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1. The study of the solutions of the system

dux;

(1.0) i

Xy, ..., 2,8 8), 1=1,2,...n,

where the X; are regular functions of ¢ for small ¢ is classical. More recently non-
linear systems like (1.0) have been studied when one or more of the X, has a pole at
¢ = 0, or what is equivalent, where ¢ or some power of ¢ occurs as the coefficient of
the left member of one or more of the equations (1.0), {1, 2, 3, 4, 5, 6]. In this case the
system when ¢ = 0 is of lower order than when & 4= 0. In the studies [2, 4, 6] it is
assumed that the system has a solution with a continuous derivative in case ¢ = 0

and conditions are given for this to be the case when ¢ = 0.

In applied mathematics there are cases where the system has only discontinuous
“solutions” when & = 0 and yet is known empirically that when ¢ > 0 the system
has a continuous solution which approaches the discontinuous one as ¢ - 0. This
fact has been exploited by the Russian school of non-linear mechanics. Here a rigorous
treatment will be given for a case where the system has a discontinuous “‘solution”
when ¢ = 0. The main result has already been announced, without proof, {3]. Since
[3] has appeared, a system with a discontinuous solution has been treated [5] by
Tihonov. In Tihonov’s treatment the “jump arcs” instead of being solutions of (2.2)
must be straight lines. Also the existence of derivatives with respect to initial values

is not considered.

The specific system we shall consider here is
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1 dx; du 1o d2d+ du+h —o
() *L'i‘t*—fl'd-i+q)z, t=1,4, ..., 1, Edtz gdt = .
Here f;, ¢;, ¢ and b are functions of ,, %, ..., %, %, ¢ and ¢. They are continuous

in ¢ for small ¢ = 0. It will be convenient to use a vector notation and to denote
the vector with components z; by x, the vector with components f; by f, and ¢, by ¢.
Thus we can write (1.1) as

(1.2) dx_ du+
‘ TR TR

2y du+h 0
car T
where the first equation of (1.2) is a veetor equation. The vector f is f(x, «, ¢, ¢) and
similarly for the vector ¢ and the scalars g and A.

By the degenerate system we shall mean (1.2) with ¢ = 0. We observe that
the degenerate system is of lower order than (1.2). We shall write the degenerate

system as
dy dv dv
1.3 4y, —4h=0
(1-3) a Tatr Iyt
where y is a vector with components y,, . .., y, and v is a scalar. In (1.3) fis f(y,v,, 0)

and similarly for ¢, ¢ and k. Lét us now consider a solution of (1.3) as a curve in
the n+ 2 dimensional space (y, v, t). We assume that such a solution starts at a point,
A. We observe that when the solution reaches a point on the hypersurface g(y,v,t, 0)

= 0, a singular situation may prevail with regard to dv/dt.

This situation can be seen clearly by taking a very simple special case. We take
the van der Pol equation with a change of time scale which may be written as

2
(1.4) e gy

- e 0
an @

and we consider the related degenerate equation

(1.5) (—1)——+v =0,

dt
The solution v(t) of (1.5) which at ¢ = 0 satisfies »(0) > 1 is readily obtainable.
However all we need observe is that since

dv v

-(E: 2 —1

<0 .

v is decreasing. Thus for v = 1
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dv 1

< — ——

dt - (0)—1
dv
and after a finite elapse of ¢ we have for some ¢ = ¢;, v(f;) = 1. Ast — ¢, —0, pring —oo.

That is for v = 140, dv/dt = —oo. Any attempt to continue the solution, as a
continuous function of ¢, beyond ¢ = #,, fails since for » = 1—0, dv/dt = +-oc. Thus
the solution cannot pass continuously from above » = 1 to below v = 1. Moreover
since v = 1 is obviously not a solution of (1.5) the solution cannot be continued as
v = 1. We note that v = 1 here corresponds to g = 0 in (1.3).

If we turn to (1.4) with £> 0 we see that the line u=1 offers no special difficulty.
Thus a solution u(t) of (1.4) obviously can be continued beyond a point where
w=1+40. Let v =14+0 when ¢ = {;—0 and let us integrate (1.4) from ¢,—4 to
t;+06 where 8 > 0 is small. We find

du tH+48 w3 1+ t+4
s——} +(—-u)} +§ udt = 0.
dt J, 5 \3 P S
du (t,+9)

Now let us proceed heuristically. If as ¢ >~ 0 we assume — 7
limiting values and if we assume that [u| remains uniformly bounded in the range

(t;—9, t,+96) then we get
us b0
<~——u> ] = 0(9) .

3 -0

approach finite

Now letting 6 - 0 and recalling that u(t;—0) = 1, we get
Bt +0)—u(ty +0)+§ = 0.

Solving this last equation we get either u(f,+0) = 1 or u(f;+0) = —2. The value 1
we discard on the basis of our experience with (1.5) and we are led to investigate
further the possibility u(¢,4+0) == —2. Actually (1.4) can be investigated directly [1]
and it is indeed found that as ¢ — 0, solutions of (1.4) on reaching v = 14-0 tend
to jump to u = —2. We shall not pursue this intuitive discussion further but rather
proceed in § 2 to give a definition of a solution of (1.3) which may be discontinuous.
The definition will be justified because we shall show that as ¢ > 0 solutions of (1.2)

tend to solutions, as we define them here, of (1.3).

As was observed in [3] the system (1.2) includes as a special case the system

d d
(1.6) O H(z,w,t,¢), it

7 s—gl? = Gz, w, t, €)
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where z and H are vectors and H and @ are continuous in ¢ for small ¢ = 0. ¢ and w
are scalars. With & not appearing on the right this is the system treated by Tihonov
[5]. In case the right members of (1.6) are not linear in w the system can be brought
to the form (1.2) (with f = 0) simply by differentiating the last equation with respect
to ¢. On the other hand if the right members of (1.6) are linear in w then, if we

du
introduce the variable u given by pTi w, the system (1.6) assumes the form

. ; du , d*u ; )du+h he) = 0
—f(x: ’6)5+¢(x7 ’6) Sgt;‘i‘g(x) > € ?d} (xs €)=

dz
dt

which is a special case of (1.2).

2. We shall now give the definition of a solution of (1.3). We consider the solution
as a curve, S, in the n+2 dimensional space (y, v, t). At the point 4 let ¢ = « and
g > 0. For &« << 7, let (y(¢), v(t)) be a solution of (1.3) and let

(2.0) g(y(®), v(t),,0)>0, x=t<7.

As t - 7,—0 let g - 0. The point (y(zr,—0), v(r;—0), 7,) we denote by B,. We shall
denote v(z,—0) by vp and y(r;—0) by y5. AB, is an arc of S;. We assume that.at B,
f

1==1 [

5
(2.1) = f+ 4.
ov

Here I = I. The next arc of S, is B,C, where B,C, is a curve y(v) in the hyperplane
t = 7, which satisfies the vector equations

dy
dv

{The system (2.2) is (1.3) with ¢ held constant and with the last equation of (1.3)
omitted). The solution of (2.2) starts at B,. We then consider (2.2) for increasing or

(2.2) = [y, v, 71, 0) .

decreasing » according as % at B is respectively negative or positive. We assume that
the solution of (2.2) can be continued for increasing or decreasing », depending as
we have seen on the sign of % at B, until we reach the first value of » & vy for which

v

(2.3) S gy (), v,7,,0) dv=0.

Uy

This value of v we call v, and the point C, is given by (y(v(), v¢, 71). At C, we assume

(2'4) g(y(’l)()), Yos T1» 0) =gc > 0.

On the basis of remarks already made we have
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(2.5) (vg—vglhp < O

where hp = h{yg, vg, 71, 0). (The integral eorresponding to (2.3) in the case of the
van der Pol equation we considered above is simply

Sv (v*—1)dv = 0

and since » at B, (where v = 1) is positive we must take v decreasing. Thus we see
that here vo, = —2.)

