SPACES WITH NON-POSITIVE CURVATURE.

By

HERBERT BUSEMANN,

of Los ANGELES, CAL.

Introduction.

The theory of spaces with negative curvature began with Hadamard's famous
paper [9].! It initiated a number of important investigations, among which we
mention Cartan’s generalization to higher dimensions in [7, Note I1I], the work
on symbolic dynamics® for which, besides Poincaré, Hadamard's paper is the
ultimate source, and the investigations of Cohn-Vossen in [8], which apply many
of Hadamard's methods to more general surfaces.

For Riemann spaces the analytic requirement that the space has non-positive
curvature is equivalent to the geometric condition that every point of the space
has a neighborhood U such that the side b¢ of a geodesic triangle abec in U
is at least twice as long as the (shortest) geodesic arc connecting the mid points
v,c of the other two sides: ‘

" be=2-b¢.

This condition has a meaning in any metric space in which the geodesic
connection is locally unique. It és the purpose of the present paper to show, that
(*} allows to establish the whole theory of space.s with non-positive curvature for spaces
of such a general type. This theory proves therefore independent of any differen-
tiabilety hypothesis and, what is perhaps more surprising, of the Riemannian char-
acter of the metric.

It was quite impossible to carry all the known results over without swelling
the present paper beyond all reasonable limits. But an attempt was made to

! The numbers refer to the References at the end of the paper.
? A bibliography is found in the paper [12] by M. MorsE and G. HEDLUND on this subject.
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bring those facts whose proofs differ from the current ones. The following is
a more detailed description of the contents.

For the convenience of the reader Section 1 compiles the definitions and
results concerning spaces with locally unique geodesics, which were proved elsewhere
but are needed here. Section 2 discusses covering spaces and fundamental domains.
Part of it will not be used but is necessary for actually carrying over several
known results not discussed here.

Then non-positive curvature is defined by (*). If the equality sign holds in
(*) we say that the space has curvature o; and if the inequality sign holds for
non-degenerate triangles, the space is said to have negative curvature. Section
3 discusses the local implications of (*). The long proof of Theorem (3.14) is the
only place where differentiability hypotheses would have permitted considerably
simplifications.

If the space is straight, that is it all geodesics are congruent to euclidean
straight lines, then (*) implies that for any two geodesics z(t) and y(f), where ¢
is the arc length, the function z(#) y(f) és a convex function of t (Section 4). This
is really the central point of the theory. It permits to do without the Gauss-
Bonnet Theorem, for which no analogue in general Finsler spaces has as yet
been found, but which is frequently applied by Hadamard and others. The con-
vexity of z(f)y(f) also allows to establish a complete theory of parallels. ‘

Moreover, it is basic for the other fundamental fact, that the universal cover-
ing space of any space with non-positive curvature is straight (Section 5). This is
proved here under the additional assumption that the space has the topological
property of domain invariance, which is probably always satisfied but defies
present topology.

The study of general spaces with non-positive curvature is reduced to simply
connected spaces by means of the covering motions of the universal covering
space. These motions have no fixed points. Section 6 investigates motions of
this type. '

Application of these results yields among others the two facts (Section 7)
on which Hadamard’'s work is primarily based: In a space with non-positive
curvature there 7s only one geodesic arc within a given homotopy class connecting
two given points. In a space with negative curvature every free homotopy class con-
tains at most one closed geodesic. h

Section 8 contains results on asymptotic geodesics which go also back to
Hadamard, and points out some unsolved problems.



Spaces with Non-Positive Curvature. 261

Then special types of spaces are discussed, first spaces with curvature o (Sec-
tion 9). They are locally Minkowskian. By means of an observation by Loewner,
their study can be reduced to Riemann spaces of curvature o. They have finite
connectivity (Cartan) and all tori with non-positive curvature have curvature o.

There ¢s no compact space with negative curvature and an abelian fundamental
group. The fundamental group of a space with non-positive curvature has no
(non-trivial) finite sub group: The simplest not simply connected spaces have
therefore an infinite cyclic fundamental group. Section 10 studies these spaces,
in particular cylinders.

The theory of two-dimensional manifolds, especially of compact manifolds
with mnegative curvature is the subject of Section 11. The methods used by
Nielsen [13, 14] for surfaces of constant negative curvature served as a guide.

Finally we return to the starting point and prove that (*) is for Riemann
spaces actually equivalent to non-positive curvature (Section 12). We also show
that (*) is equivalent to the »cosine inequality> (see (12.4).

Under a minimum of differentiability hypotheses it can be seen (Section 13)
that the volume (Hausdorff measure) of a sphere in a Finsler space with non-positive
curvature equals at least the volume of the euclidean sphere with the same radius.
At first sight it seems rather surprising that this fact, which is well known for
Riemann spaces, extends to Finsler spaces. The corresponding statement for
area of spheres is not correct in this simple form, but more complicated in-
equalities will be proved which contain the known Riemannian inequalities as
special cases.

Notations.

Points are denoted by small latin letters, pointsets by latin capitals.

Small German letters indicate parametrized curves. But a curve and the
pointset which carries it are not sharply distinguished when no misunderstanding
is possible.

German capitals stand for groups. Motions or transformations are denoted
by Greek capitals.

All spaces considered are (at least) G-spaces, whose definition is found in
Section 1. The space in question is always denoted by R, its universal covering
space by R, and R is related to R by a definite locally isometric mapping 2.
A point 5 or curve #(t) of B lies over the point p or curve z(f) of Rif pR=p
or &(t) 2 =z(¢).
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The fundamental group § of R is thought of not as an abstraet group, but
as the group of motions @ in R which lie over the identity I of R, that is
@ Q=1 The letters @ and ¥ (with or without subscripts) mean elements of ,
and E is the identity of §.

A space in which each geodesic is congruent to a euclidean straight line
is called straight. The frequently ocecurring hypothesis that the geodesics of the
universal covering space of I are straight will therefore simply be formulated
as: R is straight. '

CHAPTER 1.

Metric Spaces with Geodesics.

1. The Basic Properties of G-Spaces.

The conditions I to IV listed below guarantee the existence of geodesics
with the geometric properties of the extremals in finite dimensional symmetric
Finsler spaces, leaving aside differentiability properties. Their formulation is
simplified by using the notation (zyz) to indicate that z, y, z are different points
in a metric space and that their distances zy, yz, x2z satisfy the relation
xy + yz=xz. The spherical neighborhood of p which consists of the points
# with px < ¢ is denoted by S(p, o). The conditions for a G-space R are these:

I R 4s metric with distance xy.®

II R is findtely compact, or a bounded* sequence z,, Z,, . . . has an accumula-
tion point.

IIT R ¢s convex, that is for any two different points x, £ a point v with
(xyz) exists. ‘

IV Prolongation is locally possible, or every point p has a neighborhood
S(p, e®), e(p)>o0, such that for any two different points =,y in
S(p, 0(p) a point z with (zyz) exists.

V Prolongation is unique, or, if (xyz), (xyz,), and yz, = yz, then 2, = z,.

In this form V does not appear as a local requirement, but it is equivalent
to a local condition (see D and Theorem (4.1) in [4, p. 215]). We recall some
definitions and properties of G-spaces which were proved in [4].

® In contrast to [4], it is here always assumed that ry = yux.
¢ »Bounded» means: there is a J such that x;x, < 4.
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A segment from x to y is an arc from x to y which is congruant to a
euclidean segment. It has representations z(f), ¢« <t=<p3, such that z(e)=uz,
@)=y, and x(t)x(t)=|t, —1t,| for e <t; <8 An oriented segment from z
to y will be denoted by 3(x, y) and the point set carrying it by 7'(z,¥). Seg-
ments 3(r, y) exist and are shortest connections from x to y but need not be
unique. However (see {4, (4.2) p. 216]).

(1.1)  If a point 2z with (xyz) exists, then & (x; y) and T (x, y) are unique.

Segments can locally be uniformly prolonged (see [4, pp. 217, 218]): for any
A= 2 and any point x the numbers 3, such that every segment 7' with endpoints
in S(z, §) is subsegment of a segment with the same center as 7 and with

length A8, have a positive least upper bound #;(x); and 7;(x) satisfies the relations
| 9i(x) — 52(y)| < 2y or ni(x) = oo for all L =2 and =z.

In the present paper another number d, (not mentioned in [4]) will play a
role. d, is the least upper bound of those g for which the segment &(z, y) is
unique for any x,y in S(p, §). By (1.1) 6, is at least as large as 7,(p) or the
o(p) occurring in IV. Moreover, if pg < d, then

8(p, 6) > S(g, 6 —p9)
therefore always d, = d, — pq and similarly d, = d, — ¢p hence
(1.2) |dp —d¢| <pg or d,=co.

A geodesic ¢ is a curve which is locally a segment, or, ¢ has a parametriza-
tion z(f), — oo <t < oo such that for every ¢, a positive ¢(f,) exists such that
z(t)x(t) = |t, — t,] for |ty — ;| < &(t,). x(f) is called a representation of g. Ob-
viously ¢ is the arclength. At times g will have a definite orientation g¢*. Then
the word representation is to imply that ¢ increases when g' is traversed in the
positive sense, ,

For any segment 38(z, y) there is exactly one geodesic g that passes through
all points of the corresponding set T'(z, y), see [4, (8.3), p. 230]. If x(f),
@ <t=<pB represents 8(z, y), then a representation y(f) of g exists such that
y(t)=z(t) for e <t <P, (4, (5.6) p. 222].

There are two especially simple types of geodesics, the sz‘r‘aight lines and
the great circles ({4, p. 232]). x(f) represents a straight line if x(¢,) x(t,) =|t, — t,}
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for any #, and a great circle of length 8> o if

z(t)x(t;)= min |t — ¢t + »8] for any t.
r=0, +1, +2,...

With one representation of a straight line or great circle, every representation
has the characteristic property.

The space R is straight, or all geodesics are straight lines, if 7, (p) = oo.
In that case also d, = oo.

The following fact is not mentioned in [4] but will be needed here.

(1.3) Let x(f) and y(f) represent straight lines and x(f)G <« for t =o,
where G is the set that carries y(f). If y(=(®) is a foot of x(f) on G, then
either 7(¢f) > oo or n(f) > — oo.

Proof. The relation
|7()| = y(o)y ((t) = x(0) z(t) — z(0) y(0) — = (t) y () > |¢| — z(0)y(0) — @
implies In(t)] - oo, But

| () — 7(t) | = y (m )y (mty) < y (m@t) 2 (t,) + 2(t) (k)
+ x{t)y (i) <|t, — t;| + 2e.

If |7(t)] > 2a for t > t, and, say, n(f)) > o, then
|(t)) — a(t)| < t—t, + 2¢ < 4a for o <t — 1, < 2¢,

implies that z(¢) is positive for ¢, < ¢ <{, + 2a. By the same argument = (f) > o
for t, + e <t <t, + 3a etc., so that =(f) > oo,

A ray t is a half geodesic z(¢), ¢ = o for which z(¢)x(t;) =|t, — ¢ If p
is any point then a sequence of segments T (p,, x(t,)) with p, - p and t, = oo
will contain a subsequence which converges to a ray § with origin p. (For this
and the following see Section 11 of [4].) Any ray 8 which is obtainable in this
manner is called a co-ray from p to t. If p’ > p is a point of 8 then the co-ray
from p’ to r is nnique and coincides with the sub-ray of 3 beginning at p’.

If R is straight and g is an oriented line represented by «x(¢), then for any
point p the line through p and z(f), so oriented that z(¢) follows p, converges
for ¢ > o to an oriented line a”, the so-called oriented asympfote® through p

5 In [4)] the word asymptote is also defined for not straight R. In this case the present
paper avoids the word because of the difficulties mentioned in Section 8.
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to g". For any point ¢ on a’ the oriented asymptote to g* coincides with a’,
and any positive sub-ray of a’ is co-ray to any positive sub-ray of g".

It is important for the sequal to know that the concept of asymptote is in
general straight spaces neither symmelric nor transitive (see Section 1II 5 of (3)).
Also, if y(t) represents an oriented straight line, then y(f)g" < e for t=o0 is
in general neither necessary nor sufficient for y(f) to be an asymptote to g" (see
[4, PP- 245, 246]), even if asymptotes are symmetric and transitive.

2. Fundamental Sets.

The G-space R’ is a covering space of R if a locally isometric mapping £’
of R’ on R exists (compare Section 12 of [4]). If z'(f) represents a geodesic in
R’ then z'(t) 2" = x(t) represents a geodesic in R. Conversely
(2.1) For a given representation z(f) of a geodesic in R and a given point z’
over x(l,) there is exactly one representation z'(f) of a geodesic in R’ for which
' () Q =x(t) and z'({,) =«

We say that the geodesic g' in R’ lies over the geodesic g in R if repre-
sentations 2/(f) of ¢’ and z(f) of g with z'(f) 2 = z(t) exist.

(2.2) There is exactly one geodesic ¢’ in R’ over a given geodesic g in R which
contains a given (non-degenerate) segment 8’ over a segment 3 in ¢.°

For the (obvious) definition of multiplicity of a point of a geodesic the
reader is referred to [4, p. 231). (2.2) implies
(2.3) The sum of the multiplicities at " of the geodesics in R’ through z” which
lie over the same geodesic ¢ in R equals the multiplicity of g at z =2’ 2".

Therefore in particular
(2.4) If x is a simple point of g then only one geodesic g’ over g throuoh a
given point z’ over x exists and z’ is a simple point of g'.

Let now R be the universal covering space of R, and 2 a definite locally
isometric mapping of R on R The fundamental group § of B consists of the
motions of B which lie over the identity of R and  is simply transitive on
the points which lie over a fixed point of R. The following construction of a
fundamental set in R with respect to R uses the »méthode de rayonnement>
(see {7, p. 71]) and applies to any space R' which covers R regularly (compare
[15. § 57)

® The statement (12.4) in [4), which replaces the segments 3 and 5’ by points, is wrong.

