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1. Introduction

A 2-dimensional transversely oriented foliation of a compact, orientable 3-manifold M

is called taut if every leaf has a closed transversal, where a transversal is a closed loop

that intersects the leaves of the foliation transversely. Manifolds admitting taut foliations

have properties similar to hyperbolic 3-manifolds. In particular, if M 6=S2×S1, then M

is irreducible [54], [60], i.e. every embedded smooth sphere in M bounds a solid ball.

For any compact, orientable 3-manifold M , Thurston defined natural seminorms on

the second homology groups H2(M) and H2(M,∂M), now called the Thurston norm.(1)

For a compact, orientable surface S with connected components S1, ..., Sk, define the

negative part of the Euler characteristic as

χ−(S) =
∑

i:χ(Si)<0

|χ(Si)|.

For an integral point a∈H2(M) or H2(M,∂M), the norm of a, x(a), is defined as

x(a) := min{χ−(S) : [S] = a and S is properly embedded and oriented}.

The norm can be extended to rational points linearly and to real points continuously. Up

to scaling, Thurston norm is the same as the Gromov’s simplicial norm [25]. Thurston

norms on H2(M) and H2(M,∂M) naturally defines dual norms on the dual vector spaces

H2(M) and H2(M,∂M).

A compact, properly embedded, orientable surface S⊂M with no spheres and disks

components is called incompressible if it has no compressing disk, where an embedded

disk (D, ∂D)⊂(M,S) is compressing if D∩S=∂D and ∂D is homotopically non-trivial

(1) All (co)homologies have coefficients in R, unless otherwise stated.
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in S. From now on, assume that M is closed and irreducible; see §3 for manifolds with

boundary. Roussarie [61] and Thurston [66], [68] showed that taut foliations and incom-

pressible surfaces have an ‘efficient intersection property’. More precisely, a connected

incompressible surface S can be isotoped so that it is either a leaf of the foliation or is

transverse to the foliation except at finitely many points of saddle tangencies. In the

latter case, the number of tangencies is exactly equal to |χ(S)| by the Poincaré–Hopf

formula. One can put this into the algebraic language of the Thurston’s inequality. Let

e(F)∈H2(M) be the Euler class of the tangent bundle to the foliation. For each embed-

ded, incompressible surface S we have the following inequality for the pairing between

the second cohomology and homology groups:

−〈e(F), [S]〉6 |χ(S)|.

See §3.3 for this deduction, due to Thurston. Repeating the same argument for the

surface S with the opposite orientation implies that

|〈e(F), [S]〉|6 |χ(S)|. (1)

Moreover, the incompressibility condition is not required for inequality (1), since one can

replace S by an incompressible surface S′ with [S]=[S′] and |χ−(S′)|6|χ−(S)|.
The Euler class of the foliation, e(F), is an element of H2(M). Therefore, it makes

sense to talk about the dual Thurston norm of the Euler class, which we denote by

x∗(e(F)). In fact, inequality (1) can be written in the abbreviated form

x∗(e(F))6 1. (2)

In other words, the Euler class has dual norm at most 1. Moreover, the equality

happens if F has any compact leaf of negative Euler characteristic. See §3.3. This puts

extreme bounds on the Euler class of a taut foliation. In particular, if M is hyperbolic,

the number of cohomology classes that can arise as the Euler class of some taut foli-

ation on M is finite. Thurston conjectured that conversely the following happens [68,

p. 129, Conjecture 3]. We call it the Euler class-one conjecture. A compact 3-manifold

is atoroidal if every embedded, incompressible torus is ∂ -parallel.

Euler class-one conjecture. (Thurston, 1976) Let M be a closed, orientable, irre-

ducible and atoroidal 3-manifold and let a∈H2(M ;Z) be any integral class with x∗(a)=1.

Then, there is a [taut] foliation F on M whose Euler class is equal to a.
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A compact, orientable, irreducible 3-manifold is Haken if it contains an incom-

pressible surface. A compact orientable 3-manifold is hyperbolic if its interior admits

a complete Riemannian metric of constant sectional curvature −1. By Thurston’s hy-

perbolization theorem, every closed atoroidal Haken 3-manifold is hyperbolic [67], [70],

[71]. See e.g. Otal [55], and Kapovich [39] for the details. Since the manifolds that we

consider here have positive first Betti number, they are Haken. Hence, M being atoroidal

in the statement of the above conjecture is equivalent to M being hyperbolic. Thurston

proved inequality (1) by showing that there are index sum formulae for both sides of

the inequality, and then comparing these sums. See §3.3. It immediately follows from

comparing those sums that both sides of (1) have the same parity when M is closed, i.e.

both sides are even, since χ(S) is even.

Definition 1.1. Let M be a closed, orientable 3-manifold. An integral class a∈
H2(M ;Z) satisfies the parity condition if a∈2H2(M ;Z). An integral class a∈H2(M ;R)

satisfies the parity condition if a=2b for some integral class b∈H2(M ;R).

In fact, it is known that the integral Euler class of any transversely oriented plane

field on a closed, oriented 3-manifold satisfies the parity condition. See Proposition 3.12.

Clearly, if an integral class a∈H2(M ;Z) satisfies the parity condition, then its image

in H2(M ;R) under the change of coefficients satisfies the parity condition; the converse

is also true assuming that H2(M ;Z) has no 2-torsion. The parity condition was not

explicitly mentioned by Thurston in the Euler class-one conjecture, but it was certainly

known to him. So we always assume the parity condition as part of the hypotheses of

the conjecture. Gabai gave a partial positive answer to the Euler class-one conjecture

[27, p. 24, Remark 7.3]; for a proof see Gabai and Yazdi [30]. By Thurston, the dual unit

ball is a convex polyhedron with integral vertices [68].

Theorem 1.2. (Gabai) Let M be a compact oriented irreducible 3-manifold, possibly

with toroidal boundary, and let a∈H2(M,∂M) be a vertex of the dual unit ball. Then,

there is a taut foliation on M whose Euler class is equal to a.

A foliation is C∞,0 if the leaves are smoothly immersed with continuous holonomy.

We construct counterexamples to the Euler class-one conjecture in the general setting of

C∞,0 taut foliations, conditional on the fully marked surface theorem. In the early 2000,

new techniques were developed that showed many hyperbolic 3-manifolds do not admit

taut foliations. See Roberts, Shareshian and Stein [59], and Calegari and Dunfield [11].

These methods do not apply to our case since Thurston’s conjecture is about manifolds

with positive first Betti number and so Gabai’s theorem [25] guarantees the existence

of taut foliations. Hence, one needs a completely different argument for ruling out taut

foliations with a certain Euler class.
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Figure 1. Unit ball of the Thurston norm (left), and the dual Thurston norm (right).

Main theorem. There are infinitely many closed hyperbolic 3-manifolds for which

the Euler class-one conjecture does not hold, i.e. there is some integral second cohomology

class with dual Thurston norm equal to 1 and satisfying the parity condition that is not

realized as Euler class of any taut foliation.

Our counterexamples are obtained by a suitable Dehn surgery on certain fibered

hyperbolic 3-manifolds. Dehn surgery is the operation of removing a solid torus from a

3-manifold and gluing it back differently. The constructed counterexamples are explicit

in the sense that the monodromy of the fibration map is given in terms of Dehn twists.

Moreover, the attaching map corresponding to the Dehn surgery is described. These

manifolds are optimal from homological point of view, i.e. their first Betti numbers are

equal to 2 and the unit balls of their Thurston norms have a simple shape (Figure 1).

This is the best that one can hope for, since Gabai’s theorem [25, Theorem 5.5] implies

the truth of the conjecture for 3-manifolds whose first Betti number is equal to 1.

A properly embedded, oriented, possibly disconnected, incompressible surface S is

algebraically fully marked when in (1) the equality holds. Note that an algebraically fully

marked surface is norm-minimizing, since in this case

x([S])6 |χ−(S)|= |χ(S)|= |〈e(F), [S]〉|6x([S]),

where the last inequality is by (2). The crucial but elementary observation is that any

compact leaf is fully marked [68]. See §3.3. The converse, however, cannot be true, since

one can homotope F to a new taut foliation without changing the Euler class, but with

a drastic change in the leaves, so that there is no compact leaf any more. The content of

the second paper [30], joint work with David Gabai, will be a converse to this statement

up to homotopy of the plane fields of foliations and under some assumptions. We call

this the fully marked surface theorem.
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Fully marked surface theorem. (Gabai–Yazdi) Let M be a closed hyperbolic

3-manifold, F be a taut foliation on M , and S be an algebraically fully marked surface

in M . Assume that S is the unique norm-minimizing surface in its homology class up

to isotopy. There exists a taut foliation G on M that has S as a union of leaves, and

such that the oriented plane fields tangent to F and G are homotopic.

We refer the reader to [30] for a more general statement of the fully marked surface

theorem.

1.1. The key new idea

Thurston’s Euler class-one conjecture predicts that every integral second cohomology

class of dual Thurston norm exactly equal to 1 on closed, hyperbolic 3-manifolds is re-

alized as the Euler class of a taut foliation. The key idea is to examine the conjecture

more generally, and ask whether every integral second cohomology class of dual sutured

Thurston norm at most 1 on taut sutured 3-manifolds with toroidal boundary (not neces-

sarily closed or hyperbolic) can be realized as the relative Euler class of a taut foliation.

Sutured manifolds were introduced by Gabai for studying taut foliations on 3-manifolds

[25]. One should think about sutures as extra data on the boundary of the 3-manifold

indicating how the foliation intersects the boundary; see §2.8. In the case of sutured

manifolds with toroidal boundary, by a generalization of the Roussarie–Thurston general

position, inequality (1) takes the form

|〈e(F), [S]〉|6 |χs(S)|, (3)

where

(1) χs(S) is the sutured Euler characteristic; see §2.9.

(2) e(F) is the relative Euler class; see §3 and Definition 3.10.

With this new formulation, one of the first examples to look at is a solid torus N

with two parallel sutures on its boundary. Fix a longitude, and assume that each suture

goes once around the meridian and three times around the longitude (Figure 2). In this

case, H2(N, ∂N) is isomorphic to R and is generated by a meridional disk D of N . The

sutured Euler characteristic of D is equal to −2, and the unit ball and dual unit ball for

sutured Thurston norm are respectively the intervals
[
− 1

2 ,
1
2

]
and [−2, 2] within the real

line. See §2.9 for the definition of the sutured Thurston norm.

There are three integral classes in the dual unit ball that satisfy the relative parity

condition, namely the points −2, 0, and 2. Here an integral point a∈H2(N, ∂N) satisfies

the relative parity condition if the numbers χs(D)=−2 and 〈a, [D]〉 have the same parity.

The two points ±2 are realized as relative Euler classes of taut foliations comprised of
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Figure 2. Left: Sutured solid torus N . One of the sutures is marked with diamonds in order

to make it visually salient. Right: its cross section.

stacks of monkey saddles; see Example 3.13. We show in Corollary 6.8 that any taut

foliation of N is standard in the sense that it is obtained from a stack of monkey saddles

by a simple operation that does not change the relative Euler class. See Definition 6.1.

As a result, the point 0 is not realized as the relative Euler class of any taut foliation

on N . This in turn shows that the new formulation of the Euler class-one conjecture is

violated for the manifold N and the relative Euler class zero. This gave us some hope

that the original Euler class-one conjecture also had a chance of not being true.

1.2. New avenues of research

Homotopy classification of taut foliations. Kronheimer and Mrowka proved that

on a closed orientable 3-manifold, there are only finitely many homotopy classes of plane

fields of taut foliations [41]. See Gabai [28] for an alternative proof. The tangent bundle

of every closed, orientable 3-manifold M is trivial [65], [47]. Fixing a trivialization τ

of the tangent bundle of M , the homotopy class of a transversely oriented plane field

ξ is determined by two pieces of information: a cohomology class Γτ∈H2(M ;Z) with

the property that 2Γτ is equal to the Euler class e(ξ)∈H2(M ;Z), and an element of the

affine space Z/d(e)Z, where d(e) is the divisibility of the Euler class e(ξ) modulo torsion.

See Gompf [34, §4], Kuperberg [42, Proposition 2.1], or Pontrjagin [57].

The Euler class-one conjecture, asking the realizability of extremal cohomology

classes, can be understood as a proposed first step in the homotopy classification of

plane fields of taut foliations on manifolds with positive first Betti number. Although

we gave a negative answer to Thurston’s conjecture, it is an important question to know

exactly which cohomology classes are realized as Euler classes of taut foliations. More

generally, given a closed orientable 3-manifold with positive first Betti number, classify

homotopy classes of plane fields of taut foliations on the manifold.
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Euler classes of tight contact structures. Following the work of Bennequin [1]

(or see the English translation [2]) and Thurston, Eliashberg proved the analogue of

inequality (1) for Euler classes of tight contact structures [20]. Therefore, one would

like to know if the Euler class-one conjecture has a positive answer for tight contact

structures. Every topological taut foliation of a closed orientable irreducible 3-manifold

can be C0-approximated by a tight contact structure so Euler classes of tight contact

structures include Euler classes of taut foliations. See Eliashberg and Thurston [21],

Kazez and Roberts [40], and Bowden [3]. In particular, there is a chance that the Euler

class-one conjecture has a positive answer for tight contact structures.

Colin, Giroux and Honda proved that for every closed oriented 3-manifold there are

only finitely many homotopy classes of plane fields that carry tight contact structures

[16], [17]. Again understanding the set of possible values for the Euler classes of tight

contact structures is a proposed first step for the homotopy classification of tight contact

structures on closed orientable 3-manifolds with positive first Betti number.

Euler classes of representations into Homeo+(S1). Denote by Homeo+(S1) the

group of orientation-preserving homeomorphisms of the circle. In what follows, by a rep-

resentation we mean a representation into Homeo+(S1), unless otherwise stated. Given

a taut foliation F of a closed orientable irreducible atoroidal 3-manifold M , the universal

circle construction of Thurston [72], and Calegari and Dunfield [11] defines a faithful

representation

ρF :π1(M)−!Homeo+(S1).

