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1. I n t r o d u c t i o n .  

1.1 Le t  p > 1. We  deal in the  following wi th  the  class H v of all funct ions  f(z) 
regular  in ]z[ < 1 for which the  m e a n  values  

(1.1.1) Mp(f, r) = ~ I o  ]f(reie)['dO I 
are bounded  for 0 < r < 1. I f  p ~- ~ ,  the  class Hoo is the  class of all f(z) regular  and  

b ounded  in Izl < 1. Also 

(1.1.2) Mo~(f, r) = Max  ]f(z)l �9 
Izi =r 

B y  Y0p we denote  the  wider  class of all func t ions f (z ) ,  regular  in Iz[ < 1 excep t  pe rhaps  

for a finite n u m b e r  of poles, and  such t h a t  Mp(f, r) remains  bounded  ' even tua l ly ' ,  

i . e .  for r 0 <  r <  1 and  some r 0 <  1. 

I t  is well known  1 t h a t  a n y  funct ion  f(z) of Hp (or Y0p) possesses b o u n d a r y  values  

(1.1.3) f (e iO) ---- l im f(re iO) 
r ---> 1 o 

for  a lmos t  all O, and  tha t ,  if p ~ oc, 

27t 

I If(rei~176 --> 0 (1.1.4) 
0 

as r -> 1 - -o ,  so t h a t  f(e ~~ is in tegrable  L p. I f  p ~- <x~, f(re ~~ ->f(e i~ bounded ly  for 

a lmos t  all O. 

1 Z y g m u n d ,  162-164 .  C o m p a r e  t h e  l ist  of r e fe rences  a t  t h e  e n d  of t h i s  p a p e r .  
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I t  follows tha t ,  if p < ~ ,  

{:zt ~'2~ I~'t~ 
(1.1.5) Mp(f ,  r) --> 1o If(ei~ t = Mp( f ,  1) = M p ( f )  

as r -~ 1--o.  Similarly, in the case p = c~, M ~ ( f ,  r) -+ M ~ ( f ,  1), the essential upper  

bound  of the  bounda ry  moduli  [f(e~e)]. 

We define q by  p - l ~ _ q - 1  = l, SO th a t  to p --~ 1 corresponds q = cx~ and vice 

versa.  The  classes Hp and Hq, or ~v and ~0q, will be called conjugate  classes. The  

class H 2, or ~)~, is self-conjugate.  

1.2. Consider the integral  

(1.2.1) I ~-- I ( f )  = i:t_~;f(r 

where f (z)  is a funct ion of Hp while the  'kernel '  k(z) belongs to  the conjugate  class 

~)q. By  HSlder 's  inequal i ty  I exists and 

(1.2.2) II] < M v ( f ) M q ( k  ) . 

The  problem we discuss in this paper  is t h a t  of finding the  m a x i m u m  of II1 for all 

funct ions  f ( z )  of  Hp, when M y ( f )  and the kernel k(z) are given. Th a t  the m a x i m u m  is 

a t t a ined  follows from the  obvious fact  t h a t  the funct ions are uni formly  bounded  in 

eve ry  circle Jz] < Q, 0 < Q < 1, and therefore  form a normal  family.  

The integral  I ( f )  is the sum of the residues of f (z )k(z )  in Izl < 1. For,  b y  HSlder 's  

inequal i ty ,  f (z)k(z)  belongs to ~1 and hence, by  (1.1.4), I is the  limit as r -+ 1- -o  

of the  corresponding integral  over  the  circle [zl = r. 

If,  for instance,  k(z) has simple poles ill, f12 . . . .  fin with residues cl, c2 . . . .  cn 

in rzl < 1, t hen  

(1.2.3) I = c l f ( f l l )+c2 f ( f l 2 )+ . . .  + c , f ( f l , ) .  

If  k(z) : r!(z--/3) -r-l ,  [/3[ < 1, then  

I = f(r)(/3). (1.2.4) 

If  

(1.2.5) 
oo  n 

f ( z )  = ~,'a~z k , k(z) = ~" ckz -(k+') 
0 0 

then  

(1.2.6) I : coao-4-clav+- . �9 �9 +c,~a n . 

In  all these cases the e x t r e m u m  problem in H v is of special interest .  

1.3. We observe tha t  I ( f )  does not  change its value if the  kernel  k(z) is replaced 

by  any  other  kernel  ~(z) of ~0q which has the same poles and  principal par ts  in 
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]z I < 1 as k(z). The inequal i ty  (1.2.2) will hold when k is replaced by z. Hence, 

if ~q is the class of all such kernels x, we shall have 

(1.3.1) Ill <_ My( f ) .  n i n  Mq(z) . 
x6  ,~q 

Again, it  is easy to see t ha t  the min imum on the right hand  side is a t ta ined  in ~q. 

We wish to prove tha t  (1.3.1) is the best possible est imate,  i .e .  tha t ,  for given 

My(f )  and k(z), 

(1.3.2) Max [I(f)] = My( f ) .  Min M~(u). 
~6  ~q 

This will be t rue if, and only if, there exists an 'extremal  funct ion '  F(z) of Hp and 

an 'extremal  kernel '  K(z) of ~q such tha t  

(1.3.3) II(F)I = M p ( F ) . M q ( K ) .  

Formula  (1.3.1) then  becomes 

(1.3.4) III ~< i p ( f ) M q ( K ) .  

Now suppose t ha t  the given kernel k(z) has the poles 1 ill, f12 . . . .  fin in Izl < l,  

each pole repeated according to its multiplicity.  The discussion of the case of equal i ty  

in H51der's inequal i ty  (1 .2 .2)  will lead to the conclusion tha t  (1.3.3) is t rue if, 

and  only if, K(z) and F(z) are of the form 2 

z a n-1 n 1 --~i z 
(1.3.5) g(z) = Al l '  ~--_i ~ (l_~iz)~/q H pi " ~ 

l - -  o ~ z  

and 

(1.3.6) F(z) ---- BH"  z--ai n--1  n / 1  (1 --~iz) 2/p H (1 - ~ i  z) 2/p . 
1 ~ ~ i  ~ 1 1 

Here the n- -1  parameters  a i satisfy ]~i[ < 1, / / '  extends over all, some, or none of 

the ~i with I~il < 1 , / / "  is the complementary  product  with respect to all c~ i, and  

A and  B are constants.  

I f  we take B = 1 and then  write F1 for F ,  we obtain 

/ P ( F I )  ~--[Al-qiq(K),  i v ( F ~ ) =  IAI-q,'vMq-I(K), 
so tha t ,  by  (1,3.3), 

II(Fx)l = Mq(K)Mp(FI) = [AI-q/PMq(K), 
and so 
(1.3.7) Mq(K) = IA[1/PII(FI)li/q. 

* I f  k(z) has  no poles, I ~ 0; we a lways  exc lude  th i s  t r i v i a l  case. 

2 The  powers  i nvo lved  m e a n  the  p r inc ipa l  d e t e r m i n a t i o n s  equa l  to u n i t y  for z = 0 and  r egu la r  

for ]zl < 1. 
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This formula is sometimes useful for determining the constant Mq(K). 

