L. The Schlessinger–Stasheff classifying dg Lie algebra of L is

defined to be the positive truncation,

BL = (DerL// adL)+.

Here, the positive truncation of a dg Lie algebra L is the sub dg Lie algebra L+ with

L+

i =


Li, if i> 2,

ker(d:L1!L0), if i= 1,

0, if i6 0.

An L-fibration over K is a surjective map of dg Lie algebras π:E!K together with

a quasi-isomorphism L!Kerπ. An elementary equivalence between two L-fibrations

π:E!K and π′:E′!K is a quasi-isomorphism of dg Lie algebras E!E′ over K such

that the diagram

L //

""

Kerπ

��

Kerπ′

commutes. Let F ib(K,L) denote the set of equivalence classes of L-fibrations over K

under the equivalence relation generated by elementary equivalence.

Theorem 3.2. (See Tanré [68]) Let L be a cofibrant dg Lie algebra and let BL

denote its Schlessinger–Stasheff classifying dg Lie algebra. There is an L-fibration

EL−!BL, (3.2)

which is universal in the sense that for every cofibrant dg Lie algebra K, the map

[K,BL]−!F ib(K,L),

[ϕ] 7−! [ϕ∗(EL)],

is a bijection. Furthermore, the morphism EL!BL is weakly equivalent to the morphism

Der+ L−! (DerL// adL)+.

By combining Theorems 3.1 and 3.2, together with Quillen’s equivalence of homotopy

theories between TopQ
∗,1 and DGL1, it is not difficult to derive the following consequence.

Corollary 3.3. (See [68, Corollaire VII.4 (4)]) Let X be a simply connected space

of the homotopy type of a finite CW-complex. Let LX be a cofibrant model of Quillen’s

dg Lie algebra λ(X). The positive truncation of the morphism of dg Lie algebras

DerLX −!DerLX// adLX

is a dg Lie algebra model for the map of simply connected covers

B aut∗(X)〈1〉−!B aut(X)〈1〉.
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3.3. Relative fibrations

Given a non-empty subspace A⊂X, we may consider the monoid aut(X;A) of homotopy

self-equivalences of X that restrict to the identity map on A. We will assume that the

inclusion map from A into X is a cofibration. As follows from the theory of [48] (see,

e.g., [35, Appendix B] for details), the classifying space B aut(X;A) classifies fibrations

with fiber X under the trivial fibration with fiber A.

Similarly, for a cofibration of cofibrant dg Lie algebras K⊂L, the positive truncation

of the dg Lie algebra Der(L;K) of derivations on L that restrict to zero on K, acts as a

classifying space for fibrations of dg Lie algebras with fiber L under the trivial fibration

with fiber K. This result seems not to have appeared in the literature, but the proof is

a straightforward generalization of [68, Chapitre VII]. The following is a consequence.

Theorem 3.4. Let A⊂X be a cofibration of simply connected spaces of the homotopy

type of finite CW-complexes, and let LA⊂LX be a cofibration between cofibrant dg Lie

algebras that models the inclusion of A into X. Then the positive truncation of the dg

Lie algebra Der(LX ;LA), consisting of all derivations on LX that restrict to zero on LA,

is a dg Lie algebra model for the simply connected cover of B aut(X;A).

A detailed proof of this result, following a different route, can be found in [11].

3.4. Derivations and mapping spaces

Given a morphism of dg Lie algebras f :L!L, we let Derf (L, L) denote the chain complex

of f -derivations. Its elements of degree p are by definition all maps θ:L!L of degree p

that satisfy

θ[x, y] = [θ(x), f(y)]+(−1)|x|p[f(x), θ(y)]

for all x, y∈L. The differential D is defined by

D(θ) = dL�θ−(−1)pθ�dL.

We include here a lemma for later reference. It is presumably well known, but we indicate

the proof for completeness.

Lemma 3.5. Let φ:L!L′ and ψ:L!L′ be quasi-isomorphisms of dg Lie algebras.

Suppose that L and L′ are cofibrant and concentrated in strictly positive homological

degrees.

(1) For every morphism of dg Lie algebras f :L!L, the induced chain map

ψ∗: Derf (L, L)−!Derψf (L, L′),

θ 7−!ψ�θ,
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is a quasi-isomorphism.

(2) For every morphism of dg Lie algebras g:L′!L, the induced chain map

φ∗: Derg(L′, L)−!Dergφ(L, L),

η 7−! η�φ,

is a quasi-isomorphism.

Proof. There is a complete filtration,

Derf (L, L) =F 1⊇F 2⊇ ...,

where F p consists of those f -derivations θ:L!L that vanish on L<p. This filtration

gives rise to a spectral sequence with

Ep,−q2 = Hom(Hp(QL), Hq(L)) =⇒H−p+q(Derf (L, L)).

Here QL=L/[L,L] denotes the chain complex of indecomposables in the dg Lie algebra L.

It is well known that a morphism φ:L!L′ between positively graded cofibrant dg Lie

algebras is a quasi-isomorphism if and only if the induced map on indecomposables

Qφ:QL!QL′ is a quasi-isomorphism (see, e.g., [25, Proposition 22.12]). Bearing this in

mind, both claims may be deduced through an application of the comparison theorem

for spectral sequences.

Let G be a topological group with the neutral element e as basepoint. The Samelson

product

πp(G)×πq(G)−!πp+q(G)

is a natural operation on the homotopy groups of G. It may be defined as follows. Given

based maps f :Sp!G and g:Sq!G, the composite map

Sp×Sq f×g−−−−!G×G [−,−]−−−−−!G,

where [−,−]:G×G!G is the commutator [x, y]=xyx−1y−1, is trivial when restricted to

Sp∨Sq. It therefore induces a based map [f, g]:Sp+q∼=Sp×Sq/Sp∨Sq!G. The homo-

topy class of [f, g] is the Samelson product of the classes [f ] and [g].

The map G!G sending x to gxg−1 preserves the basepoint, and defines a homomor-

phism φg:πk(G)!πk(G). This defines an action of the group π0(G) on πk(G), and this

action preserves Samelson products. Under the standard isomorphism πk+1(BG)∼=πk(G),

the Whitehead product on π∗+1(BG) corresponds to the Samelson product on π∗(G),

and the standard action of π1(BG) on πk+1(BG) corresponds to action of π0(G) on πk(G)

described above; see [76]. The above holds true for G a group-like topological monoid,

because every such may be replaced by a homotopy equivalent group. In particular, it

applies to monoids of homotopy automorphisms.
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Theorem 3.6. (Lupton–Smith [43, Theorem 3.1]) Let f :X!Y be a map between

simply connected CW-complexes with X a finite CW-complex, and let ϕ:LX!LY be a

Lie model for f . There is a natural isomorphism for all k>2,

β:πk(map∗(X,Y ), f)⊗Q
∼=−−!Hk(Derϕ(LX ,LY )). (3.3)

If f=idX , it is valid also for k=1.

Proof. We indicate the definition of β, following [43] (with a minor modification),

and refer the reader to [43] for a proof that it is a bijection. Let ZnX denote the half-

smash product (Z×X)/(Z×∗) and let i:X!ZnX denote the map sending x∈X to the

class of (∗, x). If LX=(LV, δ), then SknX has dg Lie model (L(V ⊕skV ), δ′), where δ′

is determined by the conditions that

• the inclusion ι: (LV, δ)!(L(V ⊕skV ), δ′) is a chain map, and

• the ι-derivation sk:LV!L(V ⊕skV ) that extends v 7!skv satisfies δ′sk=(−1)kskδ.

Given a map h:Sk!map∗(X,Y ) sending the basepoint of Sk to f , there is an adjoint

map h#:SknX!Y such that h#
�i=f . By [43, Proposition A.3], we can find a dg Lie

model

ψh: (L(V ⊕skV ), δ′)−!LY

for h# such that ψh�ι=ϕ. The composite θh=ψh�s
k:LX!LY is then a k-cycle in the

chain complex Derϕ(LX ,LY ), and one sets

β[h] = [θh].

We will need the following addendum to Theorem 3.6.

Proposition 3.7. Under the isomorphism

β:πk(aut∗(X), idX)⊗Q∼=Hk(Der(LX)), (3.4)

the Samelson product corresponds to the Lie bracket on derivations.

For the proof we will use the following lemma.

Lemma 3.8. Let G be a topological group and let f :Sp!G and g:Sq!G be based

maps. The map

Sp×Sq f×g−−−−!G×G [−,−]−−−−−!G

is homotopic to the composite

{f, g}:Sp×Sq Ξ−−!Sp×Sq×Sp×Sq f×g×f×g−−−−−−−−!G×G×G×G µ−−!G,

where Ξ(x, y)=(x, y,mp(x),mq(y)), where mk denotes a degree-(−1) map on Sk and µ

is the multiplication map.
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Proof. This follows readily from the fact that the inverse map j:G!G, x 7!x−1,

induces multiplication by −1 on πk(G), i.e., the diagram

Sk
f
//

mk

��

G

j

��

Sk
f
// G

commutes up to homotopy for every based map f :Sk!G.

Proof of Proposition 3.7. Let f :Sp!aut∗(X) and g:Sq!aut∗(X) be based maps.

It follows from Lemma 3.8 that the Samelson product [f, g] is characterized up to homo-

topy by homotopy commutativity of the diagram

Sp×Sq
{f,g}

//

c

��

aut∗(X)

Sp+q

[f,g]

==

or, equivalently, of the diagram

(Sp×Sq)nX
{f,g}#

//

cn1

��

X

Sp+qnX.

[f,g]#

==

One checks that the diagram

(Sp×Sq)nX
{f,g}#

//

Ξn1

��

X

(Sp×Sq×Sp×Sq)nX
∼= // Spn(Sqn(Spn(SqnX)))

f#
�(1ng#)�(1n1nf#)�(1n1n1ng#)

OO (3.5)

is commutative. By iterated use of

(Sk×Y )nX ∼=Skn(Y nX)

and the dg Lie model for SknX described above, one works out that the dg Lie model

for ZnX, where Z is a product of spheres, has the form (L(H∗(Z)⊗V ), δ′′). Moreover,

one finds that the map Ξn1 has dg Lie model

Ξ∗:L(H∗(S
p×Sq)⊗V )−!L(H∗(S

p×Sq×Sp×Sq)⊗V )
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induced by

Ξ∗:H∗(S
p×Sq)−!H∗(S

p×Sq×Sp×Sq)

(we omit the details, but this is true because the map Ξ is formal). After picking Lie

models ψf and ψg for f# and g# as in the proof of Theorem 3.6, one sees that a Lie

model for the right vertical map in (3.5) is given by

γ:L(H∗(S
p×Sq×Sp×Sq)⊗V )−!LV,

(a×b×c×d)v 7−!ψf (aψg(bψf (cψg(dv)))),

for homology classes a, c∈H∗(Sp) and b, d,∈H∗(Sq). It follows that we may take

ψ{f,g}:L(H∗(S
p×Sq)⊗V )−!LV

to be the composite γ�Ξ∗. Explicitly, for v∈V ,

ψ{f,g}((s
p×sq)v) = γ(Ξ∗(s

p×sq)v)

= γ((sp×sq×1×1)v−(−1)pq(1×sq×sp×1)v

−(sp×1×1×sq)v+(1×1×sp×sq)v)

= θfθg(v)−(−1)pqθgθf (v)−θfθg(v)+θfθg(v)

= [θf , θg](v),

and similar calculations show that

ψ{f,g}(v) = v, ψ{f,g}(s
pv) = 0 and ψ{f,g}(s

qv) = 0.

In particular, the morphism ψ{f,g} factors through the morphism induced by the collapse

map c∗,

L(H∗(S
p×Sq)⊗V )

ψ{f,g}
//

c∗

��

LV

L(H∗(S
p+q)⊗V ),

λ

66

and we may take ψ[f,g] to be λ. Thus, for v∈V , we get

θ[f,g](v) =ψ[f,g](s
p+qv) =ψ{f,g}((s

p×sq)v) = [θf , θg](v),

which proves the proposition.
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3.5. Homotopy automorphisms of manifolds

Let Mn be a simply connected compact manifold with boundary ∂M=Sn−1. Let

aut∂(M) denote the topological monoid of homotopy automorphisms of M that restrict

to the identity on ∂M , with the compact-open topology. Let aut∂,�(M) denote the

connected component of the identity. There is a homotopy fibration sequence

B aut∂,�(M)−!B aut∂(M)−!Bπ0(aut∂(M)).

Hence, up to homotopy B aut∂,�(M) may be identified with the simply connected cover

of B aut∂(M). The goal of this section is to establish a tractable dg Lie algebra model

for B aut∂,�(M).

An inner product space of degree n is a finite-dimensional graded vector space V

together with a degree −n map of graded vector spaces,

V ⊗V −!Q,

x⊗y 7−! 〈x, y〉,

which is non-singular in the sense that the adjoint map,

V −!Hom(V,Q),

x 7−! 〈x,−〉,

is an isomorphism of graded vector spaces (of degree −n). Note that 〈x, y〉 is automati-

cally zero unless |x|+|y|=n.

We call an inner product space as above graded symmetric if

〈x, y〉= (−1)|x| |y|〈y, x〉,

for all x, y∈V and graded anti-symmetric if

〈x, y〉=−(−1)|x| |y|〈y, x〉,

for all x, y∈V .

For example, if Mn is a simply connected compact manifold with boundary

∂M =Sn−1,

then the reduced homology H=H̃∗(M ;Q) together with the intersection form is a graded

symmetric inner product space of degree n. The desuspension of the reduced rational

homology,

V = s−1H,
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becomes a graded anti-symmetric inner product space of degree n−2 by setting

〈s−1e, s−1f〉= (−1)|e|〈e, f〉.

Now, let V be a graded anti-symmetric inner product space of degree n−2 and

choose a graded basis α1, ..., αr. The dual basis α#
1 , ..., α

#
r is characterized by

〈αi, α#
j 〉= δij .

There is a canonical element ω=ωV ∈V ⊗2 defined by

ω=
∑
i

α#
i ⊗αi.

Up to sign, the element ω corresponds to the inner product 〈−,−〉∈Hom(V ⊗2,Q) under

the isomorphism V ⊗2∼=Hom(V ⊗2,Q) induced by the inner product on V ⊗2;

〈v⊗w, v′⊗w′〉= (−1)|v
′| |w|〈v, v′〉〈w,w′〉.

Indeed, one checks that

〈ω, x⊗y〉= (−1)|x| |y|+|x|+1〈x, y〉.

In particular, ω is independent of the choice of basis. Since V is anti-symmetric, the

transposition τ acts by τω=−ω. This implies that ω may be written as a sum of graded

commutators

[x, y] =x⊗y−(−1)|x| |y|y⊗x

as follows:

ω=
1

2

∑
i

[α#
i , αi]. (3.6)

In this way, ω may be regarded as an element of the free graded Lie algebra LV .

Let DerLV denote the graded Lie algebra of derivations on LV . Consider the map

of degree 2−n,

θ−,−:LV ⊗V −!DerLV, θξ,x(y) = ξ〈x, y〉.

Since the form is non-degenerate and since a derivation on a free graded Lie algebra is

determined by its values on generators, the map θ−,− is an isomorphism.

The following proposition plays a key role.



92 a. berglund and i. madsen

Proposition 3.9. Let V be a graded anti-symmetric inner product space with canon-

ical element ω∈LV . The diagram

DerLV evω // LV

LV ⊗V

θ−,−

OO

[−,−]

??

is commutative.

Proof. Note that every element x∈V may be written as

x=
∑
i

〈x, α#
j 〉αj . (3.7)

If θ is a derivation, then

θ(ω) =
∑
i

[θ(α#
i ), αi].

To see this, first use (3.6) to get

θ(ω) =
1

2

∑
i

([θ(α#
i ), αi]+(−1)|θ| |α

#
i |[α#

i , θ(αi)]).

Rewriting the right summands using graded anti-symmetry of the bracket, (3.7) on

x=α#
i , and then (3.7) on x=α#

j backwards, we get∑
i

(−1)|θ| |α
#
i |[α#

i , θ(αi)] =
∑
i

(−1)|αi| |α
#
i |+1[θ(αi), α

#
i ]

=
∑
i,j

(−1)|αi| |α
#
i |+1[θ(αi), 〈α#

i , α
#
j 〉αj ]

=
∑
j

[
θ

(∑
i

(−1)|αi| |α
#
i |+1〈α#

i , α
#
j 〉αi

)
, αj

]
=
∑
j

[θ(α#
j ), αj ].

Thus,

evω(θξ,x) =
∑
i

[θξ,x(α#
i ), αi] =

∑
i

[ξ〈x, α#
i 〉, αi] =

[
ξ,
∑
i

〈x, α#
i 〉αi

]
= [ξ, x].

Corollary 3.10. The image of the map evω: DerLV!LV is the space of decom-

posables [LV,LV ]. In other words, for every ζ∈L>2V , there is a derivation θ on LV
such that θ(ω)=ζ.
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The following result is essentially due to Stasheff [65].

Theorem 3.11. Let Mn be a simply connected compact manifold with boundary

∂M=Sn−1 and let V denote the graded anti-symmetric inner product space s−1H̃∗(M ;Q).

There is a differential δ on LV such that

(1) (LV, δ) is a minimal Quillen model for M ;

(2) the canonical element ω∈LV is a cycle that represents (−1)n times the homo-

topy class of the inclusion of the boundary.

Proof. Consider the closed manifold X=M∪∂Dn. Fix an orientation of X and

let µ∈Hn(X;Q) be the fundamental class. Choose a basis e1, ..., er for H̃∗(M ;Q), and

let e#
1 , ..., e

#
r be the dual basis with respect to the intersection form, in the sense that

〈ei, e#
j 〉=δij . Identifying

H̃∗(X;Q) = H̃∗(M ;Q)⊕Qµ,

the reduced diagonal of the fundamental class assumes the form

∆̄(µ) =

r∑
i=1

e#
i ⊗ei. (3.8)

To derive this expression, one can use that the intersection form on H∗(X;Q) satisfies

〈x∩µ, y∩µ〉= 〈x∪y, µ〉= 〈x⊗y,∆(µ)〉,

for cohomology classes x, y∈H∗(X;Q), where

−∩µ:Hk(X;Q)−!Hn−k(X;Q)

is the Poincaré duality isomorphism and 〈−,−〉 in the right-hand side denotes the stan-

dard pairing between cohomology and homology. Alternatively, it can be derived from

Theorem 11.11 and Problem 11-C of [53].

The minimal Quillen model of M has the form (LV, δ) and the cell attachment

M!X is modeled by a free map of dg Lie algebras

(LV, δ)−! (L(V ⊕s−1µ), δ),

where δ(s−1µ)∈LV represents the attaching map for the top cell, i.e., the class of

Sn−1 = ∂M −!M.

It is well known that the quadratic part δ1 of the differential in the minimal Quillen

model corresponds to the reduced diagonal, in the sense that

δ1(s−1x) = (s−1⊗s−1)∆̄(x);
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see e.g. [6, Corollary 2.14]. In particular,

δ1(s−1µ) =

r∑
i=1

(−1)|e
#
i |s−1e#

i ⊗s
−1ei.

If we choose αi=s
−1ei as our basis for V , then

〈s−1ei, s
−1e#

j 〉= (−1)|ei|〈ei, e#
j 〉

shows that the dual basis is given by α#
i =(−1)|ei|s−1e#

i . Hence,

δ1(s−1µ) =

r∑
i=1

(−1)|e
#
i |+|ei|α#

i ⊗αi = (−1)nω.

It is an important observation due to Stasheff [65, Theorem 2] that one may assume

that δ(s−1µ) is purely quadratic. We give a proof for completeness. The key ingredient

is Corollary 3.10.

Write δ=δ1+δ2+δ3+... , where δk increases bracket length by exactly k. By Corol-

lary 3.10, there exists a derivation θ on LV such that

θ(ω) = (−1)nδ2(s−1µ).

We may assume that θ increases bracket length by exactly 1. Extend θ to a derivation

on L(V ⊕s−1µ) by setting θ(s−1µ)=0. Then

eθ =
∑
k>1

1

k!
θk

is a Lie algebra automorphism of L(V ⊕s−1µ), and one checks that

δ′= e−θ �δ�eθ

is a new differential such that δ′1=δ1 and δ′2(s−1µ)=0. Clearly,

eθ: (L(V ⊕s−1µ), δ′)−! (L(V ⊕s−1µ), δ)

is an isomorphism of dg Lie algebras. If δ′3(s−1µ) 6=0, we continue in a similar way by

finding a derivation θ′ such that θ′(ω)=(−1)nδ′3(s−1µ), obtaining an isomorphism

eθ
′
: (L(V ⊕s−1µ), δ′′)−! (L(V ⊕s−1µ), δ′),

where δ′′1 =δ1, δ′′2 (s−1µ)=0 and δ′′3 (s−1µ)=0. In this way, the non-zero higher terms

of δ(s−1µ) may be peeled off one at a time. The process will stop after finitely many

steps. Indeed, since V is concentrated in positive homological degrees, the bracket length

of any term of δ(r)(s−1µ) will be at most n−2, i.e., δ
(r)
k (s−1µ)=0 for k>n−2, and,

by construction, δ
(r)
k (s−1µ)=0 for k=2, 3, ..., r+1. Thus, we can stop after r=n−4

steps.
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Let Derω LV denote the graded Lie subalgebra of DerLV consisting of those deriva-

tions θ such that θ(ω)=0. Note that the differential δ in the minimal Quillen model

for M (see Theorem 3.11) is an element of Derω LV of degree −1. Therefore, [δ,−] is

a differential on Derω LV , making it a dg Lie algebra. We let (Derω LV, [δ,−])+ denote

the positive truncation of this dg Lie algebra, i.e., it agrees with Derω LV in degrees >1,

and in degree 1 it is the kernel of the differential [δ,−].

Theorem 3.12. Let M be a simply connected compact manifold with boundary

Sn−1. A dg Lie algebra model for the classifying space B aut∂,�(M) is given by

(Derω LV, [δ,−])+.

Proof. We will use Theorem 3.4. Let % be a generator of degree n−2. By Theo-

rem 3.11, the morphism of dg Lie algebras

ϕ:L(%)−! (LV, δ),

% 7−! (−1)nω,

is a model for the inclusion of ∂M into M . However, it is not a cofibration (i.e. free map)

of dg Lie algebras. To rectify this, we factor ϕ as a free map q followed by a surjective

quasi-isomorphism p as follows:

L(%)
q−−! (L(V, %, γ), δ)

p−−! (LV, δ). (3.9)

Here q is the obvious inclusion, the map p is defined by p|V =idV , p(%)=(−1)nω, and

p(γ)=0, and the differential δ is extended to % and γ by δ(%)=0 and δ(γ)=(−1)nω−%.

To simplify notation, denote the sequence (3.9) by

L∂M
q−−! L̃M

p−−!LM .

Now, the map q:L∂M!L̃M is a cofibration that models the inclusion of ∂M into M . By

Theorem 3.4, the dg Lie algebra

Der+(̃LM ;L∂M ) (3.10)

models B aut∂,�(M). We will show it is quasi-isomorphic to (Derω LV, [δ,−])+.

There is a pullback diagram of chain complexes

Der(p;L∂M )

pr2

��

pr1 // Der(̃LM ;L∂M )

p∗

��

Der(LM ;L∂M )
p∗
// Derp(̃LM ,LM ;L∂M ),

(3.11)
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where Der(LM ;L∂M ) denotes the dg Lie algebra of derivations η on LM such that η�ϕ=0,

Der(p;L∂M ) denotes the chain complex of pairs (θ, η) of derivations θ∈Der(̃LM ;L∂M ), η∈
Der(LM ;L∂M ), with p∗(θ)=p∗(η), and Derp(̃LM ,LM ;L∂M ) denotes the chain complex

of p-derivations θ∈Derp(̃LM ,LM ) such that θ�q=0. As the reader may check, taking

componentwise Lie brackets turns Der(p;L∂M ) into a dg Lie algebra and the projections

pr1(θ, η)=θ and pr2(θ, η)=η into morphisms of dg Lie algebras.

Below, we will argue that the map p∗ in (3.11) is a surjective quasi-isomorphism.

Surjective quasi-isomorphisms of chain complexes are stable under pullbacks, so this will

imply that pr2 is a surjective quasi-isomorphism. We will also argue that the map p∗ in

(3.11) is a quasi-isomorphism in positive degrees. This, together with the fact that p∗

and pr2 are quasi-isomorphisms, will imply that pr1 is a quasi-isomorphism in positive

degrees. Taking positive truncations, we obtain a zig-zag of quasi-isomorphisms of dg

Lie algebras,

Der+(̃LM ;L∂M ) Der+(p;L∂M )
pr1

∼oo
pr2

∼ // Der+(LM ;L∂M ).