There is a canonical way to assign an Euler class e(ρ)∈H2(M ;Z) to each such repre-

sentation using Borel’s construction [10]. If ρ=ρF is obtained from a taut foliation F ,

then e(ρ)=e(F); for a proof see Boyer and Hu [4, §6]. Therefore, if the Euler class-one

conjecture about taut foliations had been true, then for every integral second cohomol-

ogy class a of dual norm 1 and satisfying the parity condition there would have been a

representation with Euler class equal to a. On the other hand, inequality (1) holds for

Euler classes of representation into Homeo+(S1) according to the Milnor–Wood inequality

[46], [75]. In the case of representations, the Euler class is an element of H2(π1(M);Z)

and is defined as the obstruction to lifting the representation into the universal central

extension ˜Homeo+(S1) of Homeo+(S1). Moreover, since M is aspherical, its group coho-

mology and singular cohomology are naturally isomorphic. Therefore, the set of Euler

classes of faithful representations contains the set of Euler classes of taut foliations and

it makes sense to ask whether the Euler class-one conjecture holds for representations.

If we ask the same question in one dimension lower, that is when M=S is a closed

orientable hyperbolic surface, then Milnor [46] and Wood [75] showed that a class a∈
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H2(S;Z) is realized as the Euler class of a representation ρ:π1(S)!Homeo+(S1) if and

only if

|〈a, [S]〉|6 |χ(S)|.

The existence of faithful representations of surface groups follows from the work of

DeBlois and Kent [19], who proved that all such cohomology classes are realized as Euler

classes of faithful representations into the subgroup PSL(2,R) of Homeo+(S1), answering

a conjecture of Goldman [32], [33].

An interesting perspective is to obtain intuition from representations to say some-

thing about taut foliations, or vice versa. For example, Boyer, Rolfsen and Wiest have

proved that the fundamental group of any closed orientable irreducible 3-manifold with

positive first Betti number is locally indicable and hence left-orderable [5], implying that

it has a faithful representation into Homeo+(S1) with Euler class zero. Therefore, one

can ask whether every closed hyperbolic 3-manifold with b1>0 admits a taut foliation

with Euler class zero.

Euler classes of pseudo-Anosov flows and quasigeodesic flows. Inequality (1)

holds for the Euler class of the orthogonal plane bundle to a pseudo-Anosov flow (resp.

quasigeodesic flow) on a closed hyperbolic 3-manifold. See Mosher [50], [51], Calegari

and Dunfield [11], and Calegari [10]. Therefore, one would like to know whether the

Euler class-one conjecture holds in this context.

1.3. Plan of the proof

In §3 we give a careful exposition of the relative Euler class, as well as the index sum. It

is shown in §3 that the index sum is always defined, and it coincides with the evaluation

of the relative Euler class for foliations of 3-manifolds with toroidal boundary. In §4, the

proposed counterexamples are constructed. We start with a certain fibered hyperbolic

3-manifold Mf with fiber S of genus g and monodromy f :S!S. The final constructed

manifold, M , is the result of a specific Dehn surgery on Mf . The surgery curve is disjoint

from a copy of the fiber; in particular, there is a copy of S in M as well. Note that, if

we cut M along S to get the manifold M1=M \\S, then M1 is almost a product.

In §5, the following properties of the constructed manifold M are established:

(a) The first Betti number of M is equal to 2, and the unit balls for the Thurston

norm and dual Thurston norm of M are as in Figure 1 (Lemma 5.1).

(b) M is irreducible and atoroidal (Lemma 5.2). By Thurston’s hyperbolization

theorem for Haken manifolds, this implies that M is hyperbolic.
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(c) The surface S⊂M is the unique norm-minimizing surface in its homology class

up to isotopy (Lemma 5.4). This is proved using the following less known theorem of

Gabai regarding norm-minimizing surfaces in a fixed homology class.

Theorem 5.3 (Gabai [25]) Let M be a closed, orientable 3-manifold. Assume

that P and Q are two possibly disconnected, norm-minimizing surfaces in M that are

homologous. There is a sequence of possibly disconnected, norm-minimizing surfaces

P=P0, P1, ..., Pn=Q with each term in the same homology class as [P ]=[Q] such that

any two adjacent terms in the sequence can be isotoped to be disjoint in M .

Conditions (b) and (c) above are the hypotheses of the fully marked surface theorem,

which will be used in the proof of the main theorem.

In §6, we prove that any taut foliation of a sutured solid torus with two sutures is

standard ; see Definition 6.1 and Corollary 6.8. In particular, the relative Euler class of the

foliation is maximal, and hence non-zero. See Proposition 6.7 for a statement regarding

general sutured solid tori. The proof uses the notion of based transversal semigroup of a

leaf, which was introduced by Novikov; see Definition 6.3.

We would like to pick a suitable element a∈2H2(M ;Z) of dual norm equal to 1,

and show that a is not realized as the Euler class of any taut foliation on M . We

choose the cohomology class a to be the point (0, 2−2g) in Figure 1, right. Note that

〈a, [S]〉=2−2g=χ(S). Therefore, if a=e(F) for some taut foliation F of M , then S is

algebraically fully marked with respect to F . By the fully marked surface theorem, if

such an F exists, then we may assume that S is a leaf of F . Therefore we may cut the

manifold M and the foliation F along S and analyze the resulting foliation F1 on the

simpler manifold M1, in order to obtain a contradiction.

By construction, M1 consists of two parts: a product part and a twisted part ; see

Figure 19, right. The twisted part is a solid torus N ′ with two sutures on its boundary

where each suture goes three times in the longitude direction and once in the meridian

direction; see Figure 2. We show that the initial assumption e(F)=a implies that the

restriction of F1 to N ′⊂M1 is a taut foliation with relative Euler class zero. This gives

the desired contradiction since any taut foliation of N ′ is standard and has non-zero

relative Euler class (Corollary 6.8).
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2. Preliminaries

Notation 2.1. For a metric space X and A⊂X, denote the metric completion of

X\A with the induced path metric by X\\A. Here, we are mainly interested in the case

that X is a manifold of dimension 2 or 3 and A is a submanifold of codimension 1.

For a subset A of X, the interior of A is denoted by A� or int(A). The number of

connected components of X is denoted by |X|.

2.1. Foliations

A 2-dimensional foliation F of a 3-manifold M is a partition of M into injectively im-

mersed surfaces; the partition locally looks like the product foliation R2×R, with plaques

R2×{point}. A leaf of the foliation is a connected component of the surfaces in the fo-

liation. The foliation F is called transversely oriented if there is a compatible choice of

transverse orientations on the leaves. If the manifold M is oriented, a transverse orien-

tation induces an orientation on each leaf as well. Lickorish [44], Novikov and Zieschang

[54] showed that every closed orientable 3-manifold has a foliation, so the existence of a

foliation does not give much information about the ambient 3-manifold. However, taut

foliations reflect many topological and geometric properties of the ambient manifold.

For technical reasons, we need to specify the degree of smoothness that we consider

here. A foliation F is called C0, or topological, if the holonomy of its leaves is continuous.

By Calegari [8], every topological foliation of a 3-manifold is topologically isotopic to a

C∞,0 foliation.

2.2. Suspension foliations

The exposition for this section is from [12, Chapter V]. Let p:E!B be a fiber bundle

with base B, fiber F , and total space E. A foliation F of E is transverse to the fibers if

the following conditions hold:

(1) each leaf L of F is transverse to the fibers and dim(L)+dim(F )=dimE;
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(2) for each leaf L of F , the restriction map p:L!B is a covering map.

Ehresmann showed that when the fiber F is compact, condition (2) is implied by

condition (1).

Let Homeo(F ) be the group of homeomorphisms of F . Given a fiber bundle and a

foliation transverse to the fibers, there is a representation

φ:π1(B, b0)−!Homeo(F ), b0 ∈B,

encoding the holonomy of based loops in B. Conversely, we have the following result.

Theorem 2.2. Let B and F be connected manifolds. Given a representation

φ:π1(B, b0)−!Homeo(F ), b0 ∈B,

there is a fiber bundle E(φ) over the base B and with fiber F , and a foliation F(φ)

transverse to the fibers of E(φ) such that the holonomy of F(φ) is equal to φ.

We are mainly interested in the case that F=I or S1 is 1-dimensional, and the image

of φ lies in Homeo+(F ), that is the group of orientation-preserving homeomorphisms of

F . The construction is as follows: Let B̃ be the universal cover of B. Consider the action

of π1(B, b0) on B̃×F defined as

γ ·(b̃, f) := (γ ·b̃, φ(γ)·f) for γ ∈π1(B, b0) and (b̃, f)∈ B̃×F ,

where the action on the first factor is by covering transformations. This action preserves

the fibers of B̃×F p1−−!B̃, and induces the structure of a fiber bundle on the quotient

E(φ) := (B̃×F )/π1(B, b0).

Moreover, the leaves B̃×f of the product foliation B̃×F are preserved by the action of

π1(B, b0). So, this foliation will induce on the quotient space E(φ) a foliation transverse

to the fibers, which we denote by F(φ).

Lemma 2.3. ([26]) If F is any orientable surface with boundary which is not com-

pact planar and b is a boundary component of F , then there are foliations of F×I (I is

a closed interval) transverse to the I factor that have a given holonomy on b and trivial

holonomy on all other boundary components. In the remaining case that F is compact

planar and not a disk, if b and b′ are two boundary components with the induced ori-

entations from F , then there exists a foliation transverse to I factor that has a given

holonomy µ on b and µ−1 on b′ and trivial holonomy on all other boundary components.

The above lemma follows from Theorem 2.2, and the fact that every element of

Homeo+(I) can be written as a commutator. See Li [43, Lemma 3.1].
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2.3. Haefliger’s theorem

Theorem 2.4. (Haefliger [36]) Let F be a codimension-1 foliation of a compact

n-manifold M . The union of compact leaves of F is a compact subset of M . More-

over, assuming that F is transversely orientable and K is a compact (n−1)-dimensional

manifold, the union of leaves of diffeomorphism type K is compact as well.

2.4. Reeb stability theorem

We need a special case of the Reeb stability theorem [58].

Theorem 2.5. Let M be a compact orientable 3-manifold. Let F be a transversely

oriented codimension-1 foliation of M such that F is transverse to ∂M . If some leaf of

F is a sphere (resp. a disk), then M=S2×S1 (resp. D2×S1) with the product foliation.

2.5. Novikov’s and Rosenberg’s theorems

A foliation of a 3-manifold is Reebless if it does not contain any Reeb components: a

foliated solid torus having the boundary torus as a leaf, and with all other leaves being

planes spiralling towards the boundary torus [54], [58].

Theorem 2.6. (Novikov–Rosenberg) Let M be a compact, orientable 3-manifold.

Let F be a transversely oriented codimension-1 foliation of M such that F has no Reeb

components, and F is transverse to ∂M . Then, the following statements hold :

(1) M is either irreducible or S2×S1 with the product foliation;

(2) leaves of F are π1-injective in M ;

(3) every transverse closed curve is homotopically non-trivial.

For (1), Novikov [54] proved that π2(M) is trivial, and Rosenberg [60] showed that

M is irreducible. Parts (2) and (3) are due to Novikov [54].

2.6. Thurston Norm

Let M be a compact, orientable 3-manifold. Thurston norm is a seminorm on H2(M)

and H2(M,∂M) whose unit ball is a convex polyhedron with rational vertices [68]. See

the introduction for the definition of the Thurston norm.

Associated with any norm x on a vector space V there is a dual norm x∗ on the dual

vector space V ∗ defined as

x∗(u) = sup{〈u, v〉 :x(v) = 1}.
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3

1

2

4

Figure 3. The points 1, 2, 3, and 4, respectively, show a convex corner, a concave corner, a

tangential point, and a transverse point.

This defines the dual Thurston norm on H2(M) and H2(M,∂M).

More generally, for any compact subsurface A of ∂M , one can define the Thurston

norm on H2(M,A) along the same lines. See Scharlemann [62] for further generalizations.

The corresponding dual Thurston norm is defined on H2(M,A)∼=Hom(H2(M,A),R).

2.7. Corners

Consider a 2-dimensional foliation of a 3-manifold M . Let p∈∂M be a point. We say that

p is a tangential point if there is a foliated neighborhood of p in M that is homeomorphic

to a foliated neighborhood of (0, 0, 0) in

{(x, y, z) :x, y ∈R and z> 0},

where the leaves consist of the planes z=constant; see Figure 3. A point p is called a

transverse point if there is a foliated neighborhood of p in M that is homeomorphic to a

foliated neighborhood of (0, 0, 0) in the foliation of

{(x, y, z) : y, z ∈R and x> 0},

where the leaves are the half-planes z=constant.

Notation 2.7. The transverse (resp. tangential) boundary of M is the closure of the

set of transverse (resp. tangential) points in ∂M , and is denoted by ∂tM (resp. ∂τM).

A point p is a convex corner if there is a foliated neighborhood of p that is homeo-

morphic to a foliated neighborhood of (0, 0, 0) in the foliation of

{(x, y, z) :x> 0, y ∈R, and z> 0},

where the leaves consist of the half-planes z=constant.

A point p is a concave corner if there is a foliated neighborhood of p that is home-

omorphic to a foliated neighborhood of (0, 0, 0) in the foliation of

{(x, y, z) : y ∈R and (x> 0 or z> 0)},

where the leaves consist of the planes and half-planes z=constant.
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2.8. Sutured manifolds

If M is an oriented 3-manifold, and S⊂M is an embedded oriented surface, then they

determine a well-defined transverse orientation for S. Conversely a transverse orientation

determines an orientation for S.

Definition 2.8. A sutured manifold (M,γ) is a compact oriented 3-manifold M to-

gether with a set γ⊂∂M of pairwise disjoint annuli A(γ) and tori T (γ). Furthermore,

the interior of each component of A(γ) contains a suture, i.e. a homologically non-trivial

oriented simple closed curve. We denote the set of sutures by s(γ).

Finally, every component of R(γ)=∂M \γ� is oriented. Define R+(γ) (resp. R−(γ))

to be those components of ∂M \γ� whose normal vectors point out of (resp. into) M . The

subsurfaces R+(γ) and R−(γ) are respectively called the positive and negative tangential

boundary of M . The orientations on R(γ) must be coherent with respect to s(γ), i.e. if

δ is a component of ∂R(γ) and is given the boundary orientation, then δ must represent

the same homology class in H1(γ) as some suture.