At €, we return to the system (1.3) and consider the solution with initial values
at €, and with ¢ increasing. We assume that this solution can be continued with g > 0
until £ > 7,—0 where g - 0. From this point which we denote by B, we assume we
can proceed in the manner already indicated at B, with v increasing or decreasing
depending on the sign of A at B,. Proceeding in this way the solution 8, is defined
geometrically as AB,C,B,C,... ByCyA’ where A’ is an ordinary point (i. e. one
where g > 0). We assume that (1.3) has a solution 8, as just defined for x <t < 8.
We assume further that there exists an open set R in the n-+2 dimensional space
(y, v, t) containing the curve S, such that f(y, v, {, €}, ¢, g and k and their first order
partial derivatives with respect to y;, v and ¢ are uniformly continuous and bounded
as functions of y, », ¢ and ¢ when (y, v, f) is in R and & = 0 is small. We shall also
assume that g and 2 have second order partial derivatives continuous in R and for
small ¢ although this assumption can be avoided.

We see that S, considered as a curve (but not as a function of {) is continuous
but that at the points C,, C,, etc. it has a discontinuous tangent. We see further
that §; is the sum of two kinds of arcs, the arcs AB,, C,B,, C,B;, etc. which are
solutions of (1.3) and might be called regular arcs, and the arcs B,C;, B,C,, etc.
which are solutions of (2.2) lying in planes ¢ = 7; and which might be called jump
arcs since the arcs are traversed in a zero elapse of {. As a function of ¢ the solution
is discontinuous and jumps from B; to C; at t =17, j = 1,2, ..., N.

The condition (2.1) can be weakened by allowing I to vanish on g = 0 but
requiring that I be different from zero and of the same sign off g = 0 in the neigh-
borhood of B. A somewhat simpler situation where there will be no jump at all arises

when I changes sign in passing through g = 0. These cases will not be pursued further.

In what follows the norm of a vector is defined as |2] = Zlz;]|.

The basic results for (1.2) are given in the following theorems,
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Theorem 1. Let the degenerate system (1.3) have a solution S, in the sense defined
above, for « <t < . Let ¢ > 0. If ¢, 8, and &, are small enough there is a solution
x(t), u(t) of (1.2) over («x, ) for any set of initial values satisfying

(o) —y (o) |+ (o) —v(x)| = 6,
du)_ao@)| o,
dt at | —

.
Moreover as e, 8, and 8, tend to zero, the curve representing the solution z(t), u(t) in
(x, u, t) tends to Sy. In particular for any fixed 6 > 0

(2.6) [2(t) —y () +u(t)—v(t)|
tends uniformly to zero over the imtervals, x =t < 1,—06,1,+0 <t < 1,—96, ...,

iy+td =t < B, as ¢ 6, and 6, - 0. Also

du dv
(2.7) ———
dt dt

tends uniformly to zero over the imtervals a+6 <t < 1,—6, ,+d <t = v,—6, ...,
du  d¥

it < 8 - 0. Th, s ¢t ———
ty+d <t <8 as e d, and 5, e same is true for TR

Theorem 2. It is also the case that if S, is a solution of (1.3) for « =<t < B then
corresponding to any set of initial values sufficiently near y(«), v(x) there is a solution of
(1.3) which tends to S, as the initial values tend to those of S,. Moreover the convergence is

uniform tn t if the portions of Sy between ;496 are omitted.

Theorem 2 is in a sense Theorem 1 for the case ¢ = 0.

0
In what follows let us denote by 2 differentiation with respect to one of the
a

n-+1 initial coordinates (#(x), u(x)) or with respect to the corresponding initial

coordinate of (y(a), v(x)). Then we have

Theorem 3. Subject to the same hypothesis as Theorem 1 we have

(2.8) ox(t) y()| | du) dv() ‘ o
da oa da da
| 0du o dv
(2.9) ‘________ N
oa dt Oadt

for €, 84, and 6, — 0, the convergence being uniform for (2.8) and (2.9) over the same
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intervals of t as for (2.6) and (2.7) respectively. Moreover denoting the initial value of
du/dt at « by b we have

ax(t)l M‘«, 0
ob
and

‘ o du

EX I

uniformly over the same sets of intervals as for (2.6) and (2.7) respectively as ¢, 5, and
62 — 0.

ww av( )

Theorem 4. The functions

to changes in the initial values of y and v at x over the same set of intervals of t as in
Theorem 2.

Theorem 4 is in a sense Theorem 3 for the case ¢ = +0.

As an application of these theorems in case the right members do not contain ¢
or in case they are periodic in ¢ we have the fact that if the degenerate system (1.3)
has a periodic solution and if the Jacobian associated with the determination of this
solution by varying initial coordinates is different from zero, then it follows by
Theorem 3 that (1.2) will also have a periodic solution. We shall show this in § 8.

3. We shall require several lemmas. The first is well known.
Lemma 1. Let {(t) be a vector with an infegrable derivative and let
al
(3.0) 5 S0, h=tsth,

where b(t) = 0. Then for ty, <t <14, ,

31 £~ < |2l (e 3* 1)+ § ate)e O dr

Clearly (3.1) tmplies

(3.2 €01 < leteoe W% + { a0 ar

0

Corresponding results hold if t, < t,.
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Proof. Let
¢

20 = \ t%c’dt.

Ly !

Then |{(2)--L(t)] < Z(t) and (3.0) becomes

dzZ
- = a(t)+b()Z+b(t)|L(ty)] -
Thus

(%—b(t)z) e S:Ob(s;ds = (a(t)—{—b(t),é'(to)l)e— S:ob(a)ds .

Thus integrating we find
t
2 W < { (aln)+o@ls)e W
tp
from which (3.1) follows.

The next lemma is very similar to one Friedrichs and Wasow [2]. Here z is a
vector and w is a scalar and L(z, w, t) and M (z, w, t) are vectors while H(z, w, ¢) and

J(z, w, t) are scalars.

Lemma 2. Let 2(t), w(t) satisfy

dz dw d2w dw
3.3 A e T —
(3.3) Lgt¥, emtiy

= J
dt

for o« <t <y where L, M, H and J are continuous in the region given by o <t < y
and |z|4|w| =< 1 for some A > 0. In this region let
(34) LI = b 1M| < k(lzl+wl)+ey, 1| < k(l2|+|wl)+ep, H=m >0,

Moreover at t = o let

(3.5) l2(a)| 4 Jw(@)] < 6, , d’z(t"‘)} < 9
&
Let ky = k(k+m~+1)/m and let
g = HEEOED st
mk

Then for « < i <y, and if &, 6;, and 8, are small enough

[2(8)] + [w(t)] < AekrE
and
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, @ < % 6-m(t—a)/e+ Eél ekl(l—v‘) .
at| ¢ m

d
Proof of Lemma 2. From (3.3) we have if we set 71:) =0,

dz dw do
(3.6) ;l—t :LO—{"M, Et_:e’ GEi—{—He:J.
Or
dz| |dw]|
7 +{—ﬂ = (k+1)|0]+k(|2] +|w]) e -

If { denotes the vector (z, w) then Lemma 1 yields

¢
(3.7) |2()] +lw(t)] = (ikl +61) O (ke I)S |6(z)|e** "dx .
o
From the last equation of (3.6)
¢ Hesyds et X%he
fer 1% _ 0(oc)+—S Je O g
£

o

Or since H =Zm > 0

001 = 1o e e | e
€

[s.9
Thus
62 d— k t —mi—T)/ €1
(3.8) 0] = Z et Z{ (ate) + @) e P edr+ L
& €dy m
From (3.7)
)t ’ W
)] = 22 ey iJrfe"""“")(ﬁ%l) +k(k+1)s e‘m“"’)/sdrs |6(a)| "o .
& m m k & x x

From this

) 11
ek(t—oc) S lo(a)le—k(o'-a) do .
Y

(3.9) (0] = 22ememey Ee’“"_“)(&%—él)%—ﬁ(k_ﬂ
& m k m

t
Applying Lemma 1 with { = S |6(0) e ¥do we get
[0

ot

S 6(0)|e * O Pdg < ekktDE-0im <51+%+gﬁ) .
o - m k

In (3.7) and (3.9) this proves the lemma providing ¢,, §; and §, are small enough so
that def@—% < .
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Before turning to the proof of Theorem 1 we make the following observation
which is valid for Theorem 1, 2, 3 and 4. It suffices to take the case where there is
only one jump arc on S, since by repeated use of the theorem for the case of one
jump arc, the theorem for N jump arcs follows at once. Therefore we shall assume
that S, is of the form 4 B,C,A4’. Clearly there will be no confusion if we call S,, ABCA’.

