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Introduction. 

The gen4ral theory of ordinary linear differential equations with rat ional  

coefficients must  be regarded n o w  as known in its broad outlines: there exist 

in all c a s e s  whatsoever a full quota of formal  series (normal and anormal) for 

each singular point;  on the basis of these series, the behavior of the solutions 

in the neighbourhood of the singular points can be adequately characterized, their  

nature  in the large can be determined by means of the monodromic group, and 

finally the inverse Riemann problem can be formulated and solved by direct use 

of the Fredholm theory of integral  equations or otherwise. 1 The details have 

not  been carried through except when the series which enter are of normal  type, 

but  the corresponding formulat ion and at tack in the most general case are 

sufficiently evident. 

On the other hand the si tuation is much less satisfactory for o r d i n a r y  

linear difference equations with rat ional  coefficients. I f  these equations be 

writ ten as a l inear system, 

i (I) y i (x+ I) aij(x)yj(x) (i-~-- I, 2 , . . .  n), 
j= l  

in which the n ~ rat ional  functions aij(x) a r e  analytic at  x = ~  or have a pole 

1 Cf. my paper, The Generalized Riemann Problem for Linear Differential Equations and 
the Allied Problems for Linear Difference and q-Difference Equations, Proc. Am. Acad. Arts and 
Sciences, vol. 49 (I913), PP. 52I--558. 
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of maximum order tt there, then it is only the regular case in which the charac- 

teristic equation in e, 

(2) leech,j- I = o 

(&j= i ,  i=j; ~ , j = o ,  i # j ;  a(~)---- lim a,~(x)/x~), 

has n distinct roots Q1, Q , , . . .  Q,*, not zero, that  has been treated adequately. 

To be sure, NSrlund, in his fundamental work on linear difference equations, 

has given a powerful general method by which solutions analytic in certain 

limited regions of "the complex plane can be constructed always 1, but this method 

affords little indication as to the nature of those simplest analytic solutions, 

devoid of a~ificial singularities, which are of central theoretic imp0rtance. 

The most general examination hitherto made of linear difference equations 

not of this special type is due to Adams. ~ He discusses the extent to which 

my own method of approach tO the regular case s admits o f  extension to the 

irregular case, and finds that  while similar results can be obtained in certain 

more general cases, yet the method appears to break  down. In brief, he finds 

that  so long as there are n types of formal series with elements of the form 

( ) x~**e~xr a + b 4-... (/z*_--< F), 
X 

the same method is applicable. Since these formal series are of the same kind 

as appear in the regular case, it is natural to group this particular irregular 

case closely with the regular case. In  more general cases Adams only establishes 

highly restricted results. The difficulties which he meets with are of three types : 

(i) he does not arrive at a full quota of formal series in all cases~; (2) the 

sequences defining the 'determinant limits' converge, if at all, in much less exten- 

sive regions of the x plane than in the regular case; and (3)in consequence, the 

Of. N. E.  NSr lund,  Differenzenrechnung, Berlin,  1924, chap.  IO. 
2 C. R. Adams ,  On the Irregular Cases of Linear Ordinary Diference Equafions, Trans .  Am.  

Math .  Soe. ,  vol. 3 ~ (1928), pp.  5o7 - -54  I. I n  t h i s  paper  references  to t h e  work  Of Barnes ,  Horn ,  

Batchelder ,  Perron,  a n d  G a l b r u n  m a y  be found .  

s General Theory of Linear Difference Equations, Trans .  Am.  Math .  Soc., vol. I2 ( I9I I ) ,  

pp.  243- -284 .  
4 Not  even  in t h e  ease n=2,  in  wh i ch  m a n y  b u t  no t  al l  cases  h a v e  been  t r ea ted  by  

Batehelder .  Ba tche lder  h a s  no t  p u b l i s h e d  t he se  resul t s .  
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determination of 'intermediate solutions' and 'principal solutions', as in my paper 

by means of series and contour integTals, fails. 

I t  is the aim of the present paper to show that, when certain further types 

of formal series involving logarithms are taken account of, there will always be 

a full quota of n such formal series solutions. By way of application of this 

basic result, certain interesting formal questions are also treated. 

In a subsequent paper devoted to the analytic theory of irregular difference 

equations, also to appear in these pages, I expect to present the extension of 

my earlier theory to the truly general case. Such an extension would of course 

be impossible without the result of the present paper. I t  involves appropriatc 

modifications in the method of contour integration as well as other changes of 

consequence. 

w i. The Linear Difference System and the Single Equation. 

Without  essential restriction it may be assumed that  the determinant 

l a~(x)l in (I) is not identically zero. In  fact in the contrary case there is 

obviously at least one identical linear homogeneous relation between yl(x+ I) . . . .  
yn(x+ I) with coefficients which are explicitly given in terms of the minors of 

this determinant. I f  we replace x by x - - I  in this relation, we obtain a like 

relation between yl(x), . . .  y,,(x). On solving for one of the dependent variables, 

say y,,(x), in-this relation, and elimination Of y,~(x)in the first n - - I  equations (I), 

we obtain a like equivalent system of order n - - I .  Proceeding successively in 

this way we arrive finally at an equivalent linear system of order < n ;  for which 

the determinant in question does not vanish identically. 

Now for such a system (I) let us write Now for such a system (I) let us write 
R 

(3) y (x) = z, (x) y, (x) + .  + z,, (x) y,, (x) --- Y, z~ (~) yo(x) 

where ).~(x), . . .  ~.,,(x) are n functions, rational in x but otherwise arbitrary. By 

use of the equations (I) we obtain successively 

y(x+ i) = ~ Zo(x+ ~)ao~(x)~,~(x), 
it, ~=I 

(3') . . . . . . . . . . . . . . .  

y ( ~ + , )  = >~ Z ~  a,,(x)y~(x). 
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On the r ight-hand sides of (3), (3') we have n +  I linear homogeneous expressions 

in y l ( x ) , . . ,  y,,(x). Hence from these equations we obtain at  least one linear 

homogeneous equation of the form 

(4) L(y) =-- ao(x)y(x + n) + a, (x)y(x + n - -  x) + . . .  + an(x)y(x) = o, 

in which not  all of the coefficients hi(X)vanish identically, and fur thermore these 

coefficients are explicitly expressible in terms of the functions /.i, aij. 

I t  is possible to choose ~ ,  . . .  ~,~ so tha t  neither a0 nor an vanishes identic- 

ally, i.e. so tha t  the linear difference equation (4) is actually of ~he n th  order. 

To establish this fact  we consider the determinant  of the linear homogeneous 

expressions in y~(x ) , . . ,  y,,(x) which appear in the first n of the  n +  I equations 

(3), (3'). The elements of the first row are ~,(x), . . .  ;~(x) which may clearly be 

taken at  pleasure at  an arbitrary point x.  The elements of the second row are 

n n 

E X~(x+ , ) . ~  Y, Xo(x+ i)a~,,(x) 
a ~  1 ( z ~  1 

respectively. But  ~,(x-~ I ) ,  . . .  ,~n(X'~- I )  may clearly be assigned values at  pleasure 

without  affecting the values of XI(X),. . .  ;~n(x) already selected. Inasmuch as 

]a,j(x)] is not  identically zero, it  is therefore clear tha t  the elements of this 

second row may be independently selected at  will. For  the third row a similar 

consideration leads to the conclusion tha t  these elements too may be indepen- 

dently assigned at the given value of x,  since the determinant  which enters is 

[.~.,,~(x + , ) . ~ ( x ) [ -  I a,~(x+ 0 11.,~(x)l ~ o. 

By proceeding in this manner  it  becomes apparent  tha t  the determinant  of the 

coefficients of Yl . . . .  yn in the first equations (3), (3') can be made not  to vanish 

identically, since all of its elements can be taken arbitrarily at  any po in t  x o 

such that  [aij(x)[ is defined and does not  vanish for x = x  o, Xo+ I , . . .  x o + n - - 2 .  

Likewise the similar determinant  for the last n of these equations can be made 

not  to vanish. Hence the equation (3), obtained by equat ing the determinant  

of the augmented system (3), (3') to zero will have the desired property 

.o(X) ~ o, an(X) ~ o. 
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Therefore it  appears tha t  to a fundamenta l  set of solutions of the system 

(i) with l a i j ( x ) l~o  there corresponds a fundamenta l  set of solut ions of some 

single equation (4) of the nth  order,  and vice versa. 
I f  then  we can establish tha t  the single l inear difference equation (4) pos- 

sesses a set Of n formal series solutions in the usual sense 1, it  is evident tha t  

t h e  genera l  system (I) will also ppssess a set of n formal solutions, obtainable 

from the formal solutions of (4) by means o f  the equation (3). 

These obvious considerations iust i fy  us in focussing a t tent ion upon the 

formal series solutions of a single ordinary linear difference equation of the 

n th  order of the type (4) with ao(X), a,~(x) not  identically zero. 

w 2. S t a t e m e n t  o t  t h e  F o r m a l  P r o b l e m .  

In  o r d e r  to deal conveniently with the questions which, arise concerning 

the formal  series solutions, i t  is desirable to broaden somewhat the initial 

formulation.  Le t  us demand mere!y  t ha t  the coefficients a~(x) of the equation 

(4) under  consideration are to be formal  (i.e. convergent or d ive rgen t )power  
1 

series in descending integral  powers of x, or, more generally, of x ~ (p, a positive 

integer). Here  only a finite number  of positive integral  powers are permit ted 

to enter. Of course the corresponding assumption for the linear difference system 

(I) is "that the coefficients are similar formal  power series, and the same integer 

p ~ I  is evidently involved in associated equations (I) and (4), even if Z,(x), . . .  
1 

Z,(x) in (3) are also such series in x~. I t  is obvious then  tha t  for the-complete 

specification we must  not  o n l y  give the equation (4), but  also the value of the 

'basic integer '  p which is to be adopted; all possible values of p are evidently 

positive integral  multiples of a least value P0 ~ I .  