Definition 2.9. A transversely oriented foliation F on a sutured manifold (M,γ) is

taut if the following conditions hold:

(1) F is tangential to R(γ) with the transverse orientation pointing outside (resp.

inside) M along R+(γ) (resp. R−(γ)); F is transverse to γ, and the induced foliation on

each component of γ is a suspension foliation;

(2) each point on ∂A(γ) is a convex corner;

(3) every leaf of F has either a closed transversal or a transverse arc starting from

R−(γ) and ending on R+(γ).

We say that F is compatible with the sutured structure if it satisfies conditions (1)

and (2) above.

Remark 2.10. Condition (2) about convex corners is not always mentioned in the

definition of a taut foliation of a sutured manifold. However, this is how I learned the

concept from Gabai and certainly the foliations constructed by Gabai using sutured

manifold hierarchies in [25] have this property.

2.9. Sutured Euler characteristic and sutured Thurston norm

Roughly speaking, the sutured Thurston norm in a sutured manifold is defined by dou-

bling the manifold along the tangential boundary (or the transverse boundary), comput-

ing the Thurston norm, and then dividing by 2. The details are as follows [15], [62].
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Definition 2.11. Let (M,γ) be a sutured 3-manifold. A compact, properly embed-

ded, oriented surface S in M is admissible if, for every component b of ∂S, either

(1) b is an essential simple closed curve in γ, or

(2) b∩A(γ) is a (possibly empty) union of essential properly embedded arcs.

Definition 2.12. Let S be an admissible surface in a sutured manifold (M,γ), and k

be the total number of arcs in ∂S∩A(γ). Define the sutured Euler characteristic of S as

χs(S) =χ(S)− 1
2k. (4)

Note that χs(S) depends on the embedding of S and can change under an isotopy.

Remark 2.13. Let TS be the tangent bundle of S. For an admissible surface S, there

is a non-vanishing section of TS|∂S canonical up to homotopy: pick a Riemannian metric

on S and consider a section of unit length that is tangential to ∂S along ∂S∩R(γ), and

that is pointing inward/outward along components of ∂S∩γ in an alternate fashion. See

Figure 5, right.

By Poincaré–Hopf formula, the Euler characteristic of a compact surface S is the

obstruction to the existence of a non-vanishing section of the tangent bundle of the

surface that always points outward (or always inward, or always tangential) along each

boundary component. Given a vector field on S with (generalized) Morse singularities

that is entirely tangential or entirely transverse to each component of ∂S, the Euler

characteristic can be computed as sum of the indices of the singularities. Here the index

of a saddle point (resp. generalized saddle point) is −1 (resp. 1− 1
2n, where n is the

number of prongs) and the index of a center point is +1. This picture generalizes to an

admissible surface S in a sutured manifold; in this case the sutured Euler characteristic

is the obstruction to the existence of a non-vanishing section of TS whose restriction

to ∂S coincides with the section coming from the sutured structure of the manifold as

described above.

The following is a natural generalization of the Thurston norm to sutured manifolds

[15], [62].

Definition 2.14. Let (M,γ) be a sutured manifold, and S be an admissible surface.

If S1, ..., Sk are the components of S, define

χs−(S) =
∑

i:χs(Si)<0

|χs(Si)|. (5)

Define the sutured Thurston norm of an integral class a∈H2(M,∂M) by minimizing

χs−(S) over all admissible representatives S of a. Define the sutured Thurston norm on

H2(M,∂M) by extending to rational points linearly, and to real points continuously.
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Remark 2.15. In Cantwell and Conlon [15], the quantity χs−(S) is defined for more

general surfaces; in particular inessential arcs are allowed in S∩A(γ). However, consider-

ing the class of admissible surfaces results in the same definition for the sutured Thurston

norm.

Example 2.16. Let M be a sutured solid torus with two sutures. Pick a longitude and

assume that each suture goes twice around the longitude and once around the meridian.

Let F be the meridional disk of M . Then F intersects the sutures in k=4 arcs and

χs(F )=1− 1
2 ·4=−1. The flow lines of a sample vector field on F are drawn in Figure 7,

center. Note that the unit tangent vectors to the flow lines are compatible with the section

on ∂F coming from the sutured structure of M . There is only one Morse singularity,

and it is of saddle type; hence the index sum gives the same number −1 for the sutured

Euler characteristic.

The homology group H2(M,∂M) is generated by the meridional disk F . Hence, the

unit balls for the sutured Thurston norm and dual norm are the intervals [−1, 1] and

[−1, 1].

2.10. Pseudo-Anosov maps

Let S :=Sg be a closed, orientable surface of genus g. A multicurve is a union of distinct

(up to isotopy) and disjoint essential simple closed curves on S. Given a homeomorphism

φ of S, one can look at the action of φ on the set of multicurves on S. Pseudo-Anosov

homeomorphisms can be characterized by the property that they do not fix the isotopy

class of any multicurve [69]. See Fathi, Laudenbach, and Poénaru [22] or the English

translation [23] for an exposition of the rich theory of pseudo-Anosov maps.

Thurston’s hyperbolization theorem for fibered 3-manifolds states that the mapping

torus of a homeomorphism φ:S−!S is a hyperbolic manifold if and only if φ is isotopic

to a pseudo-Anosov map [70]. See Otal [55].

2.11. Penner’s construction of pseudo-Anosov maps

Thurston gave the first hands-on construction of pseudo-Anosov maps in terms of Dehn

twists [69]. His construction made use of twists along two curves α and β such that

α∪β fills the surface. Penner gave another construction using opposite twists along

multicurves. Let α=a1∪...∪am and β=b1∪...∪bn be two multicurves on S such that

α∪β fills the surface, meaning that each component of S\(α∪β) is topologically a disk.

Let τai be the positive (right handed) Dehn twist along ai. Define τbj similarly. Penner’s

theorem states that any word in τai and τ−1
bj

is pseudo-Anosov, provided that each τai
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a1 a2 a3b1 b2

Figure 4. Two multicurves that together fill the surface.

and τ−1
bj

is used at least once [56]. Note that we are doing positive Dehn twist along the

curves in one multicurve and negative twists along the other one.

Example 2.17. Let S be a closed orientable surface of genus 2. Define the multicurves

α=a1∪a2∪a3 and β=b1∪b2 to be as in Figure 4. It can be easily seen that α∪β fills the

surface. By Penner’s theorem, the map f=τ2
a1 �τa2 �τ

−3
b2

�τa3 �τ
−1
b1

�τa1 is pseudo-Anosov.

2.12. Gromov’s simplicial norm

Let X be a compact, oriented manifold possibly with boundary, and let C∗(X) and

C∗(X, ∂X) respectively be the real chain complex and the relative real chain complex

of X. Each c∈C∗(X) (resp. C∗(X, ∂X)) is a finite linear combination of singular simplices

in X (which do not lie in ∂X, and) with real coefficients, i.e. c=
∑
i riσi, where ri∈R

and σi are singular simplices. Define the `1-norm of c as

‖c‖=
∑
i

|ri|.

This induces a seminorm on H∗(X) and H∗(X, ∂X), called the Gromov norm, by setting

the norm of α∈H∗(X) or H∗(X, ∂X) to be

g(α) := inf ‖z‖,

where z varies between all cycles or relative cycles representing α; see Gromov [35]. It

follows from the definition that the Gromov norm is decreasing under push-forward.

In [25], Gabai proved the following two theorems, both of which were previously

conjectured by Thurston [68].

Theorem 2.18. (Gabai) Let M be a compact, oriented 3-manifold. Then, on

H2(M) or H2(M,∂M), x= 1
2g, where x denotes the Thurston norm, and g denotes

the Gromov norm.
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Theorem 2.19. (Gabai) Let M be a compact, oriented 3-manifold. Let p: M̃!M

be an n-fold covering map and let z∈H2(M)=H1(M,∂M) or z∈H2(M,∂M)=H1(M).

Then, n(x(z))=x(p∗(z)), where x(z) denotes the Thurston norm of z.

Next proposition describes the behavior of the dual Thurston norm under (covering)

maps between 3-manifolds, making use of the above two theorems of Gabai.

Proposition 2.20. Let M and N be compact, orientable 3-manifolds. Let p:N!M

be a smooth map sending ∂N to ∂M , and p∗:H2(M,∂M)!H2(N, ∂N) be the induced

map on real cohomology equipped with the dual Thurston norm. Then, the following

statements hold :

(1) the map p∗ is norm-decreasing ;

(2) the map p∗ preserves the norm if p is a covering map.

Proof. Let a∈H2(M,∂M) be a point with dual norm equal to k. For each h∈
H2(N, ∂N), we have

〈p∗(a), h〉= 〈a, p∗(h)〉6 k ·x
(
p∗(h)

)
6 k ·x(h).

The last inequality is true, since the Thurston norm and the Gromov norm are propor-

tional (Theorem 2.18), and the Gromov norm is decreasing under push-forward. This

implies that p∗(a) has dual norm at most k, so p∗ is norm-decreasing.

Now, suppose that p is a covering map. Let a∈H2(M,∂M) be a point with dual

norm equal to k. There is an integral point [F ]∈H2(M,∂M) represented by a properly

embedded oriented surface F such that

〈a, [F ]〉= k ·x([F ]).

This might need some explanation: Let Bx be the unit ball of the Thurston norm on

H2(M,∂M). The point a is a linear functional on H2(M,∂M), and so the supremum of

{〈a, v〉:v∈Bx} happens at a vertex of the polyhedron Bx, which is a rational point. By

scaling this vertex, we obtain an integral point [F ].

Let f=[p−1(F )]∈H2(N, ∂N). Then,

〈p∗(a), f〉= 〈a, p∗(f)〉= 〈a,deg(p)·[F ]〉= k ·deg(p)·x([F ]) = k ·x(f).

Here the last equality, x(f)=deg(p)·x
(
[F ]
)
, holds by Theorem 2.19, since p is a covering

map.
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2.13. Incompressible and ∂ -incompressible surfaces

Let M be a compact, orientable 3-manifold, and S be a compact, properly embedded,

orientable surface with no sphere and disk components. A ∂ -compressing disk for S is

an embedded disk D such that ∂D=α∪β, with α⊂S an essential arc and β⊂∂M an

arc such that α∩β=∂α=∂β and D∩S=α. Here, α⊂S being essential means that there

is no embedded disk D′⊂S with ∂D′=α∪β′, where β′⊂∂S. The surface S⊂M is ∂ -

incompressible if it does not admit any ∂ -compressing disk. We need the following two

basic facts about incompressible and ∂ -incompressible surfaces.

Lemma 2.21. Every connected incompressible surface in a solid torus is a ∂ -parallel

annulus.

For the proof of the above lemma see Martelli [45, Proposition 9.3.16].

Lemma 2.22. Let K be a connected, compact, orientable surface, and F⊂K×[0, 1]

be an incompressible surface with ∂F⊂∂K×(0, 1). Moreover, assume that F does not

admit any ∂ -compressing disk D with ∂D=α∪β, where D∩F=α is an essential arc,

β⊂∂K×[0, 1] is an arc, and ∂α=∂β=α∩β. Then, each component of F is isotopic to

a horizontal surface, i.e. K×{t} for some t∈[0, 1].

For the proof of the above lemma for closed surfaces, see Martelli [45, Proposition

9.3.18]; the proof works for surfaces with boundary without much modification.

3. Relative Euler class

Given a plane bundle over base K, and a subcomplex L⊂K, the definition of a relative

Euler class as an element of H2(K,L) depends on the choice of a non-vanishing section

on L. In [68], Thurston considered relative Euler classes of taut foliations on 3-manifolds

with boundary; however, he did not explicitly mention a choice of such section. In fact,

when the 3-manifold has a surface of genus >1 in its tangential boundary, such a non-

vanishing section does not exist over the entire boundary for Euler characteristic reasons.

Therefore, some care is needed in understanding Corollary 1 in [68, p. 118] correctly. In

Thurston’s notation, χ denotes the Euler class.

Theorem 3.1. (Thurston [68, Corollary 1]) Let M be an oriented 3-manifold and

F a codimension-1, transversely oriented foliation of M . Suppose that F contains no

Reeb components and each component of ∂M is either a leaf of F or a surface T such

that F is transverse to T and each leaf of F which intersects T also intersects a closed

transverse curve (e.g. F|T has no Reeb components). We have that

x∗(χ(TF))6 1
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holds

(a) in H2(M);

(b) in H2(M,∂M).

Therefore, we think that it is beneficial to give a detailed account of the relative Euler

class of foliations of 3-manifolds; although we do not claim originality for the results of

this section. Thurston proved that the evaluation of the relative Euler class on a surface

S is equal to an index sum; see equation (6) in §3.3 and the proposition in [68, p. 116]. In

this section, we start with the index sum as our definition and show that the index sum

determines a well-defined Euler class in H2(M,∂tM), but not necessarily in H2(M,∂M).

See Notation 2.7 and Remark 3.6. We also show that when ∂M is a union of tori, the

index sum determines a well-defined Euler class in H2(M,∂M). Therefore, probably

Thurston meant the Euler class as an element of H2(M,∂tM) in [68, Corollary 1].

3.1. Obstruction theory

In this subsection, we define the Euler class from the viewpoint of obstruction theory.

We refer the reader to [64], [47] or [13, §4] for further details.

Let K be a finite CW complex and L⊂K be a subcomplex. Denote the n-skeleton

of K by Kn. Let B be an oriented circle bundle over K. Fix a section s of B over L.

We are interested in successive extensions of s over Kn∪L as we increase n=0, 1, 2, ... .

Hence, when L=∅, this specializes to the problem of finding a section of B over Kn.

The section s can always be extended to K0∪L by picking arbitrary values on the

zero-cells of K. Moreover, s can be extended to K1, since the fiber S1 is connected. Let

s1 be an extension of s over K1∪L; in general, s1 is not unique even up to homotopy.