The proof of Theorem 1 is divided into four parts. In the first part we proceed
from 4 to a point short of B; the second part involves the immediate vicinity of B;
the third part takes the arc BC with the two small portions at ends B and € omitted ;
the fourth part takes the rest of S, to 4’. We shall use K throughout the paper to
represent finite constants which depend on the bounds of [f], l¢/, {9/, |#] and their
tirst order partial derivatives in R or part of R for small ¢, on the distance from 8,
to the nearest point on the boundary of R, and on the length of S,. In particular the
constants K will remain finite as e-+8,+4d, - +0. Any deviation from this use of
K will be noted.

Proof of Theorem 1, Part 1.
Here we prove Theorem 1 for the interval « =< ¢ =< y where y < 1,. If we denote
x—y by z and w—v by w we have from (1.2) and (1.3)

dz dw
(3.10) 7] = f(z, », ¢, E)dft-—l—f"x
d2w dw 7
(311) gg-tg-{'—g(xi u, t: e)dt = 2
where F, is a vector and
By= [ b, ) —fw, 0, 01220t )iy, 0, 4,0)
== — x)u) y €)— ,U,, T z, y U, E)— sy Yy by
! L Y g v 10) © A
and
h(y,v,t,0)
F, = y Uy t; - » Y ty 0 ———_—_—_h s Wy t:
. = [g(z, u, 1, €)—g(y, v, 1,0)] G oD (@, u, t, &)

€ dh dyg
h(y, v, t, 0)4+-—=|[g(y, v, t, 0)— —h(y, v, t, 0)= | .
+hiy, v )+92 l9(y, v, 2, 0) 2 — Ry, v, £, 0) -

Let the minimum of g(y(¢), v(t), ¢, 0) over («, y) be denoted by 2m unless this minimum
exceeds 1 in which case we take m = 1. Then so long as (x, u, t) is in R we have using

the mean value theorem,

K
[F,| < ;ﬁ(lz{leJrlf(y, v, 8, &)—fly, v, 1, 0)|+ gy, v, , &) —q(y, v, t, 0)]) .
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Since f and ¢ are uniformly continuous for small ¢ there must be a continuous function
y(e) such that 9(0) = 0 and such that

lf(y’ v, 8)—f(y: v, 1, O)[ é 1/)(6)
with similar results for ¢, g and A so long as (y, v, t) is in R.
Clearly we can choose yp(e) > ¢. We get

K
(3.12) \Fy| = E(IZl+lw\+w(6))
and similarly computing @ and @ we find
dt dt
, K
(3.13) 4l < —(jel+ [l +(e) -

We have f(x, u, ¢, &) = f(y(t)+=z, v{t)~+w, ¢, ¢) and similarly for ¢, g, and k. If we now
apply Lemma 2 to (3.10) and (3.11) and make use of (3.12) and (3.13) we see that
if ¢, 6,, and ¢, as defined in the statement of Theorem 1 are small enough, (z, », t)
isin R for « <t < 9, and indeed for « <t < y, at least so long as g(x, u, ¢, &) = m,

(3.14) |2(t) —y(&)| 4 |u(t) —v(B)] < K™ (8,48,+p(e))
and

du dv 0 it
(3.15) T é,fe‘m(t—o‘)/€+ekl (51+62+‘P(5)) .

From (3.14) and the continuity of g we see that we will indeed have g(x, u, ¢, &) Z m
if &, 6, and &, are small enough. We see from (3.14) and (3.15) that for ¢ < 7, Theo-
rem 1 is established except for the difference of the second derivatives of u and .
This we shall show in Lemma 4. The discontinuity at 7, is precisely the point of
interest here and we begin to handle it in § 4.

4. In the next part of the proof of Theorem 1 we shall show that for small ¢, 6,
and 0, the solution of (1.2) intersects the hypersurface g = 0 at a point which tends

du .
to B as ¢, 6, and §, - 0. Moreover as ¢, 6,, §, - 0, 77 or —oo at the point of

intersection.

Proof of Theorem 1, Part 2.
We shall consider here the case where h{y, v,t,0) < 0 at B. The case where

h > 0 is treated in exactly the same manner. At B we have ¢t = 7, and we shall

dv

designate y at B by yp and v by vg. As ¢t > 7,—0 we have, since h < 0, =

6. Acta mathematica, 82. Imprimé le 18 decembre 1949,
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—— = +4o0. Let v, < vy be near enough to vy so that as ¢ increases from x toward 7,
g

there is a value of t = {; near to t, such that »(¢,) = », and dv/dt is large fort;, < t < 1,.
We shall denote the point(y(Z,),v(t,),t,) by the letter @. If we choosey so that ¢, <y < 7,
and apply the results (3.14) and (3.15) we see that if ¢, J;, and 6, are small enough
then for some ¢ (which tends to ¢, as ¢, é,, 6, — 0) we have u(t) = v,. Let us denote
this point by P. Then at P we have t = {p, 2(fp) = xp and v = up = u(lp) = v,.

Also as ¢, 9y, 0, > 0, P - Q. Clearly we can choose ¢ as near to B as we wish.

We now change from ¢ to v (and u) as the independent variable. Since when
v = u the values of ¢ for the points on S, and the solution of (1.2) are not in general
equal we will reserve ¢ for the system (1.2) and in this section designate the variable
t for (1.3) by the letter s. We have then that (1.2) can be written as
dx dt dp
40 — = = —, . — m? h
(4.0) Ju = Itep P =00 60 =P+

where [ = f(x, u, ¢, ¢), ete. while (1.3) becomes
d ds

(4.1) Y ftena=", 0=gtah.
dv dv

where f = f(y, v, 5,0), ete. Since w and v are the independent variables here we can
with no confusion use them interchangeably. We consider (4.0) for « = »,. The
solution of (1.2) can now be regarded at least in certain range of u as a solution
of (4.0).

Suppose v, > vg. Let us choose

(4.2) Ky > 2(f|+ipl+1)

for all (x; u, t) in B. (Clearly K, is a K). Let' R, denote the region of (x, », t) bounded
by the planes » = v,;, and 4 = », and by

|x—xp|4|t—tp] = K (vy—2y) .

Clearly if v, and v, are chosen near enough to vz we have R, contained in R for small e.
If we consider the change in g as we follow-a solution of (4.0) we have

dg og dx; o0g ogdt
du < dx;du ' du ' ot du’
Or
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dg ,
Tu = J(x, u, t, &)+ pJy(x, u, , €)

where
og , o4 og  0og
J, = f+-=, J,= Y " }+-.
1 Zaxzfz—}_ du 2 P ax;pz—l— ot

We recall the definition of I in (2.1) and our assumption that I = 0. Since
9(y(v), v, 8(v), 0) > 0 for v < vy and zero at v = vy we see that dg/dv < 0. This fact,
the fact that I &= 0 and the fact that dv/d¢ is large implies that I < 0. Let K, be
chosen so that in R and for small ¢, |J,] < K,. If R, is small enough, that is if v,
and v, are near enough to vy, we certainly have J, < I and h < }hy for (, u, t)
in R, and for small e.

Let v; be near enough to vgp so that

I
kg 10K,

q(v,) =

This is possible since g —+ 0 as v; - vp. Let ¢, 4, and §, be so small that P is near
enough to @ and p near enough to ¢ at w = v, so that
29p I
0<ply) < —5 < ——.
p(vy) Iy iK,

Now let us suppose that for our solution of (4.0) there is a v,, v; < v3 < v, such
that for v, < u < v, p(u) < —2¢p/hp but that for u = v, we have either p =
—2gp/hg or (x, u, t) reaches the boundary of R,. We shall show that this is impossible.
By integrating

dp
(4.3) e— = (g+ph)du
p N

from v, to v; we see that p > 0 since if p = 0 the left side diverges. For v, < u < vs,
since 0 < p < —2gp/hp, We can assume p < 1 since we can take ¢ and therefore P
near B where g vanishes. From (4.0)

,

(If1+lpl+D)du < K(v,—v,) .