The usual method ~ for the determinat ion of formal series begins with the 

substitution of a series 

1 We regard a set of n formal solutions as distinct (i.e. linearly independent) in case there 
is no identical linear homogeneous relation between them in which the coefficients are either 
constants or of the more general form ce21z]/~x (l, an integer). 

Generalized here to the extent that we allow p to exceed I. 
27--29643. Acta mathematlca. 54. Iznprim6 le 12 avril 1930. 
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~'--~p ep (~)x, ( b (6) s(x) : x a + --- + 

X p 

p--1 

P(x) = 7x + ~x~-  + 

) 

in the equation and the attempt~ to determine it, 7, 6 , . . . 7  a, b , . . .  by the 

method of undetermined coefficients. Here the formal identit ies:  

t~(z+i) 

~(z+i) ~x ~,( x) v ~_x ~_/( t~__/ ~, .~ ) ( x + i )  p = x p x p  i +  - - x p x p  e~ + e ~  ~ §  ; 
~gg 

e~(~+~):e~e~i; ed(X+i)(P-1)lP:eJX(P-1)/P(i +6(P--~) i+ . . . ) ;  ... 

p x  p 

X 

for i ~  I, 2, . . .  n enable us to remove a factor  x p eP(x)xr from the given equa- 

t ion af ter  this substi tution y~s (x )  has been made. W h e n  this factor is removed, 

the n +  I leading t e r m s  in the n + I series which appear on the left are precisely 

/Ln "-- jo+#n # (n-- l )  - ' -- j l+g (~--1) - - i n  

tT0j0 e p x la a0j~ e P x P , ~ . . . ( ~ n j n X  p 

- - J i  

where we have written aiji for the coefficient of the leading term aij~x P in 

a~(x) for i = o ,  I , . . .  n. Obviously neither  3"o nor j~ can be infinite since nei ther  

ao(X ) nor a~(x)is  identically o. 

Now if such a formal  ident i ty is to be possible, there must  be two leading 

terms of the same degree in x,  so tha t  

j l - -  j m  
i t - -  1-- m 

for some 1 and m (1 ~ m), while all other terms are not  of higher  degree, i.e. 

whence 

- j ,  + t~(,-i)<= --j,, + t~("-'~) i f=o ,  i , . . .  n) 

i,-j,,>-_ - t ~ ( i - m ) .  ( i=o ,  i , . . .  n). 
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But these conditions admit of a very simple geometric interpretation. 1 Let 

(i,j) represen~ the cartesian coordinates of a point in the plane for which the i 

axis is directed horizontally to the right and the j axis is directed upwards. 

Mark the n + I points (i, j~.) where i =  o, I, . . .  ~ (see figure f). Evidently the 

conceivable values of /~ are given by the negatives of the slopes of a l l  possible 

lines through two of these points, while the inequality imposed will only be 

satisfied if all the remaining points lie above or on such a line whose equation is 

= - g ( r  m ) .  

J 

(O, jo) \ /, 
/ 

/ 

/ 
L 

t 
Fig. 1. 

This leads us to a unique broken line L ,  concave upwards, whose vertices fall 

at certain of these points, while all of the other points lie above or on this 

line L.  Furthermore the points (i, j) (i, j, being integers) which fall below this 

line can correspond to no terms in the n§  I series under consideration. 

When., however, /~ has one of these values, and the coefficient of the 

highest power of x on the left is equated to zero, we obtain the 'characteristic 

equation' in Q = eT, 

[ {  i 
a~j~Qe-Pl + . . .  + acj~,\Qevl j a = o ,  

in which the first and last terms in parentheses correspond to the extreme 

vertices ( i ,A ,  ( i ' , j~,)of  the line segment of slope # in the above diagram, and 

1 Cf., for instance, bl. E. •Srlund, Differenzenrechnung, pp. 312--313 . 
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in which the intermediate terms correspond to the intermediate marked  points 

on that  line segment. Clearly in this manner are obtained as many equations 

as there are values of t~. I f  these values of /~ are denoted by /~1, /~, . . . /~k 

with /~1 >/z~ > . .  >/zk, the total number of non-zero roots (counted according to 

multiplicity in the separate equations) is precisely n; for if io----o, i l , . . ,  ik--~n 

be the values of i for the successive vertices, these roots are in number precisely 

i l - - i o ,  i ~ - - i l , . . . ,  i ~ - - i k - 1  respectively. Thus there are in general k characteristic 

equations, rather than a single characteristic equation as in the regular case. 

I t  is the essential advantage of the single equation (4) over the system (I), as 

basis from the formal point of view, that  all of the possible values of /~ are 

immediately obtained for an equation (4). 

I f  now we proceed further in the attempt to obtain a formal series solu- 
1 

tion by comparison of the terms of successively lower degrees in xV we are 

immediately led to the following results (Cf. Adams, loc. cir., w I). 

I f  the values /z~,.../~k are all integral, and none of the characteristic 

equations have a multiple non-zero root, the first comparison determines ~, as 

indicated above, the remaining comparisons give ~ , . . . ,  a, b , . . .  in succession, 

as specific functions of the previously determined constants, and with b, c , . . .  

in particular involving a as a multiplicative factor. Hence in this case there is 

obtained a full quo~ of formal series solutions of the type (5) under considera- 

tion, and these are evidently determined up to a factor 

ae  2 k ' ~ ) ~  (k, an integer) 

corresponding t o  the arbitrary multiplicative constant a, and the ambiguity in 

the determination of 7. Inasmuch as the detailed proof is entirely straight- 

f o r w a r d  and of familiar type; and is not necessary for our later purposes, it is 

omitted here. 

More generally, if some of  the values /~1,.../~k are fractional, but no 

multiple non-zero roots occur in the characteristic equations, let such a fraction 

be m / l  in lowest terms. There exist then corresponding series of the following 

anormal type 

(6') S ( x )  = x p eZ'(~)x ~ a + ~_ + .  �9 

X ! P 

( P ( x ) = ~ , x + d x l P  + . . . +  
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Such a formal series solution has evidently l formally distinct determinations in 

all cases, since if x makes p positive circuits of x----o in the complex x plane, 
u5 x 

the .  factor x v is multiplied by a 'factor e 2"s~f~ ,  ~nd y is t h u s  augmented by 

z ~ r / ~ V - i ,  where i~-~m/l is not an integer. Here again there are always 

precisely n formal series, when these various determinations are taken into ac- 

count. But inasmuch as the method is perfectly straightforward and of familiar 

type, and moreover not necessary for our later purposes, it is omitted here. 

As Adams has noted (loe. cir., w 1) the 'general' ease in which some of 

the roots Q of the single characteristic equations are of 1 fold multiplicity while 

t~ is an integer als0 leads to corresponding anormal series of type (6'), so that  

again a full quota of series is obtained unless a certain secondary characteristic 

equation holds. Unfortunately, the method of direct comparison may lead to 

indefinite algebraic complications if this secondary equation is satisfied. 

There is, however, a third type of formal solution which may arise, but 

whose importance seems to have been largely overlooked. I Let s (x )be  any 

formal series of the type (6) or (6'), and let t(x) be a second such formal series 

with the same coefficient preceding the power series .as s(x), save that  the 

constant r may be modified by an integral multiple of I/lp. Then, for instance, 

there may exist two formal series solutions of the form 

(6") s(x), s(x)logx + t(x) 

in the case l =  I, or zl such series in the general case l ~  i.  More generally, 

if s(x)', t(x), . . .  w(x) are )~ series of the form (6), (6'), all with the same /~, P(x), 

and if the constants r which enter differ at most by a multiple of I/1p, then 

there may exist kl solutions 

(6") s(x), ks(x) log x +  t(x), . . .  s(x) (log x) k § t(x)(log x) ~--~ + . . . .  § w(x). 

I t  will be observed that  when log x is changed to any one of its other determina- 

tions, each formal solution is augmented by a linear combination of the preced- 

ing ones affected with constant multipliers. We shall regard such series (6")as 

of normal type if 1-~ I and as of anormal type if l > I. 

1 See, however, N. E. NSrlund, Differenzenrechnung, chap. If ,  w I, where a specialized case 
(6") of th is  logarithmic type is considered for those l inear difference equations of 'Fuchsian type' ,  
in which the  series ai(x)/ao(x ) begin wi th  a term of not  higher  t h a n  degree - - i  in x.  
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I t  is our primary purpose in Part I of this paper to solve what may be termed 
the formal problem of linear difference equations of  type (4), and thus of type (I) 

of course, by proving that there always exist .precisely n formal series solutions of 
the three iypes (6), (6'), (6"). 

The method of direct comparison hitherto employed fails because it does 

not take due account of the algebraic nature of the difficulties involved. We 

propose to attack the problem by a method based upon the notion of reducibility, 

which leads to a successive reduction of these difficulties by a well-defined series 

of steps, each involving only the solution of linear algebraic equations. 

w 3. Solution of the Converse Problem. 

I t  is an easy matter to solve the converse problem by demonstrating that  

to every such set of n (linearly independent) formal series there corresponds a 

uniquely determined linear difference equation of the n-th order. 

Suppose, for instance, that sl(x).,.., sn(x) are n series of the simplest type 

(6). The corresponding difference equation is then essentially given by 

I y(x+n)  y ( x + , - i ) . . ,  y(x) 
! 

I s,(~ + n) s1(~ + n - - I ) . . .  Sx(X) = o. 

