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106 Ulf Hellsten.

Introduction.

1. Consider a homogeneous integral equation of the Fredholm type with
kernel K (z,y) and interval of integration (o, 1):

1

(1.1) 9@ =4[ K(zy) gy dy.

[}

x is restricted to the interval o < a < 1, and thus the kernel varies in the square
0=z =1, 0<y=1, its »existence-square>. Suppose that K(x,y) is o on the

one side of a certain curve in this square and of the form
(r.2) Kz, y) = P, (x) @ (y) + P;(x) Q,(y) + -~ + Px(x) Qn(y)

on the other side. The purpose of this paper is to give a method of determining
the characteristic values of the corresponding integral equations. They will be
obtained as the zeros of certain expressions which will be shown to coincide
with the denominators of Fredholm.

An equation of the Volterra type belongs to this class if it has a kernel of
the form (1. 2), because K (z,y) is 0 above the line y = x, a diagonal in the square.
It is well-known that this integral equation has no characteristic values.

Our class of integral equations might be considered as a generalisation in
a certain direction of the equation of Volterra. There will appear simple rela-
tions between the number of characteristic values, the form of the curve, and
the number N characterizing K (x,y) in (1. 2).

Integral equations of a type including this have been studied by G. ANprEOLI:
»Sulle equazioni integrali», Rendiconti del Circolo Matematico di Palermo 37
(1914), p. 76—112. He investigates the non-homogeneous equations and does not
obtain explicit expressions for the denominators of Fredholm.

In Chapter I we shall study a simple case, supposing that we have a line
parallel to the diagonal y = and situated above it and that the kernel is o
above the line. We first treat the case where the kernel K(x,y) =1 below the
line and then generalize to K(x,y) = P(x) @(y) and finally to K(z,y) of the
form (1. 2).

Chapter II is devoted to kernels, the boundary linein which is still straight
but no longer parallel to the diagonal y = x. We assume that the line is situated
completely above the diagonal and that the kernel is 0 above the line. These
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kernels naturally include those of Chapter I. Special attention has to be paid
to the case where the line goes through the point (0.0) or (1. 1).

In Chapter 1II we shall suppose that the line is still straight but crosses
the diagonal y = =.

In Chapter IV we shall determine the characteristic values of an integral
equation with a symmetric kernel that is 1 in the strip between two lines sym-
metric with respect to the diagonal ¥ =2 and o in the rest of the square.

Chapter V generalizes the results of Chapters I—1II to lines no longer
straight. Further we shall show that the expressions obtained are the denomi-
nators of Fredholm of the integral equations.

CHAPTER I

The Line y =z + a. (0 <a<1).
2. K(x,y) =1

We start with a simple case: suppose that the kernel is o above a straight
line parallel to the diagonal y = z and 1 below it. Choose the line (fig. 1):
Y

y=z+a, 0<a=<1) “'%71
b
The following notation will be useful: let u, v 0 1
be the lesser and u.v the greater of the real numbers V=X+(fﬂ
u and v.
The integral equation may be written: 1
' (0,a
e * I
(2. 1) plx)=1[ o) dy. *
0 Fig. 1.

Derivation gives:
, Aplx+a),ifo<z<i—a;
(2.2 ¥ )| .
o} y Mr—a<ze<r,
From (2. 1) follows that ¢(x) is a continuous function because x + a, 1 is con-

tinuous. Because ¢ (x) is 0 in the interval 1 —a < 2 < 1, @(x) is constant there:
@(x)=g@(1 —a)=g¢(1). In the interval 1 — 22 <z <1 —a (2.2) gives:

¢ {r)=2Ag(x + a)=1g1).
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By integration we obtain @(x) as a polynomial in z and A of degree 1. The
constant of integration is determined so as to make ¢(z) continuous at the
point x =1 —a.

In the same way, in the interval 1 —3a<ax <1 —2a @(x) is obtained by
integration of the expression for @(x) in 1 —2a4 <2 <1 — ¢ and adapting the
constant of integration to make @ (x) continuous at z =1 —2a. It is a poly-
nomial in « and 4 of degree 2.

So we can go on determining @(z) in the intervals 1 —4a <z =<1— 3aq,
I1—5a<zx=<1—4a,.... Finally @(z) is obtained in the whole interval o <
=< x =<1 and expressed as ¢(1). Putting this into the equation:

p(1)=4[ @) dy,

we obtain the condition that 2 has to satisfy in order to be a characteristic
value.

The calculations are simplified by using integration by parts.

Integrate (2. 1) by parts:

z+a,1 z+a,1

@ (x) =l[yqv(y)]—lofyqv'(y)dy.

1]

The expression in square brackets vanishes at the lower limit, therefore the
lower limit will be omitted here and in similiar expressions in the sequel. In the
integral substitute (2.2) for ¢’ (x):

z+a,l1—a

z+a,1 9

q)(x)=l[y(p(;5]——,—lzf¢(y + a)d%-

Note that the upper limit in the integral is reduced to x + a, 1 — a. Integrating
by parts again, the result is:

sHa, 1, gta,1—g TEG 1720

w(x)=l[y¢(y)]—%[yzqo(%a)] +/1"fqv(y + za)d%

0

Hence each integration by parts reduces the upper limit in the integral. Repeat
ing the process » times, » being determined by the inequality

I I
2. <Sa<—
( 3) n @ )l-—I,
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the integral vanishes and the following formula is obtained:

a+a,l x+a,1~a

(2. 4) w(x)Il[yqv(é)]—g[ygcp(wa)] +

3 x+a. 1—2n r+a,1—-{(n—1la

+ %[y“‘qa(y +;7)J — +{— 1)“—1§[y"qo[y + (n— I)a']]~

Writing this for the various intervals, we get:
(2. 4") I—anSI:¢(x)=}.¢(r)~—2—(x-—a)2¢p(1)+

—}-%3—3!(1 . 2a)3¢(1)—”'+ (_._ I)n—lj;_"![l —(72— I)a]" q)(l);

2

I—2aéx£1-a:q)(x)=/1(x+a)@(x+a)~%(l—a)2¢(l)+

738 in

= 2ar () =+ (— ) [ — (= 1) al* g (1);

3! !
1—3a=z=<1 ~2a:qp(x)=l(x+a)q)(x+a)——Z—z'-(xwLa)”qa(x-!- 2a) +
-!—,;'-8!(1 —2aP@(1)— -+ (— 1)"“’%[1 —(n—1)al” @ (1);

2

OSxSI——(n—-I)a:q)(w)=l(x+a)q>(x+a)—%(x+a)2¢(x+ 2a) +

2‘3 n—1
* 3

3 (x+alqx+3a)— -+ (— 1)"—?—)"~—(x +ayteglr+(n—r1)a] +

(n—1)!
yig
=== ar )
This gives different analytic expressions for ¢ (x) in the intervals
1—a<g<1,1—2a<zc<1—aqa, ...,052=<1—(n—1)a,

and we are able to calculate them successively. Putting « = 1, the first equation
of (2.4') becomes:

3 n

+ 7—(1 —z2aP (1) — -+ (— 1)"“%—![1 —(n—1)al"g(1).
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But ¢@(1)=o0 implies ¢ (x)=o0. Hence the characteristic values necessarily
satisfy:

(2. 5) 1—14—%(1—a)2——
A8 . (__l)n

——3~!(1—2a) oty

[t —(n —1)a]»= P, (2) = 0.

Every root of (2.5) is a characteristic value. This follows from the fact that,
A being a root of (2.5), the corresponding characteristic function is determined
by (2. 4'). We also see that this function is unique.

P, (%) is a polynomial of degree », and it will be shown in 10 that it is just
the denominator of Fredholm. When a varies and is not the inverted value of
an integer the characteristic values vary continuously with a. When a decreasing
passes through the inverted value of an integer a new characteristic value enters
from + oo, Thus, when a tends to o, the number of characteristic values grows
infinitely and their magnitude, too. In the limiting case, the Volterra integral

equation, there are no characteristic values.

3. K(%y)="P(x) Q(y)-

We now generalize the integral equation (2. 1) supposing that the kernel is
a function of the form K (z,y) = P(x) @ (y) under the line y = x + a. Assume that
P(x) Q(x) is integrable. The integral equation is:

z+a.1

(3. 1) gle)=1P() [ QW) ply)dy.

atal

The transformation ¢, (z) =fQ(?/) o (y)dy implies @ (x) =2 P(x) ¢,(x) and thus
0

changes (3. 1) into:

(3. 2) (@) =1 [ Ply) Q) @: y) dy.

1t is evident that (3. 1) and (3. 2) have the same characteristic values.
The derivative of ¢, (z) is:

, [AP(x+a)Qlz+a)g(r+a) ifo<z<i—a;
@1 (x) =
| o Jifr—a<x <.
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Introduce the following notations:
f Ply) Q) dy;
0
fg(x)=fﬁ( ) Ply + a) Qly + a)dy;
v

' d
.

f,,(w)=jf.,_1(y) Ply+»—1a) @y + w—1a)dy;

0

We integrate (3.2) by parts (observe that all expressions in brackets vanish at
the lower limit):

z+a,1 z+a,l
%(av):lofqol(. W) dfylw) = A[ £i0) 9.)] —
z+a,1 x4a,l m+al a
—)ffl Wy =21[£,0) 9, v ]“lffr y) Ply +a) Qly +a) o (y + a)dy =

x+a,1 z+ae,1—-a

=i e W] -2 [e v+ adfi).