We shall find it convenient to consider the function 

n Z__fl i  
(1.3.8) G(z) = K(z) q 

1 ~ i  z 

which is regular in [z[ < 1 and belongs to Hq. 

Now K(z) must have the same given principal parts as k(z) at its poles ill- 

Hence the values of G(z) and certain of its derivatives will be prescribed at the 

points fli; i. e. if fli is a pole of order ri, then the values 

(1.3.9) G(fll) , G'(fli) . . . .  G(ri-D(fli) 

are given. 
Evidently Mq(G) = Mq(K). Ifl therefore, K(z) is an extremal kernel, then G(z) 

will make iq(g) a minimum for all functions g(z) of Hq which behave in the prescribed 

manner I for all the z ~ fli. 

Finally, let 

(1.3.10) 
n 

H(z) = G(z) I 1  (1--~z) ~q 
I 

Then H(z) belongs to Hq and takes given 'values' at the points fli. By  (1.3.5) and 

(1.3.8), it must be of the form 
n - - I  

(1.3.11) H(z) = AH'  z-~-i H (1--Siz) 'z:q . 
1--Siz 1 

This formula involves a problem of interpolation, and the desired result (1.3.2) 

will be true if, and only if, this interpolation function H(z) exists. In fact, the solution 

of any of the following three problems entails that  of the other two: 

P r o b l e m  I. To find the maximum of [I(f)] in Hp for given Mp(f) and given kernel 
k(z) of ~q. 

P r o b l e m  II. To find the minimum of Mq(g) in the conjugate class Hq for given 
'values' of g at n points fli. 

P r o b l e m  III.  To find, in Hq, a solution H(z) of the interpolation formula (1.3.1 l) 

when the 'values' of H are given at n points ill. 

1.4. The interpolation problem I I I  is, logically, the simplest of the three equiva- 

lent problems. We shall see that it always possesses a solution and that this solution is 

1 We shall say that  g(z) takes 'given values' at the points fl~. 
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unique. It follows that the minimum problem I I  also possesses exactly one extremaI 

function G(z) and that the extremal kernel K(z) for the maximum problem I exists 

uniquely. 

Note first that,  in the interpolation formula (1.3.11), we have the  correct 

number n of parameters at our disposM, namely the n- -1  parameters a~ and the 

constant A. 

Consider, next, the case q ~ 2, when 0.3.11) becomes 

(1.4. ~ ) I t ( z )  = A I l ' ( z - -  o,~)11"(1 - -  ~ z )  , 

so that  H(z) is an arbitrary polynomial of degree at most n--1.  Hence we have the 

classical interpolation problem, the unique solution of which is given by the familiar 

interpolation formula of Lagrange. 

If q = 0% we have 

z--0~ i (1.4.2) H(z) -~ AH' i ~ z "  

The construction of this rationM interpolation function, which again is uniquely 

determined, can be achieved on following a method employed by I. Schur 1 in the 

theory of bounded power series [class H~]. 

Next, if q = 1, (1.3.11) takes the form 

(1.4.3) H(z) ~- AII'(z--ai)(1--5iz)lI'r(1--Siz) 2 , 

and we obtain a curious interpolation problem. The degree of the polynomial on the 

right hand side is at most 2(n--l) .  Besides the pairs of inverse roots ~i, ~1  i n / / '  it 

possesses only roots of even order not inside the unit circle. The existence ~md 

uniqueness of this interpolation polynomial has been established by S. Kake~a ~. 

But  his proofs does not provide a "constructive" method for actually determining 

the polynomial, in the manner of Lagrange's formula or Sehur's algorithm. This 

interesting and apparently difficult problem remains open. 

Finally, in the case of a general q, the unique existence of the interpolation 

function H(z) can be established by  extending the argument which Kakeya  uses in 

the case q ~- 1. Again, no actual construction of H(z) can be obtained in this way. 

1.5. As we have said already, the extremal kernel K(z) in the maximum problem I 

is uniquely determined by the formula {1.3.5) since this is the case for H(z)in (1.3.11). 

1 Schur, part I. 
Kakeya, (b). 
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I f  p > 1, the extremal function F(z) in (1.3.6) is also unique apart from a trivial 

factor e of modulus 1. For the ~i in (1.3.11), and hence in (1.3.6), are uniquely deter- 

mined, and [B I is determined by the given value of Mp(F). 

Note that,  when p ~ 2, 
n 

(1.5.1) F(z) = BTI"(z--~i)l l ' (1--Siz) t~ I  (1 - - ~ i Z )  - 1  , 
1 

and that,  when p ~ 0% 

(1.5.2) F(z) ~- BI I "  z- -ai  . 
1 --~iz 

If p ~- l, then q ~ c~, and the p r o d u c t / / '  in (1.4.2) may determine fewer than 

n--1 parameters ai, say s only. In this case n - -1 - - s  of the parameters ~i in the 

formula 

(1.5.3) F(z) -~ BII"(z--ai)  (1 --~iz)II'(1 --Siz)~ll(1 --~iz)- ~ 

are arbitrary. Hence, i f  p ~- 1, there may be an infinity of (genuinely different) extremal 

functions F(z). 
I t  should further be noted that,  whenever H(z) has been determined, then K(z) 

and thus, by (1.3.2) and (1.3.3), Max [II is known. For this it is not required to know 

the actual values of the a i. This remark is of importance in some applications. 

1.6. The general theory of the extremum problems, as set out in the preceding 

paragraphs, is, in its essential features, not new. However, what is known concerns 

mainly the classes H1, H 2, and H a, and even this not in full generality. Also our 

present argument is, in many respects, simpler and more complete than tha t  used 

by previous writers. Finally, there exists, as far as we know, no connected account 

of this theory in the otherwise very extensive literature on extremum problems of 

our type. All this seems to us sufficient justification for presenting the theoretical part  

of this paper. 

The first non-trivial maximum problem in Ho~ was solved by E. Landau x who 

determined the maximum of l ao -~a~- . . ,  t a  n] for the class of power series (1.2.5), 

for which If(z)l < 1 in Iz I < 1. He was the first to use the idea of "minimizing" the 

given kernel, and he succeeded in determining the extremal kernel K(z) in a way 

which we shall explain, in the light of the general theory, in w 3.3 of this paper. I t  

should be understood that  Landau did not propound any general theory for extremum 

problems in H a, and that  he arrived at his extremal function by a sort of "inspired 

1 Landau, (a), (c), 
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guess". His method, however, is applicable in many similar cases and has been 

followed and generalized by  several subsequent writers. 

The general theory takes shape when C. Carath@odory and L. Fej~r I solve the 
minimum problem II  in H~o for the case where the first coefficients 

(1.6.1) a 0, a 1 . . . .  a~ 

of the power series of g(z) are given. They determine, by  algebraic methods, the 

extremal function (1.4.2)~. Gronwall a gives another and particularly simple solution 

based on the classical lemma of Schwarz. G. Pick ~ extends these results to the case 

where the values of g(z) at n different points fl~ are given. Finally, I. Schur ~ in his 

well known theory of the class H~, develops an algebraic algorithm, equivalent to 

a repeated use of Schwarz's lemma, which can be conveniently used for determining 

the extremal functions of minimum problems in Hoo. 