"

o —apl+lt—tpl <

Thus (x(u), #(»)) is in R, for »; < u < v; and therefore we must have p = —2gp/hp
at v = v;. Since p < —2¢p/hy < —I/4K, for v; =< u < v;, we have

o
(4.4) ) o Jrpd, < HApK, < —H =1 <0.

du



84 Norman Levinson.
Thus ¢ is decreasing as u increases up to v;. Since g is decreasing we have at v,

g-+ph < gp+3phy = gp—9p = 0.

Thus by (4.3), dp/du < 0 at v,. That is p is decreasing and therefore we cannot have
p = —2¢p/hyp for the first time at v;.

We see then that our solution of (4.0) remains in R, and can be extended to
u = v, and that 0 < p < —2¢p/hg for v, < u < v,. We can take v, as close to vp
as we wish. Thus @ can be as near B as we wish. By taking ¢, 6, and 8, small enough
we can bring P as close to @, and therefore to B, as we wish. The nearer we take P
to B the smaller is ¢ and therefore the smaller is p for v; < u < v,. Since ¢ = —g/h
until g = 0 after which ¢ is identically zero on S, until v = v,, we see that ¢ for
v, = v = v, also gets smaller as we take v, nearer to vg. Since » and v are independent
variables for the respective systems we can identify » with v. Thus we can write our

differential equations as

dx ' dt

%:f(xyvytio)_*_le %:p:
(4.5)

d ds

d—Z:f(:%v:S’O)'{"wZ) %ZQJ

where w; = f(z, v, t, &) —f(z, v, t, 0)+-pg(x, v, ¢, &) and w, = gp(y, v, 5,0). Using the

facts just enumerated we have, for v, < v < v,

oy Fw,| = K(9P+9Q+'P(5))

where y(¢) has the same properties as in § 3. Applying a standard theorem to (4.5)
relating two approximate solutions of a system or else setting { = (x—y, ¢ —s) and

making use of Lemma 1 we have

[@(v)—y ()] +16v) —s(v), = K[y(e)+gp+gq+2(0) —y(v1) +[tv;) —s(21)(]

for v; £ v < v,. Since the right member can be made as small as we wish we have
demonstrated Theorem 1 up to the intersection of the hyper-plane v = v, with §,.
We observe that v, can be kept fixed in the latter part of our argument as ¢, 6,, and

d; — 0 while », must approach vp.

Proof of Theorem 1, Part 3. Here we demonstrate Theorem 1 over the part
of the jump arc BC beginning with v = », and ending short of the point C.
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Since I < 0 and gp > 0 and is small, we see that (4.4) implies that the solution
of (4.0) crosses the hypersurface g = 0 in exactly one point which is near B. Let us
designate the point where the solution crosses g = 0 by the subscript 4. We have
by integrating (4.3)

1 1 *
o) = { gromin.
Ps P Yuy

Or for v ="u, (and so long as  and p remains finite)

(4.8) L _f g gdu— S phdu .
p(u) Ps Yy ug

In (4.6) g is g(x(u), u, H(u), &) and similarly for A.
We have already seen that p(u) < —2gp/hy for v; < v < v,. Thus given any

d3 > 0, by taking P near enough to B, we can make p(u) < 85, v, < u = v,. Given

any 8, > 0 we can choose ¢, d,, and J, small enough so that

(4.7) » [2(v2) =y (v2)| +[H(ve) —S(va)| = 0y .
Now so long as p(u) < d; we have from comparing the two systems
dx dt
o f(x, v, t, £)+p¢(x, v, 1, 6) y 5T =D
dv dv
dy ds
= 0 — =20
20— @80, -

for v, = v < vp, just as in the argument following (4.5),

(4.8) lx—y|+1t—s| = K(35+8,4y(e)) -

We recall incidentally that on BC, s(v) = 7,. We shall show that p(u) < J, almost
up to v = v;. We choose d; > 0 as small as we wish and then choose d; > 0 small
enough so that

v
(4.9) S g(y(), v, s(v), 0)dv < —4d5, v, £ v Z vo—05.
Yog
This is possible since g < 0 for vz < v < v, and since the continuous function of v

v
S gdv < 0,vg<v<vg.
B

The logical procedure in this section is to first choose d; and then 6;. We then observe
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that we can require §, and 8, to be as small as we wish' if we make ¢, d,, and §, small
enough. By taking 6,, §, and ¢ small enough we have from (4.8) that for vy > v = v,
and so long as p < 4, ‘

(4.10) lg(z(v), v, tv), €)—g(y(v), v, $(v), 0)| < /(vo—v5+1) .

We can also satisfy (4.10) for v; < v < v, on the basis of Part 2 simply by taking
&, 0y, and J, small enough. Turning to (4.6) we have

&

f_ Su‘ 9(x(v), v, 1(v), &)dv— Su phdv

4 Ug

(4.11) plu) =

But by (4.10) followed by (4.9) we have for v, < u < vy—0d;

- Su 9(z(), v, t(v), £)dv = — Su 9(y(v), v, s(v), 0)dv—0,

U
2 366— i S g(?/(”)’ v, 8('0)" O)d’l)} .
YR
Since we can bring u, as close to vg as we wish by taking ¢, é;, and é, small enough,
we can make
Ug
| S gdv) < g -
\ vp \

Thus
- g g(z(v), v, t(v), &) dv > 25 .

ug

Also so long as p < 4,,

u
S phdv| < K.,

w

If we choose 4, small enough so K40; < 8¢ then certainly the last two inequalities
used in (4.11) yield

(4.12) p(u) < &/dg

up to the point where we first have either p(u) = 8, or ¥ = vp—d;. But if ¢ is small
enough so that ¢/d; < d; we certainly cannot have p(u) = 6; in 4, < u = vo—6;.
Thus (4.8) holds in this range and we have established Theorem 1 on 8, up to any
point just short of C.

Theorem 1, Part 4. Here we prove Theorem 1 in the neighborhood of C and
beyond. Given any d; > 0 we saw that for vy < v < vy,—d; we have [r—y|+|t—7y|+
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dt
Tu -~ 0ase, 8, 8, > 0. We now show that in the neighborhood of C, p grows quickly.
U

As we have already seen from (4.3) p > 0 so long as p remains small. We shall show
that p must exceed min [g,/(2K), 1] in the neighborhood of C where now K is the
max of |k| in E. '

Let us denote a value of v < vy by v; and a value v > vy by v;. We choose v
and vg near v;. So long as p < 1 we can construct R,, much like R, so that if v; and v,
are chosen close enough together the solution of (4.0) can be continued up to v; and
will lie in R, which in turn will lie in R. This is certainly the case then if p is small.

We can also choose v; and v, near enough to v so that in By, g > 39, > 0.

Integrating (4.3) between v, and u, we have

7
€ £
== gtphdu.

Pa P 1

Since we can choose », as close to vy as we want and since as ¢, d;, and 6, — 0,

u, — vy We see that we can require that

‘ { otphrau| <o,

Uy

for any 6, > 0. Thus
€ <
— < —+4,.
Py D1
Now since we can choose ¢, §,, and 8, as small as we wish after having selected v,

we can make ¢/q, and therefore also ¢/p, as small as we want. Thus we can require
.
— < 24, .

y

Thus (4.6) gives
&

” 26, — 5:4 gdu — S:; phdu'

p(u)

From the result of part 3 it follows that if we take v; close enough to v, and ¢, d,,

S

We see that the choice of &, affects the choice of v; but not vg. We have

and d, small enough we have

Vi

(9+ph)du

g

< d,.
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&

(4.13) (u) > — .
T 50, [ (gtph) du

Now let us assume that

56
(4.14) grph = —"—, v, Su=v.

