A PROOF THAT EVERY AGGREGATE CAN BE
WELL-ORDERED.

By

PHILIP E. B. JOURDAIN.!

Introduction.

If we are given any aggregate whatever, M, which contains at least one
member, this M has a perfectly definite class of »chainss. A schain» is any
definite part of M which is well-ordered. Thus, if we know that M contains the
three members a, b and ¢, we know that to M belong six chains. The class of
M-chains falls into sub-classes, of which one, K,, contains all those chains, and
only those chains, that are of ordinal type y.

Our object is to re-arrange all the chains in the K’s in other classes, which
we will call »K-classes», and these can be defined as follows. A »K-class» is a
class of chains such that (I) it contains chains respectively of all types less than
some ordinal number y, and (II) if x and y are members of the K-class, and the
type of x is greater than that of y, then y is a segment of . It is evident
that a K-class determines uniquely a single chain, such that the K-class is
composed of the segments of this chain and that, if y has no immediate prede-
cessor, the chain determined by the K-class whose members are respectively of
all types less than y, is of type y.

If there is a chain which is a member of one of the K's which exhausts M,
the theorem is obviously proved. If there is not such a chain, we will fill up

The undersigned does not accept the principal wiew on which is based the above paper
of the regretted, highly esteemed mathematician Philip B. Jourdain, which paper seems to be
the last one written by him. But it contains so many new points of wiew that I have thought
I would do the mathematical Public a service by publishing it. At the same time, however,
I wish to point out that this jonrnal will not to any further extent be at the disposal for
papers of the same kind. G. Mittag-Leffler.

(Ct. G. Mirrag-LerrFLER, »Die Zahl, Einleitung zur Theorie der analytischen Functionens,
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from the perfectly definite set of K’saset of K-classes, which can afterwards be
proved to consist of all possible K-classes which contain one chain of each type
of all possible M-chains. Each of these K-classes define a chain which is of
higher type than any M-chain; so that it is impossible that there should not be
a member of some K which exhaust M.

Before we can assume that there is an ordinal number so great that every
M-chain is of type less than this ordinal number, we have to prove that it is
impossible that the series of K’s is of the same type as the series of all ordinal
numbers. This can be proved quite simply.

The rule for re-arrangement of the K’s in K-classes is defined by an induction
which in general is transfinite, and which does not depend on Zermelo’s principle
of arbitrary selection.

If we take K,, we can evidently arrange without arbitrariness all the mem-
bers of K, in unit K-classes. If now all the K's whose suffixes are less than y
are arranged in K-classes, we can give a rule for arranging all the members X,
among the K-classes just mentioned. Consider the cases: — (I) y has an imme-
diate predecessor y—1; (II) y has no immediate predecessor.

(I) In this case, if there is a class K,, put for the moment with each member,
z, of K, all the members of K, which continue z. Then replace this complex
by a set of which each member is a member of K, associated with . By this
means we finally get the whole set of K’s of which the suffixes are equal to or less
than y into a set of K-classes of which each consists of chains of all types equal
to or less than y.

(II) In this case, each of the K-classes consists of chains respectively of all
types less than y... By what has been said before, the chain defined by any
one of these K-classes is of type 7.

We have thus obtained a chain of type greater than any M-chain. The
only alternative is that some M-chain exhausts M.

I

In a famous memoir published in 1883, Grore CanTOR! states that any
well-defined aggregate whatever can be brought into the form of a well-ordered
aggregate, and promised to return in a future publication to this »law of thought
which seems to be both fundamental, rich in consequences, and particularly remark-

1 Math. Ann., Vol. XXI, p. 550; or Grundlagen einer alljemeinen Mannigfaltigheitsiehre,
Leipzig 1883, p. 6. Cf. Cantor's Contributions to the Founding of the Theory of Transfinite
numbers, Chicago and London, 1915, pp. 62, 62, 66.
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able for its generalitys. This promise was never fully carried out, and it is not
difficult to guess why it was not carried out. In fact, it seems! that, to well-
order a given aggregate M he imagined an arbitrary selection of a member m,
of M and laid down that m, schould be the first in a well-ordered aggregate;
then he imagined a selection of any other member m, from the remaining part
of M, and laid down that m, should be the second in the above well-ordered
aggregate, and, in general, he imagined that, after any finite or transfinite num-
ber of members have been selected from M, any member of the remaining part
of M is chosen as the member of the above well-ordered aggregate to follow
immediately all the m’s already chosen. This process suggests itself at once?;
but the faet is that it is not sharply defined and cannot, then, be regarded as
a method of strict proof.? 1If, indeed, we have to select a finite number (n) of
members from an aggregate M, we can do so arbitrarily — provided, of course,
that M has as many as n members. But if we are merely given that M is
infinite, and we are required to select an infinity of members from M, we cannot,
since specification one by one of an infinity of members is naturally impossible,
decide which members are selected and which are not unless we imagine a rule
to decide the question unambiguously. Since such a rule must be expressed by
a finite number of symbols none of which, like » ... », sometimes indicates vaguely,
we get a demand for »definability in a finite number of wordss. Thus, KRONECKER
held that a definition is permissible only if in every case it can be tested by a
finite number of inferences.*

When Cantor gave a proof that every transfinite aggregate T has parts
with the cardinal number ¥,, he said explicitly® that, if, sby any rule», we have

! Cf. a remark due to E. Zeruero in Math. Ann., Vol. LXYV, 1908, p. 125,

* For example, Harpy explicitly used it in the paper to be mentioned below. In my paper
of 1904 also mentioned below I first relied on Hardy's result, but afterwards (Math. Ann., Vol.
LX, 1905, p. 68) made use explicitly of the notion of an infinity of arbitrary selections (cf.
Rev. de Math., Vol. VIII, 1906, p. 9, note I).

* Borer (Math. Ann., Vol. LX, 1905, p. 195, and Legons sur la théorie des fonctions, Second
ed., Paris, 1914, pp. 135—181). Any reasons Borel may have had for his rejection of a series of
arbitrary choices are not given, and it seems that he passed over an important logical point
involved, since he admitted any enumerable infinity of choices and rejected a non-enumerable
infinity of choices (cf. Homson, The Theory of Functions of a Real Variable and the Theory of
Fourier's Series, Cambridge, 1907, p. 210, note; ¢k pp. 196—197). Borel made use of an enumer-
able infinity of choices in the above Legons, for example, pp. 12—13.

¢ H. WesEr, Jahresber. der D. M. V., Vol. II, 1891—2, pp. 20; Math. Aun., Vol. XLIII, 1893,
p. 15. See also Hossow, ap. cit.,, pp. 196—197. Cf. Scuorsrrizs, Encycl. der math. Wiss., Vol. I,
Part 1, p. 188, Die Entwicklung der Lehve von den Punktmannigfaltigkeiten, Leipzig, 1900, p. s,
and Entwicklung der Mengenlehre und ihrer Anwendungen, Leipzig and Berlin, 1913, pp. 6—7.