The minimum problem II  for the class H1, again in the special case (1.6.1), 

was first discussed by  F. Riesz ~ who proved, by a variational argument, the unique 

existence and the characteristic form of the extremal function G(z). No method for 

constructing the solution of the interpolation problem involved is given. G. Pick 7 

extends this result to the case where the values of g(z) at n different points fli are 

given. F. Riesz s, in passing, also points out the relation between his minimum 

problem and the corresponding maximum problem in Hoo. 

S. Kakeya  9 starts from the maximum problem I in Hoo, when the kernel ]c(z) 

has n simple poles. It  is his argument which we follow and generalize in the present 

account of the general theory. Kakeya  reduces his maximum problem to the corre- 

sponding minimum problem in H1 and this, in turn, to the interpolation problem 

(1.4.3). He then gives a proof of a topological character for the existence of the 

unique solution of the latter. Geronimus 1~ gives an independent proof in the general 

e a s e .  

1 Carath@odory and  Fej@r. 

2 I f  all fli ~ O, t h e n  G(z) = H(z), by  (1.3.10). 
a Gronwal l .  
4 Pick,  (b). 

Schur .  

6 Riesz.  The  earl ier  wr i ters  a s s u m e  t h a t  g(z) is con t inuous ,  in Izl _< 1. 
7 Pick,  (b) 

s Riesz,  w 7. 

K a k e y a ,  (b). 
10 Geron imus ,  (a), (b). 
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L. Fej6r 1, E. EgervAry 2, and others treat special maximum problems in H~ by 

reducing them to the corresponding minimum problems in H~. G. Pick 3 discusses 

minimum problems in Hz. 

1.7. This paper is divided in two main parts. In the first the general theory of 

the extremum problems for the classes Hp is developed. In cases where we follow 

the usual methods we content ourselves with a mere sketching of these. The second 

part of the paper gives systematic applications of the general theory to special 

problems of various types. Some of our results have been obtained previously but  

appear only now, that  is in the light of the general theory, in their proper aspect. 

P a r t  I: T he  Gene ra l  T h e o r y .  

2. Reduction to a P r o b l e m  of Interpolation. 
2.1. We use the notation of the introduction. Let  f(z) be a function of Hp,. 

1 < p < ~ ,  and let k(z) be a kernel of ~)q with poles fl~, f12,. �9 �9 fl~, these repeated 

according to multiplicity. We consider the integral 

I I ,~l ~l fi~eiOf(eiO)u(eiO)dO (2.1.1) I = I ( f )  = f (~)k(~)d~ = 

Here u(z) is any kernel of the class ~q determined by  k(z). 
By (1.1.3), the integrand exists and is finite for almost all 0; and, by  HSlder's 

inequality, it is integrable. 

2.2. Our first estimate is 

1 f TM r f ( ei~ ei~ [ dO . (2.2.1) II[--< ~ 0 

Equali ty will hold if, and only if, 

(2.2.2) arg {~f(~)u(~)} = 

(a constant) for almost all ~ = e w. 

The function A(z)= zf(z)• belongs to ~0~, by  HSlder's inequality, since f 

belongs to Hv and u to ~q. I t  follows from (1.1.4), applied to ~(z) with p = 1, tha t  

1 Fej~r. 
Egervfiry. 

a Pick, (a), (b). 
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02 
(2.2.3) I 2(rele) dO I 2(e~~ 

d 
Oi Oi 

as r -+ 1--0, for every arc < 0 1 ,  0 2 > .  Hence we m a y  apply the usual a rgumen t  

for the "principle of inversion" and  infer from (2.2.2) t ha t  2(z) is a rat ional  function.  

The zeros and poles of 2(z), if not  on Izl = 1, appear in pairs of points inverse to 

each other with respect to the  uni t  circle. Fur thermore ,  (2.2.2) implies t ha t  any  

zero of ~(z) on lz] = 1 must  be of even order. No pole of 2(z) can lie on [z] = 1 since 

X(z) belongs to ~1, and the only possible poles are amongst  the pairs fli, fli -1. I t  

follows t h a t  2(z) is of the form 

rt--1 

/ ~ ( z - - a l )  ( 1 --Eiz) 

(2.2.4) 2(z)  = zf(z)~(z) = Cz 1 
n 

1 I  (~-fl~)(1-~i~) 
1 

where the ]ai[ < 1. For, 2(z) must  have a zero at  the origin and hence at  inf ini ty if 

none of the fli vanishes;  it  mus t  be regular there if exact ly  one of the fli vanishes;  

and it must  have there a pole of order at  most  k--  1 if k of the fli vanish. I t  is easy to 

verify t h a t  this 2(z) satisfies (2.2.2) for all ~ = e iO. 

2.3. Next  we apply HSlder 's inequal i ty  and  obtain 

I if(eiO)~(e~O)ldO < (2.3.1) ~ o _ Mp(f)Mq(n) . 

Equa l i ty  will hold if, and only if, 

(2.3.2) if(~)]l/q ~ Dln(~)[1/p  

for a lmost  all ~ = e iO. 

Combining (2.2.2) and (2.3.1) we see t h a t  equal i ty  will hold in 

(2.3.3) III _< Mp(f)Mq(z) 

if, and only if, f(z) = F(z) and u(z) = K(z), where 

n - - i  

l I ( z -o , i ) (1-~qz)  
(2.3.4) F(z)g(z)  = C 1 ~b 

H (z - f l i ) (1 - i l l  z) 

and where, for almost  all ~ = e ~ , 
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and 
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n--1 

H(r  
[g(()l = ]A] n 

H (~-fl~)( I -fi~r 
1 

l'q 

2.4. Let us assume, for the present, that there exists such an extremal kernel K(z) 
and that K(z) is continuous on [z] ~ 1. 

The zeros of K(z) in [z I < 1 must  be amongst  the ai in (2.3.4). The funct ion 

(2.4.1) K*(z) = K(z)II' 1--~iz h Z - -  f l i  

Z - -  ~X i 1 1 -- f l i  z ' 

w h e r e / / '  is extended over the zeros of K(z) in tz I < l, is regular and different from 

zero in Izl < l, continuous on Jz 1 = 1, and satisfies (2.3.5) for all ~ ---- e i~ I t  follows 

tha t  
n--1 n 

(2.4.2) K*(z) =- A l I  (1 - -~ iz )~ /q l I  (1--fliz) -~/q. 
1 1 

This is equivalent  to the formula (1.3.5) for K(z) itself. The formula (1.3.6) for the 

associated extremal  funct ion F(z) follows from (2.3.4) at  once. 

