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1. Introduction.

1.1. The present paper is concerned primarily with the following ques-
tion: What can be sard about the distribution of the characteristic values of the
Lredholm integral equation

(1. 1) .«/(x>=zfzc<x, B y(® as

on the basis of the general analytic properties of the kernel K(x, &) such as in-
tegrability, continuity, difierentiability, analyticity and the like?

The literature where this and analogous questions are treated is very con-
siderable [Hrrvrineer-Torerirz, 1]." A relatively small part of this literature,
however, has points of contact with the present paper, the discussion of the
majority of papers published on the subject being based on various special prop-
erties of the kernels. It is assumed frequently that the kernel belongs to some special
class of functions, or that it coincides with the Green's function of a differen-
tial or integro-differential boundary value problem. Problems of this sort
will-be excluded from the scope of our paper although they are interesting from
a theoretical point of view and important for the applications.

! The quotations in brackets { ] refer to the list of memoirs at the end of this article.

1—31104. Acta mathematica. &7. Imprimé le 29 avril 1931.



2 Einar Hille and J. D. Tamarkin.

The first result concerning the distribution of the characteristic values
(abbreviated C.V. in the sequel) of a general kernel is due to FrepHoLm him-
self. It was shown by Fredholm [1], under the assumption that K (x, &) is
bounded and integrable, that the set of the C.V. of KA coincides with the set
of zeros of the »Fredholm determinant of A»

dg(d)= Z(— 1) d,(K)a,

=0
where
b b
6AK)56,~In[~-[K(&&‘”S)d“ ds,
] . 818 ...8&
and
K &3*"&)::da(ax&,n» (=12, ... 7).
tt. . .t :

Assuming that

on the fundamental square
©) a=<x=b a<E<D,

and using the Hadamard determinant theorem, Fredholm obtains the estimate

[

v
o) =2 P,

from which, by the general theory of entire functions', it follows that the ex-
ponent of convergence of the set {i,(K)} of the C.V. of K is <2. We assume
here and in the sequel that the terms i,(K)= 4, of the sequence {4, (K)} are
repeated according to their multiplicities as the roots of dx (i), and that they
are ordered so that

nERS =205 n(K)=rn=|LK)

The exponent of convergence of the set {i,(K)} will be designated by ¢(K)= o.

! We refer to [VALIRON, I and 2] concerning the terminology and the facts of the theory
of entire functions, which are used in the present paper.
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In the case where K satisfies a Lipschitz condition
| K (x, § — K (@, )l = Al§—1l, o<e=1,
where A is a constant, Fredholm shows, by an argument of the same nature, that

() ; A,
y!

|

9.} =

whence it follows that?

2
2a+ 1

e(K) =

In the case of a symmetric kernel K(x, &) = K (£, ), WEYL [1; 2, p. 452]
obtained a more precise result

using certain extremal properties of the C.V., and assuming that K(z, &) is

continuous on (&) and that %-g is continuous in the interior of (&), while the

Iz

exists. 1t was also stated by Weyl that

integral

de dg

provided K ({x, §) possesses continuous partial derivatives of order s.
By a suitable modification of the original argument of Fredholm, Mazur-
k1EwIcz (1] was able to show that the estimate

3

7y oo

holds for a general unsymmetric kernel K (x, &), provided it is bounded on (&),
0K

. 0K . .
and 5 OF GE 18 continuous on (&).

! See also LALEsco [1, pp. 86—389),
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Fredholm's formulas are not applicable, in general, when K (z, &) is not
bounded on (&) or not defined on the line z=&. In the case where

(Ha) K(x, §) =0 ('.Z’——gl_“), a < ;—7

Hivserr [1, p. 31] introduced the modified Fredholm determinant

B (l) = 3 (— 1y 8 (K) 2,
v=0
where d) (K) is obtained from J,(K) if K (x, x) is replaced by o. This modifica-
tion will not affect the C.V. of K nor the solutions of the integral equation,
while, in case the Fredholm determinant exists, we have the relation

b

() = di (2) exp {;. f Kz, 2) dx}

a

(Lalesco, 1, pp. 113—117.. The modified Fredholm determinant d%(2) may exist
even when dx(A) does not. This was shown by Hilbert in the case (H.), and
extended by CaruemMan [5] to the much more general case where the only assump-
tion concerning K(x, §) is the existence of the double integral

(L) f f |K(z, & do db.

The set of the C.V. of K coincides with the set of roots of di(4), and Carle-
man, by ingenious analysis, succeeded in proving, not only that dk(4) is of
order =2 and of minimal type if it is of order 2, but also that the series

31 (K)|™ converges and
S s [ [IK6 araas

a result which had already been established by I. Scuur [1] under more restrictive
conditions. In the same paper Carleman gave an estimate for the numerator
d¥x(xz, &; A) in the expression

*

S, & A= J‘((;; (_%;_@
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for the resolvant R(x, &; ) of K, as well as some important formulas for the
coefficients d,(K) when K(z, §) is a composite kernel

b b
K, 8= fme](x, 5 Kylsus 89 - Knlsnms, Bds, . dswy = (K, ... K (z, &),

which proved to be of great use in the subsequent development of the theory.
An important result concerning such composite kernels, namely the con-
vergence of the series

was stated first by Laumsco [2]. There is no explicit statement of the hypo-
theses used in Lalesco’s paper' and his proof can not be considered as complete,
at least in the most interesting and natural case when all the »components» of
K< L,. A rigourous proof of Taleseco’s result (under certain. restrictive hypo-
theses) is due to GuEorGHIU [4, p. 35]. In the same paper, which was preceded
by three preliminary notes in the Comptes Rendus [1, 2, 3], Gheorghiu derives
other interesting properties of composite kernels (on the basis of Carleman’s
formulas mentioned above) and applies them in estimating the exponent of con-
vergence ¢(K) under various hypotheses about K (z, £) (K is continuous and of
bounded variation; K has partial derivatives up to a certain order, or is in-
definitely differentiable).

The principal results of the present paper were obtained in the beginning
of 1928 and communicated to the Mathematics Club of Princeton University
(February 14, 1928) and to the American Mathematical Society (April 6, 1928)
[Hitue-Tamark1N, 1, p. 423), without our knowing about the investigations of
Gheorghiu. These results were stated briefly in a note in the Proceedings of
the National Academy of Sciences [Hille-Tamarkin, 2]. Our methods, except in
proving Lalesco’s theorem conderning compdsiﬁe kernels, are ehtirely different,
and our results are more inclusive than those of Gheorghiu.

1.2. Carleman [4] established the existence of continuous kernels for which
o(K) equals precisely 2, so that, a fortiori, this limit can not be lowered for
the class L,, although this certainly can be done for more or less wide sub-

! Ct. also [Hellinger-Toeplitz, 1, p. 1550
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classes of L,. On the other hand, it can be proved that for the kerne s of
class H,'

o(K)= 2 [2(11__ a)] + 2, (o=a<1),

while there exist kernmels < H, for which g(K)ngI_Tx [Carleman, 3; see also

Section 2 below]. There exist other classes of kernels which partially overlap
L, and to which an extension of the classical Fredholm theory applies [Hobson, 1;
Hille-Tamarkin, 3]. The question now is whether such an extension is possible
for classes of kernels which are more general than L, A natural generalization
would be the class of kernels L, for which the integral

(L) .[jlxw,avdxdg (1=p<2)

=

exists.? It has been shown in a recent paper by the authors [Hille-Tamarkin, 3]
that the answer to this question is negative, at least as far as the kernels
< Lp are concerned. Indeed, we have examples of kernels which are sym-
metric and admit an arbitrary given denumerable set of real numbers as
the set of the C.V., and also unsymmetric kernels for which the set of C.V.
covers the whole complex plane (the origin being excluded in both cases), where
the number p can be taken as near to 2 as we please. It seems natural there-
fore to restrict the discussion to the class L, and to its various sub-classes. It
will be assumed in the sequel, without being stated explicitly, that all the ker-
nels in question < L.

1.3. The principal method on which we base our discussion is a syste-
matic use of infinite determinants. By means of an arbitrary orthonormal

complete set
b

P, i@ ) [ p ) de =g

a

equation (1.1) is readily reduced to an equivalent system in infinitely many

unknowns

! In a forthcoming paper by the present authors. By [x] we designate, as usual, the
greatest integer which is = x.

1
It should be ohserved that Hy< L) whenever p < «
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(1.2) yi= 1 Ry (e=1,2,...,
j=1

—f z)dex, y,J—f] K (x, & @i (o) @i(8) de dE.

By multiplying the equations of the system (r.2) by suitable factors we- obtain
an equivalent system which possesses an absolutely convergent determinant.
This determinant replaces in the present theory the determinants dx(1) and
d%(A) of the Fredholm-Hilbert theory. The infinite determinant in question can
be readily estimated with the aid of the Hadamard determinant theorem. The
whole problem is then reduced to the discussion of the mean quadratic error
of the approximation of K{z, £ by means of the m-th partial summa-
tion of its Fourier series expansion,

ffIKM Tule, YFdzas= 3, Sk

i=m+1 j=1

where
b
Ez )fK(t, §) i (¢) dt

Corresponding to the various analytic properties of the kernel K, various methods
are available in the literature for estimating this mean quadratic error. In
each case we obtain an estimate for the order of the deteriinant of the system
(1.2) or of the modified system, as an entire function in A which at the same
time yields an estimate for the exponent of convergence ¢(K).!

From an estimate of the type ¢(K)=y we conclude immediately that

1
(i) r(K)n 7t o0,

! It should be observed that the idea of using infinite determinants in the theory of the Fred-
holm integral equation is far from being new. It was used first by H. v. KocH [1, 2] and subse-
quently by Pras [1], MARTY [1] and MOLLERUP [I, 2]. See also an interesting paper by Szisz
[1] where the infinite determinants in question are treated independently of the general theory of
H. v. Koch. The application of infinite determinants to the problem of distribution of the C.V.
of integral equations, which we give here, is new.
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since the series 3777 is convergent and the sequence {r77~*} is non-increasing.

In many cases we are able to obtain more precise information, namely to

prove that

(ii) m(K)n 7 — o0,

or even that

(iii) D) 177 converges.
y=1

It goes without saying that results of this sort are of interest only
for kernels which possess infinitely many C.V. No attempt is made here to
attack the much more difficult problem of the existence of infinitely many, or
even of any C.V. for the given kernel K. In this connection we may mention
only the lemma 11.1 below which gives a useful sufficient condition for the
existence of infinitely many C.V. in the case of kernels of the type K(x§).

1.4. The order of the material is as follows. In Section 2 we discuss
the kernels of the form K (x—§&) where K(f) is periodic and of period (b—a).!
From our present point of view the main interest of these kernels lies in the
fact that they are very well fitted for construction of exanﬁples and »Gegen-
beispiele> in order to illustrate various situations of the general theory. In
Section 3 there are collected some facts of the theory of infinite determinants
and systems of infinitely many linear equations in infinitely many unknowns,
partly known and partly new. The results concerning the bilinear forms repre-
sented by bordered determinants are largely nmew. On the basis of these re-
sults we give in Section 4 a fairly simple proof of the Schur-Carleman theorem
and of other theorems established by Carleman in the above mentioned paper
(5], but in an entirely different way. The result of the next Section 5 is of im-
portance for the proof of the Lalesco theorem in its most general form, the
only assumption being that the components of the composite kernel in question
should < L, This proof is given in Section 6, the method of the proof being
essentially that developed by Gheorghiu (4] under more restrictive assumptions.
Section 7 deals with kernels which include as a special case those possessing a

derivative of fractional positive order (with respect to z). In Section 8 we con-

! The literature on these kernels is very considerable [Hellinger-Toeplitz, pp. 1391, 1534;
the important papers by Carleman (1, 4] are not mentioned there, however. We derive some
new results which may be of interest for the theory of trigonometric Fourier series.
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sider kernels which satisfy integrated Lipschitz conditions [i.e. which < Lip (e, p)
according to the terminology of Harpy-Lrirtrnewoop, 2]. The discussion of
Sections 7—8 is based upon an application of the Youxa-Hausporrr-Rirsz
theorem which is applied directly in Section 7, and on the basis of some results
of Szisz (3] in Section 8. In Section 9 we utilize somé recent results concern-
ing the approximations by means of Cesiro sums of positive orders [Jacos, I;
references to other papers pertaining to the subject are found there]. Section
10 deals with kernels which are analytic (in ) on (@, ). The discussion of this
section is based upon S. BernsTEIN'S theory of polynomial approximations
[pE 1A Varnke Poussin, 1]. The kernels which are entire functions (in z) are
treated in the next Section 11. Here we utilize the approximation furnished by
the Taylor series expansion. The last Section 12 contains a summary of all
the results; they are collected in a single table to facilitate comparison.