In this case we have only to divide the ( i+ i)-th row (i--~ I , . . .  n) by the ex- 

ponential factor x~XeP~(X)xri in order to obtain the equation desired. Moreover, 

even if certain groups of the n series are of the anormal form (6'), a similar 

conclusion is possible, a l though  the coefficients ao(x), a , ( x ) , . . ,  an(x) obtained 

are given in the first place as power series in descending powers of some root 
1 

of xp. However, it is obvious that .the equation written is in reality not  altered 

if the various determinations of these series be permuted, so that actually the 
1 

coefficients a0(~), al(x), . . .  an(x) do not involve fractional powers of x~ after a 
suitable factor is removed. To indicate briefly the situation in the case when 

logarithmic terms enter as in (6"), we consider the simplest possible case, namely 

the case n :  2, p----I, l :  I in which there are a pair of solutions, 

s(x), s(x) log x + t(x), 
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in which s(x), t(x) are of the type (6) with the same /*, 7, r. The corresponding 

equation is then 

I y(x+2) V(X+I) y(x) 
S(X+ 2) S(~+~) S(~) 

S(X+2) Iog(x+2)+ t(X+2) S(X+I)Iog(x+I)+t(x+I) S(X) Iogx+t(x) 
~ O .  

If  we multiply the second row by log x, subtract from the third, and make use 

of the formal identity 

i 
log(x+i)~---logx + + ... (i-~ I, 2), 

x 

we may eliminate the logarithms and thus obtain the desired equation of type (4). 

Obviously a similar manipulation leads to the same result in the most general 

logarithmic case. 

The solution of the converse formal problem thus obtained in all cases 

is evidently unique, since if we write out equation (4)wi th  y(x)replaced by 

s t (x ) , . . .  Sn(X)respectively, we obtain n linear homogeneous equations in the 

n + I coefficients ao(X)', a,(x), . . .  an(x), which determine them up to a multiplicative 

series factor, just because the formal determinant of the n-th order ]s~(x+j-.I)] 
is not identically zero. 

3- S o l u t i o n  o f  t h e  F o r m a l  P r o b l e m  for  n ~  I. 

We Will begin with a proof of the following fact: 

Every equation (4) of the first order (n = I) has a series solution of the form (5). 

Such an equation may be written in the form 

~'( ~- a~ ) 
v(x + ~) - ~ e~" + -~  + ' v(x) 

x p 

when tt is an integer and Q is a constant not zero, inasmuch as we may divide 

the equation through by ao(X ) and trunspose the term in y(x). 
I f  we change the dependent variable by substituting 

y(x) = x"  e~(x)  
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. .  

and divide through by the coefficient of !)(x+ 0 ,  the modified equation takes a 

similar form, simplified to the extent that  tt is zero and Q is I: 

x p 

Now introduce the dependent variable z ~ - logy ,  

(formally) 

log + 
2 

x p 2 x  p 

and we obtain at once 

+ �9 

c 1 c~. ~ - ~ + - - ~ §  .--. 

x~ 
I f  in this last equation we write 

1 2 1 - - 1  
1 - - - -  1 . . . .  

Z ( X ) = Z - - - p + l X  P : i - Z - - p + 2 X  p + . . . + Z _ l X P + z o l o g x + z l x p  + . . . .  1, 

it is immediately found that  2r Z - - p + 2 , . . . z  0 are uniquely determined with 

e l  C2 ~ p - - 1  
Z - - p + 1 - -  - -  ~ ~ - - p + 2 - -  - -  ~ �9 �9 �9 , i f - - 1  

I 2 p - - i  
I - - - -  I - - - -  1 - - - -  

P P P 

, Z o ~ C p .  

both sides. 

the form 

- - 1  - - 2  

These results emerge by direct comparison of thd terms in x v , x v , . . .  x -1  on 
- - k  

Now the comparison of terms in x "7" ( k > p )  leads to equations of 

--k+Pzk.--v  + q~k = ck ( k = p 4 -  I, p + 2 , . . . ) ,  
P 

in which ~k is a known polynomial in the coefficients zi which precede zk--v. 

Thus zl, z, . . . .  are determined in succession and uniquely. 

Evidently the formal series for z(x) so obtained leads to a formal series of 

type (6) for y, so that  the proof of the italicized statement is completed. 

I n  t h e  c a s e  p--~ I ,  t h i s  i s  t o  be  w r i t t e n  a s  

z (x )  = Zo l o g  a + z ~ x  ~-t  + �9 - .. 



Formal Theory of Irregular Linear Difference Equations. 217 

w 4. Simplification of  the  Formal  Problem.  

We propose to simplify the formal problem by establishing the following 

fact: 

There will necessarily exist always a complete set of fOX,hal series solutions of 

types (6), (6'), (6") i f  only every equation (4) admits at least one formal series solu- 
tion of the non-logarithmic types (6), (6'). 

The truth of this statement may be argued as follows: 

Suppose if possible that  t h e  statement is false. In this case, even though 

such a formal series solution (6), (6') always exists, yet there are equations (4) 

for which a complete set of series solutions does not exist. There will then be 

a least value of n for which a complete set does not exist, and, according to 

the result of w 3, we must have n >  I. 

Let  s(x) be one of the formal series solutions (6), (6 ' )o f  such an equation 

(4) of least order n >  I for which the theorem fails, and write y : s (x )~ .  After 

division through by a suitable factor (for instance, s(x+n)), we obtain an equa- 

tion of the form (4) in !), and of order n, in which, however, the basic integer 

p is perhaps replaced by some integral multiple lp. But this new equation in 

admits of the obvious formal solution ~----1, so that  if we write the equation 

in terms of ~, J ~ ,  j n~ ,  the term in ~ disappears; in other words we have to 

deal with an equation (4) of order n - - k  in dl:~ where j k ~  is the lowest order 

difference to appear explicitly. But  this is an equation of the form (4) in j k ~  

of order n - - k < n ,  and hence our hypothesis ensures that it admits a complete 

set of n - - k  formal series solutions $(x). 

Thus we are led to consider the formal difference equation 

= 

I t  is clear that  if we can show that this equation admits n -  k formal solutions 

corresponding to the n - - k  known series $(x), we are led to a contradiction and 

the italicized statement must be true. In fact the equation in ~ is satisfied by 

the n - - k  series so obtained and in addition by the k distinct series forms, 

I, x~, . . ,  x ~-1 for which ztk~ is o, so that  the n series exist and are obviously 

linearly independent. 

Consequently it is clear that the italicized statement will hold if the follow- 

ing lemma can be established: 
2 8 -  29643. Acta mathematica. 54. Impr im6 le 14 avril  1930. 
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Lemma. I f  s(x) is a formal series of type (6), (6'), (6"), then the equation 

~ y  = s(~) 

admits of  a formal series solution of type (6), (6'), (6"). 

In  fact we need only apply the lemma repeatedly to the equation Jky=g(x )  

written above, when we find after k steps a series solution for each series g(x). 

Let us first prove that the equation of the lemma admits such a solution 

if s(x) is of the form (6) or (6'). We have then to consider an equation 

J y = x  v eVl~>x ~ So +-~_ + ~ (So~O), 

x p 

where ~ is an integer, since we may replace p by the integral multiple Ip in (6'). 

In the case /~ < o we substitute 

y(x)  = x p  eP(~)xr~(x),  

and, upon division through by the coefficient of ~(x) in this equation, o b t a i n  

[g(x+l)log(l+l) ~xPe P{~+I)-P(x) (I -/- I) ]r y(x-/- I)--y(x)=s o ~ ~81 - ~  . - .  

x p 

where the factor in brackets on the left has the form 

X p x P  

I f  now we substitute in this modified equation for ~, 

~(x) = ~o + ~ + " ,  

x p 

it is obvious that Yo, Y~,.. are determined in succession by direct comparison, 
k 

with Y o ~ -  so for instance. More precisely, the terms in x P lead to an equa- 

tion of the form 

~k  - -  ~k ---- sk ( k  >_- I ) ,  
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where ~k is a polynomial  in Y0, Y l , . . - ~ k - 1 .  Thus 91, Y2, " ' "  are de termined  in 

succession by taking k :  I, 2 , . . . ,  and the desired series solution y(x) is found. 

W h e n  /~ ~ o,  we subst i tute 

/~x te 
y (x) = J ? (x) 

but  divide th rough  by the same fac tor  as  before. W e  obtain 

r__~ 
[ / - ~  ( I )  ] --~ 81 l~ 1) ~ P(x~-I)-P(x) I + P y ( X + I ) - - x P - y ( x ) = 8 0  + 5 +  "'" (~>O) .  

X p 

I f  now we replace ~ by the  same series as before, and note t h a t  the te rm in 
1 

brackets  is a power series in negative powers of x p, s ta r t ing  off with a constant  

te rm not  zero, we see at  once tha t  Yo, Y l , . . .  are uniquely determined,  with 
te 

~0----s0 e - ~ - ~  for  instance, and again the desired solution is obtained. 

There  remains the possibility tha t  s(x) is of type (6) or (6') with /~-~o.  

The same subst i tut ion for  y as in the first case leads to an equat ion 

[ ( e P(z+l)-P(z) I q- ~(x-[- I ) - -~(x)  = -~ ~- .. ~ ~ 

X p 

where the t e rm in brackets is of the form 

+ . . .  

X p X p 

Whe n  we subst i tute the series for  ?~ a.s before, we discover at  once tha t  Yo, Y l , - . .  

are in general  uniquely determined in succession with ?/0, fo r  instance,  equal to 

So/(e~--I). This de terminat ion  fails when e~ is I ,  and then  only; in this case we 

may take Z~-o .  

But  when ~ ~ o, inspection of the bracket  shows tha t  if the  leading te rm 
k 

in P(x)  is uxP ( k < p ) .  then  the series in brackets begins as follows: 

xk 
I -~- k -~ " ' ' ,  

p x  P 
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and the equation in ~ may be written 

xk 

p x  P 

81 
-~ . . . .  ~(x~  ~)-=8o + -1  + 

X p 

(k <p ) .  

Consequently by writing 

] ~ ( x ) = x  P ~20+  + , 

x p 

we find that  ~)o-~sop/xk, ~ 1 , . . .  are determined in succession and a solution is 

reached, unless indeed k is o, so that  P(x) reduces identically to o. But in this 

case the original equation in y becomes 

( 81 ) 
d y - ~ x  ~ s 0 + ~ +  "'~ , 

X p 

which can be at once satisfied if we write 

X p 

with yo-~So/(r+ I), Y l , . . .  determined, unless indeed r is a multiple of I//q9 with 

r ~ -  I, and a term in x -1 actually appears on the right-hand side. In such a 

case we may eliminate this term by writing 

y(x) = ~(x) + 8(~§ 

and proceed as before, except that  the constant term in the series for y is 

arbitrary. 