I t  should be noted tha t  any  such K(z) determines all the ~i in (1.3.5) and hence 

those in (1.3.6), provided tha t  q # cx~, t h a t  is p > 1. The associated extremal  funct ion 

F(z) is then  uniquely determined,  apar t  from a factor  e, where le[ = 1. I f  p --~ 1, 

however, some only of the ~i in (1.3.5) m a y  be determined by  K(z), the remainder  

being quite arbi t rary.  There m a y  then be genuinely different extremal  functions F(z). 
Conversely, if p # ~ ,  a funct ion F(z) of the form (1.3.6) can be an associated 

extremal  funct ion with one extremal  kernel K(z) only (apart  from an arb i t ra ry  

constant  factor), and this kernel must  be of the form (1.3.5). For, F(z) is continuous 

on Izl ~ 1, and so is F(z)K(z), by  (2.3.4). I t  follows tha t  K(z) is continuous at  every 

n - 1  Up 

/ / ( ~ - ~ ) ( 1 - ~ )  
( 2 . 3 . 6 )  [ F ( ~ ) I  ~ 1B I 1 n 

H (~-~i)(~ - ~ )  
1 

I t  follows from (2.3.3) tha t ,  for any  funct ion K(z) of ~q which together  with an F(z) 
of Hp satisfies the conditions (2.3.4), (2.3.5), (2.3.6), we shall have 

(2.3.7) Mq(K ) = Min Mq(~) . 
~E~q 
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point ~, ]~t ~ 1, where F(()  4= 0. This is also t rue when F(()  ~ 01. For,  K(~) cannot  

be infinite because of {2.3.5). Since K(z) is continuous on Izl : 1, it is of the  form 

(1.3.5), and it now follows from the prescribed principal parts  at  the poles fll t ha t  

its factor  A in (1.3.5) is also uniquely determined.  

We can now prove:  

I f  an extremal kernel K(z) exists which is continuous on lzl ~ 1 (and hence is of 

the form (1.3.5)) then it is the only possible extremal kernel. 

For  suppose t ha t  Kl(Z ) be a different kernel, not  necessarily continuous on 

Iz] ~ 1, and Fl(z ) an extremal  funct ion associated with K~(z). Let  F(z) be an extremal  

function associated with  K(z) and hence of the form (1.3.6). 

I f  Fl(z ) =- ei~'F(z), it  would follow tha t  F~(z) is of the form (1.3.6) and tha t  

K~(z) is of the form (1.3.5). This possibility has a l ready been disposed of, so t ha t  

we m a y  assume tha t  F~(z):# elC'F(z). I t  follows tha t  

(2.4.3) II(F~) I = Mp(F~)Mq(K1) ; II(F1)] < M,,(FOMq(K), 

so t ha t  Mq(K~) < Mq(K) in contradict ion to (2.3.7). 

2.5. I t  remains to prove tha t  there always exists an extremal  kernel K(z) in 

~ which is cont inuous 'on Iz I ~ 1. K(z) is then  necessarily unique. This problem is, 

as we know, equivalent  to t ha t  of a solution for the interpolat ion formula 

n--1 

(2.5.1) H(z) -~ Al l '  z ~  1 I  (1--Siz) 2/q , 
1--K~z 

where the prescribed "values"  of H(z) at the points fll are those of 

n Z _ _ ~ i  
( 2 . 5 . 2 )  = q ; 

and these, in turn,  are determined by the principal parts  of k(z) at  its poles {/i. 

Note that this interpolation problem can have at most one solution. For, different 

solutions would lead to different extremal  kernels of the form (1.3.5). 

3. E x t r e m u m  P r o b l e m s  i n / / 2 .  

3.1. ]f  p ~ 2 then  q --~ 2. The formula (2.5.1) becomes 

(3.1.1) H (z) = AII '  (z--o~i)II" (1--~iz) , 

and we arrive at  the classical-interpolation problem the (unique) solution of which 

1 This happens only if ~ ~ a i and Jail ~ 1. 
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is given by the familiar formula of Lagrange. Hence for the class H 2 our theory is 

now complete. Lagrange's inl~erpolation formula determines explicitly H(z)  and thus 

the extremal kernel K(z )  which, by  (1.3.8) and (1.3.10), is given by  

n 

(3.1.2) K ( z )  = H(z )  I I  ( z - - f l i ) - l  . 
1 

This only, and not the knowledge of the roots ~i, is required for the solution of the 

extremum problems proper. To establish the extremal functions, note that, in view 

of (3.1.1), (1.5.1), and (3.1.2), we have 

n 

(3.1.3) F(z )  : B A - l z n - ' H ( 1 / ~ ) 1 1  (1-fiiz)-, = Cz- IK(1 /~)o  
1 

so that  again the knowledge of the roots ai of H(z)  is not required. Alternatively, we 

may say that  the extremal kernel is the "natural kernel" consisting of the sum of the 

principal parts of the given poles. This follows from (3.1.2). 

3.2. There exists another simple way of dealing with extremum problems in H~. 
o o  

A power series f ( z )  ~ .~" akz k belongs to H2 if, and only if, 
0 

c o  

(3.2.1) i ~ ( f )  = .~ ' lak l  2 < cx).  
o 

Now, expressing the values and derivatives of f ( z )  at the points fli in terms of the 

a~, we obtain 
c o  

(3.2.2) I ( f )  = ~,-' ckak , 
0 

where the c k are "given", the series ~'lckl 2 being convergent. More generally, 

consider any such sum 1, not necessarily obtained in the above way. Then, by 

Cauchy's inequality, 

(3.2.3) ~'cka k ~{.~:Ic,[' i )~lak[ ICkI' M,(f). 

Equali ty holds if, and only if, a k ~ B8 k. I t  follows that, in the case (3.2.2), the 

extremal function is 
o o  

(3.2.4) F(z )  ~-- B~_/'~kz k , 
o 

while, for the extremal kernel, by (3.1.3), 
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(3.2.5) K(z)  = ~%z-~- l ( l z [  > 1); Mu(K ) = 21Ie~12} 1/2 
0 0 

I t  should be noted  t h a t  we can replace (3.2.3) by  the stricter inequal i ty  

(3.2.6) ~ "  Ickakl ~ [ckl 2 . 
0 
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3.3. In  certain cases the solution of an ex t remum problem in HI~ can be reduced 

to one in H2. 

Le t  p > 1 and  h(z) be the funct ion (2.5.2) ; and let there be n different points  fli. 

Suppose, in the f irst  place, that, for suitable determinations, the "values" h(fll)q/~ lead 

to a Lagrange polynomial H*(z) which has no roots in ]z I < 1. 

Suppose, in addit ion,  t ha t  there is a de terminat ion  

(3.3.1) H(z) = H*(z)  2/q 

which takes at  the fli the given values h(fii). This, for instance, will certainly be the  

case when p ~ ~ ,  q --~ 1. 