To simplify the formulas we are using the following symbolic notation:

b b

A-fle)= f Az, 9f©dE  (AB)a, &= f Az, 9 Bs, §ds.

(3 a

2. Periodic Kernels.

We take for simplicity a=o0, b=2x and consider the integral equations

(1) yo) = flx)+ A K - y(x),
and
(Tn) w(z) = 21K -u(x),

under the assumption that

K(z, §) = K (x—§),

where K(t)< L (is integrable) and periodic of period 2z. The same properties
will be postulated for the given function f{x) and the »solutions> of (I) and (In).
We start with the discussion of the homogeneous equation (I). Let

2n
+
K(t)~ Dkve™, 2 7t7€y=fK(x) e
4

y=—n00

2—31104. Acta mathematica. 57. Imprimé le 29 avril 1931.
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27
+
u(t) ~ 2 U et 2 U, = fu (e dx
0

V==—0

be the formal complex trigonometric Fourier series expansions of K (f) and of
u(z). On multiplying (I,) by e, integrating and using the periodicity of the
functions concerned, we get at once

Up = 270 A Fon thg,

the necessary interchange of order of integration being readily justified by
Fubini's theorem. Hence the C.V. of (I) are

(2. 1) In = (2 7whn)? (n=0, *1, *2,...; ka0),
the corresponding fundamental functions being
u(x) = e,

To prove that the limit 2 for ¢(K) can not be lowered for the class of con-
tinuous kernels (Section 1. 2) it suffices therefore to exhibit a continuous periodic
function K(f) for which the series 3|k.J2—* diverges no matter how small is
¢>o0. This was done first by Carleman [4]. Hille [1] indicated a general
method for constructing examples of this nature, which is based upon an entirely
different principle and is simpler than that of Carleman.

It is easy to construct examples of kernels K for which ¢(K) assumes any
value 0=9¢=2 if K< L,, and any value 2<<g= o if this restriction is removed.
Moreover these examples can be constructed so as to exhibit all three peculiar-
ities i.—iii. mentioned in 1.3. Indeed by a result due to Youne [2, pp.

443—444]
* nit —b
Fa,b(t)EZ ¢ —T,IOI#’—‘(looi) }'1 o<a<,.

2 (log 7) | =t

n=3

Hence Fo,(t)< L, for any p < » and even for p 21%6; provided b>1—a.

1I—a
On the other hand it is obvious that if



On the Characteristic Values of Linear Integral Equations. 11
then ¢(K)=y= = and we have the case i., ii., or iii. according as

b=o, 0<b=a, or b>a.

We get the same results if we allow a>1, the kernel K (f) being continuous in
this case. The case ¢(K)= % is represented by the kernel

[Young, 2, pp. 44—45, 48]. The reader will find no difficulty in illustrating
the case ¢(K)=o.

Let us turn now to the non-homogeneous equation (I). If 1 is distinct
from the C.V. (2.1), it is known [Hille-Tamarkin, 3, pp. 513, 524) that there
exists a uniquely determined solution y(xz)< L of (I), provided f(x)c L. On
setting

+ o +®
y@) ~ Dye,  flz)~ D fre,

we get by the same argument as before

S

1—2 7 Akn

Yn=fut2mhknyn or ¥y, =
Here K () and f(z) are arbitrary functions < L, while the Fourier series of y(x)
is obtained from the Fourier series of f(x) by means of the factor sequence

(1—2mik,)~'. Using the terminology of M. Riesz' we can say that the se-
quences

(2. 2) {(I _kn)—hl>, {kn(l '_kn)—l}, ke # I,

are of type (1,1). Since a necessary and sufficient condition that a sequence

{un} be a factor sequence of type (1,1) is that {%}, ns£0, be a sequence of

Fourier coefficients of a function of bounded variation, we have

11, p. 487—488]. Other references concerning various results of the theory of factor
sequences are found in this paper.
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Theorem 2.1. If K(x) #s any function < L, then the sequences (2.2) are
Jactor sequences that transform the Fourier series of an arbitrary function f(x)< L

wnto the Fourier series of a function <L while the sequences

(o
1 (1 —ky)

| k)
"’ l)z(IlL")I’ ka1, n#o,

are sequences of Fowrier cocfficients of functions of bounded variation.

We are not aware of any direct proof of this curious result.

3. Infinite Determinants and Systems of Linear Equations.’

In this Section we shall deal with vectors a==(a,, a,, ...) (denoted by small
German letters) and matrices 9 =(a;) (denoted by capital German letters) of a
complex Hilbert space ¥,, that is such that the series

= ®
all* = Zlail’, 1A = X |ayl*
i=1

i,j=1

converge. The quantities |Ja]|, ]|¥|| will be designated as the lengths of the
vector a and of the matrix ¥ respectively. The notation A’ will be used to
designate the transposed matrix % =(a;). The vectors that occupy the ¢-th rows
of the matrices %, %’ will be denoted by a;, a’; respectively. The usual agree-
ments concerning the elementary algebraic operations with matrices and vectors
will be assumed without further explanation.

A matrix 9 is said to be of class &', if the simple and the double series
o) = Sadl, 121 = 3oy
i=1 1, j=1
converge. [t is obvious that €', < &,.

Lemma 3.1. If the matrices A and B<Y,, then their product AB< &'y, and

(3.1) o (D) = (1A - 1IBIE - NSl = 11 - W3-

! We refer to F. Riesz [1], H. v. Koch (1, 2], J. D. Tamarkin [1] as to general properties of
absolutely convergent infinite determinants and their applications to systems of linear equations.
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Proof. Since the elements of the matrix AB are given by

x
Z, @is bej,
s==1

formulas (3. 1) are obtained by an immediate application of Cauchy’s inequality.
If the matrix A< &,, the infinite determinant

A(a) = A = det (d5—ay) (¢, j=1,2,...)

will be designated as the determinant related to the matrix A. It is well
known that the determinant related to a matrix A =¢', or briefly, a determinant
A< g,, is absolutely convergent together with all its minors of all orders, and
remains so if any number of rows or columns are replaced by vectors = &,. The
same will be true of the determinant

o x Z,

MI—ay —0p .
A= ;

Yo —ay 10y .

which will be designated as the bordered determinant related to the
matrix, provided the vectors r and p=g,.

If we know only that A =%, the related determinant 4 and the bordered
determinant A (r, y) may not exist. Hence we introduce modified (related)
determinants and modified bordered (related) determinants of various types. The
m-th modified determinant related to the matrix A< &, is defined as the
determinant which is obtained formally from A by multipljing the ¢2-th row
f=m+1, m+2,..) by e If we designate by Am the m-th modified deter-
minant of 9, then the matrix ?[; which is related to Ag, coincides in its first
m rows with the matrix 9, the remaining rows (m-+1, m+2, ...) being those of
the matrix A* where

af = e%i qy; (14)); ak=1—e% (1—az).

The o-th modified determinant 45=A* will be designated simply as the modi-
fied determinant related to . The m-th modified bordered deter-
minant A4, (x, vy) is obtained from the related bordered determinant A (r, y) by
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multiplying the ¢-th row (z==m+1, m+2,...) by e%. It is also obtained from
An by bordering it by means of vectors r and y*™ where y*™ coincides with 1
in its first m components, the remaining components being those of the vector

pF=(e"ny,, e"ny,, .. .).

We shall establish several lemmas concerning these determinants; since
all the determinants concerned will be absolutely convergent together with all
their minors of all orders, the »usual> rules of the theory of finite determinants
including the theorem of multiplication and Laplace’s expansion theorem, will
hold in the present case.

Lemma 3.2. If the determinants A and B<Y,, then their product C=AB
also =¥y, The matriz C related to C is expressed in terms of the matrices A, B
related to A, B by
C=A+B-—-ABY.

Proof. We have only to apply the theorem of multiplication of deter-
minants and lemma 3. 1.

Lemma 3.3. If A<¥’,, then

X

H{1_2m<a,.,.)+||a,.||2}]

i=1

. = exp [—29{(2 a,-i) + ”Q[”?]
H{I—Zﬂf(%)ﬂlﬂ'jllz}l -
j=1

(3.2) AP =

If Ay denotes the cofactor of the element in the ¢-th row and the j-th column of A,
then

[”aj”2 exp [—29%(2 aﬁ) + ||?I||2]y
i=1

luazuz exp [—z%(z ) |
=1

447 = (@ # )

while for A we have the same estimate (3. 2) as for A.

All these estimates hold for the determinants thdt are obtained from A or 4;
by replacing any number (finite or infinite) of the elements by zeros. In particular
the same estimates hold for the segments A™, Ag.';) of the determinants A, A, where
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A™ = det (d5—ay), 4, j=1,2,....,n,

and AP ds the cofactor of the element 6y—ay; in AWM.

Lemma 3.4. If A<, then the m-th modified determinant Ay <, and

(3-3) |A%(@)| = Iy (a) = 1T,
where

m l @® l

()= ] (1 — 2 Rlaa) + ] PR i {1 —2 R (@) + || a:] [}

i=1 i=m+1

(3. 4) i . 3
= [[ir—2 % () +lfal I exp ( > ||a,.||2).
=1 i=m+1

In particular for m = o we have
I
53) j4%(@) = exp (Lol )

The same estimates hold when any number of the elements a; are replaced by zeros.

Proof. We shall give here only the proof of lemma 3.4; lemma 3.3
will follow from the identity'

(3. 6) Afa) = A*(a) exp (-— iaﬁ) .

Since A <@, it is seen that a;—0. On the other hand
aZ- = [— e (I ——aﬁ) =0 (af','),
a;i = el aij = 0 (dﬁ), ¢ #ja

which implies the convergence of the series Z|a¥|, =|ali|>. The proof of (3.3)
is now readily obtained by means of Hadamard's determinant theorem [Hellinger-
Toeplitz, 1, pp. 1356—7] on the basis of the simple inequality

1+t x<e¥ x=—1.

! Lemma 3.3 is known, in slightly less favorable form, with |a,|, |ajj| instead of 3 (a,),
ER(ajj). Cfr. H. v. Koch [1, p. 259], Szész {1, p. 277], Tamarkin (1, p. 131]. v.Koch's formula (13)

contains an obvious misprint since the term 2 ER(ajj) is missing there.
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We have then

m x

[n@P =] D10 —asl*- [ 2105 —asl’,

i=1 j=1 t=m+1j=1
while
x
28— agl= 1—2 Rau) +||aF,
J=1

S 65— alilP= e [1—2 R (as) + |Jai] [P} < exp (ad]|*).

=1

Lemma 3.5. If A<Q,, then the m-th modified bordered determenant An(x, )
s a bounded Wilinear form as a function of the vectors ¥, v en the Hilbert space

Q,. The bound of A%(r,v) does not exced VeIl,(a), so that

(3.7 143G 0 = el ol Ve [ =2 R+l exp (2 SllalF)

i=1 t=m+1

If Am 5 s the cofactor of the element in the i-th row and the j-th column in Ay,

we have an absolutely convergent expansion

x

(3' 8) ‘4; (gy I)) = 2 ‘4;’,' 1.7 1/? (m) wjr

4, j=1
where

t)*(m) — (y’:‘ (m}7 y:(m\’ L. )

In particular for m=o

(5.9) 45w = el ol Ve ex (2 I1UF)
(3. 10} A* (g, 9) = — D Afylz, yi=eiy.
i,5=1

If A< Q,, then the bordered determinant A(x, 1) is also a hounded bilinear form

in ,, and

G LAk Il Il e exp (—m(z) + ;—n%ur-’),
=1
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(3-12) A, )= — D dyyi.

i,j=1

All these estimates hold <f any number of the elements a; are replaced by zeros.*
Proof. By Hadamard's determinant theorem we have

m
1

|43, W = 3 ll? T [+l —2 Ra) + df?] T o |
i=1

= i=m+41

®

= Sl [+ ol ) = all* exp (olf?) 12 (o).

=1

Henee, on the unit sphere ||z]] =|[|pll = 1,

| A% (x, )l < Ve IL.(a),

which . shows that A% (x, 1) is a bounded bilinear form whose bound does not exceed

Vell,(a). The formulas (3.7) and (3.9) follow at once. The expansions (3. 8)
and (3. 10), and their absolute convergence are known from the general theory of
absolutely convergent determinants. Formulas (3. 11) and (3. 12) are derived in
a similar fashion.