® Math. Ann., Vol. XLVI, 1895, p. 493; Contributions, p. 105. On p. 205 of the Contributions,
I wrongly assumed that Cantor, like RusseL. (The Principles of Mathematics, Cambridge, 1903,
pp. 122—123) selected each # arbitrarily.

Acta mathematica. 43. Imprimé le 29 mars 1921, 31
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taken away a finite number (¢,,8,,...,%-1) of T, the always remains the
possibility of taking away a further member #,. From this the question arises
as to whether we can give such a rule, whatever our 7' may be; but, if we accept
as an axiom that we can always do so, Cantor’s proof is perfectly valid. It
must be noticed that in many other cases the process of arbitrary selection of
an infinity of members was carefully avoided by Cantor. Thus, hedefi ned the
multiplication of two cardinal numbers?, and, although the extension of this
definition to a transfinite number of cardinal numbers immediately suggests itself
and leads, if the possibility of an infinity of arbitrary selections is admitted, to
a definition of the exponentiation of a cardinal number by a transfinite cardinal
number, yet, he preferred to give? an independent definition of the latter process
which is not at first sight connected with the definition of multiplication appar-
ently because the independent definition could be formulated without any use
being made of an infinity of arbitrary selections. Where Cantor did use the
principle of arbitrary selection was in a case in which that use was so little
apparent that it was only discovered long afterwards.® Still the principle of
selection was used both explicitly and implicity by many other mathematicians,
and sometimes in work of which Cantor expressed approval.*

But Cantor explicitly accepted as an axiom this principle of selection in the
problem of well-ordering any given aggregate M. The proof of this well-ordering
seems to have been completed about 1895, and, though not printed, was commu-

' Math. Ann., Vol. XLVI, 1895, p. 485; Contributions, p. 92.

? Math. Ann., Vol. XLVI, 1895, p. 487; Contributions, p. 95. ScHOENFLIES drew attention to
the fact, which must have been the one that led Caxtor to his definition, that multiplication
counld be defined for an infinity of cardinal numbers. The idea was worked out in the symbols
of »mathematical logic» by A. N. Wairereap (Amer. Jowrn. of Math., Vol. XXIV, 1902, pp.
383—385), who did not however mention that the essential idea is due to ScmorxrLIEs; although
elsewhere (ibid. p. 367) he mentioned Schoenflies’s book. The fact of an axiom being required
here and in many other cases was certainly not noticed by either Whitehead or Russell before
1903 (cf. ibid., pp. 368, 380; RusskLL, op. cit, pp. 122—123; and my paper in Quart. Journ. Math.,
1907, p. 364), and was not pointed out by them in print until after Zermelo's discovery was
generally known. In many cases it was Zermelo or others who also were not »mathematical
logicians» who first pointed out that the principle of arbitrary selection is tacitly used in much
mathematical reasoning {cf. Math. Ann., Vol. LIX, 1904, p. 516; Vol. LXV, 1908, pp. 113—115).
From this and from the historical remark in my above-cited paper (pp. 360—366), it must, I
think, be concluded that »mathematical logic» has not been of help in perceiving the logical diffi-
culties that beset an infinite series of arbitrary choices. It has not been of any help in solving
these difficulties.

8 Cf. Contributions, p, 205. The first to publish a remark that the principle of selection
was used in this place seems to have been Zermelo (Math. dnn., Vol. LXYV, 1908, p. 114, fifth
paragraph).

4 Thus, in letters to me he expressed approval of the method of Hardy (1903) referred to
below, and the discovery (1904) of JorL1us Koxn1c on the infinite products of certain cardinal numbers
— which depends on the legitimacy of making an infinity of arbitrary selections.
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nicated to HiLBErT (1896) and DEDEKIND (1899).! If W is the system of all
ordinal numbers, Cantor? considered it as evident that any given aggregate M
either is equivalent to a part of W or else that M contains a part P equivalent
to W. In the latter case Cantor discovered the following contradiction: If g is
the ordinal type of W arranged in order of magnitude, 8 is an ordinal number,
and hence, since the type of an aggregate with no last term is of higber rank
than any term of the aggregate, 8 >#. This last contradiction is closely allied
to the well-known contradiction published by Burari-ForTr in 18¢%.

In 1903 HArDY published a construction, in the continuum of real numbers,
of an aggregate of cardinal number X,. In the introduction to his paper he
advanced the argument that, given any aggregate M whose cardinal number is
greater than &,, we can choose from it successively individuals corresponding to
all the numbers of Cantor’s first and second number-classes; if this process were
to come to an end, the cardinal number of M would be ¥,, so that we must
conclude that its cardinal number, by the sequivalence theorem» first proved by
ScERGDER and BERNSTEIN, is equal to or greater than x,.3> Further, if it is
greater than N,, it is equal to or greater than X,, ond so on; and if it is greater
than N, for all finite values of , it must be equal to or greater than N, for we
can choose individuals from M corresponing to all the numbers of the first, se-
cond, third, ..., »th, ... number-classes. And, by a repetition of these two
arguments, we can shew that, if there is no Aleph equal to the cardinal number of
M, the latter cardinal number must be at least equal to the cardinal number of the
aggregate of all ordinal numbers — or of all Alephs, and so must be greater than
any Aleph. This principle of selection was used in the construction given by
Hardy of a set of points of cardinal number ¥,, but it was not very evident that
it did so, since a method of proceeding for some way past w was actually given.*

It was the general argument of Hardy just described, together with a dis-
proof of RUSSELL’s statement, in his book of 1go3, that the series of all ordinal
numbers is not well-ordered, that prompted me, in 1903% to use Burali-Forti's
contradiction to prove that, if an aggregate cannot be well-ordered, it must be

! Cantor communicated this proof to me on November 4, 1903 becanse I had previously
communicated to him (October 29, 1903) an almost identical proof which I had independently
discovered.

? In his letter just mentioned, Cantor wrote :

>Nimmt man nun irgend eine unendliche Vielheit V und setzt voraus, dass ihr kein Aleph
als Cardinalzahl zukommt, so betrachte ich es mit Ihnen als einluchtend, dass in dieses ¥V das
System W hineinprojicirt gedacht werden kann;...»

® References to this and some other papers to be dealt with below are given in my
above-cited paper of 1907, pp. 363—365.

4 Cf. Hosson. 0p. cit., pp. 191—I194, 207—208, 210—211.

® Phil. Mag., January, 1904, Series 6, Vol. VII, pp. 61—75.
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susceptible of having a contradiction proved of it if we assume that it has a
cardinal number or ordinal type. It will be observed that the validity of the
process of making an infinite series of arbitrary selections was simply assumed
by me in consequence of Hardy’s work; but, in common with most other mathe-
maticians, I was quite unconscious at that time of the fact that any unproved
assumption was made by the admission of the priuciple of selection.