Repeat the process » times, # being the number determined by (2. 3). The result is:

afﬂl :ia_,l_—g
(3.3) ——l[f,(v/ @ (y J—).Z[f2 a)]+
r4+0,1-2a r+a,l1—(n-1)a

+l3[f3 ¥) @, y+2a]—-~~~+(— 1) 1A"[f Y @, c/—i-(n——l)a]]

This is a relation of the same kind as (2.4) and may be written as (2. 4).
We see immediately that to every characteristic value there corresponds a single

characteristic funection. The characteristic values are obtained by putting x =1
n (3.3):

I—2A()+ 220 —a)—Bf,(1 —2a)+ -+ (— A"t —(n —1)a] =
= P,(d) =0

P, (4) is a polynomial in 4 of degree at most » whose zeros are the charac-
teristic values of (3. 1) and (3.2). In 12 the identity of P,{4) and the Fredholm
denominators of (3. 1) and (3.2) will be shown.
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4. K(x,y) = Z‘JIP«, (=) Q. (y)-

Next consider a kernel of the form (1.2) below the line y =« + a. The

corresponding integral equation is:

(4. 1) @ (x) =l—f— (2 { Py () Qv (y) }) @ (y) dy.

We introduce:

This gives:

(4. 1) is transformed into the following system of integral equations:

(3. 2) %(x):; r (Z P, (y) Qu @) @ (3/)) dy.
(u=1,2,..., N

Derivation gives:

¥
, ll » P (z + a) Qulx + a)p, (x + a), if o<z <1—a;
Pu (vU):l =1

o} ,if 1—a<az <.

The following notations will be used:

x

F () = f P, (4) Quly) dy;

0

S ) = / (2]’22 @) Py +a) Qy + a)) dy;

x
.

i (a:)=] (‘ngt-n WPy + (e—1)a) @y + (« — I)a]) dy:

7=1
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Integrate (4. 2) by parts:

f( df12(>)=x[2¢~(y) ,;Z(y)]——
z+a, 1 r+a, 1
_Zf (ij; )dy——l[z @ (y fi‘,i(y)]—
zta, 1-¢a
N N
—sz{z S D Pely + a)Quly + a)gely + a)}dy:

r+a, 1 ata,l—a

_1[2 @, (¥ Yy ]— }ff(z .y + a)df"";z(g/)).

0

The upper limit in the integral is reduced to x + a,1 — a. After » inte-

grations by parts (n being determined by (2. 3)), the integral vamshes:

s pum=1 [ S g () /1 y)] e [z mJ s
) zte,1-2a ) wta, 1-(n—1 a
a2 [Z @y + 2a) /2 (y)] — (et [Z @.ly + (n — 1) al S (;,)J.

This formula corresponds to (2. 4) and might be written as (2.4') giving the
different analytic expressions for ¢, (z), w=1,2,... N, in each of the intervals
1—a<g<I1,1—2a<x=<1—aqa,...,0=x=<1—(n—1)a Reasoning asin

2 we see that the characteristic values are obtained by putting x = 1:

(4-4) q)()—ls‘qo«(l)f‘:# y— a2 th )2 (1 —a) +

p=1

N

H"’Zw DG =20 =+ (=t 3 g (04— b — 1)al
v=1

(w=1,2,...,N).
8 - 61491112 Acta mathematica. 79



114 Ulf Hellsten.

Abbreviate:
P, Q) =2 (1) =2 00 —a)+ -+ (— 1A — (n— 1)a].
Then (4. 4) becomes:

’¢1 (1) =g, (1) P,; (2) + ¢2(I)P21 (A) + -+ ox (1) Py (A);
P2 (1)= (Pl(I)Plz () + ¢2(I)P22 (l)f*' il s ‘Px\'(l) Pxs (4);

ox(1) = @, (1) Pix(&) + @, (1) Pon (&) + -+ + @x (1) Pyn ().

This system of equations, linear and homogeneous in ¢, (1), @, (1), ..., @n(1),
has a solution different from ¢, (1) = ¢, (1) =--- = @y (1) = 0 when and only when
its determinant vanishes. @, (1) = @, (1) =" = @x (1) =0 implies @, (z) = g, (x) =

= .= @y (r)=0 everywhere in o <z <1. Hence the characteristic values

necessarily satisfy:

P, (2)— 1Py (4) - Px1 ()
Pzz(l) Psz(l)_l"'PM ('t)

PIN(}-) Pyx(2) - Pxx (l) —1

Every root of this equation is a characteristic value because the corresponding
characteristic functions are determined by (4.3). The left-hand member is a
polynomial in 4 of degree »- N at most.

CHAPTER 1L

The Line y = bx + a. <0sas1,0s»1~b_~(fs 1).

5. The line does not pass through (0,0) or (1,1).

Suppose that the line in the square is y = bx + a, (o <a=1,0=< 'Iv;f-l < 1) .

This line goes from the side (0, 0), (0, 1) to the side (o, 1), (1, 1), (fig. 24a), it is
thus situated above the diagonal y = x and avoids the points (0,0) and (1, 1).
We assume the kernel to be 1 below the line and o above it. The kernel of 2
is the special case b=1.

The integral equation becomes:
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Y
1-a,1
Yoo (L) —
o i
y=bx*fz ; J
|
| | f | ixa
(0,a)(| | o~ & 0
A L .
X {a,0)
Fig. 2 a. Fig. 2 b.
br+a, 1
(5-1) pl@)=2[ oy dy.
0
The derivative is:
Abg bz + a), if0<x<‘—_—(;—g;
¢ ()=
L l—ua
o) , if - <x<I.
b
Integrate (5. 1) by parts:
bx+a, 1 bx+a, 1 hr+a, 1 ')x+a’}€q 2
’ S T K/
pl)=1[ypW)] =1 [yp' Mdy=1[yp®)] —2b [ gty + a)a%-
o h !
The upper limit in the integral is reduced to bx + e, ! ;a_ Repeat the process

with the new integral:

1—qa 1—a
b» JE—— —a 3 -
x4 a, b brta, EE,” bx+a, 5

#b [y +adl =2 [y 9t Jr—)]l-ﬂbl;1 Vo (by + @) dy =
20 | glby +a)dly=" by 9ty + o] =2 519 (by + a)dy =
0 0

72 S

A 9 o o » . V , 2 !/3
=7 b[yﬁgp(by + a)] —).”;‘“fq)(b‘g/ + ab + a) dy-
o

Repeat the integration again:

l—a-—ab
- -—ﬂvbr'iwﬂ br+a, l—f—gh;qb
A3 pr+2 : LA YU RS
b q)(by+ab+a)d§=v§—'-b ly q;(bg/+ab+a)]_

brta,

0



116

1—~a—ab

bz+a, i

8
A8 prease (b y+ab+a)d —l—b‘“ 1/
517 v b
0

Ulf Hellsten.

1-g—ab
—

y+ab+ar—

bx+ta,

bx+a,

__},4b1+2+3.] 9)(b3y+ab +ab+a)d%-

[}
Generally:
b, 10T —ap?
pr—t
: b1+2+"'+"‘1)f¢ (b>~ly + ab*~% + gb*~? + ab + a)d% =
0 -
bz+a, l—a—ab;v-—-l.__abv—z
Y
= P - Ul (b ly + ab® "t + ab* i A+ -+ ab + a)] —
v! q)
br+a, 1—a—ab—. - -—abp?— !
b‘l’
Taz)
T f«p(b y+ab T +ab? +ab+a)d b+l

After n steps the result is, summing up the arithmetic

and geometric series:

bz+a, 1l bx+a, 1;—“
N Bt g lz . v
(5.2)  g@=1ilyeW] -5l oly+a]+
1—a ¥}
bzta —.b_f'f",l
)‘8 1+2[ b? :-—?)&WM#—-
3 b Y 9)(() y+a T ] 4
B4, - e
L) R pi Ny
B AR L [/ ¢(?’” Ly + 7,—:—;)] n
b’ljl
bx+a,l _ b
pn

‘

. (_~ I)" Aty

u”"\"l

ninth [ Bt — 1 o
: fq’(b 1/+ab~~~~l) e

0
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If n is determined by the inequality:

b1l —1 " —1
—_ < ey
(5.3) L <1=ayo

the integral in (5. 2) vanishes. Then (5. 2) is analogous to (2. 4) and may be written
as (2.4'), giving the » different analytic expressions for @(z) in the = intervals

b2_1 bn‘l-—_l
1—a x——a} 1 1 t—a b—1
— ) — — a —_
— =1, T == » o= —m—— —
b b b pr—1

An argument identical with that of 2 shows that the characteristic values satisfy
the equation obtained by putting x =1 in (5.2):

AP 2 YA | b2 — 1\3
(5-4) I~l+2—!g(!—a) —?iﬁﬂ(l—ab_l) + o
(——l)” 1 et — g n_’
+ n! "(nz:l_) I1—a b——T ——Ps(l)=0

Pg() is a polynomial in i of degree n. To every characteristic value corresponds
a single characteristic function. In 10 it will be shown that P,(4) is the Fred-
holm denominator of (5.1). Kernels of the form (1.2) instead of 1 under the
line are treated as in 3 and 4. But these results are included in 12 and 13.

6. The integral equation associated with that of 5.

Naturally it has the same characteristic values, but we shall show how the
preceding method may be so modified as to be directly applicable.
The development that we shall obtain will be of interest in 7.