Lemma 3.6. If the matriz U and the vector c< ¥, then the system
(S) r—Ar=c

is equivalent to the system

, ¢ T=1,2, ..., m;
(8%) p—Ang=ctm, m =" T T
e, r=m+ 1,m+ 2, ....

A necessary and  sufficient condition that (S) should have a wnique solution 1<,
is that the determinant Ay o. If this condstion s satisfied, the solution is grven
by the usual formulas, and, tn addition,

(3.13) sl = ell Vel a# = esp (L l121P)

' We refer to Hellinger-Toeplitz [1, §§ 18, 43] concerning the terminology and facts of
Hilbert's theory of bounded quadratic and bilinear forms. The fact that 4 (xr, 9) is bounded is a
speeial case of a result due to BOBR [1]. However, Bébr's method is more complicated and gives
an estimate for the bound of A(xr, y) which is not suitable for our purposes.

3—31104. Acta mathematica. 57. Imprimé le 29 avril 1931,
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The homogeneous system

(Sh) 1—Ar=o0

has mon-trivial  solutions t <, when and only when A%, =o. The classical results
concerning the general form of the solutions, the nwmber of linearly independent
solutions etc., can be extended to the present case.

If A<=, all these results hold with A% replaced by A. The inequality (3. 13)
is then replaced by

(5.14) lsll = Hlell Vel AP exp (— i (z ) " 2||9t||2).
i—1
Proof. The fact that the system (S)is equivalent to (Sy), and all the state-
ments of lemma 3.6, are known, except for the formulas (3.13) and (3. 14)." To

prove (3.13) we observe that the solution 1 = (x,, z,,...) of (S¥) is given by

®
I » %
xiz Z: ZA]; Cj,

j=1

whence, by (3. 9),

z * — 5 - I
el = (49572 3 57— — (4=t s, O = sl ell Vel exp (LI1IF)

i,j=1

Formula (3. 14) is proved in an analogous fashion.

A case that is frequently met in the applications of the preceding theory
is that in which the elements a; are functions of a parameter A. Assuming that
these functions are analytic in 4 we can state

Lemma 3.7. In the system

(82) r — AR)r = c(d)

let the coefficients a;(A) and the right-hand members ¢;(1) be analytic in an open
domain A of the complex A-plane. Assume also that ||N(A)|| and ||c(A)|]| are bounded
wn every closed sub-region A, of A. Then An(R) vs analytic in A and, in case
A(R) does not vanish identically, the solution of (S:) is meromorphic in A2

! F. Riesz {1, p. 39}, Tamarkin [1}. The system (S%,) is obtained from (8) by multiplying the
-th equation by €% G=m+1,...).

* Tamarkin [1, pp. 135—136]; under less general asumptions v. Koch [2, pp. 268—270].
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Proof. It is known [F. Riesz, 1, p. 34] that

Am(2) = lim A}, (2)
where A5 ™(1) is the »th segment of A}, (A), that is the determinant which is
obtained from A} (1) by replacing by zeros all the elements a; with z or j > n.
By lemma 3.4 then A7 ™(1) is uniformly bounded in .4, and the analyticity of
An(A) in A follows from Montel’s theorem. In the same fashion we can prove

the analyticity of the numerators in the expressions which give the solutions
of (S;)

Lemma 3.8. If the matrix U(A) of the system (S) is a linear function of
the parameter 1,

U(A) = A + 2,

where A and AV<=Q,, then all the modified determuinants Ayn(A) are entirve func-
tions of A of order mot exceeding 2, and of minimal type if the order equals 2.
Proof. In view of the obvious identity

Anla) = exp (— é aﬁ) A*{a),

it suffices to give the proof for the case m =— o0 only. Let

M(r) = max | A*(2)].

1il=r

Then, by lemma 3.4,
M) = C exp (|| UV][), €= exp ([IA]).

This shows that the order of A*(1) is =< 2. On the other hand we have from
(3-3) and (3.4)

® 1 N ®
|4%(0) = Mfa) = [T & 1 — 29%(a) + IGIEE = T [[= 2, P
=1 i=1 {=N+1

Here we have

P, = exp (g znafu%)é exp ( Sl zua,ww),

i=N+1 i=N+1 i=N+1
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whence, an arbitrarily small ¢ being given, we can take N so large that
&
P, = ( exp (2~r2)-

The number XN being fixed, we can determine now a positive constant Cx so

large that
P, = Cy exp (2)2)
On combining these results we see that

IA*(}-)l <P, - P,= Olexp (e7%),

hence 4%(1) must be of minimal type if it is of order 2.

4. Integral Equations of Class L,.

The method of infinite determinants can be applied to advantage in solving

the integral equation

(I) ylo)=flc) + LK - y(x),

where K (r, §)< L,, that is the integral

b b
(L) Ulzc(w,gnzdxdgznuqlz

exists. Let
b

{¢"’("c)}> V== I: 2,00 fq)l('”) (Pj(}?)d'/”: 61:7)

13

be an arbitrary orthonormal and complete set of functions for the in-
terval (@, b). We shall use the notation

fi= [fegiaae, = [ r@ga

to designate the Fourier coefficients of an arbitrary function f(z) with respect
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to the sets {¢.(z)} and {;):(97)} Then for an arbitrary pair of functions f(z),
g(x)= L, we have the Parseval identity
b

[r@o@az= S r.

a

We also set

(4.1) K'(z, § =K (£ a);

(4. 2) Fifw) =K - pi(a), k()=K"- p.(&);

(4. 3) i (K) = = f f K (x, §) gil) @i (§) da A& = (k) = (K'j)s;
4 B(o) ~ éw(a,

s mm~ém%w,

(4.6) K (, § ~ ém(aw () ~ gk(x) @i () :élmm(x)ﬂg).

Then a repeated application of Parseval’s identity reduces (I) to the system of
linear equations

(4.7) Yi=Jfi + LD\ =1,2,..)
j=1

whose matrix (x;) =&, since [Tamarkin, 1, p. 138]

i, j=1 z

w8 Sholt= 333 [luigras- [as] Stucr]

b b
=]ﬁ;[mmame=qu.

The results of the previous Sections 2 and 3 are immediately applicable to the
system (4.7) which, under the additional assumption f(x)= L,, is equivalent to (I).
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If 7 is not a C.V. of (I), the resolvant RK(x, £; 4} of the kernel K (x, §) is
defined by

Kz, )+ R(x, & ) =A(K ) (x, §; 1) = A (K K)(z, &; ).

It is obtained from (I) by setting — f(z)=K(x, §). After a simple computation
[Tamarkin, 1, p. 140] we get

s £ ) Anl, & 1 K)
(4.9) Rz, & 1) = YOS
where
(4. 10) A (i; K) = A5() = det By—200), 4,5=1,2,...;
- K(.I,’, g) kl1 (x) ]Clz (x) .
) ) M) Q)
(1) b, & 4 K)=dAnle, 5 ) =B E 1o G|
}‘k:(m) (§) - Z:S"” I — 4 z:gm) .

and

[ZU(K) if e=1,2,...,m, ifi=1,2,...,m,

(&
{4.12) wfym) = K (5) =
wilK) if i=m+1,...; lkf(g) if i=m+1,...;
with
wii(K) = nlj = % ing, ©5j; 1—uy = e*i(1 — L),
(4.13) ‘
ki (§) = e i ki(§).

We shall omit the subscript or superscript m in our formulas in case m = 0.
Thus

%50 = %y = »5(K); kOE) = k2 (8);
s()=A5(A; K)=A*(; K)= A*(4);

AS (o, & N =A8(x, 8, 4; K) = A*(x, §; 4; K) = A%(x, §; A).

un

It should be noted that

(410 430 = exp (— zﬁm)a*w,

=1
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m
(4.13) A, & N =exp (- ] zxﬁ)A*(az, 1)
i=1

We are now prepared to prove the following

Theorem 4.1. If the kernel K(x, £)< L,, then with the notation above:
i. The resolvant R (x, 5; 1) of Kz, &) is meromorphic in A for almost all
(€, & on a=x, EZ b, and is given by
Anlz, & 4 K) _ A*z, & 4; K)

(4. 16) Rz, &)= AR K)  A*( K)

where the denominators as well as the numerators for almost all (x, §) are entire
Sunctions in A.

ii. The totality {4.(K)} of the C.V. of (I} coincides with the totality of the
zevos of A*(A; K), and

DM s

(4.17) (BN =]I K],

=
,ﬂ.

each C.V. being repeated according to its multiplicity as « root of A*(A; K).
iii. The entire function A*(A; K) is of genus r and is represented by the
infinite product

(4.18) 474, K):ﬁ(x ~Hew ()

The order of A*(A; K} does not exceed 2, and if it equals 2, A*(i; K) is of
menemal type.

iv. We have the estimates
(4. 19) | 4% (2; K)| = ITu(r; K) = IIa(r),
(4.20) |4, & A; K)| = In(; K){|K (@, O] + 1V exV{(x)x? (§)},

where r = || and

19] =

l x o
(4.21) IIy(r; K)= H [I — 2N (Awn) + 1* 2 |xij|2]l Hem(“n') [I — 2R (A=) + r* Z |Z,j|2:|

i=1 Jj=1 i=m+1 j=1
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< (1 + ALK exp {A S Sl

i=m+1j=1 J

h b

= (ALK exp '1 @ U K (e, S dx ‘Zl"“"@'z]}‘

()t = fIK(x, Bl at, (e = f K (&, 9|t da.

Proof. Statement i. follows from (4.9) and lemma 3.7.

can be proved by a simple limiting process. Let

Statement ii.!

l(ln), ]"E:')’ llk}n\l — r(vn)’ 7‘(177.) § ,.gn) § . é?‘(;l),
be the roots of the n-th segment A*"(4) of A*(; K). Since
A.*(")(;.) = det (dl']'_lx‘l‘j>1 2'1 j =1,2, ..., %,

it is readily seen that

n »
Z [)‘L"J_l = Z Yii,
=1 =1

A0 (2) = exp (AZ ”) I (I - %)

=1

From the uniform convergence of A*™(1) to A*(4; K) on any finite domain of the

A-plane it follows that for a fixed »

AM—2, as n— 0.

(4.22)

It was proved by Schur with the aid of simple algebraic considerations that

n
Z ) n —2<Z|x”|
=1 . i, §=1

! This is the classical theorem of Schur-Carleman referred to in 1. 1.
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(1, p. 492]. Hence, by (4.22),

N

)7 = Dl = (1K

y=1 7, j=1

for all values of the integer N, which proves (4.17). This result combined with
lemma 3.8 shows that the order of A*(1; K) does not exceed 2 [Valiron, 3,
p- 24]. We have then the product representation

A*(A; K)= exp (a + Bi+y2d?) ﬁ(l—*) exp ()l‘)

Here ¢« =0 since 4*(o; K)=1. To determine y we observe that, by a familiar
result of LinprrLor (1, p. 11], for infinitely many values of r—

(=) o (2)

v=1

> exp (—er?, e—o.

This is compatible with lemma 3.8 only when y = 0. Finally since

A (4; K)Fl: = lim — d A*“)()

=0
n—s w d !

d),

A=0

we have §=o0. Statement iii. therefore is proved." To prove statement iv. we
observe that

(4.23) Sl 6@, 3K = 0@

and
} b
S ShkaEp=3 [l dr—fdgzwc
i=m+1 j=1 =m+1g i=m+1
(4. 24)
b b .
=fd§{f|K(ac, P dx — lec,(§)|3=

while, by Schwarz's inequality,

' Cf. an analogous argument of Carleman [5, pp. 216—217; 2]

4—31104. Acta mathematica. 57. Imprimé le 29 avril 1931
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b b
|z,-,-(K)|:|ffK(x, 8 gilx) g (&) da dE] = || K],
so that

o=1—2WAxs) + r* Qs = 1 + 2r||K||+ 2 || K| = (1 +7 || K])*.

J=1

It remains only to apply lemmas 3.4 and 3. 5.

If we assume Carleman’s results (5], the identity of our determinant 4*(4; K)
with the Fredholm modified determinant d%(1) follows at once from the infinite
product representation (4. 18). This identity can also be established directly
since it is readily proved that A*(4; K)and d% (%) are holomorphic functions
of the elements x; in the Hilbert space &, [in the sense of GATraux, i},
and that they coincide whenever the number of the elements »; distinct from
zero is finite.

If the matriz (xj)<$, we shall say that the kernel K(x, &< L'y. In this
case the series 3 |x;| converges and we can replace the determinants A*(L; K) and
A¥x, §; A; K) by the determinants

A@; K) = det (d;;—22;) {{,j=1,2,...),
and
— Kz, &) ¥, (x) Ko@) ...
Lk (&) 11— Ay,  —Ax, ...