Consequently in all cases whatsoever when s(x) is of type (6) or (6'), a solu- 

tion is obtained. I t  will be noted that  this solution is of the same type unless 

it involves a linear logarithmic term c logx.  This last case of type (6") arises 

only when t t -~o,  P ( x ) : o ,  and a term in x -1 appears in s(x). 

Thus the lemma will be proved if we can deal with the case when s(x) 

is of type (6"). We shah dispose of this case by showing how the solution of 

the equation .dy-~sl.(x), in which st(x) is of the type (6") with logarithms which 

enter to the 1-th degree, can always be reduced to that  of a similar equation 
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in which 1 is reduced by unity and so finally to an equation of the type 1--o 

already disposed of. 

To achieve this reduction, suppose that  we have to consider 

~ y  = ~(~) = s0(x)(log ~), + s~_~(x) 

where so(x ) is of type (5), (5'). Write 

y ( x ) = s ( x ) ( l o g x ) ~  ~(x),  

where $(x) is a solution of 

~(~)=s0(~), 

which we know to exist of course, according to what has been proved above. 

Upon substitution we find that  ~) has to satisfy the corresponding equation 

z 9  = s0(x)(log x) , - (.%(x) + ~(x))/ log (x + ~))~ 

+ ~(x)(log ~)~+ ~_~(~). 

But the right-hand member may be written as a sum of three terms 

- -  8 0 (X) [(log (X -~ I ))l __ (lOg Xy] - -  ,~ (X) [(log (X 4" I ))l __ ( log  X)*] + S/--I (X). 

Inasmuch as the identity 

( log  (X -F I ))l __ ( log  X) l ~ ( log  X -{- ,~ ( log  X ) )  l - -  ( log  X) ~ 

l ( l o g x ) t - I J l o g x  + �9 + ( J logx)  ~ 

obtains, where 

i I 

X 2 X  ~ 
§ .., 

it is clear that  the first term in this sum, as well as the last, involves log x 

to a power not exceeding l - - I .  Moreover, on account of the presence of the 

factor J l o g x ,  the middle term will have the same property unless .~(x)involves 

log x. :Hence it is only necessary to examine into this last possibility. 

But it has already been noted that  the solution of an equation of the type 

J ~ ) : s o ( x ) ,  where So(X ) is of the form (5), (5'), can only involve logarithms linearly, 

and that  this can only happen in the case /~----P(x)--o when a term in x -1 
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appears in so(x ). Therefore the only case requiring fur ther  consideration is tha t  

in which the equation takes the form 

Z y  = 8o(X) (log x) 1 -~ Sl-l(X) 

where 

( v*' ) ( x )  = x ~ So + + ' 8O 

X p 

and where So(X ) contains a term in x -1. I t  is clear tha t  all the difficulty arises 

from this single term, and tha t  if we can find a solution for the simple equation 

J y  = ( J  log x)(log x)', 

the. difficulty is disposed of. 

we find 

But  if  we substi tute 

(io~'X)'+l + ~(X) v(x)- ~ + ~  

i [(log(z+ i)) ,+1_ (10g.),+i] z ~  = (~  log x) (log.)' - F + I  

- -  l ( logx) t - , ( ._41ogx)~  ' ( J l o g  x)~+,. 
1 .2  / + I  

Now on the r ight-hand side there appears a sum involving log x to the (1--i)-st 

power at  most. Consequently in every case we can reduce the problem to one 

of a similar type but  with l decreased by at  least one, as we desired to prove. 

Thus, whatever be the series s(x) in the equation of the lemma, we are 

led to a corresponding solution of type (6), (6'), (6"), and the lemma is fully 

established. 

w 6. The Formal Problem and Formal Reducibility. 

Let  us term the equation (4), namely L ( y ) = o ,  'reducible' in case we may 

wr i te  symbolically 

L (y) --  M~--4 (La(y)) 
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where M~-~ and Lg are difference expressions of the same type as L, of orders 

n -  d and d respectively. 

Now if there exists no equation L(y)-~-o without a formal series solution 

(6), (6'), we have seen that  a full quota of formal series necessarily exists (w 5), 

and the formal problem is solved. In the contrary case there exists an equation 

L(y)~-o of least order n > I  for which no solution (6), (6') exists. 

Such an equation E must necessarily be irreducible for any admissible basic 

integer p. 

In fact if we could factor L symbolically as indicated above, then every 

solution of Ld(y )~o  would also satisfy L ( y ) : o .  But the equation Ld(y)~-o is 

of lower order - than  L(y)~--o, and so. possesses at least one series solution (6), 

(6'), by hypothesis. Hence L(y)----o would possess the same solution, which would 

be absurd. 

Moreover, i f  we effect any change of variables in E of the general form 

y(x)  = x p  eP(')x"~(x), 

lhe new equation in y must obviously also be irreducible in the same sense, no matter 

how the integer ~, the polynomial P(x), and the constant r be chosen. 1 

In  consequence we proceed to consider several cases in which specific types 

�9 of reducibility are established (w167 7--Io). I t  will then be easy to prove that  

such an equation E cannot exist, so that  a complete set of formal solutions is 

thereby proved to be present always. 

w 7. First Reducible Case. 

An equation L(y)~-o with k >  i values of ~, say ~t~, ~t~,. . .  I~k, with ~1-~o 

and #i < o (i-~2 . . . .  k), is necessarily reducible with a symbolic factor of order d 

equal to the number d of non-zero roots Q corresponding to ?el ~ o .  

In the first place we observe that  by definition o f  pd, the hypothesis made 

ensures that  the first segment of the broken line in the (i,j) diagram (Fig. x) 

is horizontal while the later segments have positive slope. Hence, after the 

leading coefficient of L ( y ) : o  is made equal to I by division through by ao(x), 

we may write (4) in the form 

1 Note that this change of variables leaves the equation of the same general form (4), although 
the basic integer p may be altered. 
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(7) L (y) - -  y(x + n) + a 1 (x) y (x + n - i) + - - .  + a~ (x) y (x) -~ o, 

where the series a~(x), a ~ ( x ) , . . ,  a~(x) in the equation so obtained can contain 
1 

no positive powers of x p, while aa(x) has a constant  term not  zero, corresponding 

to the second vertex of the horizontal segment. Fur thermore  it is apparent  tha t  

the series a~(x) for i > d are series of the same type but lacking constant  terms. 

We  propose to search for a symbolic factor  of the form 

(8) Ld (X, y) ~ y (X + d) + Pl (x)y (x + d - -  I ) zr " " " -~- ~gd (X)y (X), 

1 

where p ~ ( x ) , . . . p a ( x )  are power series in negative integral  powers of x p, con- 

~aining constant  terms identical with those in a~ (x ) , . . ,  ad(X) respectively, but  

otherwise arbitrary. The more explicit nota t ion Ld(x,  y) is used instead of La~) ,  

since we shall have occasion to change the x in the expression to x + i .  Now 

if La is such a factor  we must  have 

(9) L(y) -~ L a ( x +  n - - d ,  y) + ~ ( x ) L a ( x +  n - - d - -  I, y) + . . .  + ~n--d(x)La(x, y). 

Here we shall restrict ~l(x), . . .  ~n---a(x) to be similar power series but lacking 

constant  terms; this restriction is actually required if such an identi ty is to hold. 

In  the first place we observe that ,  in the coefficients of y ( x + n ) , . . ,  y(x) 

which enter, at  least the constant  terms agree on both sides, in virtue of the 

part icular  choice made of the constant  terms in Ti(x) a n d  hi(x). Le t  us consider 
1 

next  the terms in x P in these coefficients. The comparison under  consideration 

is more easily effected if we write the above ident i ty  in the form of n explicit 

equations between these coefficients: 

al (x) --= pl (x + n--  d) + ~, (x), 

a~ (x) ~-- p~ (x + n ~ d) + ,~ (x)p 1 (x + n --  d --  I) + )~2 (x), 

( , o )  . . . . . . . . . . . . . . . . . . . . .  

an-1 (x) ---- ~n--d--, (x)p~ (X + I) + ~,,--~ (X)pd--i (X), 

a (x) - -  

where the law of formation is obvious. 

Since the constant  terms ~i0,pi0 in ~t;pi have been specified as stated, the 
1 

comparison of the terms in x P gives the following n equations: 
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all----Pll + ~11, 

. . . . . .  . . . . . . . .  

a,~-l, 1 --  )~.-a-1,1 pdo + ]~n--d, 1pal--l,0, 

a~l = )~n--d, l pdo, 

_J_ 
where we employ the notation f,.j, to denote the coefficient of x P in any 

series fi(x). Hence the last written equation determines J~n--d,1 since J0d0~O; 

the next to the last equation determines Z,--d--a,1, and so on, until the (d+ i)-th 

equation determines Jtll. But then if we turn to the remaining first d equations 

we see that these in order determine p ~ , p ~ , . . . p d x .  Thus the coefficients of 
1 

x p in its(x) and pt(x) are uniquely determined by this comparison. 

Next we may proceed to the determination of the second and higher order 
k 

coefficients 2ik and Pik by comparison of the coefficients of x P for k----e, 3 , . . . .  

Equations are obtained of a similar form 

( I I k )  

alk~--plk + ~lk + Alk, 

a2k----p2k + ~tlkpl0 + A~k, 

�9 . o . . . .  �9 �9 , , . ~ . . . . . .  

an--l,k ~ ~n--d--l, kpdo § )~n--4, kPd--LO § An--Lk,  

auk -~ ~n--d, kpdO § Ank, 

where Aik are known functions of the coefficients pij,  ~ j  ~ < k ) .  

