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Introduection.

1. In the theory of almost periodic functions the study of mean motions
and of problems of distribution forms an interesting chapter.

Historically, the subject begins with Lagrange's treatment of the perturbations
of the large planets, which leads to a study of the variation of the argument of
a trigonometric polynomial F'(f) = ape'’'+ --- + a, e'*~¥!. Apart from some cases
considered by Lagrange, this problem was first treated rigorously by Bohl {1] and
Weyl [1], who by means of the theory of equidistribution proved the existence of a
mean motion whenever the numbers 4; —4,, .. ., Ax — 4 are linearly independent.
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Closely related to their method is the treatment by Bohr [1] of the distri-
bution of the values of the Riemann zeta function {(s) = (¢ + 7¢), or rather of
the function log {{s), in the half-plane o>} It depends on a certain mean
convergence of the Euler product, first applied by Bohr and Landau[i], and on
the linear independence of the logarithms of the primes. The method has been
further developed in Bohr and Jessen [1], [2]. Two main results have been obtained.
One concerns the distribution of the values of log {(s) on vertical lines and states
(in the terminology now used) the existence of an asymptotic distribution fune-
tion of the function log (s + <) for every fixed ¢ > }, possessing a continuous
density I';(x) which is positive in the whole x-plane when ¢ < 1. The other result
concerns the distribution of the values in vertical strips and states for every
strip (3 <)oy < 6 < 0, and every « the existence of a relative frequeney of the
zeros of log {(s) — x in the strip, which depends continuously on ¢, and o, and
is positive for all x when o, = 1.

The function {(s) is almost periodic in [1, + o] and so is, too, the function
log &(s), whereas a certain generalized almost periodicity is present for } <o =1.
This almost periodicity makes the results less surprising, but was not used in

the proofs.

2. A new treatment of the distribution of the values of log S (s) on vertical
lines was given in Jessen and Wintner (1] in connection with a general treatment
by means of Fourier transforms of distribution functions of functions of a real
variable which are almost periodic in the ordinary or in a generalized sense.
The existence of the density F,(x) is here obtained by an estimate of the Fourier
transform of the distribution function, and from its expression as a Fourier
integral it followed, among other things, that it possesses continuous partial
derivatives of arbitrarily high order. In the case } <o < 1 it was even shown
that it is a regular analytic funetion of the coordinates. Similar results were
obtained regarding the distribution of the values of {(s) itself on vertical lines.

The distribution of the zeros of an arbitrary analytic almost periodic func-
tion f{s) in vertical strips was studied by Jessen [1] by means of the so-called
Jensen function defined as the mean value q>f(a)=lltl{log [ fle+t)|}; it was

shown that this function is a continuous convex function and that the relative
frequency of zeros of f(~) in a strip ¢;< o <o, inside the strip of almost perio-
dicity exists and is equal to (pjigy — @rley)/2r whenever g/(o) is differentiable
at the points o, and ¢,. An addition on the variation of the argument of f(s)
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on vertical lines has been given by Hartman [1], who proved that the mean
motion of f(o + it) exists and is equal to ¢;(0c) whenever g;(0) is differentiable
at the point 6. A systematic exposition of this subject, including a complete
treatment of Lagrange's problem, has been given in Jessen and Tornehave [1].

These investigations of the Jensen funection concern functions which are
almost periodic in the ordinary sense. In the case of the zeta function they
are therefore only applicable in the half-plane ¢ > 1. Together with the above
mentioned result on the existence and continuity in ¢, and ¢, of the frequency of
zeros of log {(s) — 2 in 6,<(0<0, they show that the Jensen function @i, —:(0)
of log {(s)— x is differentiable in o>1 for all x. In the closely related case of
an almost periodic function f(s) with linearly independent exponents in the
Dirichlet series an even preciser result is known. It has been shown in Jessen (2]
by a combination and extension of the method from the zeta function and the
Fourier transform method, that in this case the relative frequency of zeros of
Sf(s) —x exists for any strip ¢, < o < 0, and any x and is the integral over the
interval oy <o <<g, of a certain continuous function. This means that the Jensen
function @;-.(6) of f(s)—x is twice differentiable with a continuous second
derivative.

3. The object of the present paper is to round off the previous work by a
treatment of mean motions on vertical lines and of zeros in vertical strips of the
functions log {(s) —x and {(s) — z in the half-plane ¢ > 3.

Since the zeta function is almost periodic only in a generalized sense in
the strip 4 <o =1 we must first extend the results connected with the Jensen
function to certain cases of generalized almost periodic functions general enough
to include the functions log {(s) —x and {(s) — 2. This extension, which may
be of some interest in itself, is given in Chapter I.

In Chapter IT the functions log {(s) and ((s) are dealt with. We prove that
the Jensen function @iog:—z(a) = Itl{log |log $(o + ¢8) — x|} of log (s) — = exists

and is a twice differentiable convex function in the interval } <g< +o00. For 6>}
we have @iog:-«(0) 00 for any x. For every o>} the function log{(o+it)—x
possesses a mean motion which is equal t0 @iog :~~(0), and for any strip (} <)o; <o <o,
there exists a relative frequency of the zeros of log {(s) — =z in the strip, which
is equal t0 (@iog:—2(09)—@log:~2(01))/2w. The second derivative iog:~(0) is obtained
in the form @i :-.(0) = 2 7w G,{x), where G,(r) is a continuous function of o and «,

which for every o > } represents the density of a certain distribution function
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analogous to the distribution function of log (s + ¢£). It has similar properties
as the density F,(x) mentioned above; thus it possesses continuous partial
derivatives of arbitrarily high order and is in the case }§ < g <1 even a regular
analytic function of the coordinates; if §<o=1 it is positive for all x. Similar
results are proved for the functions (s) — x.

For the convenience of the reader we have included proofs of most of the
known results which we need. In particular we have included a treatment of
the asymptotic distribution functions of the functions log (o + 7¢t) and {{o ++1)
for every o > §.

Of earlier results in our subject we have mentioned above only those which
are of direct importance for the present paper. A detailed account of the de-
velopment of the subject has been given in the introduction to Jessen and
Tornehave [1].

CHAPTER I

Mean Motions and Zeros of Generalized Analytic Almost
Periodic Functions.

Ordinary Analytic Almost Periodic Functions.

4. We shall begin by stating the above mentioned results of Jessen and
Hartman as they appear in Jessen and Tornehave [1]. First we must mention
certain definitions which will be used throughout.

Let f(s) denote an arbitrary function of the complex variable s =0 + t,
which is regular in an open domain (G and is not identically zero. The function
arg f(s) is then defined mod. 2 7, by the condition f(s) = |f(s)]|e’*8/¥), for all s
in G, with the exception of the zeros of f(s).

Let L denote an orientated straight line (or segment) belonging to G. We
then define the left argument arg™ f(s) of f(s) on L as an arbitrary branch of
the argument, which is continuous except at the zeros of f(s) on L, whereas it
is discontinuous with a jump of — ps, when s passes, in the positive direction
of L, a zero of f(s) of the order p. Similarly we define the right argument
arg™ f(s) of f(s) on L as an arbitrary branch of the argument, which is continuous
except at the zeros of f(s) on L, whereas it is discontinuous with a jump of
+ pm, when s passes, in the positive direction of L, a zero of f(s) of the order p.
In a discontinuity point we use as value the mean value of the limits from
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the two sides; the two functions arg™ f(s) and arg* f(s) are hereby defined for
all s on L.

If s, and s, are points of L, so that the direction from s; to s, coincides
with the positive direction of L, the differences arg~ f(s;) — arg™ f(s;) and
arg® f(sy) —arg* f(s;) are independent of the choice of the branches of the ar-
guments and are called the variation of the argument of f(s) from s, to s, along
the left or right side of L, or simply the left or right variation of the argument
of f(s) along the segment from s, to s,.

When speaking of the left and right argument of a function on a vertical
or horizontal line (or segment) we suppose the line orientated after increasing
values of ¢ or o respectively.

d. The results referred to are now as follows.
Let f(s)=f(c + ¢t) be almost periodic in the strip [, 8] and not identically

zero. Then the mean value!

é
prlo) =M llog |flo+ il = lim 31 [log|flo + in)as
exists uniformly in the interval [, 8] and is a convex function of ¢. It is called
the Jensen function of f(s).

Movreover, if arg™ f(o + ¢¢) and arg* f(o + i) denote the left and right ar-
gument of f(s}) on the line s=0 +7f, —oco<t< + 00, then the lower and upper,
left and right mean motions of f(s) on this line, defined by

¢r (o) — lim inf arg™ f(o +id) —arg~ flo+¢7)
& (o) (3—-7)—s>uo? d—v

and
¢ (o ] ~ lim inf arg* f(o +¢d) —arg™ flo + (7)
51+ (O')I {d—y _s.u£ d—y

! For an arbitrary real function piy,d) defined when — oo <y < d < + oo we denote hy

‘}im inf ¢(y,d) the least upper bound of those numbers » for which there exists a number
(d—7)—> o0

T= T(r) such that ¢(y,d)>r» for (6§ —y)> T, and, similarly, by E’m sap ¢(y,d) the greatest

(d=y)—> o0
lower bound of those numbers r for which there exists a number T = T'(r) such that o(y,d) <r
for (6 —y) >T. If these limits are equal, we denote their common value byd lim ¢(y,6). When
(d—7)—> o0
0 (y,d) is complex-valued, we write s lim ¢(y,6)=a if there exists to every ¢>0 a T= T(e)
(d=y)—> o0

such that |o(y,d)—a]|<g for (§ —y)> T. For a set of functions p(y,d) the limits are said to
exist uniformly, if, for an arbitrary & the same 7'=T{¢) may be used for all functions of the set.
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satisfy the inequalities

[ (0]
\& )]
Finally, if N;(y,0,; 7, d) denotes the number of zeros' of f(s) in the rectangle

(@ <)oy <0 <o0y(<B), y<t<d, then the lower and upper relative frequencies
of zeros of f(s) in the strip (oy,0,), defined by

_+

grlo—o)= ¢ (o) = 7 (0) = @ilo + o).

iA

Hy(on00)) _ . inf Ny(oy, 057, 0)

_ = lim
H (o4, Gz)J (3_.,)_s.u°°p d—y

satisfy the inequalities
1

’ r . ry I ’ r
. ((Pf(o'z — Ol —g@yrloy + 0) = H (o1, 05) = Hf(0y,0,) =< 2—;((}7_1’(02 + 0) — @rlog — 0)).

As a corollary we have, that if /(o) is differentiable at the point ¢, then
the left and right mean motions

arg™ f(o + ¢0) —arg™ f(o + 7y)

c(o)= 1
4 ( ) (d=7)—> 00 d—y
and
+ £ 3 . -+ Ny
c,‘.‘(o)z lim % flo+id)—arg™ flo+1y)
- {(d—y)— 00 d—y

both exist and are determined by
. -

7 (o) = ¢} (o) = 7o),

Similarly, if @;(s) is differentiable at ¢; and o, then the relative frequency of
7eT08

Niloy. 0937, 6
Hy(0y,05) = lim '—'MJL“*)
(d-7)
exists and is determined by
l ’ r . .

Hy(oy,00) = Z‘n(wf‘/ﬂz) — @sloy).

The latter formula is called the Jensen formula for almost periodic functions.
If for m > o we put

If(") |m = max {lf(s)l, mj

the Jensen function ¢;(c) is also determined as the limit of the mean value

M{log | flo+ i6)|m}
t

as m —> 0, the convergence being again uniform in [e, g].

! Throughout, multiple zeros are counted according to their order of multiplicity.
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Among the further properties of the Jensen function we mention that, if a
sequence of functions fi(s), fa(s). . .. almost periodic in [e, 8], none of which is
identically zero, converges uniformly towards f(s) in [«, 8], then the Jensen func-
tion @y, (o) of fu(s) converges uniformly in [e, 8] towards ¢;(o). ‘

6. We shall now establish connections between the Jensen function and
certain distribution functions.

Let I, be the complex plane with « ==§; + 7 &, as variable point. A completely
additive, non-negative set-function u(F), defined for all Borel sets E in R., for
which u(R,) is finite, will be called a distribution function in R,. We shall not
suppose that p(R.)=1.

For distribution functions in this general sense we have a theory similar
to that of the case u(R,)=1. We briefly recall the parts of the theory which
will be applied, referring for details e. g. to the monograph by Cramér 1] and
to the summary in Jessen and Wintner {1].

Our notation for an integral with respect to a distribution function g will be

[ hix) uld R)).

i
A similar notation will be used for ordinary Lebesgue integrals. The Lebesgue
measure (in any number of dimensio;ls) will be denoted throughout by m. Thus

the notation for an ordinary Lebesgue integral in R, will be

fh m{d R.).

A set F is called a continuity set of p if u(E’) = u(E”), where E’ denotes the
set formed by all interior points of £, and I'” the closure of E. If u(L)=1+(F)
or u(E)=v(E) for the common continuity sets of u and », then u(E)=1»(F) or
pu(E) = v(E) for all Borel sets E.

A sequence of distribution functions p, is said to be convergent if there
exists a distribution function g such that p, ()~ u(F) for all continuity sets of
the limit function g, which is then unique. The symbol g, - u will be used only
in this sense.

We have p, > u, if and only if the relation

{ h(x) e (d R.) f h(x) u(d R.)

holds for all bounded continuous functions h (x) in R.. If w,> g, then lim inf u, (£)=
= u(FE) for any open set F, and lim sup u.(E) =< u(FE) for any closed set L.
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A distribution function u, depending on a parameter ¢, which runs in an
interval (e, (), is said to depend continuously on o, if s, — ps, when o, — 0.
Then u,(R,) is continuous and theretore bounded in any closed interval (¢ <)o, =
=0 =<05(<g). Moreover, u,(E), considered as a function of o, is semi-continuous
from below for any open set K and semi-continuous from above for any closed
set E. In particular, u,(E) is a Baire function for any open or closed set F and
hence for any Borel set E.! The integral

= ﬁu,,(E)do

is again a distribution function.
Suppose now that u, for every o is the limit of a distribution function w,, o,
and suppose that u, s for every u depends continuously on o; consider the distri-

bution funetion

2

() = [ ttno(E) do.

Then p will be the limit of wy, if un .(R:) is uvniformly bounded for all » and
all ¢ in o,=06 =<0, For if K is a Borel set, and E’ denotes the set formed by
all interior points of E, and E” the closure of E, then, by Fatou's theorem,

we have

lim inf u, (E) = lim inf u, (kX ] lim inf u, . (E')do = fﬂa Ydo= u(E’)
and "

lim sup ua(E) = lim sup p, (E”) fhm sup un,o(E")do = j ps(E"Ydo=pu(E"),

0

so that u.(E)—> p(E) if E is a continuity set of u.

A distribution function u is called absolutely continuous if u(E)=o for
every Borel set £ of measure o; this is the case if and only if there exists in
R. a Lebesgue integrable point function F'(z) such that

f F(x)m(d R.)
for any Borel set E; we call F(x) the density of u.

Let R, be the complex plane with y = + ¢, as variable point, and let
throughout xy denote not the usual product of the two complex numbers, but

! Since the system of sets K for which g (F) is a Baire function contains the limit of any
decreasing or increasing sequence of sets from the system.
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the inner product & 75, + 5,31, of the vectors x=(&,&;) and y == (g, 75). 1f u is
a distribution function in R, then the integral
Aly; )= [e=/u(dR.)
X,
defines in R, a function A(y;u) which is uniformly continuous and bounded,
the maximum of its absolute value being A(o;u)= u(R.). We call A(y;u) the
Fourier transform of u. 1f Aly;u)= A(y; ), then u=y.

If pn > p, then A(y; u.) = A(y;u) holds uniformly in every circle |y| =< a;
conversely, if a sequence of Fourier transforms A (y; u,) is uniformly convergent
in every circle |y|=<a, then the limit function also is the Fourier transform
Ay; u) of a distribution function g, and w, —> u.

If the integral _

[yl 1A (s w) m(dRy)

Ky
is finite for an integer p = 0, then u is absolutely continuous and its density
F(z) = I'(§,,&,), determined by the inversion formula

F(r)=(22) [ e"i«v A{y; u)m(d R,)
Ey

is continuous and possesses in the case p >0 continuous partial derivatives of
order = p, which may be obtained by differentiation under the integral sign.
This is in particular the case if for some ¢ >0

Aly; )= Of|ly|=®*7*) as |y|-> co.
If the estimate
Aly; )= O(e=ll) as |y|—>o0

holds for some ¢ > o0, then F(z) = F(§,§&;) is a regular analytic function of the
two real variables &,&. If ¢ may be taken arbitrarily large, then F(z) is an
entire function of the two variables &, &,.

7. Let again f(s) be an analytic almost periodic function in the strip [e, 8].
We shall prove a theorem on the distribution of the values of f(s) on vertical
lines which is a special case of a general theorem on asymptotic distribution
functions, to be found in Jessen and Wintner [1].