The dg Lie algebra Der+(LM ;L∂M ) is clearly the same as (Derω LV, [δ,−])+, so this will

finish the proof.

To see that p∗ is a surjective quasi-isomorphism, consider the following diagram:

0 // Der(̃LM ;L∂M )

p∗

��

// Der L̃M
p∗

��

q∗
// Derq(L∂M , L̃M )

p∗

��

// 0

0 // Derp(̃LM ,LM ;L∂M ) // Derp(̃LM ,LM )
q∗
// Derϕ(L∂M ,LM ) // 0.

Exactness at the left and middle terms is clear. That the maps labeled by q∗ are sur-

jective follows because q is a free map. The middle and right vertical maps are quasi-

isomorphisms by Lemma 3.5. A five-lemma argument then shows that the left vertical

map is a quasi-isomorphism. To see that it is surjective, note that p admits a section

σ:LM!L̃M . Given θ∈Derp(̃LM ,LM ;L∂M ), let η be the unique derivation on L̃M that

agrees with σθ when restricted to the generators. Then one checks that η∈Der(̃LM ;L∂M )

and that p∗(η)=θ.

To see that the map p∗ in (3.11) is a quasi-isomorphism in positive degrees, consider

the following diagram:

0 // Der(LM ;L∂M ) //

p∗

��

DerLM
ϕ∗

//

p∗

��

Derϕ(L∂M ,LM ) // 0

0 // Derp(̃LM ,LM ;L∂M ) // Derp(̃LM ,LM )
q∗
// Derϕ(L∂M ,LM ) // 0.
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Exactness of the bottom row and at the left and middle terms of the top row follows as

above. The middle vertical map is a quasi-isomorphism by Lemma 3.5.

Here is the crux of the proof: The top-right horizontal map ϕ∗ is surjective in

non-negative degrees. Indeed, up to a sign, ϕ∗ may be identified with the map

evω: DerLV −! sn−2LV.

Since the space of generators V =s−1H̃∗(M ;Q) is concentrated in degrees 6n−2, every

element of positive degree in sn−2LV is necessarily decomposable, whence in the image

of evω by Proposition 3.9. Finally, a five-lemma argument shows that the left vertical

map is a quasi-isomorphism in positive degrees.

Corollary 3.13. If M is formal and the reduced rational cohomology ring has

trivial multiplication, then B aut∂,�(M) is coformal and there is an isomorphism of graded

Lie algebras

πQ
∗ (B aut∂,�(M))∼= Der+

ω LV.

Proof. Formality is equivalent to the property that the minimal Quillen model may

be chosen to have purely quadratic differential, i.e., δ(V )⊆L2(V ). The quadratic part

of the differential in any minimal Quillen model corresponds to the cup product on the

reduced cohomology.

For example, the conditions hold if M is (d−1)-connected of dimension at most

3d−2 for some d>2. In particular they hold for the manifolds Mg,1.

4. Block diffeomorphisms

This section examines the classifying space of block diffeomorphisms of simply connected

smooth compact manifolds with boundary. We assume throughout that dimM>5, so

that the h-cobordism theorem and surgery theory are available. Moreover, we assume

that the manifolds under consideration are oriented and that the maps between them are

orientation-preserving unless otherwise specified.

4.1. The surgery fibration

This paragraph briefly reviews the surgery fibration introduced in F. Quinn’s thesis

[57]. There is a detailed account of the surgery fibration for topological manifolds in

the memoir [55]. In contrast, we work in the smooth category and treat only simply

connected manifolds. The proofs of [55] carry over to the smooth category with only

minor changes.
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Recall that the topological group D̃iff(M) of block diffeomorphisms of a manifold

M is defined to be the geometric realization of the ∆-group D̃iff(M)
�
, whose k-simplices

are the self-diffeomorphisms ϕ of ∆k×M that preserve the faces in the sense that

ϕ(F×M) =F×M

for every face F of ∆k; cf. [60], [61]. We assume furthermore that ϕ preserves a collar

of each face, in which case D̃iff(M)
�

is a Kan ∆-group by [18]. See §4.3 below for more

details.

The ∆-group of self-diffeomorphisms that preserve the projection onto ∆k is equal

to the set of smooth singular k-simplices of the diffeomorphism group Diff(M), equipped

with the Whitney topology. Since the geometric realization |S
�
(X)| is weakly homotopy

equivalent to X, one can view D̃iff(M) as an enlargement of Diff(M).

If M has a non-empty boundary, then we consider the subgroup of boundary-

preserving block diffeomorphisms, D̃iff∂(M), which is defined as above but with the

additional requirement that each k-simplex ϕ restricts to the identity on a neighborhood

of ∆k×∂M .

If we replace the face-preserving self-diffeomorphisms with face-preserving homotopy

automorphisms in the above definition, we obtain the ∆-set of block homotopy equiv-

alences, ãut∂(M)
�
, with geometric realization ãut∂(M). As above, the subcomplex of

self-homotopy equivalences over ∆k may be identified with the set of singular k-simplices

in the space aut∂(M) of self-homotopy equivalences equipped with the compact-open

topology. In contrast to the case of diffeomorphisms, the inclusion

S
�
aut∂(M)−! ãut∂(M)

�

induces a homotopy equivalence of geometric realizations. Indeed, if

f : ∆k×M −!∆k×M

is a face-preserving map, then pr∆k �f is equivalent to a map

f1:M −! G̃(∆k)

into the monoid of face-preserving endomorphisms of ∆k. But G̃(∆k) contracts to {id∆k}:
if α: ∆k!∆k is face preserving, then

(1−t)α+t id∆k ∈ G̃(∆k)

contracts to the identity, and induces a retraction

ãut∂(M)
�
−!S

�
(aut∂(M)).
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This induces a homotopy equivalence of geometric realizations

aut∂(M)' ãut∂(M). (4.1)

In the sequel, we prefer to use the notation aut∂(M) instead of ãut∂(M).

Let M be a simply connected n-dimensional manifold with simply connected bound-

ary, n>5. The product of M with the standard k-simplex, ∆k×M , is a (k+3)-ad with

faces of dimension n+k−1,

∂0∆k×M, ∂1∆k×M, ..., ∂k∆k×M, ∆k×∂M.

There are three Kan ∆-sets associated with M and maps between them,

SG/O∂ (M)
�

η
�−−!NG/O

∂ (M)
�

λ
�−−−!L(M)

�
. (4.2)

The k-simplices of the (smooth) structure space SG/O∂ (M)
�

are pairs (W, f) of a (smooth)

(k+3)-ad W and a face-preserving homotopy equivalence

f :W −!∆k×M

with the additional property that

∂k+1W −!∆k×∂M

is a diffeomorphism.

Let K�0 and let (M,∂M)⊆(Dn+K , ∂Dn+K) be an embedding where n=dimM .

The set NG/O
∂ (M)Kk consists of embeddings of (k+3)-ads

W ⊂∆k×Dn+K , diW =W∩∂i(∆k×Dn+K), i6 k,

and ∂k+1W=∆k×∂M , which are collared near each of these faces, together with a K-

dimensional vector bundle ζK over ∆k×M , and a commutative bundle diagram of (k+3)-

ads,

νK(W )

��

f̂
// ζK

��

W
f
// ∆k×M,

such that the two conditions below are satisfied:

(1) f and its faces di(f) have degree 1 for i=0, ..., k, and ∂k+1W!∆k×∂M is a

diffeomorphism;

(2) f̂ is a fiberwise isomorphism of vector bundles.
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ThenNG/O
∂ (M)K

�
is a ∆-set and taking the colimit as K!∞ using Dn+K⊂Dn+K+1

one obtains the ∆-set in (4.2).

The third term L(M)
�

of (4.2) and the ∆-maps η
�

and λ
�

are defined in §2.2 of [55].

The homotopy groups of L(M)
�

depend only on the fundamental group of M and the

dimension n=dimM . In the simply connected case, the only non-zero groups are

π4k−nL(M)
�
=Z, π4k+2−nL(M)

�
=Z/2Z. (4.3)

Theorem 4.1. (Nicas, Quinn) The sequence (4.2) of Kan ∆-sets is a homotopy

fibration.

This follows from [55, Theorem 2.3.4], which states that the homotopy fiber of λ
�

is

homotopy equivalent to SG/O∂ (M)
�
.

We have left to identify NG/O
∂ (M)

�
in more homotopy theoretic terms. This goes

back to Sullivan’s proof of the Hauptvermutung for manifolds, outlined in [59]. The

result is the following.

Theorem 4.2. There is a homotopy equivalence of Kan ∆-sets

NG/O
∂ (M)

�

'−−!S
�
map∗(M/∂M,G/O),

where S
�

denotes the singular ∆-set.

The combination of the two theorems above leads to the following corollary.

Corollary 4.3. There is a homotopy fibration of geometric realizations

SG/O∂ (M)
η−−!map∗(M/∂M,G/O)

λ−−!L(M). (4.4)

This is the form of the surgery fibration, listed without proof in [74, §17A].

We note in passing and for future reference that since

map∗(M/∂M,G/O)

is an infinite loop space and therefore nilpotent, [49, Proposition 4.4.1 (i)] or [36, The-

orem II.2.2] applied to the surgery fibration (4.4) implies that the components of the

structure space SG/O∂ (M) are nilpotent. We are grateful to the referee for pointing this

out to us.

The kth homotopy group of SG/O∂ (M), with the identity as the basepoint, is the

structure set of equivalence classes of homotopy equivalences

f : (W,∂W )−! (Dk×M,∂(Dk×M)),
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with ∂f being a diffeomorphism; (W, f) is equivalent to (W ′, f ′) if there exists a diffeo-

morphism ϕ from W to W ′ for which

(W,∂W )

ϕ

��

f

&&

(W ′, ∂W ′)
f ′
// (Dk×M,∂(Dk×M))

is homotopy commutative.

For use later in the paper we need to recall the calculation of

η∗:πk(SG/O∂ (M), id)−!πk(map∗(M/∂M,G/O), ∗). (4.5)

Since SG/O∂ (M)
�

is a Kan ∆-set, an element of πk(SG/O∂ (M), id) is represented by a

homotopy equivalence

(V, ∂V )−! (Dk×M,∂(Dk×M))

which is a diffeomorphism on the boundary. If M is simply connected, we may take

V =Dk×M . This is a consequence of the h-cobordism theorem, as explained in §3.2 of

[10]. Suppose more generally that

(W,∂W )
(f,∂f)−−−−−! (X, ∂X)

is a pair of a homotopy equivalence f of smooth n-manifolds with ∂f a diffeomorphism.

We need a description of

η(f, ∂f)∈ [X/∂X,G/O]∗.

To this end, pick a homotopy inverse pair,

(g, (∂f)−1): (X, ∂X)−! (W,∂W ),

and define ζ=g∗(ν(W )), where ν(W ) is the normal bundle of an embedding (W,∂W )⊂
(RK+n,RK+n−1) with K�0. Since f∗(ζ)∼=ν(W ), by an isomorphism which is unique

up to homotopy, we obtain a normal map

ν(W )
f̂
//

��

ζ

��

W
f
// X.
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Let

cW : (DK+n, SK+n−1)−! (Th(ν(W )),Th(ν(W )|∂W ))

be the collapse map. The composition of cW with f̂ induces a reduction (degree-1 map)

cζ : (DK+n, SK+n−1)−! (Th(ζ),Th(ζ|∂X)),

which we compare to the canonical reduction cX of ν(X). The restriction of ζ to ∂X is

identified with ((∂f)−1)∗(ν(∂W )) and the normal derivative (see the remarks following

Lemma 4.4 below) induces a linear isomorphism

∂t=Dν(∂f): ζ|∂X
∼=−−! ν(X)|∂X .

The Atiyah–Wall uniqueness theorem extends ∂t to a proper homotopy equivalence

(t, ∂t): (ζ, ζ|∂X)−! (ν(X), ν(X)|∂X)

compatible with the two reductions; cf. [73], [74]. Let ξ=ζ⊕τ(X) and let θ=t⊕idτ(X).

The restriction ∂θ=∂t⊕id defines a framing of ξ|∂X and induces a bundle ξ/∂θ over

X/∂X. Moreover, θ defines a proper homotopy equivalence θ̄: ξ/∂θ!εn+K
X . The pair

(ξ/∂θ, θ̄) is classified by G/O, providing a unique element

η[f, ∂f ]∈ [X/∂X,G/O]∗.

Under the map induced by j:G/O!BO,

j∗: [X/∂X,G/O]∗−! [X/∂X,BO]∗,

the element j∗η(f, ∂f) classifies the bundle ξ/∂θ.

We have left to explain the linear isomorphism

∂t: ζ|∂X −! ν(∂X).

To this end, we consider a diffeomorphism ϕ:M!N of closed m-manifolds. We choose

embeddings of M and N in Rm+K with normal bundles ν(M) and ν(N), and make the

associated identifications

ν(M)⊕τ(M) = εK+m
M and ν(N)⊕τ(N) = εK+m

N ,

with the (K+m)-dimensional product bundles.

Given vector bundles ξ and η over the space X, let Bun(ξ, η) denote the space of

fiberwise isomorphisms. It is the space of sections in the fiber bundle GL(ξ, η) over
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X, whose fiber at x∈X is the space of isomorphisms from ξx to ηx. We are interested

in the set of homotopy classes in Bun(ξ, η), or equivalently the connected components

of Γ(X,GL(ξ, η)). For K sufficiently large, it turns out that Bun(ν(M), ϕ∗(ν(N))) is

non-empty, and we consider the map

α: Bun(ν(M), ϕ∗(ν(N)))−!Bun(ν(M)⊕ϕ∗(τ(N)), εK+m
M )

which sends a: ν(M)!ϕ∗(ν(N)) into

ν(M)⊕ϕ∗(τ(N))
a⊕id−−−−!ϕ∗(ν(N))⊕ϕ∗(τ(N)) = εK+m

M .

Lemma 4.4. For K sufficiently large, the map α induces a bijection on homotopy

classes.

Proof. For x∈M , consider the diagram

GL(νxM,νϕ(x)N)
αx //

βxαx

��

GL(νxM⊕τϕ(x)N,RK+m)

βx

uu

αxβx

��

GL(νxM⊕RK+m, νϕ(x)N⊕RK+m)
αx // GL(νxM, τϕ(x)N⊕RK+m,R2(K+m)),

where βx adds the identity of νϕ(x)N to

νxM⊕τϕ(x)N −!RK+m.

The space

GL(ν(M)⊕ϕ∗(τ(N)), εK+m
M )

is non-empty, because it contains the map

ν(M)⊕ϕ∗(τ(N))
id⊕(Dϕ)−1

−−−−−−−−−! ν(M)⊕τ(M) = εK+m
M .

It follows that GL(ν(M)×RK+m, ϕ∗(ν(N))×RK+m) is non-empty, and therefore that

GL(ν(M), ϕ∗(ν(N))) is non-empty for K sufficiently large. Moreover, βx�αx and αx�βx

are homotopy equivalences in a range of dimensions depending on K. It follows that

α: Bun(ν(M), ϕ∗(ν(N)))−!Bun(ν(M)⊕ϕ∗(τ(N)), εK+m
M )

defines a bijection of homotopy classes for large K.



104 a. berglund and i. madsen

A bundle map a: ν(M)!ϕ∗(ν(N)) is called a normal derivative of ϕ if α(a) is

homotopic to id⊕(Dϕ)−1: ν(M)⊕ϕ∗(τ(N))!εK+m. We use the notation Dνϕ for such

a bundle map, noting that it exists only for K�0 and is determined only up to homotopy.

Returning to the normal invariants above, we have

ζ|∂X =ψ∗(ν(∂W )),

where ψ=(∂f)−1 and

∂t=ψ∗(Dνϕ):ψ∗(ν(∂W ))−! ν(∂X).

We observe that the framing

∂θ= ∂t⊕id:ψ∗(ν(∂W ))⊕τ(∂X)−! εK+n−1 (4.6)

is homotopic to id⊕Dψ.

4.2. Fundamental homotopy fibrations

For a smooth simply connected manifold M with boundary, we consider the following

string of grouplike monoids of homotopy automorphisms

aut∂,�(M)⊂ aut∂,J(M)⊂ aut∂(M).

Here, aut∂,�(M) denotes the connected component of the identity, and aut∂,J(M) the

larger monoid of connected components in the image of the forgetful map

J :π0 D̃iff∂(M)−!π0 aut∂(M).

Let D̃iff∂,�(M)⊂D̃iff∂(M) denote the union of those components that map to aut∂,�(M).

Then,

aut∂,�(M)/ D̃iff∂,�(M)' aut∂,J(M)/ D̃iff∂(M)'SG/O∂ (M)(1).

We have a diagram in which each square is a homotopy pullback,

SG/O∂ (M)(1)
//

��

∗

��

B D̃iff∂,�(M) //

��

B aut∂,�(M)

��

// ∗

��

B D̃iff∂(M) // B aut∂,J(M) // B(π0 aut∂,J(M)).

(4.7)

Notice also that B aut∂,�(M) is a simply connected cover of B aut∂(M).
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Proposition 4.5. Let M be an n-dimensional smooth compact simply connected

manifold with boundary ∂M∼=Sn−1 (n>5). There is a homotopy fibration

map∗(S
n,Top/O)−!SG/O∂ (M)

q∗�η−−−−!map∗(M,G/O),

where q:M!M/∂M is the quotient map.

Proof. Let us first recall that the structure space for Sn is homotopy equivalent to

map∗(S
n,Top/O). Indeed, the surgery obstruction map depends only on the underlying

topological situation, in the sense that there is a homotopy commutative diagram

map∗(S
n, G/O)

��

λ // L(Sn)

map∗(S
n, G/Top).

λTop

77

The map λTop is a homotopy equivalence since its homotopy fiber—the topological struc-

ture space SG/Top
∂ (Dn)—is contractible (by Alexander’s trick). Apply the homotopy

fibration

Top/O!G/O!G/Top

to identify the homotopy fiber of

λ: map∗(S
n, G/O)−!map∗(S

n, G/Top)'L(Sn)

with map∗(S
n,Top/O).

Next, consider the diagram

map∗(S
n,Top/O)

��

// SG/O∂ (M)

η

��

// ∗

��

map∗(S
n, G/O)

��

c∗ // map∗(M/∂M,G/O)

q∗

��

λ // L(M)

∗ // map∗(M,G/O).

(4.8)

The upper-right square is the surgery fibration for M and the bottom-left square is

induced by the homotopy cofiber sequence

M
q−−!M/∂M

c−−!Sn,

where q is the quotient map and c collapses onto the top cell.
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The composition λ�c∗: map∗(S
n, G/O)!L(M) (=L(Sn)) may be identified up to

homotopy with the surgery obstruction map for Sn, whose homotopy fiber was just

recalled to be map∗(S
n,Top/O). This implies firstly the existence of the dashed map

and, secondly, that the top-left square is a homotopy pullback. It follows that the

rectangle formed by the two squares to the left is a homotopy pullback. This finishes the

proof.

Corollary 4.6. With hypothesis as in Proposition 4.5, the map

j∗�q
∗
�η:SG/O∂ (M)(1)−!map∗(M,BO)(0)

is a rational homotopy equivalence. Here the right-hand side denotes the connected com-

ponent containing the constant map and j:G/O!BO is the canonical map.

Proof. By Proposition 4.5, the kth homotopy group of the homotopy fiber of the

map q∗�η:SG/O∂ (M)!map∗(M,G/O) is given by

πk map∗(S
n,Top/O)∼= Θk+n,

the group of homotopy spheres of dimension k+n, which is finite by the celebrated result

of Kervaire and Milnor [37]. Secondly, since the homotopy groups of map∗(M,BG)

are finite, the homotopy fiber of the map j∗: map∗(M,G/O)!map∗(M,BO) has finite

homotopy groups. These facts imply the result.

We end this subsection by showing that the space B D̃iff∂,�(M) is nilpotent, which

ensures that it has a well-behaved rationalization. To do this, we use the following lemma.

Lemma 4.7. Let F
i−!E p−!B be a fibration of connected spaces. If F is nilpotent

and B is simply connected, then E is nilpotent.

Proof. The exact sequence π1F!π1E!π1B=0 shows that π1E is a quotient of a

nilpotent group, hence nilpotent itself. Next, for k>2, note that πkF!πkE!πkB is

an exact sequence of π1E-modules such that γ ·α=i∗(γ)·α for γ∈π1F and α∈πkF , and

furthermore ξ ·β=p∗(ξ)·β for ξ∈π1E and β∈πkB; see e.g. [49, Proposition 1.5.4]. Since

πkF is a nilpotent π1F -module, this implies that πkF is also nilpotent as a π1E-module,

and since B is simply connected, it implies that πkB is trivial, hence nilpotent, as a

π1E-module. It follows from [36, Proposition I.4.3] that πkE is nilpotent as a π1E-

module.

Proposition 4.8. The space B D̃iff∂,�(M) is nilpotent.

Proof. As noted just after Corollary 4.3, the space SG/O∂ (M)(1) is nilpotent. We can

then apply the previous lemma to the fibration sequence

SG/O∂ (M)(1)−!B D̃iff∂,�(M)−!B aut∂,�(M).
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4.3. A partial linearization of D̃iff∂(M)

This section studies the Jacobian of the topological group D̃iff∂(M). The end result is a

map of monoids

D: D̃iff∂,�(M)−! aut∂,�(τ
S
M ),

where aut∂,�(τ
S
M ) is a certain space of automorphisms of the stable tangent bundle of the

compact manifold with boundary M and D̃iff∂,�(M)⊆D̃iff∂(M) is the set of components

of diffeomorphisms that are homotopic to the identity. We begin with a description of

the target.

With a vector bundle ξ over a finite CW-complex X, with projection map E!X,

we associate the topological monoid aut(ξ) of diagrams

E
f̂
//

��

E

��

X
f
// X,

with f a homotopy equivalence and f̂ a fiberwise isomorphism, topologized as a subset

of aut(X)×aut(E). For subspaces D⊆C⊆X, we have a submonoid autDC (ξ)⊆aut(ξ)

consisting of those (f, f̂)∈aut(ξ) such that f restricts to the identity on C and f̂ restricts

to the identity on ξ|D. When C=D we write autC(ξ)=autCC(ξ). Let autDC,�(ξ)⊆autDC (ξ)

be the submonoid of those (f, f̂) for which f is homotopic to the identity map. We will

assume that the inclusions D!C!X are cofibrations.

We let GL(ξ)!X be the fiber bundle whose fiber at x∈X is the group GL(ξx) of

linear isomorphisms of the fiber ξx, and write ΓD(X,GL(ξ)) for the space of sections

that map points x∈D to the identity isomorphism of ξx.

Lemma 4.9. The map

π: autDC (ξ)−! autC(X)

is a Serre fibration with fiber ΓD(X,GL(ξ)).

Proof. A diagram of the form

A //

��

autDC (ξ)

��

A×I //

;;

autC(X)
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may be viewed as a bundle map A×ξ!ξ,

A×E
f̂0 //

��

E

��

A×X
f
// X

together with a homotopy A×X×I!X of the base map. Steenrod’s “first covering

homotopy theorem” [66, §11.3] provides an extension of the homotopy to a bundle map

A×ξ×I!ξ, which can be taken to be stationary over D. This yields the desired lift

A×I!autDC (ξ). The fiber π−1(idX) is easily identified with ΓD(X,GL(ξ)).

We proceed to analyze the homotopy type of the classifying space B autDC (ξ). We

will use the following lemma.

Lemma 4.10. Consider a commutative square of the form

H
x0· //

ϕ

��

X

f

��

G
y0· // Y,

where ϕ is a morphism of group-like topological monoids, X is a right H-space, Y is a

right G-space, x0∈X, y0∈Y , and f is a map of H-spaces such that f(x0)=y0. If the

square is a homotopy pullback, then the induced map on components,

B(X,H, ∗)x0
−!B(Y,G, ∗)y0

,

is a weak homotopy equivalence.

Proof. By [48, Proposition 7.9], the horizontal maps extend to homotopy fiber se-

quences

H
x0· //

ϕ

��

X

f

��

// B(X,H, ∗)

��

G
y0· // Y // B(Y,G, ∗).

The assumption that the left square is a homotopy pullback implies that the induced

map on homotopy fibers Ωx0B(X,H, ∗)!Ωy0B(Y,G, ∗) is a weak homotopy equivalence.

Delooping this yields the desired weak homotopy equivalence.