Afe, & 4 K)=
Lka(8) — A%y I — Ay ...

respectively. ‘'The identity of the determinants A(1; K) and dx(A) (classical Fred-
holm determinant) has been established under certain restrictive assumptions
[Marty, 1; Mollerup, 1, 2]. It should be observed that while 4(i; K) remains
unchanged if the values of K (z, §) are modified on an arbitrary set of super-
ficial measure zero, such a modification will affect in general the value of dx(1)
(cf. Section 1.1 above). Hence in general the determinants A(i; K) and dg(2),

even when they both exist, are not equal.! However, it can be proved that

! For instance, in the case of the Volterra kernel K (x, & = I or o according at = = & or
x<& —

§, it is readily found that dx 2) = e—* while 4 1; K= A*(i; K)=1; here a =0, b = 1.
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provided (i) the set {@.(x)} is uniformly bounded, (ii) the matrix (x;)< ¢,

A4; K)=dz(2)

b

and (iii} the econdition fK(x, x)de = Z v; is satisfied.

The following theorem gives a basis for an estimate of the growth of the
C.V. of a kernel H(x, §) obtained from K (z, £} by adding a kernel of finite rank.

Theorem 4.2. If K(x, &) and the functions w;(x), vi(§)<L,, ¢=1,2,..., q,

a

i=1

then the resolvant §(x, &; A) of the kernel

(4.23)

can be represented by

(4. 26)

where Bw(A) and Bn(x, &; 4) for almost all (x, &) are entire functions in L, and

(4.27)

where

(4.28)

Proof.

b b
U2=mszf|ui(x)|2da:, V2:n1gxf|1;,;(§)|2d§.
a a

Bateuax, 1] that

Oz, & 2=

where

K{x, &1 0, ...

(&) 1—4by

2,(8)

_]'bfh PRI

@q(x)
oo —Aby

I— )u bq(]

By, (A)

H(x, §) = K (x, §) + Sy(w, &), Syle, § = X wilx)vi ),

=1

9w, & 2) = Bu(x, & 1)

b

1—Ab,, —Abys. ..
J—Aby 1—Aby ...
—Aby  —Abgy . ..

2 -
| Bu(| = ¢*[ILu(r; K)J {1+ r UV (1 + || K[|+ Ver*| K|,

—4byy
1 _}eb2q
1—Abgq

If R(x, ;) is the resolvant of K (x, £), it is readily found [cf.

3
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b b
by = f'vl-(;c) wj(x) doe — ).fm(x) - u () dx;
a [

0 (z) = wi{x) — ASt-wu;(x); Qu{E) =1:(5) — AR, (E).

On substituting here the expression (4.16) for K(z, §; 4) and multiplying the
numerator and denominator by AL(Z2; K) we get a result of type (4.26) with
B,(A) =A% (2; K) det (c3), 2, j=1,2,..., q;
b

W:a%A;u;Ky—zA;u;Kx[w@pm@dx

b b
i [ futanin 5 5 0@ dra
From {4.20) it follows by Schwarz's inequality that

b b
Iffvz(x)Aﬁl(x, £ 7 K)uj(g)dxdgl =

b b b

= I (r; K) [fflvf(iv)K(w, §u(E)ldadf + ‘V?i‘flvi(x)lx‘;“(w)ﬁx qu~(§)lx(2](§)d§]

a a a

S IL,0; K)[UV||K|| +Ver UV||E|,

|jw@w@ﬂx

whence for the elements of the determinant det (c;) we have by (4.19)

and also

UV,

lesl = e, Y1 +r U V22U VK| + Verr UK.

Formula (4. 27) is now obtained by the Hadamard determinant theorem.
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5. Semi-definite Hermitian Kernels of Class L',.

A kernel K(z, &) is Hermitian if
K'(z,5)=K(E, z) = K(«, &),

and semi-definite (positive or negative) if the corresponding Hermitian integral

form
b b

fu_(g?)lf-u(x)dxzfu(x)zf-u(x)dxgo or <o.

a a

The following theorem is important for our proof of Lalesco’s theorem on com-

posite kernels and may be interesting in itself.

Theorem 5.1. If K(x, £) is a Hermitian semi-definite kernel < L', then:

i. The serves
5.1) S (K

converges.
ii. The determinant A (A; K) is represented by

(5. 2) A(A;K)zﬁ(l—;),

=1

and 1s an entire fumction in A of genus zero and of order = 1. A(L; K) is of
the first class [Valiron, 1, p. 258] 4f ¢t is of order 1, hence of minimal type.

Proof. Without loss of generality we may assume that K (x, £) is semi-
definite positive. Then all the coefficients

b

2(K) = f%-(x)K - gi(x)dx =0,

a

and all the C.V. A(K) > o. Further, the matrix (x;(K)) = (x;;(K)) is Hermitian.

From the formulas
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b

b
fu(:c)K culx)dx = Zz,jzi'uj, Uy = [u(x);p_v(x)dx,

a 7,j=1

it also follows that the matrix (x;{K)) is semi-definite positive as well as all
its segments

() = (e (K)); 4, 5= 1,2, ..., n.

2§
This implies that the C.V. A" of all these segments are > 0. Since

n

n
Z (A1 == Z %ii
i=1

ry=1
and, for a fixed N,

A — 4, (K) as n— o, vy = N,

L
it is obvious that the series (5.1) converges and its sum is = Mui. We
i=1

shall prove that

@

(5.3 S ) = S (K),

v=1

In order to do this we observe that each member of (5. 3) remains invariant
under any unitary transformation of the matrix (xz). But if this matrix be re-
duced to diagonal form (x';), »’;j=o0 if 255, we have

Dy (K =Dy (K)| 7' ="y,

so that (5. 3) holds for this particular choice of the matrix (x;). Hence (5. 3) is
always true.
We then have by formula (3. 6)

A{k; K)= exp [;lgm{l ljl(l - ;—l) exp (;1) = ﬁ(l — i),

whence statement ii. follows at once [Valiron, 2, pp. 59—60].
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6. Composite Kernels.

By a composite kernel < L, we mean a kernel of the type
K(xa §):(K1K2)(1"v §)7 K]a K2CL2'

The method of infinite determinants is particularly well fitted for the investiga-
tion of the growth of the C.V. of such kernels. In this section we give a
proof of Lalesco’s

Theorem 6.1. If K (x, §) is a composite kernel <L,, then:
1. The series

6.1) S| i (K

converges.

ii. The determinant A(A; K) is identical with the Fredholm determinant
di (%), and possesses all the properties mentioned in theorem 5. 1.

A rigorous proof of this theorem is due to S. Gheorghiu [4, pp. 35—36)
under the restrictive assumption that at least one of the integrals (for each 7)

b b
f|Kf(9c, Yl de, f|K1(x, P de, i=1, 2,
[t 12

is bounded on (g, b). This assumption figures in the proof of Gheorghiu’s lem-
mas (A), (C) and (D). While the proof of lemmas (C) and (D) can be extended to
the general case of our theorem 5. 1, the proof of lemma (A) is essentially based
upon the above assumption. It happens, however, that this lemma (A) is a
special case of our theorem 5.1 which, therefore, provides a foundation for the
proof of theorem 6. 1 in its full generality. The proof that we give here is adapted
to the method of infinite determinants. We might refer for some parts of the
proof directly to Gheorghiu’s paper. We prefer, however, to give a complete
development for the reader’s convenience since Gheorghiu’s paper was published
separately in the form of a Thesis, and is not éasily accessible.

We shall need several lemmas and a convenient notation. We denote by

() = (o (KL)), () = (s (K)), - .
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the matrices (x;) corresponding to the kernels K,, K,,.... The coefficient
of (—A)* in the power series expansion of A4 (%; K) will be denoted by @, = a,(K)
so that

(6.2) A5 K) = S a1 = S anK) (~ 21

n=0 n=0
We set
i (K)o iy, (K)
(6.3) //5.7}) (K) Edi«.’}" -
wip5(K) ..o, (K)

Finally, the symbols

2=2, 2=2..

(7 :n) () 4,7 :m)

will be used to designate the summations

iy o iyl iy G =1
n

With this notation we have

Lemma 6.1. If K(x &</, then

(6.4) @ (K) == 2 40 (K).
[F. Riesz, 1, p. 34).

Lemma 6.2. If the kernels K, (x, §) and K,(x, §)< Ly, then the composite
kernel

(6.5) K(z, §) = (K, K;)(z, §) <=L,
and the determinant A (L; K) exists, the coefficients «,(K) being given by

. 1 -
(6.6) w(K) = (s DA ()40 ().
(7, 7:m)
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More generally, <f
(6 7) K(%, g) - (K1K2 e K‘) (x7 5)7 Kl» K27 IS KSCL27

then A(L; K) exists, and

(6.8) )= 2 A (B) AP, (K A, (K.

T3ty 2 Tgly
Proof. By Parseval's identity

(K} = ) e (K)o (), (o (K) =) (ef3),

14 1\ 5

s

1-

whence, by lemma 3.1, (;(K))<= €, and K(x, §< L/, Formula (6. 6) is proved
by an argument familiar in the theory of determinants. Formula (6.8) follows
from a repeated application of (6.6).

We introduce now two kernels N (K), N®@(K) related to K and defined by

(6.9) NO(K) = (K K') (2, £, N®(K)=(K'K)(x, &

We shall designate NW(K) and N@(K) respectively as the first and the
second norms of K.2 When Kz, {) is Hermitian its norms coincide and
reduce to the iterated kernel K@ (x, &)

norm of K.

which, therefore, may be termed the

Lemma 6.3. The norms of a kernel K (x, §) < L, are Hermitian semi-definite
positive kernels < L'y. The determinants A(2; NO(K)) and A(A; N?(K)) are
tdentical and

(6. 10) n (NOK) = a (NO(E)) = s 3| ()P = o
( )

i,j:m

! Carleman (5, p. 213] gives formulas which are analogous to (6.6), (6.8) for the Fredholm
determinants. For the sake of completeness we may mention also the formula

AA; Kp)=A(}; K)AA; Ky, K,=K, +K,— 1K, K,,
which holds whenever K,, K, < L', [Fredholm 1, pp. 381—383) and is a direct consequence of
the rule of multiplication of determinants.

* The kernels N()(K), N2(K) play an important role in E. Schmidt's theory of the
»adjoint fundamental functions» of an unsymmetric kernel X (x, &) [1, p. 461]. That is why these
kernels are designated by Gheorghiu and some other authors as the Schmidt kernels of K. Our
terminology is analogous to that used in the theory of bilinear forms in infinitely many variables.
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Proof. The kernel NW(K) is Hermitian since (KK')=KK' It is
semi-definite positive since

b b b
fuN“)(K)-ud:czf;(K_II")-'udx=fK'~;I:"-u(Ix20.

a

NU(K)e L'y by lemma 6.2. A similar proof holds for N®(K). To compute
an(ND(K)) we apply lemma 6.2 again and observe that

(6.11) 0i(K') = %K), 47)(K') = 47} (K).
Lemma 6.4. For a composite kernel < L,,

K(z, §) = (K, K)(x, §); K,, K;< Ly,
we have

(6. 12) A(L; NO(K)=A(}; K,K,K',K')= A(A; K', K, K, K;).

Proof. Since the result of the summation in (6. 8) is invariant under any
cyclic permutation of indices (¢, 7,, . . ., 45 it is seen that 4 (4; K, K, ... K,) will
not change under any cyclic permutation of the components K, K,, ..., K.
Now it remains only to put

=4, Kazfgv K4:]}71-
We also need some facts from the theory of entire functions, which we

collect in

Lemma 6.5. Let f(2) be an entire function whose zeros, repeated with their
multiplicities, are

22, e, el =y o< S S =
Let n(r) be the number of the r,'s with r.<r, and
M{)y= M(@; f)= max FaAGIE
613 V0= Tin)= ) [log Al g = og M)

0

We have then:
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i. The convergence of the integral

®©

(6.14) f 2 ) 4, (c> o)

1~1+1

]

15 necessary and suffictent for the convergence of the sertes
(6.15) Zr;".
v=1

ii. If 7 ¢s any number =0 and r,> 0, then

”

(6.16) fn(r)dr = 40 — M + 1f K(L) dr.