For an arbitrary o and an arbitrary interval (—oo <)y <t < d(< + o) let
Ho;y, ¢ and v, g denote the distribution functions of f(o + 7t) and of flo + 71)
with respect to |f'(o + ¢#)|* over the interval y < ¢ < 4, defined by
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Bas v, 8 ;)___TMQ and v,,;.,,,;(E)z—I_ [If'(a+z‘t)|2df,
0—y 6—1;/,“”
Agiy g lE

where Ao, s(E) denotes the set of points in y <t < d for which f(¢ + 7t) be-
longs to FE.

Then u,,,, ¢ and v, 4 converge for (6 —y)—>oo! towards certain distribution
functions u, and »,. We call these distribution functions the asymptotic distri-
bution functions of f(o + ¢f) and of f(o + #1) with respect to |/ (o + 2¢)[>

The proof is immediate. By the definition of the integral we have

s
(1) Aly; po; 4, 0) = 6—1—7] erotitugdt and

b)
AW rand) = g [ 4 il

where f(o +¢t)y denotes the inner product. Since the functions ¢/ ¥ and
¢ttty | £ (g + {t)|* are almost periodic for every y and form a uniformity set
of almost periodic functions for |y| =< a for any a, the mean values

d

M{et',/'(a+-l'1) ]/} = lim ,*!,,, . ‘/ elrle+ritin gt  and
t (d—y) > o0 d— Y

~

i

4

fe"“”“)'-'/ |#(o + 0t

"
l

Mg/ otity] f' (g + ) |*} = lim
, =)~ 0 —7

exist uniformly in every circle |y|=a. This implies the theorem, and we obtain
2) Aly; po) = M{e7otidn} and  Al(y;v,) = M{e7 00| £ (o + i t)[|*}.
t t
From the expressions (1) and (2) it follows that the Fourier transforms are

continuous functions of y and o together. This implies that the distribution func-
tions u, and v;, and ps; ¢ and v, ¢ for fixed y and d, depend continuously on o.

8. By means of the distribution functions u, we obtain for the Jensen
function @s(o) of f(s) the expression

(3) s(0) =Rf log | @ uo(d Rz).

! I. e. for any sequence of intervals y,<<t<d,, where (6p— yn)—> 00,
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For by the definition of the integral we obtain for every m >o0

d
6:1—'7 [ log | flo+ it)|udt= / log | % |m tto; 4 (d RS,

whence

(4) Mllog|f(a + it)lnh = [ log |lm po(d It),

iy

since we may replace log |x|n by log M,, for |x|> M, where M denotes the upper

bound of |f(¢ + ¢¢)|, and thus obtain a bounded continuous function under the

integral sign. By § 5 the left-hand side of (4) converges for m— o towards ¢;{s).

This implies the existence of the integral on the right in (3) and the relation (3).
Similarly, the Jensen function

¢r—(0) = M{log | flo + it) — x|}

t

of the function f(s) —x is for any complex number x determined by the expression

@pr—z(0) = flog'|u.—x| wo(d R.).
Ru
9. We will now establish a connection between the Jensen functions ¢, (o)
and the distribution functions »,.
For a fixed strip (¢ <)o, <o << oy(< f) let N,-z(y,d) denote the number of
zeros of f(s)— x in the rectangle o, <o < g, y <f<d, and let us consider the
distribution function

. Nf—.r (}’ d)
v, o (E)= [—’ m(d Ra).
( J iy (
By the area theorem we have

v, 4 (E)= a—i' f | f o +it)|Pdodt,
%;.,,J(E)
where A4, ;(E) denotes the set of points in the rectangle for which f(s) belongs
to E. Hence, by Fubini's theorem,

Oy

vy, 8(E) = [v,.4,4(E)do.

7y
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Also, vs;, ¢(Rs) is uniformly bounded for all ¥ and ¢ and all ¢ in 0, S0 =0,
{since f’(s) is bounded in the strip 6,=0 =<0,). Hence by § 6 ». 4 converges for
(0 — y) = oo towards the distribution function » determined by ’

oy

(5) v(E) = [v(E)da!

1Y

By § 5 we have for every x the inequalities

I ’ ’ . . . l&f—-ﬂ(}h d)
6 -— 2 {0y — O) — @r_2 N<<1 ALl A4
(6) Zﬂ(w (03 — O) — py_z{0y + 0)) (Jl:})lnf i—y

. r

= (l;t_n) sup A—:;—I_(—j;—d—) = f; (pf—z (03 + 0) — @z .0, — O).
By § 5 the convex functions ¢,—.(v) depend continuously on x. This implies that
the left and right derivatives ¢@j_.(c—o0) and g@j_.(c+0) considered as functions
of = for every fixed o will be lower and upper semi-continuous, respectively.
Hence, the functions to the left and right in (6) are lower and upper semi-
continuous, respectively. By Fatou's theorem we conclude that if £ is a con-
tinuity set of »(E), then

;I;. (pr—zlog—0)—@i—rloy +O)m(d R)=v(E)= 2; f (@f-zlay + O— s slo1—0)m(d Ry).
E E
These inequalities must then hold for all Borel sets E.

If we put E=R,, 0,=0—¢, and g, =0 +¢, then »(E) will by (5) approach
zero for & — o, whereas the first term in (7) will converge towards the integral
over R, of (¢pj—z(c + 0} — @j—z(0 - 0)/2n. This integral must therefore be zero.
Hence the two functions @;_.(0—o0) and @7_.(o-+o0) will differ only in a null-set.
This implies that the first and last terms in (7) are equal. Thus we have proved
that for an arbitrary Borel set £

%t (@f—2(03—0,— @j—2l0y + O)m(d R)=v(E) = —ZI; (72002 + 0~ @ sio1—0)m(d Ry).
E E

! Actually, the relation v, 4(E)—>»(E) holds not only for the continuity sets of v, but for
all Borel sets E. This property depends on the fact that the densities Ny_,(y,6)/(d —y) of the
distribution functions v, 4 are uniformly bounded for (d —y)> 1, say.
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If in particular », for every o is absolutely continuous with a density G.(x)
which is a continuous function of x and o together, the relations (8) show (on

account of the semi-continuity of the integrands) that for every x«

Pr—z(03—0) — @j—2 {0y + 0) = 2 nf Go(x)do < @r—r(as + 0) — @i—z (6,— 0O).
The continuity in ¢, and o, of the term in the middle then implies that ¢;.(o)
is differentiable, and we obtain
, , P 0y .
@i—2(02) — @i—cloy) =2 n:f G4(r)do,

which shows that ¢, .(0) is twice differentiable with the second derivative

Ppr-z(0) = 27 G,(2).

The Jensen Fanction of a Type of Generalized Analytic Almost Periodic
Functions.

10. We shall now give an extension of some of the preceding results to a
type of generalized analytic almost periodic functions. The functions which we
will consider will be supposed to be almest periodic in a strip [e, So] and con-
tinuable not in a strip (e, 8), but in a half-strip, say ¢« <o <8, t>y, The type
of generalized almost periodicity with which we shall be concerned will be an
extension to analytic functions of almost periodicity in Besicovitch’'s sense with
index p; but while Besicovitch takes p = 1, it is sufficient for our purposes to
take p > o. No theory of this type of generalized almost periodicity will be
needed, since all results follow directly from the definition.

It will not be possible to maintain the above definition of the Jensen function.
As might be expected, since we are dealing with generalized almost periodicity
of the Besicovitch type, the limit has to be replaced by a limit, in which d-co
for fixed y, but not necessarily uniformly in 4.

The notion of a mean value will be taken throughout in this sense, i.e. a
function H(t) defined on a half-line ¢ >y, will be said to possess the mean value

1
MI{H(H) = lim -
MAH ()} = lim o )

4
f H(b) dt,

if the limit on the right exists for a fixed y >y, (the integral need not exist for
¥ = 7). Evidently the existence of the limit for one y>y, implies its existence for
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all y>»,, and the value is independent of y. If H(¢)is a real function defined on
a half-line ¢ >y, the upper mean value is defined by

g
MAH () = lim sup 3‘5 f #at,
7

where y >y, is again arbitrary, but fixed.

A similar change will have to be made in the definitions of the mean motions,
the frequencies of zeros, and the asymptotic distribution functions.

The usual notation for strips will be maintained for half-strips without change.
Thus, if we are dealing with functions defined in a half-strip ¢ <o <8, t > 7,
a statement is said to hold in [e,g], if it holds in the part of the half-strip
belonging to an arbitrary reduced strip (e <)a; <o < £ (< f).

Suppose that p > o, and that f(s), fi{s), fo(s), . .. are functions defined in
the half-strip a<<o<f, ¢>y,. Then we shall say that f.(s) converges in the mean,
with index p, towards f(s) in [e, 8] if ‘

1

ﬂl
— o Cpd I L, .
[i}{{b{lf((t-*-lt) f,,(a+zt)|1’dof]' 0 as n-> O

for any reduced strip (¢ <)e; <o < §;(< 8). Since the left side decreases as p
decreases it is plain that convergence in mean with index p implies convergence
in mean with index p,;, if o <p; <p.

11. We shall prove the following theorems.

Theorem 1. Let —c0o Sa <oy <fByp<<B=+ 00 and —oo<y,< +oo, and let
S1(8), fals), . .. be a sequence of functions almost periodic in [a, B] converging uni-
SJormly in [ay, o] towards a function f(s), which is then almost periodic in [ay, Bo].
Suppose, that none of the functions is identically zero. Suppose further, that f(s)
may be continued as a regular function in the half-strip o <o <B, t>y,, and that
Ju(s) converges tn mean with an index p > o towards f(s) in [e, 8].

Then the Jensen function

gs(0) = M{log | flo+it)|}

exists uniformly in [e, 8], 2. e. the function
J
I .
wrloir 8= 52 [loglio +inlar

-
¥
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converges for & —~ oo for any fixed y >y, uniformly in (e, 8] towards a limit func-
tion @s(0). The Jensen function gy, (0) of fuls) converges for n - oo wuniformly in
[a, 8] towards @;(o).

The function @r{o) is convex in (a,B), and, for every o in (a,B), the four mean
motions defined by

(o inf arg™ f(o + ¢d) — arg™ flo +27)
sup d—y

N
GI Fr o0
N

@f

||

and
i (o im inf argt f(o + ¢2d) — arg™ flo +¢9)

sup d—y

d—>

O'

satisfy the inequalities

(0) ¢w~w§§wé{i

| = ¢ (0) = gilo + o).

Further, for every strip (61, 05) where ¢ < o, <<0,< 8, the two relative frequencies of
zeros defined by

Hjloy 00\ _ L f Ny (o, 03; 7, 9)
H; 0'1,0'2] d;i“p d—y

where Nj(o4, 0y; 7, d) denotes the number of zeros of f(s) in the rectangle 0;< o < o5,
y <t <4, satisfy the inequalities
I ’ ’ rr i ’ N\
(10) Py (prl02—0) — @iloy + 0) < H f(0y,05) = Hiloy,00) = *n((})f\az + 0) — gjloy — 0).
As a corollary we have that if ¢s(c) is differentiable at the point o, then the
left and right mean motions

¢ (6) = lim arg” f(o +id) —arg™ flo +iy)
4 d— o0 Jd— Y

and

arg? flo + zd) — arg+f( +17)

¢ (o) = lim

I d—

both exist and are determined by

7 (0) = ¢} (0) = g} (0).!

! This means that arg” f(¢ +it) and arg” f(o -+ i) are both =ct+ o(f), where ¢ = (pj {a).




112 Vibeke Borchsenius and Berge Jessen.
Similarly, if ¢s(s) is differentiable at o, and g,, then the relative frequency of zeros

Hloy o) = Jim 27105 20:7.)

exists and is determined by the Jensen formula
1 ’ \ ’ .
H; (04, 05) = ;r(%‘(Uz" — @rioy).

Theorem 2. The function f(o+1t) possesses for every o in (a,B) an asymptotic
destribution funclion wgq, i.e. the distribution function wy e, ¢ of flo + it) in the
wnterval y <t <4, defined by

iz, 0 (B) =" (A';“’;"‘; ),
where Ay, ., s(E) for an arbitrary Borel set E denotes the set of points of y <<t <4
Jor which f(o + it) belongs to E, converges for & - oo for any fixed y >y, towards
a distribution function py .. The asymptotic distribution function w;, o of fulo +11)
converges for n-> oo towards ;.

There are of course similar theorems for functions f(s) which may be
continued in a half-strip ¢ <o < g, t < d, The limits must then be taken for
7 >—oco and fixed d <d,. If both pairs of theorems are applicable for the same
sequence f(s), f2(s), . . ., the Jensen function @,(0) and the asymptotic distribution
function g, will be the same in both cases, since in both cases they are the
limits of ¢, (o) and &y, « Tespectively.

We shall not go into the extension of the results of §§ 8—o, since their
extension is not needed for the treatment of the zeta function.

12. Let e, 81, a3, 82 be chosen such that ¢ <a; <y < ay < < f, <1 <8,
and let d >0 be chosen so small that ¢ < a;— 84, 8+ 8d<p, «y<ay—30, and
B2+ 3d<By; we may suppose d =}. Define the rectangles R.(t,) for o=<» =8 by

Rulty):iay—vd<a =8 + 4, [t—ty| =3 (1 +9),
and the rectangles S,(f,) for 0 <» < 3 by

Silto): g —v0 =0 = f, + ¢4, [t—t] = 3(1 +9).t

! Not all of these rectangles will be used in the proofs of Theorems I and 2. The remainder
are being kept in reserve for the proofs of Theorems 3 and 4.
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Since d =< }, the distance between the frontiers of two successive rectangles
R,(ty) or S,(fy) is 6. The rectangles R,(t,) are contained in the half-strip « <o <8,
t >y for ty>yy + 4 '

We shall begin with some lemmas, which may be proved without difficulty
from the assumptions of Theorem 1.

Lemma 1. If for t{;, >y, + 3 we put

Kit)) = max | f(s)],  Ka(ty) = max | fu(s)|,  Lulte) = max [f{s)—fuls)],

R (ty) Rty R {to)

the functions K (fo)’, Ku(to)’, La.(ty)” possess mean values, and

M{L,(tyy"} -0 and Jl[{lx,, tol’} > MUK (t,)’} as n o0,

to ty ty

Proof. 1f ¢(s) is regular in |s—s5| =< d, the mean value

i0)|v 16
Mo) = M{Io%ﬁw o d

is, according to Hardy [1], increasing for 0 < ¢ = 4d. Hence

lg(so) |t =M{o) = T j Mlo)odo = d ff g(9)|Pdodt.

le—s| =
Consequently

Lty = 25 [ [Ir60—=nraoat
Rty

The mean convergence therefore implies that

(11) M{L.(t)’} ~0 as n—oo.
'0
Now,
K(t) < K. (ty) + La(ty) and K,(t,) = K(fo) + La(ty).
Hence!
d d d

» 1) 1) I)
(12) ,[d—i , / K (1, (Ifo] — [6 i’.’;fKn(’o)”d"O] [d‘i ) / L,,(to)l' deJ ,
(% B Fi - ‘

where P=1 if p =<1 and P=1/p if p > 1. From the almost periodicity of /()

in [e, 8] it follows that K,(t,) is almost periodic. Hence K,(f,)" possesses a mean
value. The inequality (12) togéther with (11) then shows, that K (f,)’ possesses

' See e.g. Hardy, Littlewood and Pélya[1;, Theorems 28, 198, and 199,
. :
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a mean value, and that M {K,(t)'} — M {K (t,)’} as m —~oco. Finally, the mean
to

fa .
value of L,(t)’ will exist, since fn(s) — fu(s) converges in the mean towards

S(8) — fuls) for m — oo,

Lemma 2. A ()" = o(f,) as f,—oo.

Proof. Since | f(s)| takes the value K(fy) in some point of R;(f,), there will
(for #,>>yy+ 1) exist an interval of length =1 containing #, in which K (£) = K (¢,).

Hence
1‘.4:1

Kty = [ K(tydt,

ty—1

and the right hand side is o(f), since M{K(f)*} exists.
t

Lemma 3. There exists a constant # >0 such that for all ¢,

max |/(s})| = & and max i fa(s)| = & for all =
Proof. Since the functions are almost periodic in [eg, 8] and not identically
zero, and since f,(s) converges uniformly in [aq, 8] towards f(s), there exists a
constant #>o0 and a bounded closed sub-set S of the strip («,. 8,) such that for
every function f(s+ i) or f.(s+it,) the absolute value is =/ in some point of S.
If the lemma were false, we could extract from the system of functions
Sfls+it) and fu(s +it,) a sequence converging uniformly towards zero in S (o).
Since the functions are uniformly bounded in [ey, 8], this sequence would con-
verge uniformly to zero in any bounded closed sub-set of (&, B;), in particular in §,

and this is impossible.

13. We shall also use certain general function theoretic lemmas.! Let F'(s)
be a regular function in R3(o) for which
max | F(s)| = &,
S (0
where % is a given positive number.® The lemmas will give estimates depending

on the number
K = max |F(s)] (= k).