The credit of being the first to publish definitely the wiew that a postu-
late is involved in the theorem that any aggregate can be well-ordered is due
to ZERMELO (1go4) some months after my own paper just mentioned. Zermelo’s
object was the formulation of the axiom used when an infinite series of selections
is made: mine was to solve a difficulty which arises when Zermelo’s difficulty
is overcome.! Zermelo returned to the subject four years afterwards, gave his
postulate the form of a »principle of selection», and emphasized his view that
this principle is the orﬂy one required in well-ordering an aggregate and was not
touched on in my own attempt. The latter contention is quite true, and, in
the paper that follows, I will give a definite rule which fulfils the purpose of
the axiomatic principle of Zermelo, but from which it appears that the earlier
argument brought forward by Cantor and myself does really, in spite of deceptive
appearances, enter essentially into the proof that the rule is necessary and
sufficent for the purpose of well-ordering.

IL

In LeBESGUE’s® proof of the theorem in which BorEL generalized a process
used by HEINE, the principle of arbitrary selection is not used, whereas it was
used in some proofs given by Borel and several other mathematicians. In fact,

! Various aspects of this difference have been recognised by Hobson (Proc. Lond. Math.
Soc. {2), Vol. III, 1903, pp. 171, 184—185, and op. cit, pp. 195, 208—210) and Russell (Proc. Lond.
Math. Soc. (2), Vol. IV, 1906, p. 29). However it appears from § X that the two difficulties cannot
be separated so much as Russell thought, while Russell (loc. cit., pp. 34—35, 43—44) failed to grasp
that then my theory was that there is a class of ordinal numbers, but the series of all ordinal
numbers has no type and no associated cardinal number (ef. my remark in ibid., p. 282). In
consequence of § IX below, it i8 necessary to admit that there is no such thing as a class of
all ordinal numbers; and another point which my theory has led to be modified is due to the
fact that there is a mistake in ibid., pp. 271—272. It seems impossible to avoid the theory that
there are ordinal numbers beyond those indicated by Cantor, and from which . This theory
has the avantage over the theory (held since 1905) of Russell, that it includes much more of
the theory of the transfinite; while Russell's very limited theory does not exlude false appear-
ances of classes at all more effectively than my present theory.

> Legons swur Uintégration et la recherche des fonctions primitives, Paris, 1904, pp. 104—105;
cf. Haroy, Cource of Pure Mathematics, Second ed., Cambridge, 1914, pp. 186—188; and ScHoEx-
FLIES, 0p. c¢if. 1900, pp. 51—s52, Part II, Leipzig, 1908, pp. 76-—80, and op. cit,, 1913, pp. 234—252.
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the theorem, for the linear continuum of real numbers, is that an infinity of
given intervals for which every point of the continuum is in the interior of at
least one of these given intervals may be replaced by a finite set of such inter-
vals, without the property ceasing to hold that every point of the continuum
is in the interior of at least one of these intervals; and, if we wish actually to
select the sought finite set of intervals in the case where each one of the infin-
ity of intervals given in the theorem has no first or last or other particul-
arized member, there seems to be no alternative but to use the principle of arbi-
trary selection. In the theorem on uniform continuity proved by Heine after
Cantor, in which a case of the theorem was first used, the principle was not
required, since the intervals had ends; but, in the first proof of Borel, an ar-
bitrary selection was made at each of an infinity of steps.

Lebesgue proved that, if the right-hand end (&) of the continuum of (a. . .b)
of real numbers which is to be covered by some finite set chosen out of the
infinity of intervals given in the theorem is not reached by some finite selection
made out of the latter set of intervals, there must be a point x to the left of
b which is either the last point that we can ever reach from a or the first point
that we cannot reach when all possible finite selections are considered. Then
at once results the inconsistency of the existence of such a point « with the
conditions that the set of intervals in the theorem is required to fulfil. Hence
b must be reached by some finite set selected out of these intervals.

The use of an argument like this, when we replace the continuous series
(a...b) by a series (S) of ordinal numbers in order of magnitude and deduce
conclusions about the least ordinal number which is not reached by the various
segments of S such that each of them images, in a one-one correspondence, some
part of a given aggregate M, must have suggested itself to many as possibly
leading to a means of well-ordering M ; but such an analogous argument resting
on all the possible well-orderable parts of M were first published by HarToas.!
However, Hartogs did not refer in any way to Lebesgue. Hartogs’s chief re-
sult is the proof, which does not depend on Zermelo’s principle, that, for any
aggregate M, there is a well-ordered aggregate whose cardinal number is neither
less than nor equal to that of M. Thus, from Hartogs’s theorem results that,
if all aggregates are comparable, any aggregate can be well-ordered. This co-
rollary, however, has long been known? and was proved, though not in these
words and not in a forcible way, by Cantor as early as 1883. It is the result

! »Uber das Problem der Wohlordnungs, Math. Ann., Vol. LXXVI, 1915, pp. 438—443.
? Cf. my paper of 1907 cited above, p. 366.



246 Philip E. B. Jourdain.

spoken of just before that is the truly interesting part of Hartogs’s paper.?
To obtain this result, Hartogs’s process can be greatly simplified by introducing
the consideration of ordinal types and the concept of a »chain» which we will
now proceed to explain.

III.

Consider all those parts of a non-null aggregate M which can be well-
ordered, and suppose these parts to be well-ordered in all possible ways. We will
call a part of M which is well-ordered in ordinal type y an »M chain of type y»,
provided that the same part in different orders — even though the part in all
these orders may be of the same ordinal type — forms different »chains».®

Of course we do not assume that one of the M-chains exhausts M, or, for
example, M lacking some one member: this is what we bave to prove: all that
is necessary for the validity of what follows is that: ’x is an M-chain’ is not
false for all z’s; and this is evidently so if M has any members at all, for we
can then select arbitrarily M-chains of, say, one member.

A chain P is said to be a »segments of a chain @ if P is identical with
the chain whose members precede some member of @. In this case, we will
also say that @ »continues» or »is a continuation ofs P.

The concept of schain» allows us to state more shortly than usual an ap-
parent difference that we meet when we consider various aggregates with a view
to well-ordering. In the first place, it seems, at first sight, evident that, if
chains respectively of all types less than w can be found among the M-chains
there is an M-chain of type w. This has been admitted, for example, by DEpE-

! Tt must be mentioned that, as is shown below in § X, this result depends on an axiom
formulated by Zermelo in 1908, which is other than the principle of selection and which can
be proved by using — &, it seems, only by using — the principle of selection or my rule
given below.