1.l+1 P 7,'3 7.1+1

7y 7o

iii.  The éntegral (6.16) converges whenever the integral

¥

(6.17) f'Mdr (z=>0)

141 +z

7o
does so.

iv. If the order o of f(2) is not an integer, then the convergence of (6. 15)
Jor 1= s necessary and sufficient for the convergence of (6. 17) for t=19. Or, in
Valirow's terminology, if f(2) is of mon-integral order, a mecessary and sufficient
condition that f(z) be of the first class is that f(z) shall be of the inferior class
[Valiron, 1, pp. 258—263].
It is convenient to write
M(r; K) Elrﬁax |4(4; K|,

and to use the abbreviated notation

We prove now the following lemmas:

Lemma 6.6. For a composite kernel

K(z, §) = (K, K,) (x, §); K;, K, < Ly,
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we havel
(6.18) | en(K)| < [eon(NO)2 [ (N{T))2,
(6.19) M(r; K)< [M(r; N2 (M (r; NP

Proof. Formula (6.18) follows from lemmas 6.2, 6.3 and Cauchy’s ine-
quality. To prove (6. 19) we use the inequalities

Mir; K £|an |)"<Zan 1; an (V)27 ];
" 1 - 1
= [(M(r; NP M (r; NS
Lemma 6.7. If K(x, §y<L, then
(6. 20) M(r; K%)= M (r; NV(K)); K (x, §) = (KK)(x, §).

Proof. This is merely a special case of lemma 6.6 with K, = K, = K.
Proof of Theorem 6.1. By lemmas 6.7 and 6.4

(6.21) Mp; KO)< M(r; NO(K)=M(r; NP NY).

The kernels N, N are Hermitian semi-definite positive by lemma 6.3. Hence,
by lemma 6.6,

1
(6.22) M(r; NP NY) = [M(r; NP NE)E (M5 NENP)PE.

Since N, N{¥< L', by lemma 6. 2, all the conditions of theorem 5.1 are satis-
tied, and the series (with positive ferms)

converge. It is well known, however, that

(LN N} = (A (V)

! From this point on our proof is merely an adaptation of that of Gheorghiu, with non-
essential modifications.
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Hence the series

®

1
> (W N2
v=1

converges which shows that A (4; N® N®) is not only of order =

; , but, in

!
2
addition, of the first class if it is of order i By lemma 6.5, iv., the integral

flog M(r; N NP2

Y

)dr, 7o = 0O,

7o !
converges. The same conclusion holds for the integral

log M(r; NY'NY)
1+
Ty r

b

[

and, by (6. 22), (6. 21), for the integrals

log M(r; N NV) log M{r; K*) ;.
14+ ’ 1+1
. PR 5 S92

Lemma 6.5 shows then that A(L; K%) is of order £%a,nd of the inferior,
hence of the first class, whenever it is of order ; Since

(A (K®)) = {[M(K)]*),

I
~

this implies the convergence of the series
Dl (B
v=1

Statement i. of theorem 6.1 is thus established. Statement ii. now becomes

obvious.

7. Kernels of Class (3, ¢).

7.1. In this section we deal with kernels that satisfy the following con-
dition:
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For a given pair of numbers (8, q) where 3> 0 and q Z 2 there exists an
tnteger my = o such that the series

x

8 9) D v |k (E)|

y=mp+1

2(f)

converges for almost all £ on (a, b), and its sum () is integrable.

Theorem 7.1. If the kernel K (x, §)< L, and at the same time K (x, §)<= (3, q), then

_ 3%

(7.1) m(K)n 1 >,

Proof. To abbreviate we shall write %, instead of %,(§). We shall use
the letters & for an arbitrarily small fixed positive quantity, not necessarily the
same in all the formulas, and m for a fixed positive integer which can be taken
arbitrarily large. The letter C will be used-as a generic notation for a positive
constant which does not depend on & and m.

Since all the terms of the series (8,q) are = o an easy application of
Lebesgue's theorem will show that

b b
(7.2 30 [lbas= [ aas= o,

v=mo+1 , @

The integer m, in (3, q) can be chosen so large that

b
x

(7.3) i f|kw|’1d§<e.

v=my+1 o

Then for any n > m, and 7n < n' = %

b h
n' * n
(7.4) 2 [k|edE < 08 Z v3 | k1 dE<en—?
v=n+1} r=nt+l 4

By theorem 4.1 the C.V. {},(K)} are zeros of An(4; K) where

(7.5) |45 (4; K)| = IL. (r; K)

m

_ H[I—ziﬁ(lxﬁ)+"2fb|ki|2d§]% exp [7;2 i jlki|2d§].

i=1 i=m+1 4
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We assume m>m, and give first an estimate for the second factor

b

®

2
P=exp |~ 3 f |l ag |-

i=m+1y

Since for u = o

(7.6) < Cexp (w?), p=r,

we have
b
_9 *
Py<C exp{z ANDY [flkzlgdg]

t=m+1 ", }

b q b

(7.7) U|/.¢,-|2d§]2§ (b~a)qT—2 [lkilqdﬁ,

19

By Hélder's inequality

whence
b
Py < Cexp IC’?"’ > f'kilngl ;
i=m+1 , J
and, by (7. 4),

Py< exp (er9m—F).

We proceed now to the first factor of the right-hand member of (7. 5).
Here we can write

m Mg
==

~1[-TI =P.P.

1 =1 i=mo+1

As in the proof of theorem 4.1 we have
P < (1+7]|K|]y™ < exp ().
To estimate P, we observe that for a fixed ¢, 0 <o < 1, and u=o,

(7.8) 1+u<C exp (u9).

Hence, if ¢ is a number analogous to ¢, we have
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b b
1—2R(Axy)+ 7'gflkil2d§ =(1+2 rlz,‘fl)(l + 7-2f|ki]2 d§)

< Cexp (271 |xal) exp[ (f"" d)]

b

(7.9) pP,=C exp[z" r"Z |xf,-|°] exp [7'2‘2 (flk,—ng) ] = CP, P,.

i=me+1 i=my+1 "y

so that

Now, again by Hoélder’s inequality,

m 28z 28«7 4 T
U ol d§) ST v (fuc..wg)

v=my +\ y=my+1
m 2(3@] _ z m
Z y el T |zc |2d§
l”“”la+1 J 'v—*m +1

and, if we choose 7 subject to the condition 27(8+ 1)<gq, we have

m - 2(311 2 2Bt 4+ 27r—¢q
9= Om ¢

Hence, by (7.3), (7.7) and (7. 9),

I _ ﬁt+2z——q}
P, < exp & m “

To estimate P, we observe that

b b
o — f o(2) 0 (&) €, f g &Pt =1,

whence it follows by a repeated application of Hélder's inequality,
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b 10
q
ek = | [1teas*| [1g.07¢]
b 1 —2 b 1 b 1
q 2q 2 q
= | fieraz| oo™ | figras] = | [1rpas]:

g1
q

m m _ fBo fBo I m _ﬁll—%[ m iqj
Shoot= 35" otk =] STl St
py="ny+1 y=Mp+1 lv:m0+1 J y=my+1
_ fo+o—y
< &m L eB+1)<q.
This shows that
_Bote—yg
P'y<explerm “ L

If we take for simplicity 6= 27 and write
M(r) = max | A5, (%; K),

lil=»

we get

___ﬁo‘+a—q
(7.10) log M(r) < log I (r; K)<rt+ e{r" mP 4+ r9m 4 }

We can apply now lemma 6.5. Since An(o; K)= 1 the lower limit of
integration 7, can be taken so small that V(r)=o0. From ii. of lemma 6.5
(with == 0) it follows that

(7.11) f@d": Vi) = lo

where # (r) is' the number of the C.V. A,(K) in the interior of the circle |i|=1r.

So far the integer m was arbitrary, restricted only by m>m,. For a fixed
r we can use this fact in order to obtain as low estimate in (7. 10) as possible.
The simplest way of doing so is to make the contributions of the two terms in
the brackets in (7. 10) approximately equal, which leads to the choice

a
n= %],

6 — 31104. Acta mathematica. 57. Imprimé le 30 avril 1931,
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and, after a simple computation, to the estimate

9
(7.12) log M(r) < log Il (r; K) < er?+3.

It follows directly from (7.11) or by other methods familiar in the theory of
entire functions [Lindelof, 1, p. 21; Valiron, 2, pp. 67—71] that

94
n(r) < ers*l,

which is equivalent to (7. 1).
For our subsequent discussion we shall need the following

Lemma 7.1. The kernel Kz, §)= L, if the series

b
(7.13) Zvﬁf|kv|‘ld§:!21, >0, ¢=2,
r=1 a
converges, and
(7. 14) 2[8+1)>q.
Proof. An easy application of Holder's inequality and formula (7. 7) gives

b

n' qv
2 |k P dE =< (0" —m) @ [flk |2di-‘]

r=n+1, V "+1 «
b 2
= —neb—a) Z fl/cwlng
['v n+1
b 2
e b
= COn'—n) © \ D flk.,lng .
v=n+1 g J

[Cf. Szdsz, 4, p. 533). On setting here in succession
— ' . — r__ 1 —_
n=0, W=1; n=20¢ p'=207" u=0,1,...,
and using the inequality

2 flk [1ds < ne Z v flk lrds < 03,

v=n+l, y=n+1
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together with (7. 14), we establish the convergence of the series

b

»

> fummg:szz.

v=1,
Thus the sequence

Salk) = Z | %, (8)], n=1, 2, ...

v=1

is monotone increasing and such that

ffn(%)dﬁé 2,

It follows by Fatou's theorem that its limiting function

@

3 (@l = [ 1K P s

is integrable, whence K(z, &) < L,.

7.2. Theorem 7.1 admits of an important application to the kernels which
possess derivatives (of integral or »fractional> orders). Before proceeding to
this application we shall recall some facts of the theory of differentiation and
integration of fractional order. Following H. Weyl [3, pp. 296—302] we in-
troduce the function ¥,(x) whose trigonometric Fourier coefficients are

=0, c,x=I(a)e 2 v~% c_,=¢,, v=1,2,....

For our purposes we need only the case o<<a=<1. The function ¥,(z) is uni-
quely defined on (0, 2) and can be extended periodically outside (o, 2 7z) by

P x+ 2 ) = Fulx).

It is readily seen that on (o, 2 )

n—1
[zn lim [2 (x+ 2 wy)e? ! (27t)“_1n°‘], o<g<1,

n—s [44

Po(x) = l

=0

n—x, a=1.
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Hence ¥,(x) is continuous for x> 2 ks, while at x=o0

Iz wX®T! + Y,(x) for x>o,

Polx)= (o<a<)

lwa (=) for x <o,

where 1.(x) is continuous (in fact, analytic) at = = o.
Let f(x) be any periodic function of period 2 7 integrable over (o, 2 7).
Weyl defines as the «-fold integral of f(z) the following operation!

(7.15) Fl) = 5 A f ) Pl —t) dt.

Lemma 7.2. If f(x) is any integrable periodic function, then:
1. The function f.(x) is integrable and periodic. If {f,} s the set of Fourier
coefficients . of f(x), the set of Fourier coefficients of f.(x) s given by

vae_2 V7O y=1,2, ...,
(7. 16) (foo =L

X

F@:1ﬂ32@wr%w:~ﬂ,—z.w

o . ¥==0.

it. If f(x) has the mean value zero over a period,

(7.17) j}@mx=a
the operation f.(x) reduces to

(7.18) L= b | =gt

when 0 <« <1, and to a primitive function of f(x) when a = 1, the infinite inte-

gral in (7.18) being an improper Lebesque integral.®

! Weyl considers only the case of a continuous f(x). We extend his results to any inte-
grable f(x).
4 T

* This means that f= lim f
ey

—_—
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Proof. The fact that fz(x) is integrable follows from a known theorem
of Young [1]. Furthermore, on interchanging the order of integrations and

using the periodicity property of the functions concerned, we have
27

(fa)y = Kofdxp*l”[zﬁr ff J:

27

1 _I I__”S L —i v{x~—8) — -:‘fwcv
“F()Zﬂf f()déznfe o) da re)

0 0

which proves statement i. When « = 1, statément ii. follows immediately from

a 27

i) = L [ f (v —x+s)f(s)ds+_[ (— :c+s)f(s}ds]

27t
x
and (7.17). In the case o<<«<1 we observe that I f(x) exists almost every-

where [Hardy-Littlewood, 2, pp. 566—3567]. On the other hand, by Lebesgue's
theorem,

Jelx) = ZﬁIlv(T)ff(S)lP x

—2ntx

n—1
ff ds lim [ 'zt 2 wv—s) — I;(z )t n"‘]

N—> 0
—2n+@

n—1 e
= lim - ff dSZ (z+2ay—sp 1= lim —) [f(s) (x—s)e1ds.