(L

Then we find from (4.13) that p(u) — oo, contrary to our assumption that p < 1.
Thus (4.14) cannot hold and we have

58, 58,

—g< 9
Vg— Vs Vg— Vg

ph <

for some u, v, < u < vg. If 8, is small enough this can be replaced by

ph < —1g¢ -

Since g,> 0 we must have b+ 0. If A > 0 we have p < 0 which is impossible. If
b < 0 and |h| < K we have p> go/(2K). Thus if p < 1 we certainly have p > g,/(2K)
for some u, v; < u < v,.

Since we can choose v, as close to C' as we wish we see that indeed we can enclose
C in a sphere in (x, u, ) with center at C and of radius arbitrarily small and that
having chosen the sphere we can, by taking ¢, é,, and , small enough be sure that
R, lies in the sphere and that the solution of (4.0) enters the sphere with p very small
but at some point in the sphere p = min (go/(2K), 1). Let us denote this point by D.
At D we transform back to the original independent variables. To show that the
solution (1.3) changes but little from 7, to ¢j, irrespective of whether 7;—¢) is
positive or negative we have only to note that tp—7, — 0 as &, ,, d, > 0. We
can now apply Lemma 2 at D as we did at the point 4 and we get Theorem 1 for
the range of { given by max (7, fp) <t < 8.

The proof of Theorem 2 is very much simpler and shorter than that of Theorem 1.
It is quite direct except near B where we must use an argument similar to that used
in the case of Theorem 1, Part. 2.

5. The proofs of Theorems 3 and 4 proceed along somewhat different lines. We
shall first prove Theorem 4. We use the letter a to designate an initial value of ;

du(x)

and y; or of » and ». The initial value of T which has no counterpart in the

degenerate system we shall denote by b. We observe that at ¢ = «, 9y,/0a is zero
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unless @ is the intial value of y, in which case 9y,/0a = 1 at t = «. Similarly with

0 0 0
ov/oa. We have Y and D= gt t = o since a represents the same initial
da  Oa oo da

o [d
coordinate in (y,v) as in (z, u). We always have = ( %) =0 at { = x.
a

Proof of Theorem 4. We have on differentiating with respect to a

d oy dov ofdv Op
@ia T 7ia a3 Toa

(5.0)
8¢ oh
dd da 'da
dtda /ol )
Here f = f(y, v, ¢, 0), etc. and
of of ay@.+af v
da ay[a?i v 2a

and similarly for ¢, g and k. The system (5.0) is linear in 0y/0a and 0v/0a and the
coefficients are continuous for &« < ¢t < 7,. The initial values are known and thus
dy/da and dv/da are determined for o <t < 7,. Moreover for « < ¢ <y < 7; the
functions 9y/da and 9v/da are uniformly continuous with respect to ¢ and with
respect to changes in the initial values of y and v at §{ = o.

At v = vy < vp but with v, near vz we change from ¢t to v as the inde-
pendent variable. We observe that v = v, determines a point on §, near B.
As before it is convenient to replace ¢ by s and reserve ¢ for the system (1.2).
Let s at v =9, be s, where clearly s, < 7,. We denote 9y/0a and 0v/da at

%Y (o) and 0 (8y)

§ = §,, or more precisely at s = s,—0, by . We denote dy/éa and

oa da
o 7
08/0a at v = v,+0 by ?/8(%) and Sa(%). Clearly since v(s,) = v, we have from
a a

(s, @) = v, ,

dv 0s(vy) | 0v(so) 0

ds da da
Thus
(5.1) Os(v0) __20(so)ds(oy)

oa oo dv
Also
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sa B dyism) e dye) e o
' da  ds oa da dv  oa oa

For vy < v < vy we have

oh _og
doy of opds dos i T30 "
dvoa oa dadv ‘dvoa’  dvoa B
where the intitial values are taken from (5.1) and (5.2). For vz < v < v, we have
doy of d 8s
dvda da’  dvia

Thus 9y(v)/oa and 9s(v)/da are determined up to the point C.

(5.3)

(5.4)

We have g(yg, vp, 7, 0) = 0. Thus
v %9 %pi , 09 0vp | 09 01,

“~ 3y, da ' Ovoa ' o oa

Since
oyp _ dy g  0y(v)
da dv da oa
we have, recalling the definition of I = I,
oa  ~ 0y, oa ot oa

Since I 4= 0 we see that dvy/da is determined in terms of 9r,/0a.

I

v,

The coordinate v, is given by
¢
9(y(v), v, 73, 0)dv = 0 .

\,

Differentiating with respect to a and recalling that g = 0 at B we have

v ""( o9 o; , 99 arl)
5.5 es 71, 0) =~ da oe a0
(5.5) 9(¥cre, 71, 0) da + Sv]; Oy; da  0s a ’
We have

v, 9s(vp)  ds(vp) dvg

R dv da’
Since ds(vg)/dv = 0 we see! that dt,/da = 2s(v)/da. Thus (5.5) determines dvg/da. Also

! Strictly speaking we find dvgp/@a in terms of Or,[éa and then &r,/fa in terms of dvg/da
which is not rigorous. Actually we should proceed with finite differences corresponding to an incre-
ment in a, Aa, and then take limits as 4a — 0 to show the existence of dv B/@a from a single formula
obtained by eliminating the term At,/Aa from the equation involving I and the equation following (5.5).
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dye _ dy dvg | ylve)

.6 — _v
(5.6) oa dv da da

where 0y(vg)/oa is Oy/da at v = vpo—0. As we approach C from s > s, we have

dvg  Ov(sg)  dv s,

5.
(5.7) oa oa ds da

%o _ %Y (s0)  dy 9sc

(5.8) =

%a ' dt da
where 0y(s.)/0a is 0y(s)/0a at s = s+ 0 and similary for dv(s.)/0a. However 0sy/0a =
o1y/0a. Using (5.5) and (5.7) we have

- (ot ), g deir,
0y, oo  0s da éa ds oa

gc vp

That is 0v(s¢)/0a is determined. Likewise 0y(s;)/0a is determined. Indeed from (5.8)
and (5.6)

a?/(so):d?/(”o)% 0y(ve) dy(so)gz}
oa dv ©Oa da ds da

From (5.7) and (1.3) therefore

ay(so)_ ov(sc) | Oy(ve) 07y
(5.10) “aa Vo Ta e P

We now use (5.0) again from s; < s < f# and thereby determine oy(8)/da and
0v(B)/%a. The functions 0y(s)/oa and dv(s)/oa are clearly uniformly continuous with
respect to the initial values of y and v at s=« and with respect to s for a <s<v,—4,
7;+6 = ¢ < § for any given 4 > 0.

This completes the proof of Theorem 4.

6. We proceed now to the proof of Theorem 3. In the course of the proof we
shall make use of Theore 4. We recall the remarks made at the beginning of § 5
concerning the meaning of @ and . We require the following result which is a slightly
modified form of Lemma 2 and is proved in the same way.

Lemma 3. In Lemma 2 let ¢, in (3.4) be replaced by

€2 -
81+_e m{t—ax)/e
€
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and let 8, and 8, be replaced by 8, and 8, respectively. Then the conclusion of Lemma 2
becomes

[2(t)|+w(t)] £ 4,0

'_u_)’ < J —mt-0)/e &2t —a) —m{t~x)/e kA 1 Icl(t—oc)
} 7 ]: ¢ + —
& & m

for o <t <y where A, replaces A in Lemma 2 and
Akt 1Pt 1y

L=
km?

o

(e1+e2+05+04) ,
and k, is the same as in Lemma 2.
We begin by considering « =t <y < 7,.

Proof of Theorem 3, Part 1. Here we have

dax_ dou ofdu Op

di3a ' dt2a 2adi
(6.0)
d? ou d ou ag du ah

‘Ut oa diea dadt
where f = f(x(f), u(t), t, €), ete. and where
o o o O
0 = 8x 2a | ouda

etc. The system is linear in 0x/0a and ou/da. The coefficients are all function of ¢ (and
of ¢ and the initial values of z, u, du/dt at t = «x).