The first obstruction can happen when we would like to extend s1 over K2∪L. The

obstruction to the existence of an extension of s1 to K2∪L can be measured by a cochain

c(B, s1), called the obstruction cochain. If we denote the relative 2-chains for (K,L)

by C2(K,L):=C2(K)/C2(L), then the cochain c assigns integer values to elements of

C2(K,L) in the following way: Given a 2-cell σ: ∆2
!K, pick a trivialization of B over

∆2 to identify B|∆2∼=∆2×S1. Under this identification, the restriction of s1 to ∂∆2

determines a map ∂∆2
!S1. By definition, the cochain c assigns the degree of the map

∂∆2
!S1 to ∆2. This cochain is in fact a relative cocycle.

The obstruction cochain c in general depends not only on s, but also on the chosen

extension s1 to the 1-skeleton. However, as we vary s1, the cohomology class of c(B, s1)

remains fixed inside H2(K,L;Z); this cohomology class is called the Euler class of B

relative to s and is denoted by e(B, s). The Euler class e(B, s) remains invariant under a

homotopy of s, and it vanishes if and only if s can be extended to a section over K2∪L. If
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s can be extended to a section over K2∪L, then s can be extended over the entire base K.

To see this, assume that n>2, and we would like to extend a given section sn over Kn∪L
to a section over Kn+1∪L. Let σ: ∆n+1

!K be an (n+1)-cell and choose a trivialization

of B over ∆n+1. Using the trivialization B|∆n+1
∼=∆n+1×S1, the restriction of sn to

∂∆n+1 determines a map ∂∆n+1
!S1 which is homotopically trivial, since πn(S1) is

trivial for n>2. Therefore, for each ∆n+1, the map ∂∆n+1
!S1 can be extended to a

map ∆n+1
!S1, i.e. sn can be extended to a section over Kn+1∪L. Hence, the Euler

class e(B, s) is the obstruction to extending s to a section over the entire base K as well.

Now assume that B is an oriented plane bundle over K, and equip each fiber with

an inner product, where the inner product varies continuously. This is possible using

a partition of unity and the fact that any convex combination of positive definite inner

products is again such an inner product. Then, the Euler class of B is defined as the

Euler class of the associated oriented unit circle bundle.

3.2. Euler class of a foliation relative to the transverse boundary

Let M be a compact oriented 3-manifold, and F be a transversely oriented foliation on

M such that each component of ∂M is either a leaf of F or is transverse to F . Define

the relative Euler class e(TF , s)∈H2(M,∂tM ;Z) using the outward pointing section s

of TF along ∂tM . We can alternatively use the inward pointing section of TF|∂tM ,

or use the section that is tangential to F|∂tM (with either orientation) for defining the

relative Euler class. This is because all the mentioned sections are homotopic through

non-vanishing sections of TF|∂tM ; the homotopy consists of simultaneous rotation in the

planes of TF|∂tM . We refer to the relative Euler class by e(F) if the choice of s is clear.

3.3. Index sum, and relative Euler class

Definition 3.2. Let M be a sutured manifold, F be a foliation of M that is com-

patible with the sutured structure, and S be an admissible surface. Isotope S, keeping

∂S∩∂γ fixed, such that each component of ∂S∩γ is either transverse to F|γ or is a leaf

of F|γ , and furthermore F is transverse to S in a neighborhood of ∂S. This is possible

since F|γ has no Reeb annuli.

Pick a Riemannian metric on M . For x∈S, let N(x) be the oriented unit normal

vector to F , and n(x) be the projection of N(x) onto the tangent plane Tx(S). Then,

n(x) is non-vanishing along ∂S. Denote the tangent bundle of F by TF , and the unit

tangent bundle by λ. Let r(x)∈Tx(F) be the unit tangent vector to the induced singular

foliation F|S satisfying the condition that (r(x), n(x)) is a basis giving the orientation
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of Tx(S). See Figure 5, where νS denotes the positive unit normal vector to S. Then,

r(x) is a section of λ defined on S minus singular points of F|S . In particular, r|∂S is a

non-vanishing section of TF|∂S ; see Figure 5, right. Define Ind(F , S) as the obstruction

to extending the section r|∂S to a non-vanishing section of TF|S , i.e. if [S]∈H2(S, ∂S) is

the fundamental homology class of S then

Ind(F , S) := e(TF|S , r|∂S)∩[S]∈Z.

Remark 3.3. Ind(F , S) is well defined, and is invariant under an isotopy of S relative

to its boundary. To see this, assume that S is admissible, and isotope S, keeping ∂S∩∂γ
fixed, to respectively S1 and S2 such that each component of ∂Si∩γ is either a leaf of

F|γ or is transverse to F|γ , and F is transverse to Si in a neighborhood of ∂Si.

Let F :S×[0, 1]!M be an isotopy with F |S×{0}=S1 and F |S×{1}=S2. By pulling

back the bundle TF using the map F , we obtain an isomorphism between the bundles

TF|Si , for i=1, 2, that sends the corresponding sections on ∂Si to each other. Therefore,

the obstruction numbers associated with them are equal as well.

Following Thurston [68], there is an index sum formula for Ind(F , S). Isotope S,

keeping it fixed in a neighborhood of ∂S, such that S and F are transverse to each other

except at a finite number of tangencies that are of saddle or center type. Then,

Ind(F , S) =
∑

tangent
points p

sign(p)·i(p). (6)

Here, i(p) is the index of the tangency point. Saddle points have index −1 and center

points have index +1. By definition, sign(p)∈{−1,+1} is equal to +1 exactly when the

transverse orientations of Tp(S) and Tp(F) agree.

We briefly explain why this index sum formula holds; for details, see Thurston [68,

pp. 115–118]. The number Ind(F , S) is the obstruction to extending the section r|∂S to

a section of λ over S. By construction, r(x) is a section of λ defined on S minus finitely

many singular points of F|S . For each such point p, we can calculate the degree of the map

rp: ∂Dp!S
1, where Dp is a disk neighborhood of p in S inducing an orientation on ∂Dp,

and rp is the restriction of r to ∂Dp with Dp×S1 the local trivialization of λ. By summing

the degrees over such points p, the number Ind(F , S) is calculated and gives formula (6).

The term sign(p) in the formula comes from the fact that in computing the degree of

the map rp: ∂Dp!S
1, ∂Dp is oriented as the boundary of Dp (or equivalently using the

transverse orientation of S), whereas S1 is oriented using the transverse orientation N(x)

of the foliation [68, Figure 5].
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N(x)

n(x)

p(νS(x))

νS(x)

r(x)

Tx(S)

Tx(F)

νS

r(x)
R−(γ)

Figure 5. Left: the relative position of the tangent planes to the surface S and the foliation F ,

and various associated vectors. Right: the local picture of an admissible surface intersecting

an annulus suture, and the vector field r. Note that there is another possibility that νS points
in the opposite direction, in which case all the arrows for the vector field r are reversed.

Remark 3.4. Thurston proved the index sum formula in a more general setting where

circle tangencies between S and F are allowed as well. A neighborhood of the circle

tangency might look like the graph of 1−(x−5)2, 46x66, revolved about the z-axis.

Circle tangencies do not contribute to the index sum. See Thurston [68, pp. 115–118].

The Poincaré–Hopf formula for F|S shows that the same index sum without the

term sign(p) is equal to the sutured Euler characteristic of S; see Remark 2.13.

χs(S) =
∑

tangent
points p

i(p). (7)

Thurston observed that if S is a compact leaf of F , then

Ind(F , S) =±χ(S), (8)

where the ± sign is equal to +1 exactly when the transverse orientations of S and F
agree [68]. This is because when S is a leaf, the restriction of the tangent bundle TF to

S coincides with the tangent bundle of S, up to orientation.

Proposition 3.5. Let M be a sutured 3-manifold, and F be a foliation of M that is

compatible with the sutured structure. Then, Ind(F , ·) determines a cohomology class in

H2(M,∂tM ;R)∼=Hom(H2(M,∂tM),R) that coincides with the real Euler class relative

to the outward pointing section along ∂tM .

Proof. Let s0 be the unit outward pointing section of TF|∂tM , and

e(TF , s0)∈H2(M,∂tM)
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be the Euler class of TF relative to s0. Let [S]∈H2(M,∂tM) be a homology class. There

is an admissible surface S whose homology class is [S]. Using the naturality property of

the Euler class for the map corresponding to the embedding of S in M , we have

e(TF|S , s0|∂S)∩[S] = 〈e(TF , s0), [S]〉.

Therefore, it is enough to show that

Ind(F , S) := e(TF|S , r|∂S)∩[S] = e(TF|S , s0|∂S)∩[S].

The relative Euler class e(TF|S , s0|∂S) only depends on the homotopy class of s0|∂S
through non-vanishing sections. There is a homotopy from s0|∂S to r|∂S through non-

vanishing sections of TF|∂S . This completes the proof.

Remark 3.6. Let M be a sutured 3-manifold, and F be a foliation of M that is

compatible with the sutured structure. Assume that some boundary component T of M

is a leaf of F and that χ(T )<0. Then, Definition 3.2 of the index sum Ind(F , ·) does not

determine a well-defined cohomology class in H2(M,∂M)∼=Hom(H2(M,∂M),R). To see

this, note that T is a leaf of F , and hence |Ind(F , T )|=|χ(T )|>0, but T represents the

trivial homology class in H2(M,∂M).

3.4. Roussarie–Thurston general position, and Thurston’s inequality

Let M be a compact oriented 3-manifold, and F be a transversely oriented foliation on

M such that each component of ∂M is either a leaf of F or is transverse to F . Let S

be a compact, properly embedded, oriented surface in M such that each component of

∂S is either contained in a leaf or is transverse to F . Then, S can be isotoped to be in

general position with respect to the foliation such that S and F are transverse except at

a finite number of saddle or center tangencies.

If furthermore the foliation is taut, and the surface S is incompressible and ∂ -

incompressible, then Roussarie [61] and Thurston [66], [68] showed that the surface S

can be isotoped such that each component of S either is a leaf of F or is transverse to F
except at finitely many points of saddle tangencies. Roussarie proved the statement for

incompressible tori, and Thurston generalized it to any embedded incompressible surface.

Gabai generalized it to the case of immersed incompressible surfaces and without any

orientability assumption on the manifold and the foliation [29].

We can now deduce Thurston’s inequality. If S is in Roussarie–Thurston general

position, then the sum in equation (6) is maximal in absolute value when all terms have

the same sign. But the number of terms is equal to |χ(S)| by equation (7), proving the

desired inequality.
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More generally, the Roussarie–Thurston general position holds when (M,γ) is a

sutured manifold. In this case, we assume that each component of ∂S either

(i) is a leaf of F|γ , or

(ii) is transverse to F|γ and intersects R(γ) in essential arcs, or

(iii) intersects R(γ) in an essential simple closed curve.

Thurston’s inequality generalizes to taut foliations on sutured manifolds and admis-

sible surfaces as

|Ind(F , S)|6 |χs(S)|.

Remark 3.7. Both general positions that we mentioned hold for C∞,0 foliations as

well [63], [29], although the original argument was for C2 foliations.

3.5. Relative Euler class using the canonical trivialization of the tangent

bundle of a torus

We can use the following construction to define a relative Euler class [38, §3]. Let (M,γ)

be a balanced sutured 3-manifold, meaning that

χ(R+(γ)) =χ(R−(γ)),

M has no closed component, and the map π0(A(γ))!π0(∂M) is surjective. Let F be a

foliation of M compatible with the sutured structure. Pick a Riemannian metric on M .

Denote by v0 a nowhere vanishing vector field along ∂M that points outward along R+(γ),

points inward along R−(γ), and on γ is the gradient of the height function s(γ)×I!I.

The restriction of the tangent bundle of F to ∂M can be identified with the orthogonal

plane bundle v⊥0 to v0. It is easy to see that the plane bundle v⊥0 is trivial (or equivalently

has a section) if and only if for every component F of ∂M the equality

χ(F∩R+(γ)) =χ(F∩R−(γ))

holds; such sutured manifolds are called strongly balanced by Juhász. See Juhász [38,

Proposition 3.4].

Assume that (M,γ) is strongly balanced. Let t be a trivialization of v⊥0 . Then,

it makes sense to talk about the relative Euler class e(TF , t)∈H2(M,∂M ;Z), which is

defined as e(TF , s0), where s0 is any non-zero constant section of v⊥0 under the identifi-

cation

t: v⊥0
∼=−−! ∂M×R2.

Let b be a component of ∂S with the induced orientation from S. If r is the vector field

as in Definition 3.2, then define rot(b, t) to be the rotation number of r|b with respect
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to t. Define rot(S, t) as sum of rot(b, t), where b varies over the components of ∂S. The

relative Euler class e(TF , t) depends on the choice t of trivialization, and its evaluation

on an admissible surface S is equal to the index sum in equation (6) minus the correction

term rot(S, t):

〈e(TF , t), [S]〉=
( ∑

tangent
points p

sign(p)·i(p)
)
−rot(S, t). (9)

This is because, by the naturality of the Euler class,

〈e(TF , t), [S]〉= 〈e(TF|S , t|∂S), [S]〉,

and moreover

〈e(TF|S , r|∂S), [S]〉−〈e(TF|S , t|∂S), [S]〉= rot(S, t).

Remark 3.8. Let νS be the positive unit normal vector to S, and assume that νS is

nowhere parallel to v0 along ∂S. This holds for generic S. Let p(νS) be the projection of

νS onto v⊥0 . Then, the restriction of p(νS) to ∂S is non-vanishing. In [38], Juhász defines

rot(b, t) for a component b of ∂S as the rotation number of p(νS)|b with respect to the

trivialization t. The above definition is equivalent to that of Juhász. This is because

(p(νS(x)), r(x)) is a positive basis for Tx(F) for each x∈b; see Figure 5, left.

The tangent bundle of an oriented 2-dimensional torus, T , has a canonical trivial-

ization up to homotopy, obtained as follows. Split T as a product of two oriented circles.

Trivialize the tangent bundles of oriented circles according to their orientations, and

equip the torus T with the product trivialization. Up to homotopy, this trivialization

is invariant under Dehn twists along S1×{point} and {point}×S1, and hence does not

depend on the splitting T=S1×S1. See Turaev [73, p. 163]. Note that we do not claim

that there is a unique trivialization of the tangent bundle up to homotopy; we merely

say that one homotopy class of trivializations is distinguished from the others. Likewise,

the tangent bundle of an oriented annulus A has a canonical trivialization coming from

a splitting A=I×S1.