Let k:X!BO(n) be the classifying map for ξ and let mapD(X,BO(n)) denote the

space of maps from X to BO(n) whose restriction to D agrees with k|D. Precomposition

endows it with a right action of the monoid autC(X).
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Proposition 4.11. For an n-dimensional vector bundle ξ over X, the classifying

space B autDC (ξ) is weakly homotopy equivalent to the component of

B(mapD(X,BO(n)), autC(X), ∗)

determined by the classifying map k:X!BO(n) for ξ. In particular, there is a homotopy

fibration

mapD(X,BO(n))ξ −!B autDC (ξ)−!B autC(X). (4.9)

Proof. Let γn denote the universal bundle over BO(n) and fix a classifying map

κ: ξ!γn,

E

p

��

// E(γn)

��

X
k // BO(n).

We may assume it is a pullback. This implies that the square

autDC (ξ)
κ∗ //

��

BunD(ξ, γn)

��

autC(X)
k∗ // mapD(X,BO(n))

is a pullback, where BunD(ξ, γn) denotes the space of bundle maps α: ξ!γn such that

α|D=κ|D: ξ|D!γn. The vertical maps are fibrations by Lemma 4.9 (and its obvious

extension to BunD(ξ, γn)), so the square is a homotopy pullback. By Lemma 4.10, the

induced map

B(BunD(ξ, γn), autDC (ξ), ∗)κ−!B(mapD(X,BO(n)), autC(X), ∗)k

is a weak homotopy equivalence. To finish the proof, note that BunD(ξ, γn) is con-

tractible, since it is the homotopy fiber of the restriction map

Bun(ξ, γn)−!Bun(ξ|D, γn),

where both the source and the target are contractible (for the last statement, see e.g. [30,

Lemma 5.1]). This yields a weak homotopy equivalence

B(BunD(ξ, γn), autDC (ξ), ∗)κ−!B autDC (ξ).

We also need to consider stable vector bundles, so we now turn to stabilization.
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Proposition 4.12. The stabilization map

autDC (ξ)−! autDC (ξ×R),

(f, f̂) 7−! (f, f̂×idR),

is (dim ξ−dimX−1)-connected.

Proof. By Lemma 4.9, it suffices to see that

ΓD(X,GL(ξ))−!ΓD(X,GL(ξ×R))

is (dim ξ−dimX−1)-connected. But this follows from obstruction theory because

GL(ξx)−!GL(ξx⊕R)

is (dim ξ−1)-connected.

Denote by autDC (ξS) the homotopy colimit of

autDC (ξ)−! autDC (ξ×R)−! autDC (ξ×R2)−! ... .

Clearly, the homotopy type of autDC (ξS) depends only on the stable equivalence class of

the vector bundle ξ. The following description of the homotopy type of B autDC (ξS) is

easily deduced from Proposition 4.11.

Proposition 4.13. The space B autDC (ξS) is weakly homotopy equivalent to the

component of

B(mapD(X,BO), autC(X), ∗)

determined by the classifying map X!BO of the stable vector bundle ξS. In particular,

there is a homotopy fibration

mapD(X,BO)ξS −!B autDC (ξS)−!B autC(X). (4.10)

Corollary 4.14. The space B autDC,�(ξ
S) is nilpotent.

Proof. Apply Lemma 4.7 to the fibration sequence

mapD(X,BO)ξS −!B autDC,�(ξ
S)−!B autC,�(X),

which is obtained from (4.10) by pulling back along B autC,�(X)!B autC(X). The fiber

is nilpotent, since it is an infinite loop space.
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Remark 4.15. Since the components of an infinite loop space are all homotopy equiv-

alent, we have

mapD(X,BO)ξS 'mapD(X,BO)(0)'map∗(X/D,BO)(0),

where the subscript (0) indicates the component of the trivial map, but beware that

these spaces need not be equivalent as autC,�(X)-spaces.

We now turn to the definition of the map from the block diffeomorphism group to

the automorphisms of the stable tangent bundle.

We shall use the model

∆k = {(x1, ..., xk)∈Rk : 06x1 6 ...6xk 6 1}

for the k-simplex rather than the usual model in Rk+1. Its tangent space is then canon-

ically trivialized, τ∆k=∆k×Rk. The simplicial operators

dµ: ∆k−1−!∆k and sµ: ∆k −!∆k−1,

take the form

dµ(x1, ..., xk−1) =


(0, x1, ..., xk−1), if µ= 0,

(x1, ..., xµ, xµ, ..., xk−1), if 0<µ<k,

(x1, ..., xk−1, 1), if µ= k,

and

sµ(x1, ..., xk) = (x1, ..., x̂µ+1, ..., xk).

The induced operators on the tangent spaces are

dµ×dµ: ∆k−1×Rk−1−!∆k×Rk,

sµ×sµ: ∆k×Rk −!∆k−1×Rk−1,

where dµ:Rk−1!Rk and sµ:Rk!Rk−1 are given by the same formulas as above, except

for dk(x1, ..., xk−1)=(x1, ..., xk−1, 0).

We remember that the k-simplices of D̃iff∂(M)
�

consist of face-preserving diffeo-

morphisms (ϕ,ψ): ∆k×M!∆k×M which in addition preserve a collar of each face. For

a face θ: ∆r!∆k, let Uε(θ)=θ(∆r)×Dε(Rk−r) be an ε-normal neighborhood in Rk of

the face, and let θM=θ×M . The collar condition is that the restriction of (ϕ,ψ) to

Uε(θ)×M is equal to (θ∗M (ϕ), θ∗M (ψ))×idDε(Rk−r) for some small ε>0. Below we shall

use the notation

x1∼ 0, xµ∼xµ+1, xk ∼ 1
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to indicate that x=(x1, ..., xk) belongs to a small normal neighborhood of dµ(∆k−1).

With this notation, we have the following for (ϕ,ψ)∈D̃iff∂(M)k and (x, y)∈∆k×M .

For x1∼0,

ϕ1(x, y) =x1, ϕi(x, y) =ϕi(0, x2, ..., xk, y), i > 0,

ψ(x, y) =ψ(0, x2, ..., xk, y).

For xk∼1,

ϕk(x, y) =xk, ϕi(x, y) =ϕi(x1, ..., xk−1, 1, y), i < k,

ψ(x, y) =ψ(x1, ..., xk−1, 1, y).

For xµ∼xµ+1,

ϕ(x, y) =ϕ(tµ(x), y)+rµ(x),

ψ(x, y) =ψ(tµ(x), y),

where

tµ(x) =
(
x1, ..., xµ−1,

1
2 (xµ+xµ+1), 1

2 (xµ+xµ+1), xµ+2, ..., xk
)
,

rµ(x) =
(
0, ..., 0, 1

2 (xµ−xµ+1), 1
2 (xµ+1−xµ), 0, ..., 0

)
.

Since (ϕ,ψ) is face preserving,

ϕ(tµ(x), y) = dµ(dµϕ(t̄µ(x), y)),

ψ(tµ(x), y) = dµψ(t̄µ(x), y),

where t̄µ:Rk!Rk−1 is given by

t̄µ(x1, ..., xk) =
(
x1, ..., xµ−1,

1
2 (xµ+xµ+1), xµ+2, ..., xk

)
,

and (dµϕ, dµψ) is the µth face of (ϕ,ψ).

We shall compare the Jacobians

D(ϕ,ψ)(dµx, y) and D(dµϕ, dµψ)(x, y)

when (x, y)∈∆k−1×M . We need the isomorphism φµ:R×Rk−1!Rk defined by

φµ(e1) = eµ+1−eµ,

φµ(ei) = ei−1, 1<i6µ,

φµ(eµ+1) = eµ+1+eµ,

φµ(ei) = ei, µ+1<i6 k,
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where e1, ..., ek is the standard basis for Rk, with the convention that e0=0 and ek+1=0.

The linear inclusions dµ:Rk−1!Rk induce k+1 embeddings

dµ: GL(Rk−1)−!GL(Rk).

For A∈GL(Rk−1), we have that dµ(A)∈GL(Rk) is equal to the identity on the orthogonal

complement of dµ(Rk−1), and there is a commutative diagram

R×Rk−1 id×A
//

φµ

��

R×Rk−1

φµ

��

Rk
dµ(A)

// Rk.

Differentiating the collar conditions imposed on the k-simplices (ϕ,ψ) of D̃iff∂(M)
�

and

listed above we will obtain the following result.

Lemma 4.16. For a k-simplex (ϕ,ψ) of D̃iff∂(M)
�

and (x, y)∈∆k−1×M , the dia-

grams

Rk×τyM
D(ϕ,ψ)(dµx,y)

// Rk×τψ(x,y)M

R×Rk−1×τyM

φµ×id

OO

id×D(dµϕ,dµψ)(x,y)
// R×Rk−1×τψ(x,y)M

φµ×id

OO

commute for 06µ6k.

In the proof below we use D∆ and DM to denote the part of the Jacobian D which

differentiates with respect to x∈∆k and y∈M , respectively. With this notation, the

bottom map in the diagram above consists of the following four homomorphisms

id×D∆(dµϕ)(x, y):R×Rk−1−!R×Rk−1,

DM (dµϕ)(x, y): τyM −! 0×Rk−1,

id×D∆(dµψ)(x, y):R×Rk−1−!R×τψ(x,y)M
pr2−−−! τψ(x,y)M,

DM (dµψ)(x, y): τyM −! τψ(x,y)M.

Proof. We leave for the reader to check the easier cases µ=0 and µ=k. So assume

0<µ<k. We differentiate the equation

ϕ(x, y) = dµ(dµϕ(t̄µ(x), y))+rµ(x),
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valid for xµ∼xµ+1, with respect to x∈∆k, to get

D∆(ϕ) = dµ�D∆(dµϕ)�D∆(t̄µ)+D∆(rµ).

Now observe that

D∆(t̄µ)�φµ = p⊥1 :Rk −!Rk−1

is the projection onto the last (k−1) coordinates, and that

Rµ =D∆(rµ)�φµ:R×Rk−1−!Rk

is the linear map that sends v=(v1, v2, ..., vk) into φµ(v1e1)=−v1eµ+v1eµ+1. Since

φµ(0, v2, ..., vk)=dµ(v2, ..., vk), we have

dµ�D∆(dµϕ)�p⊥1 (v)+Rµ(v) =φµ(idR×D∆(dµϕ))(v),

so that

D∆(ϕ)�φµ =φµ�(idR×D∆(dµϕ)).

Differentiating with respect to y∈M , we have

DMϕ(dµx, y) = dµ�DM (dµϕ)(x, y) =φµDM (dµϕ)(x, y).

This proves the required commutativity for D(ϕ), D(dµϕ), and leaves us to check com-

mutativity of

Rk×τyM
D∆(ψ)(dµx,y)

// τψ(x,y)M

R×Rk−1×τyM

φµ×id

OO

id×D∆(dµψ)(x,y)
// R×τψ(x,y)M.

p2

OO

But this follows upon differentiating the equation

ψ(x, y) =ψ(tµ(x), y) = (dµψ)(t̄µx, y),

with respect to x∈∆k, to get

D∆ψ(dµx, y)�φµ =D∆(dµψ)�p⊥1 .

Finally,

DM (ψ)(dµx, y) =DM (dµ)(x, y),

because ψ(dµx, y)=dµψ(x, y). This completes the proof.
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We next introduce the ∆-monoid S̃
�
aut(ξ) and a map of ∆-monoids

α
�
:S

�
aut(ξ)−! S̃

�
aut(ξ).

Definition 4.17. The k-simplices of S̃
�
autC(ξ) consist of all maps

F : ∆k −! autC(Rk×ξ)

that satisfy the conditions

(φµ×ξ)−1
�F (dµx)�(φµ×ξ) = idR×dµF (x), µ∈{0, ..., k},

where dµF : ∆k−1!autC(Rk−1×ξ) is a (k−1)-simplex of S̃
�
autC(ξ).

Variants such as S̃
�
autC,�(ξ) or S̃

�
autC(ξS) have the obvious meanings.

The inclusion of S
�
aut(ξ) into S̃

�
aut(ξ) is induced in degree k from the map

aut(ξ)−! aut(Rk×ξ)

that sends (f, f̂) to (f, idRk ×f̂). It is a consequence of Lemma 4.16 that the Jacobian

defines a ∆-map

D
�
: D̃iff∂(M)

�
−! S̃

�
aut∂(τM ).

It sends (ϕ,ψ)∈D̃iff∂(M)k to

∆k×Rk×τM

��

D(ϕ,ψ)
// ∆k×Rk×τM

��

p⊥1 // Rk×τM

��

∆k×M
(ϕ,ψ)

// ∆k×M
p⊥1 // M,

where p⊥1 is the projection onto the last two factors. Observe that ψ: ∆k×M!M adjoins

to a map ∆k!aut∂(M).

Let D̃iff∂,�(M)
�
⊆D̃iff∂(M)

�
be the union of the components of those block diffeo-

morphism that are homotopic to the identity; it maps into S
�
aut∂,�(M). In Appendix ??

we will prove the following result.

Theorem 4.18. The map

α
�
:S

�
aut∂,�(ξ

S)−! S̃
�
aut∂,�(ξ

S)

defines a homotopy equivalence of Kan ∆-monoids.



116 a. berglund and i. madsen

For ξ=τM , we have (weak) homotopy equivalences

|α
�
|: |S

�
aut∂,�(τ

S
M )| −! |S̃

�
aut∂,�(τ

S
M )|,

ev: |S
�
aut∂,�(τ

S
M )| −! aut∂,�(τ

S
M ),

of topological monoids. Combined with the geometric realization of

D
�
: D̃iff∂,�(M)

�
−! S̃

�
aut∂,�(τ

S
M ),

one obtains a zig-zag of monoid maps from D̃iff∂,�(M) to aut∂,�(τ
S
M ). Applying the clas-

sifying space construction, one gets a zig-zag of maps from B D̃iff∂,�(M) to B aut∂,�(τ
S
M ).

The map B|α
�
| is a homotopy equivalence, since the spaces involved are of the homo-

topy type of CW-complexes, and choosing a homotopy inverse we obtain a well-defined

homotopy class of maps

L:B D̃iff∂,�(M)−!B aut∂,�(τ
S
M ).

We let D=ΩL,

D: D̃iff∂,�(M)−! aut∂,�(τ
S
M ).

(Alternatively, one could let L and D denote the zig-zag maps, and remember this for

the proofs below, which are all statements about homotopy groups).

If f :Dk×M!Dk×M with ∂f=id represents an element of πk(D̃iff∂(M), id), then

the composition

Dk×(Rk×τM )
D(f)−−−−!Dk×(Rk×τM )

proj−−−−!Rk×τM

represents its image in πk(aut∂,�(τ
S
M )).

4.4. The rational homotopy theory of B D̃iff∂,�(M)

In this section we compare B D̃iff∂,�(M) with B aut∗∂,�(τ
S
M ), where τM is the tangent

bundle of M , and we calculate the rational homotopy type of B aut∗∂,�(τ
S
M ).

In the diagram of homotopy fibrations

aut∂,�(M)/ D̃iff∂,�(M) //

∼

��

B D̃iff∂,�(M) //

��

B aut∂,�(M)

��

aut∂,J(M)/ D̃iff∂(M) // B D̃iff∂(M) // B aut∂,J(M)
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the map of the homotopy fibers is a homotopy equivalence, and there are homotopy

equivalences

k: aut∂,�(M)/ D̃iff∂,�(M)
∼−−! aut∂,J(M)/ D̃iff∂(M)

∼−−!SG/O∂ (M)(1)

into the identity component of the structure space.

The map L constructed in the previous section fits in a diagram

aut∂,�(M)/ D̃iff∂,�(M) //

`

��

B D̃iff∂,�(M) //

L

��

B aut∂,�(M)

map∂M (M,BO)τSM
// B aut∂,�(τ

S
M ) // B aut∂,�(M).

(4.11)

Note that map∂M (M,BO)τSM'map∗(M/∂M,BO)(0). We shall compare the induced

map ` on homotopy fibers with the normal invariant map η, composed with the map

induced by j:G/O!BO,

SG/O∂ (M)(1)
η−−!map∗(M/∂M,G/O)(0)

j∗−−!map∗(M/∂M,BO)(0).

The result is the following.

Lemma 4.19. For a simply connected smooth compact manifold M of dimension at

least 5, the diagram

aut∂,�(M)/ D̃iff∂,�(M)

∼ k

��

` // map∗(M/∂M,BO)(0)

SG/O∂ (M)(1)
η

// map∗(M/∂M,G/O)(0)

j∗

OO

commutes, up to a sign, upon taking homotopy groups, i.e.,

(j∗�η�k)∗= (−1)·`∗:πk(aut∂,�(M)/ D̃iff∂,�(M))−!πk(map∗(M/∂M,BO)(0)).

Proof. The homotopy fibration

D̃iff∂,�(M)−! aut∂,�(M)−! aut∂,�(M)/ D̃iff∂,�(M)

shows that we have isomorphisms

πk(aut∂,�(M), D̃iff∂,�(M); idM )∼=πk(aut∂,�(M)/ D̃iff∂,�(M); ∗)
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so that

πk(SG/O∂ (M)(1); idM )∼=πk(aut∂,�(M), D̃iff∂,�(M); idM ).

An element

[f, ϕ]∈πk(aut∂,�(M), D̃iff∂,�(M); idM )

is represented by the diagram

Dk×M
f
// Dk×M

Sk−1×M
ϕ
//

OO

Sk−1×M

OO

∗×M

OO

∗×M,

OO
(4.12)

with the additional conditions that the restriction of (f, ϕ) to (Dk×∂M,Sk−1×∂M) is

equal to the identity, and ϕ is homotopic to the identity relative to ∗×M . The resulting

element

η([f, ∂f ])∈ [Sk∧M/∂M,G/O]∗

and its companion

j∗η([f, ∂f ])∈ [Sk∧M/∂M,BO]∗

were described at the end of §4.1.

In our case,

f :Dk×M −!Dk×M, ∂f =ϕ∪id: ∂(Dk×M)−! ∂(Dk×M),

and (f, ϕ) restricts to the identity on (C, ∂C), where

C = (Dk×∂M)∪(∗×M), ∂C = (Sk−1×∂M)∪(∗×M).

Let (g, ψ) be homotopy inverse to (f, ϕ) relative to (C, ∂C), and set

ξ= g∗(Dk×νM )⊕(Dk×Rk×τM ) and γ=ψ∗(Sk−1×νM )⊕(Sk−1×Rk×τM ).

Here νM is the K-dimensional normal bundle of an embedding

(M,∂M)⊂ (RK+n,RK+n−1)

with K�0. The restriction of ξ to Sk−1×M is equal to γ and

ξ|C =C×RK+n and γ|∂C = ∂C×RK+n
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upon using that νM⊕τM=M×RK+n.

Since (Dk×M)/C=Dk∧(M/∂M) and (Sk−1×M)/∂C=Sk−1∧(M/∂M), we have

bundles

ξ̄&Dk∧(M/∂M) and �γ&Sk−1∧(M/∂M).

The framing ∂θ of γ was defined in (4.6) at the end of §4.1. The differential of ψ induces

a bundle isomorphism

Dψ:Sk−1×(Rk×τM )−!ψ∗(Sk−1×Rk×τM )

and ∂θ is the framing of γ associated with the isomorphism

ψ∗(Sk−1×νM )⊕ψ∗(Sk−1×Rk×τM )
id⊕Dψ−−−−−−! εK+n+k

M ,

where we have used the identification νM⊕τM=εK+n
M . Since ψ=ϕ−1 is the identity over

∂C, the framing ∂θ induces a framing �∂θ of �γ and

[ξ̄/�∂θ ] = j∗η(f, ∂f)∈ [Sk∧(M/∂M), BO].

The bundle ξ̄ is canonically trivialized as a bundle over the cone Dk∧(M/∂M) and

induces a trivialization

h:Sk−1∧(M/∂M)×RK+n+k ∼=−−! �γ.

The composition �∂θ�h adjoins to a map

Sk−1∧(M/∂M)−!GL(RK+n+k)

that represents ∂−1
∗ ([ξ̄,�∂θ ]). Indeed, this is the well-known relation between maps from

a space X into GL∞(R) and bundles over the suspension of X.

We next calculate the composition (Ω`)∗�∂∗. By construction, the analog of (4.12)

is valid with (f, ϕ) replaced by (g, ψ), so ψ'id (rel. ∂C). This yields the isomorphism

h′:ψ∗(Sk−1×Rk×τM )−!Sk−1×Rk×τM

and leads to the element

σ=h′�Dψ ∈Γ∂C(Sk−1×M,Sk−1×Rk×τM ).

The map

Γ∂C(Sk−1×M,Sk−1×Rk×τM )−!map∗(S
k−1∧(M/∂M),GL∞(R))
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sends σ into (the adjoint of) the bundle isomorphism

σ̂:Sk−1∧(M/∂M)×RK+n+k!Sk−1∧(M/∂M)×RK+n+k

induced from σ by adding the identity of Sk−1×νM . It follows that the above �∂θ�h is

homotopic to σ̂.

Finally, the map (Ω`)∗�∂∗ is represented not by σ̂ but by (̂σ−1)=h′�Dϕ, the inverse

of σ̂. Since inversion GL∞(R)!GL∞(R) induces multiplication by −1 on the mapping

space, this completes the proof.

Proposition 4.20. For a simply connected smooth compact manifold M with ∂M=

Sn−1 (n>5), the composition

aut∂,�(M)/ D̃iff∂,�(M)
`−−!map∗(M/∂M,BO)(0)

q∗−−−!map∗(M,BO)(0)

is a rational homotopy equivalence.

Proof. Consider the diagram

aut∂,�(M)/ D̃iff∂,�(M)

∼ k

��

` // map∗(M/∂M,BO)(0)
q∗
// map∗(M,BO)(0)

SG/O∂ (M)(1)
η

// map∗(M/∂M,G/O)(0)

j∗

OO

q∗
// map∗(M,G/O)(0).

j∗

OO

By Lemma 4.19, the diagram anti-commutes after taking homotopy groups. By Corol-

lary 4.6, the map j∗�q
∗
�η is a rational homotopy equivalence. It follows that q∗�` is a

rational homotopy equivalence as well.

Recall that for a vector bundle ξ over a space X with subspaces D⊆C⊆X, we let

autDC,�(ξ)⊆aut(ξ) denote the submonoid of those (f, f̂) for which f∈autC,�(X) and f̂

restricts to the identity map on the fibers over points in D. The map

B D̃iff∂,�(M)−!B aut∂,�(τ
S
M ),

followed by the map on classifying spaces induced by the inclusion of

aut∂,�(τ
S
M ) = aut∂∂,�(τ

S
M )

into aut∗∂,�(τ
S
M ), induces a map of fibration sequences, similar to (4.11),

aut∂,�(M)/ D̃iff∂,�(M)

q∗�`

��

// B D̃iff∂,�(M)

��

// B aut∂,�(M)

map∗(M,BO)τSM
// B aut∗∂,�(τ

S
M ) // B aut∂,�(M).

(4.13)
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The induced map on homotopy fibers may be identified with the map q∗�`, which

is a rational homotopy equivalence by the previous proposition. The following is a con-

sequence.

Corollary 4.21. For a simply connected smooth compact manifold Mn with ∂M=

Sn−1 (n>5) and tangent bundle τM , the differential induces a rational homotopy equiv-

alence

B D̃iff∂,�(M)−!B aut∗∂,�(τ
S
M ).

Remark 4.22. Let νM be the normal bundle of an embedding of (M,∂M) into

(Rn+K ,Rn+K−1) for K large. Then, we have that B aut∗∂,�(ν
S
M ) is weakly equivalent

to B aut∗∂,�(τ
S
M ). To see this, one can use Proposition 4.13, which shows that the two

spaces are different, but homotopy equivalent, components of the space

B(map∗(M,BO), aut∂,�(M), ∗).

Indeed, since BO is an infinite loop space, inversion defines an aut∂,�(M)-equivariant

homotopy automorphism of map∗(M,BO), which maps the component of a bundle ξ to

the component of its complementary bundle. The induced map of

B(map∗(M,BO), aut∂,�(M), ∗)

maps the component of τM to the component of νM .

Thus, the analysis of the rational homotopy type of B D̃iff∂,�(M) reduces to ho-

motopy theory of stable vector bundles. We proceed to analyze the rational homotopy

type of B aut∗∂,�(τ
S
M ), following [8]. Applying Proposition 4.13 to (X,C,D)=(M,∂M, ∗),

ξ=τM , we obtain the following result.

Corollary 4.23. There is a weak homotopy equivalence

B aut∗∂,�(τ
S
M )'B(map∗(M,BO)τSM , aut∂,�(M), ∗).