(The mistake lies in the assertion that @ &—1(x, ) is the identity.) The applications of (12.4)
in [4] are correct, because the assumptions of the present statement (2.4) are satisfied.
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If j,, By, . .. are the different points of R which lie over the fixed point p
of R then the motions of F may, because of the simple transitivity of § on
{p:} be denoted by @,=E, @,, @,, . .. such that p; = ji, @:. The sets Po= i i
are closed because § is discrete (actually p;pv = 21, (p) for ¢ % k, see [4, p. 250]).
The set H(p:) of the points # in B for which & Py > & is open and

(2.5) H(pi) @7 @: = H(py).

For if @' ®;,= @ then p; ® = p; and P.® =P, hence i@ P @ > i @ p, @ for

all Z ¢ H(jy) so that § P; > §p; for all § ¢ H(pi) @. This means that H () @< H (p:).
Similarly H(5;) @' < H(pr). Moreover,

(2.6) H([)L) N H([)z)zo for i %k

because #¢& H(p;) implies 2P, < @jr < & Py < @ pr. (2.5) and (2.6) yield
(2.7) H(py) @ N H(pr) On =0 for m # 1.

The set H(jp:) is star shaped with respect to p., that means, it contains
with & every segment T'(pr, #). For if jj& T'(jr, 4) then for 74k

Because of (2.5) H(p:) 2 is the same set H(p) in R for all .

(2.8) H(p) contains the set D(p) of those points z in R for which a point y
with (pxy) exists.

The segment 7'(p, ) is by (1.1) unique. Let T (p,, Z) be the segment over
T(p, ) beginning at p,. If x were not in H(p), then & would not lie in H(,),
hence %P, < &, Therefore jr> p, exists such that &p; <7p, A segment
T (pr, ) goes under 2 into a geodesic arc from p to x which is not homotopic
to T(p, ) and is a segment because # . < &P, =xp. Then T(p, x) would not
be unique. A consequence of (2.8) is

(2.09) If F(p:) denotes the closure of H(j:) then 3 F(pi)= R. Moreover,
d(F(pp) < 26(R) and & (I'(jip) = oo if 6 (R) = oo where 6(4) denotes the diameter
of the set A.

For let #¢R and connect x =78 to p by a segment 7. Let T be the
segment over I which begins at #. It ends at a point jr over p. Then ye D(p)
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for any point y#x on T. Since H(py) 2= H(p)> D(p) it follows that the
point 7 over y of T lies in H(j), hence & F ().

1f §(R)< oo and ¢ is the point with maximal distance from p, then the
preceding construction shows, that every point of F(j:) belongs to a segment
T which lies over a segment with origin at p. Hence F(j) is contained in the
closure of S(px, 2 pq).

If (R)= oo then p is origin of a ray (see [4, (9.5) p. 237]). By (2.8) H(p)
contains such rays therefore H(p;) contains rays. This leads to

(2.10) Theorem. For every point p, of R with fundamental group F = {®,=
= E, @,, ...} the fundamental set H (p,) consisting of the points & with & p, < & p, @;
Jor ¢ > 0 has the jollowing properties:

a) H(p,) is open and star shaped with respect to f,.

b) H(p,) @: N\ H(py) Or =0 for 1 # k.

) If F(p,) is the closure of H(p,) then 3 F(p,) @ = R.

d) 6(F(p,) = 20(R) and 6(F(p) = oo zf §(R) = oo.

e) If H(px) and F(pr) are correspondingly defined sets for pr= p, @ then

o

H(jir) = H(po) @r, I (pr) = F(po) .

f) H(pr) @ > D(p), where p= p: 2 and D (p) 7s defined in (2.8).

g) A sphere S(q, ), 0 < o < oo, intersects only a finite number of F(py).

h) § can be generated by (positive powers of) those ®@; for which points x
(depending on %) with p,z = @ P, D: exist.

Statements a) to f) follow from the preceding discussion. To see g) choose
by ¢) the point fi such that & F'(px). Then §p; = § pi for all 3. If S(q,0) N F ()
contains a point 7, then 7§, = 7 p;, therefore

P <Pt + PG+ qPpr=<ppF +Fq + qpr < 2(GPr + o).

There is only a finite number of p; which satisfy this inequality.

We show h) following [7, p. 76]. Let @, E be a given element of F.
Connect p, to p, by a segment 3 and denote the last point of F(p,) on 3 by §,.
There is a set F(g:) that contains §, and points of 3 that follow §,. For the
set of points that follow G, on 3 is open in § and would by g) be union of a finite
number of closed sets.

Let §, be the last point of & in F(p:). Then G, belongs to a set F(jy,)
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that contains points of § that follow §,. By a) and g) we arrive after a finite
number m of steps at F(pr,) = F(p,). As a consequence of the definition of H(j,)

-pkiq”‘l = qH.][)kH_l, 1= O,...,.m—1I, where ﬁk(. =270.
Therefore @y, = ¥, is a transformation of the type required in h) and
F(po) = F(pu) ¥7".

It follows that F(p,) has the common boundary point g, ¥[! with F(j,) #!
and a ¥, which satisfies h) exists that carries F'(p,) into F(ps,) ¥ or

F(pr,) = F(po) s .

Continuation of this process shows that F(p,) has the form F(p,)¥m ... ¥, or
D, =¥, ... ¥, where the ¥; satisfy h).

It is easily seen, but not needed here, that the ®; that satisfy h) contain
with any motion its inverse, so that just half of them generate § (unless &
consists of the identity only). We say that a G-space has finite connectivity, if
its fundamental group can be generated by a finite number of elements.

If R is compact then « = d(F (p,) is by (2.104d) finite. Every point p; for
which an Z with 5,Z = % jj; exists has at most distance 2 « from ,. The sphere
S(py, 2 @) contains by g) only points of a finite number of F(p,). Hence the
number of @; that satisfy h) is finite and we find:

(2.11) A compact G-space has finite connectivity.
Some additional statements are possible if R is straight:

(2.12) If R is straight, then

a) A ray with origin p, intersects the boundary of H(p,) in at most one point
(exactly one if R is compact).

b) H(p)= D(p).”

c) H(p,) is maximal, that is, H(p,) is not proper subset of an open set H*
with H*®; N H* @, = o for 7 # k.

Proof. a) If § is on the boundary of H(p,) then o4 < p;¢ for all 5. If
(po &) then

I = p;r.

Pol =Pod — G = pjq —

[~}

" The geodesics on an ellipsoid show that the sirnightness of R is essential for this equation.
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The equality sign holds only when j;§ = j,§ and (p;#q) but then ;= j, by V.
This shows & H(j,).

Next let (p,7#). Because ¢ is on the boundary of H(j,) there is a ji; % j,

with $;§ = q@p. Then

Dol =Pl + Q9 =p:G4 + 4§ > PiY,
because the equality sign would again imply p; = ji,, Hence § is not in F(}j,)
and therefore not on the boundary of H (j,).

b) Let yeH(p) and let j be an original of y in H(j,). Because H (j,} is
open and R is straight H(j,) contains by (2.10a) a point z with (j,7%) and
T(po, 8) < H(py). Then T(p,2)Q=A is a geodesic arc in H(p) from p to 2z
that countains y. If A were not a segment let T be a segment from p to z and
construct in B the segment over T that begins at z It ends at a point j; # j,
over p because T A and segments in B are unique. Since jiZ is the length
of A and A is not a segment it follows that ji;Z = pz < jj, 7, which contradicts
the definition of H{p,). Therefore A is a segment and (pyz) so that ye&D(p)
and H(p) < D(p).

¢) Let H* be an open set that contains H (j,) properly. Then a sphere
S(7, ¢) < H* — H(p,) exists. By (2.10 ¢) je F(pi) for some ji # p,. By (2.12 a)
the sphere S(7, ¢) contains a point of H(p;). Therefore H* \ H* @, # o.

CHAPTER II1.

Spaces with Non-Positive Curvature.

§ 3. Local Properties.

A center m(x, y) of two points z, y is defined by the relation
(31) .Z'"l(xv !/)zm(x» y)y:xy/z

If x, y are both in S(p, d,) (see Section 1), then m(x, y) is unique. m (&, y) will
also be called the center of 7(z, y).

The fundamental inequality (*) for spaces with non-positive curvature may -
then be formulated rigorously as follows:

The G-space R has non-positive curvature if every point p of R has a neigh-
borhood S(p, ¢p), 0 < @p =90, such that any three points a, b, ¢ in S{p, 0,) satisfy
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the relation
(3.2) 2m(a, b)ym(a, c) < be.

If under otherwise the same conditions
(3.3) 2m(a, bym(a, ¢) =be

then R 1s said to have curvature o.

Three points are called collinear if one of the points lies on a segment
connecting the two others. Since (3.3) holds always for collinear points, we
define:

The G-space R has negative curvature if every point p of R has a neighborhood
S(p, 0p), 0 < @p =< 8, such that for any three non-collinear points a, b, ¢ in S(p, ep).

(3.4) 2m(a, b)ym(a, ¢) < be.

Since one-dimensional G-spaces are straight lines or great circles (see [4, p.
233]), they satisfy (3.3) trivially and offer nothing interesting. It will therefore
always be assumed that the dimension of R in the sense of Menger-Urysohn s
greater than one. '

In a space with non-positive curvature we introduce as auxiliary point func-
tion B, the least upper bound of the g, <d, such that (3.2) is satisfied in
S(p, ep). As in the proof of (1.2) it is seen that

(3-5) |8, — B8:] <pg or By =oo.

It will appear soon that 8, =d,.
The inequality (3.2) implies the following fundamental fact

(3.6) Theorem: Let x(t) and y(s) represent geodesics in a space with non-positive
curvature. If for suitable constants ¢, < a,, ¢ # 0, and d the segment T (x(®), y(ct + d)
is unique for a, <t =< ay, then f(t) =z ({)y(ct + d) is in the interval (a,, @) a con-
vex function of t.

»Convex» will here always mean »weakly convex», that is
fla—6¢t + 6t) < (1 — 6)f@¢) + 0f(t) for o< <.

If the inequality sign holds for any ¢, > t,, we say that f(f) is strictly convex.
To prove that a continuous function f(f) is convex it suffices to show that an
& > o exists such that

(3.7) 2f(t, + tpl2) < f(t,) + f(t;) for |t1—t2]<€-
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For the proof of (3.6) put y(ct + d)=2'(). Since the set V=34, <10, T(x ),z #)
is bounded it follows from (3.5) that g= inf g8, is positive. If x(t)=2'(t) for
peV

o, <t =< a, the theorem is trivial. We assume therefore that
k=2x(t*)2 (') = max z(t) 2" (f) > o.

Let z(t*, u) represent 8(x(t"), z'(#") for 0o <u <% and call z(f, u) the image of
z(t*, u) under a linear® mapping of 3(x(#"), 2'(t*) on 3(x(®), 2’'®) The definition
of t* implies that

(3.8) 2(t, u)e(t, ug) < 2(t*, u) 2(t*, ug) = |uy — s}, o< w; = k.

Because the segments 3 (z(¢), z'(#) are unique the point z (¢, «) depends continuously
on ¢t and «. Hence an ¢ > o exists such that

(3.9) z(t, u)z(ty, u) < Blz for |t, —t;] <e.
Let n > 2%/8 and put «’ =4k/n, ¢=o0, ..., n. Then by (3.8) and (3.9)
(3.10)  2(t, w)z(ty, W) < B2 + |uf — | < g for all ¢ and |t, — t,| <e.

Hence the points z(t, w'), z (t;, u?), 2 (t;, w't?) lie in S(z(¢, u®), §) and the points
z(ty, wth), 2 (t,, w'), (¢, w'*l) lie in S(z(¢,, w*Y), §). Therefore (3.2) yields with the
notation

mg;=m [Z (tlv ui)v 2(t2’ ui)]) v = 0 ..,1n

mair1 = m[z(t, W), z(ty, w'tY)], ¢=o0,...,n—1
that
2masmairr < 2z (b, u) 2 (b, w'*Y), ¢=o0,...,n—1
2Mmgr 1 Mairs = 2 (8, W)z (t, '), 7=o0,...,0—1

hence by addition

2n—1

(3.11) 2 Z mimjs1 = 2 (¢, 0)z(l,, k) + z(t,, 0) 2 (ts, &).
=0
Since z(t, o) = x(¢), and 2z (¢, k) = 2’ (¢) and
my=m (Z(tn 0), 2 (t,, 0) = x((tl + tz)/ 2)
man=m(z(t, k), zt;, b)) = (¢, + t,)/2)

8 The linear mapping x — a’ of §(a, b) on 8(a’,1") is defined by ax:ab=a"z":a’¥".
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it follows from the triangle inequality and (3.11) that (3.7) holds for
flt)=z(t) ().

In the case where one of the ares x(f), () shrinks to a point Theorem
(3.6) can be strengthened. (The assumption that R has non-positive curvatuore
is made throughout this section).

(3.12) Theorem. If p,a,b are not collinear and a,beS(p,d,) then px is for
xeT(a, b) a strictly convex function of ax. Consequently p has exactly one foot on
T(a, b).

We prove (3.12) first under the assumption that 7'(«, b) < S(p, J,) and show
later that this is always the case. Since T'(p, a) and T'(p, b) lie in S(p, d,) seg-

ments connecting any points of these segments are unique, so that by (3.6)

2m(p, a)m{b, a) < pb
2pm(a, b) < 2[pmp, a) + m(p, a)m(a, b)] < pa + pb.

The equality sign holds only when (pm(a, pym(a, 1)) but then p, a, b are collinear.

(3.13) Bo=20p and S(p, 6,) vs convex, that is, contains T'(a, b) when it contains
a and b.