There is an intuitive characterization of the canonical trivialization of the tangent

bundle of an oriented torus T as follows: Given a trivialization t, there is a homomorphism

φt:π1(T )−!Z

such that for every smooth based loop γ, φt([γ]) is the rotation number of the unit

tangent vector γ̇ with respect to t. For the canonical trivialization t, the homomorphism

φt is trivial.
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R+(γ) R−(γ)

Figure 6. The canonical (up to homotopy) trivialization of the restriction of the tangent

bundle of the foliation to a torus boundary component containing sutures. In the above, v1
is the vertical vector, and v2 points inside the manifold along the middle annulus suture.

Definition 3.9. Let (M,γ) be a sutured 3-manifold with toroidal boundary, and t0

be the trivialization of TF|∂M , canonical up to homotopy, defined as follows. Pick a

Riemannian metric on M .

(i) Along any torus component of ∂tM , t0 is the trivialization associated with the

outward section of TF . In other words, the trivialization t0 picks the basis {o, i(o)},
where o is the outward pointing section and i(o) is obtained by rotating o by angle 1

2π

inside TF .

(ii) Along any torus component of ∂τM with the induced orientation from F , let t0

be the canonical trivialization of the tangent bundle of the oriented torus as described

previously.

(iii) Let T be a torus component of ∂M with 2k>0 sutures. Denote the tangential

annuli on T by A1, A2, ..., A2k and equip them with the induced orientations from F .

Pick a simple closed curve α⊂T parallel to a suture, and give α an orientation. Let v1 be

the unit tangent vector to F|T∩∂tM whose orientation is coherent with that of α. Split

each oriented Aj as a product S1
j×Ij , where S1

j (resp. Ij) is an oriented circle (resp.

interval) such that the orientation of S1
j is coherent with that of α. On each Aj pick the

trivialization {v1, v2} corresponding to its splitting S1
j×Ij . At this point v1 is defined on

all of T, and so this trivialization can be extended to a trivialization {v1, v2} of TF|T.

The restriction of v2 to each component of T∩∂tM will be either the inward pointing or

the outward pointing section of TF ; see Figure 6.

We call this trivialization canonical, which is well defined up to homotopy.

Definition 3.10. Let (M,γ) be a sutured 3-manifold with toroidal boundary, and F
be a foliation of M that is compatible with the sutured structure. Define the relative

Euler class as e(F , t0)∈H2(M,∂M ;Z), where t0 is the canonical trivialization of TF|∂M .
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Proposition 3.11. Let (M,γ) be a sutured 3-manifold with toroidal boundary, and

F be a foliation of M that is compatible with the sutured structure of M . Then, Ind(F , ·)
defines a cohomology class in H2(M,∂M) which coincides with the real Euler class rel-

ative to the canonical trivialization of TF|∂M .

Proof. For every admissible surface S and component b of ∂S, the rotation number

rot(b, t0) is equal to zero.

3.6. Parity condition

The following parity condition goes back at least to Wood [74].

Proposition 3.12. (Parity condition) Let M be a closed orientable 3-manifold,

and ξ be a transversely oriented plane field on M . Then, the Euler class of ξ lies in

2H2(M ;Z).

Proof. Since ξ is transversely oriented, we have that ξ⊕ε∼=TM , where ε is the

trivial line bundle. Therefore, the Stiefel–Whitney classes w2(ξ) and w2(ξ⊕ε)=w2(M)

are equal. As M is parallelizable, we have w2(M)=0, implying that w2(ξ)=0. But w2(ξ)

is the mod-2 reduction of e(ξ), and hence e(ξ)∈2H2(M ;Z). For an alternative proof, see

the proof of Theorem 8.1.

3.7. Standard taut foliations by stack of saddles

Example 3.13. Let M be the sutured solid torus as in Example 2.16. There is a

taut foliation of M by a stack of chairs obtained in the following way. Take an infinite

stack of chairs and glue the top to the bottom by 180� rotation; see Figure 7, left. The

reader who would like to see one possible equation defining the leaves of this foliation

should consult [13, p. 361]. Recall that the meridional disk F of M has sutured Euler

characteristic equal to −1. By the index sum formula, the relative Euler class of this

foliation assigns ±1 to the meridional disk of M . Both ±1 can be realized by choosing

appropriate transverse orientations.

One can define a similar foliation on the sutured solid torus N with two sutures

each of which goes three times around a longitude and once around the meridian. This

foliation on N looks like a stack of monkey saddles. In this case, the sutured Euler

characteristic of a meridional disk is equal to −2, and the relative Euler class of the

foliation assigns ±2 to the meridional disk. A similar foliation can be constructed for

any sutured solid torus where the sutures are parallel essential simple closed curves on the

boundary torus and intersect the meridian non-trivially, and it is called the standard taut
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Figure 7. Left: a foliation of M by a stack of chairs. Middle: the induced foliation on a

meridional disk of M . Right: a meridional disk of N̂ is divided into two disks.

foliation by a stack of generalized saddles. Note that in these examples, the holonomy

of each component of the transverse boundary is a shift map, i.e. it has no fixed points

except the interval endpoints.

Example 3.14. Let N̂ be a sutured solid torus with six sutures, each of which is

isotopic to a longitude. If D̂ is the meridional disk of N̂ , then N̂ \\D̂ is homeomorphic to

D̂×I, where I is an interval. Moreover, the image of the annuli sutures of N̂ in N̂ \\D̂
consists of six disjoint parallel vertical rectangles Ji×I, where Ji are disjoint intervals in

∂D̂. In particular, N̂ \\D̂ and N \\D are identical; see Figure 2, right.

We may construct a taut foliation on N̂ whose relative Euler class assigns zero to

D̂ as follows. Divide D̂ into two disks D̂1 and D̂2, each of which intersects the annuli

sutures in four arcs as in Figure 7, right. This divides N̂ into two solid tori N̂1 and N̂2

with meridional disks D̂1 and D̂2, respectively. Pick a taut foliation F1 on N̂1 (resp. F2

on N̂2) whose relative Euler class assigns +1 (resp. −1) to D̂1 (resp. D̂2) as constructed

in Example 3.13. Pick a positive (resp. negative) annulus component T1 (resp. T2) of

the tangential boundary of N̂1 (resp. N̂2). Glue F1 to F2 by identifying T1 with T2

appropriately to obtain a transversely oriented foliation F of N̂ . It is easy to see that F
is taut, and its relative Euler class assigns zero to D̂ by the index sum formula.

4. Construction of the 3-manifolds

In this section, we explain the construction of our counterexamples. Each of the con-

structed manifolds is obtained by a Dehn surgery on a fibered 3-manifold, but we should

put some constraints on the monodromy of the fibered manifold and specify the surgery

curve.

Step I: Definition of the fiber S and curves α, β, γ⊂S.

(1) Let S be a closed, orientable surface of genus g>3.

(2) Let γ be a non-separating simple closed curve on S, and A be an annulus neigh-

borhood of γ in S with ∂A=γ+∪γ−. Pick an orientation on γ, which induces orientations

on γ+ and γ−.
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p1

p2

p3

q1

q2

q3

p1

p2

p3

q1

q2

q3

Figure 8. Left: arcs li⊂A. Right: arcs mi⊂A.

(3) Choose points p1, p2, p3⊂γ+ that are cyclically ordered in the same direction

as γ. Similarly, choose points q1, q2, and q3 on γ−.

(4) Choose disjoint oriented arcs l1, l2, l3⊂A, where li connects qi to pi. Likewise,

choose disjoint oriented arcs m1,m2,m3⊂A, where mi connects qi+1 to pi; the arithmetic

on the indices is modulo 3 throughout. Note the shift in indices. We choose them in such

a way that mi is obtained by adding the oriented arc qi+1qi to li and then perturbing

them to be disjoint and properly embedded in A; see Figure 8.

(5) Let δ1, δ2, and δ3 be disjoint oriented simple arcs in S\A� such that δi connects

pi to qi−1. Again, note the shift in indices.

(6) Define α as the union of the six arcs li and δi for 16i63. The curve β is defined

as the union of mi and δi for 16i63.

Note that the appropriate shifts in indices for mi and δi imply that α and β are

connected simple closed curves. Moreover, β=α−γ as oriented sum (oriented cut and

paste). In particular, α and β are not homologous to each other in S since [γ] 6=0∈H1(S).

Step II: Definition of a homeomorphism f of S, and its mapping torus Mf .

Lemma 4.1. Let S be a closed, orientable surface of genus g=3 or g>6. For suitable

choices of γ, li, mi and δi as in Step I, there exists a homeomorphism f of S such that

(1) f is pseudo-Anosov ;

(2) f(α)=β;

(3) rank(H2(Mf ))=1, where Mf is the mapping torus of f .

Proof. The condition rank(H2(Mf ))=1 is equivalent to requiring that the map

f∗−Id:H1(S)−!H1(S)

has trivial kernel [37, Example 2.48]. We first construct the map for a surface of genus 3,

and from there it is clear how to generalize it for arbitrary genera g>6. Let γ, α, and β

be the oriented curves shown in Figures 9 and 10. The curves γ, α, and β are redrawn
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q1

p1

q3

p3

q2

p2

δ3

l1

α

γ+

γ−

Figure 9. The relative position of the curve α with respect to the curves γ+ and γ−, the
points pi and qi, and the arcs mi, li, and δi is shown. The shaded region is the annulus A

cobounded by γ+ and γ−.

q1

p1

q3

p3

q2

p2

β

γ+

γ−

m1 δ3

Figure 10. The curve β.
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γα

β

Figure 11. The curves α, β, and γ on S.

a1

b1

a2

b2

a3

b3

a4 r1

s1

r2

s2

r3

s3

Figure 12. Left: Penner curves. Right: a basis for the first homology.

in Figure 11 to make them more visible; the arcs δi can be thought of as the three pieces

of α\α∩β. It is easy to see that α, β, and γ are non-separating. We use Penner’s

construction of pseudo-Anosov maps to define f . For any simple closed curve η, let τη

be the positive Dehn twist around η. Our convention is the right-handed twist.

Let a1, a2, a3, a4 (negative twists) and b1, b2, b3 (positive twists) be the filling system

of curves shown in the left side of Figure 12. Define the maps f as

f := τb2 �τ
−1
a2 �τ−1

a3 �τb1 �τb3 �τ
−1
a1 �τ−1

a4 .

By Penner’s construction, the map f is pseudo-Anosov. Since the curves a1, a4, b1, and

b3 are disjoint from α, we have

f(α) = τb2 �τ
−1
a2 �τ−1

a3 (α) =β.
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a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ag+1

bg

Figure 13. Penner curves for the general case.

r1r2r3r4r5

s1s2s3s4s5sg

Figure 14. A basis for the first homology.

We would like to show that det(f∗−Id) is non-zero. Choose a basis r1, s1, r2, s2, r3, s3

for H1(S) as in the right side of Figure 12. One can directly see that the action of f on

homology is represented by the matrix

W =



0 1 2 −1 −2 1

−1 2 1 0 0 0

−2 4 4 −2 −2 1

1 −2 −2 2 2 −2

0 0 0 1 2 −3

0 0 0 0 −1 2


,

and that det(W−Id) 6=0. This finishes the proof for the genus-3 surface. For g>6, add

extra handles to the left side of the picture and add suitable curves to complete the

previous system of filling curves as in Figures 13 and 14.

The map f is defined similarly. First we do negative twists around {a1, ..., ag+1}\
{a2, a3}. Then we do positive twists around {b1, ..., bg}\{b2}, and at the end we do nega-

tive twists around a2 and a3, followed by a positive twist around b2. Again, computation
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shows that for g>6 the action of f on homology is represented by the following matrix:

V =



0 1 2 −1 −2 2 1 −1 0 −1

−1 2 1 0 0 0 0 0 0 0

−2 4 4 −2 −2 2 1 −1 0 −1

1 −2 −2 2 2 −2 −1 1 0 0

1 2 −2 −1 1 0 −1

−1 2 1 −1 0 0

1 1 −1 0 −1

−1 −1 3 1 −1 0 0

1 1 −1 ∗ ∗
−1 −1 3 ∗ ∗ ∗ ∗

∗ ∗ ∗ 0 −1

∗ ∗ ∗ 1 −1 0 0

1 1 −1 0 −1

−1 −1 3 1 −1

1 1 −2

−1 −1 3



.

Here, the empty entries are zero, and ∗ shows a repeating pattern. The patterns corre-

spond to

ri 7−! si−1+ri−si, 56 i6 g−1,

si 7−!−si−1−ri+3si+ri+1−si+1, 56 i6 g−1,

as well as

sg 7−!−sg−1−rg+3sg−(r1+r2+...+rg).

By putting the matrix V −Id in the row reduced form, one can see that it is invertible.

We do this in detail. Put the first eight rows in the row reduced form. After this, the

first eight rows of V −Id change to

1 −1 1 0 3

1 0 1
1 −1 1 0 2

1 0 2

1 −1 1 0 4
1 0 3

1 −1 1 0 5
1 0 4


.

Let us denote the ith row of the matrix by Ri. For 56i6g, do the following moves:

(1) replace R2i−1 by R2i−1−R2i−2;

(2) replace R2i by R2i+R2i−2;

(3) switch R2i and R2i−1;

(4) replace R2i by −R2i.
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This process makes the matrix upper triangular, with all the entries on the diagonal

equal to ±1 except the last one that is equal to −(g+1). Therefore, for g>6, the

determinant of V −Id is equal to g+1, up to sign. This shows that V −Id has trivial

kernel.

Remark 4.2. We avoided the case g=4, 5, since it required a separate computation

and it was not necessary for the proof of the main theorem, otherwise one can do similar

constructions.

Step III: Definition of the manifold M=M(S, γ, `,m, δ, f), where `:={`1, `2, `3} and

similarly for m and δ.