From Corollary 4.23, the following rational model for B aut∗∂,�(τ
S
M ) can be derived

using the methods of [8]: The classifying space for stable vector bundles BO has a simple

dg Lie algebra model, namely the abelian dg Lie algebra with zero differential

P =π∗(ΩBO)⊗Q.

It admits a basis q1, q2, ... , where qi∈π4i−1(ΩBO)⊗Q=π4i(BO)⊗Q is dual to the univer-

sal Pontryagin class pi∈H4i(BO;Q). Recall from the previous section that the minimal

Quillen model of M has the form

LM = (L(V ), δ),
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where V =s−1H̃∗(M ;Q). The action of the dg Lie algebra

Der+

ω LM = (Der+

ω L(V ), [δ,−])

on LM induces an action on indecomposables

LM/[LM ,LM ] =V = s−1H̃∗(M ;Q),

which dualizes to give an action on reduced cohomology H̃∗(M ;Q). The Pontryagin

classes of the tangent bundle τM ,

pi(τM )∈H4i(M ;Q),

may be assembled to a distinguished element τ of degree −1 in the tensor product

H̃∗(M ;Q)⊗P :

τ =
∑
i

pi(τM )⊗qi.

Theorem 4.24. Let M be a simply connected smooth compact manifold with bound-

ary ∂M=Sn−1 and tangent bundle τM . Let (L(V ), δ) be a minimal Quillen model for

M and let ω∈L(V ) represent the inclusion of the boundary.

The classifying space B aut∗∂,�(τ
S
M ) is rationally homotopy equivalent to the geometric

realization of the dg Lie algebra

(H̃∗(M ;Q)⊗P )>0oτDer+

ω L(V ).

Explicitly, the differential is given by

∂τ (x, θ) = (τ. θ, [δ, θ]), (4.14)

where τ. θ denotes the action of θ∈Der+

ω L(V ) on τ described above.

Proof. Using that B aut∗∂,�(τ
S
M ) is weakly homotopy equivalent to the bar construc-

tion B(map∗(M,BO)(0), aut∂,�(M), ∗), the result follows from [8].

Corollary 4.25. If M is formal with trivial multiplication on the reduced coho-

mology ring and if the rational Pontryagin classes of τM are trivial, then B aut∗∂,�(τ
S
M )

is coformal, with rational homotopy Lie algebra isomorphic to

(H̃∗(M ;Q)⊗P )>0oDer+

ω L(V ).

Proof. Vanishing of the rational Pontryagin classes is equivalent to τ=0. Formality

ofM together with triviality of the multiplication on H̃∗(M ;Q) is equivalent to δ=0. This

implies that the differential (4.14) is zero, which in particular means that B aut∗∂,�(τ
S
M )

is coformal.
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Corollary 4.26. If H̃∗(M ;Q) is concentrated in a single degree, then the fibration

map∗(M,BO)τSM −!B aut∗∂,�(τ
S
M )−!B aut∂,�(M)

is rationally trivial. Consequently, there is a rational homotopy equivalence

B aut∗∂,�(τ
S
M )'Q map∗(M,BO)(0)×B aut∂,�(M).

Moreover, B aut∗∂,�(τ
S
M ) is coformal with rational homotopy Lie algebra isomorphic to

(H̃∗(M ;Q)⊗P )>0×Der+

ω L(V ).

Proof. If H̃∗(M ;Q) is concentrated in a single degree, then δ=0 is forced by degree

reasons. Moreover, the action of Der+

ω L(V ) (which is concentrated in positive degrees)

on H̃∗(M ;Q) is trivial, also for degree reasons. This implies that the differential (4.14)

is zero, and moreover that the semi-direct product is a product.

Clearly, the previous corollary applies to (d−1)-connected manifolds of dimension

2d and in particular to the generalized surfaces

Mg,1 = #g(Sd×Sd)\int(D2d).

In the next section, we will focus on this class of manifolds.

5. Automorphisms of highly connected manifolds

This section is devoted to the proof of the following general result on the rational homo-

topy type of classifying spaces of homotopy automorphisms of highly connected mani-

folds.

Theorem 5.1. Let M be a closed (d−1)-connected 2d-dimensional manifold and

let N denote the result of removing an open 2d-disk from M . Let X denote either of the

classifying spaces

B aut(M), B aut∗(M), or B aut∂(N),

and X̃ be the simply connected cover of X. Let H=Hd(M ;Z) with intersection form

µ and quadratic refinement Jq (see §5.1). If d>3 and rankH>2, then the following

statements hold.

(1) The fundamental group π1(X) maps surjectively, with finite kernel, onto the

automorphism group Aut(H,µ, Jq).

(2) Quillen’s dg Lie algebra λ(X̃) is formal.
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(3) The rational homotopy Lie algebra πQ
∗ (X̃)=π∗+1(X̃)⊗Q, with the Whitehead

product, is isomorphic to

OutDer+ πQ
∗ (M), Der+ πQ

∗ (M), or Der+

ω π
Q
∗ (N);

the graded Lie algebra of positive-degree outer derivations, derivations, or derivations

annihilating ω, respectively. The graded Lie algebra πQ
∗ (N) is free on rankH generators

of degree d−1, and πQ
∗ (M) is isomorphic to the quotient graded Lie algebra πQ

∗ (N)/(ω),

where ω∈π2d−1(N) is the homotopy class of the attaching map for the top cell in M .

The result for boundary-preserving automorphisms will be a key ingredient in later

sections. The results for basepoint-preserving and free automorphisms will not play a

further role in this paper, but they are of independent interest and are included for

completeness. We remark that Theorem 5.1 may be viewed as an ‘infinitesimal’ version

of the Dehn–Nielsen–Baer theorem (see, e.g., [24, Chapter 8]).

5.1. Wall’s classification of highly connected manifolds

Let M be a closed oriented (d−1)-connected smooth manifold of dimension 2d, where

d>3. The intersection form

µ:Hd(M)⊗Hd(M)−!Z,

(x, y) 7−! 〈x, y〉,

endows Hd(M) with the structure of a (−1)d-symmetric inner product space over Z.

Every homology class x∈Hd(M) may be represented as the fundamental class of some

embedded sphere Sd⊂M by [34]. The normal bundle of the embedding Sd⊂M is classi-

fied by a map ν:Sd!B SO(d) and determines a homotopy class [ν]∈πd−1(SO(d)). The

function

q:Hd(M)−!πd−1(SO(d)),

x 7−! [ν],

is well defined and satisfies the following equations:

q(x+y) = q(x)+q(y)+〈x, y〉∂(ιd), (5.1)

HJq(x) = 〈x, x〉. (5.2)

Here ∂(ιd)∈πd−1(SO(d)) denotes the image of the class of the identity map of Sd un-

der the boundary map of the long exact homotopy sequence associated with the fi-

bration SO(d)!SO(d+1)!Sd. In the second row, J :πd−1(SO(d))!π2d−1(Sd) is the
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J-homomorphism and H:π2d−1(Sd)!Z the Hopf invariant. We refer to Wall’s work

[69]–[72] for more details.

By a (geometric) quadratic module we will mean the data (H,µ, q) of an abelian

group H together with a (−1)d-symmetric non-degenerate bilinear form

µ:H⊗H −!Z,

(x, y) 7−! 〈x, y〉,

and a function

q:H −!πd−1(SO(d))

such that equations (5.1) and (5.2) are satisfied. A morphism of quadratic modules

is a homomorphism that preserves µ and q. Let Q(M) denote the quadratic module

(Hd(M), µ, q) associated with a highly connected manifold M .

If the normal bundles ν of the embedded spheres Sd⊂M are stably trivial, i.e., if

the tangent bundle τM restricts to the trivial bundle on the embedded spheres, then the

quadratic function q maps into the subgroup of πd−1(SO(d)) generated by ∂(ιd). The

J-homomorphism maps this subgroup isomorphically onto the subgroup of π2d−1(Sd)

generated by the Whitehead product [ιd, ιd]. If d is even, then ∂(ιd) has infinite order,

and in this case the quadratic function is determined by the self-intersection by (5.2). If

d is odd and d 6=1, 3, 7, then ∂(ιd) is a non-zero element of order 2. In the cases d=1, 3, 7,

we have ∂(ιd)=0.

LetN denote the manifold obtained by removing an open 2d-disk fromM . ThenN is

homotopy equivalent to a wedge of spheres
∨n

Sd, where n is the rank of H=Hd(M), and

we may identify its boundary ∂N with S2d−1. The homotopy type of M is determined

by the homotopy class ω∈π2d−1(N) of the inclusion S2d−1=∂N!N , which may be

expressed in terms of the associated quadratic module as follows. Let αi:S
d!N , for

i=1, ..., n, represent a basis for πd(N) and let e1, ..., en be the corresponding basis for H.

Then, we have the equality

ω=
∑
i<j

〈ei, ej〉[αi, αj ]+
∑
i

αi�Jq(ei) (5.3)

of elements in the homotopy group π2d−1(N); see [69]. We note furthermore that the

rational homotopy groups πQ
∗ (N)=π∗+1(N)⊗Q, with the Whitehead product, is a free

graded Lie algebra on the classes α1, ..., αn.

Remark 5.2. The function Jq:Hd(M)!π2d−1(Sd) may be defined in purely homo-

topy theoretical terms. In fact, given a homology class x∈Hd(M) with Poincaré dual

cohomology class ξ∈Hd(M), one can check that Jq(x)∈π2d−1(Sd) is the obstruction for
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ξ to be induced by a map M!Sd. This obstruction has been studied by Kervaire and

Milnor in [37, §8], where it is denoted ψ(ξ). In particular, the function Jq is defined for

all d. Note however that the function q is defined only for d>3, because one needs to be

able to represent homology classes by embedded spheres (cf. [34]).

5.2. Mapping class groups

The mapping class groups of highly connected manifolds may be described in terms

of the associated quadratic modules, up to extensions. We will recall the calculation

for the homotopy and block diffeomorphism mapping class groups of N relative to its

boundary, where as above M is a closed (d−1)-connected 2d-dimensional manifold and

N=M \intD2d.

Proposition 5.3. (See [10, 40]) Let d>3. There is a commutative diagram with

exact rows

0 // K̃

��

// π0 D̃iff∂(N)

��

// Aut(H,µ, q)

��

// 0

0 // K // π0 aut∂(N) // Aut(H,µ, Jq) // 0.

The group K is finite. The group K̃ is finite except when d≡3 (mod 4), in which case

there is an exact sequence

0 // Θ2d+1
// K̃ // H // 0,

where Θ2d+1 denotes the group of (2d+1)-dimensional homotopy spheres.

This description of π0 aut∂(N) is valid also for d=2; see Remark 5.2.

Remark 5.4. We note that Aut(H,µ, Jq) is an arithmetic subgroup (in the sense of

[63]) of the algebraic group over Q of automorphisms of the inner product space (HQ, µ).

The exact sequence of Proposition 5.3 shows that π0 aut∂(N) maps onto Aut(H,µ, Jq)

with finite kernel. This is related to the general result, due to Sullivan [67, Theorem 10.3]

and Wilkerson [78, Theorem B (2)], that the homotopy mapping class group of a simply

connected finite CW-complex is commensurable with an arithmetic group.

Example 5.5. For the manifold Sd×Sd the normal bundles of the embeddings

Sd×∗⊂Sd×Sd and ∗×Sd⊂Sd×Sd

are trivial. Thus, if we let e and f be the classes in Hd(S
d×Sd) represented by these

embeddings, then the quadratic module associated with Sd×Sd is given by (Ze⊕Zf, µ, q),
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where

〈e, e〉= 0, 〈e, f〉= 1, 〈f, f〉= 0,

and

q(ae+bf) = ab∂(ιd).

Connected sums of oriented manifolds correspond to orthogonal sums of quadratic mod-

ules; for M and N two highly connected manifolds, there is a natural isomorphism of

quadratic modules

Q(M#N)∼=Q(M)⊕Q(N).

It follows that the quadratic module associated with the manifold Mg=#gSd×Sd is the

hyperbolic module (Hg, µ, q): there is a basis e1, ..., eg, f1, ..., fg for Hg such that

〈ei, ej〉= 0, 〈ei, fj〉= δij , 〈fi, fj〉= 0,

and

q(a1e1+...+ageg+b1f1+... bgfg) =

g∑
i=1

aibi∂(ιd).

It follows that

Aut(Hg, µ, q) = Aut(Hg, µ, Jq)

for the hyperbolic module. According to Proposition 5.3, both groups π0 D̃iff∂(Mg,1) and

π0 aut∂(Mg,1) map onto Aut(Hg, µ, q).(
2) The automorphism group

Γg := Aut(Hg, µ, q)

admits the following concrete description. If d is even, then Γg is isomorphic to the

automorphism group Aut(Hg, µ), i.e., to the orthogonal group Og,g(Z). If d=1, 3, 7,

then Γg is isomorphic to the symplectic group Sp2g(Z). If d 6=1, 3, 7 is odd, then Γg is

isomorphic to the subgroup of Sp2g(Z) consisting of those symplectic matrices

(
α β

γ δ

)

for which the diagonal entries of the g×g-matrices γtα and δtβ are even. For this last

description see, e.g., [3, §3]. In the notation of [3], Γg is isomorphic to the automorphism

(2) We warn the reader that there is an erroneous claim in [10] (bottom of p. 24 and onwards) that

π0 aut∂(Mg,1) maps onto Aut(Hg , µ). The error comes from the incorrect inference “if q(ei)=0 for all i,

then q=0”. The mistake is harmless; replacing Aut(Hg , µ) by Aut(Hg , µ, q) in [10] (where µ is denoted
q and q is denoted β) the arguments go through.
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group of the hyperbolic module in the category Qλ(A,Λ), where A is the ring Z with

trivial involution, λ=(−1)d, and

Λ =


0, if d is even,

Z, if d= 1, 3, 7,

2Z, if d 6= 1, 3, 7 is odd.

In what follows we will describe the rational homotopy type of the simply connected

cover of B aut∂(N), viewed as a representation of the mapping class group.

5.3. Equivariant rational homotopy type

Let M be a (d−1)-connected, 2d-dimensional manifold and let N be the manifold ob-

tained by removing an open 2d-disk from M . Let (H,µ, q) be the associated quadratic

module and let HQ=H⊗Q. We may identify πd(N) with H, and the homotopy Lie alge-

bra πQ
∗ (N)=π∗+1(N)⊗Q with the free graded Lie algebra L(HQ[d−1]), where the gen-

erators are put in degree d−1. Note also that V =s−1H̃∗(N ;Q) is the same as HQ[d−1].

It follows immediately from Corollary 3.13 that B aut∂,�(N) is coformal with rational

homotopy Lie algebra

π∗(aut∂(N))⊗Q∼= Der+

ω L(HQ[d−1]).

We next wish to identify the action of the mapping class group algebraically.

Proposition 5.6. There is a π0 aut∂(N)-equivariant isomorphism of graded Lie

algebras

π∗(aut∂(N))⊗Q∼= Der+

ω L(HQ[d−1]),

where the action on the right-hand side is induced by the standard action of Aut(H,µ, Jq)

on H.

Proof. According to (3.4), there is an isomorphism of graded Lie algebras

π∗(aut∗(N), idN )⊗Q∼= Der+ LN . (5.4)

The monoid aut∂(N) is the fiber over the inclusion map i: ∂N!N of the fibration

i∗: aut∗(N)−!map∗(∂N,N).

By naturality of (3.3), the map in rational homotopy induced by i∗ may be identified

with the map

ϕ∗: Der+ LN −!Der+

ϕ(L∂N ,LN ). (5.5)
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As in the proof of Theorem 3.12, the map (5.5) is surjective. Hence, the rational homo-

topy exact sequence of the fibration

aut∂(N)−! aut∗(N)−!map∗(∂N,N)

splits into short exact sequences, and the rational homotopy groups of aut∂(N) may be

identified with the kernel of (5.5). Thus, for ∗>0,

π∗(aut∂(N))⊗Q∼= Der+

ω L(HQ[d−1]). (5.6)

An argument is needed to show that this isomorphism commutes with Lie brackets. Since

aut∂(N)!aut∗(N) is a map of monoids, the map

π∗(aut∂(N))⊗Q−!π∗(aut∗(N))⊗Q

commutes with Samelson products, and since the map is injective, we may calculate Lie

brackets in π∗(aut∂(N))⊗Q by passing to π∗(aut∗(N))⊗Q, where they are calculated

in terms of commutators of derivations (5.4), so it does follow that (5.6) preserves Lie

brackets.

By the same token, the action of π0(aut∂(N)) on π∗(aut∂(N))⊗Q may be calculated

by passing to the action of π0(aut∗(N)) on π∗(aut∗(N))⊗Q. The latter action may

in turn be identified by exploiting the naturality of the isomorphism (3.3). Indeed, if

f :N!N is a based homotopy self-equivalence, then a Lie model for f is simply given by

the isomorphism ϕf :LN!LN that is induced by f in rational homotopy. By our previous

considerations, cf. §3.4, the action of the class [f ]∈π0(aut∗(N)) on π∗(aut∗(N))⊗Q is

induced by the self-map of aut∗(N) that sends g to fgf−1, where f−1 is a choice of

homotopy inverse of f . From the naturality of the isomorphism (3.3), it follows that the

action of [f ] on Der+(LN ) is given by

θ 7−!ϕf �θ�ϕ
−1
f .

Corollary 5.7. The rational cohomology groups of

B aut∂(N)

are finite-dimensional in each degree.

Proof. Let X=B aut∂(N). The graded Lie algebra

Der+

ω L(HQ[d−1])
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is finite-dimensional in each degree, so the rational homotopy groups of X̃ are finite-

dimensional in each degree. Hence, the same is true of the rational cohomology groups

of X̃. As pointed out in Remark 5.4, the group π1(X) maps onto an arithmetic group

with finite kernel. A spectral sequence argument together with a certain finiteness prop-

erty of the cohomology of arithmetic groups (see Theorem A.1) then shows that the

cohomology Hp(π1(X);V ), with coefficients in any finite-dimensional representation V ,

is finite-dimensional. Thus, in the universal cover spectral sequence,

Ep,q2 =Hp(π1(X);Hq(X̃;Q)) =⇒Hp+q(X;Q),

each term Ep,q2 is finite-dimensional. It follows that Hk(X;Q) is finite-dimensional for

every k.

5.4. Free and based homotopy automorphisms

We now turn to the rational homotopy theory of the classifying spaces of the monoids

aut(M) and aut∗(M) of free and basepoint-preserving homotopy automorphisms, respec-

tively, for highly connected closed manifolds M .

Let M be a closed (d−1)-connected, 2d-dimensional manifold, and let N be the

the result of removing an open 2d-disk from M . Recall from §5.1 the definition of the

quadratic module (H,µ, q) and the homotopy class ω∈π2d−1(N). Let n be the rank of

H. The rational homotopy groups

πQ
∗ (N) =π∗+1(N)⊗Q,

with the Whitehead product, may be identified with L(α1, ..., αn), the free graded Lie

algebra over Q on classes α1, ..., αn of degree d−1. The homotopy class of the inclusion

of the boundary is, up to a sign, represented by the element

ω=
1

2

∑
i

[α#
i , αi];

cf. Theorem 3.11. The rational homotopy groups of the closed manifold M may be

identified with the quotient graded Lie algebra,

πQ
∗ (M)∼=L(α1, ..., αn)/(ω).

Theorem 5.8. Let M be a closed (d−1)-connected 2d-dimensional manifold, where

d>2, and consider the classifying spaces

X =B aut(M) and X∗=B aut∗(M).
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If rankH>2, then the following statements hold.

(1) Both groups π1(X) and π1(X∗) surject onto Aut(H,µ, Jq) with finite kernel.

(2) The Quillen dg Lie algebras λ(X̃) and λ(X̃∗) are formal.

(3) There are π1-equivariant isomorphisms of graded Lie algebras

πQ
∗ (X̃)∼= OutDer+(L(α1, ..., αn)/(ω)),

πQ
∗ (X̃∗)∼= Der+(L(α1, ..., αn)/(ω)).

Statement (1) about the homotopy mapping class groups π1(X)=π0 aut(M) and

π1(X∗)=π0 aut∗(M) was established in [10]; see also [5]. Statements (2) and (3) are

consequences of the following general result.

Theorem 5.9. Let M be a simply connected space of finite Q-type with homotopy

Lie algebra L=πQ
∗ (M). Assume that M is coformal and let f :L!L be the minimal

model. Suppose that

(1) the graded Lie algebra L has trivial center,

(2) the map f∗: DerL!Derf (L, L) induces an isomorphism in homology in non-

negative degrees.

Then the universal simply connected fibration with fiber M ,

M −!EM −!BM ,

is rationally modeled by the short exact sequence of graded Lie algebras

0−!L−!Der+ L−!Der+ L/ adL−! 0.

Proof. Consider the pullback of chain complexes

Der f

pr2

��

pr1 // DerL

f∗

��

DerL
f∗
// Derf (L, L),

(5.7)

where Der f is the chain complex of pairs (θ, η) of derivations θ∈DerL and η∈DerL

such that f∗(θ)=f∗(η). The coordinatewise Lie bracket on Der f makes it into a dg Lie

algebra, and the chain maps pr1 and pr2 become morphisms of dg Lie algebras. Since

f :L!L is a surjective quasi-isomorphism and L is cofibrant, Lemma 3.5 implies that the

chain map f∗ is a surjective quasi-isomorphism. Since (5.7) is a pullback, it follows that

pr1 is a surjective quasi-isomorphism as well. By hypothesis, f∗ induces an isomorphism

in homology in non-negative degrees.
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As the reader may check, a morphism of dg Lie algebras may be defined by

ad:L−!Der f,

ξ 7−! (adξ, adf(ξ)).

Its mapping cone Der f// adL admits a dg Lie algebra structure such that the map

Der f!Der f// adL becomes a morphism of dg Lie algebras. After taking positive trun-

cations, we get a commutative diagram of dg Lie algebras where all vertical morphisms

are quasi-isomorphisms

L ad // Der+ L // Der+ L// adL

L

∼ f

��

ι // Der+ f

pr1∼

OO

∼ pr2

��

// Der+ f// adL

∼

OO

∼
��

L
ad // Der+ L // Der+ L// adL.

(5.8)

By Corollary 3.3, the top row is a model for the universal simply connected fibration

with fiber M .

If the center of L is trivial, then the morphism ad:L!Der+ L is injective and the

natural morphism Der+ L// adL!Der+ L/ adL is a surjective quasi-isomorphism. Hence,

in this case the bottom row of (5.8) is weakly equivalent to the short exact sequence

0−!L−!Der+ L−!Der+ L/ adL−! 0.

To finish the proof of Theorem 5.8, we will verify the hypotheses of Theorem 5.9.

This is done in Proposition 5.10 and Lemma 5.11 below. For M as in Theorem 5.8, we

have L=πQ
∗ (M)=L(α1, ..., αn)/(ω), and a cofibrant dg Lie algebra model M is given by

L= (L(α1, ..., αn, %), δ), δ(%) =ω, δ(αi) = 0.

The generators αi have degree d−1 and the generator % has degree 2d−1. The evident

morphism of dg Lie algebras f :L!L is a quasi-isomorphism.

Proposition 5.10. Let M be a (d−1)-connected 2d-dimensional closed manifold

where d>2 and let n=rankHd(M). If n>2, then the homotopy Lie algebra πQ
∗ (M) has

trivial center.

Proof. We invoke [13, Proposition 2] which says that a graded Lie algebra L of finite

global dimension has non-trivial center only if the Euler characteristic χ(L) is zero, where

χ(L) =
∑
i

(−1)i dimQ ExtiUL(Q,Q),
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and UL denotes the universal enveloping algebra of L. For L=πQ
∗ (M), we have that

ExtiUL(Q,Q)∼=H id(M ;Q), because H∗(M ;Q) is Koszul dual to πQ
∗ (M) (see [7]). It fol-

lows that L has global dimension 2 and that χ(L)=2−n, whence L must have trivial

center whenever n>2.

Lemma 5.11. The chain map f∗: DerL!Derf (L, L) induces an isomorphism in ho-

mology in non-negative degrees.