Proof. Let 0 be the least upper bound of those ¢ for which a, beS(p, o)
implies T'(a, b) < S(p, 6,). For each such ¢ the sphere S(p, o) is convex
because the special case of (3.12) already proved can be applied and yields
px = max (pa, pb) < ¢ when a, beS(p, 0) and (axb). Therefore S(p, d) is also
convex.

If 6 were smaller than d,, then pairs a,, b, would exist for ‘which
pa,<d+ v pb,<<d + »!and I(a., b,) contains a point ¢, with pec, = 6,. It may
be assumed that {a,} and {b.} converge to point\s a and b respectively. Then
pa=<4J and pb=<2dJ. There are sequences a, > a and b, > a with pa, < d and
pb, <d. The segments T(d,, b,) and 7T(a, b:) tend to the, because of d < d,,
unique segment 7'(a, ). But T'(a., b,) < S(p, §) because S(p, d) is convex whereas
pey=d, > d. This proves d =4, so that S(p,d,) is convex, and completes the
proof of (3.12).

If a, b, ¢ are any points in S(p, d,) a segment connecting a point of T'(a, b)
to a point of T'(a, ¢) is unique, hence (3.12) yields 2m(a, b)m(a, ¢) < be, which
implies 8, = dp.

The next theorem, whose proof is lengthy, is important for the distinction

of spaces of vanishing, non-positive and negative curvature.



Spaces with Non-Positive Curvature. 273

(3.14) Theorem. Let a, b, a’, b’ be four non-collinear points of S(p,d,), a #b. If

x - &’ maps 3(a, b) linearly® on 3(a’, V') and if the relation

Pl T Wl holds for ’
(3,15) za' =~ aa + et bl holds for one x with (axh),
then V=23, T(x, x') is congruent to a trapezoid of a Minkowsk: plane.
(The segments T'(a, a’) and T(b, ') are the parallel sides of the trapezoid

and the trapezoid degenerates into a triangle when a=a’ or b=1').

Proof. By (3.6) xzz' is a convex function of az. Therefore the equality
(3.15) for one x with (¢xb) implies that (3.15) holds for all x on T(a, b).

Put ax=E% and ab=«a. Let a”’, b” be points of T(a,a’) and T (b, b'), and
let x - x”" map 8(a, b) linearly® on &(a”, b”). Then by (3.6)

zx" <a [l —Eaa” + EbD"]

(316) 7N rar_ rqr s 7] Y TRy
' <ad' b [adb —ax)a"a +adx VY]

hence

zx' <xx’ +2"xd <al[lea—Eaa + EDV]

therefore (3.15) and (3.16) show that the equality signs hold in (3.16) and that
2" e T(x,2') < V. Putting zx'" =5 the first relation in (3.16) and the definition
of the mapping = — z” yield

r’ I"‘

(3.17) an=(a— &ad’ +Ebb’, a'2":ad"V' =%:a.

We define £ 7 as coordinates of 2”. Then 2" — (£, #) maps V on the trapezoid
V. o0=<¢t<eq o=p=e '[la—&aa + ELV]

of the Cartesian (&, n)-plane. In ¥V we introduce the euclidean metric

elenz) =6 —&° + i — m)1™ 2= (&, ).

Let #i=(5,7) ¢=1,2 be points of V. If & =&, then T(z,, 2,) satisfies the
equation §=§. If & <& then the same argument that established (3.17) yields

(3.18) (& — §1)77=(§2_§)771 +E—E)n, zeizz=E—§):(E—§)

for the variable point z=(& n) of T'(z,, z5). Hence V contains with any two
points 2, 2z, the segment TI'(z,, z,) and the points of 7'(z, 2,) lie on a straight

line in V. The intersection of a euclidean straight line with ¥V appears as a
18
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segment in ¥, which we call a straight line in V. We call two such straight

lines parallel when they correspond to pieces of parallel straight lines in V (or
if their slopes are equal). (3.18) shows that

(3.19) The distances ¢(zy, z5) and #,z, are proportional for points on the same
straight line.

To prove that the metric 2,2, in V is Minkowskian ¢t must be shoun that
the factor of proportionality is the same for parallel lines (so far we only know
that is so for parallels to the 7-axis).

It suffices to see that every interior point f of J7 has a neighborhood
S(q, 0) < V such that the factor of proportionality is the same for parallels
which intersect S(q, ¢). The following considerations are restricted to a suitable
S(q, e)-

The line H is perpendicular to L at f (and L transversal to H at f) if all
points of H have the intersection f of H and L as foot on L. The transversals
of H at f are, because of the convexity of the circles in V (see (3.13)), the
supporting lines of any circle with center ¢  f on H through f.

(3.20) If H is perpendicular to L, then H is perpendicular to all parallels
L’ to L.

For if HN\ L =/ and r is a point of H different from f and f’ leta’ ¢ L’
and let the straight line through » and 4’ intersect L at a (compare figure).
Then by (3.19)

ar:dr=cla,r):el@r)=c(f,r):e(f r)=fr:fr
and « r> f’r beeause ar > [r.

Under adequate differentiability hypotheses this means that the parallels to
L are transversal curves to the perpendiculars to L in the sense of the calculus
of variations. Hence two parallels cut out equal pieces from all perpendiculars,
or the parallels to L are equidistant to L (see [2, p. 339)).

To prove this without differentiability hypotheses observe first that the

equidistant curves to L are convex curves which turn their concavity towards L.
This is contained in the following general fact:
(3.21) If in a space with non-positive cwrvature a, b, ¢, d are points of S(p, d,)
and fi denotes the foot of the point xeT(a,b) on Tle, d) then xf: is a convex
Junction of ax.

For if x, ye¢ T'(a, b) then by (3.6)

(3.22) 2m (e, 9) o = 2m (e, y)m(fe, fo) < xfe + Yty
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Fig. 1.

Returning to the present special case let z be a point of an equidistant
carve C to L and, generally, f. the foot of the point x on L. Then for z&¢C
the circle K = K(f., zf.) (the locus of the points z in V with 2/, = xf;) has
the point x in common with . A supporting line L, to C at x is also a sup-
porting line to K at . :

By (3.13) K is a convex curve and has therefore a unique supporting line
or tangent at all but a countable number of points. We assume first that circles
have tangents everywhere. Since then the transversal to T'(a, f.) at z is unique,
L, must by (3.20) be parallel to L. : ,

Let z be any point of L, different from x. Then zf. = & f: because C turns
its concavity toward L. The equidistant curve (' through #z to L has, for the
same reason as above, L, as supporting line at z. Therefore (" lies between L,
and C, it must contain x, hence (' = C. Because C is convex C = L,

It now follows that x - f. maps L, linearly on L. For if x, ye¢ L, and
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z =m(z, y) then as in (3.22)
2efr<z2zm(fe, f) <afe + yfy=22f-

Because the foot f; of z is unique m(f:, f)) =2

Take a subsegment T (c, d) of L with center f and segments T (c,, ¢5), T (d;, d5)
of the same length with centers ¢, d and perpendicular to L at ¢ and d respec-
tively. Then T'(c;, di) lie on parallels to L. For the points 2z in the quadrangle
W with vertices ¢,, ¢s, dy, d; we introduce coordinates wu, v as follows: if the
perpendicular to L through z intersects T(e¢,, d;) at z,, then w=¢ya; and
v=1u,2. As in the proof of (3.18) it follows from the linearity of the mapping
x — f; that the straight lines in W bhave linear equations in % and ». The
coordinates (&, ) and (u, v) of the same point in W satisfy therefore a relation

of the form

(3.23) Ein:i1=(ayu+ byv+c):lasu+ byv+co):(agu+ byv + ¢5).

By (3.19) the distance z;2,, 2; = (u;, ), is on a fixed line in W proportional to
[(ay — ws)® + (r; — v5)*]". Therefore this distance and [(§, — &) + (9, — 12)*1" are
proportional on a fixed line. This means that (3.23) leaves the line at infinity
fixed and is an affinity. The lines % = const which are parallel for (u, v) are
therefore also parallel in (& 7). Because the curves v = const are equidistant
and parallel, the factor of proportionality is the same for the lines u = const,
or the parallels to H. Since H was arbitrary, the theorem is proved in the case
of differentiable circles.

If onme circle with center on a line H’ intersects H' in a point where the
circle has a unique tangent, then (3.20) implies that all circles with center on
H’ will intersect H' in such points. For the sake of brevity we call a line H’
with this property smooth. All lines through a fixed point except an at most
countable number are smooth. \

If the line L through f varies, the family of perpendiculars to L (and to
the parallels to L) changes continuously. A simple measure theoretical considera-
tion yields the following: For a sufficiently small positive 8§ and a given line H
through f a line L’ through f exists such that the perpendicular H' to L’ at f
is as close to H as desired and L’ contains points sy, s; with (s, fs;) and s;f > 8
at which the perpendiculars P;, P, to L' are smooth.

The proof for differentiable circles used only that 7'(x, f.) and T{(z, f:) are
smooth and shows therefore, that the equidistant curves L’ coincide between P;
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and P, with the parallels to L'. By the previous arguments the factor of pro-
portionality is the same for all parallels to H' between P; and P,, Since the
factor depends continuously on the line and s;f> g8 it follows that the factor is
the same for all parallels to H sufficiently close to H. This completes the proof
of (3.14).
Notice the corollary

(3.24) If, under the assumptions of (3.6), the space has megative curvature and
the two geodesics are different then x (t)y(ct + d) 7s a strictly convex function of t.

4. The Theory of Parallel Lines in Straight Spaces.

If all geodesics are straight lines, then 5;(p) = dp, = oo for all A and p and
the facts of the preceding section hold in the large. Because of their frequent
occurrence we formulate the implications of (3.6) (3.21) and (3.24) explicitely:

(4.1) If R is a straight space with non-positive curvature then px(t) 7s for any
geodesic x(t) and any point p mot on x(t) a strictly convex function of t. The
spheres of R are convex.

(4.2) If x(t) and y(t) represent different geodesics ¢ and Y in a straight space R
with non-positive (negative) curvature them for any constants ¢ # o, ¢ % 0, d, d’ the
Sunction x{ct + d)y(c't + d') and x{(ct + d)h, and y(c't + d’)g are (strictly) convex.?
This slightly more general formulation follows from (3.6) because a linear
transformation of the independent variable does not influence convexity. (4.2)
permits to show that asymptotes have all the usual properties. It was pointed
out at the end of Section 1 that this is not true in general straight spaces.

(4.3) Theorem. If the line §* is an asymptote to g* then g° is an asymptote to §".
If §" s an asymptote to §*, and ¥ to ', then V' is an asymptote to ¢,

Therefore we may simply say that two oriented lines are asymptotic to each
other. We prove at the same time

(4.4) Theorem. Let z(t) and y(t) represent g¢° and Y. Each of the following
conditions 7s mecessary and sufficient for ¢* and §" to be asymplotes to each other
a) z(t)y(t) ¢s bounded for t>o
b) x(t)hy (or y(t)g,) 7s bounded for t= o0, where ), and ¢, are positive subrays
of §" and g". V

°If x(t) and y(f) represent the same geodesic, then x(ct + d)y(c’'t + d’) is either a linear
function of ¢ or there is a value £, such that the function is linear both for { = {, and for { < {,.
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It is clear that (4.4 a) implies the symmetry of the asymptote relation. It
also implies transitivity because boundedness of z(f)y(t) and of y(t)z(¢), where
z(t) represents ', implies boundedness of x(t)z(¢).

For the proof of (4.4 a) denote generally by g*(a, b) the straight line through
@ and b with the orientation in which b follows a. The line g° (a, (#) tends to
the asymptote a” to g' through a. Let a(s) and a:(s) represent a" to g"(a, ()
with a(0) = a;(0) =a. Then a;(s) = a(s) for ¢t > co. Put

(4.5) c=1tlax(t) ¢ 1 for t - oo

because ¢t —ax(0) < ax(t) <t + ax(o).
By (4.2) ai(s)x(ers) is a convex function of s which vanishes for s = az(f)

and decreases therefore for — co < s < ax(f). By (4.5)
lim a;(s) x (ers) = a(s) x(s)

and a(s)xz(s) is a non-increasing convex function of s. Moreover, a(s)x(s) is
bounded for #=0 which proves the necessity of a) and also of b) because
al(s)g; < a(s)x(s) for large s. | k

To see the sufficiency of a) we show: if the oriented line represented by x(f)
is not an asymptote to the oriented line )" represented by y(f), then x(t) y(f) - oo
for ¢t - oco. Let a(t) represent the asymptote to §* through x(o) with a(o)= z(o).
Then z(t) # a(t) for ¢+ 0, hence x(f)a(t) is convex, vanishes at t= 0 and is
positive otherwise. It follows that x(f)a(f) — oo for ¢ > co. Because the necessity
of a) was already proved, a(f)y(t) is bounded for t =0, hence z(t)y(t) > oo.

Finally we prove the sufficiency of b). Let y(n(f) be the foot of z(f) on
H' and z(t)y(n®) < a. Because of b) and (1.3) =(t) > co. If x(f) were not an
asymptote to b let a(f) with a(o) = x(o) be the asymptote a’ to §" through z (o).
Then y(z{#)a(x®) < a; by (4.4 a) hence

zt)a' <z alz®) < 2(O)y(=x®) + y(a®)a(z®) < a + a.

But this is impossible because x(f)a* is by (4.2) a convex function of ¢, which

vanishes for { = o0 and tends therefore to oo.

(4.6) If pax, > oo and ¢ (p, 2,) =~ [, then g' (g, x,) tends for any point g to an
asymptote to [".

It suffices to see that this is true for every subsequence ¢ of {»} for which
g" (q, ) converges to a line a". Let x;(t) and y:(t) represent ¢' (p, ;) and ¢' (g, z:)°
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with z;(0) = p, 9:(0) = q. Then x;(¢) y:(tqx:/px;) decreases for o =t = px. Since
xi(t) and y;(¢) tend to representations x(f) and »(¢f) of [' and a' and qx:i/pa;—1
it follows as before that x(f)y(f) decreases for {= o, hence a" and [’ are by
(4.4 a) asymptotes to each other.