Under  these assumptions H(z) will be a solution of (2.5.1), the product  H '  

being empty .  On using (1.3.8) and  (1.3.10), it  follows tha t  

, 2; n ~ / 1 - - ~ i z \ l - 2 / q  

(3.3.3) Mq(K)  : M2(K*)  ~`q 

and 
2/i)--1 n 1 \ , 

(3.3.4) F(z) = CF*(z) , 

\II 
1 

where K*(z)  and F*(z) are the extremal  kernel and extremal  funct ion in H 2, corre- 

sponding to the Lagrange polynomial  H*(z).  

A similar method  is available in the case 

n 

(3.3.5) I ( f )  : ) /cka k (c,~ ~ o ) ,  
o 

o o  

where f ( z )  ~-- ~ a k z  k and the c k are given. Here the given kernel is 
0 

n 

(3.3.6) k(z) = ~ 'ckz  -~-1 
0 
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and all fli ~ 0 (i ~- 1, 2 . . . .  n + l ) .  According to (1.3.8) and (1.3.10), we must  have  

( 3 . 3 . 7 )  G(z) ~ H ( z )  : ' z n + l K ( z )  = cn-}-c a l z -~- . . . -~COZn-~  " '"  , 

Now let p > 1. We have ,  for small ]z I and some de terminat ion ,  

(3.3.8) G(z) q"- : 2 0 ~ -  2 1 Z - ~  " * * -Au 2 n Z ' - ~  " * " . 

The first coefficients 20, 21 . . . .  2, depend on the given c 0, c 1 . . . .  , c n only. Hence,  

again for small ]z l and a certain de te rmina t ion ,  

(3.3.9) Pn(z )  ' q  ~ (20--~-21z-[ - . , .  -~2nz") 2q ~.  Cn-~en_lZ-}-" " "-~C0Z"-~- �9 �9 * . 

Suppose now that the polynomial Pn(z) has no roots in Iz] < 1. Then  Pn(z) :~q is of the  

form (2.5.1), the  p roduc t  / / '  being empty .  I t  follows tha t  G(z) ~-- H(z) -~ P~(z) ~/q 

and t ha t  
n 

( 3 . 3 . 1 0 )  Pn(Z)  : C H ( 1 - - ~ i z )  . 
1 

The ex t remal  funct ion  is, b y  (1.3.6),  

n n 

(3.3.11) F(z)  = B ~ I [  --z--ai I / ( 1  --O~iZ "P = n ZnPn(1/~) 
1 --Y~i z Pn(z) 1-2, p' 

and the  ex t remal  kernel  is K(z)  ---- z-n-lPn(z) 2q, so t h a t  

(3.3.12) Mq(K)  ~- M~/q(Pn). 

I t  follows tha t ,  under  our  assumptions  regarding p n ( z ) ,  

(3.3.13) ]Coao+claa+.. .  +cnan[ < Mp(f)(]2o]~+l~l[~+ . . .  +12n[2) a/q . 

This inequal i ty  was first  proved,  in the  case p = o~, q ---- 1, by  O. Sz~sz ~. I t  contains 

as a special case E. Landau ' s  de te rmina t ion  2 of the  m a x i m u m  of l a o + a ~ + . . .  +an] 

in Hoo. 

I t  is well known tha t  P,~(z) 4 :0  in lz[ < 1 when, for instance 3, 

(3.3.14) 20__>21~> -..__>2n--> 0 ,  2 0 >  0 ,  

a condit ion which is satisfied in Landau ' s  case. 

4. E x t r e m u m  P r o b l e m s  in / !1 -  

4.1. I f  p -~ 1, t hen  q ~-- cx~ and  the in terpola t ion  funct ion (2.5.1) takes  the  form 

1 Szgmz, (b). 

L a n d a u ,  (a), (c). 

a K a k e y a ,  (a). 
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(4.1.1) H(z)  = A I I '  z - - a l  

T o  es tab l i sh  its un ique  ex i s tence  we e m p l o y  an  a l g o r i t h m  i n t r o d u c e d  in to  t he  t h e o r y  

of t h e  class Ho~ b y  I .  S c h u r h  

4.2. Consider  t he  class B of func t ions  w : ~(Z) r egu la r  and  sa t i s fy ing  ]w[ < 1 

in Iz[ < 1. 

L e t  n po in t s  fli in Iz] < I be given,  t a k e n  m u l t i p l y  if des i red  and  a r r a n g e d  i n  

some order .  We  wish to  discuss t he  possible  " v a l u e s "  w i of ~(z) a t  these  points .  P u t  

(4.2.1) ~ ( z )  : ~ ( Z ) ,  Y l  = ~01(~1)  = W I "  

T h e n  ]y~] < 1; and  lY~[ ~ 1 if, and  on ly  if, ~ ( z )  ~ Yi. I f  IYll < 1, p u t  2 

(4 .2 .2)  

so t h a t  

(4.2.3) 

if f12 4= ill, and  

(4.2.4) 

~,'~ = fli__/~l 1--WlW 2 ' 
w~ = ~( t~ , ) ,  

1-JZ112 
~)2 - -  W 2 ,  W 2  = ~01(/~1) : ~ ' ( ~ 1 )  , 

if f12 = fl~. ~2(z) be longs  to  t he  class B,  so t h a t  ]Y21 ~< 1. 

S imi lar ly ,  if [Yk[ < 1 (k < n) we p u t  

1-fikz ~k(z)--yk 
(4 .2 .5)  qJk+l(z) - -  z _ f l k  l _ ~ k ~ k ( z  ) , 7k§ : ~k+l(flk+l) �9 

T h e  n u m b e r s  y~ are  ce r t a in  r a t i ona l  func t ions  of t h e  fli, fii and  w i, wi  With 1 ~ i < k, 

and  [Yk+l[ <-- 1. A neces sa ry  r e s t r i c t i on  for  possible  va lues  w i is, t he re fo re ,  t h a t  e i the r  

(i) [Ylf < 1 for  all i (1 < i < n) or  (ii) t h a t  t h e r e  exis ts  an  s (1 < s < n) such  t h a t  

lYs] = 1, while  lYil < 1 for  I < i < s. 

I n  t he  second  case, ~ ( z )  =_ y~, and all the values w i wi th  i > s are determined by 

the preceding ones. 

These  res t r i c t ions  on possible  va lues  w i are  also suff ic ient  in  o rde r  t h a t  t h e r e  

shou ld  exis t  some f u n c t i o n  ?(z) in B which  t akes  these  va lues  a t  t he  po in t s  8- 

I n  case (i) t h e r e  exis ts  an  in f in i ty  of such  funct ions �9  W e  m a y  s t a r t  w i th  a n y  

1 Schur. 
2 Compare Schur: Schur considers the case fli ~ 0 only. 

19. Acta mathematica, 82. I m p r i m 6  le 13 m a r s  1950. 
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funct ion  ~n(z) of B such t h a t  ~,(fl~) : 7n. Resolving (4.2.5) backwards  step by  step 

we arr ive at  a funct ion ~(z) of the  desired kind. 

In  case ( i i )  there  exists exac t ly  one such funct ion.  F o r  necessari ly %(z) --~ ~'s. 