Proof. Recall that L is the free graded Lie algebra on generators α1, ..., αn in de-

gree d−1 and % in degree 2d−1, with differential dαi=0 and d%=ω. Note that L is

concentrated in degrees r(d−1), for r>1. The chain complex Derf (L, L) is spanned by

elements of the form ζ∂/∂α#
i in degrees congruent to 0 modulo (d−1) and ξ∂/∂% in

degrees congruent to −1 modulo (d−1), where ζ, ξ∈L. The differential is given by

D

(
ξ
∂

∂%

)
= 0

and

D

(
ζ

∂

∂α#
i

)
=±[ζ, f(αi)]

∂

∂%
. (5.9)

One checks that the image of the map f∗: DerL!Derf (L, L) is precisely the kernel of D

in degrees congruent to 0 modulo (d−1). For every element ξ∈Lr(d−1), we have a cycle

ξ∂/∂% in degree (r−2)(d−1)−1. If r>2, then ξ is decomposable and (5.9) shows that

ξ∂/∂% is in the image of D. For r=1, it represents a non-trivial homology class outside

the image of f∗, but this is harmless because it is of negative degree.

6. On the structure of derivation Lie algebras

In this section we will analyze the structure of the graded Lie algebra Derω L(V ) asso-

ciated with a graded anti-symmetric inner product space V . This will be an essential

ingredient both in the proof of homological stability for B aut∂(Mg,1) and B D̃iff∂(Mg,1)

and for the calculation of the stable cohomology.

6.1. Sp-modules

Recall that a graded anti-symmetric inner product space of degree D is a graded vector

space V of finite dimension, together with a non-degenerate bilinear form of degree −D,

V ⊗V −!Q,

x⊗y 7−! 〈x, y〉,
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such that 〈x, y〉=−(−1)|x| |y|〈y, x〉 for all x, y∈V .

A morphism f :V!W of graded anti-symmetric inner product spaces of the same

degree is a linear map of degree zero such that

〈fx, fy〉W = 〈x, y〉V

for all x, y∈V . Let SpD denote the category of graded anti-symmetric inner product

spaces of degree D. The adjoint of a morphism f :V!W is the unique linear map

f !:W!V such that

〈f !x, y〉V = 〈x, fy〉W

for all x∈W , y∈V . Clearly f !f=1V . In particular, every morphism f :V!W is injective

and there is an isomorphism of inner product spaces

W
∼=−!V ⊕V ⊥,

x 7−! (f !(x), x−ff !(x)),

where

V ⊥= {x∈W : 〈x, fy〉W = 0 for all y ∈V }= ker f !.

(Note however that f ! is not a morphism in SpD.)

We define an SpD-module in a category V to be a functor SpD!V. In what follows

we will show that Derω L(V ) is the value at V of an SpD-module in graded Lie algebras.

Recall that L(V ) denotes the free graded Lie algebra on V . For a linear map

f :V −!W,

we let L(f):L(V )!L(W ) denote the induced morphism of graded Lie algebras. Given

a morphism f :V!W in SpD, we define a morphism of graded Lie algebras

χf : DerL(V )−!DerL(W )

as follows. For θ∈DerL(V ), we let χf (θ)∈DerL(W ) be the unique derivation that

satisfies

χf (θ)(x) =L(f)θ(f !x)

for all x∈W . It is easy to check that χgχf=χgf when the composition gf is defined.

It is perhaps not evident from the definition that χf is a morphism of Lie algebras, but

this will be verified below.
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Proposition 6.1. If f :V!W is a morphism in SpD, then

χf : DerL(V )−!DerL(W )

is an injective morphism of graded Lie algebras.

Proof. Let θ, η∈DerL(V ). We have an equality of maps from L(V ) to L(W ):

χf (θ)�L(f) =L(f)�θ. (6.1)

This follows because both sides are L(f)-derivations and, for every y∈V , we have

χf (θ)L(f)(y) =χf (θ)(fy) =L(f)θ(f !fy) =L(f)θ(y).

Next, to verify the equality

[χf (θ), χf (η)] =χf [θ, η],

observe that both sides are derivations, so equality may be checked by evaluating at

generators x∈V . But

[χf (θ), χf (η)](x) =χf (θ)χf (η)(x)−(−1)|χf (θ)| |χf (η)|χf (η)χf (θ)(x)

=χf (θ)L(f)η(f !x)−(−1)|θ| |η|χf (η)L(f)θ(f !x)

=L(f)θη(f !x)−(−1)|θ| |η|L(f)ηθ(f !x)

=χf ([θ, η])(x),

where we have used (6.1) in the middle step.

To check injectivity, define the map

ψf : DerL(W )−!DerL(V )

by requiring

ψf (θ)(x) =L(f !)θ(fx),

for θ∈DerL(W ) and x∈V . Then one checks that the composite ψf �θf is the identity map

on DerL(V ). (Note however that ψf is not necessarily a morphism of Lie algebras.)

Next, recall from §3.5 that there is a canonical element ω=ωV ∈L(V ) associated

with every graded anti-symmetric inner product space V . If α1, ..., αr is a graded basis

with dual basis α#
1 , ..., α

#
r , then

ω=
1

2

∑
i

[α#
i , αi].
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In what follows, we will show that the evaluation map

evω: DerL(V )−!V, evω(θ) = θ(ω),

and the map

θ−,−:L(V )⊗V −!DerL(V ), θξ,x(y) = ξ〈x, y〉,

are natural transformations of SpD-modules.

Proposition 6.2. Given a morphism f :V!W in SpD, the diagram

DerL(V )
evωV //

χf

��

L(V )

L(f)

��

DerL(W )
evωW // L(W )

is commutative.

Proof. As we noted above, the map f :V!W is injective and induces an isomorphism

of inner product spaces

W ∼=V ⊕V ⊥,

so we may, without loss of generality, assume that

W =V ⊕V ⊥.

Then, we have that ωW =ωV +ωV ⊥ , where ωV ∈L(V ) and ωV ⊥∈L(V ⊥). For a derivation

θ on L(V ), we may describe χf (θ) as the unique derivation on L(W ) that restricts to θ

on L(V ) and restricts to zero on L(V ⊥). Thus,

χf (θ)(ωW ) =χf (θ)(ωV )+χf (θ)(ωV ⊥) = θ(ωV ),

which proves the claim.

Proposition 6.3. The map

θ−,−:L(V )⊗V −!DerL(V ).

defines an isomorphism of SpD-modules (of degree −D).

Proof. Since the inner product is non-degenerate, and since a derivation is deter-

mined by its value on generators, it follows that θ−,− is an isomorphism. We need to

verify that the diagram

L(V )⊗V

L(f)⊗f
��

θ−,−
// DerL(V )

χf

��

L(W )⊗W
θ−,−

// DerL(W )
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is commutative for every morphism f :V!W in SpD. Indeed, for x∈V , y∈W and

ξ∈L(V ), we have

χf (θξ,x)(y) =L(f)θξ,x(f !y) =L(f)(ξ〈x, f !y〉),

and, on the other hand,

θL(f)ξ,fx(y) =L(f)(ξ)〈fx, y〉.

These elements are clearly equal.

The kernel of the evaluation map is exactly Derω L(V ). It is a graded Lie subalgebra

of DerL(V ), and since evω is a morphism in SpD, it inherits an SpD-module structure.

By Corollary 3.10, the image of evω is the space of decomposables

[L(V ),L(V )] =L>2(V ).

Hence, there is a short exact sequence of SpD-modules,

0−!Derω L(V )−!DerL(V )−!L>2(V )! 0.

Clearly, the Lie bracket L(V )⊗V!L>2(V ) defines a morphism of SpD-modules.

Let, for the moment, g(V ) denote the kernel. It follows from Proposition 3.9 that we

have a commutative diagram of SpD-modules, where the rows are exact and the vertical

maps are isomorphisms,

0 // g(V ) //

∼=

��

L(V )⊗V
[−,−]

//

θ−,− ∼=

��

L>2(V ) // 0

0 // Derω L(V ) // DerL(V )
evω // L>2(V ) // 0.

In fact, the top row is functorial not only with respect to morphisms in SpD, but for all

linear maps. In what follows, we will identify the entries in the top row as the values at

V of certain Schur functors.

6.2. On the Lie operad

Let L ie={L ie(n)}n>0 denote the Lie operad. As a vector space, L ie(n) is the subspace

of the free Lie algebra L(x1, ..., xn) spanned by all Lie monomials in x1, ..., xn containing

every generator exactly once, cf. [33, §(1.3.9)]. There is a left action of the symmetric

group Σn given by permuting the generators:

σf(x1, ..., xn) = f(xσ1
, ..., xσn).
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Define the Lie monomials `n=`(x1, ..., xn) and rn=r(x1, ..., xn) inductively by

`(x1) = r(x1) =x1

and

`(x1, ..., xn) = [x1, `(x2, ..., xn)],

r(x1, ..., xn) = [r(x1, ..., xn−1), xn].

It is an exercise to show that `n generates L ie(n) as a Σn-module. In fact, identifying

Σn−1 with the subgroup of Σn consisting of those permutations that leave n fixed, it is

not difficult to show that the elements

σ`n = [xσ1
, [... [xσn−2

, [xσn−1
, xn]] ... ]], σ ∈Σn−1,

form a vector space basis for L ie(n), see [58, §5.6.2]. In particular,

dim L ie(n) = (n−1)!.

Similarly, rn generates L ie(n) as a Σn-module.

The Lie operad is a cyclic operad, which means that the action of Σn−1 on L ie(n−1)

extends to an action of Σn in a way compatible with the operad structure, cf. [31,

§(3.9) (b)]. Let L ie((n)) denote L ie(n−1) viewed as a Σn-module. For p∈L ie((n))

and σ∈Σn, we write pσ=σ−1p. Let tn denote the cyclic permutation (12 ... n)∈Σn.

We will abbreviate ptn to pt when the index n is clear from the context. Since Σn is

generated by Σn−1 and tn, the action can be computed using [31, Theorem (2.2)] or [45,

Proposition 42]: For p∈L ie((m)), q∈L ie((n)) and 16i6m−1 we have

(p�iq)t=

{
qt�n−1pt, if i= 1,

pt�i−1q, if 26 i6m−1.
(6.2)

The action has a compelling graphical description. If we represent a Lie monomial in

L ie((n)) by a planar binary rooted tree with leaves labeled by 1, ..., n−1 and the root

labeled by n, then a permutation σ∈Σn acts by relabeling and then reinterpreting the

tree as a Lie monomial using the leaf labeled by n as the root. For example, here is the

computation of the action of t5=(12345)∈Σ5 on r4=[[[x1, x2], x3], x4]∈L ie((5)):

1 2
3

4

5

t57−!

2 3
4

5

1

=
1

2 3
4

5
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[[[x1, x2], x3], x4]
t57−! [x1, [[x2, x3], x4]].

More generally, one can work out that the action of t−in on rn−1∈L ie((n)) is given by

t−in rn−1 =


`n−1, if i= 1,

[`(x1, ..., xn−i), r(xn−i+1, ..., xn−1)], if 1<i<n,

rn−1, if i=n.

(6.3)

Proposition 6.4. For every n>2, the sequence

0−!L ie((n))
µ−−!QΣn⊗Σn−1 L ie(n−1)

ε−−!L ie(n)! 0, (6.4)

where

µ(ξ) =

n∑
i=1

tin⊗t−in ξ and ε(σ⊗ζ) =σ[ζ, xn],

is a short exact sequence of Σn-modules.

Remark 6.5. The existence of an exact sequence of the form (6.4) has been noted

before, see [77, Corollary 2.7], but the explicit expressions for the maps and the following

direct proof of exactness seem to be new.

Proof. It is immediate that ε is Σn-equivariant. To check that µ is Σn-equivariant,

it suffices to check that µ(tnξ)=tnµ(ξ) and µ(%ξ)=%µ(ξ) for all ξ∈L ie(n−1) and all

%∈Σn−1. The former is clear. For the latter, we use the fact that the permutation

t−in %t
%−1(i)
n fixes n, so that

µ(%ξ) =

n∑
i=1

tin⊗t−in (%ξ) =

n∑
i=1

tin⊗(t−in %t%
−1(i)
n )t−%

−1(i)
n ξ

=

n∑
i=1

tin(t−in %t%
−1(i))⊗t−%

−1(i)
n ξ= %

n∑
i=1

t%
−1(i)
n ⊗t−%

−1(i)
n ξ

= %µ(ξ),

where the last equality follows by the change of summation index i′=%−1(i).

Since ε(1⊗rn−1)=rn, and since L ie(n) is generated by rn as a Σn-module, it is

clear that ε is surjective. To see that µ is injective, note that there is an isomorphism of

right Σn−1-modules,

QΣn∼=QCn⊗QΣn−1,

where Cn denotes the cyclic subgroup of Σn generated by tn. Hence, there is an isomor-

phism

QΣn⊗Σn−1 L ie(n−1)∼=QCn⊗L ie(n−1).
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We can define a Q-linear splitting of µ by sending tin⊗ξ to 0 if i 6=0 and to ξ if i=0.

To show that εµ=0, it suffices to verify that εµ(rn−1)=0, because L ie(n−1) is

generated by rn−1 as a Σn−1-module and µ and ε are equivariant. Using the formula for

the action (6.3), we get that

εµ(rn−1) =

n∑
i=1

tin[t−in rn−1, xn]

= tn[`n−1, xn]+

n−1∑
i=2

tin[[`(x1, ..., xn−i), r(xn−i+1, ..., xn−1)], xn]+[rn−1, xn]

= [`(x2, ..., xn), x1]+

n−1∑
i=2

[[`(xi+1, ..., xn), r(x1, ..., xi−1)], xi]+[rn−1, xn].

Using the Jacobi relation and anti-symmetry, we may rewrite the middle sum as

n−1∑
i=2

[`(xi+1, ..., xn), [r(x1, ..., xi−1), xi]]−[[xi, `(xi+1, ..., xn)], r(x1, ..., xi−1)]

=

n−1∑
i=2

[`(xi+1, ..., xn), r(x1, ..., xi−1, xi)]−[`(xi, xi+1, ..., xn), r(x1, ..., xi−1)].

The last expression is a telescoping sum, whose surviving terms are [xn, rn−1] and

−[`(x2, ..., xn), x1]. These cancel the outer terms in the expression for εµ(rn−1) we found

above. Thus, εµ(rn−1)=0.

Finally, exactness of (6.4) follows from a dimension count: So far, we know that

(6.4) is a chain complex and that the homology vanishes except possibly at the middle

term. Since dim L ie(n)=(n−1)! and dimQΣn⊗Σn−1
L ie(n−1)=n(n−2)!, the Euler

characteristic of the complex is (n−2)!−n(n−2)!+(n−1)!=0, which implies that the

middle homology must vanish.

Recall that SpD denotes the category of graded anti-symmetric inner product spaces

of degree D (see §6.1). The cyclic operad L ie determines an SpD-module V 7!L ie((V )),

defined by

L ie((V )) = s−D
⊕
n>2

L ie((n))⊗ΣnV
⊗n.

Proposition 6.6. There is an isomorphism of SpD-modules

Derω L(V )∼= L ie((V )).

Explicitly, the derivation ηξ,h corresponding to ξ⊗h1⊗...⊗hn sends x∈V to

ηξ,h(x) =

n∑
i=1

(−1)ε
h
i (t−in ξ)(hi+1, ..., hn, h1, ..., hi−1)〈hi, x〉,
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where

εhi = (|h1|+...+|hi|)(|hi+1|+...+|hn|).

Proof. The claim is proved by considering the following commutative diagram for

n>2, where the rows are short exact sequences and all vertical maps are isomorphisms

(and we remember that the map θ−,− is of degree −D):

L ie((n))⊗ΣnV
⊗n

∼=

��

µ
// (QΣn⊗Σn−1

L ie(n−1))⊗ΣnV
⊗n

∼= α

��

ε // L ie(n)⊗ΣnV
⊗n

∼= β

��

gn(V )

∼=

��

// Ln−1(V )⊗V

∼= θ−,−

��

[−,−]
// Ln(V )

Dern−2
ω L(V ) // Dern−2 L(V )

evω // Ln(V ).

The top row is obtained by applying the functor −⊗ΣnV
⊗n to the short exact sequence

in Proposition 6.4. Explicitly, the maps are given by

µ(ξ⊗h1⊗...⊗hn) =

n∑
i=1

(ti⊗t−iξ)⊗h1⊗...⊗hn,

ε(%⊗ζ⊗h1⊗...⊗hn) = (%[ζ, xn])⊗h1⊗...⊗hn,

α(%⊗ζ⊗h1⊗...⊗hn) =±ζ(h%1
, ..., h%n−1

)⊗h%n ,

β(ζ⊗h1⊗...⊗hn) = ζ(h1, ..., hn),

The sign in the formula for α is dictated by the standard sign convention, according

to which a sign is introduced every time two elements of odd degree are permuted.

Everything is natural in V ∈SpD, so there results an isomorphism of SpD-modules

Derω L(V )∼= L ie((V )).

The isomorphism of Proposition 6.6 can be used to endow L ie((V )) with the struc-

ture of a graded Lie algebra. This can be made explicit as follows.

Let p∈L ie((m)) and q∈L ie((n)). Define, for 16i6m and 16j6n,

pi�j q= p�iqt
j , (6.5)

where p�mq is defined to be (pt�m−1q)t
−1.
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Let V be a graded anti-symmetric inner product space of degree D. For 16i6m and

16j6n, define the contraction i�j :V
⊗m⊗V ⊗n!V ⊗m+n−2 on generators v=v1⊗...⊗vm

and w=w1⊗...⊗wn by

vi�jw= (−1)c
v,w
i,j v1⊗...⊗vi−1⊗wj+1⊗...⊗wn⊗w1⊗...⊗wj−1⊗vi+1⊗...⊗vm〈wj , vi〉,

where the sign is given by

cv,wi,j = (|vi|+...+|vm|−D)(|w|−D)+(|w1|+...+|wj |)(|wj+1|+...+|wn|)+1.

Proposition 6.7. The equality

[ηp,v, ηq,w] =

m∑
i=1

n∑
j=1

ηpi�jq,vi�jw

holds in the graded Lie algebra of derivations on LV .

Proof. Inductive application of the formula (6.2) yields

(p�iq)t
j =


ptj �i−j q, if 16 j6 i−1,

qtj−i+1
�n+i−j−1pt

i, if i6 j6n+i−2,

ptj−n+2
�m+n+i−j−2q, if n+i−16 j6m+n+i−3.

(6.6)

The proof is a long but straightforward calculation that uses the rules (6.6) and the basic

fact that

η(q(w1, ..., wn)) =

n−1∑
j=1

±q(w1, ..., wj−1, η(wj), wj+1, ..., wn−1)

for every derivation η on LV . We omit the details.

It follows that an explicit description of the Lie bracket on L ie((V )) is

[ξ⊗h, ζ⊗g] =
∑
i,j

ξi�j ζ⊗hi�j g. (6.7)

Thus, Derω L(V ) and L ie((V )) are, naturally in V ∈SpD, isomorphic as graded Lie

algebras. More generally, one can prove that the formula (6.7) defines a graded Lie

algebra structure on C ((V )) for any cyclic operad C , where i�j is defined as in (6.5).

7. Homological stability

This section contains the proof of rational homological stability for the classifying spaces

B aut∂(Mg,1) and B D̃iff∂(Mg,1). The proof consists in a reduction to a homological sta-

bility result for certain arithmetic groups with twisted coefficients; we begin by reviewing

this.
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7.1. Polynomial functors and homological stability

We adopt a naive approach to polynomial functors. By a polynomial functor of degree

6` we will mean a functor from abelian groups to itself isomorphic to a functor of the

form

P (H) =
⊕̀
k=0

P (k)⊗ΣkH
⊗k,

for some sequence of abelian groups P (k) with an action of the symmetric group Σk.

Recall that Γg denotes the automorphism group of the hyperbolic quadratic module

(Hg, µ, q); see Example 5.5.

Theorem 7.1. (Charney [19, Theorem 4.3]) If P is a polynomial functor of degree

6`, then the stabilization map

Hq(Γg;P (Hg))−!Hq(Γg+1;P (Hg+1))

is an isomorphism for g>2q+`+4 and a surjection for g=2q+`+4.

Proof. In the notation of [19], the group Γg is isomorphic to the automorphism group

of the hyperbolic module in the category Qλ(A,Λ), where A is the ring Z with trivial

involution, λ=(−1)d, and

Λ =


0, if d is even,

Z, if d= 1, 3, 7,

2Z, if d 6= 1, 3, 7 is odd.

It is straightforward to verify that P (Hg) is a ‘central coefficient system of degree 6`’

whenever P is a polynomial functor of degree 6`.

Let Vg denote the graded anti-symmetric inner product space

s−1H̃∗(Mg,1;Q)∼= sd−1Hg⊗Q,

and consider the graded Lie algebra

gg = Der+

ωg L(Vg)

with its natural Γg-action. Let σ=χf : gg!gg+1 be the morphism of graded Lie algebras

induced by the inclusion Vg!Vg+1.

Lemma 7.2. Let d>2. The component of the Chevalley–Eilenberg chains in total

degree p, CCE
p (gg), may be identified with the value at Hg of a polynomial functor of

degree 6b3p/dc.
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Proof. As a graded vector space, the Chevalley–Eilenberg chains on a graded Lie

algebra L may be described as the value at L of a Schur functor,

CCE
∗ (L) =

⊕
k>0

Λ(k)⊗ΣkL
⊗k,

where Λ(k) is the sign representation of Σk concentrated in degree k. It follows from

Proposition 6.6 that CCE
∗ (gg) may be identified with the value at Hg of the Schur functor

associated with the symmetric sequence

C = Λ�L̃ ie�Id−1,

where Id−1 is the symmetric sequence with Id−1(k)=0 for k 6=1 and Id−1(1) the trivial

representation concentrated in degree d−1, and L̃ ie is the symmetric sequence with

L̃ ie(k)=L ie((k)) concentrated in degree 2−2d for k>3 and L̃ ie(k)=0 for k62. A

calculation with composition products reveals that C (k) is concentrated in degrees >

kd/3.

Thus, there is an isomorphism

CCE
p (gg)∼=

⊕
k>0

C (k)p⊗ΣkH
⊗k
g ,

where C (k)p=0 unless p> 1
3kd, i.e., k63p/d. Hence, CCE

p (gg) may be identified with the

value at Hg of a polynomial functor of degree 6b3p/dc.

The following proposition is an immediate consequence of the previous lemma and

Charney’s theorem.

Proposition 7.3. Let d>2 and fix a non-negative integer p. The map

σ∗:Hq(Γg;C
CE
p (gg))−!Hq(Γg+1;CCE

p (gg+1))

is an isomorphism for g>2q+b3p/dc+4 and a surjection for g=2q+b3p/dc+4.

Theorem 7.4. Let d>2. The map in hyperhomology

σ∗:Hk(Γg;C
CE
∗ (gg))−!Hk(Γg+1;CCE

∗ (gg+1))

is an isomorphism for g>2k+4 and surjective for g=2k+4.

Proof. Consider the first page of the first hyperhomology spectral sequence

IE1
p,q(g) =Hq(Γg;C

CE
p (gg)) =⇒Hp+q(Γg;CCE

∗ (gg)).

The map IE1
p,q(g)!IE1

p,q(g+1) is an isomorphism for g>2q+2p+4 and a surjection for

g=2q+2p+4, by Proposition 7.3, because 3p/d62p when d>2. The claim then follows

from the comparison theorem for spectral sequences.
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So far, in this section, we might as well have worked over Z. However, in the following

theorem it will be essential to work over Q. A vanishing theorem of Borel implies that

the stable cohomology may be expressed in terms of cohomology with trivial coefficients

and invariants. Denote HQ
g =Hg⊗Q.

Theorem 7.5. If P is a polynomial functor of degree 6`, then the natural map

Hk(Γg;Q)⊗P (HQ
g )Γg −!Hk(Γg;P (HQ

g ))

is an isomorphism for g>2k+`+4.

Proof. This follows by combining Charney’s theorem (Theorem 7.1) with Borel’s

vanishing theorem [16, Theorem 4.4]. The group Γg is an arithmetic subgroup of the

algebraic group Spg or Og,g, depending on whether d is odd or even. Call this alge-

braic group Gg. If P is a polynomial functor, then P (HQ
g ) is an algebraic (rational)

representation of the algebraic group Gg, and we may decompose it as a direct sum,

P (HQ
g ) =P (HQ

g )Gg⊕Eg1⊕...⊕Egrg ,

where Eg1 , ..., E
g
rg are the non-trivial irreducible subrepresentations. It is easy to check

that because P is polynomial of degree 6`, the coefficients of the highest weight of Egi
are bounded above by `, for all g and all i. As explained in [16, §4.6], this implies that,

for every k, there is an n(k) such that

Hk(Γg;E
g
i ) = 0 for all g>n(k) and all i.