If the lines p and g can be so oriented that p' is an asymptote to g" and
p_ to g, then we call p and g parallels to each other (see 4.3). If p(f) and x(¢)
represent p° and g’, then both p(#)x(f) and p(— t)q(— {) are non-increasing func-
tions of ¢, therefore p(f)x(f) is constant. Conversely, if p(f)x(f) is constant or
only bounded, it follows from (4.4 a) that p and g are parallels.'” In the same
way it follows from (4.4 b) that the boundedness of p(t)g or of (f)p is necessary
and sufficient for ¢ and p to be parallels.

(4.7} The lines v and ¢ are parallels to each other if and only if they have re-
presentations p(t) and x(t) which have one of the following properties
a) p()z(t) 2s constant or bounded
b) z(t)p (or piHg) ¢s constant or bounded _
c) S T(ph), &) is congruent to a strip of a Minkowski plane bounded by
parallel lines.

Part c¢) follows immediately from part a) and Theorem (3.14). Notice the
following corollaries

(4.8) In a straight space with negative curvature the asymplotes to the two orienta-

tions of a line B through a point not on § are carried by different straight lines.
(4.9) If in a straight space of non-positive curvature the asymptotes to the two
orientations of any straight line through any point lie on the same straight line
(that is the euclidean parallel axiom holds) then the space is Minkowskian.

This fact is a special case of the more general theorems IV 6.2 and 1V
7.4 in [3].

We conclude this section with a theorem which rests on the following lemma
(4.10) For any points p,, . .., pn in a straight space with non-positive curvature
and any @ > 1 there is exactly one point ¢ for which 3, xp® reaches its minimum.

Let x(t) represent any straight line Then p,x(f) is a no where constant
convex function of ¢ (see (4.1)), hence p,z(¢)* is strictly convex. Therefore

Sp.z(t)* is a strictly convex function of f which tends to co when |¢| - oo,
and reaches therefore its minimum at exactly one ¢.

1 We admit the case where p(f) = x({ + d) so that every line is parallel to itself.
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The minimum of Zxp® as x varies over R is reached at at least one point ¢.
If it were reached at another point r and x(f) represents g(g, ) then Zp,z(f)
would have two minima as a function of ¢.

Cartan observed in [7, pp. 266, 267] that (4.10) contains the theorem
(4.11) If ® is a finite group of motions in a straight space with non-positive
curvature then a point q exists which remains fixed under all motions of ®.

For let p, be any point and p,, .. ., p. its images under the motions of ®.
The set {p;} goes into itself under all motions of &. Therefore the by (4.10)
unique point ¢ where Zxp% « > 1, reaches its minimum goes into itself under

the motions of &.

5. The Universal Covering Space of a Space with Domain Invariance.

The importance of straight spaces lies in the fact that essentially all simply
connected spaces with non-positive curvature are straight. The term »essentially
all> refers to the assumption made in the proof presented here that the space

has the property of domain invariance:
(5.1) If X and X' are homeomorphic subsets of R and X s open in R then X’

is open in R.

Probably every G-space has this property, so that assuming (5.1) means no
restriction. But so far this has been proved only for two-dimensional G-spaces
(see [3, p. 29]). The only known fact for general G-spaces which goes in this
direction is (4.12) in [4, p. 219]. All Finsler spaces in the usual sense are by
their very definition topological manifolds and satisfy therefore (5.1). Property
(5.1) is essential for Sections 7, 8, 10 of the present paper, automatically satis-
fied by the spaces considered in Sections g, 11, 12, 13 and not necessary for
Section 6. k

The purpose of the present section is the proof of the following fact which
is well known for Riemann spaces, see [7, p. 261].

(5.2) Theorem. The universal covering space of a space with non-positive curvature
and domain invariance s straight (and has, of course, also non-positive curvature).

Proof. J, may be assumed finite since otherwise nothing is to be proved.
Fix a point p of the given space R and call V the locus px =4d,/2. For ueV
let x(u, t), t =0, represent the half geodesic which coincides with &(p, u) for
0 =1t=d,/2. For every point ¢ of the space there is at least one pair u, f such
that ¢ =« (u, t). The mapping (u, t) > (4, t) is one-to-one for 0 <t < J,.
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(5.3) B.=inf d./2 for zeS(p, 2a)

is by (1.2) positive, and since the function z(u, t) is uniformly continuous for
ueV and o <t <k, compare [4, p. 224], an & > O exists such that

(5.4) w, W eV, u, < e and o<t=<z2e, [t—1t|<2e imply

x(u, (o, t') < B

Let « = d, and define W (v, a) as the set of x(u, ¢) for which ue VN S(v, &)= Va»
and |t — dp/2| < ey M~ where M = 2a/d,. Then W (v, @) is open and

(5.5) x(u, t) > x(u, Mt), ueVap, |t —dp/2| < eaM!

maps W (v, @) continuously on the set W'(v, e) consisting of those z(, t) for
which e Voy and |t — | < & If uje Vay and |t; — dp/2| < &a M~' then

x(ulv Stl) i .’L'(’I,lz, Sf2)1 0O=¢=1

maps, by (5.3) and (5.4) the geodesic arc 0 <t < #; of z(uy, ?) linearly on the
arc 0 <t < t, of z(uy, #) in such a way that the segment connecting corresponding
points is unique. It follows from (3.6) that x(u;, sty)x(us, sts) is a convex func-
tion of s. Since it vanishes for s=o0 it increases (unless u; = uy and # =1{,)
and has for s = M a greater value than for s=1, or

33(“1: Mﬁ)x(uz, Mty) = x("lv t) x(uz. fz)-

This shows that the inverse of the mapping (5.5) is single valued and continuous.
Because of the invariance of the domain (5.1) the set W' (v, a) 7s open.

We observe also that (5.5) furnishes a one-to-one and continuous mapping
of the set W*(v, a) of pairs (u, t) (with the metric (uy, #))(up, t) = uy ug + |, — t3)
on W’ (v, a) (because the correspondence (u, t) > x(u, #) is topological for W (v, @)).
Let U(v, e) be the maximal sphere S{z(v, a),9) in W(v, ¢) and U*(v, a) the
corresponding set of (u, ) in W*(v, ¢). Because of (3.13), (5.3) and (5.4) the set
U (v, &) is convex.

The universal covering space will be the set B of all pairs (u, ), uev, =0
locally metrized as follows. We put

for O._<_.fi<d\p

(g, 1) {ug, to) = 2 (2g, t) 2 (ug, {2){(%', t)ye Ulv, a).
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Therefore the curves in R get definite lengths. We metrize R in the large by
defining as distance of two points the greatest lower bound of the lengths of
all curves that connect two points. Because of the convexity of the U (v, e) and
of S(p, d,) distances already defined do not change. Therefore (u, t) > x(u,t) is
a locally isometric mapping R on R. '

If R is finitely compact then R is automatically convex because of the way
distances were defined in R (see Conditions IT and IIT in Section 1 and [4, p. 219
and p. 248]). Finite compactness will be obvious when it has been shown that
for any fixed u the curve (u,t), t=o0 in R is a ray, or, since ¢ is from the
definition of distances in R the arc length on (u, #), that the are (v, f),0 <t =<s
is for every s a shortest connection of («, 0) =5 and (u, s).

Let ¢ be the least upper bound of those s (called admissible) such that for
every ue V the arc 0 <t<ygs is a shortest connection of 5 and (u, s). Then
0 = 6,/2, but we have to prove ¢ = co.

If oo is the radius of the sphere U(v, ¢) in W(v, «) then ¢, = inf g,o for
e<s and veV is positive. If all s <<s, are admissible then s, is admissible.
Therefore it suffices to see that with any s the number s’ =s + ¢,/8 is also ad-
missible. For a given veV let ¢=(v,s) and p,(s), 0 <o < g, a sequence of
curves from p to § referred to the arclength ¢ as parameter whose length o,
tends to the distance ¢ of the points j and § in R. Since the arc (v, D),
0 <t=<ys" has length ¢" it may be assumed that o, <.

The curve p,{(c) contains a point p,(c}) of the form (u,, s). If the arc
0 << o < ay of p,(o) is replaced by the arc (u,, t), 0 << s the new curve is, be-
cause of the admissibility of s, not longer than p,(0). Therefore it may be as-
sumed that p, (o) represents for 0 <o <s an arc (u,, 1), 0<¢ <5,

No point of p,(s) with ¢ = s can be outside of the sphere S(, s), 9:/4) in
R, since this sphere is congruent to the sphere S(x(v, s), ¢s/4) in R and the
length of the arc s <o < g, of p,(c) would be at least ¢;/4. Consequently, the
arc s <o < o, of p.(6) may be replaced by the segment from p,(s) to ¢ without
increasing the length of p.(c). Then a subsequence of the new p,(o) will tend
to a curve §(o) from j to § of length p§ <s' which consists of an arc (u, ¢),
o0=<t<g¢ and a segment from (u,, s) to §. The minimizing property of % (o) (it
has length j§) shows that the segment from (u,, s) to § must be a continuation
of the arc (u,, f). By construction (u,, f) and (v, {) have common points different

The preceding discussion shows that this definition is consistent in the sense
that pairs that belong to two neighborhoods have the same distance in both.
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from p only for u, =v. This shows that (v, f), 0 < <s" is shortest connection
of p and (v, &).

Since every half geodesic issuing from p is a ray, every set in R can be
contracted to p, hence E is simply connected and therefore the (unique, see
(4, p. 255]) universal covering space of R. By the motions of § the point
can be moved into any point over p. Since p was arbitrary in R, the half
geodesics issuing from any point of R are rays, which implies that R is straight.
(5.2) yields

(5.6) A simply connected space with domain invariance and non-positive curvature
s straight.
Since a straight space is not compact we obtain from (5.6) and (2.11)

(5.7) A compact space with non-positive curvature (and (5.1)) is not simply connected,
but has finite connectivity.

This implies, for instance, that spheres of dimensions » = 2 and topological
products of such spheres (see [15, § 43]) cannot be metrized such that they be-
come G-spaces with non-positive curvature. ‘

6. Motions without Fixed Points in Straight Spaces.

The covering motions of B over R have no fixed points: Properties of such
motions will therefore be important for the study of R.

The motion @ without fixed points of a straight space. R (not necessarily
with non-positivite curvature) is called axial if @ transforms a straight line g
into itself: g@ =g¢. If zeg then (¢2 @z @?) otherwise z =z @® because 2z @ =
=z®@z @ but then m(z, z®) =m(z D, z @) would be a fixed point of @. A line
g with g@ =g is called an axis of @, the orientation ¢* of g for which # @
follows z in an oriented axis of @. The above argument shows that also
' ®@®=g". Clearly z2®@ =22 @ for any two points 2, 2’ of g.

A characterization of axial motions is contained in

(6.1) Theorem. Let @ he a motion without fixred points of a straight space R.

Then zz @ =inf xx @, if and only if the points z @ lie on a straight line.
reR

Proof. Let 2z =z’ 2o==2 lie on a straight line g. Then g is an axis
of @ and it follows from the preceding remarks that zz, =nzz;. Since
2@ 2@+ =zx @ for any ¢
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neyy==z2,<zx+xx®+xQPx@y+ -+ 2@ 2@ + 2@z, = 222 + nxxd.

For n - oo we obtain ¢z, <zx ®.
Let 22 ®@ = inf zax @. Tt suffices to show that (22;2,). If this were not true
let (2x2;). Then (2,2 ® 2,), but not (xz, z @), so that

zx®<x2y + 7nxPC=czx+xzy==22

which countradicts the hypothesis.

(6.2) Corollary. If for the motion @ of a straight space R a point z with

zz®@ =inf xx @ > o exists, then no power of @ (except the identity) has fixed
zeR

points.
For 2zz2® > o0 implies that @ has no fixed points. If @, 77 o, left the
point p fixed then by (6.1) for any j

pz=pPis@i=ps @I =22 @7 —pz=|ijlzz® — pz

which is impossible.

We put inf xzz @ = A(®) if this number is positive. By (6.1) points z,, 2,
zs R

on different oriented axes g, g, of @ satisfy the relation 2,2, @ = A(®) =a =
=252, @. If 2;(t) represents g then

zi(ka) = z;(0) @, hence z,(0)25(0) = 2z, (ka) 25 (k @)
and for any ¢, if ka<t<(k+ 1)e
21(t) 22 (t) < 21 (t) 2, (k) + 21(ka)zy(ke) + 2p(ka) 23 (f) -
= 2,(0)22(0) + 2(t — ka) < 2;,(0) 2,(0) + 2.
Therefore (4.7) yields

(6.3) If B s straight and has non-positive curvature then two axes of the same
azial motion of R are parallel.
The following simple fact is often useful

(6.4) If @ is a motion with axis g of the straight space R and ¥ is any motion
of R, then ¥~'@¥ is a motion with axis g% and A{(¥F 1@ ¥) = A(D).

For #-1@%¥ has no fixed point and g¥ (F ' OP)=gO@F =g¥. If xeg¥
then x==z%¥ for a suitable zeg and

2P QP =P 2 PP 1QOF =2 2 QF = z2 D,
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Now we come to facts where non-positive curvature is essential. We dispose
of the simplest case first

(6.5) If @4 E is a motion of a straight space with non-positive curvature for
which xzz @ is bounded, then xx @ is constant. The points p @ lie for any p
on a straight line L,. A point ¢ not on L, determines with L, a Minkowski
plane P and @ is a translation of P along L,.