The kernel is o in the square below the line y = 3{_;;@ and 1 above it {fig.

2 b). The integral equation is:

1
(6. 1) p(x)=1[ gy dy.
o,’b;“
The derivative is:
o} ,if o<z <a;
9 (x) = — 4 (:L‘—a .
5 b ,ifa<zxz <.
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Integrate (6. 1) by parts, arranging that the expressions in square brackets vanish

at the upper limit:

x

p@=1{pWdy=afp@dy—1)=i[y—1)e®)] —2[ly— 1) ¢ @ dy=

0 0,

|
-

Repeat the process with the new integral:

1 1
2 y—a (y—l_)f_l”i[ e (.u—a) __/1_2_/'(.1/—1)2 ,,u~a> _
b q’( b )d 2 a0l g | T e\t )=

r—~a z—a r—a
a, —5— a, - a, b

T—a T—a
4 == a+ab,—b~
Generally:
1
y—abv—-l_l y—a bw_lfT_I_
v b—1 | (y—1) A 1 ) b—1
viv—1) @ b1 d 21 2;! v (v —1) (y —1) P\ br—1 +
b 2 b °
p*— 11 o
2711 e i h
b—1 ' b 1
_ ab‘“ —1
+ lr+1- y— h — I_ (‘/ _ l)v-i-l
(v + 1)! ~kf) b (v + 1)!
b’l’_l r—
S5 s
The result after » integrations by parts is:
0,528 55"
5 * y—a
62 gE@=—iu—new)] -5 [o—e("59)] -
Ml Y2
b=1" b
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~1loy 2—q
a r—a

b-1 ' b 1
ol g1
CONE I P (AU T § el I LIS U Ve
77! bn(yt)—l) ?/ 1 w bn—l In_(n‘:l] ¢ b’n (,2 -+ 1)]
- )

.

b"——l’ r—a

R TS

1f »n is determined by the inequality (5. 3), the integral in (6. 2) vanishes. Then
(6.2) corresponds to (2.4) and gives the expressions for ¢ () in the intervals
b*— 1 b —1 b —1 —t—
<r<a-—- S
b—1 Y1 TETAR T Ty

@ (x) is constant in 0 < x < q. Putting x = 0 and remarking that ¢ (0) = o implies

O=Szr=g as<zxr=a =xr=1.

pl@)=0 in o<z =<1, we conclude that the characteristic values satisfy the
equation obtained by dividing (6. 2) for z =0 by ¢ (0). We obtain (5. 4) as expected.

7. The line passes through (0, 0) or (1, 1).

I —
b

inequality (5. 3) determines no finite # and the expansion (5. 2) does not terminate.

In & and 6 two cases have been excluded: a = o0 and a_ 1. Then the

We shall deduce the equation for the characteristic values first by the preceding
method and then by considering integral equations with analytic solutions.
Another method will be given in 8 showing further that the functions obtained
are the denominators of Fredholm.

(o) The case @ =0. () > 1). The integral equation is:

(7.1) () =1[ 9 dy.

The derivative becomes:

Ab g (bx), if o<x<i~;

(7.2) ¢ () =

P |
o ,1fz<ac<1.

Expansion (5.2) may be written:

(7.3) qv(x)21[.1/9)(?)]*%?:[1/%(@)] + };b‘+2[#“¢(bzy>] -t
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1
1 bz, -

ey 13
n 7i{n=1) b n(n-{i

_ ) [ n
n-—- T n n— n Jn y
+(—1) lﬂb 2 [y (b ly)] + (—1)rirtlp 2 f(p(b"y)ady.
0

We first assume the existence of a characteristic function ¢ (z). Putting z =1
in (7. 3) and substituting ¢ for 4"y in the integral, we obtain:

YL S L LA
¢<I)=¢(x)[1—;!b + ey —.——] +
b 2
An+l 1 !
+ (—" I)"W@fw(t)tndt.
b % 3

1
The integral f @ (t)t"dt is bounded for every = because {* < 1 in the interval
]

of integration. Hence the last term tends to o when » tends to infinity (b > 1
in this case). It will be shown below that ¢ (1) =0 implies ¢ (#) =oino<ax=<1.

Thus the characteristic values necessarily satisfy:

A1 A (—apr 1
(7.4) I*l+a5_§!ﬁ;§+.“+7ﬂbﬂ@‘;‘_’j+.”=H1(l)=o'

Next it will be proved that every root of (7.4) is a characteristic value.
If 2 is a root of (7.4) we can derive the corresponding characteristic function

from (7.2). Proceeding from the constant value ¢ (1) of ¢ (z) in ?I)Sx <1 we

I

. . . . 1 I
determine ¢ (x) successively in the intervals e =z=< B =
)

b2’

grating (7.2). The constants of integration are determined so as to make ¢ ()

=x= --+, by inte-

3

Yy

I
I
@ > o0, and, knowing that ¢(o)=o0, we have only to show that the function

continuous at the points %, 3‘2, So @ (z) is uniquely determined for every

just determined is continuous at the point x ==0. That means:

(7.5) lim ¢ (f) =o.
gm0 b
But

90(2)=lf«p(y)dy=¢(I)—7~fl¢(y)dy-
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In order to express the last integral in ¢ (1) only, we shall treat it by in-
tegration by parts:

l_fqv(y)dy= Momdy—ea=210—gg()—1[(ly—e¢ ) dy.

£ £

In the new integral put ¢’ (x) from (7. 2), substitute ¢ for by and integrate by
parts again:
!

1
l[J-S y)dy = 1* bfy——s o (by) dy Xf'f(;—)—s)qz(t)dt:
be

_lebf (,_,‘)-:'fb(f - 5)2¢(1)—).?b u(p'(t)tﬁ.

Repeat the process again:

1 t 2 1 t 2
(-4 (i)
Bb | g at=200 | (b dt =

2!
Fb‘ be
1(£_6)2 1 (l—e)s
A%b W/ (&) dt = 231 +2 (y)d W =
PYR P\ 3!
% b2¢
1 Y 3
28 3 (5_2 - 8) ,
g'b“’" (b2 e) @ (1) — 2580142 BT 4 {y) dy.

Determine # = n(e) by the inequality:

L, 1

m =< bn-—-l

Then the integral vanishes after n steps and the formula becomes:

(7.6) ¢(§)=q)( )[r—k(r —&) 4 &,,(5 ~—£)2— %b‘“(i; )3 +
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To prove (7. 5) comes to the same thing as to show that the square bracket
f (7.6) tends to o when n tends to oo (¢ tends to o). Hence we shall show:

],)T '(‘V 1) 1 £y
lim Z 71'7' (I)"':i — 8) = 0.

»—>O

To see this, write the sum:

n{e) (__ l),‘, v(a'.-—l_) I » n (&) (__ 11)1' 1
2 vl b - (?)7:_8):2 e

=0 »=0 b 9

+2(:wi) WI:T)( e —1]1=8, + 8,
b 2

When ¢ tends to o, then = tends to oo and S; tends to H, (i), which is o
because A satisfies (7. 4). To prove that S, tends to o, replace its terms by their

moduli:
"=y |z| 1
|8y = 2 " v(«-~1)[(1 sy <Z T 1) — by — 1.
v=0 T p 2
Since o< el ! << Z;Zé?” <1, =0, 1, 2,...,ne), we have the inequality:
—1\» 1 ”
Hr—el-1)p —1)=<1— (1 _b"(s?“") .
Hence:
7 {¢)
M)HI" 1 1 v 2 n (¢
SI= o 1,(,,_1)[1 — (I—Wj) ] =Z + 5 + S3; (e. g. assume n (e)
y=0 b 2 »=0 n\f
2
to be an even nuamber)
n n (o) n {e)
LT
1 1\" 1y 2 Al 1
S |<Z =l R R nm) =T “‘n??-*) 2 e
y=0 b2/ 52 =0 } 2
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But lim [1 — (I — }ﬁ )
B b: b

every 4. Hence S and Sy tend to o when ¢ tends to o, that is # tends to oo,

o0
. A1,
] =0 and the series Z L‘I ——— 1s convergent for
v
r==0

Thus we have proved that the constructed function is continuous at x=o0,
which means that it can be admitted as a characteristic function. We also see
that to every zero of H,(A4) corresponds one and only one characteristic function.
Note that H,(A) is an integral function of genus 0. Hence the integral equation

has an infinite number of characteristic values.

(3) The case }~2—2=1. (b < 1). The characteristic function is analytic in

the whole of 0 =<« < 1, hence we cannot use (5.2) to obtain it directly. Instead

consider the associated integral equation:
1
(7.7) (@) =2 [ @) dy. (See 6).

Put x =0 in (6.2):

( bn—l —1\" o — 1
1—a ———— —a——
A S b—1 Y s y b—1 ) (y— 1)
2l bﬂ?}:ﬂ Tonmsn | 9 T
2 I
[ ¥

Wr-1

h—1
y b* —1
—gl

Substitute ¢ for

e in the integral, observing that a=1—25.

12 13 . (_ l)" n ("):1_) i
99(0)[1—/1+;!b~——3—!b1+-+-~+ ReSUEN B

1

nintl) — 1)
+ ity 2 fgo(t)(i—l> dt=o.

n!