N——r 0 I T — 0 I‘
——2~t+:b —2nntz
7.3. Throughout the remaining part of this section as well as in sections
8 and 9 we shall use for our fundamental orthonormal complete set {p,(x)} the
set of functions

vy — .
et yv=..., —2, —1, 0, 1, 2,...;

and the fundamental interval will always be (0, 27). The fact that for this set
the subscript » ranges over (—c, o) rather than over (1, o) will not cause any
trouble and it is hardly necessary to restate theorem 7.1 for such sets {p.(z)).
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We now introduce a new class of kernels, which is defined as follows:

A kernel K (z, §)<(s, a, p,, p;), where s is any integer =0; «, p,, ps are any
real numbers such that o <o« =1 and p,, ps > 1, if, as a function of =, K (x, £)
possess for almost all & the partial derivatives

D.K(z, %), ..., DeK(x, &),
and, tn case s > o, the funetions
DiK(z &,v=o0,1,...,s—1; Dy K=K,
are continuous in x on 0=z = 2m for almost all £, while Dy K (x, £) can be re-

presented in the form

2t

I

W) f Gt §) Wulo— ) d1=Golz 8), a <1,

|

(7.19) D: K (x, &)

£

fG(t, Qdt+CF). «—1.

0

the function G (x, ) being such that the integral

2

(7. 20) Iy, »(6) = f [ f 16 (z, B dx]“ a8

exisls.

Theorem 7.2. If K(x, §y<L, and also K(x,§)C(s, a, p,p_II) with

1 <p=2, then'
1
(7.21) r,,(K)n‘(“““‘;)_m,

Proof. To avoid unmecessary repetitions we agree to consider only such
values of £ for which all the functions concerned are defined. We denote by
p’ the »conjugate> of p, defined by

! The assumption of the theorem concerning G (x, §) reduces simply to G < L, when p=2.
This case (with s=o0, ¢=1) contains as special cases the theorems of Weyl and Mazurkiewicz men-
tioned in section 1. 1.
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p—1

F=— 1, p= =

1 1 , ! 1
LIS 43’ v
y» »p r—1r p

and we notice that p’=2 when p= 2.

We proceed to the proof of theorem 7.2 in the special case where, in
addition to the hypotheses of the theorem, we have'

(7.22) I & K)=J,8=D:K(2n, £ — D; K (o, £)=o0, y==0,1,...,8.

On integrating by parts and using lemma 7.2 we see at once that for »:4o0

kH=-1 f K (e, § e da

(7.23) ~r f DiK(e, §eivedn= """ f Gule, e da
= [ e geae = B,
whence U
(7. 24) lgs )] = |+ k()]
The existence of the integral
27 2 v
(7.25) Bo= [| flew gpie| is=1, 1@
;L

implies that of the integral

f |6, i da

for almost all §. TFor such values of § we can apply the Young-Hausdorff
theorem [cf. Hardy-Littlewood, 1, p. 167] with the result

! Conditions J, _; =0, J,=0 follow from the hypotheses of the theorem when & <1, for y,(x)

is periodic and of mean value zero over a period.
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+ @ + o a7 £

Tastal | — N P < na » b

S ekl = 3l @b = | L [166 gpas”
o

r=—0» Jo—0

the term with »=0 being omitted from the summation. The existence of (7. 25)
implies now that all the conditions of theorem 7.1 (with g=7p"(s + «), g =1p')
are satisfied in the present case.

To prove theorem 7.2 in its generality we shall treat the two cases «=1
and o<<e<{1 separately.

Let «=1. By subtracting from K (x, &) a kernel of finite rank it is always
possible to obtain a kernel H (x. %) that satisfies the set of conditions

2n
(7.26) J_ (& H)EfH(x, §ldz =o0; J,(E; H)=0, wv=o0,1,...,s.
0

Indeed, it suffices to put

s+1

. a’
Hie, )= Ko, 9 3 00
j=0"
This yields a set of (s-+2) equations
£4+1 —.
., ¢ - (2 7)™ ;
(7.27) o=J.(§ H)=J.(§ K) — D (=) wi(§), r=—101,...,s5,
J=v+1 ’

which determine w;(§) as a linear combination of J.(§; K), ..., J;—; (§; K) with
numerical coefficients. To this kernel H (z, §} we can apply the preceding ar-
gument provided it is shown that H (z, §)< L, and that the integral I,(D:*' H)

exists. Using the abbreviated notation
2 1
P
WA= (1 d2)"

i}

we have, by Minkowski’s inequality,
1/ + gllo = 1A+ llgll..

With this notation we can write
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27 e
1

(7.28) L(D i H)= f 16, 8= oeer @17 ag= [ Gl + (2Pl .

But from (7. 27)

1

ws+1(E) - [D;K(z 7T, §)——D';K(o7 g =— jG(x, gdx,

om
whence

1
locer )] = (27) » || Gl
On substituting into (7.28) we get

25
@@?Uﬂézﬁfmmmww=ﬂdﬂm,
0

which shows the existence of I,(Ds™' H).

To prove that H(xz, £)< L, we observe that its o-th Fourier coefficent (as
a function of x) is zero since H (xz, &) is of mean value zero over (o, 2x). Since
H(z, £) satisfies conditions (7.26) the same argument as above in case of the

kernel K will show the convergence of the series

27

+
> [ @ as

P=—0

The hypotheses of lemma 7.1 (with 8=p'(s+1), ¢ = ') being satisfied here, we
have the desired result H(xz, &< L,.
The kernel of finite rank

s+1 J

Serafo, = D508 = K, §—Hla, H= Ly

Jj=0

since it is the difference of two kernels <UL, This implies that all the func-
tions w;(§)=L,! Consequently we can apply theorem 4.2 with the roles of K

! This is easily proved when we replace the powers by their expressions in terms of nor-
malized Legendre polynomials for the interval (o, 2m). We get then

7—31104. Acte mathematica. 57. Tmprimé le 30 avril 1931.
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and H interchanged, and ¢ replaced by (s+2). According to theorem 4. 2 the set

{4, (K)} is a subset of the set of zeros of an entire function B,(4) for which

we have the estimate

(7. 29) | Bu(W)| = (T (r; H)}+* Plr),

where P(») is a polynomial in ». The function H(x, &) satisfies the hypotheses
of theorem 7.1 with §=1p'(s+2), ¢ =p'. Hence, by the proof of theorem 7.1,

P

log I, (r; H) < srplst2—1,

From (7.29) we obtain an estimate of the same type for

Y A P
log max |Bn(A)| < erts+>—1 m= [1""“ '-”*1] )
12l=r

This leads to the desired result
" (K) 72_ (S+ P)_) o

by precisely the same argument as in the corresponding part of the proof of
theorem 7. 1.
The case 0 <« <1 can be treated in an analogous, even simpler way.

Here we have to satisfy only the conditions
J(& H)=0. v=-—1,0,1....,8—2,

which can be accomplished by setting
H(z, 8= Kz, § —

The details of the proof may be left to the reader.

a+1

So+ale, § = X ;@ (&),

j=0
where the ;(§) are linearly independent linear combinations of the w; (§). The fact that

wJ'- (& < L,, hence that @;/§ < Ly, follows then immediately from the relation

8+2 27

NSeall = X flojglas.

Jj=010
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7.4. The assumption of the existence of the integral I,(G) in theorem
7.2 can be replaced by a less restrictive one, with corresponding modifications
of the estimate for r.(K). This is shown by

Theorem 7.3. Under the hypotheses

i' K(xa E)cLh
i K (x, §)C(s, “’p’;)’ 1<p=z,
iii. 2 =g<p, f<ls+a)y, L +D <q=<2(1+§),

1+ (s+a)p
(the last condition q<<2(1 + f) being unnecessary when s=0, 0<a<1) we have

_ B+

(7.30) m(K)n 1 —>o,
Proof. As in the proof of theorem 7.2 assume first that
{(7.31) J.(&; K)=o0 (yv=—1,0,1,...,8),

these conditions being automatically satisfied when s=o0, o<a<i. We shall
prove that under the assumptions of theorem 7.3 and this additional assump-
tion we have K(x, £)<(8, ¢q) which, in view of theorem 7.1, gives the desired
result. By hypothesis the integral

27

(6)= f 116G l,) a

9

1

B,

=

exists, whence ||G|, exists for almost all & As in the proof of theorem 7.2

we have
+® _1‘;
Ak = (2x) 7 (|G},
y=—0m
whence
n
S k| < Cutrar (| @], o=n=,
y=n-+1

and
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' 7 ,
[ > Ik|] < Ovmem (1 Gy,
r=n+1

27

T q )
f Zlk,rll"]l" dE < Cuieran ], (G) = Corieren,

0 _r==n+1 a

Now, by Hoélder's inequality,

2n 23

n' n de — n' 12
Y K -l I I T
6 r=n+1 r=n+1 0 v==f+1

3 tr—a
< Cyp—stada(y) 7

On putting here in succession
— | — g +1 .
n=o0, n=1; n=2% =2 u=0,1,...,

and adding the results we conclude that the series

2in
x
S [ thlrag
=1 h

converges. In the same fashion we prove that the series

y=-—x

2

—1

S f |k as
0

converges. Since k,=o it follows that K(x, §)<(8, q). It should be observed
that the condition ¢<2(8+ 1) is introduced to ensure that H(x, §)< L, The
general' case of theorem 7.3 where the conditions (7. 31) are not satisfied
can be treated in precisely the same manner as the corresponding case of theo-
rem 7. 2.

Remarks. i The assumptions of theorem 7.3 are obviously less stringent
than those of theorem 7.2, for ¢<yp'.

ii. The estimates which we have obtained in this section are of the type
ii. mentioned in section 1.3. The following examples show that the estimate
of theorem 7.2 is the »best possible, not only in the sense that the exponent
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s—!—cc—i-l—i
D

can not be replaced by any larger one, but also in the sense that our estimate
can not be replaced by more precise estimates of the type iii. of 1.3.
(I) The function®

(7.32) F@)=F(t a, b, )= > v (log »)™ exp {27iv[log »)'+1]}

=2

is continuous and its expansion (7.32) converges uniformly provided either

a>4%, ¢>0, b arbitrary,
or else,

a=1%, ¢>o0, b>i{1+¢).

Hence, on setting a = § K(t) = F} (t), we get a periodic kernel for which s=o0, =4,
p=2. We have here 1.(K)=n (log n)® while the series I [rn(K)|™' diverges if
b =1 which is compatible with the conditions above if ¢<1.

(IT) Take now the function F(f)= F,»(t) of section 2. On setting
K({)=F,(t) we get a periodic Tkernel with (in the notation of theorem 7. 2)
§=0, a=1, p:Iri)a' provided 6>1—a. Here we have Q(K):I)i;a but the

series
S (K-

diverges if b =1+ a.

8. Kernels of Class Lip (s, e, p, q).

This class of kernels is defined as follows:
Let s be an integer =0, 0<a <1, 1 <p=2=gq. The kernel K(z, §)<
Lip (s, e, p, q) 4f, for almost all values of &, the partial derivatives

! Ingham [1], Hille [2, pp. 181—182].
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DKz, &), v=1,2,,....,5,
extst and, tn case s=1, the functions
DKz, 8, v=0,1,...,5—1,
are conlinuous in x for fivred §&. Furthermore, the derivative
D K (x, §=K,lx, §).

considered as a pertodic function of x outside the interval (0, 2 7t) satisfies the con-

dition

. /IIx (@+t, §—Ke(w, P du<g(@) t=r,

where gE)< Ly, and t is =0 and sufficiently small.!

Theorem 8.1. If the kernel satisfies the conditions

Kz, §=Lo, K(z, )< Lip (s, “p, %)

then
eag L
(8.2) r(K) > Cn T T {(log w)™ =
Proof. Assume first that s> 0 and
(8.3) Ju (& K)=D'K(2 7, §)—D" K(o,§)=o0; v=0,1, ..., 5—1.
As in the proof of theorem 7.1 we have®
27 L
2
(8.4) Hn(r; K <1’[ ll——zS\ (i) + 2f|k,-|m§]
i=—m 0

exp S, f i + Ll ag |

1—m+1 0

! Conditions of this type were first considered by Szisz {3; see also 4), for functions of a
single variable. Our notation is analogous to that of Hardy-Littlewood {2]. Condition (Lp) of
Szasz [4, p. 531] follows from (8. 1) by Minkowski's inequality.