Thus for k - ~ e ,  for instance, we see that  ~ and pt2 are again uniquely 

determined, and clearly this process may be indefinitely continued, so that  L(y) 

can be symbolically factored as stated, and the statement under consideration 

is proved. 

w 81 Second Reducible Case. 

A n  equation L ( y ) = o  with a single value of l~=o,  and so With a characteristic 

equation in Q of degree n with no zero roots (w 2), is necessarily reducible unless the 

n values of Q are all equal. 
29--29643.  Acta ma~matica. 54. Imprim4 le 14 avril 1930. 
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The equation L(y)=o under consideration is of course still taken in the 

allowable form (7) above. In  the case before us the coefficients a~(x) in it  are 
1 

evidently power series in negative powers of x ~, of which at least the last, 

an(x), contains a constant  term ano. 
I f  the n values of Q are not  equal, ~let Q~ denote some part icular  root of 

multiplicity d<n .  We now at tempt  to find a symbolic factor  La(x, y) of order 

d < n,  corresponding to this root, which shall be of the same form (8) as in the 

preceding paragraph, except tha t  pt(x), ( i=I ,  2 , . . .  d) will here  be taken as 
1 

power series in negative powers of x ~ with constant  terms as follows: 

d(d-- 
( 1 2)  P l 0  = - -  d ~1,  P20  - -  I ) ~ 

1 . 2  
, . . - P a l 0 = ( - -  I)d014. 

Hence the single characteristic equation of La(x, y ) = o  is necessarily (e--Q1)a~o. 

Fur thermore  we write L(y) once more in the form (9), except tha t  the series 
1 

hi(x), ( i =  I, 2, . . .  n--d), are power series in negative powers of x p whose con- 

s tant  terms we proceed to specify. 

In  the first place we observe tha t  the characteristic equation of the symbolic 

product  is clearly 

( ~ - - e l ) d ( ~  n - d  "~ ~10~ } n - d - 1  -{- " "~ ~n--d,O) = O. 

Hence this  product  will have the same characteristic equation as L(y)-=o if 

itlo . . . .  J,,,--d,O are properly determined, and this determination is obviously uni- 

que, with 

~2"--~ + ~,~oQ? -~-~ + " .  + X,-~,o # o ,  L,-a,o ~ o. 

At  this stage then, pto and s are uniquely determined, and the constant  terms 

in the coefficients on both sides of (9) agree. The equations (lO) simply state 

the equality of corresponding coefficients of course. 
1 

We have next  to consider the terms in x P on both sides of (io). The 

equations obtained differ somewhat in form from (I I1) inasmuch as the constants 

~10 need not  be o in the case before us. These equations are in fact  
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aH---~Pxl + 'Zll, 

~,x = p . x  + (zxop. + .~,,p~o) + z.,, 
. . . . . . . . . . . .  ~ . 

an--l,1 ---- (Zn--d--l,O pdX "[= Zn.~d--l,l pdO) 

+ O,,~--a, opdx + 2~-m, xpgo), 

anx = (~,n--d, Opdl  "+ ),n--d, xpd0). 

227 

But the equations (I31) are the same equations as result from the algebraic 

identity in u, 

(131') Z as i u '~-q =-- A a (u) A n - a - x  (u) + Bn-a  (u) IIa-x (u), 
j = l  

where Aa and B,~-a are the known polynomials 

A.(~) ~ (u_e,)~_-- ~. + p , o ~ - x  + .  + p.o,  

Bn-a (u ) -~  u '~-~ + ~1o u ' - a - x  + " "  + ~..--a,o, 

and An-a-x,  [ /d - - l '  a r e  to be determined from the equations 

-//n---d--l(U) ~ ~11 un-d-1 ~- ~21 un-d-2 -[-"''-~ ~n.--d,X, 

11d--l(U) ---- pXX ud-1 -b p~lU d-2 -b "'" -t- pal--l, 1, 

in which the coefficients are arbitrary. 

This is readily seen if we write the j- th equation (I31) in the form 

.~x= Z (x,0p~-,,1 + X, lpj-,,o) 
t 

( j =  I , . . .  n), 

where we take ~oo= I, ~o~-=O,Poo----I,po~-o, and all the subscripts are to be 

positive or zero of course. 

But the polynomials An, Bn--~ are relatively prime, while -//n--~-i and 114-1 

are entirely arbitrary polynomials of degrees n - - d ' I  and d - - I  at most respec- 

tively. On the left of (I31') stands a known polynomial of degree n - - I  at most 

in u. I t  is ~hen a familiar and fundamental theorem of algebra that -4~--d--1 

and Ha-1 can be uniquely determined so tJaat ~his identity holds. In conse- 

quence Xz'x and p~x are uniquely determined by the stated conditions. 
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k 

More generally if  we compare the coefficients of x P on both sides of (I O), 
we obtain a set of equations (I3k) related to (i3~) as the equations (Ilk) are to 

(111). More precisely, the second subscripts I are changed to k, and in addit ion 

there appears on the r ight  of the j 4 h  equation a fur ther  term Ajk which is a 

known polynomial in the coefficients )Ul, �9 �9 �9 ~;,k-~, pi~, �9 �9 �9 pi, k-1. Thus we see 

at  once tha t  ~ti2,pi2, )u3, pi3, . . .  are uniquely determined in succession, and the 

s ta tement  under  consideration is established. 

w 9. Third Reducible Case. 

Suppose that the difference equation L ( y ) = o  has a single value of ~t, namely 

t t~-o,  and that the n roo~ of the characteristic equation are equal to 1, so that 

the difference equation may be written 

(14) L(y) ~ A~y + b~(x)An-~y + . . .  + b~(x)y = o, 

. ,  1 

where bl(x) . . . .  bn(x) are formal power series in negative powers of x~ without 

constant terms. Suppose, however, that the n series 

xbl(x) ,  x'b2(x) . . . .  

1 

do not all contain only negative powers of x p with or without constant terms. 

unless the modified equation in z, 

+ + . +  

Then, 

has a single (negative) value of tt and all the roots of its characteristic equation 

are equal, the equation (14) is necessarily reducible, at least after the basic integer 

p is replaced by lp. 

Before entering upon the proof, i t  is interest ing to remark that ,  from a 

formal  point of view, a difference equation of type (I4) is much more closely 

allied to an ordinary linear differential equation than  is the most general dif- 

ference equation (4). This fact  explains the usefulness of the difference notat ion 

employed. We  note indeed tha t  the above difference equation is to be considered 

as analogous to an ordinary linear differential equation with an irregular singular 

point  of rank at  most  I at  x ~ 0r On this account we may expect a new type 
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of characteristic equation, analogous to that of the corresponding differential 

equation, to play a r&le. I t  will be our first step to introduce appropriate de- 

finitions. 

In analogy with the definitions of w 2, let us denote by bij~ the coefficient 
-Ji 

of ~he leading term in x P of the power series for b~(x), with bo(x)~--I and so 

i 0 : o .  Furthermore, if b,(x) were to vanish identically, the equation (I4)would 

be obviously reduci.ble, so that we may take jn to be finite. 

J 

,/mj,,; 
J 

,,c I 

N 

Fig. 2. 

Now mark the n + z  points (i, ji) as in Fig . . I ,  w 2, and draw the cor- 

responding broken line, concave upwards, whose vertices are chosen from among 

these points, while all of the remaining points lie on or above the line (Fig. 2). 

Evidently this broken line M starts at the origin with a positive slope, which 

is less than p,  however, according to the hypothesis of the italicized statement. 

I t  is obvious that  21/ is precisely the line L of w 2 for the modified equa- 

tion in z. In accordance with the italicized statement, we have to prove that 

when this line consists of more than a single segment, and even when it consists 

of a single segment but the roots of the characteristic equation are not all equal, 

the equation (I4) is reducible. 

I f  the broken line M is made up of more than a single segment, let d < n 

be the integer which gives the coordinate i of the right-hand end point of the 

f i r s t segment .  From the geometric construction it is clear that  if we write 
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r-~j~/d so t ha t  x is the slope of the  first segment ,  the  fol lowing inequali t ies  

mus t  o b t a i n  

j~ _--> xi ,  (i _--< d); j~ > x i ,  (i > d). 

W e  m a y  write x in the  fo rm m/1 where the  posi t ive in tegers  1 ~ I and  m are 

relat ively prime. 

Thus  the  equat ion under  considerat ion is essential ly of the  fo rm 

(i4')  "v+x , 

1 

where e l ( x ) , . . ,  cn(x) are power  series in negat ive  powers  of x ~v, a m o n g  which 

c,~(x) at  least  contains  a cons tan t  t e rm  while the  series c~(x) for  i >  d conta in  

no such term.  

I n  this  case when the  modified equat ion of the  l e m m a  in z has  I t >  I 

values of /~ of which the  first is / ~ l ~ - - - z  so t h a t  / ~ > - - p ,  the  cor responding  

character is t ic  equat ion is 

( I -'i 
ee ~ -  + c l 0 ~ Q e V !  + - . . + c ~ 0 = o ,  

so fa r  as the non-zero roots  are concerned.  

W e  shall  show t h a t  such an equat ion is reducible if  the  basic in teger  is 

t aken  to be lp.  1 W i t h  this  change  of basic integer,  x is replaced by l j~/d, an  

integer .  Of  course the  re la t ion  x < p  continues to hold a f te r  this modification,  

where  p and  u re fe r  to the  modified basic in teger  and  modified x. 

Now let  us in t roduce the  difference opera tor  J such t h a t  

We  find t hen  

and  fu r the rmore  

J u : x P J u .  

J u  -= x p ,du  

1 

1 As a matter of fact the symbolic factorization accomplished only involves powers of xP 
in the coefficients, so that the stated reducibility is effective for the original basic integer. We 
omit, however, the proof of this fact, which is easily made directly. 
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J ~  = (x +  ~ ) ~ - ~ ( 2 ~ )  + ~ x~ -  ~ 

- - 2 x  p X -- - - I  
: X  p I + 2 U +  - -  X p + - . .  , . 