Hence,  resolving (4.2.5) backwards  as before, we arr ive af ter  s - -  1 steps a t  a uniquely  

de te rmined  ra t ional  funct ion ~(z) in B, of degree at  most  s - - l ,  1 which takes  the  

values w i a t  the  points  fli. 

I t  is easy  to  see s t ha t  this funct ion is of the  form 

8--1 

~1 I z - - ~ i  (4.2.6) q~(z) = e 1 - - S i z  (l~il < l,  Izl : 1) .  

For ,  since f~8(z)l ~ frsI : 1, we conclude from (4.2.5) t h a t  1~8_l(z)l ~ 1 when 

Iz] ~ 1, and, finally, t ha t  I~(z)] ~-- 1 when [z I ---- 1. Since ~(z) is a ra t ional  funct ion 

of degree at  most  s - -1  in B, it  mus t  be of the  form (4.2.6), with s possibly replaced 

by  some p < s. Bu t  p < s is impossible, since then  17p[ ---- l, as is easily verified. 

4.3. Consider now our  in terpola t ion  problem where n a rb i t r a ry  "va lues"  w i 

are prescribed at  the  points  fli. 

Let  ~ > 0. I f  Q is large, the  values ~-~w i will de te rmine  numbers  7i(Q) which 

sat isfy the conditions (i) of 4.2. F o r  it  follows, b y  induct ion,  f rom the  defini t ion 

(4.2.5) t ha t  7i(Q) ~ 0 (of order  ~-~) as e -> c~. Hence,  for large ~, there  will exist  a 

funct ion  ~e(z) in B which takes  the  values w~ -1 at  the  points  fli. 

On the o ther  hand,  if Q -+ 0, some of the  wio -1 will t end  to  inf ini ty  3, so t h a t  no 

such funct ion ~0q(z) can exist  when Q is small enough.  

Now let P > 0 be the greates t  lower bound  of all values e > 0 for which such 

a ~e(z) in B exists. Since the funct ions  of B form a normal  family,  there  exists also 

a funct ion ~p(z) in B. No t  all the  corresponding 17~(P)I can be less t han  1. For  then,  

by  reason of cont inui ty ,  the  same would hold for some Q < P, and a ~q(z) would 

exist  con t r a ry  to the  definit ion of P.  Hence  the case ( i i )  of (4.2) mus t  hold when 

Q --~ P,  and q~p(Z) is of the  form {4.2.6) with some s < n. I t  follows t h a t  the funct ion 

8--1 

I z - - ~ i  (4.3.1)  H ( z )  = Pq~e(z)  ~ e P  l _ ~ i z ,  ]e I = 1 , 

is a solution of our  in terpola t ion  problem. 

1 A q u o t i e n t  of  two p o l y n o m i a l s  each of degree  a t  m o s t  s - - 1 .  

2 Schur ,  in t he  case fli ~ 0, uses  an  a lgebra ic  a r g u m e n t  to p rove  (4.2.6). 

a ~u exc lude  t he  t r ivia l  case t h a t  all w i ~ 0 w h e n  H(z)~ 0 is of t he  fo rm (4.1.1). 
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We know already tha t  this solution is unique. I t  follows, by  the above arguments,  

t h a t  ~%(z) exists for all ~ > P and tha t  all [~i(~)l < 1 for these ~. The lat ter  proper ty  

ceases first, as Q decreases, for ~ = P. 

4.4. The value of P is of main interest  in the applications. Since the Fi(Q) can 

be calculated for large ~o and are rat ional  functions of ~, the actual  de terminat ion  

of P becomes an algebraic problem�9 In  the "classical" case where all fli = 0, i. e. 

where the first n ~ l  coefficients Co, c~ . . . .  c~ of 

(4.4.1) H(z)  :-- A l l '  z - - a l  - -  C o ~ C l Z ~ - . . .  ~ - c n z n ~ . . .  
1--~i  z 

are prescribed, it  has been proved by C. Carathdodory and L. Fej~r 1 t ha t  ]A[ -= P, 

where P is the greatest  root of the  equat ion 

e~--hoo --h01 
- -h i0  ~ - - h i l  

(4.4.2) 

--hno --h,,1 

- -  hon 

- -b in  

~2--hnn 

- = 0  

and 

(4.4.3) hu~ = __,~_vc~_ v ( 0 < u  < 2 _ < n ) ,  h~u ~ hu~" 
Y = 0  

The case fli ~ fl ~=0 is easily reduced to the above by  a linear t ransformation.  

co  

4.5. Le t  f ( z )  = ~.,~akz k, when I ( f )  is of the form 
0 

co  

(4.5.1) I ( f ) - =  , ~ c k a  k . 
o 

Now any  funct ion f ( z )  of H 1 can be represented in the form 2 

(4.5.2) f ( z )  : -  ~ ( z ) ~ ( z ) ,  

where ~(z) is a "Blaschke product" ,  satisfying [~(z)[ < 1 in Ez{ < 1 and [~(~)[ ---- 1 

for almost  all ~ = ele; where ~(z) ~= 0 in ]z I < l ;  and  where ~(z) belongs to H1. 

Also MI(~)  --~ Ml(f ) .  We write, with some determinat ion of the root, 

1 Carath~odory and Fej~r. 
See Zygmund, p. 161 : A corresponding representation holds forf(z) of Hp, when ~(z) will belong 

to Hp. 
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(4.5.3) f ( z )  = ~ ( z ) ~ ( z ) ' ~ ( z )  '/~ = ~ l ( z i ~ 2 ( z ) .  

Both  ~ ( z )  and ~2(z) belong to Ha, and 

(4.5.4) M,~(~I  ) = M ~ ( ~ )  = M~(~) --- M ~ ( f ) .  

o o  o o  

~ ' A  z k Le t  ~ l ( z ) =  ~ ~ , ~ 2 ( z ) =  )_.�9 ~" so t h a t  
0 o 

k 

a k = ~ A t B ~ - I .  
I=o 

(4.5.5) 

Next  consider 

(4~5.6) 
o o  

~ � 9  * k f * ( z )  = ~ * ( z ) ~ * ( z )  = __  a k z , 
0 

o o  o o  

"~�9 ~'. Both  ~*(z)  and ~*(z)  belong to  H~. where ~,*(z) --~ ~_.,�9 ~', ~ * ( z )  : . ~  
0 0 

Hence,  by  Schwarz 's  inequal i ty ,  f * ( z )  belongs to  H i ,  and 

(4.5.7) M l ( f * )  ~ M2(~l*)M2(~2*) = M2(~l)M2(~2) = i ~ ( f ~ .  

Also 

(4.5.s) 

I t  follows tha t ,  if c k > O, 

k 

lakl <~ ~ IAlIIBk_tl -~ a k . 
/=0  

o o  (3o 

(4.5.9) ~ ckrakl < ~ ckal: < M ~ ( f * ) M o ~ ( K  ) < M ~ ( f ) M o o ( K  ) . 
0 0 

This is an interest ing improvemen t  on ]I( f )]  < M ~ ( f ) M o ~ ( K  ) and shows t h a t  the  

coefficients of an ex t remal  funct ion F ( z )  must  have cons tant  signs if the  c k have 

this p rope r ty  1. 