For the degenerate system we have (5.0) where the last equation can be written as

d ov agdv ah

Y2 dadt

cx 0 du Ov
Now let z = i and w = —u—~ The initial values of z and w are zero. From

da Oa da Oa
{6.0) and (5.0) we have

dz of of

6.1 — = ¢ , 1, < 7 ) .
6.1) = =f(=l),u s)dt+ zax it w dt+2 + w+

d d oh ok
(6.2) e~u+g(x  , e)dl:+(2, % +—g >—v+ D%t wt@ =0

ou ox; ou
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where
du dv of of of Byz af 8’0]
(Eﬂﬁ?){j 1+— +28x da au ca
af Bf oY; (8f of BUJ
+ﬁ{ > (ax 8yi>5a—+ 51—0_55>8a
op Op\oy, [dp Op\ov d v
+2<ﬁ~@;)8a+(%_%)8a dtaa[‘fx w b o) =f. vt 0)]

As ¢, 0y, and 6, > 0 we have for « < ¢t <y < 7, from Theorem 1, part 1, that

| A @ wte) Ay, vt 0)
-~ ox, 9y,

K] K]

o

uniformly where x is x(f), y is y(f) etc. Similar results hold for the other differences

du d
that occur in F except for the difference %-Tg For the latter we have by (3.15)

du dv !
o o~ Mi-x)/e Kima ) p)
i al = +e ( i+ e (o))
do 0d dv h
The term — 7 8: P» dv is replaced by use of = 5 We have easily from (5.0) and

Lemma 1 that the terms 9y;/0¢ and 9v/da are bounded over « < ¢ < y, by a bound
that depends only on K and m. Thus so long as |z|-+|w| < 1 there is an E, a function
of K and m, which becomes large when m gets small, such that

8
(6.3) \FIl £ E [’P(f: dy, 85)+ 22 pomit-age
&€

where y(g, d;, §,) is a continuous function of e, 8,, §,, and m which tends to zero
when ¢, §, and é, — 0. A similar result holds for ¢ which has terms like those of ¥

0 d
and the additional term e—-—. It is here that we use the existence of the second

Oa dt?
order partial derivatives of g and k. We find that @ satisfies an inequality of the

d
same form as (6.3). From the last equation of (5.0) a~d—vat t = o can be computed
7]

. 9d d
We have P qu = 0 at ¢ = «. Thus ?:U at t = « is boundell and therefore §, is of the

form Ke. With this we see that (6.1) and (6.2) satisfy the hypothesis of Lemma 3
where ¢, = Ey and ¢, = Ed,. Using Lemma 3 we see that Theorem 3 is valid for
a =t =vy<r7 in so far as the derivatives with respect to a are concerned.
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As regards the derivatives with respect to b we use (6.0) without (5.0). We set
z = 0x/0b and w = 0u/0b and apply Lemma 3. Since at t = &, z = w = 0 we have

0 d
here that §, = 0. Sinceég 5@_: = 1 at = x we have ¢, = ¢. Clearly for |z|+|w| <1

we have

| | dt

| d
| 96 ab *lab ldt  dt|

Iu _|of||du_do] ’ ][dv'+:%[

]
=K [w(s, 9y, )+ —6-2 e (2] + o] }

where £ is the same kind of function as appeared in (6.3). A similar result holds for

ogdu oh dx(t) | ou(t
_ﬂ_ﬁ_}___ If we now use Lemma 3 we find that { x();_}_‘u_()

b di " ab o | T | O uniformly

do
over x <! <y < 71, as8¢,6; and §, - 0 while ;E@i;r — 0 uniformly over a6 <t <

y <7, for any fixed 6> 0. This completes the proof of Theorem 3 over
a=St=y<Tg.

Theorem 3, Part 2.

- At v = vy < vp we change from ¢ to u (or v) as the independent varlable We
have from (4.0)
d ox Bf op ap d ot Bp

du da aa da 8ap da’ duda oa
(6.4)
d op

oh
du@a P 9+P +Pa +Pa-

We also have (5.3) for the degenerate system. The initial values at 4 = v = v, of
0x(v,)/0a and 0t(v,)/0a may be found in the same way as dy(v,)/0a and 2s(v,)/da in

(5.1) and (5.2). Here 0x(v,)/da means 0x(v,-+0)/da etc. From Part 1 we know that
0x (ty) 0y (o) ou(ty) v(sy)

— ———%— and —-————— can be made as small as we want by taking ¢, ¢, and
oa oa oa oa
o 0 ot 0
0, small enough. Thus 7i(v_0)“‘y(v_“) and (00)— 5 (®) n be made as small as we
o qa oa oa on

wish.

d
We have also to consider dp(v,)/da. We have since p = I/d—1:
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(6.5) op(vy) 1 {d%e ot(vy) d 8u(t0)
a R “(du)z art oa ' dt oa
dt

A similar formula is valid for dgq(v,)/0a. The terms in (6.5) tend to the corresponding
2,

d
terms in 6q(v,)/0a, with the possible exception of dtu as ¢, d,, and 6, — 0 by Theorem 1

and Part 1 of Theorem 3. Here we have the following lemma.

d*u  dPv 0 wniformlyase, o

— ——— > Quniformlyase,d,,
e e o ase S
and 6, — 0 under the hypothesis of Theorem 1. The result also holds for v,4+6 <t < B.

We shall prove this lemma at the end of the section. We see now that indeed

0 o 0 0
p(%)—mq—(@ — 0 as ¢, 6,, and J; - 0. It is easy to see that _p(v_)__q_(v_) 0 uni-
oa da da da

Lemma 4. For o0 St <y < 1y, where 6 > 0

d.
formly for vy < v < vp—4 for any 8 > 0 as ¢, J,, and J, - 0. Since ¢ = (-;: —%
v

9q(v)
we also see that exists and is a continuous function of » for » < vz and moreover

w exists. If we now let z represent (ax(v)_ %) , 8t(v)__ aS(v))then from (5.3)
a a da ~ Oa a
and (6.4)
fc_lf. - ‘.af(x, v, §, e)_af(y, v,s,0)| X @_?gl
!dv} - oa da da Bal
ooz, v, t, op(y, v, s,0 0
}p")( — )_q "’(yaa )! + 5 [p(a,v, £, e)—9(y,v,5,0].
So long as |p|+|¢gl < land as |z] < 1,
[dz|< laf of jy( ‘af afHasl
aw| = FET 2 5 5| s ()
% _%p|low|  |op_p)l2s| op_%a|
2 52, oyl |0l T2 3| |7al KIP_QH—K‘a——a—' K \p(x,v,¢,¢) —¢(y, v, ¢, 0)].

Let v; < vo. We observe that v, is unrelated to v, of Theorem 1. If y(e, &y, d, v3)
represents a function which tends to zero as ¢, é;, and &, - 0 then for v, < v < v,

% “ Kiz|+K|p—q|+K ,I ;p—'ag +v(e, 61, 05, vs).
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From Lemma 1

wﬁ>lawlge“%WDa%n+KSlp—quw+KSﬁgigg{ F(o—vo)y | -

Yo
It follows easily from Theorem 1 that

V3

§ [p—qldv — 0

tvo

as ¢, 6;, and J, —~ 0. We can also make |2(v,)| as small as we wish. Thus the terms on
the right side of (6.6) all go to zero as ¢, d;, 6, > 0 with the possible exception of

Let vy < v, < vg. Then since ¢ = 0 for vy < v < vg,

vy
/= | +],

Yo
By taking v, close enough to vy and then taking &, d,, and 8, small enough the first
two terms on the right above can be made as small as we wish. Thus given any

op Bql
20 30| +S

o\
%l

o,
70|

g3 > 0 we can make, by (6.6).
(6.7) )] = 83+KS }81’1

providing we have chosen v, near enough to vg so |p|+[g| =< 1 for v, < v < v; and
so long as 2] £ 1 and v, = v < v,. From edp/du = p?g+p°h we find