Let x(#) represent a straight line, then z(f)x({) @ is bounded and therefore
by (4.7) constant. Moreover z(f) is parallel to z(f) ®@. Since any two points can
be connected by a line it follows that za @ is constant. This constant is not
zero because @ is not the identity. By (6.1) the points p @ lie for any p on a
straight line L,. If q is not on L, then g(p, q) is parallel to g{(p, q) ® = g(p @, ¢ @)
and the two lines bound by (4.7) a strip S of a Minkowski plane. (6.3) shows
that 3,5 @; is a Minkowski plane,

Corollary. If, under the assumption of (6.5), the space is two-dimensional,
then it is a Minkowski plane.

But the corresponding statement for higher dimensions is false, see the
example on pp. 140, 141 in [3].

6.6) For a motion @ > E of a sfraight space R with non-positive curvature
let a point z and a sequence {z,} exist such that x,x, @ is bounded, zz, — oo
and ¢’ (2, x,) converges to a line g°. Then @ transforms any asymptote to ¢
(in particular g itself) into an asymptote to g".

Note. @ satisfies the hypothesis if no points z with zz @ = inf xx @ exists.

xeR

The proof is simple: Let x,(f) represent g (z, z,) with x,(0)=2. Then z,(t)
tends to a representation z(t) of g*° and w()=ax, ()@ > x(t) @ =y(t). If
sup (z, 2, @, 22 @) = B then

() y () <8 for o=1=<cx,
because z,(t)y.(t) is convex, hence
z()y(f) <8 for 0=t < o0

which shows according to (4.4) that ¢* @ is an asymptote to g'. Because of the
transitivity g* @’ is also an asymptote to g'.

If " is any asymptote to ¢ then )" @ is an asymptote to ¢* @ and there-
fore to g’.
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(6.7) If in addition to the assumptions (6.6) z and g* have the property that

zz® =inf xx @ and ¢ > g(z, z @) then g(z, z @) bounds a Minkowski half plane
zeR

(imbedded in R).

For, on the one hand x(t)y(t) reaches (with the previous notations) a mini-
mum for ¢{=o0, on the other hand x(f)y(f) is non increasing because x(f) and
y(t) are asymptotes. Hence x(f)y(t) is constant for ¢=o0. By (3.14) the rays
x(t),y(f), t =0 bound together with T'(z, z @) a piece V of a Minkowski plane
and 3; V@ is a Minkowski halfplane.

An application of (6.7) is

(6.8) An axial motion @ of a straight space with negative curvature has exactly
one axis § and x,x, ® - o when x,q — 0.

The uniqueness of the axis follows from (6.3) and (4.7). Assume for an in-
direct proof that a sequence x, with x,g — co and x,x, @ < a exists. Let f, be
the foot of &, on g and b any point of g. Choose 7, such that f, = f; @»¢ T(b, b D).
Then z,=x, @» has f, as foot on g and xf,=x,f, = 2,4 - 0O, moreover
Ty Zy @ = 2, O'v ¢, @' = 2,2, D < a.

If {k} is a subsequence of {»} for which fi - z, then g(f ) and therefore
also g(z, ai) tend to the perpendicular L to g at 2. The assumption of (6.7) is
satisfied for L, z and 2 so that B would not have negative curvature.

If R is a plane, the discussion can be carried much farther. Let @ £ E be
an axial orientation preserving motion of the plane R with non-positive curvature.

If g is an axis and § is parallel to g, then J @ =1. For | lies on the same
side of g as §). If x¢l) then x@'g is constant. On the other hand xg is con-
~stant for xel), so that x @ eh. ,

Let z(f) represent the oriented axis g and y(s) the perpendicular to g at
z(t) oriented to the »right»> of g with y;(0) = 2(f). Then every point in the plane

has two coordinates s, t and @ is the transformation
§=3s t=t+ i)

The parallels to g have equations s = const. If « is a non-positive and § a non-
negative number, then the set W of those values of s for which s==const is a
parallel to g has one of the following forms: ¢ < s <, a <s< 00, —00 s g,
— oo < s <Coo. If R has negative curvature, then ¢ =g =20 by (4.7) and (6.3).
In the other cases the set of points (s, {) with se W is a piece of a Minkowski
plane.
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(6.9) An asymptote to s = a(s = @) through a point (s, #) with " < e(s" > ) has
distance o from s =« (s=g).

Proof. Let g, denote the oriented axis s=a of @, and let ) be asymptote
to g through (s', #'). h @ lies for { <j between H @/ and g . For ¢ > — oo the
line h @' tends therefore to an asymptote §' to g.. But § is invariant under all
@' and therefore a parallel to g.. The definition of ¢ shows that )’ =g,. Since
h@'g, = hg, it follows that hg,=o.

Let ¥ be an axial motion that reverses the orientation. Then ¥?= @ pre-
serves it. The preceding considerations apply to @ but it is easily seen that W
must be symmetrie to the (o, 0), that is it has either the form —g8<s =g or,
— o0 < s < oo, The analytic expression for ¥ is

4

§=—3 t =t+ W)

Following Nielsen [14, pp. 198-—199] we prove:

(6.10) If @ and ¥ are orientations preserving axial transformations of a plane
with negative curvature whose orientated axes ¢" and §* are asymptotes, then
the commutator ¥~ @~! P @ is non-axial.

By (4.4) @* =¥~ @'Y has axis § ¥ with A(@*) = A(D). Now 2 @* 2z ®* @ =
= (@), but z@*z®@* @ > A(®) when x®@*g—>o0. By (6.9) all asymptotes to g
and § have distance o from each other. Therefore, as x traverses g* in the
positive direction ¥ @ —~ o and since z@" lies on g¥@ it follows that
x®@* x @ @ - o. Taking orientation into account we see that xx @* @ — o, which
shows that inf xx @' @~1¥ @ =0 so that the commutator cannot be axial.

7. Geodesic Connections and Closed Geodesics.

In a G-space let p(f) and ¢(f) be two continuous curves defined for the same
connected set M; of values {. Denote generally by p(#, f;) the subarc t; <t <14,
of p(t) and by p(f, #;) the same arc with the opposite orientation. Two continuous
curves ;, ¢ = I, 2, connecting p(#) to g(#) are said to be homotopic along (p, q) if

(7.1) ‘ aplt ta)estq(ty, 1) ~o.
Since then also

ap(fe, BTl g (fy, ta) ~0

the concept is symmetric and transitive (and, of course, reflexive).
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(7.2) Let B be straight (see Notations). If p(f), q(¢), t& M, are two continuous
curves in R and ¢ a curve connecting p(t,) to ¢(¢), then for every ¢¢ M; exactly
one geodesic arc g ~ ¢ along (p, q) exists and ¢: depends continuously on .

For let an arbitrary continuous curve ¢ over ¢ begin at p and end at §.
Choose p(t) with ()2 = p(f) and p(f,) = p, similarly G(f) with §(¢) Q2 =¢(¢) and
d(t,) =¢q. Because R is simply connected the segment 3;= 8 (j(), G{t) satisfies
the relation 3;,~ ¢ and for #, f,

8 p(t, ta) &7 q(fy, 1) ~ 0.

Therefore 3,2 =g, is a geodesic ar¢c in R with g, ~c and g~ ¢ along (p, ¢).
For a given t, ¢ M; let g, be any geodesic arc connecting p(f;) to ¢(f) which is
homotopic to ¢ along (p, g¢). Then g, ~ g,. Therefore the arc g, over g; which
begins at j(#) ends at §(#,). Moreover, g, is a geodesic arc and must coincide
with 3, because R is straight. Therefore g, = g,

The last consideration, or the special case where p(f) and ¢(¢) are constant,
yield

(7.3) If R 4s straight then for arbitrary p, ¢ in R every class of homotopic curves
from p to q contains exactly one geodesic are.

In the remainder of this section and in the next we assume that, when-
ever a space R of non-positive curvature is considered, R-has the property of
domain invariance. Then R is by (5.2) straight and (4.1), (4.2) and (7. 2) yield.

(7.4) Let x(f) represent a geodesic in a space of non-positive curvature, and
let ¢ be a curve from the (arbitrary) point » to x(f,). Then exactly one geodesic
arc g:~c¢ along (p,x) from p to x(f) exists and the length of g is a strictly
convex function of f.

(7.5) 1If z(f) and y(t) represent geodesics in-a space with non-positive (negative)
curvature and ¢ is a curve from x(f) to y(f,) then exactly one geodesic arc
g ~ ¢ along (z, y) exists and the length of ¢ is a (strictly) convex function of ¢.

A geodesic one-gon of length |¢|> o0 is a geodesic arc x(¢f, ¢ + e) with
z({t)==x(t+ a). A closed geodesic of length |e| is a geodesic for which
2(t + ) =z(f) (that is x(¢t + o) =x(f) for all ¢. If this is true for one repre-
sentation, it is true for all). If also § 5 0, « and z(¢ + §) = z(¢) then we consider
the corresponding closed geodesic as different from the first. For § = ¢a we say
that the second geodesic is ¢ times the first. (7.3) yields
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(7.6) If R is straight, then R contains mo geodesic one-gons or closed geodesics
which are homotopic to o.

There is a well known one-to-one correspondence between the classes of
freely homotopic curves (free homotopy classes) in R and classes of conjugate
elements in the fundamental group § of R (compare [15, § 49]. It may be
briefly described as follows: Let ¢(s) be a closed curve 0 < s < e, ¢(0) = c(a).
It ¢, lies over c¢(o) let é(s)R2 = e(s) with é(0) = ¢,. Then é(e) lies over ¢(a) = ¢(0),
hence a motion @(c, é,) in F exists with é(a)=¢,D(c, ¢,). If ¢ is another point
over c(o), then & =¢¥ for a suitable ¥ in § and @{c, &)= ¥ D(c, c,)¥.
When ¢, traverses the points over ¢(0), then ¥ traverses J.

Conversely, if @eF and ¢, @ =¢ and é(s) is a curve from ¢, to ¢, then
é(s)RQ=c(s) is a closed curve in R and the class of conjugate elements in
determined by c(s) contains @. The identity of F belongs to all curves that can
be contracted to a point.

Standard arguments furnish the following facts
(7.7) If (in a G-space) a free homotopy class (+ o) contains a shortest curve ¢,
then ¢ is a closed geodesic.

(7.8) If the free homotopy class K either does not contain curves outside
S(p, ») for large », or the length of curves in K that contain points outside of
S(p, v) tends with » to oo, then K contains a closed geodesic.

In particular, if the space is compact, then every class K contains closed
geodesics. The following criterion is of importance for general spaces:

(7.9) Let R be straight. The free homotopy class K belonging to a given element
@ #E of § contains a closed geodesic if and only if @ is an awial motion. The
closed geodesics in K are the images of the axes of ® and have length A(®).

Proof. Let K contain the closed geodesic g: z(f), z(t + o) = z(f). For a
suitable point &, over x(o) the motion @ will be the motion ®(z, #,) defined
above. Choose 7#(t) such that #(t)Q2 = z(t) and #(o)= &, Call L a segment with
center x(o) that is represented by x(f), for [¢] <@, where g = min (n,(z(0), 1),
and L the segment over L with center #, Since ® lies over the identity of B
(i.,e. ?Q=1) it carries L into a segment L’ over L through (o).

The straight line g(= #() that contains L goes under & into the line g’
through L’. Since g lies over g it contains the segment L” through (o) ® = 7 ()
that lies over the segment L represented by z(f + o) for [t|< g But L' =1L
because g is closed, hence L' = L” or g = g®, which shows that & is axial and

that A(®) is the length of g.
19
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The sufficiency of the condition that @ is axial can be proved by retracing
our steps: Let #, #®, £P* be op a straight line g represented by #(f) with
z(o)=1z, () =2 D, « = A(P). Let g be the geodesic z(f) = 2 (f) Q and L the seg-
ment represented by z(¢) for |¢] <pB. As t goes from o to e the point x(¢) and
L go into z(e) and the segment L' represented by z(¢ + a) for |¢|<g. If L”
is the segment over L’ with center at 4@ and L’ is the segment of length 23
on g with center @, then g&® =g implies L”" = L', hence L= L" so that g is
closed (x(t + e)==x(®) for |t| <8 implies z({ + ) = x(t), see (4, (5.6)]).

This proof shows also that £ maps the axes of @ into the closed geodesics
freely homotopic to g.

(7.10) TIf R is straight then the shortest curves in a free homotopy class K of
B coincide with its closed geodesics.

By (7.5) every shortest curve in K is a closed geodesic without the assump-
tion that R is straight. This assumption is essential for the converse, as any
ellipsoid of revolution a~2(x*+ y*) + ¢ 22°=1 shows, where the meridians
y = mux are closed geodesics but homotopic to o.

Let g be any closed geodesic and c(s) any closed curve freely homotopic
to g. Choose a point ¢ over ¢(0) and define ®(c, &) as above. Since the class
contains g the motion @(c, é,) leaves a line g over g invariant. Then for Zeg
the length of g is A(®) =122 and ¢ has by (6.1) at least length ¢,6,P = 22 D.

(6.8) and (7.9) yield the following basic result for spaces of negative
curvature.

(7.11) In a space of negative curvature every free homotopy class K contains at
most one closed geodesic §. The length of a geodesic one-gon in K tends to oo when
the distance of its vertex from g tends to oo,

8. Asymptotic Geodesies.

The oriented geodesics g° and §" in a space R with non-positive curvature
and domain invariance are called asymplotes to each other if straight lines g* and
b" in R over ¢' and §' exist which are asymptotes to each other. Following
Hadamard [9] this may be formulated without using R as follows:

Let x(f) represent g¢° and connect a given point p to x(0) by a curve c.
Let B, be the (unique, see (7.3)) geodesic arc from p to z(s) which is homotopic
to cx(o,s). If ys(¢f) represents the geodesic which contains §, and for which
¥s(0) =p, ys (length b= x(s), then y,(f) tends for s -~ co to an asymptote y(¢)
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to g', more precisely the asymptote §* to g" through p of type c. Whereas ¢ deter-
mines §° uniquely, )" may not determine the type ¢ uniquely. For instance,
parallel generators on a cylinder are asymptotes to each other of infinitely
many types.