0

Assuming the existence of the characteristic function ¢ (z) we conclude as in (e)
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that the remainderterm tends to o when »n tends to co. Hence the character-

istic values necessarily satisfy:

2 3 __ a\p nin—1)
(7.8) I——l+§—!b——§—!b‘”+~-+.(~—~l)ﬂb o+ =H,(})=o.

n!

If 1 is a root of (7.8), the corresponding characteristic function is obtained in
the following way:
The derivative of (7.7) is:

o , if o<z <a
(7.9) o x)={ 1 (z—a\ .
—32\—5) ifa<ax<i.
@ () is constant for 0 < z < a. Proceeding as in (a) we can obtain @ () succes-
g 2 __ 3 _
sively in the intervals a <z <a %~_—TI, ab?;*% =r= abb_ II .., if we inte-

grate (7.9) and determine the constant of integration so as to make ¢ (z) con-
b —1 B b —1
b—1’ "b—1" """

tinuity of the so constructed function for x = 1. This may be done as in ().

It remains to show the con-

tinuous at the points «, «

(y) Other method. In (¢) aud (8) we could construct the characteristic func-
tions because we knew an interval where they were constant, and, starting from
that interval, could determine them by recursion. But when there is no such
possibility we have to proceed otherwise. This is the case with the integral

equations:

br+1—-b
(7. 10) ¢(x)=lf99(y)d.@/; (};a:I)
(7. 11) ¢ (@) =1 ) dy

(the integral equation associated with that corresponding to a = o).

These integral equations have characteristic functions analytic everywhere
in o<z =1. Hence we can form their Taylor series in a suitable point. We
shall do it for (7. 10) only; (7. 11) can be treated in exactly the same way.

The successive derivatives are:
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@ (@) =2Abpbxr + 1 —b);
@ (@) = Ab g (b + 1 — D)= V2 (B2x + 1 — bY);

n(nt+1)

P (x) =228 1 e+ 1—b);

In the point & = 1 the n:th derivative is:

n(n+1)

M (1)=2A"b * (1)
Hence the Taylor expansion becomes:

. ‘ i (x— 1)2)\.2 pit2 {® — I}nlﬂ b”_(’?‘f“ + -
pl)=g ()1 +l&—Dib+ = LR H '

We see that ¢ (1) = o implies p(x) =0 in 0 <x < 1. Noting that

p(1)=24[ @) dy,

we get (7. 8).

CHAPTER III.
The Line y =bx +a, (0sa<1,a+b=1).
8. K(x,¥)=1.

Consider a straight line crossing the diagonal
y=x. We suppose that it goes from the side (loa-t)
(0,0), (0, 1) and first that it goes to the side (1, 0),
(1,1) of the square (fig. 3). Let the equation of
the line be: y=bx +a, (0<a<r1,0<a +b=1)

Supposing that the kernel is 1 below the line and

o above, the integral equation can be written:

br+a

(8.1) (@) =1y

The equation (7. 10) is the special case @ + b =1 and we can use the method
of 7, (), to determine the characteristic values of (8. 1).
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The characteristic functions of (8.1) are analytic in the whole interval

0 =<z = 1. This is shown by calculating the derivative:
@ ()=1bep(bx + a).

For = in the interval o < z = 1, the point y = b + a is also in that interval,

hence the derivatives of all orders exist and ¢ () is analytic. The %:th derivative

becomes:
n(n+1) 1 — B
(p(") (x) = irh 2 @ (b".Z‘ + aT:\I;) .
The invariant point of the transformation y = bz + a is xzf{%ﬁj, hence we
expand ¢ (x) in its Taylor series in that point:
a nin+1) a
(n) { .. R R} 2 S I
4 (I——b) e qj(l—b)’
a \?
a (9:— 1 F—w?;)
— afp— 2 AR AR T F YRR
@ (x) (I—-—b) 1+ (x b)]b N AFpii? 4
e
C— — &£ n (n+1)
+ Vﬁ-nlr:_,b” JBPIEIT L : ",Li . —'{L—'l”‘b T
! n!

Note that the counditions which we have imposed on ¢ and b: 0<a =<1,
o0=a+ b=1, imply that [4| =< 1, hence the series is convergent.
Putting the series for ¢ (z) into the relation:

4

1-b
a
P (‘i'—: 6) =), . f @ () dy,
0

we obtain the equation for the characteristic values:

ha { la \* 1 la \?
8.2 ] — e —_ — — 1+2f 7 PN
(8.2) I——b+2!b(1-b) 3!b (I—b)+ *
1 1}(71;)-—15 — L\
Except for |4|=1 H,(i) is an integral function of genus o having an in-

finite number of zeros.
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If we release the conditions imposed on « and & and only put o=a =1,
a+ b=1, the line goes from the side (0,0}, (0, 1) to the side (1,0), (1,1) or
(0,0), (1,0) and b <1 can be less than — 1. If b < — 1, p(x) is no longer ana-
Iytic and H, (1) diverges for every 1. These kernels will be treated later on by
considering the associated integral equations.

Next we shall apply another method to (8. 1) which will give the denominator

of Fredholm. Consider the corresponding non-homogeneous integral equation:
bat+a
(8.3) g(@) =1 g dy+gl).
0
(Suppose that ¢ (x) is integrable.) The derivative of (8. 3} is:
g (x) =Abp(bx + a) + ¢ (z).

Integrale (8. 3) by parts:

heda

(@)~ Albw + ) p(br + a) + A [y ¢ (y) dy = g ().

Use the expression for ¢’ (z):

br+a be+a

plx) —A(bx + a)p(bx + a) + it%fqa(by + a)(lg:!:g(x)-l] g ) dy.
1] G

Repeating the process » times, the result is:

12 72
(8. 4) @ (x) — (b2 + a).¢(bx + a) + %b(bx +a)Pe (ng + a}il‘) —

—b
e . 1—13 (— A 2D ( I—z,n)
— L R1+2 5 3 L PR AP/ 2 b n n, ol

3!2/ (bx + a) qo(bx+al_b) + i (bx+ah b za- +

ba+a br+a

nin+1) I — M\ g )
F(—aptrp f(p (I,ny + « . “b):i dy = g(x) — lj vy (y)dy +
0 0

hz+a heta
a 79

A%, o Ao . s .
+ i A / v a (by + a)dy — 3 b**"fg/‘*g (bgy + a%;l;) dy + - +
’ ‘() 0
1) br+a
N AU Uit — 1
4 ( l) L2 1 .”n g' (bn—l Y+ u_I_I,%_'_;g) dy

n! _
0
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The present conditions imposed on the line imply that {#| < 1. Since ¢ (z) is
bounded when i is not a characteristic value, the integral in the left-hand member

of (8. 4) tends to o when n tends to oo. Put g(z)=1 and x=»;:‘i——b- into (8. 4)
and let n tend to co. Dividing both members by H, () of (8.2), the result is:

-5 o(i2) =

Compare this with the Fredholm expression (notations from E. Goursat: Cours
d’'Analyse Mathématique, tome II1, 4:th edition, Paris 1927, page 368 f£.):

1
X
@ (x)=12 Elg%l;) (y) dy + g(),

0

or in this case:

a a
1—b Foli—1).}
11)( A AfD AV dy + D)
(8. 6) @ T =2 _NY 1/, +oy=_Y Y .
1—b D y D)
1)

The numerator of (8.6) will be shown to be 1. Then (8. 5) and (8. 6) are identical
and we can conclude that H,{i)= D().

We shall make use of the Fredholm identity for D (:'A)

(8. 7] p(j’;): K(z.g) D) + zfp(fl;.)zc(s, W) ds.

y = 0. Since K(x, o} = 1 we obtain:

Put x = ——,
1— b

e a
D'I;bl =DW+1 | D ’;bx ds.

Consequently, it is enough to show that
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The Fredholm expression is:

L) =K+ Ky Kles) Klos) - Kos)
11 1 K(sl’y) K(sp 31) K(317'5'2)"' K(Su‘%)
o0 . )' v . » :
+ Z—-T)m fj j K (s5,y) K (53,8,) K(sg,85) - K(s9,8) sy ds, -~ ds, .
: 0 g e .. .

K(SW.' 7/) K (S% Sl) K('S’,,, 82) T K(SV) S“’)

Thus:

¢ a a a
D I;bz =1+ IK(I—b’S‘) K(I—b’s2>”‘K(x—b’S”)

11 L |1 K (sy,84) K (s, 55) K (34, 84) e d y
0 ( a\y g 8 sy - A8,y .
-1-2< l) /ff 1 K (85, 8) K (s, 85) - K (85, 84) P
!
r=1 50 0
1 K(s,,s,) K (sy,5,) - K (s, 8)

The determinants in the right member vanish at every point ¢, s, ..., s,. This
can be proved in the following way.

If two or more of the numbers s, s,, . . ., s, are equal or if any s,, u=1,2,...,,
equals . i b the determinant vanishes because two rows become equal. If not,
they are all different and different from ) 66”[7. Let s, be the greatest and s, the

— U

least of them and treat the two following cases separately:

a) b =o0. When g, > : _(i the (p + 1):th column consists of zeros only and

b

thus the determinant vanishes. When ¢, < f]—j—» all the nambers s, 55, .. ., s, are
less than . i ) The determinant vanishes because the first and (¢ + 1):th co-

lumns are equal (consist of ones only).

a
b) b<o. When s,> P— all the numbers s;, s5, ..., s» are greater than

and the (p + 1):th column contains nothing but zeros. When s, < 4

a
— b 1—b

all the numbers «~, s, ..., s, are less than ;_‘LI, and all the elements in the
— 0

. . . . a
determinant become ones. It remains to examine the determinant when s, > T
- {J

9 61491112 Aecta mathematica, 79
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and s, < -I-g—é. Note that a + bs, is the greatest and a + bs, the least of the

numbers {a + bs.}, pu=1,2,...,v. If s, > a + bs, the determinant vanishes be:
cause the (p + 1):th column consists of zeros only. If s, <a + bs, we deduce:

Sp—a

(The equality sign only for = — 1).