Let S be a closed, orientable surface of genus g=3 or g>6, and let Mf be a fibered

3-manifold with fiber S and monodromy f :S!S where f is as in Step II. Therefore,

Mf is obtained from S×[0, 1] by identifying (x, 1) with (f(x), 0) for every x∈S. Recall

that A is an annulus neighborhood of γ in S with ∂A=γ+∪γ−. Let U be the solid torus

A×
[

1
4 ,

3
4

]
. The manifold M is obtained from Mf by removing the interior of U , denoted

by U �, and attaching the solid torus N (Figure 2):

M = (Mf \U �)∪N,

in the following way. Let D be the meridional disk of N . The gluing of N to Mf \U � is

chosen such that ∂D is identified with the union of li×
{

3
4

}
, mi×

{
1
4

}
, pi×

[
1
4 ,

3
4

]
, and

qi×
[

1
4 ,

3
4

]
for 16i63; see Figure 15. Note that Mf \U � can be considered as a cornered

manifold with transverse boundary (γ+∪γ−)×
(

1
4 ,

3
4

)
, tangential boundary A�×

{
1
4 ,

3
4

}
,

and concave corners along ∂A×
{

1
4 ,

3
4

}
. Considering N as a sutured manifold, the gluing

map from ∂N to ∂(Mf \U �) maps the transverse boundary to the transverse boundary,

and the tangential boundary to the tangential boundary.

5. Properties of the constructed manifolds

In this section, we compute the Thurston norm of the manifolds constructed in §4, and

show that the constructed manifolds are hyperbolic.

Lemma 5.1. (The Thurston norm of constructed manifolds) Let M be one of the

manifolds constructed in §4. The second homology group H2(M) has rank 2 and the unit

balls for the Thurston norm and the dual Thurston norm of M are as in Figure 1.

Proof. Computation of the first Betti number : Since H2(Mf ) has rank 1, an ap-

plication of the Mayer–Vietoris sequence shows that H2(M) has rank at most 2. More

precisely, consider the following exact sequence for Mf=(Mf \U �)∪U

...−!H1(∂U)−!H1(Mf \U �)⊕H1(U)−!H1(Mf )−! 0.



348 m. yazdi

l1

l2

l3

m1

m2

m3

m3

p1

p2

p3

q1

q2

q3

A×
{
1
4

}
A×

{
3
4

}

Figure 15. The curve ∂D is identified with the union of li×
{
3
4

}
, mi×

{
1
4

}
, pi×

[
1
4
, 3
4

]
, and

qi×
[
1
4
, 3
4

]
(blue, red, and purple curves) on the boundary of Mf \U�. For simplifying the

figure, li×
{
3
4

}
is labelled with li; similarly for mi×

{
1
4

}
.

This implies that

rank(H1(Mf \U �))+rank(H1(U))6 rank(H1(∂U))+rank(H1(Mf )),

which in turn implies that

rank(H1(Mf \U �))6 2.

Note that Mf \U � and M \N � are homeomorphic. Hence, we also have

rank(H1(M \N �))6 2. (10)

Likewise, looking at the exact sequence for M=(M \N �)∪N , we have

...−!H1(∂N)−!H1(M \N �)⊕H1(N)
Φ−−!H1(M)−! 0.

This implies that

H1(M)∼=
H1(M \N �)⊕H1(N)

ker(Φ)
, (11)

where Φ is defined as Φ(x, y)=x+y. We claim that

rank(ker(Φ))> 1. (12)

To see this, let y∈H1(N) represent the core curve of N and x∈H1(M \N �) be the element

that corresponds to y via the attaching map between N and M \N �. Then,

(0, 0) 6= (−x, y)∈ ker(Φ),
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and no power of (−x, y) is zero either. Hence, rank(ker(Φ)) is at least 1. The isomorphism

(11) implies that

rank(H1(M)) = rank(H1(M \N �))+rank(H1(N))−rank(ker(Φ))6 2+1−1 = 2,

where we have used inequalities (10) and (12) for the last implication. This finishes the

proof of the upper bound for the first Betti number of M .

On the other hand, conditions (1)–(3) satisfied by f in the statement of Lemma 4.1

imply that H2(M) has rank at least 2. The surface S×{1} is a non-trivial second

homology class, as it admits a curve intersecting it transversely and exactly once. A

second surface F can be obtained as follows. Let D be the meridional disk of N . We

can assume that ∂D is the union of li×
{

3
4

}
, mi×

{
1
4

}
, pi×

[
1
4 ,

3
4

]
, and qi×

[
1
4 ,

3
4

]
for

16i63. See Figure 15. Attach the three bands δi×
[

1
4 ,

3
4

]
to D to obtain a surface

F0 with two boundary components α×
{

3
4

}
and −β×

{
1
4

}
and with Euler characteristic

equal to −2, where −β denotes β with the opposite orientation. Since f sends α to β, we

can close the surface F0 to get a closed orientable surface F of genus 2. More precisely,

the surface F is obtained from the union of D, the three mentioned bands, and the two

vertical annuli α×
[

3
4 , 1
]

and β×
[
0, 1

4

]
by identifying α×{1} with β×{0}. Note that

the homology classes [S] and [F ] are linearly independent, since there is a curve that

intersects S (resp. F ) transversely once and is disjoint from F (resp. S). For example,

the first curve corresponds to an appropriate vertical curve in Mf , and the second can

be taken to be the core of N .

Computation of the Thurston norm: We already know that H2(M) is generated

by S and F , where we have chosen fixed orientations on S and F . These classes have

Thurston norms at most 2g−2 and 2, respectively. Therefore

x([S]+[F ])6x([S])+x([F ])6−χ(S)−χ(F ). (13)

We exhibit taut foliations on M and show that the unit balls for the Thurston norm and

dual Thurston norm are as in Figure 1. We will show that there is a taut foliation F1 of

M whose Euler class e(F1) assigns the numbers χ(S) and χ(F ) to the surfaces S and F ,

respectively, implying that

x([S]) =−χ(S), (14)

x([F ]) =−χ(F ). (15)

Hence,

〈e(F1), [S]+[F ]〉= 〈e(F1), [S]〉+〈e(F1), [F ]〉=χ(S)+χ(F )6−x([S]+[F ]),
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where we used inequality (13) for the last implication. But we know that the dual norm

of e(F1) is at most 1, therefore the equality should happen in the above, i.e.

x([S]+[F ]) =−χ(S)−χ(F ). (16)

To construct such a taut foliation F1 on M , decompose M into three pieces:

N,
(
S×
[

3
4 , 1
])
∪
(
S×
[
0, 1

4

])
, and (S\A�)×

[
1
4 ,

3
4

]
.

On the first piece, choose a standard taut foliation of N by a stack of monkey saddles

whose relative Euler class assigns χs(D)=−2 to the meridional disk of N . See Exam-

ple 3.13. Note that the holonomy of the transverse boundary of N is a shift map. For the

second piece, choose the product foliation. For the third piece, choose a foliation trans-

verse to
[

1
4 ,

3
4

]
factor that has appropriate shift holonomies on γ+×

[
1
4 ,

3
4

]
and γ−×

[
1
4 ,

3
4

]
.

Such a foliation exists, by Lemma 2.3. Glue these foliations along their common bound-

aries to obtain a foliation of M ; see Figure 16. The constructed foliation is taut since

its compact leaves, essentially the surface S, have closed transversals. The Euler class

of F1 assigns the numbers χ(S) and χ(F ) to the surfaces S and F , respectively. This

is clearly true for S, since it is a leaf. To see that it also holds for F , recall that the

number assigned to F can be computed from an index sum formula. The surface F

can be obtained from D by adding the three bands δi×
[

1
4 ,

3
4

]
, as well as the two annuli

α×
[

3
4 , 1
]

and β×
[
0, 1

4

]
, and then gluing the two boundary curves α×{1} and β×{0}

together. Since the induced foliations on the bands and annuli are product foliations

by the construction, there is no tangency on the bands and annuli, and so they do not

contribute to the index sum. Hence,

〈e(F1), F 〉= Ind(F1, F ) = Ind(F1|N , D) =χs(D) =−2 =χ(F ).

Likewise, we can show that

x([S]−[F ]) =−χ(S)−χ(F ), (17)

by constructing a taut foliation F2 on M whose Euler class e(F2) assigns the numbers

χ(S) and −χ(F ) to the surfaces S and F , respectively. We do the same steps except

at the end we use a standard taut foliation of N by a stack of monkey saddles whose

relative Euler class assigns −χs(D)=2 to the meridional disk of N . To sum up, we

have proved equalities (14)–(17). These four equalities show that the unit balls have the

claimed shapes in Figure 1. For example, equalities (14)–(16) determine the shape of the

Thurston norm ball in the first and the third quadrants.



on thurston’s euler class-one conjecture 351

N

shift holonomy shift holonomy

foliation transverse

to the
[
1
4
, 3
4

]
factor

S×{1}

S×
{
3
4

}

S×
{
1
4

}

S×{0}

Figure 16. A schematic picture of the constructed foliation for computing the Thurston norm.

The horizontal foliations indicate the product foliation.

Lemma 5.2. (Atoroidal and hyperbolic) Let M be one of the manifolds constructed

in §4. Then, M is irreducible, atoroidal, and hyperbolic.

Proof. The proof is divided into two steps. In the first step, we show that any

incompressible torus T in M can be isotoped to be disjoint from N . The second step

is to prove that the manifold M \N � is atoroidal. Steps 1 and 2 imply that M has no

incompressible torus. On the other hand, the compact orientable 3-manifold M 6=S2×S1

admits taut foliations, and hence is irreducible [54], [60]. At this point, Thurston’s

hyperbolization theorem for Haken manifolds implies that M is hyperbolic, since M is

closed, atoroidal, and Haken.

Step 1. Isotope T such that T∩S is a collection of simple closed curves that are

essential in both T and S. This can be done since both S and T are incompressible

and M is irreducible. In particular, these curves are parallel in the torus T and cut T

into a collection of annuli Ti in M \\S; see Notation 2.1. We may assume that |T∩S| is

minimal. We show that Ti can be isotoped to be disjoint from N .

Isotope Ti such that the part of Ti lying in S×
[

3
4 , 1
]

and S×
[
0, 1

4

]
becomes a

standard vertical annulus. This can be done since S×
[

3
4 , 1
]

and S×
[
0, 1

4

]
admit product

foliations and Ti is essential, for example by Roussarie–Thurston procedure. Let T ′i be

the rest of Ti. Isotope T ′i such that T ′i∩∂N is a collection of simple closed curves in ∂N .

These curves can be assumed to be essential in ∂N , and hence parallel to each other;

otherwise one can reduce |T∩∂N | after an isotopy of the essential surface T ′i . Let A1 and

A2 be the annuli γ+×
[

1
4 ,

3
4

]
and γ−×

[
1
4 ,

3
4

]
, respectively. We may assume that the curves

T ′i∩∂N are not parallel to ∂A1 and ∂A2. This is because otherwise, each component

of T ′i∩N is a ∂ -parallel annulus in N by Lemma 2.21, and so it can be isotoped out
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type-1

type-2

γ+×
{
3
4

}

γ+×
{
1
4

}
Figure 17. Left: Two types of arcs in the annulus A1. Right: Annulus T ′

i is cut into squares
by type-2 arcs.

of N . Hence, the intersection of T ′i with A1 and A2 is a collection of properly embedded

arcs in A1 and A2. Two types of arcs can occur: type-1 arcs start and end on the same

component of ∂A1 (or ∂A2), whereas type-2 arcs run between different components of

∂A1 (or ∂A2). See Figure 17, left.

First, we remove type-1 arcs. Choose an innermost type-1 arc on A1 (or A2). Assume

that the endpoints of this arc lie on S×
{

3
4

}
. This arc, together with a portion of the

boundary of A1, bounds a disk. Use this disk to push the arc, together with part of

the corresponding annulus T ′i , out of A1 and reduce the number of type-1 arcs. At this

point, Ti\T ′i might not be a vertical annulus any more, and we isotope Ti further to

make Ti\T ′i a vertical annulus again. Denote by θ1 and θ2 the simple closed curves in

T ′i∩
(
S×
{

3
4

})
containing the endpoints of the type-1 arc; it is possible that θ1=θ2. From

the perspective of T ′i , a neighborhood of the type-1 arc is a band connecting θ1 to θ2, and

the operation of pushing the type-1 arc corresponds to surgering θ1∪θ2 along that band.

This operation converts θ1∪θ2 into one or two simple closed curves, one of which bounds

a disk in Ti. This disk can be used to isotope Ti and remove the non-essential curve

in Ti. In fact, this argument shows that there must be two components after surgering

along the band, otherwise |T∩S| would not have been minimal. At this point, Ti\T ′i is

a vertical annulus again. After doing this finitely many times, we are left with a number

of type-2 arcs.

From the perspective of T ′i , type-2 arcs start from one boundary component of T ′i
and end on the other boundary component of T ′i ; see Figure 17, right. So, T ′i∩N is a

collection of squares. Each square in T ′i∩N has two sides on ∂tN and two sides on ∂τN ,

and hence is ∂ -parallel in N . To see this, note that the meridional disk of N has six sides

on ∂tN and six sides on ∂τN . Starting from an innermost square, we can isotope them

out of N . We have shown that Ti can be isotoped to be disjoint from N .
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Sj+1

Sj

Figure 18. The annuli Ti are divided into four types according to the way their lifts in the

covering space P̃ look like. The pictures from left to right, respectively, correspond to the lift

of an annulus of type X, Y , Z, and W .

Step 2. We show that any incompressible torus in M \N � is ∂ -parallel. Recall

that γ⊂S is an essential simple closed curve, and A⊂S is a regular neighborhood of γ.

Let P :=M \N �. Then, P=Mf \int
(
A×

[
1
4 ,

3
4

])
, where Mf is the fibered hyperbolic 3-

manifold with fiber S and monodromy f as described in Step II of §4. We may assume

that |T∩S| is minimal.

Define the map δ:π1(P )!Z as the algebraic intersection number with S, and denote

by h: P̃!P the infinite cyclic cover corresponding to the kernel of δ. Then, the lifts of

S in P̃ are indexed by elements of Z, and we denote them by Sj , where j∈Z. We can

partition the annuli Ti into four groups corresponding to the way their lifts in P̃ look

like, and we denote them by X, Y , Z, and W as follows. If a lift of Ti goes from Sj

to Sj′ , then the index of Ti is defined as j′−j. Here, X and Y have indices 1 and −1,

respectively. The index of both Z and W is zero, and they can be distinguished by

looking at the side of S that they lie in; see Figure 18.