Ry (v)

! Some of these lemmas are well known, but for the convénience of the reader the proofs
are given.
* When the lemmas are applied & will be the number of Lemma 3.
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By 4 we denote constants (not necessarily the same at each occurrence)
depending on the rectangles involved and on & (but not on Fis). In one of the
lemmas the constant depends on a parameter m and is therefore denoted by A (m).
Besides R;(0), the rectangles R,(0), R,(0}, and S,(0) occur. Any sequence of four
rectangles, each of which contains the next in its interior, would do. Later on

we shall sometimes use the lemmas for other sets of four rectangles..

Lemma 4. The number N of zeros of I'(s) in R;(0) satisfies an inequality
N<=A4log (K + 1)

Proof. Let s, be a point of Sy(0) in which |F(s)] = k. Let z=2z(s) be a
regular function in R;3(0) which maps R,(0) on the circle |2] <1 so that z(ss) = o,
and let s=s(z) be its inverse function." The image of R,(0) will depend on s,
but will for all possible s, be contained in a circle |2z| =< ¢ < 1, where ¢ is in-
dependent of s,. Applying Jensen’s inequality to the function H (z) = F(s(z)) we
obtain

K

lOg ’Z/" ’

I —

li\ K or N=
¢ 1

Il/\

o

i

Iavm

whence the desired result.®
The next two lemmas will be proved together.
Lemma 5. If s;,..., sy are the zeros of F(s) in R,(0), and we put

N

g s) == Fl(.x’) H (g —‘Sn)y

then in R, (o) =t
1

log | Fy(s)|=— A log (K + 1), i.e. |Iy(s)|= (If_-}-l)]
Lemma 6. The left or right variation V of the argument of I'(s) along an

arbitrary straight segment in R;(0) satisfies an inequality
| V]| < A log (K + 1).
Progf. The function Fy(s) is regular in R;(0) and # 0 in R,(0). If d denotes
the diameter of R,(0), we have | I(s;)| = k/d”, where s, is the point introduced

in the proof of Lemma 4. On the frontier of R,(0), and hence in R3(0), we have
|F1('5‘” =< K/s".

' Thus. s =s{z) is continuous in |z| = 1 and regular except in four points on |z| =1 corre-
sponding to the vertices of R3{0). .

® Since K/k=K-+1 when kz 1, and K/k £ K+ 1" when k<1. The expression log (K11
is introduced for the sake of uniformity throughout the lemmas. : :
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Let z,=#,(s) be a regular function in R,(0) which maps R,(0) on the circle
|2y| = 1 such that z,(s,) = 0, and let s=s(z,) be the inverse function. The image
of R,(o) will be contained in a circle |2;| < ¢, <1, where g, is independent of s,.
Applying Carathéodory's inequalities’ to a branch of the function log H,(z)) =
= log | H,(2y)| + ¢ arg H,(2,), where H,(z,)= F,(s{zy), we obtain for |z;|=¢,
the inequalities

and
larg H,(2;) — arg H,(o)| = ’2’@”& (lou A —log L) ‘
Hence in Ry(0)

(13) log | Fy(s)]| = — (3,5’_1 log X1t en i)

and
. . 20 Kd»
| arg Fy(s) — arg Fi(s)| = Iilel log Fé
The latter inequality gives the estimate
(14) 1= 40 tog LS

108 gy

In (13) and (14) we may by Lemma 4 replace N by Alog (K + 1), since d > 1
and d <1. We then obtain the desired results.*

Lemma 7. There exists a horlzontal segment ¢, < 0= 3, t=1¢" in Ry(0) on
which F(s) == 0 and
(;—’G arg I'(o +48)| =< A log* (K + 1).

Proof. Let s,=a, + it, be the zeros introduced in Lemma 5 and let t* be
chosen in the interval |¢*| < } such that min {|¢t* —¢,|} is as large as possible.

By Lemma 4 the distance of the segment a; =0 =p,, { =1t* from the zeros s, and
the frontier of R;(0) is =1/4 log (K + 1), and we may therefore find a rectangle

—r=o=p+r |t—t]|=<r belonging to R,(0), where » = 1/4 log (K +1), in
whlch F(s)+o0. It follows from Lemma 6 that, if s* lies on the segment, then

! See e.g: Carathéodory (1], § 74. The inequalities as there glven must be applied te the
function f{z,)=a log H;{z,"+ b for suitable values of ¢ and b.

? For ‘the first estimate we have to apply that, since K = k, a constant .depending on the
rectangles and on k) will be = an expression 4 log K +1.
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a branch of arg F'(s) satisfies in this rectangle, and a fortiori in the circle
|« —s*| =7, an inequality
|arg I'(s) —arg F(s*)] = 4 log (K + 1).
By the familiar inequality’
' 43[

o0 =

for a harmonic function u(x,y) in the circle z* + y* <, for which |w(x,y)| =M,
we obtain the desired result.
Lemma 8. If we put
| F'(s) |w = max {| F(s)|,m} for o<m=1,

the integral
o

I=[(og|F(o+it)ln—log|Fio+it)dt (=o)
satisties for —} <y < d'<} and ¢ =< ¢ = #; an inequality
(15) 1< A(m)log® (K + 1),
where d(m)—~o0 as m ->'0.
Progf. Since m =1
log | F(o + it)jn—log | Flo +it)] =—log” | Flo + if)].}
Hence by Lemma § for ¢, <o <8, and [t[=} .

log | (6 + i t) | — log | Fo + it)| = — log™ | Fy(s)] — X} log™ | s — su}

n=1

IA
5
—
Q
Q
>
-+
T
M
—
[=]
w3
-
|
gl

Since o n=1

g
-flogf [t—tnldt<——" log juldu=2
- -1

for any {,, we find that
I=Alog(K+1)+ 2N,

and hence, on using Lemma 4, that

(16) I<Alog (K + 1)

' Cf. Sehwarz [1}, § 6.

* Tnstead of log®{K + 1) we might use any positive function which does mot take arbitrarily
small values and which tends to infinity more rapidly than log (K + 1).

* In analogy to the notation log”x for the fonction max {log x, 0o}, x >0, we denote by
log” x the function min {log z,0}, x> 0. The funetion — log x is non-negative and decreasing;
moreover, if x =ury... xy, ‘we have — logmx = —log oxy~—+-- — log xy.
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This estimate does not depend on m and implies (15) for every m. It remains
to prove that if ¢>o0 is given, then I <:clog®(K + 1) for —} <y <d=1} and
«; < 0 = (3, provided that m is sufficiently small. From (16) it follows that
I=<c¢log® (K +1) for all m, provided that K= (some) K, depending on e. Thus,
to complete the proof we must show that I < ¢log® (K + 1) for K < K,, when
m is sufficiently small. It will be sufficient to prove that I <& log® (kK + 1).

When K=< K,, Lemma 4 shows that N< N,=A4 log (K,+ 1), and Lemma 5 then
shows that when s belongs to R,(0) and all |s —s,| = », where 0 <7< 1, then

yo

r¥
()| = = .
[ F6l = i 3y = (& vy
Thus, if we put
Yo
" (Kt

the total length of those sub-intervals of |t] <3 in which the integrand in I is
positive, is at most N2s. Consequently

Nr
I<Alog (K +1)N2r—N [log” |u|du

-Nr

Nor
< 4 log (Ko+ 1) Ng2r— Ny [ log™ |u] du.
—Nyr
The last expression tends to zero as » —o0. Hence I < ¢ log® (k + 1) when r is
sufficiently small, i. e. when m is sufficiently small.
Connected with Lemma 8 is the following lemma, which will be used later
on in the proof of Theorem 3.

Lemma 9. The integral

J
J=[log | Flc +it)|dt

satisfies for —} =y <Jd =} and o; = 0 = B, an inequality
|J| < 4 log (K + 1).
Proof. We haye

4 4
J==flog‘ | F(o+ it)[dt—f~log_ | Flo +<t)| dt.
The first integral on the right is =< log" K < log (K + 1). The second integral
is the integral I of Lemma 8, for m =1, which by (16) is = A log (K + 1).
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Remark. All the preceding lemmas remain valid if in the estimates on the
right we replace log (K + 1) or log® (K + 1) by K9 where ¢ is a given positive

number.

14. We now turn to the proof of Theorem 1. On account of Lemma 3 we
may apply the lemmas of § 13 to the functions f(s + ity) and fu(s + ify) and
hereby obtain estimates on the functions f(s) and fu(s) in Rs(#y). Instead of the
number K we may use the numbers K(f;) and K. (f,) introduced in Lemma 1.

From Lemma 8! it thus follows that for o, <o = 8,
fh+ 3
[(og | flo+it|n—log |fio+it])dt=Am) K (tV
T

&
and

te+d

f10°|fm0+zt)|m-loo |fuio+ib]) df = A(m)Knfol.

L—}%

Let us now suppose, as we may according to § 10, that p =< 1. Then if u; and
uy, are both =m

| log 4y — log 1, | < log (m + |ug— 1, ]) — log m < a|us — uy P,
where a is the (finite) upper bound of (log m + z) — log m)/z? for x > 0. Hence
|log |£(8) In— log | ful) In| = a| I/ @) n — a6 In[” = alf () =) P

and consequently for ¢; =0 = B

f+d
fl-log I flo+ i8)|n—log | fulo+2t) Iml dt < aLa(tg).
fo— %

It follows that for o; =6 = 8

d_/floglj a-rttldf—;——floalf,. zt)|dt|
o+% d+3 d+3
§‘4( foo dfo"‘A 'nl fKn fo d’o'*‘ a——nyn to dto

i

! With y=—1}, d =% and with A(m)K” on the right instead of 4 {m) log® (K + 1\
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For fixed y, and 6-» oo, the expression on the right converges by Lemma 1
towards

(17) A{m) M{K{t,)?} + A (m) M{K,{fo}} + « M {L.(t)*},

to t

and this expression converges for » —>oo, again by Lemma 1, towards

(18) 2 A (m) M| K (t)P].
(0
Let ¢>o0 be given, and let m be chosen so small that the expression (18)

is <& Then the expression (17) is < e for n = (some) ng, and consequently

J )

1 t o 1 f N .
‘{S——_—;jlogU(a—rn)ldl‘, F jlonlﬁl(0+zt)|tl1 < ¢

for ey <o=8, if n =n, and 0 = (some) dy = dy(n). For every fixed n we know

{ef. § 5) that the limit
'f
1

Pin (G) = ’liln d o f log Ifn (0' +17 t) I dt
§— -7

exists uniformly for ¢; = o =< @;. It follows that
]
@/ (o) =’).lin°1° 6—i7 log | flo +i8)|dt

also exists uniformly for ¢; = ¢ = 8, and that

lprlo) — @r;(0)| = ¢

for ¢y =0 =B, if n=n, This establishes the first part of the theorem.

15. The convexity of ¢,(o) follows immediately from the convexity of the
functions ¢y, (o)., It will be sufficient to prove (9) for a; < ¢ < 8, and (10) for
g < 0y < 0y < f3y.

Since y may be chosen arbitrarily, we may suppose that f(s) has no zeros on
the segmentio; <0 =p8,, t=y. By Lemmas 2, 4, and 6 it makes no difference
if in the definition of the mean motions and the frequencies of zeros we restrict
d to a set of values, so that any interyal |t —{#,| = &, where to>y + &, contains

at least one value from the set.
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Let us first merely suppose that ¢ is restricted to values for which f(s) has
no zeros on the segment a; < 6 = #;, {=4d. Then by Cauchy’s theorem, applied
to the rectangle (¢, <)oy < 0 < g5(< 8y), y <t <4,

(1) Niloy, o0: 7,8) =

;7 [arg” floy +id)—arg” flop +iy)—(arg’ floy +id—arg’ floy +ip)+ R {0y, 03; 7, 0],
where R (0y,0,:7,0) denotes the contribution to the variation of the argument
from the horizontal sides of the rectangle. By Lemmas 2 and 6

R (04, 05; 7, 0) = 0(d).
Hence

1, o _ T, - !
(e log— 17.; ‘o)) = H;(oy,00) = Hiloy,00) = (¢ o9 — (‘; (o1),

27w 27T

so that (10) is a consequence of (g). Of the inequalities (9) it is sufficient to prove
(20) grlo—0)=¢ (o) and & (o) = gj(o + 0),
the others being trivial.

For any f, for which f(s) has no zeros on the segment ¢, =<0 =3,, t =1, put

max 4 arg fo + itg)| = Clty).
wsosg | A0

Then
R{oy, 03, 7,0) = () + C0) (02 — 07

;e

By Lemmas 2 and 7, together with the above remark, we may suppose that ¢
is restricted to values for which ('(d) = o(d).

The remainder of the proof now follows that of ordinary almost periodic
functions, and a brief indication of how it runs will suffice.! The function

4
@rlo; y, 6) = s-i—yj log | /(o +t)] dt

is continuous and stretchwise differentiable and has the left and right derivatives

(21) | ﬁb*m%&:@51k11%2$gjkjiﬁam

+ 'S — aret flog.+ 1
oo + oy, 0) = & Lo+ 18) —arg® flot iy),

! For details see Jessen and Tornehave [1], pp. 186—187.
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The relation (19) therefore takes the form

N, ,
’(GI’J—“’J’—G)—— ! — (910, —0; 7.8 — ;@1 + 0; 7,.9) + 101, 043 7, 9),

|7 (o1, 02; 7, 0)| = = s
Since N;(oy, 03; 7,6) = 0 the function

9 (05 7,0) = grloi 7,0) + = 7()6 g)

is convex, and since C(d) = o(d) we have uniformly in (ay, §;)
¢sl0) = lim @. (o} 7, d).
This shows, once more, that @,(c) is convex, and also that for every o in (e, )

@prlc—o) = 11(}11 inf @, (0 —0; ,0) = lidm inf @7{o — 0; 7,9)
and

lil}l sup gy(o +0; 7, 0) = li;n sup @, (6 +0; 7,6) < grlo +0).
Combining this with (21) we find the inequalities (20).

16. Next we turn to the proof of Theorem 2.
By the definition of the integral we have
]

fetfw+1t Jdt
-7

7

Ay; 0.4, 0)

Let us suppose, as we may, that » = 1. Then, if u,, «,, and y are arbitrary

complex numbers,
| vy — i¥| < min {2, |(uy —u)y|} =< min {2, |us—uy] |y]} < clug—uy P |y )P,

where ¢ is the (finite) upper bound of min {2, z}/2? for 2> o0. Hence, if ;<0 =<8,
and |y|<a

d J é
L isering gp L s eriny l< p_ 1 p
J~yje dt =y ¢/n dt|=ca =, L.(tlPdt

For fixed y, and d— oo, the expression on the right converges towards ca? M { L, (t)},
t

which converges towards zero as n ->co. For every fixed » we know (cf. § 7)
that the limit



Mean Motions and Values of the Riemann Zeta Function. 123

i

1 . g
Aly; = lim —— | efaioiitivgy
i o) = lim G ) e

exists uniformly in |y| =< a. Consequently

4

I . ,
3 etj(a+zt,~y dt

-t
’

also exists uniformly in |y| < a and is the limit of A (y; g, s) as 7 > oo uniformly
in |y|=a ’
This establishes the theorem.

Extension of the Results to the Logarithm of a Generalized Analytic Almost
Periodic Function.

17. On certain additional assumptions the previous theorems may be extended
to the logarithm of f(s), or rather a branch of log f(s). Since this branch will
be discontinuous on certain cuts it will be necessary to make some additions to
the definitions in § 4 of the left or right variation of the argument along a
segment.

Let f(s) be regular in a vertical half-strip (or a rectangle with sides parallel
to the axes) and suppose that f(s) has no zeros on the vertical line o=0¢". Let
9(s) denote a branch of log f{s) in the domain A obtained from the half-strip
(or rectangle) by omitting all points on the half-lines —oo < ¢ < gy, t =1a, where
6o+ ity denote the zeros of f(s) with g,<<¢*, and on the half-lines 0= 0 < + 00,
t =1, where o4+ ¢t, denote the zeros of f(s) with oy>¢". On the cuts we may
define border values of g(s) from each side except in the zeros of f(s).! When
s approaches a zero, g(s) will vary in a horizontal strip of the complex plane,
and the real part of g(s) will approach —oo.

We shall now define what we will mean by the left or right variation of
the argument of g(s) along an arbitrary vertical segment s = ¢ + ¢f, { St = 1,
or horizontal segment s=o -+ ¢, 03 = 0 < 05, which contains points of the cuts.

For a vertical segment, which belongs to A with the exception of one end-
point which is no zero of f(s), we define the variations as those which we should

! Naturally the halfline corresponding to a zero may contain other zeros, so that a cut may
contain zeros of f(s) besides the end-point,
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obtain, if g(s) were continued across the cut in this point. If the end-point is
a zero of f(s) we define the variations as the limits of the variations along a
smaller segment obtained by replacing the end-point with a point of the seg-
ment, which converges towards the end-point. The limits will exist in virtue of
the above remark on the variation of g(s). An arbitrary vertical segment, which
contains points of the cuts, may be divided into segments of the above types,’
and we define the variations for the segment as the sums of the variations for
the parts.