1 ap) . (1 8p> og ah
du( P 0a P P2 da 8a+
Thus

(6.8) aﬂvj:zﬂ(v)(p%:vl) apaf‘)>egszx”2hd"+~sv(ag+pah) Slorig,

Let v, > vp and let min |A| = 4 > 0 near B. By (4.12), p < ¢/d; for v, < v = v,
By taking ¢, 8,, and 8, small enough we have then p < &i for v, < v < v;. Since
kh < 0 near B we have for v, < v < v,,

v 1ro v 1co
(6.9) S p%zsvlpwuda gf+ g pzezsvlpzhduda < i—{-1{83’2 .
vy M oy M

Also in much the same way
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}S” P2 S“ <ag 8h> pohan , || ”(Bg Bh) v g Npanau |
‘ vl;du o ga‘—'l—pa*a et’o do | = g —a;-*—pga dGSa—geea du‘

Yoy

(6.10) o . .
<K\ (1 do | ~+et ) + Ket\ (1 do .
< K{ (1) (-4t ) +-Keb§ (14100 o

vy

From (6.8), (6.9) and (6.10)

op(v)
o

(6.11) Svs

1

K p¥2 v3
v < 84+;S (1+lz(a)|)da—|—Ke’1’S (14 |2(0)])do

1

where for any choice of v,, ¢, can be made as small as we wish by taking ¢, ,, and 4§,
small enough. Thus (6.7) yeilds, for arbitrary e;,

K(”z—@

K o2 V3
+_S |z(a)1do+Ka%S |2(0)]do .

v V1

(6.12) [2(v)] = &5+

Let v,—v, be small enough so that K(v,—v,)/u < &5 where ¢, is a preassigned positive
quantity. Taking v, and v, closer to vy affects the previous argument only in so
far as it may be necessary to decrease ¢, §, and §,. Let max j2(v)| = M, v, = v < v,
(If M = 1 decrease v; so that we get M < 1). Then from

(6.12) M < egteq+Meg+KetM
or
M(1—gg—Ket) < g,4-¢ .

Thus 2(g;-1-¢) = M = |z(v)]. (In particular then it is unecessary to decrease v; to
achieve M < 1). We see then that (6.11) becomes, for any preassigned ¢, > 0,

s | D
(6.13) S ;%—g’—)’ldv <e
kst
and thus from (6.7)
(6~14) Iz(v)l = g, VgV =y,
£ ioned e, Thus *— Y and %~ % tend t iforml <
or any preaSSIgne 88. us a—aa an a—'a'—éa €N 0O Zero uniiorm y over ’l)o =0

< v, as ¢, §;, and &, tend to zero. That is we have established Theorem 3 up to
any point short of C.

The case 0x/ob, ot/ob and 0p/ob is handled with the usual modification. That

ox ot
is we now set z = (a%’é?;) and use the fact that at v, the values of |z| and op/ob
tend to zero as ¢ — 0.

7. Acta mathematica, 82. Imprimé le 14 janvier 1950,
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We now turn to the proof of Lemma 4.

Proof of Lemma 4. Actually the result of this lemma is a consequence of
Part 1 of Theorem 3 which we have already proved. There we have shown that

(6.15) dou dov 0 s <1<
' dtoa dtea O O=TEYT
uniformly as ¢, 4, and é, —~ 0. By a well known artifice d/0a can be changed to d/dt.
Indeed replace ¢ by o+« in (1.2). Then we have
dt 1 dx _f ; du
ZJ_(‘T—_ ’ ?d;’_ (x>u7 38)%—*_(’7,
(6.16)
dzu_}_ du+k 0
“do? g% o

Here we have one more dependent variable than in (1.2) namely ¢. The independent
variable o is assigned the intitial value o = 0. Clearly then #(0) = « and x is an a

for (6.16). Also u = u(o+«, ¢, 2(0), u(0), »'(0)) where z(0) etc. are the values of
0 d d
etc. at ¢ = 0. Clearly ézt = d_u = 31: and similarly for ». Using Part 1 of Theorem 1
o o
for the system (6.16) we have then the proof of Lemma 4 as a consequence of (6.15).

The proof of Lemma 4 for r,+6 = ¢t = g follows in the same way once (6.15)
is demonstrated over this range of ¢.

7. Theorem 3, Part 3.

Before discussing the behavior of 0x/da, ¢t/da and op/da near C it is convenient
to obtain the following result

(7.0) “—_S D w0

uniformly for vg < v < vo—6 for § > 0, as ¢, 6;, and 6, — 0. In (7.0)
% _ 509 % 2900
a " 0x; 00 Ot Oa
The proof is a consequence of integrating
d/e ap) op o9 oh
SZEY g ZE L T
du<p2 oa 8a+ 8a+p8a

overv, < u < v < vo—9 and using (6.13) and the fact that p — 0 uniformly in the
interval vp < u < vo—0 as ¢, §;, 6, > 0.
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We take v; < v, and near v, and choose the point P,(x,, %,, t,) so that P, is the
first point where we have p = p, = ¢i and ¢, > t,. P, here is unrelated to the point
P, used in the proof of Theorem 1. Clearly from (4.12) of Theorem 1, P, — C as
g, 01, 9, — 0.

From (6.4), letting z = ( ) we have
0
(7.1) { 1 Kjiz|+ K|zp|+K {a_p’gK‘zHK}i vy = u < v,,

and therefore by Lemma 1

jew)] = Klzol+K |

V3

0
i du,vs, S u=v,.
Baf

We have since g > 0 near C, g+ph > 1g, vs < u =< v,, if we have chosen ¢ small
enough. Thus from edp/du = gp*+hp®, p is an increasing function of =. Also
dp > 3gp’dule so that

1%

(12) —{ wdu < Kp—p) < K, .
v3
From (6.8)
op(u)  piu )( € ap(va)) HY phdu p*(u) (89 ah) ~{pthao
7.3 = — e dg.
(73) oa e \p; da € S 8a+p ’
Using the fact that ——gi) is bounded by (7.0) and also using (7.2) we find easily
P2 Oa

now that for v, < v < v,

v

(7.4) S

a v
o ldu < Kp,+Kp| Bldu, e+8,48, < P

V3

3
where ¥(v,) is a continuous function which tends to zero as v, — v,. With the formula
below (7.1) this yields

[2(u)] = M = Klzg|+Kp,+KpM(v,—vs), &+0;,+0, < P(vy)
where M = max |2(u)}, v; < ¥ < v,. Thus if ¢ is small enough M < K|z|+ Kp, < K

0y (v;) _af_l)
da ' da/’

gince z, is near (

Since |z(u)] < K for vy < v < v; we have

(7.5) 2w) = K, vg=u=v,.
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By (7.4) and (7.5) we find from (7.1) ‘
(7.6) [24—23] < K(vy—v3)+Kpy, &+6;+05 < ¥P(vy).

At P, we change again from % to ¢ as the independent variable. We have, if
t =1, at P,, from t(u,a) =t,

au( 4) ot (uq) du(ta)
@7 e = e &

where 0u(t,)/0a is ou(t)/0a at t = t,+ 0, etc. analogous to (5.1) and (5.2). We also have

ox (ta) ox (u4) d(t,) ot (u,)
da ca dt ?%a

(7.8)
0 du(t,) 1 op(u,) 1 dp(u4)3t(u4)

da dt =~ p da P du Qa

1
We define ¢, = ¢, ¢ log? — and denote the point (z;, u;, t;) by P;. We have from (1.2)
e

(7.9) du(t) du(t4) _—3 gdz_;lS he_ES;gdada.

dt dt

4
It follows easily that by integrating

¢
(O

17} g
by parts we have for small ¢

}du(t5)
Cdt

hs |
+-2

(7.10)
g5l

< R(t,—t) < et
Pa

where h; denotes A(x, u, t, &) at P, etc.
ox(t) ou(t)
da ’ oa

By (6.0) and Lemma 1 if z =< ) then for ¢, < ¢ < ¢,

du du
o | A+ K(t—tg) = l A+ K(-0)

- _ KS'4 ¢ ] d au,
(7.11) HESALRS —]—KStJ%%‘e do .