This gives immediately 

~ J ' .  = 2 3 .  + 07, (x) 2 '  u + 0(:)(x) 2 . .  

1 

where O~2)(x), O~2)(x) are power series in negative powers of xp without constant 

terns.  

Moreover we find that  in general for m => 1, 

m x  m--1 

j = o  

1 

where Oa(.~)(x ) are definite power series in negative powers of xp without constant 

terms. This has already been demonstrated above for m =  I, 2, and is readily 

proved in general by induction. We have merely to observe that  we have 

,o+,,, , [ o ,  ( )] 
x P H '~+ lu=xP  x - p H "  J u  

x - - x  �9 m - - 1  t - - x  

j = O  

if the formula holds for the particular m under consideration, and to expand 

the terms involved. To this end we note that  since 

,~r ~--- U ( X +  I ) J V  + (z~CU)V, 

we have 

2(uv) = ,~(~+ ~)2v + (9.)v.  

Likewise we find 

9~(uv) = 2( . (x  + I)2v + (gu)v) 

= u(x+ 2)2~v + 2,~.(x+ i )gv + (9~u)v 
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by another application of the same formula. Thus in general we readi~ deduce 

the identity 

(I6) 9 k ( u v )  = qI,(X Ji- ]g)91CV --]- ]g g ~ ( X 2 1 -  ~ - -  I ) J k - - I . v  -~.- . . . -~ ( g k u ) v ,  

which is of familiar form. Applying this expansion, the formula (I5) is seen 

to hold for m + I ; the fact that  the operator J applied to a power series actually 

lowers the degree of each term is to be borne in mind. Thus (I5)is established 

by induction. 

By use of ('5), the difference equation (I4') may evidently be given the 

form (I 4") : 

(14")  x-~ L(y) --  J , ,y  § c l ( x ) z ~ , - l y  -1- . . .  q- c n ( x ) y  - ~  o 

1 

where e~(x), . . .  c , (x)are  power series in negative powers of x p in which a con- 

stan~ term certainly appears in ~(x) but not in any ~i(x) for i >  d. More pre- 

cisely, it is apparent that  the constant terms in el(x), . . .  ca(x) are the same as 

in e l ( x ) , . . ,  ca(x) respectively. 

We propose to demonstrate that  this expression admi tsof  a symbolic factor 

of the form 

Ld(y) ~ 9ay  + p~(x)ga--iy + . "  + pa(x)y 

1 

where p l ( x ) , . . ,  pa(x) are power series in negative powers of x ~ with the same 

constant terms as c~(x), . . .  e~(x) respectively. To achieve thi.s factorization, we 

shall set up an identity of the form 

( I7)  

n ~  

x~- L (y) --  9 '~---a(La (y)) + Zl (x) ja--d--1 (Ld (y)) -[-"" "[- J~n-.-d (X) Ld(y) 

1 

where ~(x), . . .  Zn-a(x) are to be power series in xp without constant terms but 

not otherwise specified at the outset. I In  order to effec~ the comparison of 

both sides we need to expand terms of the type 

(i=>o, j > o ) ,  

Note the formal analogy here and later with the method used in the preceding paragraphs. 
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and to do so we employ the identity (I6) which gives the expansion 
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pj (x  + n - -  d - - i ) J " - x ~ y  + ( n - - d - - i ) J p j ( x  + n - d - - i - -  I) gn--i--j--lff "~- ' '" 

+ (9"-~-~p~(~)) 9~-Jy. 

This leads to the explicit identities 

~, (~) -= p~ (x + . -  d) + z, (x), 

~2 (x) ~ ~0. 2 (x  -3v ~, - -  d) -~- (n - -  d) zJ~91 (x  2i- n - -  d - -  i ) --~ Z 1 (x )p  1 (x  -~ ~/-- d - -  i ) -~- Z.~ (x) ,  

(I8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a.,__,(.) __----(,,_d)~,n-~,-lp~,(. + ~) + (n--d--~)Z,(*)J'~-'~-:~pd(* + I ) +  

+ Z~,--d--,(X)pd(* + ~)+ J"<P~,-- i (*)+ Z, (*)J"--~'--~J'd-*(*) + 

-~- Z,,l--d (X)pd--1 (X), 

~(X) = jn - -~p~(Z)+  Z~(X)jn--~--~O~(~) + . ' '  + Z,~(X)~O~(X). 

The close analogy of these equations with the equations (Io) of w 7 should 

be noted. Since the operation d applied to any power series in negative powers 
1 - - k  

of xV lowers the degree of the initial term, it is clear that  the coefficients of x P 

on the right-hand sides can only involve the constants ~ij, pi~ for j _--< k, and that  

the terms involving the operator J can never give rise to terms involving ~ik, pik. 

But, when these terms are omitted, the expressions on the right are identical 

with those on the right in (IO). 

I t  is apparent that, because of the way in which ~0, pio were chosen, the 

constant terms on both sides agree. Also, according to the preceding remark,  
- - 1  - - 2  

the comparison for the terms in x P , x p , . . .  will determine ~1,p,1, Z,2,p~2,... 

uniquely, the equations of determination being precisely like (i I1) for k =  I and 

(I I k) for k = 2 ,  3 , . . . ,  except that  aij is replaced by cij of course. 

The stated reducibility is thereby proved in the case when the broken line 

M consists of more than a segment so that  the modified equat ion in z has more 

than a single value of #. 

There remains then the case when there is but one such value of # > - - p ,  

in which case it is necessary to establish that  so long as the roots of the single 

characteristic equation for z are not all equal, the equation (~4)is s~illreducibte, 

at least if lp is taken as the. basic integer. 
30--29643. Acta mathematica. 54. Imprim$ le 14 avril 1930. 
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g 
I f  we write Q=~ee in this characteristic equation, it takes the form 

O" + CloQ "-I  + ' "  + C.o=O, # o), 

and the equation in ~ also has not  all equal roots. 

Now in this case we can still adopt the preceding form ( I4" )a l t hough  here 

the last coefficient ~(x) has a constant  term not  zero. Fur thermore  if ~L is a 

root of the equation above of d fold multiplicity (d < n), we may again propose 

a symbolic factorization (i7) where we choose 

j o ~ o = - - d ~ ,  P-*o . . . . . .  q , , . . .  P d o - ( - - I ) a ~  d, 
2 

and then /-~0, . - .  2,,~,0 so tha t  the following identi ty holds: 

( '~'--QI)d (UN-"r + ZI0U n---~/-1 + " "  + Z,|--d, 0) 

U" + Clo u"-I  + "" + C.o. 

In this way the constant  terms on the two sides in the coefficients of (I7) are 
--1 

made to agree. Likewise the comparison of the terms in x v clearly yields 

equations of the form (t31) which determine ~il, p,'l uniquely; more generally, 

the comparison of terms in x-~ ( k >  i) leads to equations related to (I31) just  

as the equations (IIk) are related to (I 11) , and so determine 2i~, p~2, ~i3, P;.~, . .  �9 

in succession uniquely. 

Thus here again the desired reducibility is established. 

w io .  F o u r t h  R e d u c i b l e  Case .  

I f  the equatio~ L ( y ) = o  may be written in the form 

x " d " y  + x " - l b l ( x ) J " - l y  + . . .  + b,(x)y = o ,  

1 

where bl(x), .. b,(x) are power series in negative powers of x v with or without 

constant terms, then the equation is reducible with a-symbolic factor of degree I. 
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This case is analogous to that  of an ordinary linear differential equation 

of Fuchsian type and the fact stated above is easily proved. 1 

I f  we substitute in this equation 

y = x  ~ + y 2 x  p + . . .  

and compare coefficients of like powers of x, we find a set of equations 

f (Z)Vo = o,  

Yl + ~ O, 

where we have written for brevity 

f ( l )  = l ( l - - I ) - - ( l - - n +  I) + b l o l ( l - - I )  ( l - - n + 2 )  + + bno 

and where F~ is a known polynomial in l, Yo, Yl, . . .  yi- i  for any i. 

But the polynomial f in 1 is clearly of the n4h degree and has obviously. 

at least one root 1 such that  l - - ~ ,  1 - - 2 , . . .  are not roots. For such a value 
P 

of l, it is evident that  the first equation is satisfied for any Yo, while Yl, Y~,.-. 

are successively determined uniquely by the following equations, as soon as Yo 

is assigned, so that  a formal series solution of.this type is determined. However, 

if this series be denoted by g(x) ,  and if we write 

,<t1(/, y) --~ y(X+ I) g(x+  I) y(X) (g (x+ I) - -  I q- ~ + ' ' ' )  
g(x)  : ' 

x p 

it is clear that  we may express L(y) in the form 

Z(.v)  (x)v 

where M,,-1 is a linear difference operator of order n - - I  .2 But if we substitute 

t See N. E. N6rlund, Differenzenrechnung, Chap. I I. 
2 We have merely to employ successively the relations 

g(x+n) 
y(x+n! = .q(x+n_x)y(x+n--I)+ zft(x+n--I,y) 

g(x+n--I) , . 
y(x+n--i) ~ 2 ) Y ~ x n - n - - 2 ) +  Al(x+n--2, y) 

in order to express Z(y) in this form. 
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for y the series g(x) we conclude c(x)g(x)~o, so that  c(x) is identically zero. 

Thus it is clear that  L(y) is certainly reducible with symbolic factor J~(x, y), 

and the proof of the italicized statement is thereby completed. 

w i i .  C o m p l e t i o n  o f  S o l u t i o n  o f  F o r m a l  P r o b l e m .  

We are now prepared to resume the argument begun in w 6. 