5. E x t r e m u m  P r o b l e m s  in Ho~. 

5.1. I f  p = ~ then  q = 1, and the  in terpola t ion  funct ion (2.5.1) becomes 

(5.1.1) H ( z )  -= A I I ' ( z - - a i ) ( 1 - - S i z ) I I " ( 1 - - ~ i z )  2 . 

As we have  poin ted  out  in the in t roduc t ion  to this paper,  the  existence of a (unique) 

solution of the in terpola t ion  problem involved has been indirect ly  established by  

F. Riesz ~ and G. Pick  3 who show tha t  the corresponding min imum funct ion G(z)  

of H~ exists uniquely  and is of the appropr ia te  form. A direct  proof, based on a 

1 C o m p a r e  E g e r v ~ r y ;  L a n d a u  (b). 

2 R ie sz .  

a P i c k ,  (a), (b). 
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topological a rgument ,  has been  given b y  S. K a k e y a L  None  of these proofs is con- 

s truct ive.  I t  would be of considerable in teres t  to  f ind a m e th o d  for ac tua l ly  deter-  

mining the  in te rpola t ion  funct ion.  

I t  should be no ted  t h a t  the  above proofs, as  published, deal only  with the  two 

cases where ei ther  all fli ~ 0, or where all fli are different  f rom one another .  I t  is, 

however,  evident  t h a t  the  most  general  case can be ob ta ined  f rom the  la t te r  one b y  

a l imiting process, the  uniqueness of the  resul t  following from: our  general t heo ry  2. 

5.2. The  topological  proof of K a k e y a  extends  to  the  general  in te rpola t ion  

problem (2.5.1)3; if p > 1, q < 0o. We r e f r a i n  therefore  f rom giving any  fu r the r  

account  of it. 

5.3. We proceed to construct the  in terpola t ion  polynomial  (5.1.1) in the simple 

case of two different  points  fix and f12. This is of impor tance  for appl icat ions in H~.  

Given w x and w 2 we have  to  show t h a t  there  exists a func t ion  H(z)  ei ther  of the  

form 

(5.3.1) H(z) = A(z--~x)(1--Sz)  (l~[ < 1) 

or 

(5.3.2) H(z) = A(1--~z)  2 (l~l < 1) ,  

such t ha t  H(fil) = wx and H(fl2) = w~. 

We shall assume t ha t  wx and wz do not  vanish s imultaneously,  in which case 

H(z) ~ O. To avoid minor  complicat ions we shall also assume th a t  bo th  fll and f12 

are di f ferent  f rom zero. The  excluded case can easily be t r ea t ed  b y  a limiting process. 

A funct ion H(z) of the  form (5.3.1) satisfies the  equa t ion  

(5.3.3) z2H(1/'~) =- ~H(z) (E =- A / A ,  ]el = 1) .  

In  part icular ,  f l~H(1/f l i)= ~w i or 

(5.3.4) w* = H(1/fl~) = e~;2~i (i -~ 1, 2) .  

I t  follows that, in  the case (5.3.1), H(z) must  be the Lagranffe polynomial  that takes the 

given values w i at the points fli and the values w~ at the points  lift  i. 

Given an a rb i t r a ry  e wi th  le] = 1, let  us s tar t ,  therefore,  wi th  the  Lagrange  

polynomia l  L(z) t h a t  takes  the  values w i and  w* at  the  points  fli and 1/~i, respect ively.  

1 Kakeya, (b). 
See also Geronimus. 

a Following the notation of Kakeya (b) one has to put E(z, t) = (1--tz)2/q where t is a point on tile 
first sheet of his double unit circle S, and E(z, t) ~ (z--t)(1---tz) ~lq-1 when t is on the second sheet. 
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L(z) is of degree a t  mos t  three.  An e l e m e n t a r y  ca lcula t ion shows t h a t  the  coefficient 

of z a is filfi2(v--e~), where 

Wl W2 
(5.3.5)  v --- 

( i l l  --fl~-)( 1 --~1~2)( 1 --{/~1 {2) (fli --~l)(  1 --f12/~l)( 1 --{//2{ 2)" 

Hence  L(z) will be of degree a t  mos t  two,  if e i ther  v = 0 and  ~ is a rb i t r a ry ,  or  if 

v 4= 0 and  ~----v/~. I n  bo th  cases, b y  definit ion, 

(5.3.6) z2L(1/'~) : ~L(z) 

is t rue  for the  four  points  fli, 1/fli. Since (5.3.6) is a quadra t i c  equa t ion  in z, i t  m u s t  

hold identical ly.  I t  follows tha t ,  if a root  a,  wi th  I~[ 4= 1 of L(z) exists,  t hen  1/~ is 

also a root .  L(z) is of the  fo rm (5.3.1), and  L(z) is H(z). 

(5.4.1) 
We then  have  

5.4. There  remains  the  case when  

L(z) : A(z--~y,)(z--~2) (I,~,l = I,~,I = ~ ) .  

(5.4.2)  w,  = ( f l , - ~ , ) ( f l , - , t , )  
w2 ( f l 2 - V l ) ( f l 2 - ~ 2 )  

fll --15 
Now t -  m a p s  the  circle Izl < 1 on the  exter ior  of a cer ta in  circle C. Since 

/~2--Z 
t ----- 0 if z --=- ill, and  t ----- oo if z ---- f12, C does not  conta in  the  origin t ----- 0. To Iz I > 1 

corresponds the  inter ior  of C, and  to  Iz[ = 1 the  c i rcumference  of C. I t  remains to 

show that (5.4.2) implies that wl/w 2 is inside or on the boundary of the curve C2.1 F o r  t hen  

(5.4.3) w--' = ( ~ ' - - ~ ) ~  
w~ \82- -$ /  

with  ]~J > 1, and  wri t ing $ ~- 1/~, 

w,_ 

I n  this case an  H(z) -~ A(1- -Sz )  2 with  [~1--< 1 clear ly exists.  

Conversely,  if such an  H(z) exists,  t hen  (5.4.4) holds, and  wl/w2 is inside or on 

the  b o u n d a r y  of C 2. I t  follows that the case (5.3.1) corresponds to w J w  2 being outside C2; 

for we know t h a t  only  one in te rpo la t ion  funct ion  can exist ,  and  the  two  cases are  

exclusive.  In  par t icular ,  in the  ve ry  special  case men t ioned  in w 5.3, n a m e l y  v ---- 0, e 

a rb i t r a ry ,  we have  

1 C ~ is the image of C by the transform u = tL 
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(5.4.5) 
W 1 (1--fll/~Z) (1-- Ifll] 2 ) 

w2 (1--flz/~x) (1-- l~2[2) ' 

and it is easy to verify t ha t  this value is inside C 2 (see also w 5.6.). Hence L(z) is in 

this case of the form (5.4.1). 