Hence s, is less than all the numbers {a + bs.}, g =1,2,...,» and the
(g + t1):th column in the determinant consists of nothing but ones. Thus the
determinant vanishes, having two equal columns.

We have shown that

and infer that D(A) = H, ().

The integral equation (7.10) of 7, (), is the special case a + b= 1. Con.
versely, if we have treated (7. 10) completely and shown that its denominator of
Fredholm is just Hy(4) of (7. 8), we may derive the characteristic values of (8. 1)
for b = o in the following way.

For z < —"— the kernel of the integral equation (8. 1) may be looked upon

as having the smaller existence square of side —£— (fig. 3). The characteristic

b
values then satisfy (7.8) with Z.~I {ljb substituted for 2 which gives (8. 2).
For 'I'»%"b < x =<1 we write the integral equation (8. 1):
l1—a
b bx+a
(8.9) p@)=1{gldy + [ ol dy
0 1-a

v
Assume that Z is a characteristic value and ¢ (x) the corresponding characteristic

. . . . . . a
fanction of the integral equation in the smaller existence square. For x > T3

the first term of the right member of (8.9) is a constant and hence (8.9) can
be regarded as a non-homogeneous equation of the Volterra type, which always

has a unique solution.
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The result is that the characteristic values for o =< x =< 1 are determined
by (8.2).

We can see the same thing immediately by considering the denominator
of Fredholm:

1

(8.10) D=1+ g(—vvmflfj

If any one of the variables s, s, ..., s, is greater than ;

&

(53, 51) K (85,85) - K (83, 84) ds, dsy-- - ds,.

| K(S’W Sl) K (81’7 82)‘ K (51', Sr)

a
p—

the greatest of

them, which will be denoted by sp, is also greater than ; i Since we assume

=
that b > o, the p:th column consists of nothing but zeros and the determinant
a
1—b
means that the denominator of Fredholm of (8.1) is identical with that of the

. This

vanishes. Hence the upper limits in the integral may be reduced to

same integral equation considered in the square of side : _a_ 5

Finally we shall treat the case which we omitted earlier where the line
y=>bx + a goes from the side (0,0){0, 1) to the side (0,0)(1,0) in the square:
o=a=1,a+ b<o. We shall deduce the Fred-

holm denominator from the results just obtained.

The line intersects the x-axis in ——% and the

y-axig in a. First reduce the existence-square to

the square of side g, —6—; (the kernel is o outside
this square) (fig. 4). If —ZZ a, that is b > — 1, X

we are back in the previous case and the charac-

teristic values satisfy (8.2), H,(A) being the deno-
minator of Fredholm.

When a > —% we consider instead the associated integral equation. which
z—a
b
and o above it. This line is of the previous type and we get the denominator

of Fredholm from (8. 2):

has the same characteristic values. Its kernel is 1 below the line y =
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9. K(x,y)=1.

As another example let us use the method of integration by parts to determine

ia

+

Ulf Hellsten.

1 1f da \2 1 1 la \?
1—b+5_!5(1——b)_§5”_2(1~b)+m+

I I — A a\® .
a mmm\ ) T
b

2

CHAPTER 1V.

A Symmetric Kernel.

the characteristic values of an integral equation whose kernel is 1 in the strip between

two lines symmetrical with respect to the diagonals y=xand y=1 —x, and o in

Y

(1-a,1)

(0,0

el

y

=X+Q

1,1-a)

the rest of the square. This kernel is symmetrical.
Hence we know that the characteristic values exist,
are infinitely many and real-valued. Only a simple
case will be treated here: the lines y = x % g,
(3 =a<1) (fig. 35)

The homogeneous integral equation is:

(9. 1) g =1[ gy dy.

Differentiating (9. 1) twice in the interval o = x <

=1-—a, we obtain the differential equation ¢" {x) + A*¢@ () = 0o with the

condition ¢’'(0)=2A@(1 —a). Hence there is a single characteristic function

for every characteristic value.

For 1 —a<xz<a ¢(z) is constant, thus ¢(a) =@ (1 — a). Since the kernel

is symmetrical with respect to the diagonal y = 1 — x, change x to 1 — « in (9. 1}:

14+a—a, 1

g1 —a)=1[gdy

1~a———;r, 9

Substitute 1 — ¢ for y in the integral:

e, d

o (1 —-x)*——?»fg)(l — f)dt.

r~a,
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Hence ¢ (1 — x) is a solution of (9. 1): g (1 — ) = Cp(x). To determine C observe
that @ (a) = @ (1 —a). When ¢ (a) o this gives (= 1. But when ¢(a) =0 we
determine ( in the following way

1 1—a 4 1
plaj=o=1fgpWdy=1[[+ [+ []
0 0 «

1-a

The second integral in the right-hand member is o because ¢ (x) = ¢ (@) = 0 in its
interval of integration. In the third integral substitute 1 — ¢ for #:

I-a

i [gldy + il —gdy =1 + VA [ ply)dy.

Y

Hence 1 + C=o0 or (= — 1.
We shall have to make a distinction between two cases: @(a) # o and
@ (a) =o.

a) ¢la) #0. () =g —x).
First determine a relation between ¢ (o) and ¢ (a). The integral equation gives:

44

1—a a
pO)=ifpwdy=21[gudy +i[gydy.
0 1-a

1 1—-a a

gpla)=2[oWdy =1 oW dy +1[owdy +i[gb)dy.

0

But ¢ (z) = ¢ (1 — x) implies:

1—a 1
A owdy =2 [l dy.
0 a

@ (x) is constant in the interval 1 —a < x =< @, hence:

oWy =1(za—1)gla)
1—a
We derive the following relation between ¢ (o) and ¢ (a):

(9. 2) 92(0)=%tp(a)[1+l(2a—1)].
The derivative of (9. 1) is: '
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Ap(x+a),ifo<z<1-—a;
¢ (z)= o ,if1—a<z<a
—Aplx—a), if a<z<1.

Integrate (9. 1) by parts putting z = o.

p©)=2[gy)dy=Lapla) —i[y¢ (y)dy;

a 1-n 1—a
, 2 12 2
lfw (y)dy=l”fq)(y+ a)d‘z—!=—,(1 —a) (1) — l*fy—,q? {y + a)dy;
0
1—-(12 1—a s 13 1—as
l’f‘z-!qv'(y + a)dy=~l"f¢(y)d':—!= —u—afeli—a) + 2 %w'(y)du
0 ]
Generally:
1-a 1-a
2 y‘zw , d _ AZv+1 )d y2v+1 _
g f(zy)!q)(y+a) y== fq)(y (2y+ 1)l
0
il 2v+1 2v+1 r y! ’
‘—m(l—a) p(t—a)+ 24 f(”_H)!qJ(y) v;
0
1—a 1—-a
l‘zv+1f y2v+1 ’( )d __12v+2f ( + )d ygﬂ-‘) —
J Gyv+ P VW= : LA Py T
}‘21'-4—'2 e y2v+2

_—_—~~___(1 __a)‘h+2‘p(])__l2v+2f(

(zv + 2)! i ¢y +a)dy.

2y +2
0

After 2n + 1 steps we have:

9 () =Za<p(d)_“i—2!(1 *a)gw(l)—g%(l —a)8¢(1 —a) + i—t(l —-a)497(1) +
+§(x~a)5¢(x —a)-—---+(—1)"(-z%i(l*a)2"9’(’)+
¥ (— )n%(l — a)2n+1q,(1 —a) + (— 1)**! 12n+2.{¢ (y + a) (21;2':'11)! dy.

0
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Since ¢ (z) is bounded the integral in the right member tends to o when =
tends to co. Introducing (9.2) for @ (o) we obtain:

09 g@|i—1+50-a + Lo ~arpa—n-
—i;(l-ay—-g(: ) (Ba—3) e+
+ (— I)H—l(ji:)!(x —a (- I)N—l(;%(l —apr [gan—(zn—1)] + ]=

=g(@) |20t —sinA(1 — a)] — cos (1 — a)[1 + 2(2a — 1)]] =
:(p(a)-zcos<§+)~l:a)[ZSin<§—lI_a)__

2

— cos (f—l—l—g—g) [t +i(2a— I)]] =gl(a) - E(A) =o.

The assumption @{a) # o implies E(A) =0, hence the characteristic values
necessarily satisfy E(1)=o, if the c¢orresponding characteristic functions are
different from o in a. We shall show that every zero of E{1)is a characteristic
value and that E(A) is the Fredholm denominator of the integral equation (9. 1).