? We may define a »chain», in a way which is, perhaps, preferable from a logical point
of view, as follows. An »M-chain» is a class of couples {m, a), where m is a member of M and
a is an ordinal number, and the couples are such that in each chain no m or @ occurs more
than once, and, if @ occurs, all ordinals less than a occur also. We will suppose that this chain
is well-ordered by arranging the couples in the order of magnitude of the right-hand members
(@). We say that a chain »exhaustss» M if the class of left-hand members (m) of the couples of
the chain consists of all the members of M. This new definition of the word sexhausts» ob-
viously conforms closely to the usual sense if an »M-chain» is, as in the text, a part of M.
It may also be mentioned that, in the sense of this note, an »M-chain» is a one-valued func-
tion where the argument consists of ordinal numbers. Such functions are cousidered by OswaLp
Vesiey (»Continuous Increasing Functions of Finite and Transfinite Ordinals», Trans. dmer.
Math. Soc., Vol. IX, 1908, pp. 280—292).
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KIND, CaNTOR, WHITEHEAD (1g902), and RUSSELL (1903).! However, it is now re-
cognized that an exact proof of this conclusion cannot be carried through except
by using a form of Zermelo’s principle of selection, or of what Russell and
Whitehead called, from about 19go4, »the multiplicative axiom». Indeed, White-
head and Russell (1g12)® carefully distinguished »inductive» from »non-reflexive»
numbers, and contemplated the existence of numbers which are both non-induc-
tive and non-reflexive. But there seems to be no instance that we can construct
that shows the falsity of the above conelusion. On the other hand? it is pos-
sible to show that chains respectively of all types less than w,, may be found
among the chains of an aggregate of cardinal number ¥, although there is cer-
tainly no single chain of type w, which can be extracted from that aggregate.
Thus, it would appear that it is sometimes true and sometimes false that* if there
are M-chains respectively of all types less than y, there is an M-chain of type y.

We have assumed that M is not null, that is to say, that it has at least
one member. Thus the class of M-chains has at least one member. If, then,
we split this class into sub-classes such as K; — which class consists of all
those and only those chains which are of type §, — we may conclude, that K,
is not null, but we do not assume, in general, that any other of these K’s
has members. But it is to be noticed that, if K, has members, every K;, where
1 <&<y, has members. If, for example, M is of cardinal number X,, there are
such subclasses K¢ for all values of & such that 1 <§{<w,, and we know on
other grounds that this is so only for such K’s.

Tor a given M a particular K, either has or has not members; we may not
be able to find out which of these two propositions is true, but, for the purpo-
ses of our theorem, this is immaterial: the question is logically determinate and
we merely have to prove that the class of members of all the K’s can be rear-
ranged as indicated below. It is essential to realize that we neither assume
that the suffix of one of the K’s is transfinite, nor that it is not the case that,
however great the transfinite ordinal number { may be, there is an M-chain ot
type . Both these propositions will be deduced from the construction given
of chains which exhaust M.

A given M determines uniquely a series of classes K¢ belonging to it. If
this series is arranged in the order of magnitude of the suffixes &, either

1 SBe § I above.

® Principia Mathematica, Vol. 11, Cambridge 1912, pp. 3, 187—190, 207210, 278—288, Ct.
§ VI below.

* In this paper, is the first number of the (2 + ) theory of »number-classes» of Cantor.

* The problem indicated here is completely solved in § XIV below.
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there is a last term of theé series or there is not. If there is, let it be K;;
then any member (say k;) of K; exhausts M. For if not, there would be
a member (m) of M which is not a member of K;, and K, followed by m would
be an M-chain of type A + 1, whereas we have supposed that there are no M-
chains of type 4 + 1. Further, if there are M-chains of type 4 but none of type
A+ 1, it is evident that A is finite. Thus, if there is a last term K;, M is finite.
In this case, a well-ordering of M is brought about by any member of K.

Thus, the only case which presents difficulties is that in which there is no
last term in the above series of K’s. We shall, then, always assume in future
that this is so.

1v.

Now Hartogs’s chief result may be stated, with the help of the concepts
defined in § III, as follows: Assuming that M is not null and that all the K’s
together form an aggregate which is of the kind that does not give rise to diffi-
culties!, not only is there at least one K but also there is an upper limit to the
suffixes of the K’s; let { be this limit, then the cardinal number of M is not
greater than that of a well-ordered aggregate of type {. Hartogs’s other results
follow obviously from this main result, and the conclusions of this main result
follow obviously from — above all — the second of the assumptions given above.
It only remains to show that this assumption is merely an equivalent form of
some of the axioms formulated by Zermelo in 1908 to avoid difficulties in the
theory of aggregates and adopted by Hartogs® In fact, Hartogs’s® aggregate
L, which is the same thing as the well-ordered aggregate of all the K’s, is to
vexist», as Hartogs and others called a certain property* which holds in virtue
of the axioms just mentioned, and this property would not subsist if the second
of the above assumptions did not hold and would subsist if the assumption were
to hold. The interesting and important part of Hartogs’s paper thus seems to
be the conclusion, which can easily be made by means of Zermelo’s principle
or the rule described below, but which is made by Hartogs without the use of
any »principle of selection», that no M can be such that, if £ is all ordinal num-
bers in turn, there are M-chains of type §&.

! This is merely the way of stating the axioms referred to in the test below, which exclude
such aggregates as W.

? Math. Ann., Vol. LXXVI, 1915, pp. 438—440.

8 Ibid., p. 421.

¢ It might be as well to distinguish this property as shaving being» from »existing» in
the sense of having at least one member. Thus, the null-class will not »exist» but will »have
being».
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V.

But examination of the classes K soon showed me that we can without
difficulty go far beyond what Hartogs proved.

Hartogs’s process enables us to obtain certain information about the class
of all M-chains, but not as to whether or no any of these chains exhausts M.
In attempting to satisfy the need thus indicated, the difficulty before us is that
any given M-chain of type y is continued by many others of type y + 1, so that
apparently we must select one of these at each stage of an attempted construc-
tion of a chain to exhaust M. But the method at once suggested itself to me,
that, where there are many continuations of type y+ 1 to a chain of type y, we
should assign a repetition of this chain of type y to each of the chains men-
tioned of type 7 + 1.

We would start from K,, and, where z takes the values respectively of all
the members of K,, would assign repetitions of z to each of those members of
K, which continues z, and would, in general, where z takes the values respect-
ively of all the members of K,, assign (I) repetitions of z to each of those mem-
bers of K,.; which continues 2z, and also (II) all those M-chains which have
been, by this rule, from y =2 onwards, previously assigned to K,. Obviously,
all the members of K, where § <y+ 1, are thus transferred so as to form, with
their repetitions, classes such that each one contains chains of all types from 1
to y where each member continues all those members of the same class which
are less in type. The series of K’s to which this rule applies is of type w at
least, for that series where the suffixes are all the finite ordinal numbers in
turn is of this type. Further, we easily see that, if y has no immediate prede-
cessor and we have a class of chains such that each chain continues all those
of lower types and the chains are respectively of all types less than y, we can
extract without a »sprinciple of selection» from the members of these chains a
chain of type y. The series made up in turn of the lowest member of each
continuation which is not a member of the chains continued is such a chain.
In this way we can find chains of greater and greater ordinal types: some one
of these must exhaust M, for otherwise, as we shall see in detail below, M would
contain an aggregate equivalent to the aggregate of all ordinal numbers.