* The slight difference ‘between this formula and (7.3) is due to the fact that here the
subscript » ranges over (— oo, 00) rather than over {1, o).
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Again as in the proof of theorem 7.1

P, = exp {’; > f al? + (k) a2

7 i=m+1y

=CexpiCr¥ Z f{llc,]l"n‘ k] ¢1§}~

i=m+1 g

We put for simplicity

27
= = _I_ —ive
bvzb/v(g)— ZﬂfK:e(x, E)e dg
0
Then on integrating by parts we get
ky = (2v) "% b,

By an important result due to Szdsz [4, p. 533]

S v
2 Ho.]?" + [o—|?] < Clg(E)? m—',
v=m+1
whence
27
(8 5) 2 f[l k"lp, + I]C—-mlpy] d§ < 0777—((t+s)p"
v=m+1

Py =< C exp {Cr? m—letslr’y,

To estimate the first factor in the right-hand member of (8. 4) we observe
that for a suitable choice of the constant C which will depend on K, we have

2n
o<1——2?R(lxz:l-)+7'2f|k,-|2d§< Crt,
0

whence

H ( . )< Orm+lpdm+2

{=—m

This yields the final estimate
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log M (r) = log max |An(%; K} < C{mlog r+r? m—letsr’},
21=r

To make the contributions of both terms here approximately equal we choose

v — b
m = [,.(a +¥p +1 (].Og _7.) I3 7‘-3}11'-%—1] .

Then

P (z+s)p
log M(q) < (ylatetlip—1 (log p) wrsrp—1

and (8.2) is readily obtained, either directly from the formula (7.11) or by

using a classical formula of Lindeloéf [1, p. 21] where we have to put
P (e+s)p

e= (@+s+1)p—1 “ :(&+s+ 1)p—~1'

The preceding proof holds without any modification in the case s==0, even
when the condition J,(Z; K)=o0 is not satisfied. Hence in passing to the gen-

eral case of theorem 8.1 we can assume s>0. On setting

. o
Hir, § =Kl 8~ 3 5 or(g),
j=0"
we can satisfy the conditions

(8.6) J A& H)==0 (v=—1,0,1,...,8—1).

It is plain that (8.1) will not change if A (z, &) be replaced by H(z, §. Con-
sequently our preceding arguments hold for H(x, &) provided it is proved that
H(z, §)¢L2. To show this. we observe that H(x, £) as well as its derivatives
D.H(x,§),...,D$H(z, & are of mean value zero over {0, 27). On integrating

by parts and applying the above mentioned result of Szdsz we get

27

Spekl < [ e as

ve= 0

The desired result follows then by lemma 7.1 since 2sp’+2>p’.
The transition from the kernel H(x, &) back to the kernel K (xz, §) can now

be achieved in precisely the same fashion as in the proof of theorem 7. 2.
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This will yield an estimate for r,(K) of the same type as in the special case
above.

Certain limiting cases of theorem 8.1 are of interest. They present them-
selves when « =0, or ¢=1, or p=1. We shall classify these cases as follows:

(1) p>1, @=0, s>0; (2) p>1, e=1; (3) p=1, ¢=0, s>0; (4) p=1, ¢=1.
In case (1) by modifying suitably a proof of Hardy-Littlewood [2, p.
566] we can show that the corresponding class of kernels C(.S’—I,’ 1, P, %)

so that theorem 7.2 can be immediately applied here with the result

1
s+1——)

(8. 7) 7 (K) n—( »

— o0,

In case (2) it is readily shown by imitating another proof of Hardy-

Littlewood [2, pp. 599—600] that our kernel C(s, 1, p; p;) so that

1
§+2——

(8.8) 7 (K) " ( 1’) — o0,

In case {3) we see that D1 K(x, &) is absolutely continuous in z for every

fixed £ which does not belong to an exceptional set of measure zero. Assume
for simplicity that

(8.0) f | K.z, ) des L,

In this case it is readily proved that

27 2z 27

2 — I —iva .
flbvl as Mgfdglfzcsw,gw ae
0. 0 0

This follows immediately from Lebesgue's theorem since the integrand

2
—0 as |v| >,

2

27
Ist(ac, §e i dx
0

tends to zero for almost all £ and is dominated by a fixed integrable function

8--31104. Acta mathematica. 57. Tmprimé le 30 avril 1931.
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[]]K (x, §)|d.7:]2.

Hence for a given ¢ there exists a positive integer mi, so large that

27
flb”F dE<e, |v| > m,.
0

Assuming again that conditions (8.6) are satisfied we see at once that

2
% >

Z j[|kv|2+|/c_.,,|2} dE < ¢ 21}”""":3”2_3"”“.

y=m+1y y=m+1

Repeating the same argument as in the corresponding case of theorem 8.1 and
choosing

1 — 1
m= [r"' (log 7) '~"‘]

we arrive at the coneclusion

1
§—

(8. 10) 1 (K)n* (log m) * > e,

The case where conditions (8.6) are not satisfied can be treated in the
same fashion as before, with the same estimate (8. 10) for 7, (K).

Finally, in case (4) the function K;(x, &) is of bounded variation in x
{Hardy-Littlewood, 2, pp. 599—600] for every fixed £ which does not belong to
an exceptional set of measure zero. Let V() be the total variation of K,(x, §)
over (0, 277) and let V(§)< L,. An easy application of the second law of the
mean shows that

15, ©) = & V@ (v£0),

v

whence, again under the hypothesis (8. 6),

27
x*£

Z fukvl")ﬁ-l/c_wlg] dE < Om—2—1,

r=m+1 g
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The same argument as in the previous case (3) will show that

1
(8.11) 2 (K)>Cniti(log n) 2.

Remarks. i, By analogy with theorem 7.3 the condition of theorem

8.1 that g(§)= Ly can be replaced by a weaker one, viz
v

g(g)cL(}’v quy

with corresponding modifications in the estimate of 7, (K).

ii. We have excluded from consideration the cases (1') p>1, «=s=0 and
(3') p=1, a=s=0. These cases lead to interesting classes of kernels for which
the integral

27

2
: .,
fUu{(w, g)|pdx]wt, L=p=2,
0 0

exists, where the case p=1(p’= =) should be interpreted in the sense that

f |K (@, O de

should be bounded. The case (3) has been investigated (without discussion of
the growth of the C.V.) in a recent paper [Hille-Tamarkin, 3], the case (1") will
be treated in a forthcoming paper by the present authors.

iii. The estimate of theorem 8. 3 is more precise than an estimate of the
type i. of 1.3 (with ¢=y) but less precise than an estimate of the type ii.
Still our estimate is the »best possible» in the sense that it can not be replaced
by an estimate of the type ii. This is shown by the example of the periodic
kernel

0

K(t)y= > v exp [iv(log »+1)]

=2

[Hardy-Littlewood 3, p. 632; Hille, 2. This kernel satisties uniformly a Lip-

schitz condition of order 1/2, whence K (f)< Lip (o, %, 2, 1). From theorem 8.1
1
we get 7,> On(log n) * while actually r,=n.
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The periodic kernels

x

S sin vt sin vt
Ziiegr 2 v

=2 p=1

can be used to illustrate the limiting cases (3) and (4) respectively, and to show
that the values

of the exponents of convergence can not be improved. 1t is very probable,
however, that the presence of the logarithmic factors in the estimates (8. 2),
(8.10), (8.11) is due to the imperfection of the method used, and that actually
these factors should be removed or even replaced by logarithmic factors with

exponents of opposite signs.

9. Kernels of Class C(s, (, ¢).

The result of Szisz which was used in the preceding section is based on
the theory of approximation in mean of a function f(z) by the Fejér (or C))
means of its Fourier series. Due to several recent investigations analogous
results are available for the approximation in mean by the Cs means. These
investigations have been summarized and completed in a recent paper by M.
Jacob [1] to which we refer for further bibliography of the subject. A scrutiny
of the results and proofs of Jacob will show the truth of the following

Lemma 9.1. Let G(x, §) be a function of two wvariables -defined on the
square 0 = x, £ < 2:v and extended periodically in each variable outside of #t. As-
sume that:

i. Gz, §<L,.

ii. On setting
Golx, &, ) =G(x+2t, §+Glx—2t 8 —2G(x, 8,

t
(9. 1) 1gilx, & 0 :fgi_l(w, £ uydu, 1=1,2,..., 1, I>o0;

0

Gilz,§, )=t gi(x, £, 8);
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we have for almost all (x, £)

IA
3]
A

(0.2) f Gl & Bl dt<ple, & Dot o

where y(z, & 7)< L, for t>0, and

27t 27

il = f f e, & D dads

s bounded as t—o.
Then the mean quadratic error of approximation of G (x, §) by the n-th Cy

mean of its Fourier series with respect to x can be estimated by

27 27

f
. Gz, §)— Cs(si)Pdxd
(9 3) ffl (o g) s (s )I x §<10n_2(10g n? if a=1, d=1+1,

Cn2 of <1, 0>1+a,

where
+ 2m
I n ) ) I .
o= Colinlo 8= g5 3 4D 1100, 0.8= " [ 6o e,
y=—n o
and
A0 — (n +d)
n n

We now introduce the class C(s, I, «) of kernels which is defined as follows:
Let s and 1 be integers Z o and o < a =1. A kernel K(x,§<Cls, |, a) if
Jor almost all & the partial derivatives

D' K(x, 8, v=1,2,...,5s,
exist and, in case s>o0, the derwatives
DKz &), v=o0,1,...,8—1,
are. continuous tn x for § fixed, whereas the derivative
DK (x, §)=K,(z, §) =G, §)

satisfies the conditions of lemma 9. 1.
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With this notation we have

Theorem 9.1. If K(x, §)<L, and also K(z, §<=C(s, I, «), then

1

(9.4) ralK) > on' (log )5« when 0=« < 1,
and

s+ 3
(9.3) rm(K)>Cn ?(log n)—2 when a=1.

Proof. We start with the familiar assumption
(9.6) J& K)=0,v=0,1,...,8—1.

Then, since the polynomial

sz, 8= D) g:(8) €™, g (5= (§),

re=—n

gives the minimum mean quadratic error,

21 27

e f{lg«vluly—vlzldé‘:ZnIfIG(x, E)—sm (@, DIPdadE

v=m+1 g 0
= 2nff|G(;c, §)— Cs(sn)|* dx dE.
090

Hence, when 0 = « < 1, we get

27

2
2 f 171+ oo Plag = Do f g2+ lg— I dE < Cm—2te),

r=m+1 g r=m+1 0

which is of the same type as (8.5) in the proof of theorem 8.1, with p = 2.
This leads immediately to the result (9. 4).
When e=1 we have instead

2n
x

D P+ 4Pl dE < Om2e+ (log m),

v=m+1y,

whence
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log M (r)<< C{m log r+7r*m—26+1 (log m)?}.

A simple computation shows that the contributions of the two terms will be
asymptotically the same if

2 1
W = [7.28—{-3 (lOg‘ 7.)'23+:%]_
With this choice of m we get

2 2s+4

log M(r)<Cr2¢+3 (log 7)2*+3.

The result (9.5) then follows from (7.11) or from Lindeléf’s formula [1, p. 21],
mentioned above.

The general case of theorem 9.1 can be reduced to the special case above
in precisely the same fashion as in the proof of theorem 8.1 and the remaining
details may be left to the reader.

Remark. The case where K;(z, ) satisfies uniformly a Lipschitz condi-
tion of order ¢ can be considered as a special case of theorems 9.1 and 8.1,
with p=2. It is well known [de la Vallée Poussin, 1, p. 52] that in this case

kn= O(n—*"% so that, whereas Gheorghiu found Q(K)Sf—lw l4, pp. 51—s52],

sta
2
. ' . . - 2 sy best
thorems 8.1 and 9.1 yield the estimate ¢(K) = Y PR which is the bes

possible of its kind.