P \\S has a natural foliation induced from the product foliation on Mf \\S=S×[0, 1].

Therefore, if Ti has index 1 or −1, then by Roussarie–Thurston procedure, Ti can be

isotoped to be a vertical annulus. Note that technically P \\S is not a sutured manifold,

as it has concave corners rather than convex corners. Nevertheless, since the foliation on

P \\S is almost a product, we can use the proof of Roussarie–Thurston rather than the

statement to put T in the desired position. Similarly, we use the Roussarie–Thurston

procedure for an annulus Ti of index zero. In this case, Ti can be isotoped such that it

consists of a union of tangential and transverse annuli. The tangential annuli lie inside

a leaf of the foliation on P \\S, while transverse annuli have a product foliation induced

from the foliation on P \\S.

Denote the boundary components of Ti by ci and di. Fixing a direction for T , we

assume that Ti starts from ci and ends at di. Hence, if the index of Ti is 1 (resp. −1),

then di is isotopic to f(ci) (resp. f−1(ci)). Similarly, if Ti has index zero, then di is

isotopic to ci. Define the total index, I, of T as sum of the indices of all Ti. It follows

that f I(c1) is isotopic to c1. As f is pseudo-Anosov and c1⊂S is an essential closed

curve, I should be equal to zero.
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For any Ti of index zero, let Di be a ∂ -compressing disk for Ti inside S×[0, 1]. Then,

one can use Di and isotope Ti across S to reduce |T∩S|, unless Di intersects the core

of the solid torus A×
[

1
4 ,

3
4

]
essentially, that is algebraically a non-zero number of times.

Note that this core curve can be identified with γ×
{

1
2

}
. In this case, ci and di are both

isotopic to γ in S if Ti is of type Z, and both are isotopic to f(γ), if Ti is of type W .

Call this condition (∗).
Now, we show that |T∩S|=0 and T is ∂ -parallel in M \N �. Assume to the contrary.

Note that there should be at least one annulus of index zero, since otherwise the total

index is non-zero. If we allow both annuli of index zero and of index non-zero, then

the condition (∗) would be violated for the following reason. It is clear that looking at

the sequence of annuli in T , right after an X only X or Z can appear. Similarly, right

after a Y there can come a Y or W . Right after Z comes a Y or W , and right after W

only X or Z can happen. Now, suppose letters a∈{X,Y } and b∈{Z,W} appear in the

sequence corresponding to T . It follows that there should be a sequence of consecutive

letters that starts and ends with elements in {Z,W}, while all the intermediate letters

belong to {X,Y }. It is easy to see that the only possibilities are the sequences ZY ...YW

and WX...XZ. But in both cases, the condition (∗) is violated by at least one of the

two ending letters W and Z. This is because the intermediate letters change the curve

ci by powers of f , and the existence of such string of letters implies that fr(γ) is isotopic

to γ for some r∈N, contradiction to f being pseudo-Anosov. So, all the annuli Ti are of

index zero, and there are at least two annuli Ti. But again the condition (∗) is violated.

The contradiction shows that the torus T is disjoint from S.

Use Roussarie–Thurston procedure to isotope T inside the foliated manifold P \\S,

so that T consists of tangential and transverse annuli. The cross section of the picture

is a simple closed curve winding around a point, where the point is a cross section of

γ×
{

1
2

}
. Since the curve is simple and closed, the winding number, w, is 0 or ±1. If w=0,

then T is not incompressible. Therefore, w=1 or −1, which correspond to a ∂ -parallel

torus in P .

For the proof of the next lemma, we need the following less known theorem of Gabai.

Theorem 5.3. (Gabai [25]) Let M be a closed, orientable 3-manifold. Assume

that P and Q are two possibly disconnected, norm-minimizing surfaces in M that are

homologous. There is a sequence of possibly disconnected, norm-minimizing surfaces

P=P0, P1, ..., Pn=Q with each term in the same homology class as [P ]=[Q] such that

any two adjacent terms in the sequence can be isotoped to be disjoint in M .

Proof. Directly follows from the proof of [25, Lemma 3.6].
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N N ′

Figure 19. Submanifolds N and N ′ of M \\S. The top and bottom parts with the product

foliation on the left indicate S×
[
3
4
, 1
]

and S×
[
0, 1

4

]
.

Lemma 5.4. Let M and S be as defined in §4. Any norm-minimizing surface that

is homologous to S is in fact isotopic to S.

Proof. Suppose that S′ is a norm-minimizing surface that is homologous to S. By

Theorem 5.3, we may assume that S′ is disjoint from S, and hence lies inside M \\S.

Recall that γ is a non-separating simple closed curve inside S, and A is a tubular neigh-

borhood of γ in S with ∂A=γ+∪γ−. The manifold M \\S is the union of two parts: the

product part (S\A�)×[0, 1] and the twisted part

N ′ :=
(
A×

[
0, 1

4

])
∪N∪

(
A×

[
3
4 , 1
])
. (18)

See Figure 19. Then N ′ is a sutured manifold with annuli sutures A′1 :=γ+×[0, 1]

and A′2 :=γ−×[0, 1]. Note that N ′ and N are homeomorphic as sutured manifolds, since

N ′ is obtained by thickening the tangential boundary of N to the outside. We isotope

S′ to be in a standard form in each of the two parts of M \\S and conclude that S′ is

isotopic to S.

By assumption, S′ is disjoint from the top and bottom copies of S in M \\S. Isotope

S′ such that it intersects A′i in a union of simple closed curves. Inessential circles in

S′∩A′i⊂A′i can be removed, starting from an innermost circle and isotoping the incom-

pressible S′. At this point, S′∩A′i is a union of disjoint copies of essential circles, each

of which is isotopic to the core curve of A′i. Let

S′1 :=S′∩((S\A�)×[0, 1]) and S′2 :=S′∩N ′.

After further isotopy of S′, it can be assumed that no component of S′1 is parallel to a

subannulus in A′1 or A′2. We claim that S′1 does not admit any ∂ -compressing disk D1

with ∂D1=α1∪β1, where D1∩S′1=α1 is an essential arc, β1⊂A′1∪A′2 is an arc, and ∂α1=

∂β1=α1∩β1. Assume to the contrary that such a ∂ -compressing disk D1 exists. Then,

the two points in ∂α1 lie on distinct components b1 and b2 of ∂S′1⊂A′1∪A′2. Let Â be the

annulus cobounding b1 and b2 in A′1∪A′2. Let N1 be a neighborhood of b1∪b2∪α1 in S′1,

which is a 3-punctured sphere. The circle ∂N1\∂S′1 bounds a disk in the complement

of S′1, lying near D1∪Â. Since S′1 is incompressible, this boundary circle also bounds a
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disk in S′1. Thus, a component of S′1 is an annulus, which we refer to by S′1 by abuse

of notation. Surgering the torus S′1∪Â along D1 yields a sphere, which bounds a ball,

since (S\A�)×[0, 1] is irreducible. Hence, some component of S′1 is a ∂ -parallel annulus,

contradicting our previous assumption. The contradiction shows that such ∂ -compressing

disk does not exist.

Now, Lemma 2.22 shows that S′1 is a union of parallel copies of S\A�. But there

cannot be more than one copy, since otherwise

|χ(S′)|> 2|χ(S\A�)|= 2×(2g−2)> 2g−2 = |χ(S)|,

contradicting the assumption that S′ is norm-minimizing and [S′]=[S]. Hence, S′1 is a

single copy of S\A�, and S′ intersects each of A′i in exactly one essential simple closed

curve. But the only incompressible surfaces in (N ′, A′1∪A′2) with this oriented boundary

are the two components of the tangential boundary of N ′, up to isotopy (Lemma 2.21).

Therefore, S′ is isotopic to either the top or the bottom copy of S in M \\S. This

completes the proof.

Lemma 5.5. (General position for annuli) Let M be one of the manifolds constructed

in §4, and F be a taut foliation on M \\S having ∂(M \\S) as leaves. Recall that

M \\S∼= ((S\A�)×[0, 1])∪N ′,

where N ′ is the solid torus defined as in equation (18), and

∂(S\A�)×[0, 1] =A′1∪A′2.

Then, A′1 and A′2 can be isotoped relative to their boundaries such that the induced

foliations on them are suspension foliations.

Proof. Let K :=S\A�. First, we show that A′1∪A′2 can be isotoped relative to its

boundary such that F is transverse to A′1∪A′2, and furthermore there is no annulus leaf

in (K×[0, 1], A′1∪A′2). After such an isotopy, the induced foliation on K×[0, 1] contains

no Reeb component or half Reeb component.

By Roussarie–Thurston general position, the incompressible A′1∪A′2 can be isotoped

to be transverse to the foliation, although there might be 2-dimensional Reeb components

on A′i. Consider the induced foliation on K×[0, 1], and by abuse of notation call it F
again. Leaves of F are incompressible by Novikov’s theorem.

We show that any annulus leaf L in K×[0, 1] is parallel to an essential subannulus

in A′1 or A′2. If the annulus L admits no ∂ -compressing disk D with ∂D=α∪β, D∩L=α

an essential arc, β⊂∂K×[0, 1] an arc, and α∩β=∂α=∂β, then L would be horizontal by
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Lemma 2.22, which is not possible. The contradiction shows that such a ∂ -compressing

disk D exists. Without loss of generality assume that ∂L⊂A′1, and let Â be the portion

of A′1 cobounding the components of ∂L. Let P be the torus L∪Â. Then P surgered

along D is a sphere that bounds a solid ball since K×[0, 1] is irreducible. This ball can

be used to isotope L into Â. Hence, every annulus leaf is parallel to a subannulus in A′i.

By Haefliger, there is an outermost annulus leaf parallel to an essential subannulus

of A′i. Therefore, we may isotope A′i to push all annuli leaves out of K×[0, 1]. After this

isotopy, the foliation is still transverse to A′i, and there is no annulus leaf in

(K×[0, 1], A′1∪A′2).

Now, the induced foliation on K×[0, 1] is an essential lamination on an I-bundle

over the compact surface K of negative Euler characteristic, and having K×{0, 1} as

leaves. By Brittenham [7], [6], this essential lamination can be isotoped to be transverse

to [0, 1] factor. In particular, after the isotopy there are no Reeb components on A′i.

6. Taut foliations on sutured solid tori

Definition 6.1. A taut foliation F of a sutured solid torus (T, γ) is standard if either

(1) F is obtained from a stack of generalized saddles by possibly I-bundle replace-

ment along some of the components of its tangential boundary (see Example 3.13), or

(2) F is a foliation of annulus×I, transverse to the I factor, where γ=∂(annulus)×I.

In the special case above, I-bundle replacement is the operation of replacing a com-

pact leaf L by an I-bundle over L which is foliated transverse to the I factor (I an

interval).

Definition 6.2. Let (M,γ) be a sutured manifold, and L be a properly embedded

surface in M . We say that L is ∂τM -parallel if there is a union R of components of R(γ)

such that R and L together bound a submanifold homeomorphic to R×[0, 1], where

R×{0} (resp. R×{1}) is identified with R (resp. L), and ∂R×[0, 1]⊂γ.

In this section, we prove Proposition 6.7 and Corollary 6.8. The following definition

is essentially due to Novikov [54, p. 6].

Definition 6.3. Let F be a transversely oriented foliation on a compact 3-manifold

M , and L be a leaf of F . Fix a point p∈L, and let T (L, p) be the set of positive closed

transversals for L that start and end at p. Positive means that its orientation agrees with

the transverse orientation of F . The set of based homotopy classes of elements of T (L, p)

forms a semigroup under concatenation. We call it the based transversal semigroup of L

and denote it by Th(L, p).
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Figure 20. The concatenation of a based positive transversal and a based loop in L can be

perturbed to a new based positive transversal.

Remark 6.4. (i) For different choices p and q of base points, the semigroups Th(L, p)

and Th(L, q) are isomorphic; the isomorphism depends only on the homotopy class on

the leaf L of a path joining p and q on L. To see this, pick an oriented arc δ⊂L from q

to p. Let γ be a positive transversal based at p, and denote by γ̂ the concatenation of

δ, γ, and −δ. A perturbation of γ̂ is a positive transversal based at q. See Novikov [54,

Lemma 2.2].

(ii) In general, the set T (L, p) might be empty. However, when F is taut and M is

closed, T (L, p) is non-empty for each leaf L and p∈L by definition.

(iii) If L is non-compact and F is not necessarily taut, then T (L, p) is non-empty.

This is because the compact manifold can be covered by finitely many foliation charts,

and hence some chart intersects the non-compact leaf L infinitely many times. Take a

small transverse arc in the chart with endpoints on L and connect its endpoints by a

path in L to obtain a closed curve. This closed curve can be perturbed to a transversal

which is possibly not based at p. Now, the base point can be moved to p while keeping

the curve a positive transversal.

(iv) By Novikov’s theorem, for Reebless F every element in T (L, p) is homotopically

non-trivial.

(v) In [54, p. 6], Novikov defined a semigroup very similar to Th(L, p); he considered

regular homotopy classes of transversals where the initial point is always at p and during

the homotopy the transversal is never tangent to leaves. The semigroup defined above is

a quotient of Novikov’s semigroup.

Observation 6.5. If Th(L, p) is non-empty then it is closed under multiplication by

elements of i∗(π1(L, p)), where i:L!M is the inclusion map.

Proof. See Figure 20.

Corollary 6.6. Let (T, γ) be a sutured solid torus, and F be a taut foliation on T .

Any non-compact leaf of F is simply connected.

Proof. Assume that the contrary holds. Let L be a non-compact leaf such that

π1(L, p) 6={0}, where p∈L. By Novikov’s theorem, L is π1-injective. Hence, if l is a

generator of π1(T, p), then i∗(π1(L, p))=〈lk〉 for some natural number k. Since L is
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non-compact, T (L, p) is non-empty. Let γ∈T (L, p) be a transversal, and assume that

γ represents lm∈π1(T, p) for some m∈Z\{0}. The iterated concatenation γk is also a

based transversal that represents the element lkm∈Th(L, p). By Observation 6.5, we have

0=(l−k)m ·lkm∈Th(L, p), since l−k∈i∗(π1(L, p)). This contradicts Novikov’s theorem.