These chains are, then, determined mediately, throdgh certain classes of
chains, and not immediately, as they are by Zermelo’s principle of selection.

Suppose, for example, that y is any finite ordinal number, the above rule
of assigning a repetition of a chain of type y to each of its continuations of
type 7 -1 constitutes in combination with the further specification (II) above,
a general rule for constructing without any arbitrariness several classes of M-

Acte mathematica. 43. Imprimé le 29 mars 1921. 32
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chains such that the members of each class are respectively of all types less
than o, and it is particularly to be noted that each such class defines an M-
chain of type w as the unique chain of which all the segments together make
up all the members of the class. Notice that, if we are merely given that M
contains chains which are respectively of all types less than w, but, if 2 and y
are M-chains and the type of z is greater than that of y, then y is not neces-
sarily a segment of x, then apparently we need Zermelo’s principle of selection
to conclude, from the fact that there are M-chains respectively of all types less
than w, that there is at least one M-chain of type w. In general, where M is
any aggregate, we will call a class of M-chains a sclass of direct continuationss
or, more shortly, a »K-class», when the class of M-chains is such that, if
z and y are any members of the class and the type of 2 is greater than that
of y, then y is a segment of .

We can prove, then, that there is an M-chain of type w provided that we
are given that there are M-chains of all finite types. Of course this determina-
tion of a chain of type w is a theoretical determination exclusively; we are not
concerned here with the actual construction, but only with the proof that this
construction is logically determinate.

In what follows, the class — which can be proved, in all the cases which
interest us, to contain members — of all M-chains will be rearranged by the
above rule, which will be stated below with the utmost precision, so as to form
several K-classes. Of K-classes, as we must remember, we have the theorem
that, if y is an ordinal number with no immediate predecessor and if the chains
which are members of a K-class are respectively of all the types less than ,
it follows, without the aid of any »principle of selections, that there is an M-
chain of type y. Each K-class mentioned above is proved to contain at least
one member, and the rule arranges that, if all the chains of types less than y
are distributed amongst these K-classes, the chains of type y, and there are
always such chains (§§ III, V-VII) unless M is finite — are also distributed
amongst these K’s in a completely non-arbitrary way.

If M is of cardinal number N,, it is not exhausted by chains whose types
do not belong to Cantor’s second number-class, and, for any number of the
second class, there is a chain which exhausts 3, secondly, the least ordinal
number that is greater than the types of all these chains is w,; thirdly, every
chain of type belonging to the first number-class, and some chains of higher
types, are segments of some of the chains of types belonging to the second
number-class; {ourthly, each chain which exhausts M is not a segment of a chain
of any other type. We shall find that there are analogies with all 3{’s.
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VL

We will now collect together some facts which seem to need continual
emphasis, modify slightly our definition of »K-classes», and give an explana-
tion of the notations which will be found convenient to use.

If the class of M-chains contains chains respectively of all types less than y,
we cannot, in general, conclude that it contains M-chains of type y. For example,
the principle of the validity of an infinity of acts of arbitrary choice formulated
by Zermelo has hitherto seemed to be necessary to conclude?, from the premiss
that an aggregate has chains respectively of all types definable by »mathematical
induction», that the aggregate has a chain of type w; and even the admission
of this principle does not allow us to conclude, from the fact that an aggregate
of cardinal number ¥, has chains respectively of all types less than w,, the
demonstrably false result that this aggregate has a chain of type w,. But, if a
class of M-chains is such that, if # and y are any members of this class and
the type of x is greater than that of y, then y is a segment of z; then, provided
that y is an ordinal number with no immediate predecessor, we can obviously
conclude, from the premiss that the chains which are members of the class are
respectively of all the types less than y, that there is an M-chain of type y.
For, in this case, all the chains of types less than y build up, when they are
put together in such a way that the identical parts of any two chains coincide,
a single chain of type y. We will express the fact that a class of M-chains is
of the nature just considered, but where y need not necessarily lack an immediate
predecessor, by saying that it is a »K-class» of M-chains. If a K-class (k)
contains a chain (K) of maximum type, this K, we will say, »defines and is
defined by» k; for the members of k are the segments of K and vice versa. If,
on the other hand, % has not a member of maximum type, the chain K such
that all the members of % are segments of it and all the segments of K are
members of £ will be a? chain sdefining and defined by» &2 Thus, if, and only
if, & contains no chain of maximum type, no individual member of % is identical
with K. As an example, let

(a; a,,a;; a;, a;, az; ...)

denote a K-class, the chains constructed with members a of M being of all types

! Zermelo has concluded in this way in his paper »Sur les ensembles finis et le principe
de I'induction complétes, Acta Math., Vol. XXXII, 1909, pp. 185—193.

? This X, it must be noted, also defines the K-class of which it is the member with the
greatest type. Thus, if the type (ordinal number) of K has no immediate predecessor, we must
be careful to specify which one is meant of the two K-classes which correspond to K.



252 Philip E. B. Jourdain.

less than w; the class then defines (if we take the nth member of the nth chain
in the above order)! the chain

Ay, Ayy Gz, ..,

and this last chain defines the former class as the class of its segments.

We will always reserve the letter »k» to denote a K-class, and »>K» to
denote the chain defined by or »corresponding to» k. Also »k'> and »K'> will
be used to denote respectively another K-class and its corresponding chain.

VII.

The rule indicated in § V is defined formally by induction, and this defini-
tion is here, for ease of apprehension divided into four parts, the last of which
is subdivided into two parts. But it is to be remembered that the rule is to be
regarded as one whole; so that the results obtained at some stage of the rule are
not necessarily the final results.

1. The class K, defines uniquely a set of K-classes such that each of these
K-classes contains one and only one member of K,, and all of these members
taken together make up K,. In the other parts of this rule, other K-classes
will be substituted for the K-classes just defined, yet other K-classes substituted,
and so on. This will be done by processes which may be called »assignment»
and »replacement>. If we have a K-class (k') containing one or more members
and an M-chain (K") which continues all the members of k', the result of assig-
ning K" to k' is the K-class whose members are the members of &' together
with K". The new K-class, in which are preserved all the members of %', then
replaces %'. The rule will give a method of making, in a perfectly determinate
manner, a transfinite sequence of such assignments and replacements such that
the whole class of M-chains is rearranged in a set of K-classes. Each M-chain
will be, by the rule, repeated so as to form a definite set of copies, and each
one of these copies is contained in one of these last K-classes.