For a horizontal segment, which lies on a cut and contains no zero of f(s),
we define the left and right variation as the left or right variation along the
segment of the function obtained by continuing g(s) across the cut from the left
or right side respectively. For a horizontal segment, one end-point of which is a
zero of f(s), but which otherwise contains no zero of f(s), we define the variations
as the limits of the variations along a smaller segment obtained by replacing the
end-point with.a point of the segment, which converges towards the end-point. -
An arbitrary horizontal segment, which contains points of the cuts, may be
divided into segments of the above types, and we define the variations for the
segment as the sums of the variations for the parts.

It is easily seen that the left and right variations along the vertical segment
s=o-+it, {{=t=t,, considered as functions of o for fixed ¢, and f,, are continuous
from the left and right respectively. Similarly, the left and right variations
along the horizontal segment s =0 + ¢f, 0y = 0 =< 0,, considered as functions of

¢t for fixed o, and o,, are continuous from the right and left respectively.

18. We shall prove the following theorems.

Theorem 3. Let f(s) and fu(s) be as in Theorem 1, and suppose that
JSn(8)=em®), where gu(s) 7s a sequence of functions almost periodic in [e, 8] converging
uniformly in [ag, 8] towards a function g(s), which is then almost periodic in [y, Bo]
and satisfies f(s)=e?. Suppose also that none of the functions f(s) or fuls) is
constant. Let the branch g(s) =log f(s) be continued in the domain A obtained by
omitting from the half-strip a < o <8, t >y, all segments @« < o = oo, t=ty, where
oo + 2ty denote the zeros of f(s) with oy = a, and all segments oy = 0 < 8, t =1,
where oy + ¢ty denote the zeros of f(s) with oo = By

! As we are considering closed segments a point of division must be counted to both of the
adjoining segments.



Mean Motions and Values of the Riemann Zeta Function. 125

Then the Jensen function

@s(0) = M {log |g (o + )}

exists uniformly in [a, ). i.e. the function
F)
) C 1 .
(03 7, 5)=6—__—yflog lg(o + if)| dt

converges for d > oo for any fixed y >y, ungformly in [a, 8] towards a limit func-
tion @q(0). The Jensen function @4, (o) of gn(o) converges for n —co uniformly in
la, 8] towards @g4(a).

The function @,(0) is convex in (a,8), and, for every o in (a, ), the four mean
motions defined by

¢ (o ; P e (o : ol
(22) Oy EVil@ind) o ow @] it Viy, 8
&g (o) i d I—7 & (o Pibie 4 I—=v

where V, (a;7,0) and V; (0;7,d) denote the left and right variation of the argument
of g(s) along the segment s=g + it, y <t < 8, satisfy the inequalities

[ (0)]
l& (@)

Further, for every strip (01, 0,) where a < ay < gy < 8, the two relative frequencies
of zeros defined by

(23) Pglc —0) = ¢; (o) = < & (0) = @glo + 0).

o) Hylonod| _  inf N, (04, 00:7,0)
ﬁg(o'h 02)1 ,;_.i':lp d—y

where Ngy(oy, 03; 7, ) denotes the number of zeros of g(s) in the part of the rectangle
0,< 0 < 0y, ¥y <t <0 which belongs to A, satisfy the inequalities

I ’ ’ —1 I ra ’r .
(25) g (@g(0a— 0)— @yloy + 0) < Hy (04,00) < Hyloy,05) < Py (pg(oz+ 0)—g@yloy—0)).

As a corollary we have, that if @,(0) is differentiable at the point o, then
the left and right mean motions

(o) = limg Y2.l9:7:9) _ i Viloiy,9)
c, (0) = }LH; —&—jy‘ and ¢} (o) —}me R P

both exist and are determined by

c; (o) = ¢t (o) = @q(0).
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Similarly, if @,(0) is differentiable at o, and o,, then the relative frequency of
Zeros
. Ngloy, 03; 7. 0)
Hy(oy, o )3(;121:‘, - g'—al __2? no

exists and is determined by the Jensen formula

Hy(oy, 05) = Po(09 — @glay).

I
L

Theorem 4. The function g(o+21t) possesses for every o in (¢, 3) an asymptotic
distribution function ug, ., i.e. the distribution function pg o, . s of glo +it) in the
interval y <t <9, defined by

w_ m(Ag ey aF)
.ug,a:y,d(E)= ( ;_7 )’

where Ag o;4,4(E) for an arbitrary Borel set E denotes the set of points of y <t<d
Jor which g(o + 2t) belongs to E, converges for d - oo for any fixed y > y, towards
a distribution function ug . The asymptotic distribution function p, . of gnlc + 71)
converges for n—>oo towards pg, .

There are of course similar theorems for functions ¢(s) which may be
continued in a half-strip « <o <@, t < d;. The limits must then be taken for
y >—oo and fixed § <<dy. If both pairs of theorems are applicable, the Jensen
function @,(s) and the asymptotic distribution function g, , will be the same in
both cases.

We shall not go into the extension of the results of §§ 8—9, which will
not be needed.

19. Since fu(s)=¢"" its Jensen function g (o) is the real part of the
mean value M {g.(0c+7t)}, which is constant in (e, ). Hence, by Theorem 1, the
!

Jensen function ¢;(s) of f(s) is also constant in (e, 8), and, consequently, the
relative frequency Hy(oy,0,) of zeros of f(s) exists and is equal to zero for any
strip (oy, 0y).

20. We shall need some more lemmas.

Lemma 10. On placing 6(f)) =0 when R;(f)) belongs to A, and O(t) =1
otherwise, the mean value M {f(#,)} exists and is equal to zero.
[/ .

0

Progf. This is an immediate consequence of § 19. For an arbitrary zero
6" +it* of f(s) with e;—5d=<¢"<p,+50 we put 0*(f)=1 for |f{,—¢*| =3, and
0* (t,) = o otherwise. Then :
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B (to) = Z 6* (1),

where the sum is extended over all the zeros ¢* + #¢* in question. Hence

d d ‘
jo(fo)dto = Efa*(fo) dto < 6 Ny(ay — 64, 8 + 6d; 7 — 3.6 + 3),
7 ¥

whence -
t

Lemma 11. For o<g¢ <1 put Y.le,{) =0 when Rg(fy) belongs to A and

m%ly(S)—gn(S)lée,v

Rs

and Y, (o, fo) = 1 otherwise. Then, for ¢ fixed,

Y. (o) = M {P.(o, tp)} >0 as n— oco.

0

Proof. For an >0 put 4,(fg) =0 when L,(f)) =<7, and 4.,(f))= 1 otherwise.
Then by Lemma 1
(26) An=M{d(t)} >0 as n - oo,

f

Also, for a K >0 put x,(f;) =0 when K,(t)) < K, and x.(fg) =1 otherwise.
Then by Lemma 1

(27) Ko = 3 (on{t)} = %,,

where M denotes a constant exceeding all the mean values M {K, (f,)?}.
{,

0

Since f.(s) has no zeros it follows from Lemma § (with R,;,(0) instead of
R,(0)) that when x,(f) =0

. 1
= .
g:](tl‘.l) |f,,(8)| = (K+ I)A

Hence, when ,(f)) = 0 and x,(f) =0

(28) max
R; (t)

2‘8)—1'@(1(“)‘4.

Let  and K be chosen such that 5(K + 1)}4 =1 —e¢~¢. Then (28) implies
(since 1—e~¢ << 1) that f(s) has no zeros in Rg(fy), i. e. R;(ty) belongs to A, and
(28) may be written

(29 mas |00 — 1] £ 5 —
By (L)

! The lemma may also be proved without any appeal to Theorem 1, by means of the following
lemma,
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From (29) it follows that

max |g(s) — gu(s) —v2mi| = e
R, (t)

for some integer v =»(n,#) which must be zero when n = (some) #,, since g.(s)
converges uniformly towards g(s) in [a, 8], and ¢ < 1. '
Hence . (o, to) < iu(to) +%.(fy), and, consequently, ¥,(¢) = A, + K, for n = n,.
By (26) and (27) we obtain
. . M
h;nﬂs;lp ¥, (o) = X
Since K may be chosen arbitrarily large the lemma is proved.

Lemma 12. On placing (@, %) = o when Rj(f,) belongs to A and

mazx | g(s)| = @,
R; ity)

and 7(0,1,) = 1 otherwise, we have

X(Q) = 13‘1{7.(0, t)} 0 as @ — co.

Proof. Let Q. denote the upper bound of |g.(s)| in the strip ¢;—5d<0=pg + 5 4.
Then %(Q,t) = . (1,1,), and hence X(@Q) = ¥, (1), if @ = ¢, + 1. The lemma is
therefore a consequence of Lemma 11.

Lemma 13. There exists a constant X, > o such that for all {4,

max | f(s) =1z &k and max|fi(s)—1|= 4 for all

'a (o [ RLE

max |f(s)+ 1| =k, and max|f,(s)+1|=k for all »,

So (te) Ny (fo)
max | g(s)| = &, and max |g.(s)| = & for all »n.
So(fy) S, (tyr

Proof. Since none of the functions is constant, the proof runs as the proof
of Lemma 3.

Lemma 14. There exists a constant 4, > 0 such that for all {, either

max | f(s) - F(§ +2ity)| = ks or max |f(s)f(5+ 20ty — 1] = ke,
S, (to) ' Ny ()

and similarly, for every n, either
max | f,(s) — [, (5 + 2ite)| = ky or max|f,(s) £,(5 27t — 1| = kyt!

Sy (to) So (to)

! Note that the point § + 2¢{f, is the symmetric point of 8 with respect to the line { =1t,.
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Proof. If the lemma were false it would be possible to extract from the
system of functions f(s + ity and f.(s + 7t;) a sequence of functions h,(s) for
which /() — h,(5) > 0 and h,(s)h,(5)— 1 uniformly in S;(0). Since the functions
are uniformly bounded in [e¢g, 8] we may suppose without loss of generality that
the sequence h,(s) converges uniformly in S;(0) (otherwise we consider a sub-
sequence). The limit function h(s) then satisfies the conditions h(s)= i (5) and
h(s)h(3) =1, which show that h(s) is either identically 1 or identically —1, and
this is impossible by Lemma 13.

Lemma 15. There exists a constant C such that for all 4,

max |g(x)| =< € and max|g,(s)] = C for all x.
Sy ) Ny il
Proof. This is an immediate consequence of the almost periodicity and the
uniform convergence of ¢,(s) towards g(s) in [eg, 8o).*

21. We shall need some more general function theoretic lemmas. Let F'()
be a regular function in R;(0) which has no zeros in the part of R;(0) which
belongs to the strip (g §y), and let (7 (s) be a branch of log F'(+) in the domain
obtained from I;(0) by omitting all sggments ¢;—5d = 0 =< gy, t =1, where a,+ it
denote the zeros of F(s) with o, = e, and all segments 6,=< ¢ =+ 56, = t,,

where o, + ¢#, denote the zeros of F(s) with o=@, Suppose, as in § 13, that

max | I'(s)| = &,

Sy (0)

and, further, that

(30) max | F'(s) — 1| = k.

Sy (0)

(31) max | G (s)] = ky,
So (0)

(32) max |G (s)]| = C,
Ny {0)

and that for every # in |f| =1 either

(33) max |F()—FE+ 2i0)| =k or max |F()F(E+ 2i8)— 1|2 ket

Sa () Ny ty)

! This trivial lemma is formulated explicitly merely to introduce the constant C.
2 We notice that since F's) is regular in R5(0 the functions ¥ 8) and F(s + 24 /,) are regular
in Ryt (and a fortiori in So(tlx).

9
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The lemmas will then give estimates depending on the number

K = max |F(s)].!
R;(0)
By 4 we shall now denote constants (not necessarily the same at each oc-

currence) depending only on the rectangles and the constants %, %y, &, and C.

Lemma 16. The number N of zeros of G (s) in Ry(0) satisfies an inequality
N=Alog (K +1).

Proof. The number is = the number of zeros of F'(s)— 1, which, by (30)
and Lemma 4, is = 4 log (K + 2), and this again is =< 4 log (K + 1).

Lemma 17. The left and right variations V= (o, 09; t;) and 1 (o1, 6; ;) of
G (s) along an arbitrary horizontal segment s =o¢ + i}, 0y = 0 = 0,, in R;(0) satisfy

inequalities
[ V-(oy,00; )| = Alog (K + 1) and |17 (0y, 005 )| = 4 log (K + 1).

~ Proof. The proof is an adaptation of a well-known argument due to Backlund.

Since ¥V~ (oy, 0,; t;) and 17+ (ay, 65; #;), considered as functions of #; for fixed
o, and gy, are continuous functions from the right and left respectively, we may
suppose that the segment contains no point of the cuts and no zero of G (s).
The two variations are then equal, and may be denoted briefly by F.

If G (s) is either real or purely imaginary on the segment, we have J = o.
Otherwise

[ VI +1)n,

where » may denote either the number of points on the segment in which G (s) is
real, or the number of points on the segment in which G (s) is purely imaginary.
In the first case, F(s) is also real in the said points, which are therefore zeros
of the function F(s) — F(5 + 2¢4,), the absolute value of which is =< 2 K in R(#).
In the second case, |F(s)| =1 in the said points, which are therefore zeros of
the function F(s)I' (¥ + 2if;,) — 1, the absolute value of which is < K*+ 1 in
Rs(t)). By (33) and Lemma 4 it follows that either

v<Alog(2K + 1) or = A log (K?+ 2),

whence the desired result.

! Since this K is = the K of § 13 the estimates of § 13 remain valid with the new K.
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Lemma 18. The left and right variations ¥V~ (o; 7,d) and V* (o; 5, d) of G (s)

along an arbitrary vertical segment s=0 +1¢¢, y <t =4, in R, (0) satisfy inequalities

V-(o;7,0)| < dlog®(K+ 1) and |V*{s;7 0)| < 4 log® (K + 1).
If the segment is not divided by the cuts we have
| V= (0; 7,0 < Alog (K + 1) and |Vt (0;y,d)] < A4log (K + 1)

Proof. Since V—{o; 7, d) and V*(s; y,d), considered as functions of o for
fixed y and d, are continuous from the left and right respectively, we may sup-
pose that the segment contains no zero of G (s), not even on the borders of the
cuts. The two variations are then equal and may be denoted briefly by V.

By Lemma 4 the number of cuts going into R,(0) is < A log (K + 1). It
is therefore sufficient to prove that

(34) | V]=dlog (K +1)

when the segment is not divided by the cuts.

. From (31) and (32) it follows by Lemma 6 (with S,.0) instead of R,(0) that
V is bounded for segments in S;(0). “In the general case we join the end-points
of the segment by means of horizontal segments with the end-points of a ver-
tical segment in §;(0) which does not contain zeros of G(s). The estimate (34)
then follows from Lemmas 16 and 17.

Lemma 19. There exists a horizontal segment ¢; < 0 <8y, t=1{" in Ry(0) on
which F(s) 0 and G () <=0 and

;;—I; arg G(o+1f)| = 4 log® (K + 1)..

Proof. By Lemmas 4 and 16 the number of zeros in R,(0) of F'(s) and G(s)
together is = A log (K + 1). As in the proof of Lemma 7 the segment may
therefore be chosen such that neither F(s) nor G(s) have zeros in a rectangle
o —r=oc=@ +r |t—t*|<r belonging to R,(0), where » = 1/4 log (K + 1).

It follows from Lemmas 17 and 18 that if s* lies on the segment, then a branch

of arg G (s) satisfies in this rectangle, and a fortiori in |s — s*| < r, an inequality
|arg G(s) —arg G(s*)| < 4 log (K + 1),

whence the desired result.



132 Vibeke Borchsenius and Borge Jessen.

Lemma 20. The integral
q
I{o)=[log |G (o +it)|dt

satisfies for —1 <y <d <1 and ¢, = ¢ = 3, an inequality
[1{0)] = A log® (K + 1).

Progf. The function /(o) is a continuous and stretchwise differentiable func-
tion of o with V= (o; 7,6) and V*(o; 7, d) as left and right derivatives. Hence

I(o) = I{gg) + f” V-{o; 5, 0)do.

Let o, be chosen in the interval (eq, 8,). From (31) and (32) it follows by Lemma 9
(with S,(0) instead of R,(0)) that I(s,) is bounded. Lemma 18 therefore gives the

desired result.

22, We now turn to the proof of Theorem 3.
For o<<p<1 and @ >1 let us consider the function 8, (¢, @, #o), which is zero,
when the functions v, (¢, ) and x (g, t,) introduced in Lemmas 11 and 12 are both

zero, and 1 otherwise. Then
(35) : @,,(Q, Q) = I?{Gn (0, ®, to)} = qfn((’) + X(Q)
1f 8,0, @,1,) =0, i.e. if Ry(f,) belongs to A and

max [g(x) —gu(s)| S ¢ and max|g(v)|= @,
R;(to) - R, (to}

we have by Lemma 8', which is applicable on account of Lemma 13, for o, S0 <8

t,+ %
f(log lglo + it —log |gic +it)|)dt = A(m) Q@
ot
and (since lgn | = Q+0< 2@ in Byty)

fot+ % ‘
f(log lg.ic + it |m—log|gio + it)|)dt < A(m)2 Q.

to— 3
Also (since |log wy — log uy| = |1y — uq|/m, when u; and u, are both = m)

to+ & .
f|log lglo + ¢t)|mn—log | gulo + it)lmldté
3

to~—

e

m.