It follows that the map induced by the inclusion of P (HQ
g )Gg into P (HQ

g ),

Hk(Γg;Q)⊗P (HQ
g )Gg ∼=Hk(Γg;P (HQ

g )Gg )−!Hk(Γg;P (HQ
g )),

is an isomorphism for all g>n(k). Thus, for k fixed, the vertical maps in the diagram

Hk(Γg;Q)⊗P (HQ
g )Gg

��

// Hk(Γg+1;Q)⊗P (HQ
g+1)Gg+1

��

// ...

Hk(Γg;P (HQ
g )) // Hk(Γg+1;P (HQ

g+1)) // ...

become isomorphisms after continuing far enough to the right. It follows from The-

orem 7.1 that both the top and the bottom horizontal maps are isomorphisms for

g>2k+`+4 (note that P (HQ
g )Gg=P (HQ

g )Γg=H0(Γg;P (HQ
g ))). This implies that the

vertical maps are isomorphisms already for g>2k+`+4, no matter what n(k) is. Fi-

nally, we should point out that V Γg=V Gg for any algebraic representation V , because of

density of Γg in Gg (see e.g. [14]).
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7.2. Homological stability for homotopy automorphisms

Let Mg,r denote the result of removing the interiors of r disjointly embedded 2d-disks

from the manifold Mg=#gSd×Sd. The manifold Mg+1,1 may be realized as the union

of Mg,1 and M1,2 along a common boundary component. An automorphism of Mg,1 that

fixes the boundary point-wise may be extended to an automorphism of

Mg+1,1 =Mg,1∪M1,2

by letting it act as the identity on M1,2. This determines a map of monoids

aut∂(Mg,1)−! aut∂(Mg+1,1),

and hence an induced map on classifying spaces

σ:B aut∂(Mg,1)−!B aut∂(Mg+1,1), (7.1)

which we will refer to as the ‘stabilization map’. In this section we will prove the following

theorem.

Theorem 7.6. Let d>2. The stabilization map induces an isomorphism

σ∗:Hk(B aut∂(Mg,1);Q)−!Hk(B aut∂(Mg+1,1);Q)

for g>2k+4 and a surjection for g=2k+4.

Throughout the section we will use the notation

Xg =B aut∂(Mg,1),

Hg =Hd(Mg;Z),

Vg = sd−1Hg⊗Q,

Γg = Aut(Hg, µ, q),

gg = Der+

ωg L(Vg).

First, we need to understand the behavior of the stabilization map in homotopy

and homology. Proposition 5.6 yields a π1(Xg)-equivariant isomorphism of graded Lie

algebras

πQ
∗ (X̃g)∼= Der+

ωg L(Vg).

We may choose a basis α1, β1, ..., αg, βg for Vg in which

ωg = [α1, β1]+...+[αg, βg].
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The intersection form makes Vg=HQ
g [d−1] into a graded anti-symmetric inner product

space and the ‘stabilization’ morphism

Der+

ωg L(Vg)−!Der+

ωg+1
L(Vg+1)

is induced by the obvious inclusion Vg!Vg+1; cf. Proposition 6.1. Explicitly, it is given

by extending derivations by zero on the new generators αg+1 and βg+1.

Proposition 7.7. The isomorphism

πQ
∗ (X̃g)∼= Der+

ωg L(Vg)

is compatible with the stabilization maps.

Proof. If f is a self-equivalence of Mg,1, then σ(f) is the self-map of Mg+1,1 that

restricts to f on Mg,1 and to the identity on M1,2, when we realize Mg+1,1 as the union

of Mg,1 and M1,2 along a common boundary component. In other words, the diagram

map∗(Mg,1,Mg+1,1)

aut∂(Mg,1)
σ //

i∗

77

��

aut∂(Mg+1,1)

j∗

��

i∗

OO

∗
j

// map∗(M1,2,Mg+1,1)

is commutative. The manifold M1,2 is homotopy equivalent to a wedge of spheres

Sd∨Sd∨S2d−1,

and a Lie model for it is given by the free graded Lie algebra L(%, α, β) with trivial

differential, where the generators α and β have degree d−1, and % has degree 2d−2. The

inclusions i and j of Mg,1 and M1,2, respectively, into Mg+1,1 are modeled by the dg Lie

algebra morphisms

ϕ:L(Vg)−!L(Vg+1) and ψ:L(%, α, β)−!L(Vg+1),

respectively, where ψ(%)=ω, ψ(α)=αg+1 and ψ(β)=βg+1, and ϕ is induced by the stan-

dard inclusion. From our earlier calculation and the naturality of (3.3), it follows that
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the diagram

Der+

ϕ(L(Vg),L(Vg+1))

Der+

ωg (L(Vg))
σ∗ //

ϕ∗

66

��

Der+

ωg+1
(L(Vg+1))

ψ∗

��

ϕ∗

OO

0 // Der+

ψ(L(%, αg+1, βg+1),L(Vg+1))

is commutative. This pins down σ∗(θ) as the unique derivation on L(Vg+1) that extends

θ and vanishes on αg+1 and βg+1.

The universal cover spectral sequence,

E2
p,q =Hp(π1(X);Hq(X̃)) =⇒Hp+q(X),

is natural in X. To prove Theorem 7.6 it is therefore sufficient to show that

σ:Hp(π1(Xg);Hq(X̃g;Q))−!Hp(π1(Xg+1);Hq(X̃g+1;Q))

is an isomorphism if g>2p+2q+4 and a surjection for g=2p+2q+4. This will follow

from Propositions 7.10 and 7.11 below.

Recall that we call a group π rationally perfect if

H1(π;V ) = 0

for all finite-dimensional Q-vector spaces V with a π-action (cf. Definition B.3).

Proposition 7.8. The group π1(Xg) is rationally perfect for g>2.

Proof. By Proposition 5.3, there is a short exact sequence of groups

1−!Kg −!π1(Xg)−!Γg −! 1,

where the kernel Kg is finite, whence rationally perfect. The group Γg is an arithmetic

subgroup of the algebraic group Spg or Og,g, depending on whether d is odd or even. In

either case, the algebraic group is almost simple and its Q-rank is g. Hence, it follows

from Theorem A.1 that Γg is rationally perfect. An application of the Hochschild–Serre

spectral sequence then shows that π1(Xg) is rationally perfect.

We note the following consequence for future reference.
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Proposition 7.9. There is a π1(Xg)-equivariant isomorphism

H∗(X̃g;Q)∼=HCE
∗ (gg),

compatible with the stabilization maps.

Proof. Combine Propositions 5.6, 7.8 and 2.3. Compatibility with the stabilization

maps follows from Proposition 7.7 and naturality of the Quillen spectral sequence.

Proposition 7.10. For d>2, g>2, and all p and q, there is an isomorphism

Hp(π1(Xg);Hq(X̃g;Q))∼=Hp(Γg;H
CE
q (gg)),

compatible with the stabilization maps.

Proof. The previous proposition implies that

Hp(π1(Xg);Hq(X̃g;Q))∼=Hp(π1(Xg);H
CE
q (gg)).

By Proposition 5.3, the kernel of the homomorphism π1(Xg)!Γg is a finite group that

acts trivially on gg, and hence on HCE
q (gg). Since we work with rational coefficients, this

implies that there is an isomorphism

Hp(π1(Xg);H
CE
q (gg))∼=Hp(Γg;H

CE
q (gg)),

as claimed.

Proposition 7.11. Let d>2. The stabilization map

Hp(Γg;H
CE
q (gg))−!Hp(Γg+1, H

CE
q (gg+1))

is an isomorphism for g>2p+2q+4 and a surjection for g=2p+2q+4.

Proof. As noted above, the group Γg is rationally perfect for g>2. The chain com-

plex of Q[Γg]-modules CCE
∗ (gg) is finite-dimensional over Q in each degree, and is there-

fore split by Proposition B.5. By Lemma B.1, we get a homotopy commutative diagram

of chain complexes of Q[Γg]-modules

CCE
∗ (gg)

σ //

'

��

CCE
∗ (gg+1)

'

��

HCE
∗ (gg)

σ // HCE
∗ (gg+1),
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where the vertical maps are chain homotopy equivalences. This implies that the diagram

Hk(Γg;C
CE
∗ (gg))

∼=

��

σ // Hk(Γg+1;CCE
∗ (gg+1))

∼=

��

Hk(Γg;H
CE
∗ (gg))

σ // Hk(Γg+1;HCE
∗ (gg+1))

is commutative, and that the vertical maps are isomorphisms. By Theorem 7.4, the top

map is an isomorphism for g>2k+4 and a surjection for g>2k+4, so the same is true

for the bottom map. For any group Γ and any graded Γ-module H∗, regarded as a chain

complex with zero differential, there is a decomposition of hyperhomology,

Hk(Γ;H∗)∼=
⊕
p+q=k

Hp(Γ;Hq),

which is natural in Γ and H∗. It follows that the constituents of the bottom map,

σp,q:Hp(Γg;H
CE
q (gg))−!Hp(Γg+1;HCE

q (gg+1)),

are isomorphisms for g>2p+2q+4 and surjections for g=2p+2q+4.

This completes the proof of Theorem 7.6.

7.3. Homological stability for block diffeomorphisms

The goal of this section is to prove the following theorem.

Theorem 7.12. Let d>3. The stabilization map

σ∗:Hk(B D̃iff∂(Mg,1);Q)−!Hk(B D̃iff∂(Mg+1,1);Q)

is an isomorphism for g>2k+4 and a surjection for g=2k+4.

The proof of the theorem is based on an analysis of the diagram (4.7) in §4.2 for

M=Mg,1. We will use the following abbreviations.

Xg =B aut∂(Mg,1), Xg,J =B aut∂,J(Mg,1), Xg,� =B aut∂,�(Mg,1),

Yg =B D̃iff∂(Mg,1), Yg,� =B D̃iff∂,�(Mg,1), Fg = aut∂,�(Mg,1)/ D̃iff∂,�(Mg,1).
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For M=Mg,1, the diagram (4.7) can then be rewritten as

Fg

��

// ∗

��

Yg,�

��

// Xg,�

��

// ∗

��

Yg // Xg,J
// Bπ1(Xg,J),

(7.2)

where each square is a homotopy pullback. We let Γ̂g=π1(Xg,J). Recall that, by con-

struction, it is the image of J : D̃iff∂(Mg,1)!π0 aut∂(Mg,1). The fundamental group of

Yg,� is the kernel of J . We will study the spectral sequences of the homotopy fiber

sequences

Fg −!Yg,�−!Xg,� (7.3)

and

Yg,�−!Yg −!Bπ1(Xg,J). (7.4)

First, we need a result on the fundamental group of Xg,J .

Proposition 7.13. The kernel of π1(Xg,J)!Γg is finite. The group π1(Xg,J) is

rationally perfect for g>2.

Proof. From §5.2 we have a commutative diagram of groups with exact rows,

1 // K̃g

��

// π1Yg

J

��

// Γg // 1

1 // Kg
// π1Xg

// Γg // 1.

By construction, π1(Xg,J)=im J . It follows that there is an exact sequence

1−!Kg,J −!π1(Xg,J)−!Γg −! 1,

where Kg,J injects into Kg. Since Kg is finite, so is Kg,J . The rest of the proof is similar

to that of Proposition 7.8.

Proposition 7.14. The fibration

Fg −!Yg,�−!Xg,�

is rationally totally non-homologous to zero, i.e., there is an isomorphism

H∗(Yg,�;Q)∼=H∗(Xg,�;Q)⊗H∗(Fg;Q). (7.5)

Moreover, the isomorphism may be taken to be Γ̂g-equivariant.
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Proof. The fibration at hand is the upper row in (4.13) for M=Mg,1. The vertical

maps in (4.13) are rational homology isomorphisms, and the lower fibration is rationally

trivial by Corollary 4.26, since the reduced homology of Mg,1 is concentrated in a single

degree. This proves the first claim.

The group

Γ̂g =π1(Xg,J) =π0 aut∂,J(Mg,1)

acts on the spaces in the fibration sequence (7.3), in the sense that there are homomor-

phisms Γ̂g!π0 aut(Z) for Z∈{Fg, Yg,�, Xg,�} and the maps in (7.3) preserve this (homo-

topy) action. The actions can be seen as holonomy actions of the various fibrations in

(7.2), but it is better to go back to the definitions in §4.1 of the involved spaces. Ele-

ments of Γ̂g are represented by diffeomorphisms ϕ:Mg,1!Mg,1 with ∂ϕ=id. The action

on the ∆-monoids D̃iff∂,�(Mg,1)
�

and ãut∂,�(Mg,1)
�

is given by conjugating a k-simplex

f : ∆k×Mg,1!∆k×Mg,1 with ∆k×ϕ. The induced action on

aut∂,�(Mg,1)/ D̃iff∂,�(Mg,1)

induces an action on the structure ∆-set compatible with the homotopy equivalence

Fg = aut∂,�(Mg,1)/ D̃iff∂,�(Mg,1)
∼−−! (SG/O∂ (Mg,1)

�
)(1).

An element [ϕ]∈Γ̂g acts on a k-simplex W
f−!∆k×M of the structure ∆-set by the com-

position (∆k×ϕ)�f . Use of geometric realization and the classifying space construction

yields the required Γ̂g-action on the relevant spaces. Since Γ̂g is rationally perfect, the

isomorphism (7.5) can be taken to be Γ̂g-equivariant.

Proposition 7.9 identifies H∗(Xg,�;Q)∼=HCE
∗ (gg) as Γ̂g-modules. Next, we describe

the rational homology of Fg as a Γ̂g-module. Recall that HQ
g denotes Hd(Mg,1;Q).

Proposition 7.15. There is an isomorphism of Γ̂g-modules

H∗(Fg;Q)∼= Λ(Π⊗HQ
g ),

where

Π =Q{πi : |πi|= 4i−d> 0}(= (s−dπ∗(G/O)⊗Q)>0),

and Γ̂g acts on the right-hand side via the standard action of Γg on HQ
g .

Proof. There is a Γ̂g-action on the ∆-set of normal invariants, where a diffeomor-

phism ϕ:Mg,1!Mg,1 with ∂ϕ=id acts by composing a k-simplex of NG/O
∂ (Mg,1)

�
with

ζK
ϕ∗ //

��

(∆k×ϕ−1)(ζK)

��

∆k×Mg,1
ϕ
// ∆k×Mg,1,
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and the normal invariant

η
�
:SG/O∂ (Mg,1)

�
−!NG/O

∂ (Mg,1)
�

becomes equivariant.

It follows from Lemma 3.3 of [10] that the homotopy equivalence

NG/O
∂ (Mg,1)

�

∼−−!S
�
map∗(Mg,1/∂Mg,1, G/O)

of Theorem 4.2 is Γ̂g-equivariant on homotopy groups, where [ϕ]∈Γ̂g acts on the target

via the diffeomorphism ϕ−1:Mg,1!Mg,1.

Since ∂Mg,1!Mg,1 is a sum of Whitehead products, its suspension is homotopically

trivial and

map∗(Mg,1/∂Mg,1, G/O)'map∗(Mg,1, G/O)×Ω2dG/O,

because G/O'ΩB(G/O). The action on Ω2dG/O is trivial, so all in all

q∗�j∗�η:SG/O∂ (Mg,1)(1)−!map∗(Mg,1, BO)(0)

is Γ̂g-equivariant on homotopy groups with the action on the target induced by

ϕ−1:Mg,1−!Mg,1.

We have the Γ̂g-isomorphism

π∗(map∗(Mg,1, BO)(0))⊗Q∼=Hd(Mg,1;Q)⊗Π

and, since map∗(Mg,1, BO)(0) is an infinite loop space, it has trivial rational k-invariants,

so

H∗(map∗(Mg,1, BO)(0);Q)∼= Λ(HQ
g ⊗Π)

as Γ̂g-modules.

Since Fg!SG/O∂ (Mg,1)(1) is a Γ̂g-equivariant homotopy equivalence, and the com-

posite

Fg
∼−−!SG/O∂ (Mg,1)(1)

q∗�j∗�η−−−−−−!map∗(Mg,1, BO)(0)

is a rational homotopy equivalence by Proposition 4.20, which is Γ̂g-equivariant on ho-

motopy groups, it follows that Fg also has trivial rational k-invariants and that we have

isomorphisms of Γ̂g-modules

π∗(Fg)⊗Q∼= Π⊗HQ
g and H∗(Fg;Q)∼= Λ(Π⊗HQ

g ),

as claimed.
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The previous proposition may be interpreted as asserting an isomorphism of (abelian)

graded Lie algebras,

ag =π∗+1(Fg)⊗Q∼= s−1Π⊗HQ
g .

The homology is then given by

H∗(Fg;Q) =HCE
∗ (ag).

We may write CCE
∗ (ag) as the value at Hg of a Schur functor as follows.

Lemma 7.16. There is an isomorphism of π1(Xg,J)-modules

CCE
∗ (ag)∼=

⊕
k>0

D(k)⊗ΣkH
⊗k
g

compatible with the stabilization maps, where D(k) is the Σk-module

D(k) = Π⊗k.

In particular, D(k) is concentrated in degrees >k for every k.

By Propositions 7.9 and 7.15, we may rewrite the right-hand side of (7.5) in terms

of Chevalley–Eilenberg homology:

H∗(Xg,�;Q)⊗H∗(Fg;Q)∼=HCE
∗ (gg)⊗HCE

∗ (ag)∼=HCE
∗ (gg⊕ag).

In particular, the action of Γ̂g=π1(Xg,J) on H∗(Yg,�;Q) factors over Γg, since this is true

for the right-hand side. Since the kernel of π1(Xg,J)!Γg is finite, we may then write

the E2-term of the spectral sequence of (7.4) as follows:

E2
p,q =Hp(π1(Xg,J);Hq(Yg,�;Q))∼=Hp(Γg;H

CE
q (gg⊕ag)).

Hence, the proof of Theorem 7.12 will be complete once we verify the following proposi-

tion.

Proposition 7.17. Let d>3. The stabilization map

Hp(Γg;H
CE
q (gg⊕ag))−!Hp(Γg+1;HCE

q (gg+1⊕ag+1))

is an isomorphism for g>2p+2q+4 and a surjection for g>2p+2q+4.
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Proof. The proof proceeds exactly as the proof of Proposition 7.11, after noting that

CCE
∗ (gg⊕ag) is a split complex of Q[Γg]-modules, whose module of q-chains is the value

of a polynomial functor of degree 2q on the standard Q[Γg]-module HQ
g . More precisely,

by combining Lemmas 7.2 and 7.16 we have that

CCE
∗ (gg⊕ag) =CCE

∗ (gg)⊗CCE
∗ (ag)∼=

⊕
k>0

(C⊗D)(k)⊗ΣkH
⊗k
g ,

where

(C⊗D)(k) =
⊕
i+j=k

IndΣk
Σi×Σj

C (i)⊗D(j).

Since C (i) is concentrated in degrees > 1
3 id and D(j) is concentrated in degrees >j, it

follows that (C⊗D)(k) is concentrated in degrees > 1
2k. This implies that the functor

(C⊗D)q(−) is polynomial of degree 62q for every q.

8. Stable cohomology

The goal of this section is to calculate the stable rational cohomology of the classifying

spaces B aut∂(Mg,1) and B D̃iff∂(Mg,1). We begin by reviewing the calculation of the

stable cohomology of BDiff∂(Mg,1) in terms of κ-classes, due to Galatius and Randal-

Williams, and Borel’s results on the stable cohomology of arithmetic groups.

8.1. κ-classes and the stable cohomology of the diffeomorphism group

Let M be a closed oriented 2d-dimensional manifold and let Diff(M) be the group of

orientation-preserving diffeomorphisms of M . The space BDiff(M) is a classifying space

for smooth oriented fiber bundles with fiber diffeomorphic to M , or ‘M -bundles’ for short.

With every characteristic class of oriented vector bundles

c∈Hk(B SO(2d))

there is an associated characteristic class of M -bundles

κc ∈Hk−2d(BDiff(M)),

characterized by the following. Given a smooth oriented fiber bundle

M −!E
π−−!X,
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the vertical tangent bundle TπE is an oriented 2d-dimensional vector bundle over E,

and we may consider its characteristic class c(TπE)∈Hk(E). By applying the Gysin

homomorphism π!:H
k(E)!Hk−2d(X), we obtain a class

π!(c(TπE))∈Hk−2d(X).

By definition, κc(π)=π!(c(TπE)). Recall that the rational cohomology of B SO(2d) is a

polynomial ring

H∗(B SO(2d);Q) =Q[p1, ..., pd−1, e]

in the Pontryagin classes pi and the Euler class e.

For M=Mg, the pullback of κc along the map BDiff∂(Mg,1)!BDiff(Mg) gives

us a class in Hk−2d(BDiff∂(Mg,1)) that we will also denote κc. The stabilization map

BDiff∂(Mg,1)!BDiff∂(Mg+1,1) induces an isomorphism on Hk(−) for g>2k+4 [29].

The stable cohomology is given by the following.

Theorem 8.1. (Madsen–Weiss 2d=2 [44], Galatius–Randal–Williams 2d>4 [27])

For 2d 6=4, the stable cohomology of the diffeomorphism group of Mg,1 is given by

H∗(BDiff∂(M∞,1);Q)∼=Q[κc|c∈B],

where B is the set of monomials c in the Pontryagin classes pd−1, pd−2, ..., pd(d+1)/4e and

the Euler class e, of total degree |c|>2d.

8.2. Borel’s calculation of the stable cohomology of arithmetic groups

The rational cohomology of BU is a polynomial algebra in the Chern classes

H∗(BU ;Q) =Q[c1, c2, ... ].

The Hopf algebra structure is given by ∆(cn)=
∑
p+q=n cp⊗cq. Let σ1, ..., σn denote

the elementary symmetric polynomials in the indeterminates t1, ..., tn. Then, there is a

unique polynomial pn such that

pn(σ1, ..., σn) = tn1 +...+tnn.

Define the ‘Newton classes’ by

sn = pn(c1, ..., cn)∈H2n(BU ;Q).

These are primitive generators for the rational cohomology of BU .
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According to Borel [15], the rational cohomology of the infinite symplectic group

Sp(Z) is the primitively generated Hopf algebra

H∗(B Sp(Z);Q)∼=Q[x1, x2, ... ].

The primitive generators xi are of degree 4i−2, and may be chosen to be the pullbacks

of the odd classes s2i−1∈H4i−2(BU ;Q) along the map

B Sp(Z)−!B Sp(R)
∼
 −−BU.

8.3. Relation between Borel classes and κ-classes

There is another way of producing characteristic classes of smooth fiber bundles, following

Atiyah [2, §4]. Again, let M be a smooth oriented 2d-dimensional manifold. Assume that

d is odd. Then Hd(M ;R) is of even dimension, say 2g.

Let E
π−−!X be an M -bundle. There is a real 2g-dimensional vector bundle ξ over X

(the Hodge bundle), with structure group Sp2g(R), whose fiber over x is the cohomology

group

ξx =Hd(π−1(x);R).

The structure group can be reduced to the maximal compact subgroup U(g)⊂Sp2g(R),

so we obtain a g-dimensional complex vector bundle η over X. We may consider the

‘Newton classes’

si(η)∈H2i(X).

The even classes vanish, s2i(η)=0. The odd classes agree with the pullbacks of the Borel

classes

s2i−1(η) = %∗(xi) (8.1)

along the map %:X!B Sp2g(Z).

Now, one may ask if there are any relations between the classes κc(π) and si(η).

This problem was addressed and solved by Morita [54, §2] in the case of surface bundles.

A similar treatment is possible in our situation. According to [2, equation (4.3)], we have

the relation

ch(η∗−η) =π!(L̃(TπE)) (8.2)

in the cohomology ofX. In the left-hand side, η∗ denotes the conjugate bundle, the formal

difference η∗−η is taken in K(X), and ch is the Chern character ch:K(X)!H∗(X;Q),

ch(η) = g+
∑
k>1

sk(η)

k!
.
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Since sk(η∗)=(−1)ksk(η), we may write the left-hand side of (8.2) as

ch(η∗−η) =−2
∑
k odd

sk(η)

k!
.

Turning to the right-hand side, if ξ is a real vector bundle over E of dimension 2d, then

L̃(ξ) = L̃(p1, ..., pd)

is the formal power series in the Pontryagin classes of ξ determined by

L̃(σ1, ..., σd) = f(t1) ... f(td),

where σi is the elementary symmetric polynomial in t21, ..., t
2
d of degree i, and f(t) is the

formal power series

f(t) =
t

tanh
(

1
2 t
) = 2

(
1+
∑
k>1

(−1)k−1 Bk
(2k)!

t2k
)
.

Here Bk are the Bernoulli numbers. Explicitly, the homogeneous term in L̃(ξ) of degree

n is given by

L̃n = L̃n(p1, ..., pn) = 2d
∑
I`n

λIsI(p1, ..., pn).