2. Since the class K, has members, distribute them all in the following
manner. Where %, is in turn all the K-classes constructed in (1), with k,, which
contains only one member (K,), put, for the moment, the class K', of all those
chains of type 2 which continue K,. This process is of course logically deter-
minate and therefore involves no arbitrary selection. Then replace the complex
(k,, K',) by complexes such as (k,, ), where 2 is in turn all the members of
K',, and in each of those latter complexes »assign» z to k,; so that we thus

* Of course the members of a K-class have no intrinsic order of their own.
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obtain, instead of the k,’s, several K-classes of which each contains a repetition
of K, and one of the members of K',: these last K-classes are to contain between
them all the members of K',, and each of them is to contain a chain identical
with K,. Note that our reasoning does not depend on any particular selection
of z: for z is merely what Prano called an »apparent variable» in the definition
of K-classes with two members, All the members of K, and K, are arranged
as members of the k,’s; indeed, each member of k, is repeated in order to construet
ks, and, since we have replaced all the K-classes constructed in (1), — which
have but one member each, — by K-classes which contain repetitions of these
members of type 1 and also members of type 2, we have left over no K-classes
with only one member.

3. The class K, has members. Where k, is, in turn, all the K-classes con-
structed in (z), with %, put, for the moment, the class K’y of all those M-chains
of type 3 which continue the chains in k,. Then replace the complex (k,, K'y)
after »assignment»> of the same nature as that described in (2), by several K-clas-
ges of which each contains the members of k, and one of the members of K';:
these classes are to contain between them all the members of Ky, and each of
them is to contain chains identical with those in k,. Thus, all the members of
K,, K,, and K, are arranged as members of K-classes of these members, and
there now remains no K-classes containing one or only two members.

4. We will now describe in general how, if all the K’s of respectively all
the suffixes less than y have been arranged by a definite process in K-classes,
such that each K-class contains one member out of each K; where § <y, the
class K,, which we will prove always to have members under this hypothesis,
— which is fulfilled except in some cases where an M-chain of type less than y
exhausts M, — can be rearranged by a definite process which is such that the
arrangement for those Kgs where £ <y is unaltered, so as to assign one member
to each of the K-classes formed by repeating the above ones in a definite set.
We have given a definite process for the cases y =1, y =2, and y = 3; a process
will be defined successively for y=4, s,..., and indeed for all ordinal numbers
» in which either (a) y has an immediate predecessor, or (b) y has not an imme-
diate predecessor.

Let us consider these cases (a) and () separately.

(@) Suppose that those K’s whose suffixes are respectively all the ordinal
numbers less than y, where y has an immediate predecessor y — 1, have been
rearranged in one definite way so as to form K-classes and that each one con-

' Note that this condition is not fulfilled for a series of type of chains of an enumerable
aggregate.
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tains chains of respectively all types less than y. Obviously, since M is not
finite, K, has members. Where k,_; is, in turn, all of the K-classes just men-
tioned, put, for the moment, with k,_; the class K', of all those M-chains of
type y which continue all the chains in k,—;. This process involves no arbitrary
gelection of members. Then, by »assignment» and »replacement», replace the
complex (k,—;, K',) by several K-classes of which each one contains repetitions
of all the members of k,.; and one of the members of K',, these K-classes are
to contain between them all the members of K',. There is, as before, no arbitrary
selection used to define these K-classes. We thus obtain from the k,;’s and
K,, by a process definite throughout a set of K-classes each of which (k,) defines
and is defined by a chain of type y. All the members of all the K’s of suffixes
up to and including y are arranged as members of these k,’s, so that we have
no K-classes containing only a finite number of chains? less than y; and we can
dispel any doubt as to whether in the replacement of the complexes just referred
to, some M-chains may have been passed over. In fact, all M-chains of typey
are contained in K, and qll the members of K,, and consequently of K: where
£ <y, are evidently arranged in one or other of the k,’s just coustructed.

() There only remains the case of y having no immediate predecessor.
In this case, since the K’s of respectively all suffixes less than y are rearranged,
by hypothesis, in K-classes such that each K-class contains one member from
each K; where £ <y, then each of these classes defines, in a manner, which does
not depend on any »principle of selection», a chain of type y. For example?,
a K-class in which the members are respectively of all types less than w, and
which may consequently be represented by

(@15 @y, @y Gy By, Qg5enes Gy Gy Agseens 5-0i)

where it must be remembered that the continuations a,; a,, a,; @,, @,, @;;...do
not appear in any special order in the class, determines uniquely the chain

@y Qgy Agy oovs By oo

of type w, which is such that the above K-class conmsists of all segments of this
chain of type w and of no other members.

We conclude, then, that, if y has not an immediate predecessor, and each
of the above K-classes contains one member from each K; where & <y, there is

1 1t 7 is tramsfinite and has an immediate predecessor, it may be that there are chains
of type 7—1 that exhaust M, and thus cannot be continued by any M-chain. See the end of
next section.

*Cf §8 V and VI above.
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a K,. If there is a K-class (k) which remains without some chain of type less
than y when all the Kg’s, where § <y, are rearranged, it can without difficulty
be seen that the K corresponding to this k& exbausts M.

VIIL

As we see in the case of the cardinal number of M being X, if ¢ is any
number of Cantor's second number-class, there is a chain of type « which
exhausts 3. Hence, when the above rule is applied to M, we must arrive at
a k whose K is this chain of type «. This k£ cannot be added to, except possibly
by K, at any subsequent stage of the rule!, and so, although the rule is not
completed at the stage o, % is one of those K-classes that are constructed by
the complete rule.

The complete process just defined by an induction which is transfinite if
— whether we are supposed to know it or not — the series of X’s is transfinite
and of type greater than w, thus defines a set of K-classes of which each one
contains a single member from each K unless some one of these X’s defines a
K which exhausts M, though some suffixes of the K’s may exceed the type of
K. Every chain is accounted for among these K-classes; in the words, if K is
the chain defined by any one (k) of these K-classes, all these chains K are such
that any M-chain is either one of these K’s or a segment of one of them.

Let us say that the K’s to which the rule of § VII is applicable are »capable
of a @-arrangement» to show now that every M-chain is arranged by the above
rule in at least one of these ¥’s. Consider what would happen if there were
M-chains which were not thus arranged. Let K; be the K of least suffix which
has members not so arranged; then K, combined with those K.’s for which £ <y
would not be capable of our g-arrangement, — and this is impossible by the rule.

If we were to suppose that an aggregate M could have chains whose types
are respectively all the ordinal numbers, we can conclude by the above rule?
that all the complete &’s define K’s whose types fulfil its impossible condition.
This we shall do in the next section.

IX.