1 With y=-—1}, 6=}, and with A(m)K on the right instead of Am log® K + 1.
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Hence
fot %

(36) [110g lg(o + i) —log |gulo + ct)||dt=A(m)3Q + )i;-
Lh—3¥

For all #, we have by Lemma 20 for ;=0 =p8, and t{— 3=y <d 1=t + %

(37) Iflloglg(a+it)|dti§AK(f0)“’

and dl

(38) |f‘log | 9.(c + it)ldt' = A K, (fp)tr.
Now "

d+3

g g
1 : 1 [ . 1
d—_;floglg(a-l—zt)ldt-—df*_?j log|g,.(a+1,t)|dt—-a—_—};f1‘(fo)dfo,
¥ ? ik

where
min {d, 1,+ 43

F(t,) = f (log |go + it)| —log | gulo + it)]) dt.
max {7, {,— 4} :

If 6, (o, @, fo) = 0, it follows from (36) that

Pl =4m3Q+
whereas for all ¢;,, on account of (37) and (38),

[ Ft) | < AK ()P + A K, (t,)t?.
Hence

la—-iyfloglg(c-i— it)ldt—a—:—;flog | g.(o + it)ldfi

d+3
1

S — ¢
gd_yf(l 0, (o, Q, ty) (A(m)3Q+m)dt0 +
=%
d+i ' d+3
+ 6“.1;7,[6" (Q. Qa tO)AK(fO)*p dto + 57_1:;/ {0:1 (Q) Q’ t()) A Kn (to)“) d’o
fint 4 14

d—yt g)
= Py (A(m)3Q+m +

d+3 d+3 g+ %

+A[5-I:’—,f0n (e, Q,fo)dto]é,([g-i—yfK(to)l’dfo]u [6{7]‘ Kn(to)pdio]*)

-4 7=t 7—%
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For fixed y, and d — oo, the expression on the right has by Lemma 1 the
upper limit

Am)3Q + ;Qz + A0,(0, QF (M{K (P}t + M {K,({t¥}}),
1 4

which by (35) is =

(30) Am3Q+ 4 A(¥ale + XQPL{E W) + MK, 4})
ty to

By Lemmas 1 and 11 this expression converges for n — oo towards

(40) A(m)3Q+ 0+ 2 AX(QW MUK (1)} =Ty + Ty + Ty (say).

Let ¢ > 0 be given, and let first, by Lemma 12, ¢ be chosen so large that
T3<}e, then m so small that T; <}e and finally g so small that T2<3§e. Then
the expression (40) is <& Hence the expression (39) is < & for n = (some)
and, consequently,

g 4
'Eiflog|g(o‘+it)]dt—§—_l_—yfloglg,.(a +if)|dtl<e

ar
L

for ey <o <p if n=1ny and 0 = (some) dy(n). Arguing as in § 14 we obtain
from this the first part of the theorem.

23. The convexity of g,(c) follows at once from the convexity of the func-
tions @, (0). But as to the rest of the proof we cannot proceed exactly as in
§ 15, but must first introduce some modifications of the functions gg{o; 7, d),
Vg (0; 7, 6), and V (o; 7,68), which we obtain by adding certain terms corre-
sponding to the cuts.

For an arbitrary cut C defined by e < o< ap, t=1fy or 6o =0 < B, t =1,
let v¢(0) for ¢ < oy or o > g, respectively denote the variation of the argument
of g(s) along the lower border of the cut from o + 7fy to gy + ¢f, and back to
o+1ity along the upper border of the cut.? For o= o, or ¢ = g, respectively let
us put ve(e) =o.

1 It will be understood that the cat does not go beyond go+ity; naturally there may be more
zeros of f(8) on the cut than the end-point 6q + ifo.

? More precisely, if V™ (0}, 04: t) and V * (64, 0a; o) denote the left and right variations of the
argament of g(s) along the segment 0y < 6 < 6y, £= 1, we put vo(0) = V7 (0,0¢; to) — V™ (6, 005 f)
or v (6)=— V" (0o, 6; tg) + V (09, 0; {) respectively.
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The expressions
]

W lo;7,0)=7V;(o;7,8)+ vele—o)
and /
J
WH(a; 7,0)= V}o; 7,0) + Dvelo +0),
7
in which the sums are extended over all cuts between the lines t =y and ¢t=4,’
will represent the variation of the argument of g(s) from o + ¢y to o + ¢J along
a path composed of the left or right sides of the parts into which the segment
s=g0+¢t, y=t=4d, is divided by the cuts, and joining loops around the cuts.
The function

d g
I
WYylo; 7, 8) = gelo; , 0) + = o fvc(a)da
T

will be continuous and stretchwise differentiable with the left and right derivatives

{41) w&(0—0;7,6)=w§ and Yylo + 0; 7, 0)

_ Wilo;2.9)
. _

éd—vy

We shall now prove that y,(o; 7, d) for y fixed and § — oo converges uni-
formly in [e, 8] towards g,(c), and also that the four mean motions remain
unchanged if in their definition (22) we replace ¥V, (a;7,d) and ¥ (o;7,d) by
Wy (o;7,06) and W, (o; 7,6). This is proved by proving that

d
(42) 6“_12*;, Z |vc(o)] - o

uniformly in [e, 8].
By Lemma 4 the number of cuts which go into Ry (f,) is < 4 log (Kt + 1),

and by Lemma 17 |vc(0)| < A log (K (fy) + 1) for ¢; < 0 < 8, for each such cut.
Thus for e; =0 £ 4

tht 4

Z IUC(O’)! = A0(ty) K (f)t?,

to— b2

where 0(f;) is the function introduced in Lemma 10. Hence for ¢; S0 < 8,

! There may be an infinite number of such cuts, but for every ¢ in (a, 8} only the finite
number which intersect the segment s = ¢ + if, y << 4, contribute to the sum.
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d+3 t+ b
I < 1
o Sl s 55 f( e (o)) dto
i /"—t -4
d+
1 ) t I
el VT

By Lemmas 1 and 10 the expression on the right tends to zero, whence the
desired result.

24. We may unow proceed essentially as in § 15. It will be sufficient to
prove (23) for a; < o < g, and (25) for o, < 0y < 05 < fy.

Since y may be chosen arbitrarily we may suppose that f(s)+=o0 and g(s)+o0
on the segment oy =0 =@, t=y. By Lemmas 2, 16, and 18 it makes no difference
if in the definitions (22) and (24)\of the mean motions and of the frequencies of
zeros we restrict d to a set of values so that any interval |{ — ;| < } contains

at least one value from the set. By (42) the expressions

¢ (cr)}= inf Wil o 6@ it W (0i0,0)
ale)) s 97 G0 e

for the mean motions are also valid when ¢ is restricted in this manner.

Let us first merely suppose that d is restricted to values for which f(s) =+ o
and g(s) =0 on the segment ¢; <o =g, t=40. Then by Cauchy's theorem,
applied to the part of the rectangle (¢ <)oy < 0 < 0y(< ), y <t < d which
belongs to A,

I _
(43) Ny(oy, 0357, 0) = ;t[W.q (02; 7, 8)— W, (0157, 0) + Rloy, 0357, 0],

where R (o, 05; 7,0) denotes the contribution to the variation of the argument
from the horizontal sides of the rectangle. By Lemmas 2 and 17

R0y, 05; 7, 0) = 0(d).
Hence

I, _ = | S
‘2';((,, (o) — (’_,,+ (op)= Hy(oy,05) = Hyloy,00) = P ("’,, (69) — !’; (o),

so that (25) is a consequence of (23). Of (23) it is sufficient to prove

@glc —o0) < ¢, () and ¢&+(o) = gy(o + 0).
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For any #, for which f(s) & 0 and g(s) == 0 on the segment o, < 0 < 8y, t = f, put
ug{:ﬁgl Ec% arg glo -+ ity) | = Clty).
IR(U,, 02 ¥ d)l = (C(?’> + C0) (0s — 0y).

Then

By Lemmas 2 and 19 we may suppose that ¢ is restricted to values for which
('(6) = 0(d). By means of (41) the relation (43) assumes the form

'A’q('a;;{g:;;&é) = ,,17[(% (02 — 0; 7, 0 — Pyloy + 0; 7,8 + 1(ay, 035 7, 8)),
; 2

where Cy) + C(d)

|7 (o1, 005 7, 0) | = d— (03 — 1),

and the proof is completed by the argument used in § 135.

26. Next we turn to the proof of Theorem 4.

By the definition of the integral we have

d

A(?/; Ky, 0;7, d‘) = Ei—yfeiﬂfaﬂ't)y dt.

Now, if ¢; = 0 = 8, and the function 1, (g, {) introduced in Lemma 11 is zero, then

|efolotity — gigylotitivt < o|y],

whereas the expression on the left is <2 for all .
Hence, if |y| = a,

d g 4
I . . 1 . . I
- fglotit)y _ igy (o+it)y < _ 1 :
'5_7fe dt 6—_%[3 dt!"9a+d—yfw (o, 8) 24t
¥ v

ar
‘

For fixed y, and d — oo, the expression on the right converges towards ga + 2 ¥, (o),
which by Lemma 11 converges towards ¢a when n - co for any ¢. For every

fixed n we know (cf. § 7) that the limit
: 4

. 1 . R
A (?/1 !'Lg‘ll‘ U) :JILIEO d‘—-—_____y et9n (o+i1) .’/dt

exists uniformly in |y| < a. It follows that

d
lim — fefwmwczt
G0 5*)'

also exists uniformly in |y| <« and is the limit of Aly; ug, o) when n-> oo
uniformly in |y| =< a.
Thus the theorem is established.
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CHAPTER T11.
The Riemann Zeta Function.

Application of the Previous Results to the Zeta Function and its Logarithm.

26. Let us now consider the Riemann zeta function {(s). It is regular in
the whole plane with the exception of the point s = 1, where it has a pole of
the first order. In the half-plane ¢ > 1 the function is determined by the Euler
product

'::[8

Lls)= k 1(I_p w7

in which py, ps, ... denote the primes 2, 3, .. .; in consequence of this expression
we have {(s)+ 0 for ¢ > 1. We shall also consider the partial product

I —'pl.
k=1
of the Euler product. The function {,(s) is regular and = o for ¢ > o.
By log{(s) and log {.(s) we shall denote the functions

10g€(8)=2”~10g(1 —pi’)

and

n

log & (s) = D) — log (1 — pi %),
k=1

where in each term on the right —log(1—2)=2+ }2® + ---. The function
log £ (s) is regular for ¢ > 1 and log {,(s) for 6 > 0. By the function log((s) in
the half-plane o >} we shall mean the analytic continuation of log {(s) in the
domain A obtained from ¢ >} by omitting the segment } <o =1, =0 and
all segments } <o <o, {=1t, where o, + it, denote the zeros (if any) of {(s)
in ¢ > }.

27. The functions J.(s) and log . (s) are almost periodic in [0, + oo] and
converge for n — oo uniformly in [1, +oo] towards {(s) and log { (s).

Let us consider the functions (. (s) and {(s) in the half-strip } <o < + oo,
t >o0. It is known that {,(s) converges in the mean with the index p = 2 towards
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5(s) in [3, +o0].! Hence, if we take e =1}, ¢qp=1, 1 <y < + 00, = + oo,
and y, =0, the assumptions of Theorem 1 are satisfied, if for f(s) and fa(s) we
take the functions

Sl8)=1L(s) —x and fuls) = Euls) — x,

where = is an arbitrary complex number, and the assumptions of Theorem 3
are satisied, if for f(s), fu(s), g(s), and g.(s) we take

fls)=C(s)e™>, fuls) =CLals)e™, gls) =log{(s) —x, gn(s)=log Luls) — .

By means of Theorems 1 and 3 the study of the mean motions and zeros
of the functions {(s) — x and log {(s) — x is therefore reduced to a study of the
functions (n(s) — z and log {,(s) — =, and a passage to the limit. Similarly, the
study of the asymptotic distribution functions of {(s) and log {(s) on vertical
lines is by Theorems 2 and 4 reduced to a study of the functions {(s) and
log {n(s) and a passage to the limit.

Two Types of Distribution Functions.

28. The investigation depends on the discussion of two types of distribu-
tion functions which are closely related to each other. The first type, leading
to the asymptotic distribution functions of {(s) and log {(s) on vertical lines, has
already been considered in Jessen and Wintner [1].}

First we shall prove the following theorem.

Theorem 5. Letl(z)=1z+ lyz*+ - and m(z) =myz + my2® + --- be power
series convergent in a circle |z| < ¢(= o0), and such that l; 0 and my 0. Let
ry, 79, ... be a sequence of real numbers > 0, such that r» < ¢ for all n, and let
Ay, Ay, ... be a sequence of real numbers differing from each other and from zero.

Constder for every n the functions

\ lkm(rk e2ﬂf9k),

D=

FaBy, ..., 0) = Dl e** ) and gn(6y, ..., 00) =

k=

—

k-

il
~

! This follows e. g. from a result of Besicovitch{1}, pp. 163—169, with an addition on
uniformity in ¢ which readily follows from his proof. It is essentially this property which forms
the basis for the investigations by Bobr and Landau[1] and by Bohr{1] on the distribution of
the values of the zeta function.

* Our treatment of this type has been given a different form to match the treatment of the
second type. - Also, the results regarding the first type have been given with certain additions
which are necessary for the treatment of the second type.
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where each 0 dcscribes the real arxis considered mod. 1 as a circle ¢, so that
(6, . . ., 0n) describes the corresponding n-dimensional torus-space Qn = (cq, ..., ca).

Let u, and v, denote the distribution functions of fu(0y, ..., 0,) and of
Suly, ..., 6,) with respect to |gn(0y, ..., 0,)|° , defined by

un(E)=m(QE) and v (E)= [1ga(0y, ..., 0 m(d Qu),
Q(F)

respectively, where Q(E) for an arbitrary Borel set E in R, denotes the set of points
in Qn for which fo(0y,...,0,) belongs to E.

Then, tf ro = 0O for n — oo, the distribution functions p, and v, are absolutely
continuous with continuous densities Fo(r)= F,(&, &) and Gn(x) = Ga(&, &) for
n = (some) ng, and Fn(E, &) and G, (&, &) possess continuous partial derivatives of
order = p for n= (some) np.

If, moreover, the three series

o0 oG
i, Sy= N klri, Sy=Dliri
k=1

k=1

s

So=

k=1

are convergent', then p, and v, converge for n oo towards distribution functions u and
v which are absolutely continuous with continuous densities F(x)=F (£, &) and G(x)=
= (#(&,, &) possessing continuous partial derivatives of arbitrarily high order. The
Junctions I (x) and (i, (x) and their partial derivatives converge uniformly towards

F(x) and G (x) and their partial derivatives as n — oo,

29. To prove the first part of the theorem it is by § 6 sufficient to prove
that for every p = o the Fourier transforms A (y; p.) and A (y; »,) for n = (some)
np and some & >0 are O(|y|~?+?+9) ag |y| > co. To prove the second part of
the theorem it is sufficient to prove that for » = », the functions A (y; u) and
A(y; ».) have a bounded majorant which for some &> o0 is O(ly|~?*P*Y) as
|y|—~ oo, and that A (y; u) and A(y; »,) converge uniformly in every circle |y| <«
towards functions, which are then A(y; u) and A{y; v).

By the definition of the integral we get
(44) Aly; ) = [t (d @y) and

L

A(?/; 1’11) = feifn CIUEEEN 8">”Ign (01y ey 0n) 12m (d Qn)a
i

! We shall use Sy, S;, S; not only as notations for the sums of the series, but also as nota-
tions for the series themselves. We notice that by Cauchy's inequality the convergence of §;
follows from that of S, and S,.
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where f,(fy, ..., 0,)y denotes the inner product. Here

n
elfn 0 By Y — 11 0,’1(,”2.11'0@ y
k=1

and

n n
Lgn(0y, ..., B = D)4 | mlrie2 %) + D i do 11 (0 €27 700) (1 €277%m).
I=1 f,m=1
l+m

Hence, on placing for o <r <y

(45) Koy, 1) = fe”(’”“m)” do, Ky, r)= j el 0y gy (re2718) 4§,

4 c

and K,(y, ) =fe"(’f2"i8)!/lnz, (rer 92 dé,

where ¢ is the real axis considered mod. 1, we obtain

(46) Ay; o =Koy, )
k=1
and

(47) Alys )= Ka(y, ) [T Koo, 7o)
=1 .

1
14

-

e

F-.

n

+ Dl Ky (0, 1)Ky (=, ) 1] Kol 7).
I’zizl lil=:n

30. We shall need some estimates of the functions (45).
For all » <o

(48) IKO (1/! ))l = KO (O> 7.) =1
and
(49) K;(o.r)=o.