Let x(t), y(f) represent geodesics in R and let ¢ connect x(0) to x(o). If
¢cQ=c and ¢ begins at p and ends at # let #(f) Q2 =x(¢) with £(0)==. 1f
Z(m(®) is the foot of 7(f) on &(t), then T;= T [4(t), Z(n®)] Q is a geodesic arc
in R with the property that (o, t) Tt ~ cx (0, ($) and that T} is perpendicular to
z(f) at x(w(®). The arc T: is uniquely determined by this property. The length
y({t)x(x@®) of T: is called the distance d(c; y(t), ') of type ¢ from y(f) to the
geodesic g* represented by x(f). Then (4.2) and (4.4) yield

(8.1) Let x(f) and y(f) represent oriented geodesics ¢* and §* in R and let ¢
connect y(0) to x(0). Then d{c; y(®), g*) is a convex function of ¢ and |’ is an
asymptote to g¢" of type ¢ if and only if d(c; y(®), g") is bounded for ¢ = o.

If the curvature is negative, the following can be added

(8.2) If y(t) represents an asymptote of type ¢ to § in a space with negative
curvature and y(0)y(f) < a < oo, then d(c; y(®), g') ~ o.

Since d(c; ¥, g') decreases it tends for f—> co to a limit d. For a fixed
8 > o consider the geodesic arcs Ti-g, Tt, Ti+p defined above. Their length tends
to d. For a suitable sequence ¢, > co the arcs y(t, — 8, t, + ) tend because of
yo)y(t)<a to an arc of the form z(t,— @, f, + 8) of a geodesic z(t), and
x(mt,— @), n(t, + B) tends to an arc of a geodesic ®'. The limits of T\ g,
Ti,. Ti,+s are geodesic arcs of length @ perpendicular to & and of the same
type ¢’. The function d(c’; 2(#), &) would be linear in the interval t,— g <t=<t¢,+ 8.
By (3.14) and (3.22) the space could not have negative curvature.

The following theorem was proved by Hadamard (see [9, pp. 42, 65, 66]) by
using strongly the Riemannian character of his metric:

(8.3) In a space of negative curvature let y(t) represent an asymptote to z(t) both
of type ¢ and of type ¢y, where ¢; and ¢y connect x(0) to y(0) and ¢ + 5.

If y(O)y(t) <« and the free homotopy class of ¢, c;' contains a closed geodesic
g, then x(f) and y(t) are asymptotes to a suitable orientation of g.

Proof. Let 7) be perpendiculars of type ¢; from y(f) to x(f) and x(m;(f)
the endpoint of 7;. Then

Trex[m(t), my(6)] T ~c¢qcet +o.
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The curve on the left side has by (7.10) at least the length 2¢ of g. By (8.2)
the length d(c;; y(®), ) of Ty tends to zero when ¢ — oo, hence :

x [7, ()] 2[5 (£)] -~ o for ¢ > oo and | z(t)) — 7(ty)| > ¢ for large t.

The inequality y(0)y(f) < e implies y(0)x(f) < 2« for large t. Therefore a
sequence f, - oo exists such that z(m(f.) + s) tends for all s to a representation
z(s) of a geodesic (see [3, pp. 22, 23]). The argument converse to the reasoning
that leads to (7.11) yields that n,(f,) converges to a finite value s, for which
the arc z(o, s;) is a geodesic one-gon freely homotopic to a suitable orientaticn
g" of g We may assume that s, > 0. Let

my () = (1 — 0) my (t,) + 0 7q(ty).

Then m,(f) > 05, and n,(f,) tends to a value s; such that z(0s;, s,) is another
geodesic one-gon freely homotopic to g".

Hence ¢° has a multiple point at @s, unless the line elements of g* at s,
coincide. But ¢" has only a countable number of multiple Lpoints (see [4, p. 231)).
Therefore there are 6 for which the line elements coincide, and z(s) is a closed
geodesic. By (7.11) it must represent g".

It follows easily that x(f) and y(f) are asymptotes to g’.

The connection between co-rays and asymptotic geodesics, which is entirely clear
for simply connected spaces, ¢s obscure for gemeral spaces and it seems difficult to
find a general theorem. The following questions suggest themselves (compare
the end of Section 1). )

Let z(t) and y(f) represent oriented asymptotic geodesics which are rays for
t =o0. Are these then co-rays to each other?

The converse is certainly tn general not true, that is, rays which are co-rays
to each other in a space of non-positive curvature need not belong to asymptotic
geodesics. The following is an example:

In the Cartesian (x, y, z)-space let D, denote the disk in the (z, y)-plane
punctured at the center defined by

Do:lx—2n+ 12+ <5 ™2 (x, 9) #=(2n—1, o)
Define f(x, y) by
f(w: y)={

o if (z, y) is not in 3, D, or (z,y) # (2n — 1, 0)
tan [(57'n2—@—2n + 12— ¢ w50 ' n?] if (z, y) & Dy
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Since tan [27'7(x — a)*(b — a)*] is convex for a < x < | and tends to oo
for & - b— the surface S:z = f(x, y) consists of the (z, y)-plane except at the
disks D,, where infinite tubes of negative curvature are erected. The surface is
of class C® because the first three derivatives of tan x* vanish at o. With the
ordinary geodesic distance s becomes a surface of non-positive curvature.

The numbers have been chosen such that the straight lines through
p=1{0, 1,0) and (2%, 0,0) has no common point with D, and lies therefore in
S. The limit of these lines is q(¢) = (¢, 1, 0) and the ray ¢ = 0 of this line is a
coray to every ray ¢.(t)=({, @,0) with ¢ <— 1, = 0. But the oriented geo-
desics represented by ¢(t) and ¢.(¢) are not asymptotes to each other because no
two segments from p through (2n, 0, 0) to the point (27%(1 — a), e, 0) of ¢.(¢) are
of the same type.

It seems probable that the infinite connectivity of § is essential for such
examples, but the question is open and worth investigating.

9. Spaces with Curvature 0.

Any attempt to enumerate the different types of spaces with non-positive
curvature is futile because the #-dimensional manifolds have not even been
classified topologically for » = 3. Therefore the attention must be restricted to
some special types of spaces. The following general fact follows from (4.11).

(9.1) The fundamental group of a space with non-positive curvature has no finite
subgroup (except the group consisting of the identity).

In a space with curvature o it follows from (3.3), (3.13) and (3. 14) that the
metric in any triangle with vertices in S(p, dp) is Minkowskian.'* Therefore the
geometry is locally Minkowskian. The space is a manifold and domains are
invariant. Therefore

(9.2) If R has curvature o, then R is a Minkowski space.
The study of spaces with curvature o can be reduced to the study of Rie-
mann spaces with curvature o by means of the following fact:

(9.3) For a given Minkowski space M there is an associated'® euclidean space S
Jor which all Minkowskian motions are euclidean motions.
Let K be the Minkowskian unitsphere in a definite associated euclidean

' The long proof of (3.14) is not necessary in this case, becanse much more is known than
the hypotheses of (3.14).
'* Compare [5, Section 2],
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space 8’. According to an unpublished result of Loewner there exists exactly
one ellipsoid E with the origin as center of smallest (Minkowskian '? or euclidean)
volume that contains K.'*

Any motion of M carries Minkowskian, and therefore euclidean straight
lines into straight lines and is therefore an affine mapping of the euclidean
space.” This mapping preserves the euclidean volume, since it preserves the
Minkowskian volume.

Any motion @ of M can be composed of a motion @' that leaves the
origin o fixed and a translation ¥ (if ¥ is a translation that carries o into
o®, then &= (P¥-)¥ and @ = PF~!). Because @ is an affine mapping
that preserves volume and carries K into itself, E goes into itself. If S is the
euclidean space with FE as unitsphere, then any motion of M which leaves o
fixed is also a motion of S. Since the translations of M are also translations for
S, the theorem is proved. Applying (9.3) to the motions of the fundamental
group of a space with curvature o yields (compare {4, (13.8)]):

(9.4) Every G-space R of curvature o can be metrized as a Riemann space of
curvature o such that S has the same geodesics as B and cvery motion of R s a
motion of S.

But it is important to notice that not every locally euclidean space can be
realized by a given Minkowk: metric. For instance, the two-dimensional locally
euclidean spaces belong to the following five topological types (see [10], or [7,
Chapter II, Section VII)):

The plane, the cylinder, the torus, the Moebius strip, and the one-sided
torus or Klein bottle.

The covering transformations of the plane over a cylinder or a torus consist
of translations and can therefore be realized with any Minkowski metric. But
the covering transformations for the Moebius strip and the one-sided forus contain
products of translations and reflections in a line, and can therefore be realized
by a given Minkowski metric, only if this metric admits a reflection in some
straight line.

More generally, products of » circles and straight lines can be provided
with any Minkowski metric, but other »-dimensional types cannot be realized
by arbitrary Minkowski metrics.

'3 While this paper was in print a proof was given by M. M. DAY in: Some characterizations
of inner-product spaces, Trans. Am. Math. Soc. vol. 62, 1947, pp. 320—337.
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The geodesics in a Moebius strip R have properties which will illustrate
certain statements of the next section. The fundamental group of the Min-
kowskian covering space R is cyclic and is with a suitable associated euclidean
rectangular coordinate system generated by the motion

. F=—z §=49+a,

where the curves i = const are perpendicular to # =o0 (and a = A(¥), (compare
section 6). The line z = o is the only axis. The interval 0 <j <a, &4 =0 goes
into a great circle g in R. The intervals o < § < 2a, =% 7 0 go into closed
geodesics of length 24 homotopic to 24g.

Rays y=% and £=o0, or j=F%k and £ =<0 go into rays in R, but the
whole line § =% does not go into a straight line in R, because points of the
form (%, ¥,), (£y, Jo + @) can for large £, be connected by curves which are
shorter than the interval from (— 4y, §, + a) to (%, %, + a).

Spaces with non-positive curvature which are not compact need not have
finite connectivity as the example in Section 8 shows; but

(9.5) Spaces of curvature o have finite connectivity.
A proof for three-dimensional Riemann spaces of curvature o, which extends

to » dimensions is found in Cartan (7, pp. 75, 76]. (9.4) shows then that (9.5)
holds also for locally Minkowskian spaces.

For certain spaces non-positive curvature implies vanishing curvature:
(9.6) A torus of nom-posttive curvature has curvature o,

The proof rests on the following fact, which will be used again later on:
(9.7) If the fundamental group of a compact space with non-positive curvature
is abelian, then 77 @ is bounded for a fixed @«F and all ¢ R.

Because R is compact any fundamental set F(p) (see (2.10 d)) is compact,
hence #Z @ is bounded for #& F(p). If 7 is any point in R then a point £ in
F(p) and an element ¥ of { exists with % = §. Because § is abelian

GO =i IFP=iFidPP =ii D,

so that 7y @ is bounded.

If &=E, then 55@ is by (6.5) constant, every point of R is on an axis
of @ and these axes form a family of parallel lines.

If R is a torus we may represent R as a product of » circles and (because

T is abelian and conjugate elements are equal) these circles may be chosen as
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n closed geodesics, Gy, ..., G,. The sub product G; X G, is a torus with a
Minkowski metric (see (6.35), applying (6.5) again it follows that (G; X G,) X G
is a Minkowski space, etc.

10. Spaces with Cyeclic Fundamental Groups.

Statements (9.7), (6.5) and (5.7) yield
(10.1) There is no compact space of negative curvature with domain invariance
and an abelian fundamental group.

Since group spaces have abelian fundamental groups (10.1) implies the following
two facts:

A compact group space cannot carry a metric with negative curvature
(whether invariant under the group or not).

There is no compact space with negative curvature and a simply transitive
group of motions.

The hyperboloid of one sheet shows that the assumption of compactness
in (10.1) is essential. However, the hyperboloid is in a certain sense typical.

(10.2) 1f R contains a closed geodesic §, has negative curvature and an abelian
Sundamental group, then § is cyclic. All closed geodesics in R are multiples of a
great circle.

Proof. Let & be a motion in § with an axis § over g (compare (7.9)) and
¥ # E any motion in . Then ¥~ '@ ¥ is by (4.4) an axial moticn and has g¥F
as axis. But #~'@%¥ = @ and D has only one axis (see (4.8)), hence g¥ = g;
that is all elements of § have g as axis. Because § is discrete there is an ele-
ment @, # E in § for which (®D,) is minimal. If ¥ >~ E and Z¢ g then A(¥) =22
is an integral multiple of A(®,). Therefore ¢ exists such that 2@, =2z%¥ or
2@ P-1=z Since E is the only motion in § with fixed points it follows that
@) =, This shows that § is cyclic and that all closed geodesics are multiples
of the geodesic g, that corresponds to @, The following discussion of a more
general case will show that g, is a great circle.

Let @ be an axial motion of a simply connected space B of non-positive
curvature. Since no power (# E) of & has fixed points (see (6.2)) the cyclic
group {@'} is the fundamental group of a space R with R as universal covering
space.

(10.3) If § is an axis of @, then g =g is a great circle. The image HQ of
a4 perpendicularf) to g at a point # is a geodesic f) whose halfextremals §*, §~
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with origin y = 5 Q2 are rays. § then is locus of all points that have y as foot
on g.

Proof. We prove a little more than that g is a great circle, namely that for
any two different points x, zeg every segment T (x, y) lies on g. (g is a great
circle if a suitable segment T (z, y) lies on g, see [4, p. 232].) Let 22 ==z The
segment over T'(z, y) that begins at & ends at a point § over y, and §eg. For
g contains at least one point ¥ over y, hence all points §, @, but F = {@'}.
Therefore T'(& 7) <§ and T(x,y) <g. So far only the fact that R is straight
has been nsed.