@ (x) is analytic in 0 <z <1 —aand g(x) = @ (1 — z). Putting ¢ (1 —a)=1
calculate its Taylor series in the point z = o:

¢ (@) =Aelz + a); ¢ (x) = — P pla);
9" (@) =—1g(z + a); ¢ (@) = 2 @ (z);

P () = (— PG+ @) g (n) = (— 1A g (a);

po)=4[1 + A(za—1)]; ¢’ (o) =4,
9=~ htia—nli  g"l0)=—2%

9™ (0 = (= 1P [+ dfea 1)) ginoi(o) = (— 1 am,

The power series becomes:

— = [t +4(za—1)] + sin A 2.
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We have to confirm that (9. 4) satisfies the integral equation. It is sufficient to

1+ A(2a— 1)

calculate ¢ (1 —a) — (o) =1 . The integral equation gives:

1 a 1 1—a
pli—a)— g0 =2[pWdy—A[ o dy=rf ol)dy=1[ () dy.
0 0 a 0
Substituting (9. 4) for ¢ (z) we have to show that:
1—a 1—-a
lfw(g/)dy:lf{go—s’z\&ﬂ[l + A{za—1)] + sin ly}dysz 1 —I—‘{j%l——i»—)-
0 0

If we simplify, this becomes:

1+ A(za—1)

> [1 + sin A(1 — a)] = cos A(1 — a).

(9-5)

But (9. 5) is obtained by multiplying #(2) = o by

_cosilt—a) o (75 Ll
1 —sin A{1 —a) = 2

This factor is finite except for 1= i’z - (j{ + nn), (n=o0, t1,+2,...). These
)

exceptional A-values are zeros of K(A) because FE(A) contains the factor

1 —a

cos (34—1 ) Hence F(i)=o0 implies (9.5) except for these exceptional

Z-values.
We have shown that all the roots of K (2) =0 except those coming from
the factor cos (;j + lLEE) are characteristic values, each of them with a single

characteristic function, determined by (g.4). The zeros of cos (~47E + 11*;—3) give

no characteristic functions with ¢(a)>% o, but it will be shown in a moment

that they correspond to the characteristic functions with ¢(a) =o.

b) ¢(a)=0. (@ = — @1 — )
Putting @ (0) =1, the Taylor series for @ (x) becomes:
A xt At

(]J(V(): 1 _2| + n — = COS X A.
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To determine . note that ¢ (x) satisfies the integral equation:

1—a

@ (0) = Af(p(f/)dy zlfcos Aydy=sin {1 —a) = 1;
) [}

@1 — a)=cos (1 —a)=o0;

The characteristic values are thus the common roots of:

cos (1 — a) = 2 cos (lr + 2 }____f?) oS (ﬂ — 1= a) = 0;
4 2 4

lI —sin 2(1 —a) = 2 sin (n—/l—l» f-a) oS (n + X,I;,T,,‘,‘) = 0.
4 2 4 2

. .. I—a
We infer that these characteristic values are the zeros of cos (Z#—Z»-—»; n)

which we had to exclude in a).

So far we have proved that the characteristic values of th: integral equa-
tion are just the roots of If(4) = o, each one of them giving a single charac-
teristic funection. All the zeros of I/(1) are simple. We shall now turn to the
proof that (1) = D (%), the denominator of Fredholm. Since the integral egaation is
symmetrical and has a single characteristic function for every characteristic value,
the zeros of D)(4) are all simple. Hence D (1) and I (1) have the same zeros,
all simple. They are both integral functions of genus 1 at most, thus they
differ only by an exponential factor « ¢®. Observing that the first two coefficients
in their power series are equal, we get: «= 1, §=o0. Hence D(A) and E(Z) are
identical.

It is also possible to prove that D (1) = E(i) by the later method of 8.
Consider the non-homogeneous integral equation:

ata, 1
(9. 6) pl@) =4[ gy + 1.

x—a, 0
It is obvious that ¢(z)= ¢ (1 —2x). (Here there is only one case to be con-
sidered). The relation between ¢ (o) and ¢ (a) is:

w(o):%q)(a,)[l +A(2a— 1)] +

Lo

Integrating (9. 6) by parts as was done with (9. 1) (or observing that ¢ ) satisfies
the differential equation ¢"(x) + ¢ /2) = 0) we get:

a :eos).(l—a)'
(9.7) ¢ (a) o)
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Compare (9.7) with the Fredholm expression:
1

D (“

Y

@(0)21 ——D(—l)—d’l/'i-I:

1

) o

0

0@+Dm

D)

0

a

1
Since A fD(Z‘Z) dy + DA} = D(a ).) , (8.7), we have to show that D(
0

1) =

= cos A(1 — a), which is possible by calculating the Fredholm determinants.

a
a

The numerator and denominator of (9. 7) have the common factor cos (% +

+21=

a)‘ This is due to the fact that the characteristic functions corresponding

[ —
2

to the zeros of cos (% + 2 a) are orthogonal to 1 in the interval o =z < 1.

The method of integration by parts is also applicable to integral equations
of the type (9.1) generalized in the direction of Chapter V with the curves
symmetrical with respect to the diagonals y =2 and y=1 — .

CHAPTER V.
The Curve y — f(x).

10. The line does not pass through (0, 0) and (1,1); K(x,y) =1.

Y n Generalize the kernels of 2 or & supposing that
0 f J the line is no longer straight but curved. Let its
' equation be y = f(x) and suppose that it goes from
©.9) the point (0, a = f{0) to the point (¢ = f~1(1), 1) (fig. 6).

Impose the following conditions on f(x):

<
>
>
3‘_

1 (@): f(x) is non-decreasing and thus has an inverse

r /' (x) almost everywhere.
: X (8): f (x) exists and is integrable.
Fig. 6. (y): f(z) > «, which means that the curve is situated

above the diagonal y = .
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We shall prove that under these conditions there is only a finite number
of characteristic values. For the sake of brevity extend f(x) to be 1 in the
interval f~!(1) <z < 1. The integral equation is:

(10.1) p(z)=1[g)dy.
0
The. derivative is:

(1f @ o [f@)], it o<z < f1(1);

¥ (@)= 0 it )<z <1,

Integrate (10. 1) by parts:

fle) 1 fla), 1
p)=1{yp ]—lfw )dy.

In the integral introduce the expression for ¢’(z} and substitute ¢ for f(y):
f)1 J@, £, 1

iy Wdy=2[yf e lf]dy = l;(f—)_f“(t) @ (1) dt.
i} RE()

0

(f* (@) means f[f()], generally S (@) is the n:th iterated function f(x)).

Using the notation f S y)dy = f,(z), the last integral may be integrated
P
by parts (the expression in square brackets vanishes at the lower limit):

SRz, 1 S, 1 Flx, 1 o)1
By el y—-lgfqv Yf, () =iy qv(y]—-l”ff; dy.
s

Repeating the process % times and using the notation:

ffv—l [f- )] d?/,
f"’(o
the result is:
J{x), 1 T2 &), 1 fz), 1

(10.2) g =2[rpw] - 2L ew] + P[AWe W] - +

)1 e

+(— P 2 [ e @] + (— 0+ s [ )] 9 ) ay.

f" (0}
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Determine » by the inequality:
(10.3) S o)< 1 < (o).

7 i1s a finite number in consequence of condition (y). Then the integral in (10. 2}
vanishes and this formula is a generalisation of (2. 4) and (5. 2).
In order to determine the characteristic values put z =1 in (10.2). Since

@ (1) =0 implies @ (x) = 0 they necessarily satisfy:
(ro. 4) 1= 4+ 2 0) = 2L0) + -+ (= A far (1) = Py(d) = 0.

Every root of (10.4) is a characteristic value because the corresponding charac-
teristic function is determined by (10.2). The fact is that (10. 2) determines ¢ (z)
successively in the intervals (1) <z <1, ()= <f10),..., U<
S =fU(1) o<z <f0"U(1), (compare (2.4")). It is evident that every
characteristic value has a single charaeteristic function.

In 11 we shall prove that P,(4) is just the Fredholm denominator of the
integral equation ({10.1). If we assume for a moment that this is proved, we
have not far to look for the following remark. The expression (8. 10) for the
denominator of Fredholm as a sum of integrals of determinants does not contain
J'(x), neither does the left-hand member of (10.4). Hence we infer that condition
(8) could be omitted and that f' () has come into the calculations for formal reasons
only. This can also be shown, without having recourse to the denominator of
Fredholm, by verifying that (10. 2), which does not contain f” (z), is a consequence
of the integral equation (10.1).

The kernels of 2 and & are special cases of the kernel of this section.

Finally notice that there is another simple method which enables us to see
immediately that the integral eqmation (10. 1) has at most n characteristic values.
For consider the iterated kernels. First extend the function f(x) defined in the
interval 0= = f~1(1) to the whole interval o <x <1 by making it 1 in
i) =x=1. We get:

K& (z,y) = [ K(z,5) K(s, y)ds = f(z) — f~ (), o.

(Here K (x,y) means the kernel of (1.1) and not K (x,y) of (1.2)).
K (x, y) is different from (and greater than) o for f{x} > f~'{y) only, that
is below the line y = f?(x).



The Denominator of Fredholm in Some Types of Integral Equations. 141

K® (x,y) becomes:

(2

)
1 1 o i =2 (4«
KO (2, y) = [ Kz, s) K? (s, y)ds = f_gf‘,if(s) Sy s 37 =

0 L if fle) = 2 (y).

K® (z, y) is different from o for y < f*(x) only. In that case it is the sum
of one function of « only, one function of y only and one function which is
the product of a function of z by a function of .

Next calculate K" (z, y). This function is different from o for y < f*(x)
only, in that case it is the sum of one function of x only, one function of ¢
only and two functions which are products of a funection of x by a function of y.