For an arbitrary g, < ¢ there exists a constant .4 such that |1(z)| = 4]z]
and |m(e)| =< 4|z]| for |2| = @,. Suppose now that r < g,. Since [(0)=o0, the
integrals over ¢ of the real and imaginary parts of /(r¢**??) and hence of the
inner product I[(re**?%)y are zero. Moreover, the inner product is numerically

= Ar|y|. Hence, since |e! — (1 + it)| = } £,

(50) I Koly, r)— 1] =3 4%y
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Also, since |e'' — (1 + it — 3 t%)| < §|¢]?, and since (according to Parseval's formula)
the integral over ¢ of [[(re?™®)y]® is =} (|1 |*»* + |LI3r* + - )wP= 3|42 9] %

IKoly. =1 —|0F? |y P+ §4%° |yl
and, consequently, for certain constants B, and B,,
(51) |Ko(y,”)| <1 — By r*|y|* when r|y| < B,.

Similarly, since m(0)=o0 and |e''— 1| = |¢],

(52) Ky (y, )l = A%yl
Also
(53) |Ke (g, 7)| = 4302
Finally, it is known' that there exist constants ¢; < ¢ and B such that
for » =< ¢,
(54) |Ko(y, )| = Br=i|y|-t.

31. Suppose first that 17, -~ 0 for n - co. Then all », < (some) gy < ¢. Let
this g, be used in § 30. Then the estimates (50), (52), and (53) are valid for
r=1y, and all n. Moreover, for the ¢, of § 30 we have r, < ¢, for all n>
> (some) h = 0. Hence (54) is valid for » =1, n > h. Consequently,if n = h +
+ 11 + 2p, each of the products in (46) and (47) is O(|y|-C+»), and each term
in (47) is therefore O(|y|-(+r). This establishes the first part of the theorem
with np="h + 11 + 2p.

Suppose now that the series Sy, S;, S, are convergent.

For all »

(55) |A(?/;I4n)|§A(O;.un):I-
If n=n, let us apply (54) to the factors in (46) with h <k =h+ 5+ 2p, and
(48) to the rest. We obtain

h45+2p

(56) [ Aly; un) §B5+2P( 1 ﬂc_*)lyl‘@*”)'

k=h+1

From (55) and (56) it is seen that the functions A (y; u,) for » = n, have a bounded

majorant which is 0 (|y|~@*?) as |y| > oo.

! See Jessen and Wintner[1], Theorem 13.
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From (46) and (50) it follows that
(57) [A(y; pnrs) = Ay; pn) | = | A(y; ) | Ko (g, raea) — 1| = 3 A r0a 1y P,

whence by the convergence of the series S, the uniform convergence of A(y; un)
for » > oo in any circle |y| = a.
From (47), (48), (49), and (53) it follows that for all »

Afo; w)=

n
1=

MKy (o,m) < A3 Ddiri < A% S,.
1 =1
Hence

(58) [A(y; »)| = 4% S,.

If % = np each of the products in (47) is numerically = B”“”P]yl"@“’), where
P is the product of the 9 + 2p largest of the numbers rit, h<k=n, Hence,
by (52) and (53)

(59) 1A )| = (4* 3 2tri + 4% 3 [l [aml i vily[8) B+20 Ply| 49

=1 l,m=1
1+=m

= A28, B Py |"8F0 4 42 82 B Py |-Gw,

From (58) and (59) it will be seen that the functions A(y; »:) for » = n, have
a bounded majorant which is O (ly| %) as |y| -~ oo.
From (47) it follows that

A (.7/; 2"nJrl) —A (?/; )= A (Z/; 'Vn) (Ko Y, ra+v — 1) + a1 Ko (?/, 7'n+1) H Ko (y, 7‘k) +

k=1
+ An+1 Ky (9, 7nsa) 2 Am Kl(—:vqu{mj H Ko (y, 1) +
5
+ 7»n+1VKI;T’/j;;1::) 2 LK (y, ) H Ko (y, 7).
=1 k=1
kL

Hence, by (48), (50), (52), (53), and (58),
(60) | Aly; v ) —Aly; v = 3 A Seriaa |y + A* Asarin +
+ 2A4|ln+1l7‘;+1lyISZIlIIT;
=1
= %A4 Sz 1‘12L+1 I ) |2 -+ Ag }-:!-I-l ’I‘:—H +2 A4 81 I }-n+l | 7'3x+1 [?/ l2:

whence the uniform convergence of A(y; »x) for n » oo in any circle ly| = a.
This completes the proof of the theorem.
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32. Since A(y; pn) converges towards A (y; ) when n —~ oo we obtain from
(46) the expression

(61) 1:[ (y, 1),

where the product is absolutely convergent in consequence of (50} and the con-
vergence of the series S.
Similarly, from (47) we shall deduce the expression

/8

3 Ky (g, 7) ]I Koy, 1) +

1
{

62) Aly; )=

=1

=

=

+ D Ky (v, ) Ki (=g, rm) [] Koy, ).

,m=1 k=1
l€m k=l m

Here the infinite products are absolutely convergent, and since by (48) the pro-
ducts are numerically =< 1, the series are absolutely convergent in consequence
f (52), (53), and the convergence of the series S; and S,.

We know that A (y; ».) converges towards A (y; ») when n — co. Now A(y; »,)
differs from the expression

, m==1 k=1
T£m k1, mi

(63) le K, (y, ) HKO (y, rt) Zl,l K, (y, ) I&l J,?,,, I[ oy, 1)
il

o

by the factor H K, (, ), which converges towards 1 when » -~ co. Hence (63)
k=n+1

converges towards A (y; v), and this establishes (62).

33. TFor every n the densities F,(x) and (7,(x) vanish outside the closed
bounded set of values assumed by f.(6;, ..., 8.). Since Fa.(xr) and G.(x) and
their partial derivatives converge uniformly towards F(x) and G (z) and their
partial derivatives when n — oo it is plain that all the latter functions will ap-

proach zero when |x| > c0." We shall now prove a much preciser result.

Theorem 6. For any i > 0 the densities F(x), G (x) and Fy(x), Gu(x), n=ny,
have u majorant of the form Kye V'V, and the partial derivatives of F(x), G (x)
and Iy (x), Gulx), n = np, of order < p, have a majorant of the form K,e *12I".

! “his is also an easy consequence of the explicit expression of the functions by means of
the F¢ .rier transforms.
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34. For n > q > o let us write

Son@gi1, ..., 0)= Z 1(rre2*'®%) and gq n(0g+1, ..., On) = Z A m (ry, €27%)

k=g+1 k=g+1
and let @, . denote the torus-space with (f¢11, ..., 8,) as variable point. Let
g, n denote the distribution function of f4, (0441, . . ., 6a) and v, the distribution
function of f, (011, .. ., 0) with respect to |gg,n(@g+1, - .., On)|%.

From the definition of u, we obtain by Fubini's theorem for an arbitrary
Borel set E

Un (E) = fm(9(0q+1, . eny 0,,))m(d Qq,n)»

Qg n

where Q(GQH, ..., 0,) denotes the set of points in @, for which f;(6y, ..., 6;)
belongs to E — f; n(0q+1, - .., 0,).) Hence

(64) un (E) = [ 1 (E — ) g, (d R)

R u

and consequently if ¢ = #»,

(63) Fo (@) = [ Fyle —u)py, n (@ R).
RU
Since g,(6y, . . ., 8,) is bounded, say |g4(0y, . . ., 0,)| < Cy, and |a|]* = 2|a—b]* +

+ 2| b|* for .arbitrary complex numbers, we have
lg"(01’ ey an)l2 é 2 C; + 2ng.1l(el)+1) ey 61,,)'2.
Hence we obtain by Fubini's theorem from the definition of #»,

Vo (E) é 2 Oéyn(E) + me/(g (0q+1, ..y 0n))lgq,n(0q+l; “ey an) F’n (d Qq,n)

Q. n
=2 Ciua(E) + 2 f tq (B — u) v, (d Ry)
Ru
and comnsequently if ¢ = #n,
(66) Gn(2) < 2 Gy Fala) + 2 [ Fy(x — w)vg,(d Ra).
R

U

!By E—x we denote the set of all points ¥ — x, where ¥ belongs to E. Similarly, we
denote by x — E the set of all points = — y, where y belongs to E.

10
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35. Let us write

n n
Sq.0Og+1, ..., On) = 2 Lree*™® and  ty 0 (041, - .., On) = 2 Ay vy €27%,

k=g+1 k=q+1

There exists a constant A4, such that [l(¢) —Lz|= 4y|z|® and [m(2) —m2| =
= Ay|z[? for

#| = the number g, introduced in § 31. Hence

(67) [fo,n Ogs1, ..oy ) = $4,0(Og41, ..., 00)| = 2 dyri = 448,
k=qg+1
and
(68) [ 90,0 0041, .., 0n) = tgn(Og1e, ..., 0)| = Z [Ak| A1k = A1 Sy
. k=q+1

From (67) it follows that

N ) S22 . B
(69) feS’-'f(],n(gq-[»l' N1 & m ((I Q(I,") < el04 41 ,\,fem/.]sq, nlfgt1,---> 0"1|-1n (d Q(], n)
Qq, n Qq. n

If we apply Parseval’s equation to the function (sqn@g+1, ..., 02)?, where p is
any positive integer, we obtain

[ 1sqnOgs1, ..., 0) PP (d Q) =

Q,n
2
_ p! . .
= ’—‘l'm—)‘i (11 1q+1)p‘l'_*'1 v ([17")17" =
p(l+l+...+p”=p Pe+1t - .. Pn
p' n p
< pl Y- p .2 —_ 12
=p! Z ool e PPavr L [T PP = p! 2 hrel?)
Pg1t--+py=p Po+1: - .. Pn: Ee=g+1

Hence, if ¢ is chosen so large that

d=1—16A|1 D #
k=g +1
is positive, the integral on the right in (69) is = d™. The integral on the left
is therefore = ¢1644i% g1 = ( (say).

Let S be a fixed bounded set contained e.g. in the circle |x| =< a. Then if
|zo|>2a the set xy—S is contained in |z |>}|x,|. Hence #8310l y, (ry—8)=C.
For all x, we have gy .(xg— S)=< 1. Thus we have proved that the functions
Ug,n(x — S) possess a majorant of the form K e 2%'<I°, and hence (for the same K)
the majorant K e *7I°,
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Since |al*=<8|a—b|* + 8|b|* for arbitrary complex numbers we obtain
from (68)

[0 6011, ..., 0 m(d Qya) < 8ALSH+ 8 [ [ty n(Bge1, ..., 6n)[*m (d Q,n).

Q. n Q. n
By Parseval's formula applied to (fg, @41, ..., 6,)® the integral on the right is
n 2
=< 2( 2 IlkmlrkP) < z2|m|*S;.
k=g+1

Hence the integral on the left is < 8 418t + 16|my |* S = D*® (say). From the
definitions of p, . and v, » we therefore obtain for an arbitrary Borel set E by
Schwarz’'s inequality '

vg,n(E) = Duq,n(E).

Hence the functions v, .(x — S) also possess a majorant of the form Ke—*IzI',

36. From (65) it follows that F,(x) < M,pu, »(x — S,;), where S, denotes the
set of values of f,(6,, ..., 0,), and M, denotes the maximum of F,(x). This shows
that the functions F,(x) for n > ¢q, and hence for % = ny, have a majorant of
the form K,e *I*I'. Since F,(x) converges towards F(x) as n — oo, this function
also majorizes F'(x).

If ¢ = np the densities occurring inv(65) will possess continuous partial deri-
vatives of order = p, and we may differentiate under the integral sign in (63).
The same argument then shows that the partial derivatives of order = p of
F.(x) for n > g, and hence for n = n,, have a majorant of the form K,e*I*I,
Since the partial derivatives converge towards the partial derivatives of F(x)
when # - oo, this function also majorizes the partial derivatives of order =p
of F(a). ’ |

The corresponding results on the functions G.(x) and G {x) follow in the
same manner from (66).

o0 .
37. If the series Zrk converges, it is plain, since |I(z)| < A |z]| for |z]| < oo,
=1

that all £, (6y, ..., 6,) are uniformly bounded, say |f»(6;, ..., 0] =< K. This im-
plies that all F,(x) and G.(x) and hence F(x) and G (x) vanish for |x|> K.
We shall now prove the following theorem.

Theorem 7. If the series Zrk diverges, then the densities F(x) and G (x)
k=1
are >0 for all x.
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38. Let us first consider the function F(x).
For an arbitrary &> o0 let C. denote the circle |xz| <e&. Then if x; is an
arbitrary point of R, we obtain from (64)

tn (X + Cae) Z pg (2o + C:) g, n (C);
for when u belongs to C. the set xy + ;. — u will contain z, + C.. Now

[Vfan®Oosr, ..., ) Pmld Qon)= 2 [lllre*=i%)[2d6; +

Qq, n k=q+1 Cr

+ i fl(?'ke2"”0k)dakfl(rle‘l”TOlSdQ. o
a

k,1=q9+1 ¢x
k+l

Here the last term vanishes, and since |I(¢)| < 4 |z| for |z| = ¢, the first term
is < A%(rj+1 + -+ 17). Hence

(1 — pg,n(C0) < A% (ris1 + 1hea + ).

If ¢ is large enough the right-hand side is =< }¢®. Then g4 .(C) = } and con-
sequently u.(zy + Cae) = 3 uq(xy + C:) for all n. For n-> oo this yields

(70) plxy + Coe) = $polxg + Co).
Since |l(z) — L, z| = 4;]2]|® for |2]| = ¢y we have for ¢ >p>o0
|‘f},‘q(0p+1,...,09)—sp,q(0p+1, ...,0q)!§A1()';+1+ 7”;;+2+"‘).

Let p be chosen so large that the right-hand side is <& Let 6,,...,8, be
arbitrarily chosen and put z; = f,(6,, ..., 6y). Then if ¢ is large enough we have
[t |rpss + -+ |ly]7g > |2g — 21|, and none of the numbers |1 |rps1, ..., [li]7y
is larger than the sum of the ¢ — p — 1 others. As is easily seen this implies
that we may choose 6,11, ...,0, such that sp¢(@ps1,...,0)=axy—x,. This
implies that f,(6,, ..., 6;) belongs to x, + C:, so that u,(xe + C)>o0. On ac-
‘count of (70) this shows that u(xy + C») > 0. Thus we have proved that u(E)
is > o for any set E which contains interior points.

For ¢ = ny we obtain from (65) for n > o

(71) F(x)=Rqu (2 — u) gq (d Ru),

where o, denotes the distribution function towards which u,, converges for
n - oo. Evidently this distribution function also has the property that ¢¢(E) > o
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for any set E containing interior points. The relation (71) therefore implies that
F(x) > o for all x.

89. Next we shall consider the function G (x).

Since 7~ 0 when #n - oo, and since G (x) is not altered if for an arbitrary
N we make a permutation of the numbers 7y, ..., ¥ and the same permuta-
tion of the numbers 4, ..., Ay, we may suppose that the numbers r; and r, are
as small as we please and that », > r,.

The proof depends on an elementary proposition, viz. that if »;, and », are
sufficiently small, and 7, > r,, then there exist two pairs of values (6}, 6) and
(61, 67), such that

(72) fo (01, 02) = f3(67, 62) whereas g, (6}, 62) + g2 (61, 62),
and such that if we write f; (6, 05) = u, (6,, 8,) + duy (6,, 0;), the Jacobian

9 (“1» u)

(73) 30, 0,)

is =& 0 in both of the points (41, 6.) and (67, 7). We prove this as follows.

It is known that the curve S, with the parametric representation z = z () =
=1[{re**%) is convex if » is sufficiently small, say for r <7, Since 2’ (0)=
=2mire?™ %0 (re?i%), the outer normal of S, at a point z is determined by
P)=zcl'(z)=1z+ 20, + - provided that I*(¢) & 0. We may suppose that
I*(z) =0 for |2| =7, For an arbitrary « the points (6, 6;) with f; (0, 6,) ==
are determined by the common points of the curves S, and x— S,,. For an
arbitrary point (6;, ;) the Jacobian (73) is equal to the area of the parallelogram
determined by the vectors 27 l* (1 ¢27i%) and 2 wl* (1, €27%%). If 1y = 1o and 1, =1y
there exists to every 6, a umique 0, such that these vectors have the same di-
rection. Let (6%, 63) be a pair of such values. Then, if we place z° = f; (6}, &),
the curves S, and xz®— S, are externally tangent to each other. Hence,
if x° is moved slightly in the opposite direction of I*(r; €**!%) to a point
x*, the curves S, and z*— S, will have two points of intersection near the
former point of contact. This shows that in any neighbourhood of (6, &) there
exist points (6, 6;) and (67, 67) for which the Jacobian (73) is =& 0, and for which
the first of the conditions (72) is satisfied.