It might be argued that, given any ordinal number &, however great, there
might always be JM-chains whose types are £, because this does not imply that
M has a chain of »the type of all ordinal pumbers in order of magnitude», —

1 In fact, if M-chains other than K could continue as segment all the members of k, K
would not exhaust M.

? And also, rather more simply, by the argument of §
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which would give rise to the contradiction discussed below, — any more than
the supposition that M has chains whose types are greater than any given num-
ber (¢) of Cantor’s second number-class implies that M has a chain of the type
(w,) of this number-class arranged so that the numbers are in the order of their
magnitude. But, in the case of the &’s, if we choose a number o, for &, we know
that, since the cardinal number ¥, belongs to w,, there must be a series of type
w, in every one of the chains defined by a K-class determined by the complete
rule. For, if not, at least one of the chains last spoken of, does not contain a
series of type w, and is therefore of cardinal number less than ¥,, and yet would
exbaust M. TFor if it did not exhaust M, there would be at least one member
(m) of M which would not be a member of the chain mentioned, whose type,
we will suppose, is ¢. But then we could construct, from this chain and m, a
chain of type ¢+1x, and this latter chain of type ¢+ 1 would be assigned
by the above rule to the class determining this chain of type ¢. Hence each
chain determined by the K-classes found by the complete rule has segment where
types are respectively all the ordinal numbers £. We will now show that it is
impossible that, however great the ordinal number £ may be, the chain defined
by a complete K-class is always such that it has a segment of type §. Indeed,
a chain such that, however great § may be, it always has a segment of type §,
must be of the type (B8) of »the series of all ordinal numbers>. Now, we can
prove that this series is well-ordered, for any part (P) of it which has any terms
at all —say p — has a first term — namely the first term of the well-ordered series
formed by p and those terms of P which precede p. Hence g is an ordinal
number, and hence # is both the ordinal number of a series and a term of the
series, so that 8> 8. This implies, of course, that the series of all ordinal num-
bers is ordinally similar to a segment of itself, and thus that the series is not
well-ordered; and therefore that there is no such thing as what we meant to de-
note by the phrase »the series of all ordinal numberss, which would thus be both
well-ordered and not well-ordered. But at present we only need the proof that
it is impossible that a complete chain should have segments of all types.

It must be noted that the proof given in the last paragraph holds, not for
any class, but only for a K-class.

It is only for a K-class that we can thus immediately conclude that, if,
whatever £ is a chain of the class is of type &, then there would be a member
of the type of »the series of all ordinal numbers»; just as, without using the
theorem on well-ordering or an application of Zermelo’s principle, we cannot
conclude, from the fact that a class has chains of all finite types, that it has a
chain of type w, unless it is a K-class. However, we have shown, in the first
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paragraph of this section, that the apparently wider proposition is implied by
the apparently less general proposition just proved.

X.

The theorem with which this paper is concerned seems to me unavoidably
to depend on this proposition about »the type of the series of all ordinal num-
bers», given by me!, and which was stated by Russell®? — apparently on no
grounds save the occasionally delusive ones of mere appearance — to have a
purpose quite different from that of Zermelo’s principle. Indeed, Cantor, in
his unpublished proof of about 1895 that any aggregate can be well-ordered, —
which I rediscovered independently in 19033, — depens essentially on the propo-
sition referred to. The merit of the proceeding seems to be that we can, by
proving that, for a given M, there is an upper limit for the suffixes of the K’s,
find the relation between the suffix of the Aleph belonging to M and that of the
ordinal number expressing »Hartogs’s limit»> (cf. §§ II, IV, VI, XII), and also
avoid yet another axiom introduced by ZerMELO* and adopted by practically
all German mathematicians® and some others.

XTI.

We have then shown that there is, for any M, a smaller ordinal number Z,
which is of course a function of M, such that there is no K of suffix egunal to
or greater than [, but that there are K’s whose suffixes are respectively any
ordinal numbers less than {. We assume (cf. § VIII) that none of these latter
K’s contain members which exhaust M; then the complete rule given above en-
ables us to construct several K-classes each of which contains one chain from
each K. Since then, { has no immediate predecessor, each of these K-classes
defines a chain of type {. It is quite essential to realize that, as is shown in
§§ V and VI, we can conclude in this way for K-classes only, and that the rule
reduces the class of M-chains to a set of K-classes. Since, however, there are
no M-chains of type [, our hypothesis that none of the K’s has a member that
exhausts M must be false. Hence, if  is the upper limit of the sufixes of the
K’s, there is a chain of type less than { which exhausts M.

t Phil. Mag., January, 1904. See § I.

* Proc. Lond. Math. Soc. (2), Vol- IV, 1906, p. 29.

® It is important that Cantor seems to have been conscious that he assumed as axiomatic
the principle of selection. I did not recognise that I had made any assumption until long
afterwards (cf. Math. Ann., Vol. LX, 1905, p. 68),

4 Math. Ann., Vol. LXV, 1908, p. 261.

& Cf. Journ. fir Math., Vol. CXXXV, 1909, pp. 86—90; Math. Ann., Vol, LXXVI, 1915,
pp- 438-—439.

Acta mathematica. 43. Imprimé le 6 mars 1922 33
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X1I.

We have, then, proved that, for any M which is not null, there is a class
of non-null and complete K-classes such that each of the latter classes defines
and is defined by a chain that both exhausts M and is of type less than some
type {, say. Of the ordinal- numbers greater than the type of this chain, there
is one that is the least; let it be denoted by ;. This ordinal number ' must
have an immediate predecessor; for if it had not, the chain itself would be of
type ', and so {' would not be the least ordinal number that is greater than the
type of the chain. Hence ' is of the form "+ 1. Now, {" is the first number
of one of Cantor’s number-classes; for if there were numbers of the same num-
ber-class which were less than the ordinal number just mentioned, this ordinal
number would not be the least to which would belong chains which were not
continued by other chains of M. We may thus denote {" by w;, so that &, is
the cardinal number of M. Consequently, the least ordinal number that is greater
than all the types of chains of M is w;41.?

Since any aggregate M can thus be well-ordered, any part of M, in the de-
finite order chosen (say of type w;), has a lowest number which can be cor-
related to the part as the »specialized> member; and thus Zermelo’s principle
can be proved.

XII1.

We may now sum up what has been proved. Let M be my aggregate which
we will assume to be neither null nor finite. Let { be any ordinal number what-
ever; the set of those classes of M-chains for which 1 <& <{, where it must be
noted that we do not assume that there is a K¢, is said to be »capable of a
@-arrangements if there is a class of K-classes such that, if k is any member of
t, either K exhausts M, or & has one member from each of the above K.s, or
both. If then, K does not exhaust M, it must be of type y— 1 or y according
as y has or has not an immediate predecessor. In the above rule, one definite
process was given for putting all the K’s belonging to M in a ¢-arrangement,
and. so the question as to whether one and the same set of K’s has more than
one possible g-arrangement was not touched upon in the above proof. However,
it may be seen without difficulty that a set of K/s (§ <() can be g-arranged in

! This is the type of that chain (Z) which may be said to »limit» M (cf. § VII), and was
founded by Harrocs (Math. 4dnn., Vol. LXXVI, p. 4—40) unnecessarily on a non-logical axiom.