From (7.9) we have easily if g = K, > 0 near C where K, is clearly a K,
u
dt

(712) } I' —Kl(t—lu/£+K
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Thus for ¢, <t £y

Ke
(7.13) g ,dt < -———}—K(t5—t y <=8
vt Y2
Also from
d 0w d duft,) - pdt (89 du 8h) ~2{t gdo
7.14 — &l — — do,
(7.14) dtda dt oa @ S dado  Oa ’
tld ou d ou(t,) "_(]du[ )
7.15 ——|dt < Ke +K —+1)dt
(7.15) SM dt 3a i oa S,‘lzl Ik
0
From (7.2), (7.3) and (7.5) we have easily that since —85 p(ts)
Py oo
g, 0,0, >0
| & oplud| _ o
“’4 oa
From (7.8) then and (7.5) and (4.3)
0 dult K K
l_ u(4)}§K+—<——.
|oa dt | Py P

Using the above, (7.13) and (7.15) in (7.11) we have if max |z| = M for ¢,

and if ¢ is small enough,

K
M < K[| +—+KM(i+t5—t4) :
yn Ps
Since K(i+t5-t4> < }if ¢is Small we have
Y2

K
70| < KIZ,|+

4

Using (7.5), (7.7) and (7.8), we have |z,| =< K/p, and thus

( ou(t)

(1.16) | | = ;+ E ou(t)|

éa |

IA

By integrating (7.14),

ouy_ouce) 4 gult) ¢
“%a = " da ' dt Oa

b

_ du og Bh) ———Sdgdo'
So=1 S<dt % % d"g ds .

where

101

is bounded by (7.0) as

<t<t
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Using (7.7) and (7.8)
ouly__ 1ae) [ Lonte) L dptey Be] ¢ iy,

7.17 S LU
(7.17) oa Py Oa + p: da p; du Oa

1 -

Clearly using (7.16) and (7.13) for ¢, = ¢ < I, we find

| du
| dt

Ke |
—|—l)dt §7< et

4

K
(1.18) Udéﬁx(

for small ¢. Integrating by parts we have

1 1

85_1 (ge‘;SZ 9‘”)(;0 _ et
t4g g4
where

(7.19) [Ja] < €F.
Thus from (7.17) v
ou (25) 1 ot(u,) & [ op(u,) | 1 dp(u,) ot (uz;):l l
R AN +;4 du da (1+ Jg)_Jl'

Since edp/du = p*g+p*h ,
1 0t(u,)

dut, 1 1
u(t;) } (l—{—;J2>+;Jz; 77+J3—J1
4

(1.20) == [

hyot(uy) & Op(uy)
g, oa 9.p; oa

1 op(u & op(u 1
J, :_(% P( 3)__2 p( 4)> (1+—J2).
g4 \p; Oa Py Oa £

where

From (7.3) and (7.2) we have also using (7.0)

& Op(uy) & Op(us)

, & 8p(u3)]
_ < Kp.— | 222737
p: Oa p: oa | p4p§ oa |

(7.21) + K(v,—v,) .

Since vy and v, can be as near v, as we wish we see that by taking ¢, é;, and 6, small

enough we can make
sl < &

where ¢, > 0 is any prescribed quantity. By (7.6)
ot (w,) Ot (usg)

< Kp,+K(v,—v3) .
oa oa

Thus (7.20) yields
ou (t5) _ }ig ot (ug) & op(u,)
%a g, %a  gp; Oa

+eé10
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where ¢, > 0 can be chosen arbitrarily small. From (7.0) and continuity con-

siderations the above formula yield

| ou(t;) hgo 1 p*¢o
(7.22) |oults) hgdry 1 \ A it | < ey
da  ggoa ggdy0a 1
d og 0y; Ogd .
where 2 — »%. _&_‘__g " and where ;1 > 0 can be chosen as small as we wish
oa 0y; 0a  0s Oa

by taking ¢, é,, and d, small enough. Comparing with (5.9) we have
oulty)_ovito)|

~ea | < &y -

7.23
( ) da da

From (7.14), if g, > 2K, > 0, we have using (7.8), (7.12), (7.16) and (7.21)

| 1‘0
(7.24) A oulls)l Ko Ko
' dt oa Py Pi £

for small &, §,, and d,.

Finally from (6.0)
8dx df ou\ oudf Cp ofdu
G =i\ i) med o i
Integrating we have
ox(t;)  ox(t,) ou (t;) ou (t,)

%~ oa V2 V% TV

where for small ¢, §;, and d,, by (7.16) and (7.13)

K
1J|<—;<el.
4

Or by (7.7) and (7.8)
0x(ts)  ow(uy) dx(ty) 0t(u,) . Oulty) ., dulty) ot(u,)

LA g J
oa da dt oa +s oa +h dt oa +

o o0 (uy) ou(ts) 0t (u,)
" da +s da ' da

+J.

Or by (7.6), (7,23) and continuity considerations

(t) | Ot(uy)|

ox(t;) ox(uy) s/ i
@ Pc da l 12

on
o —fc 3

where £, > 0 can be chosen less than any prescribed quantity by taking ¢, 4,, and 9,
small enough. Or by Theorem 3, part 2 and by (7.23)
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| 9z(t;)  dy(ve) ov(teo) Efni
(7,25) _aa‘— %a ‘fC E‘*%“Pog{;, < &3

where ¢;; > 0 ete. Comparing with (5.10) we have now

dm(ts) dytc)| | |dults) dulto)|

(7.26) oa oa f ‘ oa oa

as small as we wish. With (7.24), (7.26) and (7.10) we can proceed now as in Part I
from ¢, to f since in the range ¢, to ¢; or ¢; to ¢, the change in the degenerate system

is small because |t;—?;| is small.

The case where b is used instead of a proceeds with the usual modifications.
This completes the proof of Theorem 3.

8. Let us consider the case where the degenerate system has a solution, as
defined in § 2, which is periodic of period T. Let { = x be a point where g & 0.
Suppose in the first place we take the case where the functions f(z, u, ¢, €), ¢, g and b
are periodic in ¢ of period 7. Let the initial values for (1.3) be y,(x),.. ., ¥,(x), v(«).
du(x)

dt
Then for the system (1.2) to have a periodic solution for small ¢ it suffices that, if
B = «+T, the determinant at { = 8,

Let us denote the initial values of z,(x),. .., z,(x), u(x), by ay,...,a,,1,0b.

oz, . oz, 0z, oz,
oa, oay ~~ Oa,, Ob
0x, Oy ) 0,
e 3a, - . %
D(al:' vy Apyrs b: 8) =
ou ou . ou
aT‘l . ‘. . aan+l ab
0 du 0 du
a_a‘l _d_t - .« o r . ab dt
should be continuous as
h
£ 40;ay,..., 0, > y(x),...,v(x); and b— ——é, and D should not vanish.
94

This is a consequence of the fact that the existence of a periodic solution of (L.2) is
equivalent to the existence of a solution (ay,..., @,,;, b) of
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xi(ﬂ’a’la---:an.pp b, 3) =ai,i= L2,...,n,

du(ﬁ: (11,. LR} a’n+1’ 6’ 8)

—b,
dt

B, Ay, vy Uy, b, 8) = ay,,,,

where (a,, .. .,a,,,,0) are found as functions of £ > 0. By Theorem 3, the last column
of D tends to zero except for the last term in the column which tends to —1. Thus D
tends to

ayl(ﬁ)__ 1 0y1(8) 0y1(8)
da, Cday, T Qa,y,
(8.0) —
20(p) o)
aa'n+1 . o aa’n+l

as ¢, d;, and d, — 0. This is the Jacobian associated with a periodic solution of (1.3)
and if it is different from zero we see that (1.2) also has a unique nearby periodic
solution for small £ > 0. In particular if the periodic solution of (1.3) is stable in the
sense that the associated characteristic roots are all less than one in magnitude then

the determinant (8.0) does not vanish.

In case the right members of (1.2) do not involve ¢ the period 7 is no longer a
constant for periodic solutions (if any) of the perturbed system. Making the usual
modification for this situation the same result relating the existence of periodic
solutions for (1.2) to (1.3) holds again.

The case where the last equation of (1.2) is a vector equation can be treated
quite readily on the basis of results obtained here by making a change of coordinates.
We shall return to this case later.
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