If I(2) and m(z) are proportional, i. e. if m (2) = m, 71 1(2), we have g,(6;, 0;) =
= Aymy 171 f3(0y, 05) + (Ay — A))my 171 I (ry e2™%). The second of the conditions (72)
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is therefore satisfied. It remains to consider the case where I(z) and m(z) are
not. proportional.
If we place g5(0;, 0;) =v,(6,, 6) + 1v5(6y, 6;) and m*(2) =zm'(g) =m 2z +
+ 2my2® + -+, the Jacobian
0 (vy, vg)

9(6,,6,)
is equal to the area of the parallelogram determined by 2m A, m* (rye***%) and
2mwhom* (rge?™i%). If the Jacobian is % o at (6}, &), the function g, (6, 6,) will
take different values in different points of a mneighbourhood. It is therefore
sufficient to prove that, when »; and r, are sufficiently small and r; > ry, there
exist such points z; and 2z, on the circles |z]|=7r, and |z|=r;, that [*(z) and
I* (25) have the same direction, whereas m*{z;) and m®(z,) are not parallel.

Suppose that 7, has been chosen so small that the function w=I"(z) for
|2] =< 7o has a regular inverse function z =z (w)=1[7'w + ---, and put m* (z(w)) =
=m 7 w + cgw® + coaw® +---=h(w). Since [(z) and m(z) are not proportional,
the functions I*(z) and m®(z) are not proportional either, i.e. the coefficients
€1, Ca, ... do not all vanish; let ¢, be the first which is == 0. The images of the
circles |z]=1, and |z|=17, in the w-plane are two curves C; and C, each of
which intersects an arbitrary halfline with origin o in one point. Since r; > 1,
the curve C; surrounds (,. Our object is to choose the half-line in such a manner
that for the corresponding points w; and w,; on C; and C, the vectors h{w,) and
h(w,) are not parallel, i.e., on placing k(w) = h(w)/ml7'w=1+d,w* +---,in
such a manner that the vectors %(w;) and k(w,) are not parallel.

Suppose that r, has been chosen so small that {%{w) — 1] = (some) a <1
in the domain of the w-plane which corresponds to |z| =< 7y, and that in addi-
tion y =k(w) for this domain has an inverse function w = w(ly — 1)V*), which
is regular on the Riemann surface of (y — 1)'**. Then the images of €, and G,
in the y-plane are two curves D; and D, on this surface, such that D, surrounds
D,, and these curves belong to [y —1|=<a. Let y be a point on D; with
maximal argument; then there is no point y, on D, with the same argument.
Hence, if the halfline is chosen such that #(w,)=1y,, the vectors k(w,) and
k(wy) will not be parallel. This completes the proof of our elementary pro-
position. |

40. By means of this proposition the theorem may now be proved as
follows.
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If we denote by M a sufficiently small neighbourhood of the point x* =
= f, (01, 02) = f, (67, 63), the functions & = u;(0;, 6;) and & = uy(6;, 0) will de-
termine a mapping of certain neighbourhoods A’ and A" of (61, 62) and (67, 67)
on M, and the inverse transformations will be determined by functions

(&1, &) 0, = 7’1, (&1, &)

and

2 (81, &2) 0y = y2 (51, &2)

with continuous partial derivatives and with Jacobians

Il

6;

(74) 0,

I

Y
Y

0, &) M 4G, &)

which are numerically = (some) #, > 0. Introducing the functions (74) in g, (6;, 6,)
we obtain two functions

3 (y1, a) a2 (91, 72)

I (90) =02 (7’1 1, &), 7; &, ‘52)) and T” (x) =02 (}’,1, (&1, &), 7'2' &1, &)

for which I'"(z*) 2= I"'(z*). We may, therefore, suppose that } has been chosen
so small that in M

(75) [T (x) — I (x)| = (some) &y > 0.

From the definition of », we obtain by Fubini's theorem for an arbitrary
Borel set E

1',,(E)= fm (d Q2) f )lg" (01, c ey On)lem(d Q‘Z, ")a

Q@ Q(6y, 6.

where Q (6, 6,) denotes the set of points in . for which f5.(6;, ..., O.) be-
longs to E — f5(6;,0,). Hence

v (E) ;Afm(d Q) [ lgn(6s, ..., 00)Pm(dQun) +

Q(6,, 6,)

+ [m(sz) f )|.‘7n(01~ ) 0,1)|2n1(dQ2,,1).

In these integrals we apply the substitutions (74) and thus obtain

(76) w(E)= [hym(@R) [(T'@ + go,n®s, ..., O] +
i Q)

+ T @ + g2,nOs, ..., 02y m(d Qs, ),

where Q(x) denotes the set of points in @, in which f5 .(6s, . .., 6,) belongs

to E—x. Now, |la+ ¢+ |b+ c]*=3|a—0b|® for arbitrary complex numbers.
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Hence by (75) the integrand in the inner integral in (76) is = 3 &} for all z in M.
Consequently

vn(E)_Z_fklm(dR%f 3 Em(d Qon) =3k [ o n (E— 2) m(d R.),
M (x) M
whence for » > o
v(E)Z 31 1 [ 0(E — x)m(d Bo),
M

so that for an arbitrary z,

G(-’l'o) =4k kngz(xo - :v) m(de),

where R,(x) denotes the density of g,. Since, by the first part of the theorem,
Ry(x) > o for all z, this shows that G(x) > o for all x.

41. Next we shall prove the following theorem.

Theorem 8. If»,'= O(n), then the densities F (x)= F (&, &) and G (x)=G (£,,5,)
are regular analytic in every point of the real plane R.. If ry' = o(n), then F(z)
and G (x) are entire functions of the two variables £y, &s.

Consider the products

H Ko (y’ 7'};), H KO (yy rk): and ]I KO (?/, 1'k)
k=1 k=1 - k=1

kel k+=l,m

occurring in the expressions (61) and (62) for A (y;u) and A (y;»). Let

=lim sup »»'/n. Then if a>b there exists a p, such that r, = the number
n -+ o0

o0, introduced in § 30, and »,' < an, for n>p,. We have then |Ky(y,r)| =
= Br;t|ly|-* < Batnt|y|~t for every n > p,. The p* factor in each of the
products corresponds to a value %k such that p <k =<p+ 2. Consequently,
|Ko(y.76)] < Bat(p + 2)t|y|~t =(p + 2)tt-t, where t= B~2a7ly|, if p>p,.
Since |Ko(y, )] =1 for all % it follows that for { = p,+ 3 each product is numer-
ically

0 t—2
<[ min {1, (p+ 2ty =Tl (p + 20t t-t =[] ¢ e-¥/]] * ¢ ¥,
P=py+1 P=po+1l gst q=pe+2

which by Stirling’s formula is O(£*3®¢ 1Y), Thus each product is < Ce=¢17! for
every ¢ < } B%2a7!, the constant C (depending on c¢) being the same for all

products. Hence

[A(y; p)| < Ceclvl
and
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|A(y; )| = (2;.%A21-§ + S |lm|A41‘?1~§n|y]2) Ceclvl
l=1 I, m=1
{+m

= (A%S, + A* Sty ) Ceclvl

Consequently, A(y; u) and Al(y;») are O(e¢l?l) for every ¢ < 3} B~2a~!, which
proves the first part of the theorem (cf. § 6). If b=0 we may take a ar-
bitrarily small; hence A(y;p) and Aly;») are O(e~¢!¥]) for arbitrarily large ¢
which proves the second part of the theorem.

42. In the applications the numbers #y,7,, ... will depend on a parameter ¢
(whereas Ay, 4y, . . . remain constants).
Theorem 9. If ry, 7y, ... are continuous functions of a parameter o in a closed

mlerval o) = 0 < 0y, and r,—0 uniformly in o, then the distribution functions w.
and v, will for every wn depend continuously on o, the numbers np, p = 0, may be
chosen independent of o, and the densities F,(x) and G,(x) and their partial deriva-
tives will be continuous functions of x and o together.

If, moreover, the series S,, Si, Sy have convergent majorants, then the distribution
Junctions u and v will depend continuously on o, and the densities F (x) and G (x)
and their partial derivatives will be continuous functions of x and o together.
Further, the densities F,(x) and G.(x) and their partial derivatives will converge
uniformly in x and o together towards F(x) and G(x) and their partial derivatives.
Finally, the majorants of Theorem 6 may for every A> o0 be chosen independent of o.

From the expressions (44) it will be seen that A (y; u,) and A(y;,) for every
n depend continuously on y and ¢ together. On examination of § 31 we see
that gy, h, and np successively may be chosen independent of o. Also, since each
r-t is a bounded function of o, there will for every n = np exist bounded ma-
jorants of A (y;u.) and A (y;,) which are O(y| &*?) and are independent of o.
This establishes the first part of the theorem.

The estimates (57) and (60) show that the uniform convergence of A (y; u.)
and Af(y;».,) towards A(y; u) and A (y; %) in any circle |y | < a is also uniform in o.
Hence, A(y; u) and A(y;v) depend continuously on y and o together. For every
p=o0 the estimates (55), (56), (58), and (59) show that A(y;u,) and Af(y;».) for
n = np possess bounded majorants which are O(ly| %*?) and are independent
of 0. This establishes the second part of the theorem except the last statement,
which follows on examination of the proof of Theorem 6, where again all constants
may be chosen independent of o.
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Theorem 10. Let 7y, 73, . .. be continuous functions of a parameter ¢ in a
closed interval o, = o <oy, such that r,—~0 uniformly in o. Let the series Sy, S;, S,
be convergent for oy <o =< a,, but let Sy be divergent for ¢ = o;. Then the density
F(x) of the distribution function u and each of its partial derivatives will converge
uniformly in x towards zero when ¢ — oy.

By the expression of F'(x) and its partial derivatives it is sufficiéent to

prove that
[lyi?|A(y; )| m(dR,)—

By
as ¢ - o, for every p = o.

Since |A(y;u)] = |Al(y; u.)| for every n there exists according to the proof
of Theorem 9 a bounded majorant of A(y; ) which is O(y| %*?) and is inde-
pendent of ¢. We therefore only need to prove that A (y; u) > o uniformly
in every domain 0 <c¢=|y|= C when ¢ - 0,. Let ¢ be chosen so large that
ry C = B, for k = ¢ and all o, where B, is the constant occurring in the estimate
(51). Then, if ¢ < |y|= C, we have

| Aly; ml—HlKo (y, 74| gH I—Bmzlméﬂ (1— Byricd).

Since the series S, diverges for ¢ = oy, the last product converges towards zero
when ¢ — 0y, and this establishes the theorem.

Distribution Functions Connected with the Zeta Function and its Logarithm.

43. In § 27 we have reduced the study of the functions {(s) and log {(s)
to a study of the functions {,(s) and log {.(s). Together with (,(s) we shall
consider the whole class of functions

n
Lals; 64, ..., 6,)= H(I —pf oL,
k=1

These functions are all regular and = o for o> o.
Let us now consider the functions

n

log Cn( 1y = oy 0,,) = Z —_— log (I .._p;e e2:'11?€k)’

k=1

where in each term on the right —log (1—2)=2z+ }2*+ ---, and their derivatives
with respect to s
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, n uog pk)p—a e2mio;
Cu/Cn (3; 01, ey an) = Z - . :

k=1

1 ___pk—s e’lniﬂk

For s= o > 0 these are the functions f,(0,, ..., 6,) and g, (6;, . . ., 6) of Theorem s,
if we take 1(2) =—log (1 —2), m(2) =2l (¢) = 2/(1 — 2), where |z| <1, 1 =p;°,
and i, =—log p,. Then 7, 0 when n — co for any ¢ >0, and the three series
8y, S;, Sy are convergent for ¢ > }, so that Theorems § and 6 are applicable.
The estimate (54) in this case holds for any ¢, < 1.! The proof of Theorem 5
therefore shows that the theorem is valid with #y;= 11 and np=11+ 2p.
Theorem 7 is applicable for § < ¢ = 1, and Theorem 8 for } < ¢ < 1, in which

case r;'=o(n). Finally, ,— 0 as n - co uniformly for ¢ > (any) @ > 0, and the

three series S;, Sj, S, have convergent majorants for ¢ > (any) « > }, so that the
first part of Theorem ¢ is applicable for any interval (0 <)o; < 0 = op(< + 00),
while the second part of the theorem is applicable for any interval (} <)oy <
S o= 0,(< +00). Finally, the series S, is divergent for 0 =1}, so that Theorem 10
is applicable for o), =3}.

Thus we obtain the following theorem.

Theorem 11. For an arbitrary o> o0 the distribution functions pn s and v, o of
log nl0; 0y, ..., 6,) and of log Lu(o; 6y, . .., 0) with respect to | {n/ln(a; 6y, . . ., On)|°
are for n=11 absolutely continuous with continuous densities Fn,,(x) and G, (x)
whach for n = 11 + 2 p possess continuous partial derivatives of order = p.

If 6>}, the distribution functions wa, and va, . converge for n —~ oo towards
distribution functions u, and v, which are absolutely continuous with continuous
densities F,(x) and Gq(x) possessing continuous partial derivatives of arbitrarily
high order. The functions Fyn o(x) and Gy o(x) and their partial derivatives converge
uniformly towards Fo(x) and G,(x) and their partial derivatives for m - oo. If
1 <o =1, then Fy;(x) >0 and G4(x) >0 for all x. If } <o <1, then Fy(x) and
G, (x) are entire functions of the two variables £y, &,.

The distribution functions all depend continuously on o, and their densities and
the partial derivatives of the densities are continuous functions of x and o together.
Further, if }<a<B< +oo, the convergence of Fn,o(x) and Gn, o(x) and their partial
derivatives towards Fo(x) and G,(x) and their partial derivatives is uniform in x
and o together for all x and a=oc=8. If A>o0 is arbitrary and } <a<f<+o00,
the functions F,(x), Go(x) and Fn +(x), Gu,¢(x), n =11, have for « < ¢ = a majorant

! See Jessen and Wintner 1], p. 70.
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of the form Kye 212V and for every p the partial derivatives of Fi(x), Gs(x) and
Foo(x), Guolx), n=11+2p, of order < p, have a majorant of the form Kpe~*1F,
The density F(x) and each of its partial derivatives converge uniformly towards
zero as o~ %.
We remark that since log (. (o; 0, . . ., 0x) and (n/8a(o; 6y, . . ., 0.) take con-
jugate values in the points (6,, ..., 6,) and (—6,, ..., — 6,), all the distribution
functions and hence also their densities are symmetric with respect to the line £, =o.

44. Let R. be mapped on itself by the transformation e*; every point
x=2§ + 28 #+ 0 is then the image of the enumerable set of points log x =
==log |x| + 7 arg . In the neighbourhood of each of these points the Jacobian
of the transformation is equal to |z|®. If E is an arbitrary set in R, we denote
by log E the set of all points x such that ¢* belongs to £. We shall now prove
the following theorem.

Theorem 12. For ar arbitrary ¢ > o the distribution functions fin ; and v, o

of Lulo; 6y, . . ., On) and of Lulo; 0y, . . ., On) with respect to |{n(o; 6y, . . ., O2)|F are
determined by
(77) tn,o(E) = pa,o(log E) and v, .(E)= f €% va, o (d Ry).

log E

For nz11 they are absolutely continuous with continuous densities Fy o(x) and
G, o(x) which are zero for x =0 and for x 4 o are determined by

(78) F, .(x)=|z|? 2 F, s (logz) and Gnolx)= Z Gy, s (log ),

log x log x
where the summations are with respect to all values of log x. For n= 11+ 2p the
densities possess comtinuous partial derivalives of order = p.
If 0 > %, the distribution functions pin s and vy s converge for m — oo towards
distribution functions p, and v, which are determined by

(79) #o(E) = ps(log E) and #,(E)= [ &% »,(dR.)

log E
and are absolutely continuous with continuous densities Fo(x) and Gs(x) which are
zero for x =o0 and for x == 0 are determined by

(80) Fy(x)=|z|? Z F,(logz) and G.(z)= Z G, (log ).

log z log z

The densities possess continuous partial derivatives of arbitrarily high order which
all vanish for x=o0. The functions Fn ,(x) and Gn o(x) and their partial derivatives
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converge uniformly towards F,(x) and G,(x) and their partial derivatives when n - oo,
If 3<o=1, then Fylz)>0 and Giz)>0 for all x+o0. If } <o<1, then
F,(¢%) and G4(e*) are entire functions of the two variables &, &,.

The distribution functions all depend continuously on o, and their densities and
the partial derivatives of the densilies are comtinuous functions of x and o logether.
Further, if }<a <<+ o0, then the convergence of Fu i(x) and G .(x) and their .
partial derivatives towards Fu(x) and Go(x) and their partial derivatives is uni-
form in x and o togelher for all x and e =0 < 8. If A>o0 is arbitrary, and
}<a<B<+oo, then the functions Iy(x), G,(x) and Fuos(x), Gnolx), n= 11,
have for e< o =g for x =0 a majorant of the form Kge=20elzV* gnd for every p
the partial derivatives of ¥,(z), G,(2) and Fn ,(x), Guo(x), n=11 + 2p, of order
< p, have for x = o a majorant of the form Kpe=*ogizl’,

The density F,(x) multiplied by |z|* and each of its partial derivatives of order
p multeplied by |x PP tend wniformly to zero when o - }.

We observe that the distribution functions and hence also their densities are
symmetric with respect to the line & = o.