A proof that every aggregate can be well-ordered. 259

one and only one way. The M-chains, then, can be so arranged, and §§ IX and X
show that there is an M-chain which exhaust M.
Our § XII then gives us the types of all the M-chains that exhaust M.

X1V,

In this section we return to the question as to the circumstances under
which we may infer from the premiss that there are M-chains respectively of all
‘types less than y, that there are M-chains of type y. Some examples are given
of various y’s for which the above inference holds or does not hold; and, finally,
an exact determination, resting on the rule of § VII or the principle of Zermelo
which it establishes, of all the y’s without exception for which the inference holds.
, We can conclude generally from chains of types less than y if y is the upper
limit of ordinal numbers such that to each of them belongs a different cardinal
number. Thus, if y is w, to each of the ordinal numbers less than » belongs a
different cardinal number; if y is w,, the cardinal numbers belonging to the ordinal
numbers less than y form, in order of magnitude, a series of type w + 1, of which
y cannot be the upper limit; if ¥ is w,, where » is a finite ordinal number; if y
is w,, besides being the upper limit of a series of type we, y is the upper limit
of, for example, the series of type w:

W, Wy, Wyyo ooy Wyyoooy
to which the series of type w of different cardinal numbers:
Ny, Ny Ny, Ny, .

belongs.t If, then, M has chains of all the types less than w,, it has one of
type wo. If y is we, y is the upper limit of series such as

Wy Wyy Wyyeooy Wpyooaey Wayoosy Woguyeosos
or

Wy; Wgy, Wodls . oy Wotys s -,

! RusseL and WHITEHEAD, basing their attitudes on their theory of »logical types», hold
that there is no reason to think that there is a series of type we. But, on the one hand, the
extent to which Cantor's ordinal numbers are preserved in this theory has been stated differ-
ently at different times and is not yet fixed (cf. Russery, Proc. Lond. Math. Soc. (2), Vol. IV,
1906, p. 46; Rev. de Metaphys., Vol. XIV, 1906, p. 639; Amer. Journ.. Math., Vol. XXX, 1908, pp.
258, 261; WHiteneAp and Russeri, Principia Mathematica., Vol. II, Cambridge, 1912, pp. 189—190;
Vol. I1I, Cambridge, 1913, pp. 170, 173, and, ond the other hand, it is not quite evident that
there is not a wth logical type in some sense analogous to that in which the number which
Caxtor denoted by »we» immediately follows those ordinal numbers obtained by exponentia-
ting @ with v, but is not w exponentiated by w.
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which are of types w, and v respectively, where to each member of these series
belongs a cardinal number which differs from that belonging to any other ordinal
number in the same series. Again, if 7 is we,, 7 is the upper limit of the series
of type w,:

Wy, Wpy.vry Wyy Wotls ey Way o ooy

where « is any number of the second number-class, to which belongs a series of
type w, of the Alephs less than X, in their order of magnitude. Here if M has
chains of all types less than y, then it has one of type y. Lastly, if M has
chains of all types less than w,+ 1, it must have a chain of type w,+ 1.

Let us now consider, quite generally and in succession, all the kinds of y
for which we can or cannot conclude, from the premiss that M has chains of all
types less than y, that M has chains of type 7.

(). If M is finite, it has a chain of maximum type. Suppose that this type
is y—1; then M has chains of all types less than y. Evidently we cannot con-
clude that M has a chain of type y. The case of M having only chains of all
types less than some ordinal number which is less than w is thus disposed of,
and consequently in future we will exclude the case of M being finite.

(2). If there is an M-chain of type 7/, less than y and such that the cardinal
number of any chain of type 7' is equal to the cardinal number of any chain of
type 7, we can, since then y belongs to the second number-class at least and is
not the first of any number-class, conclude that M has a chain of type y from
the premiss that it has chains of all types less than y.

(3). There only remains the case of y being the first number of a number-
class which is not the class of finite ordinal numbers. Let, then, y be represented
by w;. If § has an immediate predecessor, it may be that the cardinal number
of M is &;, where 4 is such a number as is referred to under that notation in
§ XII, so that § is A+ 1. In this case, the type y is not reached by any M-chain,
although there are M-chains of respectively all the types less than it. Conse-
quently, if { has an immediate predecessor, it is established that it cannot be
inferred generally that, if M has chains of respectively all types less than y, it
has chains of type y.

(4). Thus, there now only remains the case that { is a limit-number. By
§ XII we know that in this case y is always reached by some M-chains; for any
type that is not reached by a chain of some M or other is of the form 4 +1,
and we cannot have [ =A+1 if [ is a limit-number. We may also argue as
follows. Since w; is upper limit of numbers w; to which different cardinal num-
bers correspond, if we are given any definite M having chains of all types less
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than «;, all the chains that exhaust M must contain as segments chains of all
those types we; for, if not, M would be exhausted by a chain whose cardinal
number was less than that of M. Thus, any complete K-class has members of
all the types wg, so that the type of the chain determining and determined by
this class is at least wg.

XV.

The above method is somewhat analogous to that by which all possible permu-
tations of a finite set of things can be constructed systematically and without any
arbitrary selections whatever.! If, indeed, we are given a finite set S of » things,
we may construet all possible permutations # at a time by (1) putting each member
() of S in correlation with all those of 8, splitting up this correlation by imagining
several members identical with # and correlating each one of them with each of
the members of 8, and, in the couples thus obtained, striking out those in which
the same member occurs more than once; (z2) doing much the same with the
couples, — correlating each (z) with all of §, then z with each of §, regarding
the couple thus formed out of a couple and an individual as a triplet of indi-
viduals, and striking out each triplet in which a member occurs more than once;
(3) proceeding thus so as finally to get n-plets. It is easy to modify this rule
so as to apply to an infinite 8 by making each process depend, not on »its
predecessor» but, on all its predecessors; and this seems the simplest method
of well-ordering an aggregate. But in this paper, the chains that exhaust M are
not directly built up out of members of M, but are very simply defined by
classes of certain chains which do not necessarily exhaust M. The reason for
this is that this method grew out of an attempt to extend the considerations
of Hartogs, which started from the — obviously non-null — class of M-chains.
In what precedes the chains that exhaust M are defined by certain classes of
chains (» K-classes»), because such classes are evidently non-null, so that no doubt
can arise of the existence of a chain defined by such an entire class determined
by a wholly definite rule — though the class is infinite in extension.

1 I have brought forward this point of view in Science Progress, Vol. XIII, 1918,