Here, the sum is over all partitions I=(i1, ..., ir) of n, and sI denotes the correspond-

ing polynomial in the elementary symmetric polynomials (see e.g. [53, p. 188]). The

coefficients are λI=λi1 ... λir , where

λk = (−1)k−1 Bk
(2k)!

.

We are assuming that d is odd, say d=2s+1. By comparing homogeneous terms in (8.2)

and using (8.1), we obtain the relation

−2
%∗(xi)

(2i−1)!
=κL̃i+s ∈H

4i−2(X;Q) (8.3)

for every i. It is easily seen that the class L̃i+s is proportional to the Hirzebruch L-class

Li+s (cf. [53, p. 224]). In fact, 22i−1L̃i+s=Li+s. Passing to the universal bundle, we may

conclude that the map

H∗(B Sp(Z);Q)−!H∗(BDiff∂(M∞,1);Q) (8.4)
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sends the Borel class xi to

− (2i−1)!

22i
κLi+s

for every i>1.

By Theorem 8.1, the set {κc :c∈B} generates the cohomology freely, where B is the

set of monomials c in the Pontryagin classes pd−1, pd−2, ..., pd(d+1)/4e and the Euler class

e of total degree |c|>2d. In particular, these classes are linearly independent. By [9],

every monomial c in the Pontryagin classes of degree 4i+4s appears with a non-zero

coefficient in Li+s. It is easily seen that Li+s will contain such monomials c belonging to

B: for example, if we write i=qs+r, where q and r are non-negative integers with r<s,

then c=pqsps+r belongs to B and appears with a non-zero coefficient in Li+s. It follows

that κLi+s is non-zero in H∗(BDiff∂(M∞,1);Q). Thus, we have proved the following

theorem, for d>3 odd.

Theorem 8.2. Let d>3. The map BDiff∂(M∞,1)!BΓ∞ is injective on indecom-

posables in rational cohomology.

The argument in the case when d is even is similar. The symplectic group Sp2g(R) is

replaced by the orthogonal group Og,g(R), and the complex vector bundle η is replaced by

two real vector bundles W+ and W−, as in [2]. According to [15], the stable cohomology

of the arithmetic group Og,g(Z) is a polynomial algebra in generators xi of degree 4i, for

i=1, 2, ... . The class xi may be chosen as the pullback of phi(W
+)−phi(W

−) under the

map

BOg,g(Z)−!BOg,g(R)−!BO(g)×BO(g),

where the last map is a homotopy inverse of the map BO(g)×BO(g)!BOg,g coming

from O(g)×O(g) being the maximal compact subgroup of Og,g. Then [2, equation (4.2)]

expresses the Pontryagin character ph(W+−W−) (i.e., the Chern character of the com-

plexification) in terms of κ-classes. As before, this can be used to show that the classes

xi are mapped to non-zero linear combinations of κ-classes.

8.4. The stable cohomology of homotopy automorphisms

Let

Xg =B aut∂(Mg,1),

and consider the homotopy colimit

X∞= hocolim(X1!X2!X3! ... ),
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taken over the stabilization maps described in §7.2. By Theorem 7.6, the canonical map

Xg!X∞ induces an isomorphism in rational cohomology

Hk(X∞;Q)−!Hk(Xg;Q)

for g>2k+4. The goal of this section is to prove the following theorem.

Theorem 8.3. Let d>3. There is an isomorphism of graded rings

H∗(X∞;Q)∼=H∗(Γ∞;Q)⊗H∗CE(g∞)Γ∞ . (8.5)

In the above theorem, Γ∞=colimg Γg and g∞=colimg gg. Recall that Γg denotes the

automorphism group of the quadratic module (Hg, µ, q) and that gg denotes the graded

Lie algebra Der+

ωg L(Vg), where Vg=sd−1Hg⊗Q.

As discussed earlier, Borel’s results [15] yield a computation of the left factor

H∗(Γ∞;Q).

In §9, we will show how to express the right factor H∗CE(g∞)Γ∞ in terms of graph ho-

mology.

The proof of Theorem 8.3 has several ingredients. Homological stability together

with Borel’s vanishing result (as manifested in Theorem 7.5) will allow us to conclude

that the universal cover spectral sequence for X∞ satisfies

Ep,q2
∼=Ep,02 ⊗E

0,q
2 .

Then, we will prove that the spectral sequence collapses at E2. We do this by showing

that the rational cohomology ring of X∞ is free and that the map X∞!BΓ∞ is injective

on indecomposables in rational cohomology. Recall that

X̃g =Xg,� =B aut∂,�(Mg,1).

Theorem 8.4. The natural map

Hp(Γg;Q)⊗Hq
CE(gg)

Γg −!Hp(π1(Xg);H
q(Xg,�;Q)),

is an isomorphism in the stable range g>2p+2q+4.

Proof. As in Proposition 7.10, there is an isomorphism

Hp(π1(Xg);H
q(Xg,�;Q))∼=Hp(Γg;H

q
CE(gg)), (8.6)
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compatible with the stabilization maps. Since Γg is rationally perfect, the functor

Hp(Γg;−) is exact on the category of finite-dimensional Q[Γg]-modules. In particu-

lar, since the Chevalley–Eilenberg complex C∗CE(gg) is finite-dimensional in each degree,

we may identify the right-hand side of (8.6) with the q-th cohomology of the cochain

complex Hp(Γg;C
∗
CE(gg)). By Lemma 7.2 we may identify CqCE(gg) with the value at

HQ
g of a polynomial functor of degree 62q. Hence, by Theorem 7.5 the natural map

Hp(Γg;Q)⊗CqCE(gg)
Γg −!Hp(Γg;C

q
CE(gg))

is an isomorphism for g>2p+2q+4. The claim follows by passing to cohomology in the

q direction and using (8.6).

Theorem 8.5. The cohomology algebra H∗(X∞;Q) is free graded commutative with

finitely many generators in each degree.

Proof. It follows from the homological stability theorem that the natural map

Hk(X∞;Q)−!Hk(Xg;Q)

is an isomorphism for g>2k+4. The latter group is finite-dimensional by Theorem 5.7.

This proves the claim about finite type. To show that the cohomology algebra is free, we

employ an argument similar to that of [51]. Let D2d denote the little 2d-disks operad.

There are maps

D2d(r)×Xg1
×...×Xgr −!Xg, g= g1+...+gr. (8.7)

Indeed, given a configuration of r little 2d-disks in a fixed 2d-disk, we may remove

their interiors and glue in the manifolds Mg1,1, ...,Mgr,1 in their place. The result is

homeomorphic to Mg,1. Given homotopy automorphisms of Mgi,1 that restrict to the

identity on the boundary, we can extend them to a homotopy automorphism of Mg,1 by

letting it be the identity outside the interiors of the removed disks. This construction

respects compositions, so it passes to classifying spaces, giving (8.7). The maps (8.7)

endow the disjoint union

X =
∐
g>0

Xg

with the structure of an E2d-space. By the recognition principle for iterated loop spaces

(cf. [46], [47]), the space X admits a group completion GX which is a 2d-fold loop space,

and it follows from the group completion theorem that there is a homology isomorphism

X∞!GX0, where GX0 denotes a connected component of GX (cf. [1, §3.2]). Since GX0

is a 2d-fold loop space, its rational cohomology is a graded commutative and cocommu-

tative Hopf algebra, so the same is true of the cohomology of X∞. By [52], this implies

that the cohomology algebra is free graded commutative.
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Theorem 8.6. The map X∞!BΓ∞ induces an injective homomorphism on inde-

composables in rational cohomology.

Proof. The claim follows immediately from Theorem 8.2, which states that the com-

posite map

BDiff∂(M∞,1)−!B aut∂(M∞,1)−!BΓ∞

induces an injective map on indecomposables in rational cohomology.

Proof of Theorem 8.3. We have H1(Xg;Q)=H1(Bπ1(Xg);Q)=0 for g>2, because

the group π1(Xg) is rationally perfect (see Proposition 7.8). Let (Xg)
+

Q and Bπ1(Xg)
+

Q
denote the rational plus constructions (see Appendix C) and let Tg be the homotopy

fiber of the map (Xg)
+

Q!Bπ1(Xg)
+

Q. We obtain a map of fibrations,

X̃g
//

��

Xg
//

��

Bπ1(Xg)

��

Tg // (Xg)
+

Q
// Bπ1(Xg)

+

Q,

and we may consider the induced map of cohomology spectral sequences E!
E with

Q-coefficients:

Ep,q2 =Hp(Bπ1(Xg)
+

Q;Hq(Tg)) and 
Ep,q2 =Hp(Bπ1(Xg);H
q(X̃g)).

By construction, the maps Ep,02 !

Ep,02 and Ep,q∞ !
Ep,q∞ are isomorphisms for all p

and q. We have that Ep,q2
∼=Ep,02 ⊗E

0,q
2 , because the spaces involved are simply connected.

In the spectral sequence 
E, we have cohomology with twisted coefficients, but it follows

from Theorem 8.4 that 
Ep,q2
∼=
Ep,02 ⊗
E

0,q
2 for all p and q in the stable range. The map

E!
E respects these isomorphisms, because they may be realized by taking cup products.

Thus, we are in position to apply Zeeman’s comparison theorem for spectral sequences;

we may conclude that

E0,q
2 −! 
E0,q

2

is an isomorphism for all q in the stable range. There results an isomorphism of graded

algebras

H∗(T∞;Q)∼=H∗(X̃∞;Q)Γ∞ . (8.8)

The stable cohomology of Bπ1(Xg)
+

Q agrees with the stable rational cohomology of the

group Γg, because π1(Xg) surjects onto Γg with finite kernel. Borel’s calculation of the

stable cohomology of arithmetic groups [15] tells us that the cohomology ring H∗(Γ∞;Q)

is free graded commutative. This, together with Theorems 8.5 and 8.6, shows that the
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hypotheses of Lemma 8.7 below are fulfilled, which yields an isomorphism of graded

algebras

H∗((X∞)+

Q) =H∗(Bπ1(X∞)+

Q)⊗H∗(T∞;Q).

The proof is finished by combining this with the isomorphism (8.8).

For an arbitrary fibration F!E!B, injectivity of the map H∗(B)!H∗(E) is not

enough to ensure collapse of the associated spectral sequence (see e.g. the discussion in

[50, pp. 148–149]). It is for this reason we need to know that the cohomology ring of X∞

is free. We use the following lemma. The proof is straightforward and left to the reader.

Lemma 8.7. Let F!E!B be a fibration of simply connected spaces of finite Q-

type. If the cohomology rings H∗(E;Q) and H∗(B;Q) are free graded commutative and

if H∗(B;Q)!H∗(E;Q) is injective on indecomposables, then there is an isomorphism

of graded algebras

H∗(E;Q)∼=H∗(F ;Q)⊗H∗(B;Q).

We remark that the isomorphism H∗(E;Q)∼=H∗(F ;Q)⊗H∗(B;Q) of Lemma 8.7

is not canonical but depends on the choice of splitting of the short exact sequence of

indecomposables

0−!QH∗(B;Q)−!QH∗(E;Q)−!QH∗(F ;Q)−! 0.

Similar remarks apply to the isomorphisms in Theorem 8.3 above and in Theorem 8.8

below, since Lemma 8.7 is used in the proof of these results.

8.5. The stable cohomology of the block diffeomorphism group

Let

Yg =B D̃iff∂(Mg,1),

and consider the homotopy colimit over the stabilization maps

Y∞= hocolim(Y1!Y2! ... ).

By Theorem 7.12, the canonical map Yg!Y∞ induces an isomorphism in rational coho-

mology Hk(Y∞;Q)∼=Hk(Yg;Q) for g>2k+4.

Theorem 8.8. For d>3, there is an isomorphism of graded rings

H∗(Y∞;Q)∼=H∗(BΓ∞;Q)⊗H∗CE(g∞⊕a∞)Γ∞ .

The two graded Lie algebras to the right are the colimits as g!∞ of

gg = Der+

ω L(Vg) and ag = s−1Π⊗HQ
g ,

where ag is abelian. They are equipped with the evident action of Γg.
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Proof. Recall the notation from §7.3. As follows from the results in that section, we

have a π1(Xg,J)-equivariant isomorphism

H∗(Yg,�;Q)∼=H∗(Xg,�;Q)⊗H∗(Fg;Q),

and we may rewrite the right-hand side in terms of Chevalley–Eilenberg cohomology:

H∗(Xg,�;Q)⊗H∗(Fg;Q)∼=H∗CE(gg)⊗H∗CE(ag)∼=H∗CE(gg⊕ag).

Since the kernel of π1(Xg,J)!Γg is finite, we may then write the E2-term of the spectral

sequence of (7.4) as follows:

Ep,q2 =Hp(π1(Xg,J);Hq(Yg,�;Q))∼=Hp(Γg;H
q
CE(gg⊕ag)).

In the stable range, g>2p+2q+4, we have that

Hp(Γg;H
q
CE(gg⊕ag))∼=Hp(Γg)⊗Hq

CE(gg⊕ag)Γg .

This follows from the argument that proves Theorem 8.4, by noticing that the Chevalley–

Eilenberg cochains CqCE(gg⊕ag) is a polynomial functor of degree >2q. The rest of the

argument is virtually identical to the proof of Theorem 8.3, using the fibration diagram

Yg,� //

��

Yg //

��

Bπ1(Xg,J)

��

Tg // (Yg)
+

Q
// Bπ1(Xg,J)+

Q.

The fact that H1(Yg;Q)=0, which is necessary for the construction of (Yg)
+

Q, can be

verified by using the spectral sequence of the fibration Fg!Yg!Xg,J . Indeed, first note

that H1(Xg,J ;H0(Fg;Q))=H1(π1(Xg,J);Q)=0, since Γ̂g=π1(Xg,J) is rationally perfect

(Proposition 7.13). Secondly, Proposition 7.15 implies that H1(Fg;Q)=(HQ
g )∨ for d≡3

(mod 4) and H1(Fg;Q)=0 for d 6≡3 (mod 4), as Γ̂g-modules, from which it follows that

H0(Xg,J ;H1(Fg;Q)) =H1(Fg;Q)Γ̂g = 0.

9. Graph complexes

In the previous section, we arrived at the following description of the stable cohomology

of the classifying spaces Xg=B aut∂(Mg,1) and Yg=B D̃iff∂(Mg,1):

H∗(X∞;Q)∼=H∗(Γ∞;Q)⊗H∗CE(g∞)Γ∞ ,

H∗(Y∞;Q)∼=H∗(Γ∞;Q)⊗H∗CE(g∞⊕a∞)Γ∞ ;
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cf. Theorems 8.3 and 8.8. As discussed earlier, the first factor H∗(Γ∞;Q) is isomorphic

to a polynomial algebra Q[x1, x2, ... ] on classes xi of degree 4i−2 if d is odd and 4i if d

is even.

In this section, we will examine the second factors. We will show how to express

the invariant Lie algebra cohomology in terms of graph complexes. For the proof, it

will be convenient to work dually with homology and coinvariants. Since the Chevalley–

Eilenberg complex CCE
∗ (gg) is a chain complex of finite-dimensional algebraic represen-

tations, the coinvariants HCE
∗ (gg)Γg may be computed as the homology of the chain com-

plex CCE
∗ (gg)Γg . Indeed, as observed e.g. in the proof of Proposition 7.11, if g>2 then

CCE
∗ (gg) is chain homotopy equivalent to HCE

∗ (gg) as a complex of Q[Γg]-modules, and

any additive functor, such as (−)Γg , preserves chain homotopy equivalences. Similarly,

HCE
∗ (gg⊕ag)Γg may be computed as the homology of the chain complex CCE

∗ (gg⊕ag)Γg .

Recall the notation

gg = Der+

ω L(Vg) and ag = s−1Π⊗Hg.

Let G denote the graph complex associated with the Lie operad, as described in the

introduction, and let

G d = Σd−1G .

The following is the main result of the section.

Theorem 9.1. There are isomorphisms of chain complexes

CCE
∗ (g∞)Γ∞

∼= ΛG d(0),

CCE
∗ (g∞⊕a∞)Γ∞

∼= ΛG d[Π].

Remark 9.2. For d odd, the first statement is essentially equivalent to a theorem of

Kontsevich [39], [38], a proof of which has been detailed in [22]. The proof offered here

is new. It has the advantage that it rediscovers Kontsevich’s graph complex, no prior

construction of the graph complex is necessary. For d even, it is not a priori clear—not

to the authors at any rate—that one would expect the same result; for one thing, the Lie

algebra gg is different from Kontsevich’s Lie algebra when d is even since, e.g., [α, α] 6=0

for an odd generator α of a free graded Lie algebra. Curiously, this difference is canceled

in the course of the proof due to the difference between symplectic invariant theory and

orthogonal invariant theory.

9.1. Σ-modules

Let Σ denote the groupoid of finite sets and bijections. A (left) Σ-module in a category V
is a functor C : Σ!V. A right Σ-module is a functor D : Σop!V. Every right Σ-module
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D can be converted into a left Σ-module Dop by letting Dop(S)=D(S) for a finite set S

and

Dop(σ) = D(σ−1): D(S)−!D(T )

for a bijection σ:S!T ; we will do this tacitly in what follows. For n>1 we write C (n)

for C ({1, 2, ..., n}), and we set C (0)=C (∅).

Now assume that the target category V is symmetric monoidal and has all colimits.

Given an object V in V and a finite set S, let

S⊗V =
⊕
s∈S

V.

We may also form the S-indexed tensor product

V ⊗S =
⊗
s∈S

V.

For V fixed, −⊗V may be regarded as a left Σ-module and V ⊗− as a right Σ-module.

Let (Σ#Σ) denote the category whose objects are functions f :S!T between finite

sets and whose morphisms are commutative squares

S ∼=
σ //

f

��

S′

f ′

��

T ∼=
τ // T ′,

where the horizontal maps are bijections. For a fixed finite set S, let (S#Σ) denote the

subcategory of (Σ#Σ), where σ=idS . In other words, the objects of (S#Σ) are functions

between finite sets f :S!T and the morphisms are commuting triangles

S
f

//

f ′
��

T
∼=

τ
��

T ′,

where τ is a bijection.

Every Σ-module C gives rise to a functor (Σ#Σ)!V, defined on objects by(
S

f−−!T
)
7−!C (f) :=

⊗
t∈T

C (f−1(t)).

Recall the composition product of Σ-modules (monoids over which are operads): the

composition of two Σ-modules C and D is the Σ-module C �D , whose value on a finite

set S is given by

(C �D)(S) = colim
f :S!T

C (T )⊗D(f),
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where the colimit is over the category (S#Σ).

The levelwise tensor product C⊗D is defined by

(C⊗D)(S) = C (S)⊗D(S),

where Σ acts diagonally.

The Schur functor associated with a Σ-module C is the functor C [−]:V!V defined

by

C [V ] = colim
S∈Σ

C (S)⊗V ⊗S ∼=
⊕
n>0

C (n)⊗ΣnV
⊗n.

The main feature of the composition product is the existence of a natural isomorphism

C [D [V ]]∼= (C �D)[V ].

9.2. Invariant theory and matchings

Definition 9.3. A matching on a set S is a set M of disjoint 2-element subsets whose

union is all of S. Let MS denote the set of all matchings on the set S.

If σ:S!T is a bijection, then for every matching M∈MS there is an induced

matching σ∗(M)∈MT given by

σ∗(M) = {{σ(x), σ(y)} : {x, y}∈M}.

In this way, M may be viewed as a covariant functor Σ!Set.

Remark 9.4. Note that MS=∅ if the number of elements |S| of S is odd. If |S| is

even, say |S|=2k, then

|MS |= (2k−1)!! = 1·3·5·...·(2k−1).

If X is a set, we let QX denote the graded vector space with basis X concentrated

in degree zero, and we let X∨ denote the dual of QX. If V is a graded vector space,

then we let X⊗V denote QX⊗V . Let sgnn denote the sign representation of Σn, i.e.,

sgnn=Q with action of σ∈Σn given by multiplication by the sign sgn(σ) of σ. If V is a

graded vector space, x1, ..., xn∈V , x=x1⊗...⊗xn∈V ⊗n, and σ∈Σn, then we let sgn(σ, x)

denote the sign for which

(x1⊗...⊗xn)σ= sgn(σ, x)xσ1
⊗...⊗xσn ,

with respect to the standard right action of Σn on the graded vector space V ⊗n.
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Theorem 9.5. Let V be a graded anti-symmetric inner product space of degree

2d−2, concentrated in degree d−1. Consider the pairing

〈−,−〉:M2k⊗V ⊗2k −! sgn2k

defined by

〈M,x1⊗...⊗x2k〉= sgn(σ) sgn(σ, x)〈xσ1
, xσ2
〉 ... 〈xσ2k−1

, xσ2k
〉,

for M={{σ1, σ2}, ..., {σ2k−1, σ2k}}∈M2k. This pairing gives rise to morphisms of Σ2k-

modules of degree −2k(d−1),

ϕ:M2k⊗sgn2k −!HomSp(V )(V
⊗2k,Q), ϕ(M)(x) = 〈M,x〉,

ψ:(V ⊗2k)Sp(V )−!M2k⊗sgn2k, ψ([x]) =
∑

M∈M2k

〈M,x〉M.

The morphism ϕ is surjective and the morphism ψ is injective. Both ϕ and ψ are

isomorphisms if dimV >2k.

Proof. First of all, note that the pairing is well defined, because (V, 〈−,−〉) is graded

anti-symmetric and of even degree. As the reader may check, the pairing is Σn-equivariant

is the sense that

〈τ∗(M), τx〉= sgn(τ)〈M,x〉,

for all τ∈Σ2k.

Suppressing the grading, V is in effect a symplectic vector space for d odd, and

a symmetric inner product space for d even. The statements about ϕ are essentially a

summary of the first and second fundamental theorems for the symplectic and orthogonal

groups; see [42, §9.5]. Note that QM2k is isomorphic to the Σ2k-representation denoted

Ak in [42]. The sign representation factor is not present in the fundamental theorem for

the orthogonal group ([42, Theorem 9.5.2]), but it reappears due to the fact that, when

d is even, elements of V are of odd degree d−1, which means that signs appear when

tensor factors are permuted.

Turning to ψ, note that (V ⊗2k)Sp(V ) is dual to HomSp(V )(V
⊗2k,Q), up to a degree

shift by 2k(2d−2). Note also that the Σ2k-module QM2k is self-dual. Indeed, a Σ2k-

equivariant isomorphism θ:QM∨2k!QM2k is given by

θ(f) =
∑

M∈M2k

f(M)M.
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The map ψ is the composite

(V ⊗2k)Sp(V )
η−−! ((V ⊗2k)Sp(V ))

∨)∨
ϕ∨−−−! (M2k⊗sgn2k)∨∼=M∨2k⊗sgn2k

θ⊗1−−−−!M2k⊗sgn2k,

where η is the canonical isomorphism from a finite-dimensional graded vector space to

its double dual.

Corollary 9.6. Suppose that v=dimV >2k. Let e1, e2, ..., ev be a basis for V , and

let

e= e1⊗e#
1 ⊗e2⊗e#

2 ⊗...⊗ek⊗e
#
k ∈V

⊗2k.

Then, the coinvariants (V ⊗2k)Sp(V ) has basis

[eσ−1], σ ∈C2k,

where C2k⊆Σ2k is the set of permutations σ such that σ1<σ3<...<σ2k−1 and σ2i−1<σ2i

for all i.

Proof. Let E denote the matching {{1, 2}, {3, 4}, ..., {2k−1, 2k}}∈M2k. There is a

bijection C2k!M2k given by

σ 7−!σ∗(E) = {{σ1, σ2}, {σ3, σ4}, ..., {σ2k−1, σ2k}}.

Hence, the Σ2k-module M2k⊗sgn2k has basis σ∗(E) for σ∈C2k. The isomorphism

ψ: (V ⊗2k)Sp(V )!M2k⊗sgn2k is such that

ψ[e] =E,

whence ψ[eσ−1]=sgn(σ)σ∗(E), because ψ is Σ2k-equivariant. It follows that [eσ−1], for

σ∈C2k is a basis for (V ⊗2k)Sp(V ), as claimed.

Remark 9.7. We note for future reference that, in particular, (V ⊗2k)Sp(V ) is spanned

by elementary tensors, meaning elements of the form [(e1⊗e#
1 ⊗e2⊗e#

2 ⊗...⊗ek⊗e
#
k )σ]

for some σ∈Σ2k.