Most of the statements are immediate consequences of Theorem 11. By
definition we have.

o o(E)=m(QE) and 7, ,(E) =Qf|;;,(a; 0y, ..., 0 Em(d Qn),
k)
where Q(E) denotes the set of points in @, for which {n(s; 6, . . ., 6,) belongs to E.
Since Q(F) is also the set of points in @, for which log {a(o; 6y, . . ., 0,) belongs
to log E, the expressions (77) follow immediately. The remainder of the first
part of the theorem follows from (77), since for every = the functions Fy o{x)
and G, ,(x) are zero outside the bounded set of values of log {.(o; 6;. ..., Oa).
The sums (78) therefore contain only a finite number of terms different from zero.
The expressions (77) may for # = 11 be written

fin, o (E) fF,, s(x)m(dR,) and 17,,,,,(E)=fe25' Gn, o(2) m(d Rs).
log £ 08 E
Since the integrands for n —oco converge towards F,(x) and €** G4(x), and since
the convergence for every 1> 0 is majorized by integrable functions K,e~*!<F
and Kge?s e~21%F it is plain that .. and v, , converge towards the distribution
functions (79), which may be written

= [F.(@)m(dR) and %/(E)= [ &% G,(x)m(dRy).

log K log £
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Since log F is a null-set when FE is a null-set, it is obvious that u, and », are

absolutely continuous, and also that their densities are given by (80).

On placing
(81) D, ()= w‘Fn,,,(x+27zih), ®g(x)=iFg(x+ 2mih)
and S S
(82) L o(x)= i G, o(x + 27ih), T, (x) = i Golx +2nih)
we have T e

Fool@)=|a[2®uolloga),  Folx)=|z[* P, (log )
and ~ ~
Gn, 7 (l‘) = rn, o (log .’E) Gg(w) =T, (lOg x)

By Theorem 11 the series (81) and (82) are in any interval (} <)o < o < (<< + o0)

and for any A > o majorized by a series

i]{e—llele’: Ke-23 }j emhEt2alt < K7 g-id),
h=—o0 r=—

and for every p >0 the series obtained by partial derivation of order = p have
similar majorants. As is easily seen, this implies all the remaining statements
of the theorem except the last statements of the second part and the last part.
The first of these statements, viz. that F,(z) >0 and Gs(x)> o for all z=o0 if
1 <o=1 follows immediately from Theorem 7. We proceed to prove that
F,(¢%) and G,(e%) are entire functions of & and &, when }<o <1, i. e. that ®,(x)
and T';(z) are entire functions of & and &,.

It is plain from the expressions (44) that A (y; pn o) and A(y; ¥ ) possess
continuous partial derivatives of the first order with respect to 7,. According
to (46) and (47) they are for n = 4 sums of terms each of which contains at least
n — 3 factors Ky (y, r), while the other factors are bounded. Hence, if » = 8

0 o 0 . —_—
OTI;A(?/;#n,o)—O(I?/I %) and (hhA(y, o) = 0|y

-9).

This implies’ for @, ,(x) and T, ,(x) the representations

oo o0

O olz)=(2m) [ 3 7=t Ay + j; o) Ay

—00 j=-—00

and

! See Jessen and Wintner{1], p. 73.
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Lo, o () = (2 7)~2 f 2 e~ =i A (ny + 455 vn, o) d g

—00 Jm=—o0

as combined Fourier series and Fourier integrals. Since A (y; un, o) and A(y; v, o)
for = 11 have bounded majorants which are O(ly|-3) we obtain for n - oo
similar expressions for ®,(x) and T's(x) with u, and », instead of un o and », .
These expressions show' that @,(x) and I';(x) are entire functions of the two
variables &,5 if } <o < 1.

The last part of the theorem is equivalent to the statement that ®,(x) and
each of its partial derivatives tend uniformly to zero when ¢ -~ }, which by the
argument used in the proof of Theorem 10 follows from the above mentioned
expression for @, (x).?

Main Results.

456. We are now in a position to prove our mair theorems.

Let us first consider the functions log £, (s) for ¢ > 0. According to §§ 7
and 27 there exist for every ¢ asymptotic. distribution functions of log {a (o + 7¢)
and of log {.(c + ¢t) with respect to |{n/Ca(o + 28)|2. For {u(o + 7¢) we have the

expression
n

Lalo+28) = H(I —py e WePi=1 =L, (5; Ay t, ..., Aut),

k=1

! See Jessen and Wintner [1], p. 73.

® We notice that the last statement of Theorem 12 is not true if the factors |x|* and |x|2+»
are omitted. It is not even true that u (E)-o for any bounded set E as o —3. This may
be proved as follows.

For every n and every ¢ > 0 we have

logl,(a;0y,...,0)+logl (0;0,+%,...,0,+ =1logl (20;20,,...,20,).

The right-hand side has the distribution function g, 5 ;. From Theorem 1I' follows therefore for
any &> 0 the existence of a constant K such that for all 6 >4 and all n the measure of the set
in @, in which .

[logl,(0; 0y, ..., 0,) +1logl, (0;6,+%,....0,+H]|=K
is =21 — €. For any point of this set we have either

log |, (0,04, ...,0,)] 3K orlog|{, (0;0,+3,...,0,+P|=}K.

Since the two sets in @), determined by these inequalities are congruent, it is plain that their
measures must be = 3(1 —&). Hence, if we denote by E the circle |x| = e} K, we have Uy o E) =
=41 —¢& for all 6>} and all »n and, consequently, sz (E)= }(x —¢&) for all 6>}, so that
lim i;fﬁu(E) =31 —¢).

o—

This remark provides an answer to a desideratum mentioned in Jessen and Wintner[1], p. 74.
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where, by way of abbreviation, we have put — (log p1)/2 7w = A:. These numbers
Ay, ..., A are linearly independent. Similarly,

Lnlo 4+ ct) =Cnlo; Aty .. ., And),
loglnlo + 2ty =1log Lulo; 448, ..., Aut),
C;z/:n(ﬂ' + Z.t)=C1,l/Cn(0'; 11 t, Cey lnt)

For the Fourier transforms of the distribution functions us . and », . we

and

have by (44) the expressions

A (g5 tan,0) = [ 10850 0300 0 (1 Q) and

9
Aly; vn o) = feilog;n(a;o,,...,on)yla/cn(a; 0y, ..., 0)Em(d Q..
(0
Now, if H{#,,...,0,) is any continuous function in @, and if 2;,..., 4,

are linearly independent, we have

MA{H@Rt, .. dat)} = lim — fH(Alt,...,lnt)dt=
t (d—y)=o00 0 — 7
7
=fH(01, , Ouym (d @n).*
p
Hence

A(y; Un, U) — M{eilog;n(u+i1)1/} and
¢
Aly; #a,0) = M{eomin e i0v | 5/ o + i) ).
t

Together with § 7 this shows that the distribution functions pn, . and », .
of Theorem 11 are also the asymptotic distribution functions of log (. (o + ¢¢)
and of log . (0 + ¢t} with respect to |&n/lulo + 28)|%.

By § 8 this gives for an arbitrary = for the Jensen function @iog:, —z(0) of

log £u(s) — « the expressions

(83)  roge,—z(0) = f log |u — 2| ptn, s (d Ry) = flog |2 — x| Fn, o (1) m(d Ry),
Ru Rl.l

where the last expression is valid for n = 11.

! This classical result, due in principle to Bohl, which is an easy consequence of Weier-
strags’ approximation theorem, was used by Weyl as basis for his theorem on equidistribution
mod. I of the points (4; ¢ ...,Ayf). Weyl's theorem was a main tool in Bohr's study of the
distribution of the values of the zeta function. In the present exposition we use only the above
statement. As to this way of avoiding the explicit use of Weyl's theorem, cf. Jessen and Wint-

ner (1], p. 79.
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From Theorem 11 and § o it follows that giog;,-(6) for any n = 11 and
any x is twice differentiable with the second derivative

(84) Plog in—z(") = 27t G, ().

46. By means of these results we shall now deduce the following theorem
connecting the function log {(s) with the distribution functions described in
Theorem 11.

Theorem 13. For every o> 1 the function log ({0 + 7t) possesses the asymp-
totic distrebutron function us, 1.e. the distribution function

o Ml Agy, s (E)
Hoiy, 8 (E) = d—y ’
where Ao, ¢(E) for an arbitrary Borel set E denotes the set of points in y<t<d
Jor which log ((o + ¢t) belongs to E, converges for 6 oo and any fixed y>o
towards we.
The Jensen function

g
¢1og;—x(0)=}in:° E{—;flogllog Clo+it)—x|dt
, 7

exists for every x uniformly in [}, +o0] and is a lwice differentiable convex funclion
with the second derivative

(85) | @i’ogi—w(a) =27 G, ().

It is expressible as

(86) Prog -2 (0) = J log | — x| ps (A Ry) = fl’og |u— 2| o) m(d Ry).
Ry Ry,

For o> (some) oglx) we have @iog:-z(0)=log|z|, if x40, and @ig:-z(0) =
= — (log 2)g, ¢f x=0. We have giog:—z(0) > o0 as o> }.

For every o >4 the two mean motions
V={0; 7, 9) V* (o 7, 9)

=1i _— + = 1i —_—
(o) (}Ln:o i—y and ¢t . (0) all.H:o pp

clog -

where V= (0, 7,0) and V+(0; y,d) denote the left and right variations of the argu-
ment of  log §(s) — = along the segment s=g0+ it, y <t =<0, exist and are de-
termened by

Clog e (o) = C{t,g ;_x(o') = q’iog;—x (0)

11
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Further, for every strip {o,, 05), where {;< 0, < 6y < + oo, the relative fre-
quency
Noy, 05; 7, 9)

lim ————~—»

Hiog:—2(01, 02) =d_”° s—7p

where N0y, 03; 7,0) denotes the number of zeros of log L(s)— x in the part of the
rectangle 6, < o6 <oy, y <t <d which belongs to A, exists and is determined by

Hiog;—z(01, 0g) = i (@logs—2(02) — Plogz-z(0y) = f G, (x)do.

47. According to § 27 we may apply Theorems 3 and 4.

The first part of the theorem follows from § 45 by means of Theorems 4
and 11.

From Theorem 3 it follows that guog:—(0) exists uniformly in [4, +oo] and
is a convex function, and that @ig:,—(0) converges uniformly towards @ig:—z(0) in
[, +0]. From (84) and Theorem 11 it follows that @iog:—z(0) is twice dif-
ferentiable with the second derivative 2z G4(z). From (83) follows (86), since by
Theorem 11 the function log |# — x| Fy, +(u) converges, for a fixed ¢ and n-»>00,
towards log |u — x| F,(u), and the convergence is majorized by a function of the
form K,|log |u—=x ]| e~*1“I', which is integrable over R,. The statements concerning
@rog:~2(0) for large ¢ are obvious consequences of the behaviour of log () —=
for large 0.' That @iog:—2(g) > 0o for ¢} follows from (86) together with
Theorem 11, since the integral of F,(u) over R, is I.

The remainder of the theorem is now implied by Theorem 3.

48. From the remark at the end of § 18 it follows that Theorem 13 re-
mains valid if the limits are taken for y -~ -—oo and a fixed d <o. This follows
also from the remark at the end of § 43, since log (s) takes conjugate values
for conjugate values of s.

49. We shall now prove the following analogous theorem, connecting the
function ((s) itself with the distribution functions introduced in Theorem 12.

Theorem 14. For every o>} the function {(o + it) possesses the asymptotic
destribution function pe, ¢. e. the distribution function

! Cf. Jessen and Tornehave (1}, Theorem 9.
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- _ m (Aq; v, J(E))
ua;y.d(E)————d_y ;
where Aq,, ¢(E) for an arbitrary Borel set E denotes the set of points in y <t <4
Jor which ((o + it) belongs to E, converges for 8~ oco and any fixed y >0 to-
wards .
The Jensen function

d
1
t~z(0) = lim —— | log + ity — x| dt
@i~z (0) ,,l.“;a—yf""lg(" it) — x|
Y

exists for every o uniformly in [}, + o] and is a twice differentiable function with
the second derivative

(87) @pi-z(0) =27 G, ().
It us expressible as
(88) P:-z(0) = flog[u — x|, (dR,) = flog |u— x| Fy(u)m(dRy).
Ru Ru
For o> (some) o4 (x) we have p:_:(6) =log | 1—z|, ¢f z+1, and p:—:(c)=— (log 2) o,

if x=1. For x=0 we have @:—z(6)=0 for all 6>3%. For x =+ 0 we have
@:—z(0) > o0 when o> 3.

For every 6> 1 the two mean motions

(0) = lim 8- E@+id—x)—arg” (o +ip) —2)
d— o0 6_7

C;_ﬁ,

and

+ SN + o
CEL_x (0)=}im argt (Lo + 20) xg_:rg Cwo+ip—ux)

exist and are determined by

¢, (0) = ¢t (0) = g'—2(0).

Further, for every strip (o1, 63), where } <oy <oy < + 00, the relative fre-
quency

lim Y101 %27, ),

H:—. (04, 02)=0_m §—y

where N(oy, 63; 7,0) denotes the number of zeros of [(s)— x in the rectangle
0, <0<0y, y<t<d, exists and is determined by
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4]
1 ’ ’ pa
H;—z(01, 05) = P (@i-z(09) — @i-zloy) = f Gs(x)do.

50. To prove this theorem let us first consider the functions {.(s). By
considerations exactly like those of § 45 we see that for every o > o the dis-
tribution functions pn s and »,, of Theorem 12 are also the asymptotic dis-
tribution functions of Z,(o + ¢t) and of l.(o + 2¢) with respect to |{u(o + 28)[°.
Consequently, the Jensen function g, —.(6) of a.(s)—a is for an arbitrary z

determined by

(89)  @r—z(0) = [log|u—z|itn o(dR)) = [log |4 — 2| Fy, o (u)m(d Ru),
R, R,

(2

where the last expression is valid for » = 11.
From Theorem 12 and § 9 it follows that ¢ -.(s) for any » = 11 and any

x is twice differentiable with the second derivative
(90) | q)g"-, (0)=2nx (;’,,,,,(x),

51. According to § 27 we may apply Theorems 1 and 2.

The first part of Theorem 14 then follows from § 50 by means of Theo-
rems 2 and 12.

From Theorem 1 it follows that ¢:—.(o) exists uniformly in [%, + oo] and
is a convex function, and that @;,~z(0) converges uniformly towards g;—z(0) in
[4, + 0]. From (9o) and Theorem 12 it follows that g:_.(d) is twice differenti-
able with the second derivative 27 G,(x). From (89) follows (88), since by
Theorem 12 the function log |#— x| Fy, «(u) for a fixed ¢ and » — oo converges
towards log |u — 2| F,(u), and the convergence is majorized by a function of the
form K,|log |u—z|| e~*Moel#l®  which is integrable over R,. The statements
concerning @:—, (a) for large & are obvious consequences of the behaviour of {(s)—
for large ¢.' In particular, g:(c) =0 for ¢ > gy(0); that we may take ¢,(0) =}
is a cohéequence of & 19. '

To prove that @; ,(6) > co for ¢ > } when 2 40 we use the relation

Pi-z(0) = 2 Plogi—10gz(0),

logz

! Ct. Jessen and Tornehave (1], Theorem 'q.
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which follows from (80), (85), and (87). On account of Theorem 11 the series
possesses in every interval (} <\)e = ¢ = B(< + o) a convergent majorant. By
integration we therefore obtain for an arbitrary o,

(91) @3—1 (0) - q’,;—-m (0'1) = Z (lpiog t-logz (0) — quog t— logz(ql)).

logx
For ¢ > 0,(x) we have [ (s) % x and hence log {(s) 3 log = for all values of log .
Hence, if 6, > dp{x), all the terms @'—z(0;) and @iog;—10g2(0y) vanish if =+ 1,
whereas, if z = 1, the term ¢:_.(0;) is = — log 2, and of the terms @iog:—10gz(01)
one is = — log 2 and the others vanish. Hence the relation (91) takes the form

’ N\,
P~z (G) = Zj Plogi—loga (0')
log 2

By another integration we obtain

P~z (G) - Q;—x(ﬁl) = Z (wlog {—logzx () — Plogi—logz (0'1)) .
logz
For } <o <o, All the differences are = 0. Moreover, by Theorem 13 each of
the differences on the right will —~ co when o~ 4. This shows that @:—.(s) - oo
when o~ }.

The remainder of the theorem is implied by Theorem 1.

52. From the remark at the end of § 11 it follows that Theorem 14 re-
mains valid if the limits are taken for y » — oo and a fixed § <o. This follows
also from the remark after Theorem 12, since [(s) takes conjugate values for
conjugate values of s.

53. As a corollary of Theorems 13 and 14 we have the following theorem.

Theorem 16. If N(T) denotes either the number of zeros of log L(s) —x in
the part of the domain 6>}, o<t < T which belongs to A, for an arbitrary x,
or the number of zeros of ((s)— x in the domain ¢ > 3%, 0<t< T, for an arbitrary
x %= 0, then
N(T)

—T,r-—~—>oo when T -> o0,
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