Therefore L is simply connected.

Proposition 6.7. Let (T, γ) be a sutured solid torus, and F be a taut foliation of

T such that every compact leaf of F is ∂τT -parallel. Then, F is standard. In particular,

F has maximal relative Euler class, meaning that its pairing with the meridional disk D

is equal to χs(D) up to sign. Here, χs(S) denotes the sutured Euler characteristic of D,

where D is assumed to intersect γ minimally.

Proof. First, it may be assumed that every compact leaf of F is a component of

R(γ). By hypothesis, every compact leaf of F is a ∂τT -parallel annulus. So, by Haefliger’s

theorem, for every component S of R(γ) there is a compact leaf L such that the foliation

between L and S is a suspension foliation of annulus×interval transverse to the interval

factor, and L is farthest from S; we include the possibility of L=S. Remove the foliation

between L and S, and repeat this for all components of R(γ). By abuse of notation, call

the new foliation F . Assume that F is non-empty, otherwise the conclusion holds.

By Corollary 6.6, every non-compact leaf of F is simply connected. So, if µ∈
Homeo+ (I) is the holonomy of an annulus suture, then µ has no fixed point except the

interval endpoints; otherwise, a fixed point corresponds to a non-trivial loop inside a

non-compact leaf. We want to prove that the foliation is indeed the standard foliation by

a stack of generalized saddles with holonomy µ. A small foliated neighborhood of ∂τT

is determined completely by the holonomy µ; see e.g. Camacho and Neto [12, p. 67]. See

Example 3.13. Since µ is a shift, near ∂τT the leaves spiral around ∂τT in the standard

way, i.e. like the picture for a stack of generalized saddles with the shift holonomy. Hence,

if we shave a small neighborhood of the tangential boundary, we obtain a foliation, G, on

a solid torus T ′ that is transverse to the boundary, and whose picture looks like Figure 21.

Note that G is a subfoliation of F , and therefore has no Reeb component. Pick a curve

s⊂∂T ′ that is isotopic to the sutures and is transverse to the foliation ∂G. Since the

foliation ∂G is transverse to s, it has no Reeb component, and therefore is a suspension

foliation. We prove that the foliation G is a product foliation by disks.

Let m⊂∂T ′ be a meridian. Since the foliation ∂G is Reebless, after an isotopy either

m is transverse to ∂G or m is a leaf of ∂G. By Novikov, m cannot be transverse to the

Reebless G, and so m is a leaf of ∂G. Let Q be the leaf of G with m⊂∂Q. By Novikov,

Q is π1-injective. Since m bounds a disk in T ′ and Q is π1-injective, Q itself should be

a disk. Now, by the Reeb stability theorem, G is the product foliation by disks.
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Figure 21. Shaving a neighborhood of ∂τT .

Since F was obtained by adding standard pieces to the boundary of G, F is a

standard taut foliation by a stack of generalized saddles, and the relative Euler class of

F is maximal.

Corollary 6.8. Let (T, γ) be a sutured solid torus with either two or four sutures.

Every taut foliation of T is standard. In particular, the relative Euler class of the foliation

is maximal, meaning that it assigns χs(D) to the meridional disk D of T up to sign.

Proof. By Proposition 6.7, it is enough to show that every compact leaf A is a

∂τT -parallel annulus. By Novikov, any compact leaf A is π1-injective, and hence is a

∂ -parallel annulus or a disk (Lemma 2.21). No leaf is a disk either, otherwise by Reeb

stability theorem the foliation should be the product D2×S1. Note that (A, ∂A)⊂(T, γ).

Moreover, each component of ∂A is parallel to the core curve of the corresponding suture

that it lies on, and their orientations agree. Since the number of sutures is either two

or four, (at least) one of the two components of ∂T \∂A contains exactly one tangential

annulus. Therefore, A is ∂τT -parallel.

Remark 6.9. Example 3.14 shows that Corollary 6.8 is not true when there are more

than four sutures.

Remark 6.10. Given a sutured solid torus, one can classify taut foliations on it using

the following steps:

(i) Locate the compact annuli leaves.

(ii) Excise foliated packets containing all compact leaves, and produce a union of

sutured solid tori such that every compact leaf is a component of the tangential boundary.

(iii) By Proposition 6.7, the foliation on each new sutured solid torus is a standard

one by a stack of generalized saddles. Now, glue the sutured solid tori pieces back

together.
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7. Proof of the main theorem

We prove that the manifold M constructed in §4 violates Thurston’s conjecture. Consider

the cohomology class a=(0, 2−2g)∈2H2(M ;Z) in Figure 1, right. This class has dual

Thurston norm equal to 1 (Lemma 5.1). We show that a cannot be realized as the Euler

class of any taut foliation on M . Assume, to the contrary, that there is such a taut

foliation F .

Step 1. We show that it can be assumed that S is a leaf. Note that S is an

algebraically fully marked surface. Moreover, M is hyperbolic (Lemma 5.2) and the

surface S is the unique norm-minimizing surface in its homology class, up to isotopy

(Lemma 5.4). By the fully marked surface theorem, there exists a new taut foliation

that has S as a leaf and whose oriented tangent plane field is homotopic to that of F .

In particular, the new foliation has the same Euler class as F . By abuse of notation, we

call the new foliation F again.

Step 2. Recall that A was an annulus neighborhood of γ. Note that, if M1=M \\S,

then there exists an embedded (S\A�)×I in M1, where (S\A�)×{0} and (S\A�)×{1}
are in ∂M1, and ∂(S\A�)×I are vertical annuli; see Figure 19. Apply Lemma 5.5 and

isotope A′1∪A′2=∂(S\A�)×I relative to its boundary, so that the induced foliations on A′1
and A′2 are suspension foliations. Note that N ′=M1\int((S\A)×I) is homeomorphic to

N as sutured manifolds; see Figures 2 and 19. The induced foliation on the sutured solid

torus N ′ is taut. This is because F is taut and hence every leaf of N has either a closed

transversal in M \\S, or a transverse arc going between the components of ∂(M \\S).

Now, given that the induced foliations on A′1 and A′2 are suspension foliations, it is easy

to see that every leaf of N ′ has either a closed transversal or a transverse arc connecting

A×{0} to A×{1}.

Step 3. Let D and D′ be the meridional disks of N and N ′, respectively, and F be the

surface of genus 2 constructed in the proof of Lemma 5.1. Recall that F is obtained from

D by attaching the three bands δi×
[

1
4 ,

3
4

]
and the two annuli α×

[
3
4 , 1
]

and β×
[
0, 1

4

]
,

and then identifying α×{1} with β×{0}. Paraphrasing this, F is obtained from D′ by

attaching the three bands δi×[0, 1], and then identifying α×{1} with β×{0}.
Let F1 and F ′ be the induced foliations on M1 and N ′, respectively. Both F1

and F ′ are taut. Let M2=(S\A�)×[0, 1], and denote the induced foliation on M2 by F2.

Isotope the three bands δi×[0, 1] in M2 relative to their boundaries such that the induced

foliations on them are products. More precisely, by Roussarie–Thurston general position

for the sutured manifold M2 and taut foliation F2, the bands can be isotoped relative to

their boundaries so that the induced foliations on them have only saddle singularities.

By the Poincaré–Hopf formula, the number of such saddle tangencies is equal to zero. On
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the other hand, since a band is simply connected, there is no room for a Reeb component

either. Hence, the induced foliations on the bands are product foliations.

Step 4. Let F1⊂M1 be the surface obtained by cutting F along S; in other words,

F1 is the union of D′ and the three bands δi×[0, 1]. We have

0 = 〈e(F), [F ]〉= Ind(F , F ) = Ind(F1, F1) = Ind(F ′, D′).

Here, the first equality is by the assumption on the initial Euler class. The second and

third equalities follow from the index sum formula, since the induced foliations on the

bands are products and contain no singularity. Thus, we have a taut foliation on the

sutured manifold N ′∼=N with relative Euler class zero. However, by Corollary 6.8, such

a taut foliation does not exist. This gives a contradiction, and completes the proof of

the main theorem.

8. Euler classes of general foliations

For comparison, we bring the following result of Wood [74, pp. 351–352].

Theorem 8.1. (Wood) Let M be a closed orientable 3-manifold and a∈2H2(M ;Z),

i.e. the cohomology class a satisfies the parity condition. There is a transversely oriented

(not necessarily taut) foliation F of M such that e(F)=a.

Proof. By Wood, every transversely oriented plane field on M is homotopic to an

integrable plane field, i.e. coming from a foliation [74]. Homotopic plane fields have the

same Euler class. Therefore, it suffices to find a plane field over M with Euler class equal

to a.

Fix a trivialization of the tangent bundle TM of M , and identify TM∼=M×R3.

A transversely oriented plane field σ over M defines a map f :M!S2, where f(m) for

m∈M is the oriented unit normal vector to σ. Note that σ=f∗(TS2), where TS2 is the

tangent bundle to the 2-sphere. Therefore, if s is the positive generator for H2(S2;Z),

then

e(σ) = f∗(e(TS2)) = f∗(2s) = 2f∗(s).

So, it is enough to show that every element in H2(M ;Z) can be obtained by pulling

back the fundamental cohomology class of S2 under some map f :M−!S2. A class

a∈H2(M ;Z) corresponds to the homotopy class of a map f :M!K(Z, 2)=CP∞, which

factors through the 2-skeleton S2, up to homotopy. This completes the proof.
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9. Further questions

Taut foliations with trivial Euler class, and Anosov flows. Although Thurston’s

conjecture was stated for the unit sphere of dual norm, a priori we only know that the

Euler class of a taut foliation is inside the dual unit ball.

Question 9.1. Which points inside the dual unit ball can be realized as the Euler

class of some taut foliation on M?

A point strictly inside the dual unit ball cannot correspond to a taut foliation having

a compact leaf of negative Euler characteristic. This makes it difficult to construct taut

foliations with Euler class strictly inside the dual unit ball. An interesting case is that

of taut foliations with trivial Euler class. Anosov flows provide one way of constructing

taut foliations of Euler class zero. The weak stable (unstable) foliation of an Anosov flow

is a taut foliation, since it has no compact leaves, and it has trivial Euler class, since the

flow direction is a section. To the best of my knowledge, it is not known whether or not

every closed hyperbolic 3-manifold with positive first Betti number admits an Anosov

flow.

Question 9.2. Which 3-manifolds with positive first Betti number admit a taut fo-

liation with trivial Euler class?

As a concrete example, we do not know if the Whitehead link complement has a

taut foliation, transverse to the boundary, and with relative Euler class zero. Such a

taut foliation, if it exists, should have boundary Reeb components because of the relative

parity condition. More precisely, if there is no Reeb component on ∂M , then χs(S) and

〈e(F), [S]〉 have the same parity for each properly embedded oriented surface S. Now, if

F has no boundary Reeb component, and S is a twice-punctured disk bounding one of

the link components, then

〈e(F), [S]〉≡χs(S)≡ 1 (mod 2),

implying that the relative Euler class e(F) is non-zero.

Pseudo-Anosov and quasigeodesic flows. This subsection contains no new ques-

tions; instead it includes a brief and non-exhaustive summary of what is known about re-

alization of Euler classes of pseudo-Anosov or quasigeodesic flows. Cannon and Thurston

[14] proved that the suspension flow of a pseudo-Anosov automorphism of a surface can

be chosen to be quasigeodesic and pseudo-Anosov. Mosher, following Gabai, general-

ized [14] and proved that, for any finite-depth taut foliation F on a closed, hyperbolic
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3-manifold, there exists an almost transverse pseudo-Anosov flow [52], [53]. Almost

transverse means that it will be transverse to F after an appropriate blow up of a finite

collection of closed orbits [53]. Fenley and Mosher proved that these flows are quasi-

geodesic as well [24]. Since the foliations constructed by Gabai in Theorem 1.2 are of

finite depth, it follows that the vertices of the dual ball are realized as Euler classes of

pseudo-Anosov (resp. quasigeodesic) flows on closed hyperbolic 3-manifolds.

Euler classes of representations into Homeo+(S1). The following question is

inspired by Thurston’s conjecture.

Question 9.3. Let M be a closed hyperbolic 3-manifold with positive first Betti

number. Can every integral class a∈H2(M ;R) (or H2(M ;Z)) of dual Thurston norm

exactly (at most) 1 (and satisfying the parity condition) be realized as the Euler class of

some (faithful) representation ρ:π1(M)!Homeo+(S1)?

Miyoshi gave a partial positive answer to the above question for closed orientable

Seifert fibered manifolds, H2(M ;Z), cohomology classes of dual Thurston norm at most 1,

and smooth representations [48, Theorem 2]. Miyoshi also gave examples of cohomology

classes that are representable as continuous Euler classes, but not as smooth ones [48,

Theorem 1]; he showed, using a rigidity theorem of Ghys [31], that in fact the Euler class

of any fibration of a closed hyperbolic 3-manifold is not smoothly representable. See also

Miyoshi [49].

Note that, if M is a closed aspherical 3-manifold, the Euler class of a representation

ρ:π1(M)!Homeo+(S1) does not necessarily satisfy the parity condition. For example,

take M=Sg×S1, with Sg a closed orientable hyperbolic surface of genus g, and let ρ be

a representation of π1(M)=π1(Sg)×Z such that the image of Z is trivial, and the image

of π1(Sg) has odd Euler class. See Calegari [9, Remark 3.3], and Culler and Dunfield

[18, Lemma 8.2] for a parity condition for holonomy representations of cusped hyperbolic

3-manifolds.

Virtual Euler class-one conjecture. Given a foliation F on M with Euler class a

and a finite covering map p: M̃!M , the foliation F can be pulled back to a foliation F̃
on M̃ with e(F̃)=p∗(a). By Proposition 2.20, if a∈H2(M ;R) has dual norm equal to

(resp. at most) 1, then p∗(a) has dual norm equal to (resp. at most) 1.

Question 9.4. Let a∈H2(M ;R) be an integral point with dual norm equal to (at

most) 1 that satisfies the parity condition. Is there a finite covering map p: M̃!M and

a taut foliation F̃ of M̃ such that e(F̃)=p∗(a)?
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