Let xzel). Let A be a subarc from z to y of §) and f a foot of = on g.
Then the length A(4) of A satisfies the inequality A{4d)=zy=xf Let2Q=x
and let A be the arc over A that begins at #, and T a segment beginning at
& over a segment T'(x, f). A and T end at points 7 and f of § because, as was
shown before, g contains all points over g 4 and T are locally perpendicular

to g. Therefore A and 7 are perpendicular to g. Since they have the common
point #, it follows that A =7 and 4 = T (z, f).

The example of the Minkowskian Moebius strip in Section ¢ shows that
need not be a straight line.

Specializing further assume that R is two dimensional and that @ preserves
the orientation. If we use the notations of Section 6 with dashes to distinguish

between R and R and introduce in R the coordinates s, , then the representation
@ =3 t=1t+ Q)

shows that R s a cylinder, and that o <t < A(®) may serve as (closed) funda-
mental set. The closed geodesics of R are images of the axes of the motions
@ #E in §. Therefore they are the multiples of the great circles s =s,¢ W,
o=t=A(®). If R has negative curvature there is only the one great circle s =o.

The images y:(s) = 7:(s) 2 of the perpendiculars to g(s = o) are straight lines
(and not ounly union of two rays as in the preceding theorem). For if s, <o
and s, > 0, then a segment from §.(s)) to §i1ic(s,), 2 % 0, ¢ = A(D), intersects g
at some point Z(f,) with ¢ <{¢, < ¢+ is. Because #/(s) is perpendicular to g

Ge(s1) 2(t)) > Ge(s1) 5:(0) = | 81| and ey se Z(to) > 53

hence y:(sy) Ye4ie(se) > 52 — 81, so that the subarc y(s; —s,) which has length

sy — & is the shortest connection of #:(s;) and #/(s;) in R.
20
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In general there are lines in R between g/t'(s) and #+.(s) whose images in
B are also straight lines.

The behavior of the other geodesics in R can easily be discussed. Since we
know the behavior on a Minkowskian cylinder, assume that W has either the
form ¢ <s=<f or ¢ <s < co. and take an arbitrary point p,= (s,, ¢, in B with
8 < a. Let @§. be the line s =a. A line through p, either intersects g, or is a
non-parallel asymptote to g,, or is neither asymptote to g, nor intersects g..

The first type intersects, also §. If it is so represented by z(f) that xz(o) is
on g, then #(t)g tends monotonically to co when ¢ > oo or ¢t »>— oo, If z(f)=
= 7 ()2 then the preceding discussion shows that x(f)g = #(¢)g. Thus z(f) is a
Jordan curve with z(f)g - oo for |t]| —» oo.

If #(f) represents the oriented asymptote through p, to g, then Z(¢)g. d
creases monotonically and tends to o for ¢ co. Therefore x() Z(t) 2 is
Jordan curve for which x(t)g. varies monotonically from oo to o.

If finally Z(f) represents a geodesic through j, of the third type then Z(f)g
reaches a minimum for some {) and is monotone for { = ¢, and for ¢ =< ¢,, more-
over Z(t)g > co for [¢| - co. Therefore each of the half extremals = ¢, and
t=1t, of z(f) is a Jordan curve on which z(¢f)g. (or z(f)g) is monotone but the
two half extremals intersect each other.

If B has negative curvature, we find thus exactly the same behavior of the
geodesics as on the hyperboloid of one sheet.

If ¥ is an axial motion of R which does not preserve the orientation, then
the representation (compare Section 6)

¥ f=—3 t=1t+ AP
shows that R ¢s @ Moebius strip. Because @ = ¥? is the transformation
s=3s t=t+2AF) =1+ LD),

R has a cylinder of the previously discussed type as two sheeted covering space,
but W must be symmetric to the origin. As on the Moebius strip s=o0,
0 <t < A(¥P) is the only great circle on R, the lines s =s,, 0 < ¢t < 2 A(¥F), s,¢ W,
are closed geodesics which are homotopic to twice the great circle.

Finally let R be a plane of non-positive curvature and @ a non-axial motion
of R without fixed points. By (6.6) there is a line § with the property that b
is an asymptote §) @, therefore @ preserves the orientation. § is not parallel to
) D, because it is readily seen that @ would then be axial (see the analogous
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proof for L which follows). Since the strip F bounded by h" and §’ @ can serve
as a fundamental set, F = {®’} is the fundamental group of a space R with R
as universal covering space, and R ¢s a cylinder.

R carries straight lines. For if i(f) represents §" and z(f) = &(f)Q then a
segment 7', connecting the point z(—v) to x(v) appears in F either as
T(Z(—w), 20) or as a set I; T(Z(t), (410 D) with &(t) = Z(—9), Z(tey1)=2(») D
(possibly n=1). For » - oo we have &(t,) #(f) @ = Z(— #)§ > co because § is
not an asymptote to § &. Therefore x(—»)z(») - 0o and a suitable subsequence
of T, will tend to a straight line L in R. Let LQ = L. Then L N L® = o because
L has no multiple points (compare (2.4). It follows that L and L® bound a
fundamental strip. Therefore L and L @& are non-parallel asymptotes to each other.

For if this were not the case and i(t) represents L, then §(f)#(t)® would
reach a positive minimum for same value t. To any point Z not as L or
L@ there is a point 5= 7 & between L and LP. Then 7P is between LD
and L®* so that T'(7 7®) intersects L®P in a point §. Then

V)P <qga@=qD <D i+ 20=2)+ §iP=2:D=77D

and 7 7 @ would reach a minimum at #(#) or @ would be axial.
We may therefore assume that f) was chosen such that §) is a straight line.

It is easily seen that the asymptotes to § appear in R as straight lines and
that R carries no other straight lines. Also, R has no closed geodesics because
no motion @’ is axial, see (7.9).

There may or may not be geodesics in R other than the asymptotes to §"
which tend in the direction of §* to co. On ordinary surfaces of revolution E?
with cylindrical coordinates:-z = f(r), 0 < < r < oo where f(r) is a decreasing
convex function of » with f(») > oo for » - J +, the first case enters for d > o.
the second for ¢ =o0. This follows from the well known relation 7 - sin w = const
for the geodesics where w is the angle which the geodesic forms with the merid-
ians (see for instance, G. Darboux, Théorie générale dés surfaces, vol. III Paris
1804, p. 3). If d > o then suitable geodesics different from the meridians tend
in the direction z — co to infinity and behave essentially like helices on a
cylinder. '

Every cylinder with non-positive curvature has a plane R as universal
covering space and its fundamental group is cyclic. Therefore the preceding
discussion covers all cylinders. We notice in particular:
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(10.4) Any cylinder R of non-positive curvature ¢s generated by a one-parameter
SJamily of straight lines.

(10.5) A cylinder with negative curtvature either carries exactly one great circle g
and consists of straight lines perpendicular to §. Or it contains no closed geodesic
and ils straight lines form a family of non-parallel asymptotes to each other (of
infinitely many types).

11. General Two-Dimensional Spaces.

F. Klein investigated which topological types of two-dimensional manifolds
can be provided with Riemann metrics of a given constant curvature.'* The
preceding results (5.7), (9.1), (9.4), (10.1), (10.2) show that Klein’s results extend
to Finsler spaces whose curvature has constant sign:

(11.1)  All two-dimensional manifolds can be metrized as G-spaces with non-positive
curvature except the sphere and the projective plane.

The plane, cylinder and Moebius strip are the only manifolds that can be
provided both with metrics of curvature o and of negative curvature.

If a torus or a one-sided torus carry a metric with non-posttive curvature, then
they have curvature o.

All other than those five types can be metrized with negative curvature, but not
with curvature o.

The subject of Hadamard's investigations are the two-dimensional orientable
manifolds with finite connectivity and negative curvature, where every free homotopy
class contains a closed geodesic.

Such a manifold B may be represented topologically as an orientable mani-
fold of finite genus p which is punctured at a finite member of points zy,.. ., 2.
A closed Jordan curve C; in R which can be contracted to z; bounds in R a
domain D; which contains z; and determines a closed geodesic g. Then the
domain D; bounded by g; and containing 2; is what Hadamard [9] calls »nappe
évasée> and Cohn-Vossen (8] calls »eigentlicher Kelch». It behaves exactly like
one half of the cylinder described in (10.5) bounded by g. The part R* of R
which remains after removing the domains D); is called by Hadamard the »partie
finie> of B. A half geodesic §)* issuing from an interior point p of E* falls into
one of these three categories: 1) §* may intersect a g;. Then the part of

4 A concise formulation of F. Klein's results is found in [11].
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following this intersection tends on D; monotonically to infinity just as the first
type of geodesic on cylinders with a closed geodesic described in the preceding
section. 2) )" may be asymptotic to a g;. 3) )" may fall into the angle between
the asymptotes to different g;. 1t then stays entirely in E* and shows a com-
plicated behavior. For the structure of the three sets of geodesics the reader is
referred to Hadamard [g].

A compact two-dimensional manifold R always satisfies the hypotheses of
finite connectivity and of the existence of a closed geodesic in a given free homo-
topy class. If R has negative curvature, then all geodesics belong to the last
of the three categories enumerated above. Much information can be gained by
considering the universal covering space R and showing that it has many properties
of the hyperbolic plane. This will be the subject of the remainder of the present
section.

Let E denote the euclidean plane with distance e(x, y) and let the interior
I of the unitcircle C with center o in E be also metrized by the hyperbolic

distance
elx, uely, v)
e(x, v)ely, u)

h(x, y) = log

where u (or v) is the intersection of the ‘euclidean ray from x through y (from
y through x) with C. The open euclidean segments with endpoints on C are the
hyperbolic straight lines.

First let R be any plane (two-dimensional straight space) with non-positive
curvature. Fix a point ¢ in R and map a semicircle S of §Z = 1 proportionally
on a semicircle S of Ao, #)=1 in I. Then map the straight line g(g, Z), ¢S
in R congruently on the hyperbolic straight line g(o, ) in I such that § goes
into 0o and & into « where x is the image of Z on S.

With any two points x, ¥ in I we associate as third distance the distance
Z§ of their originals in B. With this distance I becomes congruent to E. Hence-
forth we identify B with I and use letters with bars for points in I. The dis-
tances h(Z, ) and £§ coincide on a straight line through o =g and R is im-
bedded in FE.

Let #(f) represent an oriented straight line g* in R not through §. Then
the line g(g, #(f) revolves monotonically about § as ¢ increases. Therefore #(¢)
converges as point in the euclidean plane E for ¢ > co to a limitpoint ¢” on C,
which we call the positive endpoint of g*. Similarly #(f) approaches for - oo
the negative endpoint ¢ of g° (or the positive endpoint of g°).
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(11.2) The asymptotes to §° are exactly those lines which have the same posttive
endpoint e* as g".

For it was just shown that the line " through ¢ with poéitive endpoint "
is an asymptote to g', and that f’ cannot be asymptote to any line whose positive
endpoint is different from e’. (11.2) follows therefore from (4.3).

(11.3) If R has negative curvature then two points ¢ and ¢ on C are the positive
and negative endpoints of at most one oriented line in R.

For (11.2) shows that different oriented lines with the same endpoints are
parallels, which do not exist when R has negative curvature, see (4.9).

Negative curvature of R is not sufficient to establish that a line with end-
points e’ and e always exists. For instance, the universal covering space of a
surface of revolution z=f(r) 0 < d < r < oo as discussed in the last section
will not have this property when J > o. But it will be shown:

11.4) If R is the universal covering plane of a compact surface R with negative
curvature, then any two given points €', ¢~ on C are endpoints of exactly one straight line.

E admits an axial motion @ that preserves the orientation. Let G” be the
oriented axis of @ with endpoints 4° and 4. Call C* and C the two arcs of
C determined by d° and d~. Orient the perpendiculars to G* so that their
positive endpoints are all on C'. Let H, be a perpendicular to G" at p and
let H, = H, ®’, and denote the endpoints of H_ by ¢, and ¢,. The points e,

and e, are different because H, and H, , are not asymptotes to each other

+v 1

(see (6.8) and e/, follows ¢, on C' in the direction of d". Therefore ¢' = lim ¢,

y— 00

exists on C'. Because of (11.2) the mapping @ induces a mapping of C on it-
self. Here we need only that e’ is fixed under all @ and that therefore a line
with positive endpoint e’ through j (the asymptote to g(7, ¢") through j) goes
again into a line with ¢" as positive endpoint.

It follows now that ¢’ = d*. For let Z(f) represent the line through p with
¢’ as positive endpoint. Then ()@ represents its image and is by (11.2) an
asymptote to Z(f). Hence &(t)Z(t)®D is by (4.4 a) bounded for ¢ =o. If z(t) did
not represent G, then &(f) G* ~ oo for £ > oo and (6.8) would yield &(t) & (f) @ — oo.
It follows that the endpoints of the perpendiculars to G fill the arcs C* and
C~ (except for d* and d°).

If H; and H, are two perpendiculars to G, then it is easy to see that a
line L exists such that L* is an asymptote to H; and L~ to H,. Therefore:

(11.5) If a"¢ C" and a ¢ C are given, a line with a” and a™ as endpoints exists.
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The fundamental group § of R contains an axial motion ¥ whose axis H"
is different from G'. By (6.4) the images of G and A" under the motions of
the group generated by @ and ¥ are axes of motions in §. The preceding
considerations yield readily that any two points @' and ¢~ on C can be separated
by the endpoints of an axis of such a motion. (11.5) shows then that ¢* and a~
are endpoints of a straight line in R. This completes the proof of (11.4).

We show next

(11.6) If R is the universal covering plane of a compact swrface R with negative
curvature, then for any two open intervals U™ and U~ on C an axis of a motion
n § exists which has its positive endpoint in U™ and its negative endpoint tn U~
(Compare Nielsen [14, p. 210]).