Let V denote the category of graded vector spaces over Q, and let Sp=Sp2d−2
d−1

denote the category of graded anti-symmetric inner product spaces of degree 2d−2,

concentrated in degree d−1. For an Sp-module (i.e., a functor) M : Sp!V, we define the

‘Sp-coinvariants’ by

MSp = colim
V ∈Sp

M(V ).
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Informally, the coinvariants MSp may be thought of as the value of M(V )Sp(V ) as the

dimension of V tends to infinity. There is an Sp-Σ-bimodule given by

Sp×Σ−!V,

(V, S) 7−!V ⊗S .

Using Sp-coinvariants, Theorem 9.5 admits the following elegant formulation.

Corollary 9.8. There is an isomorphism of Σ-modules

(V ⊗S)Sp
∼= s|S|(d−1)MS⊗sgnS .

9.3. The graph complex

Definition 9.9. A graph G=
(
F

f−!V,E
)

consists of a set F of flags or half-edges, a

set V of vertices, a function f :F!V , and a matching E on F , elements of which are

thought of as the edges of the graph.

An isomorphism of graphs G!G′ is a pair of bijections σ:F!F ′ and τ :V!V ′ that

commute with the structure maps,

F ∼=
σ //

f

��

F ′

f ′

��

V ∼=
τ // V ′,

and preserve edges, in the sense that σ∗(E)=E′. Let G raph denote the groupoid of

graphs and their isomorphisms.

The valence of a vertex v∈V is the cardinality of the set f−1(v). The Euler charac-

teristic of a graph is defined by χ(G)=|V |−|E|.
Every Σ-module C gives rise to a functor C : G raph!V, whose value at a graph

G=
(
F

f−!V,E
)

is

C (G) = C (f) =
⊗
v∈V

C (f−1(v));

cf. [32, (2.12)].

Definition 9.10. For a Σ-module C , define the space of C -decorated graphs by

G dC = colim
G∈G raph

s|V |−χ(G)(2d−2) sgnV ⊗ sgnF ⊗C (G)

∼=
⊕
[G]

s|V |−χ(G)(2d−2)(sgnV ⊗ sgnF ⊗C (G))Aut(G),

where the colimit is over the groupoid of graphs G raph, and the sum is over all isomor-

phism classes [G] of graphs.
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The reader may compare this with [32, equation (2.18)]. Thus, G dC is spanned by

oriented graphs whose vertices are decorated by elements of C . To specify a C -decorated

graph, one needs to supply the data of

• a graph G=
(
F

f−!V,E),

• an orientation of the vertices and an orientation of the flags, and

• for each vertex v∈V , an element ξv∈C (f−1(v)).

The homological degree of a decorated graph is |V |−χ(G)(2d−2) (plus the homo-

logical degrees of the decorations ξv, in case C is equipped with a grading). For d=1,

the space G C is isomorphic to the space of ‘C -graphs’ [22]. For d>1, G dC is sim-

ply a regraded version of G 1C . If C is a cyclic operad, then there is a differential

∂: G dCk!G dCk−1, defined as a sum over edge contractions; see e.g. [22] for a detailed

description.

9.3.1. Colimits over Grothendieck constructions

Let I be a category and F : I!Cat be a functor from I to the category of small categories.

The Grothendieck construction I
∫
F is the category whose objects are pairs (i, x), where

i is an object of I and x is an object of F (i). A morphism (i, x)!(j, y) in I
∫
F is a pair

(f, g), where f : i!j is a morphism in I and g:F (f)(x)!y is a morphism in F (j). There

are evident functors

F (i)
ιi−−! I

∫
F

π−−! I.

Consider a functor D: I
∫
F!V to some category V with all colimits. For a fixed i,

we get a functor Dιi=D(i,−):F (i)!V, and we may form its colimit

colim
x∈F (i)

D(i, x).

As i varies, these colimits assemble into a functor from I to V, and we may form its

colimit

colim
i∈I

colim
x∈F (i)

D(i, x).

On the other hand, we may form the colimit of D over I
∫
F . It is an exercise to check

that the results are canonically isomorphic. For reference, we state this as a proposition.

Proposition 9.11. For every diagram D: I
∫
F!V, indexed by the Grothendieck

construction of a functor F : I!Cat, there is a canonical isomorphism

colim
(i,x)∈I

∫
F
D(i, x)∼= colim

i∈I
colim
x∈F (i)

D(i, x).
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We will apply this observation twice in the proof of Theorem 9.12 below.

There is a functor (−#Σ): Σ!Cat sending a finite set S to the category (S#Σ). The

Grothendieck construction Σ
∫

(−#Σ) and the comma category (Σ#Σ) are isomorphic as

categories over Σ.

Next, we observe that the groupoid G raph is equal to the Grothendieck construction

(Σ #Σ)

∫
M,

where M: (Σ#Σ)!Cat is the functor that sends an object f :S!T to the set MS of

matchings on the source, viewed as a category with only identity morphisms.

Recall that Sp=Sp2d−2
d−1 denotes the category of graded anti-symmetric inner product

spaces of degree 2d−2 concentrated in degree d−1. Taking cue from Proposition 6.6, we

associate with every Σ-module C an Sp-module V 7!C ((V )), where

C ((V )) = s2−2d
⊕
n>0

C (n)⊗ΣnV
⊗n.

Theorem 9.12. There is a canonical isomorphism

ΛsC ((V ))Sp
∼= G dC .

Proof. The functor V 7!ΛsV may be identified with the Schur functor associated to

the Σ-module Λs, with Λs(T )=s|T | sgnT for a finite set T . In particular,

ΛsC ((V ))∼= (Λs�C )[V ]

= colim
S∈Σ

(Λs�C )(S)⊗V ⊗S

= colim
S∈Σ

(
colim
f :S!T

Λs(T )⊗C ((f))
)
⊗V ⊗S

∼= colim
f :S!T∈(Σ#Σ)

Λs(T )⊗C ((f))⊗V ⊗S ,

where we have used Proposition 9.11 in the last step. Since colimits commute with

colimits and tensor products we get

ΛsC [V ]Sp
∼= colim
f :S!T∈(Σ#Σ)

Λs(T )⊗C ((f))⊗(V ⊗S)Sp

∼= colim
f :S!T∈(Σ#Σ)

Λs(T )⊗C ((f))⊗s|S|(d−1)MS⊗sgnS ,

where we use Corollary 9.8 in the last step. Viewing the setMS as a category with only

identity morphisms, we may rewrite the above expression as

colim
f :S!T∈(Σ#Σ)

colim
M∈MS

s|S|(d−1)Λs(T )⊗C ((f))⊗sgnS .
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As noted above, the groupoid G raph is isomorphic to the Grothendieck construction

(Σ #Σ)

∫
M.

Remembering that Λs(T )=s|T | sgnT , another application of Proposition 9.11 (and a

change of notation V =T , F=S) then shows that the above colimit is isomorphic to

colim
G∈G raph

s(3−2d)|V |+|F |(d−1) sgnV ⊗ sgnF ⊗C (G),

which is equal to G C by definition; note that

(3−2d)|V |+|F |(d−1) = |V |−(2d−2)χ(G).

Remark 9.13. Note how the groupoid of graphs emerges through successive assembly

of colimits in the proof of the previous theorem, in effect allowing us to rediscover both

the groupoid of graphs and the space of C -graphs. Similarly, in the next theorem we will

rediscover the graph complex differential.

If C is a cyclic operad, then the formula (6.7) endows C ((V )) with the structure of

a graded Lie algebra, and we may form the Chevalley–Eilenberg complex

CCE
∗ (C ((V ))) = (ΛsC ((V )), dCE).

Theorem 9.14. If C is a cyclic operad, then the isomorphism in Theorem 9.12

commutes with differentials, yielding an isomorphism of chain complexes

CCE
∗ (C ((V )))Sp

∼= (G dC , ∂).

Proof. It follows from Corollary 9.6 that the graded vector space

ΛnsC ((V ))Sp(V )

is spanned by Sp(V )-orbits of elements of the form

ξ1⊗h1∧...∧ξn⊗hn, ξj ∈C (ij), hj ∈V ⊗ij , (9.1)

such that h1⊗...⊗hn∈V ⊗2k is an elementary tensor, i.e., of the form

h1⊗...⊗hn = (e1⊗e#
1 ⊗e2⊗e#

2 ⊗...⊗ek⊗e
#
k )σ−1,

for some σ∈C2k.
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Tracing through the isomorphism ΛsC ((V ))Sp(V )
∼=G dC of Theorem 9.12, the class

of the element (9.1) may be represented by the decorated graph, whose underlying graph

G=
(
F

f−!V,E
)

has vertices V ={h1, h2, ..., hn}, flags F={e1, e
#
1 , ..., ek, e

#
k }, edges E=

{{e1, e
#
1 }, ..., {ek, e

#
k }}, and where f :F!V is given by f(e)=hj if e appears as a tensor

factor in hj . The vertex hi is decorated by the element ξi, the orientation of the vertices

is h1∧...∧hn and the orientation of the flags is determined by σ.

Towards describing the Chevalley–Eilenberg differential applied to (9.1), recall that

the formula (6.7) defines the Lie bracket of two elements ξs⊗hs and ξt⊗ht in C ((V )):

[ξs⊗hs, ξt⊗ht] =
∑
i,j

(ξs)i�j (ξt)⊗(hs)i�j (ht).

Since h1⊗...⊗hn is an elementary tensor, the only possibility for (hs)i�j (ht) to be non-

zero is if the ith tensor factor of hs is er and the jth factor of ht is e#
r , or vice versa, for

some r. In other words, (hs)i�j (ht) is non-zero only if the vertex hs is connected to ht

by an edge {er, e#
r } in the graph G. Bearing this observation in mind, the expression for

the Chevalley–Eilenberg differential,

dCE(ξ1⊗h1∧...∧ξn⊗hn) =∑
s<t

±[ξs⊗hs, ξt⊗ht]∧ξ1⊗h1∧... ξ̂s⊗hs ... ξ̂t⊗ht ...∧ξn⊗hn,

may be simplified: Since h1⊗...⊗hn is an elementary tensor, we may instead sum over

all edges in G. Indeed, for each edge {er, e#
r }, there are unique s, t, i and j such that

the ith factor of hs is er and the jth factor of ht is e#
r . So, the above expression may be

written as
k∑
r=1

±(ξs)i�j (ξt)⊗(hs)i�j (ht)∧ξ1⊗h1∧... ξ̂s⊗hs ... ξ̂t⊗ht ...∧ξn⊗hn.

The rth summand in the above expression corresponds to the decorated graph obtained

by contracting the edge {er, e#
r } in the decorated graph we started with. So, we have

rediscovered Kontsevich’s graph complex differential.

The proof of Theorem 9.1 consists in two applications of Theorem 9.14. By Propo-

sition 6.6, the graded Lie algebra gg=Der+

ωg L(Vg) is isomorphic to the Lie algebra asso-

ciated with the cyclic operad L ie. Thus,

CCE
∗ (g∞)Γ∞

∼=CCE
∗ (L ie((V )))Sp

∼= G d L ie .

The graph complex in the introduction involves only connected graphs, whereas discon-

nected graphs are allowed in the definition of G dL ie. By interpreting a disconnected

graph as a formal product of its connected components, one sees that

G dL ie∼= ΛG d(0).
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Secondly, the graded Lie algebra gg⊕ag is isomorphic to the Lie algebra associated to

the cyclic operad L ieΠ with

L ieΠ((n)) =

{
L ie((n)), if n> 3,

sd−2Π, if n= 1.

The ‘hairy graph complex’ ΛG d[Π] is easily seen to be isomorphic to G dL ieΠ.

Appendix A. Cohomology of arithmetic groups

The automorphism groups Aut(H,µ, q) and Aut(H,µ, Jq) associated with a quadratic

module (H,µ, q) are arithmetic. We will summarize the results on the cohomology of

arithmetic groups that we need. We refer to Serre’s survey article [63], and the references

therein, for more details.

Theorem A.1. Let G be an algebraic group defined over Q, let Γ be an arithmetic

subgroup of GQ, and let V be a finite-dimensional Q-vector space with an action of Γ.

Then, the following statements hold :

(1) The cohomology groups Hk(Γ;V ) are finite-dimensional.

(2) If G is simple and of Q-rank at least 2, then the first cohomology group vanishes:

H1(Γ;V ) = 0.

Proof. If Γ is torsion-free, then the first claim follows from the fact that the trivial

Z[Γ]-module Z admits a finite-length resolution by finitely generated free Z[Γ]-modules.

For general Γ, there exists a torsion-free subgroup Γ′⊆Γ of finite index, and the claim

follows because Hk(Γ;V ) may be identified with the set of Γ-invariants in Hk(Γ′;V ) by

a transfer argument (see e.g., [17, Proposition III.(10.4)]).

If G is simple and of Q-rank at least 2, every finite-dimensional representation V of

Γ is almost algebraic (see [63, §1.3 (9)]). This means that there is a finite-index subgroup

Γ′⊆Γ such that the restriction of V to Γ′ is the restriction of an algebraic representation

of the algebraic group G. This implies that the first cohomology group H1(Γ;V ) vanishes,

as in [4, Corollary 16.4].

Appendix B. Some elementary homological algebra

We will consider Z-graded chain complexes over an associative ring R, e.g., R=Q[π] for

a group π.
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A chain complex C∗ is called split if there are maps sn:Cn!Cn+1 such that dsd=d.

Equivalently, there is a chain homotopy equivalence between C∗ and the homologyH∗(C),

viewed as a chain complex with trivial differential.

Lemma B.1. If C∗ is a split chain complex, then there is a chain homotopy equiv-

alence

C∗ pC

' // H∗(C)

such that pC(z)=[z] if z is a cycle.

If f :C∗!D∗ is a chain map between split chain complexes (not necessarily compat-

ible with the splittings), then the diagram

C∗
f

//

pC

��

D∗

pD

��

H∗(C)
H∗(f)

// H∗(D)

commutes, up to chain homotopy.

Proof. Let s:C∗!C∗+1 satisfy dsd=d. The reader may check that the formulas

C∗
p
//

h ;; H∗(C)
∇
oo

p(x) = [x−sd(x)], ∇[z] = z−ds(z) and h= s−s2d

give well-defined maps that satisfy

p∇= 1 and 1−∇p= dh+hd.

Clearly, p(z)=[z] if z is a cycle.

Next, consider a chain map f :C∗!D∗ between split chain complexes. Since

pC(z) = [z]

for cycles z, we have that ∇C [z]=z−dh(z). Therefore,

pDf∇C [z] = pDf(z−dh(z)) = pD(f(z)) = [f(z)],

showing that

pDf∗∇C =H∗(f).

Hence,

H∗(f)pC = pDf∗∇CpC ' pDf.
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Lemma B.2. A chain complex C∗ is split if and only if the short exact sequences

0−!Zn−!Cn
dn−!Bn−1−! 0,

0−!Bn−!Zn−!Hn−! 0

are split exact for all n. Here, Zn=ker(dn), Bn−1=im(dn), and Hn=Hn(C∗).

Definition B.3. We will say that a group π is rationally perfect if H1(π;V )=0 for

all finite-dimensional vector spaces V over Q with an action of π.

Lemma B.4. A group π is rationally perfect if and only if

Ext1
Q[π](W,V ) = 0

for all finite-dimensional vector spaces V and W over Q with an action of π.

Proof. Use the relation

Ext1
Q[π](W,V )∼=H1(π; HomQ(W,V )).

Proposition B.5. Let π be a rationally perfect group. If C∗ is a chain complex of

Q[π]-module such that Cn is finite-dimensional over Q for every n, then C∗ is split.

Proof. If Cn is finite-dimensional over Q for all n, then so are Zn, Bn and Hn. Since

π is rationally perfect, the Ext-groups Ext1
Q[π](Hn, Bn) and Ext1

Q[π](Bn−1, Zn) vanish for

all n, which forces C∗ to split by Lemma B.2.

Appendix C. A Q-local plus construction

Let X be a connected space of finite Q-type such that H1(X;Q)=0. Then X admits a

minimal Sullivan model MX of finite type with generators in degree 2 and above; see e.g.,

[25, Proposition 12.2]. The spatial realization |MX | is then a simply connected Q-local

space of finite Q-type. Moreover, the canonical map X!|MX | is a rational cohomology

isomorphism. One may view |MX | as a Q-local version of the plus construction, and we

will denote it by X+

Q . In fact, if the fundamental group of X is perfect, i.e., H1(X;Z)=0,

then X+

Q is a Q-localization of the ordinary plus construction. Note however that the

rational plus construction has a wider range of applicability, as it does not require the

fundamental group to be perfect.
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Appendix D. Proof of Theorem 4.18

For a vector bundle ξ over a finite CW-complex X with a closed subspace C⊆X, we

defined in §4.3 the ∆-monoid S̃
�
autC(ξ) and its stable version S̃

�
autC(ξS). There is an

obvious forgetful map

π̃: S̃
�
autC(ξS)−!S

�
autC(X).

Lemma D.1. The map

π̃: S̃
�
autC,�(ξ

S)−!S
�
autC,�(X)

satisfies the Kan condition.

Proof. Given a diagram

Λk

��

F // autC,�(Rk−1×ξ)

��

∆k f
// autC,�(X)

that displays (f, F ) as a horn in S̃k−1 autC,�(ξ), we seek to extend it to an element

(f, F̃ ) of S̃k autC,�(ξ), provided dim ξ−dimX−1>k. Since we stabilize, we may assume

dim ξ−dimX�k. We treat the case of the kth horn, i.e., Λk is the union of the faces

di∆
k=di(∆k−1) for i=0, 1, ..., k−1. The cases of the other horns are similar. Let Fi be

the restriction of F to di∆
k, so that

dνFµ = dµ−1Fν , 06 ν <µ6 k−1.

In §4.3 we introduced the isomorphism φµ:R×Rk−1!Rk, and we let

(φµ)#: autC,�(Rk−1×ξ)−! autC,�(Rk×ξ)

be the map

(φµ)#(F ) =φµ(idR×F )φ−1
µ .

Then, F ′µ=(φµ)#(Fµ) is a map from dµ∆k into autC,�(Rk×ξ), and these morphisms fit

together to define a diagram

Λk

��

F ′ // autC,�(Rk×ξ)

��

∆k f
// autC,�(X).
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Indeed, dν∆k∩dµ∆k=dνdµ∆k=dµ−1dν∆k when ν<µ, and since

(φν)#(φµ)# = (φµ−1)#(φν)#: autC,�(Rk−2×ξ)−! autC,�(Rk×ξ),

it follows that F ′ν and F ′µ agree on dν∆k∩dµ∆k.

As in the proof of Lemma 4.9, we may apply [66, §11.3] to extend (f, F ′) to (f, F ′′)

with

∆k×Rk×ξ

��

F ′′ // Rk×ξ

��

∆k×X
f

// X.

Off hand there is no reason to expect that F ′′ maps the kth face of ∆k into

(φk)# autC,�(Rk−1×ξ),

which is required for (f, F ′′) to define a k-simplex of S̃
�
autC,�(ξ). But we can adjust F ′′,

using that

(φk)#: autC,�(Rk−1×ξ)−! autC,�(Rk×ξ)

is highly connected when dim ξ−dimX�k; cf. Proposition 4.12. The boundary (k−2)-

sphere ∂(dk∆k) is contained in ∂(Λk) and the diagram

dk∆k

&&

F ′′ // autC,�(Rk×ξ)

∂(dk∆k−1)

OO

F ′ // autC,�(Rk−1×ξ)

(φk)#

OO

represents an element of πk−1((φk)#), which with our assumption on dim ξ is the zero

group. Hence, F ′′ deforms to a map from dk∆k into autC,�(Rk−1×ξ) and using a collar

to absorb the deformation, we have obtained the required k-simplex of S̃
�
autC,�(ξ).

We remember that S̃
�
autC,�(ξ

S) is the colimit of S̃
�
autC,�(ξ

s), ξs=ξ×Rs, as s!∞.

The condition dim ξs−dimX>k is satisfied for large s, because X was assumed to be a

finite CW -complex.

The map that sends (f, f̂)∈autC,�(ξ) into (f, id×f̂)∈autC,�(Rk×ξ) induces a map

from Sk autC,�(ξ) to S̃k autC,�(ξ) and gives rise to the ∆-map

α
�
:S

�
autC,�(ξ

S)−! S̃
�
autC,�(ξ

S).

Both ∆-sets are Kan ∆-sets; for the target, this is a consequence of Lemma D.1. Hence,

the homotopy groups of their geometric realizations may be calculated from the combi-

natorial homotopy groups.
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Lemma D.2. πk(α
�
) is an isomorphism.

Proof. Assuming dim ξ−dimX�k,

πk(S̃
�
autC,�(ξ)) =Zk(S̃

�
autC,�(ξ))/∼

where

Zk(S̃
�
autC,�(ξ)) = {F ∈ S̃k autC,�(ξ) : dµF = id, µ= 0, ..., k},

and where F1∼F2 if there exists a G∈S̃k+1 autC,�(ξ) with dkG=F1, dk+1G=F2 and

dµG=0 for µ<k. If

F : ∆k −! autC,�(Rk×ξ)

is an element of Zk(S̃
�
autC,�(ξ)), then

F �dµ =φµ�(id×dµF )�φ−1
µ , µ= 0, ..., k,

and since dµF=id, we may view F as a map

F : (Sk, ∗)−! autC,�(Rk×ξ).

We claim that two such maps represent the same element of πkS̃�
autC,�(ξ) if and only

if they are homotopic as maps into autC,�(Rk+1×ξ). To wit, write ∆k+1 as the join

of the (k−1)-simplex 〈v0, ..., vk−1〉=dkdk+1∆k+1 and the 1-simplex 〈vk, vk+1〉, where

{v0, ..., vk+1} is the set of vertices of ∆k+1. The family of simplices

〈v0, ..., vk−1〉∗{tvk+(1−t)vk+1 : 06 t6 1}

turns the above

G: ∆k+1−! autC,�(Rk+1×ξ)

into a map

G: (Sk, ∗)×I −! autC,�(Rk+1×ξ)

related to F1 and F2 via the diagram

(Sk, ∗)×{1}

��

F2 // autC,�(Rk×ξ)

(φk+1)#

��

(Sk, ∗)×I G // autC,�(Rk+1×ξ)

(Sk, ∗)×{0}

OO

F1 // autC,�(Rk×ξ).

(φk)#

OO
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Since we are assuming that dim ξ−dimX�k,

autC,�(ξ)−! autC,�(Rk+1×ξ)

is a (k+1)-equivalence. Consequently, F1, F2 and G can be viewed as maps into autC,�(ξ)

with G being a homotopy between F1 and F2. This completes the proof.

Corollary D.3. The geometric realization of S̃
�
autC,�(ξ

S) is homotopy equivalent

to the topological monoid autC,�(ξ
S).

Remark D.4. It was pointed out in [18, Appendix 1, §3] that the ∆-group D̃iff∂(M)
�

is in fact a simplicial group. In our formulation, the degeneracy operator

sλ: D̃iff∂(M)k −! D̃iff∂(M)k+1

maps a k-simplex (ϕ,ψ) into (sλ(ϕ), sλ(ψ)), where

sλ(ψ)(x, y) =ψ(sλx, y)

and where sλ(ϕ)(x, y)∈∆k+1 has components

sλ(ϕ)i(x, y) =ϕi(s
λ(x), y), 16 i6λ,

sλ(ϕ)λ+1(x, y) =σλ(x)ϕλ(sλ(x), y)+(1−σλ(x))ϕλ+1(sλx, y),

sλ(ϕ)i(x, y) =ϕi−1(sλ(x)), λ+1<i6 k+1.

Here, (x, y)∈∆k+1×M , sλ(x1, ..., xk+1)=(x1, ..., x̂λ+1, ..., xk+1) and

σλ(x1, ..., xk+1) =
xλ+2−xλ+1

xλ+2−xλ
,

with the convention that ϕ0=0, ϕk+1=1, x0=0 and xk+2=1. It is the collar conditions

that make the above formulas well-defined. Indeed, the collar conditions for ϕ, listed in

preparation to Lemma 4.16, make the denominator of σλ(x) cancel out:

(s0ϕ)1(x, y)=x1, if x2∼ 0,

(sλϕ)λ+1(x, y)=ϕλ(sλx, y)+xλ+1− 1
2 (xλ+xλ+2), if xλ∼xλ+2,

(skϕ)k+1(x, y)=xk+1, if xk ∼ 1.

Differentiating the above expression for sλ(ϕ), it follows that aut∂,�(τM ) and its stabi-

lization aut∂,�(τ
S
M ) admit degeneracy operators, so are simplicial monoids. In fact, if we

use a collared version of autC,�(ξ), then it also becomes a simplicial monoid.
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