10. Analytic Kernels.

In this section we shall assume that the fundamental interval (@, b) reduces
to (—1, 1) and that the complete orthonormal set {g,(x)} coincides with the set
of normalized Legendre polynomials so that

Theorem 10.1. Assume that K(x,§) for almost all & is analytic in x on
the anterior of an ellipse in the complex wx-plane, whose foci are at the points * 1
and whose sum of sems-axes is R, and that for all such values of z,

(10.1) | K (2, Hl< M (E), M(E)< L.
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Then
(1—elm

(10.2) rm(E)>R *

Proof. We shall consider only »non-exceptional» values of § It is well
known [de la Vallée Poussin, 1, pp. 123—124] that, under the hypotheses of the
theorem, K (x, §) can be approximated by a polynomial in z, Qu(x, &), of degree
= m, such that

2 M)
_ B < .
(IO' 3) IK(x! 5) QM(xl ‘:)l = Rm (R__ I)

Since the m-th partial sum of the Legendre series of K(x, &),

m

Tnlx, §)= D) k(8) 9 (),

r=1

gives the minimum mean quadratic error for a given m, it follows at once that

+1 +1+1
Z flk"lg d§: —/ f‘K(xa g)_Trn ((L', §)|2 dx dg = COR—QT”,
v=m+1_7, 4

In view of (10.3) and (4. 21) this gives an estimate of the form

.
log max |45 (; K)|=1log M(r)<(1+e¢) (m log r + ;Qr‘" R_“‘)-
i=r

If we put here

we find after a simple computation
log M(r) < (1 + &) oo B

The desired result is now obtained either directly from (7.11) or by applying a
formula of R. Marrso~ (1, p. 57|
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Remark. The estimate furnished by theorem 10.1 is crude and is in a
rather loose connection with the properties of the kernel. It can not be con-
siderably improved, however, in the sense that the exponential function of =
as a lower bound for the growth of the C.V. can not be replaced by a more
rapidly increasing function. This is shown by the example of the periodic kernel

K(x—§)= Y et

for which R==1+ V 2 so that, by theorem 10.1,

{1—&)n

while actually r, (K)=¢".

11. Entire Kernels.

We start with a discussion of kernels K (x, &) which are entire functions
in = of a finite order ¢>>0,' for almost all &.

For greater simplicity we assume that the fundamental interval reduces to
(0, 1) and that the set {g.(x)} coincides with the set of normalized Legendre
polynomials for the interval (o, 1). We shall use the power series expansion

If £ is fixed, a necessary and sufficient condition that K (x, §) be an entire
function of order ¢ is that [Valiron, 2, p. 40

im (—log @ _ 1
vlog v 0

Py —eo

It is natural, therefore, to assume that

! Throughont this section the letter ¢ will be used to designate the order of K (x, &) as
an entire funection in z. No confusion can arise with the symhbol ¢ (K) of our previous notation
for the exponent of convergence of the set of C.V., since this exponent reduces to.zero in sections
10 and II.

9—31104. Acta mathematica. 57. Imprimé le 1 mai 1931.
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We shall assume in addition that y(§)<L,. As an approximating polynomial

we can now take

n

Q’" (.CC, E)E Z 'ﬂr(g)l‘".

r—A)

It is readily found that the mean quadratic error of this approximation can be
estimated by

1 1
jle(.’n, E)— Qulx, P dxedi < C exp (—2om log m),
v

o

so that, for the same reason as in the proof of theorem. 10.1,

D NP di<C exp (—20m log m),

r=m+1
1]

and
log M (1) <(1+é&){mlog r+ Cr* exp (—20om log m)}.

Let u be the solution of the equation (for fixed r)
Cr? exp (—2oulog u)=1.
It is readily seen that, for large values of »,

log »
m=[u] + 1~ olog,r

log, r=1log log r,

whence

N2
log M (1) <o + &) (11—‘(’)(;’) :

=] .
g2 ?

By the formula of Mattson, mentioned above, we get
m (K) > exp (zn log n)
" Plae "™

Let us now turn to the case where K(x, &) is an entire function in =
of zero order. We may then write'

! This does not exhaust all the possible cases, but will suffice as an illustration of our
method. The same remark should be made below, in connection with our treatment of the case
where K (x, £) is an entire function of infinite order.
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[ &l <7 @) exp {(—ner(wly, o= 7HSL,

where % is a positive integer, and, as usual,

eO(t)Et7 €k (t) = €xp (ek—l (t))) k= vy, —2, —I1,0, 1,2, ...
logx t=e—x(?).
We now have

log M (r)<(1+¢&){m log r+ Cr® exp (— 2 mex—1(m°))}.

We shall treat separately the two cases £=1 and %> 1, assuming in each case
that m=/[u| + 1, where p is the solution of the equation

Cr* exp {—2per—1(u9))=1.
‘When 2=1 we have

1
m~ (log r)'*e,

o+2

log M (r)~(1+¢)(log #)7+1,

, . 1
and, by Mattson’s formula, since ¢ = vt e

7+1 2741 241 }
_— e

ry (K) > exp{i(z—l— )°* 2e+1) “nc

When £>1 we have

1
m~ (logy, r)°,

1
log M (r) < (1 + &) log r (logx )",

whence
1.
rn(K) > er (n’ )

There remains the case where K (x, &) is an entire function in « of
infinite order. Here we assume

1
T+ ¢

|%, (E)]| <y (&) exp (—on logy n), k=2, o=

)

y(§) <= L,.



68 Einar Hille and J. D. Tamarkin.

This gives
log M(3)<(1+¢&){m log r+ Cr*exp (—20m log: m)}
_ (log »)* .
\(z+é)logk+17" m=lu]+1,

where u is the solution of the equation
Cr? exp (—2o0p logi u) = 1.

In view of Mattson's formula this yields the result

rn(K) > exp (14—; n logy n) .

The results of the preceding discussion can be summarized in the following

Theorem 11.1. If K{(x, &) for almost all § is an entive function of w, given
by the expansion

(11.1) *
K= n@e,

=0
then
(11.2) ra(K) > exp (14_: n logy n), k=1,2,..

f 41 _prel ookt )
(11.3) r(K)>explz(e +1)° (2z+1) * n°®
L.
(11.4) 7-,L(K)>ek(n1 ), k=23, ...
according as
(11.5) 9l <r18) exp (1, nloge n);
14—

(11.6) il <718) exp (=" ),

[ N
(11.7) [(E)|<7(8) exp \ —nexs (n’“)l;

where y(§)< L,.
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Remarks. i. It is easily proved that if we can take ¢=o in (11.6),
(11.7) then formulas (11.3), (11.4) can be replaced by more precise ones, viz.

[ ﬂ _214—1 ﬂ
(11.8) ra(K)> exp \(1 —&)t(z+1) # (20+1) * n?f,
(11.9) 7",-.(K)>ek{(1 —e)n;}.

ii. A curious example of an application of the formula (11.2) is presented
by the kernel

Kz, £ =sin 2 nxk, o=z, 5=1.
This kernel is symmetric and closed since the equation
1
fsinznxgqa(g)dgzo, yla) <Ly,

0

whose left-hand member is analytic in z, implies for x=n/2

1

fsinnngqo(g)dgzo,

0

whence @(x)=o0. Since our kernel is not of finite rank it must possess infinitely
many C.V. [Hellinger-Toeplitz, 1, p. 1513]. On the other hand K (x, &) is not
definite since K (x, z) =sin 2 7x® changes the sign on (0, 1) [ibidem, p. 1510)].
Hence not all the C.V. are of the same sign. On the basis of the expansion

Kz, &= z(-(rz); (igl);!vil

and of theorem 11.1 we conclude at once that
I—¢
r(K) > exp (—-4n log n) :
We are not aware of any previous proof of this result.

iii. An example where the kernel is an entire function of zero order is
presented by
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K(z, &= D e (=P, o=z, 1.
=0

Since

2
>0

x

fﬂa)K : M(.t) dx = Ze—"’

r=0

flx’u(m)dx

unless u(x)=o0, our kernel is definite positive, hence closed. It has infinitely

many C.V., all positive. By theorem 11.1 and remark i. we have

.2
ru(K) > exp [(I"—é) {1—2772 ]
The following lemma may be of use in discussing more general kernels of
the type K (z, §) = K (x¥):

Lemma 11.1. Let K(x, §) = K(x§), where K(z) is analytic in the circle
lz2| = R. In order that K (&) be closed for the interval (a,b),0 =a < b= VR, with
respect to functions < Ly, it is sufficient that in the power series expansion

a€

K@= Yaz

=0

]

the coefficients ap, are # o, k=1, 2,..., where Z(pk)"l drverges.
k=1

Remark. We can allow a to be <o if the sequence {p:} satisfies additio-
nal restrictions.
Proof. It is no restriction to assame a=o. Let u(x)<L,. It is well

known that
b

/‘x”u(x)dx—%o as  v— o,

0
Hence K- u(x) is analytic at least in the circle || < R. Now, if K- u{x)=o,
the coefficients of all powers of x in the expansion of K - u(x) must vanish.
Since, by hypothesis, a, 70, we must have
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b

fgpk“(g)@:o, k=1, 2,...

0
Z’(pk)—l being divergent, this implies u(x)=o0 for almost all z [cf. Szdsz, 2,
k=1

p- 488; this paper gives extensive references to the literature on this question).
iv. The following two examples show that the estimate (11.2) for k=1,
that is in the case where K (z, £) is an entire function of finite order, can not

be improved, in the sense that the expoment —13 n log % can not be replaced

N

by a more rapidly increasing function. They also illustrate the fact that this
exponent is inversely proportional to the order ¢ of K(x, &§). We take

n=0
[Warsow, 1, p. 370] and

Ky(w, §) = Jy (V{1 — ) (1 + §) IV (1 + 2} (1 —§) = 2 i Ton1(2) @n (@) p(§)

n=0
[Bateman, 2, p. 135] where

2n+1
pnlz) = LZK P.x), n=o0,1,2, ...

are the normalized Legendre polynomials for the interval (—1, 1).

It is readily seen that the first of these kernels is an entire function of
order 1 while the second iy of order 1/2. On the basis of theorem 11.1 and
remark i. we should get the estimates

I—e¢

ro(K,) > exp ( n log n) v 1K) > exp (I—_‘E n log n) ,
while actually we have

ru(K)~V 2 exp [(n+1) log n —n (1 —log 2)],

rn(Ky)~ 2V exp [(2 n+ %) log n — 2n(1 — log 2)]
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12. Summary of the results.

For the convenience of the reader we collect in this section our main re-
sults concerning the growth of the C.V. for kernels of various classes. All the
kernels in the table below are assumed to < L,. We recall the definitions of

the following classes of kernels:

Class L'y, pp. 21, 26.

Class (3, q), pp. 21, 38.

Class (s, «, p, ps), Pp- 44, 46. This class can be characterized briefly
as the class of kernels for which D! K (z, §) is an «-th integral.

Class Lip (s, «, p, g), pp. 53—54.
Class C(s, l, c), p. 61.

Limiting cases of Lip (s, o, P, i)vil):

Lip (1) [p>1, «=0, s>o]c(s—1, 1, p, p%f) P 57

Lip (2) [p>1, a=1, sgo]C(s, 1, 1)’p£7)’ p. 57.

Lip 3) [p=1,e¢=0, s>o0], D' K(x, & is absolutely continuous in «z,

p- 57.
Lip (4) [p=1.a=1, s=o|, D' K(x,{) is of bounded variation in x, p. 58.

We set
a=.’s‘+a+1~1§ at,=.9+1~flr; 61=S+2—‘If'
P y p
Properties of the kernel Properties of the C.V. \
j |
1. | K, <L, 3% converges |

2. K(z, &) = (K, K,)(x, &), K,, Ky=L, 371 converges

3. | K(z, &< L', is Hermitian semi-definite 3! converges

| | A1

| 4. “ K(x> g)c(ﬁ) Q) mn ¢ —
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| Properties of the kernel 3 Properties of the C.V. ]
| \ ;
— ) | |
| 5. K(CC, = (S, &, D TI) : a0 > 0 I
. ? ]
{ | - '
6. | K (z, &)< Lip (s, a, p,;i—l) 1> COno (log )=~ [l
_ _ _— ]
7 K 9slip ) e
[ S —|
8. | K(x &<=Lip (2) % = o0 @
. e
R ‘
9. | K{x, §<Lip (3) ran— (log 1) 2-» oo ;
- S I o
, | L (
10. | Kz, &< Lip (4) > Cttt (log ) = ]

i 1
o=e<1 E ra> O (log nj—*= l
11. | Kz, §<Cs, 1, a) \ |
a=1 > On' 2 (log n)—*2 :
K (z, &) is analytic in 2 in an ellipsei . 1
12. with foei at (— 1, 1) and sum >R |
of semi-axes R, pp. 63—64.
D s - S
K(x7 g) ; %V(g)x ) 7 (g)c' L27 1 T > exp [I & n logk n] , w
13. v=0 47 ,

v

{8 < 7(§) exp [— - e loge ”] | k=1,2,... i
B o o, |
| K(‘ba g) = x*’(g)xv7 7(§)C L27 J Yn > exp [To n’ ] ) ;
14. v=0 % |
| L | o1 _aml
| e®lr® expl— w=tler)@ery
I B S _—
| J ‘ 1, |

§ K(xv g) = Z x“’(g) a”, 7(5) < L2v l Py = € (/ﬂ‘[ ) y

15, v=0 ‘

1 f
K \ L — i
el epl—san b)) TR |

10—31104, Acta mathematica. 57. Imprimé le 1 mai 1931.
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