Generally K" (z, y) is different from o for y < f*(x) only and is then the
sum of one function of xz, one function of y and » — 2 functions which are pro-
ducts of a function of « by a function of y.

Defining » by the inequality (10.3), the n:th iterated kernel K™ (x, ) is
different from o in the whole existence-square. Hence K '™ (z, ) is of finite rank
and has at most n characteristic functions. We know that the characteristic
functions of K (z, y) are among those of K™ (z, y) and hence conclude that the

integral equation (10.1) can have at most n characteristic values.

11. The line may go through (0, 0) and (1,1); K(x,y) = 1.

When the curve of 10 goes from (o, o) to (1, 1): f{o)=o0, f(1) =1, there is
no finite » determined by the inequality (10.3) and the expansion (10. 2) will not
terminate. We shall proceed in another way, at the same time showing that
the obtained expression is the denominator of Fredholm.

First assume that conditions (e) and (8) of 10 are fulfilled and (y) except
for x =0 and «=1. Follow the method of 8 considering the non-homogeneous
integral equation:

{r1.1) q)(x):lfq)(y)Jrg(J;).

g’ (z) supposed to be integrable) We shall use the following notations:
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Si@) = [ f(y) dy;
)

fuld) = [ £ 17 ) dy;

A= [l W) dy;

Use the relation ¢ (z) =A1f (x)p[f(x)] + ¢ (x) and integrate by parts » times:

(11.2) g @) —2f (@ f@] + 2L @) e[ @] — 2412 @] e 4 @)] +

Fian (2)

+o (A U@ e L @] + (— A [ @) s [ ()] dy =

Jlz) S (x) i)
=9@—2[yg Wdy + 2 [£,)g' ) dy— ¥ [/ Wdy + - +

ST (=)
+ (= " [ famr (9) 9’ (v) dy.

This expansion does not terminate and therefore we shall examine the order of

magnitude of the positive quantities f,(z). From condition (y): f(z) = « follows:

v+

S Hz) ==z It is evident that f,(z) < YR Hence the integral in the left-hand

member of (11.2) tends to o when » tends to oo. Put g(z)=1 and z=1 in
(11. 2):

(11.3) ()1 —A+ 221 (1) =2 f(1) ++ + (= fumy (1) + -] = 1.
It is to be expected that the characteristic values will satisfy:
HQ)=1—A+240) =20+ - + (= fumr(1) + - = 0.

We shall prove that H; (1) is the Fredholm denominator of the integral equation
(11.1). (11.3) may be written:
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Compare this with the Fredholm expression:
1
D (x

4
plc) =12 ---j)lmm (y)dy + g ().

0

zofp(;
1) =

We get:

x) dy+ D) (x
— O

D) D)

A

The identity to be proved is D (;ll) = 1. The Fredholm formula for D (; ' l) is:

(82,81) K (55,80) -+ K (5,8) | dsy dsy -+ dss.

" 0 Y K (s, 0) K (e, 8,) K (30, 85) -+ K(5s,54)

K(x,y)=1 when x> y. Hence K(1,0)=1. All the integrals can be shown to
be o0 because the determinants vanish in every point s, 8, ..., S». Let s, be the
least of these numbers, or one of the least if several of them are equal to each
other and less than all the rest. Then the first and (p + 1):th columns are equal,
congisting of ones only. Hence the determinants vanish everywhere. We infer
that H,(4) of (11.3) is the Fredholm denominator of (1. 1).

To obtain an explicit expression for the characteristic function ¢ (x) cor-
responding to the characteristic value 1 we can proceed as follows (the method
is the same as that of 7, (a}, which gave (7.6)). Supposing ¢ (1} to be known,
@ (x) satisfies the following integral equation of the Volterra type:

1

qv(x):—lf(f)qv(y)dy + @ (1).
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‘We shall use the notations:

i
g: (e, y) = [ dy;
Jia)
9

g: (@, y) = [ gy (=, /") dy;
JElz)

Y

g+ (2, y) = [ goer (&, /1) dy;
SV (=)

Integration by parts gives:

1

) — )“f¢(?/)d[y —fl)=g1)— lfgv(;?/) dg, (x,y) =

@) Sl

9
&
|
<

=g(1)—iglz, )p) + /}f)gl(x, Wy (y)dy.

Since ¢’ (z) = Af" (x) ¢ [ f(x)] the new integral can be written, substituting ¢ for f(y):

gy W) dy =4 [ gy (o, 9) f ) @ Ll dy = 22 [ gy ()" ) (1) at =
Sfix) Jx) SE@)

1 1
=22 [ ) d g, )= 2 gy (o, V(1) — 22 [ g, (s, O g (Bt
SR 72 (z)

After n integrations by parts we have:
pa) =gt —2g,(z,1) + 229, (z, 1) — 22 gy (e, 1) +

o (= AP gl L (=2 g ) (1) de

f?lﬁ'»](w)
The integral tends to o when » tends to co. Hence ¢(x) is determined by:
(11.4) g@lo)=¢()[1 —Adg,(e. 1)+ g, (2, 1) — - + (=D gule, 1)+ -]

Note that (11.4) defines a function ¢ (z) for every 4, since a non-homogeneous
integral equation of the Volterra type has always a unique solution. But when
% is not a characteristic value we have @(1)= o which makes ¢ (z) = o.
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As in 10 we can show that condition (8) concerning f(x) could be omitted.
Modifying the righthand member of (11.2) by integration by parts to get rid
of the derivative g’ (x), the result is:

9(@) — 1f(x) g Lf(@)] + AL @) g L2 ()] — BLAHLEA ] g L (@)] +
S2(z)

S =)
+ o (= A L@@ + A gy dy — 2 [ g()f () dy +

Sf3{=) S (2)
+ 22 (g AL Wdy + - — (= A [ g) fama [F2 ()] dy.

Then (11.2) does not contain f’(x) and ¢’ (x). We can directly verify that (11.2)
is satisfied by the solutions of (11.1), independently of the existence of f’(x)
and ¢ (x).

When condition (y) is not fulfilled, that is the line passes across the diagonal
y =z, the same method can still be used in certain cases, e. g. for kernels
-similar to those of 8. When f(x)=x for x=a, 0<a < 1), flz) >z forx<a
and f(z) < z for > a, we obtain the denominator of Fredholm by considering
the kernel in the smaller square 0 <2 <a, 0 <y <a. Also condition () can
be relaxed in certain cases.

Note that the kernel of 10 could be regarded as a special case of the kernel
of this section.

Finally we shall carry through the actual calculation of the Fredholm denomi-
nator in a special case, viz. on the supposition that the kernel is 1 below the
line y = 2% (0 <a =<1), and o above it. We get successively:

1
(R 1

1 2
= x xr o«
f—l(x)zxa’ .fl(r):_“_;y.fz’(x): 1 I I\
1+ - (I+*')(I+'“+—§)
a a
1 1 1
x1+z+a’é+ +a'"
fn(fl)— 1 I i ) 1
R S R R
a a” a
e 3
D(x)=1—7+l—i— Il —
I+ - (1+)('1+—+ ,)
a a”
__l)n
+ + o

10— 61491112 Acta mathematica. 79
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When a=1 we get D(A)=e* This is the Fredholm denominator of the

VYolterra integral equation with kernel 1.

12. K(x,y) = P(x) Q(y)-

Generalize the kernel of 11 assuming that it is P(z)@(y) below the line
y=f(z) and o above it (compare 3). Again consider the non-homogeneous inte-
gral equation:

[flx)
(12. 1) p@)=4P@) [ QW e dy + g ().

The transformation:

gives:

(r2.1) is changed into:

Sflx) Sflx)
(12.2) pi(@) =1 [ Py) QW) g ) dy + [ Q) g () dy.

0 0

Sl
Putting ¢, (x)zfQ(g/)g(y)dg/ we shall treat (12.2) by integration by parts in
0

order to obtain its denominator of Fredholm. Finally we shall show that the
Fredholm denominators of (12.1) and (12.2) are identical.

Introduce the notations:

(12.2) ean be written:
sia)
@, (’C) =1 ‘ @1(!/) d Fy (.’I) + (JJ)

U

Operating as in 11 we obtain:
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(12.3) @ o) = AP [fl@)lg [f(@)] + P F[f* (2] o [F (2)] —
— B E [ @) g, L2 )] + -+ (= B[ @) o L (=] +

PERRNEY Sz

+ (= [ FST WP Q) i) dy = 0, () —4 [ Fily)g. (y) +

S S
+ 02 [ By () gily) dy— -+ (=" [ Fa (y) g1 () dy.
Q i}

Suppose that P(x) @ (x) is integrable in 0o < x < 1. Sinceo < f~1(x) < x we see
that the integral in the left-hand member of (12.3) tends to o when % tends
to co. Putting ¢, (x) = 1 and x =1, (12. 3) becomes:

o ()1 —=2F (1) + 22 F, (1) =22 F,(1) + -+ (— A Fo(1) + - ]=1.
Denoting the expression in square brackets by H, (1), this can be written:

‘P1(1):}1—:(—l)'

We shall identify this formula with the Fredholm solution of (12.2):

Dl<x )

K
@, (€)= 2 le(“--gl Ydy + g, (x).