Proof. Let »; and r, be rays from § to points e, and e; on U'. If Z(f)
represents the ray from § to a point e' of U" between e and e, then S(& (), 2d(R)
is for large t contained in the angular domain bounded by 7, and 7, because
Z(t)r; > co. By (2.10¢,d) S(@{®), 26(R)) contains a point ji over any given point
p of R. Therefore ¢ is for any point p of R accumulation point of points of
the from j D, D, F.

Let ¢'¢U' and ¢ ¢ U  be given and choose @, and @_, in ¥ such that
g®, >¢ and §D-, >e. The motion P, P, determines a class of conjugate
elements in g, therefore a free homotopy class and a closed geodesic G in R.
Let p be a simple point of G and jeI'(G), 52 =p. Then the line G, over G
through 5 ®-! must pass through j®, and G, is the axis of D1 O, (if p does
not lie in H(g) it may be necessary to replace j @~ and p @, by points in F(p) P
which are contiguous to F(p)®-! or F ()P, but this does not change the con-

clusion). The endpoints of G, tend for » - oo to ¢ and ¢ and lie therefore
for large » on U’ and U".

Theorems (11.5) and (11.6) shows that the closed geodesics in R (because
they correspond to the axes of motions in ) are in a very definite sense dense
in the set of all geodesics in R. For further exploitation of (11.5) and (11.6)
the reader is referred to Nielsen [13]. Here we observe only the following con-
sequence of (6.11) and (11.2), which is essential for a deeper discussion.

(11.7) No two different axes of motions in § have a common endpuvint.
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CHAPTER III.

Differentiable Spaces with Non-Positive Curvature.’

12. Riemann Spaces.

The connection of the present definition of ndn-positive curvature with the
standard definition can easily be discussed by using the following lemma:

(12.1) If, in a space with non-positive curvature, x(f) and y(t) represent geo-
desics with x(0) = y(0) then

lim z(at)y(8)/t=ule, B), e, B0

t0+
exists, u(e, 8) < |a| + | 8] and
(12.2) z{et)y(8t) = tu(e, 8) for small positive £

For z{at)y(8f) is a convex function of ¢ and has therefore at ¢=o0 a right
hand derivative u(e, ). The relation u(e, 8) < |«| + | 8| follows from x(e ) y(3f) <
< t{le] +|8]) for ¢>o0, and (12.2) follows from the fact, that a convex func-
tion lies above the right hand tangent at any of its points.

In Riemann spaces non-positive curvature is equivalent to the »cosine
inequality» (12.4) which can be formulated under very weak differentiability
hypotheses.

(12.3) A Riemann. space has non-positive curvature according to the present defini-
tion, if and only if every point has a neighborhood S(p, @) such that any geodesic
triangle with vertices a, b, ¢ in S(p, o) satisfies the relation

(12.4) ¥ =a®+ 2 — 2af cos c,
where ¢« = be, B=1ca, y=ab and ¢ is the angle at c.

Proof. Let R be a Riemann space with non-positive curvature in the present
sense, and let @, b,ceS(p, d,). If z(t), y(f) are geodesics which represent the
segments $(c, b) and 8(¢c,a) for o<t<a and 0=<¢=<§g respectively, then
x(0) =y(0) = ¢ and, because R is Riemannian,

pie, 8)=lim x(et)y(8t) %2 =1lim (a®#2 + B°1* — 2a Bt cos ¢) ¢ 2
=a*+8°—2afcosc

and (12.4) follows from (12.2).

* The considerations of Chapter III extend with obvious changes to spaces with non-negative
curvature.
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For the proof of the converse observe first that in any triangle ¢rs in
S(p, @) with qr=1¢, gs =20, rs =224, and gm(r, s) = u the relation

(12.5) &+ =202+ )
holds. For, if w denotes the angle < gm/(r, s)», then by (12.4)

e=2pu+ A2 —2ulcosw and

=+ 22+ 2ul cos w.

Consider now a triangle abec in S(p, 0). Put o’ =mlc, a), V' =mle, b),
ac=2a, be=28,d'b =9 ,ab=y,and a’b=4. Applying (12.5) to the triangles
a'be and bea yields

(12.6) 4yt + B =2(e*+ %)<y + (28"
so that 2y’ <y or 24’0’ < ab, q.e.d.

(12.7) A Riemann space has non-positive curvature in the present sense if and only
if it has non-positive curvature in the usual sence.

Proof. If a Riemann space has non-positive curvature in the usual sense,
then (12.4) holds locally (compare {7, p. 261), where it is proved that (12.4)
holds in the large for simply connected spaces. This implies, of course, that it
holds in the small for general spaces). By (12.3) the space has non-positive
curvature in the present sense.

The converse can be proved by using (12.3) to establish (12.4) and then
tracing Cartan’s steps back. But it is simpler and geometrically more convincing
the proceed as follows: let z(f) and y(f) represent two geodesics which form at
x(0) = y (o) the angle y. Then as in the preceding proof

lim z(8)y(8)/ ¢t = pu(1, 1)=[2(1 — cos )]"* = 2 sin (y/2)
hence by (12.2)
(12.8) x(t)y(t) = 2t sin (p/2).

That R has at p non-positive curvature means this (see {7, pp. 191—199]):
If P is any two dimensional surface element at p then the two dimensional
surface M formed by all geodesics through p and tangent to P has at p a non-
positive Gauss curvature. Take » geodesics x,(¢) in M through p such that the
angle formed by x,(f) and x,+1(t) at p is 272/v. If 1, is the length of the circle
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with radius ¢ about p in M then by (12.8)
}-t > 21‘1;({) CCq,+1(t) = 2yt 8in (717/1/),

whence A; = 27ttt for » -~ oo, The well known expression of Bertrand and Puiseux
(see [7, p. 240]) for the Gauss curvature K

K=3z"'1lim (27t — )t

t—0-+4
shows that K < o.

(9.2) shows that also Riemann spaces of curvature o in the usual sense are
identical with Riemann spaces of curvature o in the present sense. However,
the corresponding statement for negalive curvature is not true, the present defini-
tion being a little wider. For theorem (3.14) shows that 2a’d’ < ab in smale non-
degenerate triangles abc of a Riemann space with negative curvature in the
usual sense, which therefore also has negative curvature in the present sense.
Buat, clearly, the relation 2a’l’ < ab may still be true for non-collinear points
when the curvature vanishes at certain sets of two dimensional elements, for
instance at all two-dimensional elements in isolated points.

In any case the preceding considerations on G-spaces of non-positive or
negative curvature apply to Riemann spaces of non-positive or negative curvature
in the usuval sense.

13. Ihequalities for Yolume and Area of Spheres.

The explicite definition of a Finsler space in the usual sense is not needed
here. It suffices for the following to know that introduction of normal coordinates
at a point p may be formulated as follows: (see [3, IL § 2).

In S(p, na(p) a Minkowskian metric ma, b) topologically equivalent to the
geven melric ab can be introduced such that

(13.1) ab=mla, b) for points on the same diameter of S(p, ns(p)."¢

(13.2) If a, > p, b, > p, and a, % b,, then a,b,/m(as b) - 1.

A property which is a little weaker than (13.2) but sufficient for the present
purposes can be deduced from a simple geometric postulate of differentiability

1% A diameter of S{(p, 7,(p)) is a segment with center p and length 2 7,(p) without the
endpoints.
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and regularity. To formulate it let 8 = min (n,(p)/2, 1). For a, beS(p, 8) denote
by t{a, b) the oriented segment with length 28 and origin a that contains b.
Then we require:

(13.3) If as, by, ¢y tend to p in such a way that t(a,, b) and t(a., c.) converge, but
to different limits, and if lim a,b./a,c, exists (0o admitted), then t(b,, ¢,) converges.
Moreover, (bya, + ayc,)byc, ~ 1 if and only if

lim t(b,, @) = lim v(by,¢) or lim t{as, c,) = lim v{bs, c,).

This is, except for slightly different notations, the postulate #(p) of (3, IT § 3].
Its two parts are of a different nature, the first is merely a differentiability
hypothesis, the second corresponds to the regularity of the integrand (or the
strict convexity of the indicatrix) in ordinary Finsler spaces. It insures that the
resulting local Minkowski metric satisfies Axiom V of Section 1. According to
(3, II §§ 3, 4, 5] the condition (13.3) implies that in S(p, 7.(p)) a Minkowski
metric m(a, b) can be introduced'’ which satisfies (13.1) and

(13.28) If ay—>p, by > p and (ap + pb)/a,b, < < oo then a,b,/mlas, b))~ 1.

Assume now that the space has non-positive curvature and that (13.3) holds
at the point p. Let x(t) and y(¢) represent different geodesics with x(0) = y(0) = p.
Then

(13.4) miz(at), y(Bt)] = tmz(e) y(B)] for o<t <ma(p) la| <1, [#] <1

because x(t) and y(f) represent diameters of S(p, 7,(p)) both for the Minkowski
and the given metric. Because of (3, II.2 Theorem 2, p. 52]

[e(at)p + py@tl/z(at)y(@t) = (alt + [8]t)/z(at)y(Bt) < < co.
Therefore by (13.2 a)
lim z(at)y(B8)/t = ule, f) = m(zx@), ()
and by (12.2) z(e)y(8) = m(zx(@), y(8) hence
(13.8) ab =mla, b) for a, be S(p, n2(p)-

Remember that 7,(p) = oo for simply connected spaces.
The inequalities for volume and area which are the subject of this section
follow from (13.5). Fortunately the question, which area we are going to use

T A space which satisfies (13.3) at one point p is because of (4, Theorem (4.12)] a topological
manifold and has the property of domain invariance.
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proves unimportant in the present case: The inequalities hold for %-dimensional
Hausdorff measure defined by coverings with spheres only or with arbitrary sets
as well as for intrinsic area (compare [5, Sections 1, 2, 3]).!® We denote by | M [x
and | M, m|x the %-dimensional Hausdorff measures defined by arbitrary sets with
respect to the given metric xy and to m(x,y) respectively. For the sets M con-
sidered here the measure | M, m|. equals the corresponding other Hausdorff
measure or intrinsic area, so that using M, yields the strongest inequalities.

By Kolmogoroff's principle (see [5, (1.14)])
(13.6) IM|e=| M, ml.

The spheres S(p, ¢) with respect to ab and m(a, b) are identical pointsets.
Since a sphere in a Minkowski metric has the same volume as in a euclidean

metric (see [5, (2.5)]) we have if the space is n-dimensional
(13.7) | S(p, @) = k™ ", k™ = n" 1 (g + 1), e =7z (p)

Thes relation generalizes, under surprisingly weak differentiability assumptions a well
known wnequality for Riemann spaces to Finsler spaces.

The Finsler area of the surface K (p, ¢):m(p, ) = ¢ is not a function of ¢
alone but depends on the metric as a whole. The analogue to (13.7) will there-
ford be more complicated.

If e(a, b) is a euclidean metric associated to m(a, b) (compare [5, section 2)),
denote by o(») the euclidean (n — 1)-dimensional area of the intersection of the
Minkowski unitsphere S(p, 1) with a hyperplane whose normal has direction ».
Then

(13.8) | K (p, 1), milaoy = £ [ 671 (5) A S()
where d S(») is the euclidean surface element of K (p, 1) at the point where the
normal to K(p, 1) has direction » (compare (5, (7.6)]). Since the spheres K (p,o)

are at the same time Minkowski spheres and are homothetic with respect to the
Minkowski-metric, we find (see [5, (1.14)])

(13.9) | K (p, 0)l-1 = k=g [071(3) d S(3), @ < 7a(p).

There are similar relations for lower dimensions. As an example we discuss
the two-dimensional case. Let P be a two dimensional surface element through

8 Whether lower semicontinuous areas can be used is a question which is beyond our present
stage of knowledge on area in Finsler spaces.
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» and consider the manifold M formed by geodesics through p to tangent P.
Under the present weak differentiability hypothesis we mean with P a two-
dimensional plane in the Minkowski space m (a, b) (or the euclidean space e(a, )
and the geodesics in P through p, which are the Minkowski (or euclidean) straight
lines. On every geodesic through P we lay off a segment of length ¢ and obtain
a circle C, in M which bounds a set S, in M. Then as before

[Sele = o

The relations corresponding to (13.8, 9) can easily be found, but they have
only in the two-dimensional case a nice geometric interpretation. (For the following
compare [6]) Let K; be the curve in M which originates from C; be a polar
reciprocity in e(p, ) =1 with respect to the associated euclidean metric e(a, b)
and a subsequent revolution about p through n/2. This curve is interesting be-
cause it has an intrinsic Minkowskian significance, for it solves the isoperimetric
problem for the Minkowski wetric in M. Then |Cy, m|, = 2 4(C;, K;) where
A(C,, K,) is the mixed area of (; and K; (with respect to the same associated
euclidean metric). Hence

[Coli = 20A(Cy, Ky) = 2 A(K )"0

where A(K,) is the euclidean area bounded by K, (see [6, (3)]). The right side of
(13.9) cannot in general be expressed as a mixed volume, because o7!(») is not
always a convex function of ».

It would be desirable to find an »infinitesimal> condition instead of the
finite condition (3.2) for non-positive curvature in Finsler spaces. It is not hard
to use (12.1) to find a condition for the derivatives of I/, but the condition ob-
tained in that way does not seem to be related to the known invariants of a
Finsler metrie.

Berwald (1] contains geometric interpretations of the invariants for two-
dimensional spaces. In this theory the Finsler metric is approximated by a Rie-
mann metric in the neighborhood of one line element only and cannot be applied
directly because in (3.2) even if restricted to »narrow» triangles, (that is triangles
for which the directions of &(a, 1) and $(a, c) are close together) the direction of

3 (b, ¢) is still arbitrary and can in no case be assumed to be close to &(a, b).
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