I f  an equation E of the type there specified exists, and if /~1,. . .  #k are 

the corresponding values of /-~, we can at once prove that  k must be I. In fact 

if k ~ I, let #~ be the greatest value of #. Make the transformation 

y = - x P  #, 

which is at once verified to yield a new equation of the same form with values 

of # 
o , / ~  - -  # l ,  �9 �9  ~uk-- # l  

of which one is zero and the others negative. By the result of w 7 this equa- 

tion would be reducible, and admit a symbolic factor L~(y)of lower order, having 

at least one series solution (6), (6') shared of course by the equation E.  This 

would be absurd. 

Hence the equation E has only one value of /~, say #~, which, by the 

transformation already employed leads to an equation E for which this v a l u e  

of ~ is o. 

Now this modified equation E will fulfill all the conditions prescribed in 

the italicized statement of w 8 and so be reducible unless all of the roots of 

its characteristic equation are equal, say to Q~. The further transformation 

will then lead to a like equation E in which these equal values of Q are replaced 

by I, since the effect of the last transformation is to divide the roots of the 

characteristic equation by QI. 

Consequently we are led to an equation E of .the form (I4) which would 

fulfill the hypotheses of the italicized statement of w 9 or of w IO and so be 

reducible, unless the equation in z has only a single negative value of u,  say 

--z,  with x < p ,  and all of the roots of its characteristic equation are equal. 
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However,  in this remaining case, since the characterist ic  equat ion must  

contain a complete set of terms 1, a first conclusion is tha t  x must  be a positive 

in teger  and in addit ion tha t  the equat ion under  discussion has the form (I4') 
1 

where the coefficients ci(x) are power series in negative powers of x v, with con- 

s tant  terms as follows: 

e l o =  --9~QI, C~o-- I ' e " t , . . .  C n o = ( - - I ) n 0 7 ,  
1 . 2  

where ~ is the single value of Qe v . 

Suppose now we make the t ransformat ion 

in (I4'). Evident ly  this t ransformat ion  takes the equat ion E into another  of the 

same type E .  In  order  to characterize it  in more detail, we subst i tute 

Atiy = ~O(X'Jl-i) Al' ~ JI- i AI ~(X "F i--I)Ali-- i~ "~ . . . .  -F (~/~O(X))~ 

for  i =  I, 2 , . . .  n and divide th rough  by ~ ( x + n ) .  The equation obtained may 

then be wri t ten 

[ - .  , , .  ] 
i Al"q~(x) + ~ ,  o d x ) A l . - l ~ ( x )  + .  + ~ -~ ~ . ( x ) f ( x )  ~ = o.  

I t  suffices for  our  present  purposes to observe tha t  every coefficient so obta ined 
1 

can contain no positive power of xV or even a constant  term, and also tha t  the 

coefficient of Aln-~  is given by a series in negative powers which starts  off 

with a te rm of lower degree than  - -x /p .  In  fact  we find readily 

( ) : ~(x+ , )  - ,  e,x" + ;x , ,  ~l(x) ~(x ~ i  + '  

so tha t  this is the case. 

All of these terms must appear when all of the roots are equal. 
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B u t  the equation E thus obtained has of course, for reasons already pre: 

sented, but a single value of tt-~ --~ and all the roots of its characteristic equation 

equal. I t  will therefore be reducible unless it is of the exceptional type (I4) in 

which the modified equation in z has the properties stated. Of course it cannot 

be of the type treated in w I o, which is always reducible. Moreover, by the 

argument given above, the value of ~ for the equation in y must again be a 

positive integer, and,  on account of the nature of the coefficient of "-~- A p , z  

will be at least one more than in the first equation. 

Thus, step by step, we are able to increase the integer x in the equation 

(14'), until at last we are led to the case z ~ p .  But this has been proved to 

be reducible in all cases (w Io). 

Hence such an equation E cannot exist. Thus we have proved the following 

fundamental result: 

Any difference equation (4) (or difference system (I)) in which the coefficients 
1 

are formal power series in negative descending powers of xV (p>= 1), such that 
ao(X) ~ o, a,,(x) ~ o (] a,j(x)[~ o) admits of n linearly independent formal series solu- 
tions with elements of the types (6), (6'), (6"). 

w ~2. A Theorem on Reducibility. 

Let Sa(X), . . .  s,~(x) be a set of n linearly independent formal solutions of 

an equation (4). I t  is apparent that  s , ( x ) , . . .  S,~(x) are not determined at least 

up to a constant multiple of e 2 t~r -~  where l is an integer, and that if any sum 

such as 

+ + 

is of the type (6), (6'), or (6") the set s l (x ) , . . ,  s,,(x) admits of still further modi- 

fication. We shall refer to the complete collection $(x)so obtained as the family 

of formal solutions. Evidently it has the further proper~y that if ~(x) is in the 

family of formal solutions, so also is every determination of ~(x) for the given 

basic integer p .  Any subset of formal series of types (6), (6'), (6") with this 

double property will be termed a 'natural family' of formal series, and the number 

of linearly independent elements in the family will be designated as its 'order'. 

We propose to prove the following 
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Theorem: To any decomposition of L(y) of order n into 6"reducible symbolic 

factors LI, L~, . . .  Lk so that 

L ~ LkLk-1 . . . LI, 

there corresponds a sequence of natural families of formal solutions F1, . . .  Fk each 

containing the preceding as a sub-family, but such that there exists no further inter- 

mediate ,atural families, and such that the general solution of Ll(y  ) = o is furnished 

by F~, of L~(L,(y))=o by F~, etc. 

Conversely to a set of families of formal solutions F1, F~, . . .  F~, each con- 

taining the preceding, but in such wise that there exist no further intermediate fa-  

milies, there is a corresponding irreducible factorization which is essentially unique. 

Let  us establish th  e first par~ of this theorem. 

Evidently Li(y),L~L~(y)-~-o, . . .  L ( y ) : o  define a sequence of expanding 

families E l ,  F2, . . .  F~. But  if there  exists any in termedia te  family F *  between 

1;'~_~ and F~ for  instance, the equation L * ( y ) = o  admits L~_~. . .  L ~ ( y ) = o  as a 

symbolic f a c t o r .  In  fac t  we can write 

L*(y) =- -ML~- I . . .  L~(y) + Q(y), 

where Q is of lower order  than  Lt-1 �9 �9 . L~(y). But  if we subst i tute  any member  

y of Fi--1 for  y in this ident i ty  we conclude Q(y)=o ,  so tha t  Q must  vanish 

identically. Similarly we can prove 

L i L y - 1 . . .  Ll(y) =-- NL*(y) .  

Therefore  we have 

L(y) -~ LkLk--1. . . L,+~ NL*(y)  

- - L k L k - 1 . . .  L~+I NML~- I  . . .  LI(y), 

and it  follows at  once tha t  

L~Lk-1 . .  . L t+I(NM--Li )Li -~  . . Ll(y)=---o. 

Hence  we prove successively tha t  the factors  Lk, Lk-~, . . .  L;+I on the lef t  may 

be removed so tha t  

(NM--Li)L~-~ . . .  LI~y)-~ o. 
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I f  N M : L ~  were not identically zero, we could continue this process and finally 

conclude y ~ - o  which is absurd. Consequently the factor Li must be identical 

with the product N M  and so not irreducible, contrary to our hypothesis. 

This establishes the first part of the theorem. 

To prove the second part of the theorem we set up the equation L~(y)= o 

with the family F~ as its general formal solution. Obviously L~ is determined 
1 

up to a multiplication power series in x P. Likewise we let P i ( y )= o  be the 

equation with general solution F/ for i = 2 , . . ,  k. We can then readi ly  estab- 

lish that  L1 is a factor of /)2, P~ of Ps, and so on, with P ~ L :  

-P~- L ,  L1, P a =  L3P,,  . . . L ~  LI:-PI,~I. 

I t  follows that  L is expressible as a symbolic product 

L ~ L~.Pk-1 ~ Lk L~-IP~2 ~ ' "  ~ Lk Lk--1 - - �9 LI. 

To complete the proof that  to such a sequence of natural families correspond 

irreducible factors LL, L ~ , . . .  Lk it is only necessary to observe that  if any Li 

is not reducible we obtain further intermediate families, contraxy to hypothesis. 

This theorem may be regarded as fundamental for all questions concerning 

reducibility of a single equation (4) with a given basic integer p. As an illustra- 

tion of this fact we cite the following two special results: 

A necessa~:y and sufficient condition that L ( y ) - - o  o f  order n be completely 

reducible (~. e. expressible as a product of n symbolic factors) is that there exists no 

anormal series solution (6')with 1 > I. Every irreducible factorization will then in- 

volve n factors, each of the first order. 

A necessary and sufficient condition that L ( y ) ~ o  of order n > I be irreducible 

is that the complete set of formal solutions consists of a single solution (6') with 1 = n, 

and its various determinations. 

The necessity of the condition of the first statement is obvious, since in 

the expanding set of families /,'~, . . .  he, we necessarily add all of the determina- 

tions of series of anormal type when we add a single one of course. The suf- 

ficiency may be seen as follows. At the i-th step the family -~)-1 is expanded 

by the addition of at least one new member of normal type. This may be ex- 

pressed in the form (see (6")) 

S(X)  ( ] . o g x )  m -'}- t( .~) ( l o g  x )  m - 1  "-}" ' ' �9 + t,/)(X) 
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with m _--> o. I f  m = o (i, e. the solution does not involve logarithms), it is evident 

that  the addition of this new member leads to a larger natural family of order 

one greater, which must then be F~-. But if m > o, the solution 

m8(37) (log x) + ( m -  ,)t(x)(log 37)m-2 + . . .  + v(z) 

must be in Fi-1; otherwise it would suffice to add this last solution only with 

its various determinations to form a smaller F~. But if these are in/}}-, ,  since 

l =  I we obtain a natural family of order one greater only, which must of course 

be /~'i. Thus the irreducible factors will always be of the first order if there are 

no anormal series. 

The truth of the second statement is obvious. In fact the family of all 

formal solutions not containing logarithms yields a factor Of L(y) :o  unless 

there are n o  solutions containing logarithms. Thus for the completely irreduc- 

ible case we are restricted to the types (6), (6') of series. But each such type 

and its various determinations yields a natural family and a corresponding factor. 