0

(Let D, (le) and D, (1) be the Fredholm functions for (12. 2))'~

FYor g,(x) =1,z = 1 this becomes:

1
z[pl("/’z) dy + D, (A)

@, (1) = D, (%)

By proving that the numerator is identically 1, we infer that D, (1) = H ().
In the formula (8. 7} put x =1, y=o:

D, ( } >_1)( 100 )[1) )+ 2 /}Dl (;‘;) d,/]-

o

On the other hand the Fredholm expression for 1), (;'7) is:
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I K(I)O)K(I)SJ)K(I)82)'”K(I,S")
D. (0 IZ) =K(1,0)+ K(s,,0) K (s,,8,) K (81, 8,) -~ K (s,,50)
K (s5,0) K (85, 8,) K (85, 85) -+ K (s,85) ds, dsy---ds, =

K (5,,0) K (50, 8,) K (s, 85) -~ K (84, 85)

1K(1,8)K(1,s) - K(1, s)

IK('SlaSl)K(Sl) 82) K(SleV)
VK

i(—v‘l)vj'[ f 1 K (85, 8,) K (s, 85) -+ K{s3,85) ds‘ldsg--'ds.,].

1 K (sv,8;) K(s4,8) -+ K{ss,8)

The determinants in the integrals vanish at every point s,,s;, ..., & of the in-
terval of integration. # =y implies K(x,y)= P(y) Q(y). Among the numbers
Sy S, - .., Sv there are always one or more which are the least. Let s, be
one of them. Then the (p + 1):th column consists of the numbers P (sp) Q(sp)
only and is therefore proportional to the first column, making the determinant

vanish. Thus we have shown:

Dl(;il)=P(o)Q(o)=P(o)Q(o)[1 + Aflpl(;’z) dy]
D, () + ljD, (;I}.) dy =1 (even when P(O)Q(o)—_—c.;)).

We have proved that H,(2) is the Fredholm denominator of (12.2). It remains
to show that (12.1) and (12.2) have the same denominator of Fredholm. De-
note that of (12.1) by D(i). Let E(x,y) be the kernel of 11, 1 below the line

y =f(x). The Fredholm formulas are:
D@)=1+ P(s) Q(s)) E(sy,8) Plsy) Q(se) Esy,00) - Plsy) Q () E(sy,54)
< (—'Z)"fff P(sy) @(s1) E(sy,51) Plsg) Q(s3) Elsz, 55) - Plsy) @) E (s, ) ds, dsy- - -ds,
=186 b [ Pls) Qs) Elsnsy) Pls) @ls) Elses) - Plsy) Q(s)) E s, 53)

D, (A)=1+ P(s,) Q(s)) E(sy, 8y) P(s,) Q(s.) E(sy,8) - Plsy) Q(S'v) E sy, 5)
2 (=4 f f ) f P(s) Q) Elsoy51) Plss) Q(ss) Elspyss) -+ Plss) @ s2) Esa, ) | ds, dsy- - d

=1 e b P(s) Q(s) E(sr,5,) Psy) Q{s5) E(8s,85) -~ Pls) @80) E (85, 8)
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D(2) and D,(1) are identical because corresponding integrals may be written:
101 1 E(sl’sl) E(sls 32) E(SI:SV)
j j [ Elss) Elsys) - Elsus)| - T Plom) @ (on) dom
0 0 0

ey

13. K(x,y) = éPv (=) Q.(y)-

Finally we shall consider a kernel of the form (1.2) below the line y = f(z)
of 11. Assume that the functions {P,(z)} and {Q.(x)}, v=1,2,..., N, are
linearly independent and that the products P, () @,(z) are integrable.

The integral equation is:

J(z)

(13. 1) f {Z P, }¢(y)dy.

v=1

Calculate the resolvent I'(z,y; 1) in the point 2 = 1, y = 0. The functional equa-
tion for I'(x,y;A) can be written:

Slx)
'z, y; A f{ZP } (s,9;4) ds +

N
" D Pix) @ ly), if o<y =<flz)
=1
o i fle)<y=1.
Regarding y as a parameter this is an integral equation with I'(xz,y; A) as the
unknown function. For y = o it becomes:

Iz

(13.2) I'(z,0;4) = }.f{v ()} (Sold-?'f'Z‘Pv @ (o).

y=1

Instead of treating (13.1) directly, we shall consider the following system of
integral equations:
S(a)

(13.3) P ——xf {ZP ()}ds+Q#() w=1,2,..., N).

@u(z) determined, we obtain I'(z,0;4) by the formula:
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(13 ) Ko ) = 3 Py (@) g la).

r=1

Integrate (13.3) by parts introducing the notations:

U f P, (y) Qu () dy:

Fiala) = [{Z P/ ) P (o) Ql(u}dJ,

—

=

[ {2 P U ) ) @ <>}dy;
The result is:

Pu (z )*l PRl @] Lf (@] + 22 “Fii[f @] s [f* (@)} —--- +

41 r=1

f",Tl (2)

F 3 PR e e+ o [ g marg (x>}= @ (o).

i =

The integral in the left-hand member tends to o when # tends to co. Making

x =1 we obtain:

(13.5)  @u(1)— l“fvil()qv« +12FW Do (1) =+

r=1 =1

+ (= “I")(I)qvv(l)wLm:Qu(o}.

Abbreviate:
EpW=AFR0 =2 F0 () + -+ (= v FO () -
Since f(x) =« it is obvious that F,, (1) is an integral function of 4. (13.5) can
be written:
e (1)1 — E, ) — @ (1) Eyy (A) — - — @y (1) Exi(2) = @, (0);
i (})1(1)]’:12(2’) + ¢2([)(I - E:)e(m) T q)\( )EA'2('1) = Qz(o);

(13.6)

— (1) Eax (1) — g, (1) Eax (1) — - + @5 (1) (1 — Exx(®) = Qx(0).
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This is a linear system of equations in ¢, (1), @, (1),.... @~ (1). Putting its solu-

tion into (13. 4) we get:

o P Pl Pl |
0, ) 1—F, A — I, 4 — FEyvi(4) ]
Q. (o) —Eu ) 1 —FE.0 = Eys ()
Px0) —Exy{A) —E,»w{)- 1—FEyy(4)
I'1,0,4)= S e
I — Eu (}) - ]5-3; \"“) o - E,\‘l (M
— E () 1 I,,(1) — Ex2(4)
—Eix(4) —Ex(@) 11— Eyx()

The characteristic values are the zeros of the determinant in the demominator.
If # denotes the rank of the determinant there are .N — » corresponding charac-
teristic functions which can be determined in the following way. '

(13.1) corresponds to a homogeneous system of integral equatious ((13.3
with Q.0 = o). From there we can derive a linear and homogeneous system of
equations in ¢, (1), @, (1), ..., @x(1) (13.6 with @, 0 = o).

Since the determinant has the rank = the system has N — » linearly inde-
pendent solutions. {¢, (1)} determined, we obtain {¢,(z)}, v=1,2,..., N, by a
method corresponding to that which was used in 11 to derive (11.4).

Finally we get the characteristic functions by the formula:

N

@ (1) = 2 P, (&) g, (x).

r=

—

14. A line tending to the diagonal y=«x.

We shall examine the behaviour of the charac-

teristic values of a kernel which is o above a line

tending to the diagonal y = . When the line consists

the integral equation is of the Volterra type. In 2 we E""'" {
saw that all the characteristic values of a certain kernel : l
tended to oo when the boundary line tended towards ; [
the diagonal. }]1

0

of the diagonal there are no characteristic values since T
|

|

|

i

|

i

Suppose, e.g., that the line consists of the dia- X X; :

gonal curved upwards between the two points’ x, and Fig.



152 Ulf Hellsten.

z, (Bg. 7) and that it satisfies the conditions of 11 in the square z, <z < x,,
o=y =uw, It is easy to see that the characteristic values are obtained by consi-
dering the kernel in the smaller square. To prove this consider the homogeneous

integral equation (compare 8)
1
p(x)=1[K(x,9)pH)dy.
0

(K(x,y) = o above the line).

When 0 < z < g, this is a Volterra equation. Hence ¢(x) = 0 for every 4 when
x <z, When z,< x =<z, regard the smaller square x, Sz =2, T, =y =z
and calculate the characteristic values of K (x,y) in it.

When z;, =z =<1 we write the integral equation:

(14.1) @ (x) =lflK(w, Yelydy + lfo(x, Yoy dy.

Let A be one of the characteristic values of the kernel in the smaller square.
Then the first term of the right-hand side of (14.1) is a known function. (14. 1)
can be regarded as a non-homogeneous integral equation of the Volterra type.
Hence it has a unique solution.

We obtain the characteristic values as the zeros of the Fredholm denominator
Dy (A) of K(x,y) calculated in the smaller square. The Fredholm denominator
D(A) of K(x,y) in the square 0 <z <1, 0 <y < 1 has the same zeros as Dy (4).
Hence Dy (4) and D(4) differ by a factor .

The characteristic values depend on the shape of the line between x =,
and x =z, and tend to oo when z, tends to x,.

An exemple: let the line consist of the left and upper side of the square
Ty ==y, Xy <=y =z, and assume that the kernel is 1 below the line. Denote

S 2
the area between the line and the diagonal by ¢: &= u This kernel
has a single characteristic value 1 = 50—% tending to infinity when x, tends to x,.
17 %o :
We have:
L

More general: for the kernels of 10 and 11, if H;(i) is of genus o, we have:
L,
T2

& again denotes the area between the line and the diagonal y = x.