We conclude that  there can exist one single series solution of anormal type with 

l = n .  But in this case L(y)~o is evidently irreducible. 

w I3. Equivalence, Normal Forms and Invariants .  

There is a second method of decomposition of natural families of series 

solutions which is of importance in dealing with the notion of equivalence, 

namely that  in which it is sought to break up the given natural family into a 

maximum number of entirely distinct natural families. Inasmuch as the formal 

significance of this process is most apparent when we use a linear system (I) 

instead of a single equation (4), we introduce the matrix notation at this point. 

In matrix notation we may write the system (I) in the form 

Y(x + ,) = A (37) Y(37) (IA (37)1 o), 

where Y =  S(x) will be taken to denote the matrix of formal solutions, one in 

each column of S(x), which are such that  ] S ( x ) ] ~  o. 

Now suppose that  we have a second equation 

Y(x q- i) = A (37) Y(37), 

31 - -  29643. Aeta mathematical 54. Imprim6 ]o I mai 1930. 
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which is obtained from the first by a linear transformation 

Y(x) = B(x)Y(x), 
so that  

A(.,') = B - l ( x +  I)A(x)B(x) (IA( )I o). 
1 

If  the elements of B(x) are power series in .~:- P (p, the given basic integer) we 

shall say that  the equations in Y and Y are 'properly equivalent'. But if the 

equations in Y and ]-~ are only 'properly equivalent' after p has been replaced 

by a suitable multiple of p, we shall  merely speak of the equations as 'improp- 

erly equivalent'. We propose to deal here only with the latter type of equi- 

valence. Evidently the relation of equivalence in either sense is transitive. 

I t  is clear that  equivalent systems possess formal solutions which are of 

essentially similar type. 

For the purpose before 

to the exponential factors 

us we group the formal solutions si(x) according 

;s PeP(x)  

which occur in the series for each particular solution. Evidently all the solu- 

tions then fall into a set of entirely distinct families, provided that  we regard 

two factors as essentially the same if the constant # is the same in each and 

the two polynomials P(x) differ at most by a term 21~]/-~-Ix (1, an integer). 

Aside from this factor, we have in any particular set of this kind a linear 

family of precisely the same type as presents itself in a linear differential sys tem 

with a regular singular point at x = ~ .  

On this account, we can list the formal solutions in entirely distinct families, 

each of which has the following form 

8,,(x), 
sn(x)mlogx + t,l(x), . . .  s , (x)mlogx + t,(x), 

�9 . o . �9 . �9 . . . . . . . . . . .  

8il ( l o g x )  "| -~- ' ' "  "~- ~( ' , I (X ) , . . *  '~i l(X)(log X) m - ~ ' ' "  "~- '~q)i'(X), 

in which s , l (x) , . . ,  s,z(x), t,~(x).., t , ,(x), . . ,  all involve precisely the same expo- 

nential factor and m ~ o indicates the degree to which logarithms enter. Fur- 

thermore for all of these elements the constant r may be regarded as the same. 
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Suppose that  there are k_--> I such families with complete exponential factors 

x p eP(~) x r, 

which we designate by e~(x), . . .  ek(x) respectively. I f  we denote by ~;j, [~j,... ~)ij 
the parts of the respective series s~j, t~j, . . .  w~j in such a family aside from the 

corresponding exponential factors, say el(x), it is clear that  the matrix of formal 

solutions can be expressed as a product matrix of the form 

gH tlt . . .  '~l~ . . .  

�9 . . . . .  . 

Snl ~nl . . .  gn2 . . .  

II e, (x) e l(x) m log x . . .  e, (x) (log x) m, . . .  

o e,(x) . . .  e , (x) ( log  x) ' ,  -1  . . .  

o o . . ,  e~(x) 

which may be written B ( x ) E ( x ) ,  where B(x)  is made up of elements such that  

the linear transformation Y ( x ) = B ( x ) Y ( x )  takes the given equation into an 

(improperly) equivalent equat ion.  But this equation in Y has E ( x ) a s  matrix 

solution so that  we have 

A (x) = E ( x  + I ) ~ 1  (x). 

Hence we are led to the following result: 

Theorem. A n  arbitrary system (1) of  this type is (improperly) equivale~Tt to 

a normal system 

Y ( x +  I) - -  7i(x) Y(x)  (74(x) = E ( x +  I)E- '(x)) ,  

in which the matr ix  .E(x) has elements o except for  square blocks along the diagonal 

of  the f o rm  

e(x) e(x)m log x . . . e(x) (log x) m 

o e(x) . . .  e (x ) ( l ogx )  m-' 

where 

o o . . .  e ( x )  

e(x) = x p  eP(~)x" 

l p - - I  

P(x)  = 7x  + dx  ~P 
- 

+ "" ~2 
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and ll~ 'is an integer. Furthermore with any e(x) and m there are also l - - I  blocks 

in the other l - - Ideterminat ions of e(x) and with the 8ame m in case l > i. 

Evidently the functions e(x) and ~he integers m are to be regarded as in- 

variantive characteristics. In other words in order that  two systems ( I )be  

(improperly) equivalent it is necessary and sufficient that  they possess the same 

set of functions e(x) and corresponding integers m, each with the same multi- 

plicity. 

This theorem enables us to deal with most questions arising out of the 

notion of equivalence. We cite merely the following two special- results, which 

are readily proven: 

There exists a set of n distinct natural families of solutions i f  and only 

i f  the formal series are of normal type and no logarithms enter. In. this ease the 

normal form is as follows: 
,a i x 

r i 

yi(x+I (I q- I) p [ ' ]  : X p-  e l ' i ( xr  1 ) - - P i ( x ) y i ( x )  ( d :  I ,  . . .  n )  
x 

in which ~ . . . .  ~,, are intege~w. 

No two distinct natural families of solutions can be found when and only 

when there is a ,ingle exponential factor e(x) which is not repeated, together with its 

various determinations. 

w ~4. Difference and Differential Systems. 

I t  has been stated above that  in certain cases difference and differential 

systems are closely rela~ed from a formal point of view. I f  we bear in mind 

that  the formal solutions of linear differential systems 

Y'(x)=B(x) Y(x), 

in which of course the elements of B(x) are formal power series in descending 
1 

powers of xp, are the same in type as those of linear difference systems (I) for 

which t t : o ,  we conclude that  the matrix S(x) of formal solutions of a linear 

difference system is also the solution of a linear differential system if every /~i 

is o. If  we fix the arbitrary exponential factors e 2~V-I~ in these formal solu- 

tions, this corresponding linear differential system is uniquely determined, since 

we have B ( x ) = S ' ( x ) S - i ( x ) .  
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The fact that  the polynomials P~(x) which enter are of degreeno t  exceeding 

i in x indicates that  the corresponding differential system has formal solutions 

which are of rank a.t most I. 

Thus we obtain the following theorem: 

Theorem: A necessary a,nd sufficient condition that a li~ear difference system (1) 

]r(X + I ) d (x) Y(x), 

1 
in which the elements of A (x) are descending formal power series in xP, be form- 

ally compatible with some li~war differential system 

= B(x) 

(i. e. that both admit a common formal matrix solution S(x)) is that the values of # 

in the formal solutions of the d~ilference system are all o. Here the elements of B(x) 
1 

are also power series in descending powers of  x v, and the following formal identity 

holds." 

A ' (z )  = B (x -~ i ) A (x) -- A (x) B (x). 

Conversely, i f  a linear d(fferential system of this type admits of formal solu- 

tions which are all of rank at most I, i t  will be compatible with such a linear 

d~fference system, and the same formal identity will hold. 

The formal identity is obtained by noting the relations 

S'(X-{- I)~--- B(x-~- I)~(x-~- I)~--- B(x-t-  i )A (x )S (x )  

and at the same time 

S ' (x+ I ) =  A(x)S'(x) + A'(x)S(x) 

= [A(x)B(x) + A'(x)]S(x). 

As we shall show in our second paper on irregular difference equations, 

an actual linear differential system of this type is not only formally but also 

actually compatible with a difference system, so that  the solutions of the differential 

system are also solutions of the difference system. 

Hitherto we have taken the given difference system in a form involving x 

and x +  I, rather  than x and x + d .  The question arises as to when two linear 

difference systems with distinct values of d, say d 1 and d2, can be compatible 
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in the formal sense specified above. Since the formal series in such equations 

are at once seen to involve exponential factors x ~p, it is clear that  at least 

when the ratio dl/d ~ is not a rational number, every value of /~ must be o; 

note that /~ itself is oRher integral or rational. Hence in this case the t w o  

difference systems are both formally compatible with a linear differential system. 

On the other hand if the ratio dt/d~ is  rational, and if d denotes the greatest 

common submultiple of d 1 and d~, so that d~=k ld ,  d~=k2d where kl and k~ are 

relatively prime integers, we may find integers l~, l~ such that kal~ + k~12= I. 

Consequently we may express Y(x+d)  as A(x)Y(x)  by repeated use of the given 

difference equations. Thus we are led to the following results: 

Two linear d~fferenee systems 

Y(x  + d,) : A~(x) Y(x), Y(x + d~) = A~(x) Y(x) 

are formaUy compatible in the case when dl/de is not a rational number i f  and only 

i f  they are both compatible with a linear differential system 

r ' ( x )  = B ( x ) r ( x )  

of the type referred to above. Here the following formal identity holds: 

A,(x + = A (x + dl)A (x). 

In case dJ.d2 is rational and d is the greatest common submultiple of dl and d2, 

these systems are formally compatible i f  and only i f  we have 

A i(x) ~ A (x + dl--  d) A (x + d 1 -  2 d) . . .  A (x), 

A~ (x) ~ A (x + d~-- d) A (x + d~-- 2 d ) ' "  A (x). 

We defer to our second paper all discussion as to the relation between the 

formal situations considered in the last three paragraphs, and the cor responding  

analytic situations. 