5.5. To prove t h a t  w~/w2 is inside or on the boundary  of C 2 when (5.4.2) holds, 

we consider the two points 

f l l - - ? ] l  fll --?]2 
(5 .5 .1 )  31 - -  ~2--?]1 32 fl2--?]2 

= ~ e ie~ B y  ( 5 . 4 . 2 )  which are both  on the circumference of C. Le t  3i ei �9 

W 1 (5.5.2) 
W2 

- -  31T 2 = ~1~2 ei(61+02) = ~e  iO , 

say. The line joining t = 0 to  the point ~e ix~ bisects the angle (T1, 0, 32) , and this 

point is contained in the angle bounded by  the two tangents  from 0 to the circle C. 

Hence wl/w2 is contained in the corresponding angle with respect to C 2. 

Next  consider the points 

= - e i ~  ~i---- ~ " @i <~i ,  i ~ -  1,2) (5.5.3) "ri ~i , ei e*O' 

and 

(5 .5 .4 )  3 = ee  ~~ ~ = ~e ~e/~ (q -< e) 

which are the (possibly coinciding) points on the 

circumference of C z corresponding to these argu- 

ments  (Compare figure). The points 3i are amongst  

the  points (5.5.3). The point wl/w 2 will clearly be 

inside or on the boundary  of C 2 if 

(5 .5 .5 )  ~•177 ~ . 

,"fl Y "',k, 

To prove this we m a y  assume tha t  01 < 02 say, the case 01 = 02(= �89 being 

tr iviaP.  Draw the circle K through 0, ~1 and ~ .  Since 0 is outside C, t h a t  arc (~1, ~2) 

of K which does not  contain 0 will be inside C. 

1 We owe the following simple geometrical a rgumen t  to Mr. O. F. T. Roberts .  
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Consider the  point  3" -~ ~*e i~ on this arc. If  d is th~ d iameter  of K and 2q~ 

is the  angle t ha t  the chord (0, 3*) subtends  at  the centre  of K,  then  ~o* = d sin ~v. 

Since the line joining 0 to 3" bisects the  angle (~1, 0, ~2), we have,  similarly, 

~i = d sin qi where ~i = ~ •  say. 

Hence  

QIQ2 ---- d2 sin (~-4-c~) sin (~--~)  ~ id2(cos 2 ~ - - co s  2~) 

(5.5.6) < �89 2~) = d 2 sin 2 ~0 = ~*~ < ~z. 

On the  o ther  hand,  ~1~1 = Q2~2"= e~. Hence,  b y  (5.5.6), 

( 5 . 5 . 7 )  ( ~ ) 2  = (~1Q2)(~1~2) ~ e le2~ 2 , 

or Q2<  ~lQ2. This completes our  proof. 

5.6. To sum up, the  in terpola t ion  funct ion H(z) can be found  in the  case of 

two different  points  fll and  f12 in the  following simple way. I f  wl/w2 is outside C 2, 

then  H(z) is the  Lagrange  polynomial  L(z), uniquely  I defined in w 5.3., and H(z) 

is of the  form (5.3.1). I f  Wl/W z is inside or on the b o u n d a ry  of C 2, then  H(z) -= A2(z) 

where A(z) is the  (linear) Lagrange polynomial  for  which A(fll) ~ wl 1/2, the  square 

roots  being chosen so t ha t  A(z) 4- 0 in ]z I < 1. This is possible according to our  

discussion. H(z) is then  of the  form (5.3.2). 

The uniqueness of H(z) could be proved directly.  This proof  which we omit  

here leads also to the following result  which in itself is of some interes t :  

We have seen tha t ,  whenever  31 and 32 are two points on the  circumference of C, 

t hen  the  point  u = VlV 2 is not  outside C 2. Conversely,  it  can be shown th a t  any  point  

u, not  outside C 2, can be represented  in the form u = 3132 and  t h a t  the  two factors  

31 and 32 are in general,  apa r t  f rom their  order,  uniquely  determined.  The  only  

except ion  is t ha t  point  2 U on the  line joining 0 to the  "cen t re  ''a u 0 of C 2, whose 

distance f rom 0 equals the  length of the  tangents  f rom 0 to C 2. In  fact ,  i t  is geo- 

metr ical ly  clear t ha t  3132 --~ U whenever ,  with our  above notat ions ,  31 ~-~1 say, 

and  32 - 32. 

1 T h e  case  v = 0, e a r b i t r a r y ,  does  n o t  a r i s e  h e r e  as  a p p e a r s  be low.  

2 U is t h e  p o i n t  (5.4.5) c o r r e s p o n d i n g  to  t h e  case  v = 0, e a r b i t r a r y ,  d i s c l o s e d  in  w 5.3. 

,2 w h e r e  z 0 is t h e  c e n t r e  of C. 3 UO ~ ~0 
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Part  II. A p p l i c a t i o n s .  

6. Inequal i t i e s  in H 2. 

6.1. E x t r e m u m  p r o b l e m s  in H2 are  s imp le :  t h e  ' n a t u r a l '  ke rne l  is t h e  e x t r e m a l  

kerne l ,  a n d  t h e  a s s o c i a t e d  e x t r e m a l  f u n c t i o n s  a re  t h e n  d e t e r m i n e d  b y  (3.1.3), 

T h u s  t h e  p a i r  

(6.1.1) K(z )  = ( Z - - ~ )  - - (n+ i )  , F(Z) = Bzn(1-- f i z )  -(n+l) 

are  e x t r e m a l  ke rne l  a n d  a s s o c i a t e d  e x t r e m a l  f u n c t i o n  fo r  t h e  i n e q u a l i t y  

(6.1.2) ]f(~)(fl)] <_ n !M~{(z--fl)-(n+~)}M2(f) . 

T o  ca l cu l a t e  M s ( K  ), we p u t  $ - ~  ( f l~ -w) / ( l+ f lw)  a n d  o b t a i n  

M~(K)  : -  ~ I.~l -~ ]~__fll2(n+~ ) - -  2~ Iwl-~ I w(1--it~l ~) [ l+~wl  ~ 
(6.1.3) 

H e n c e  1 

(6.1.4)~, If(n)(~)I _< 

i _ _  __ 1 i ( l + ~ w ) n , / i d w l  . 
2 z ( 1 - / i l l  e) en+l lwt-1 

(l__[~)v+l/2 1+ ]ill2+ ] i l l ' + ' ' ' +  n [ f l [  M:,~(f). 

A l t e r n a t i v e l y ,  b y  (1.3.7), 

(6.1.5) / s ( K  ) --~ ]I(F1)li/~ ~-~ ]F(~'~)(fl)n!l 1/2 , 

so t h a t  (6.1.4) can  also be  w r i t t e n  as 

(6.1.6)5 ff(~)(fl)l --< In !F~n)(fl)ll/2M2(f), 
w h e r e  F i ( z  ) = zn(1--/~z) -(n+i). 

6.2. L e t  fll :~: f12" B y  (3.1.3), t h e  p a i r  

(6.2.1) K(z )  ~ -  [(Z--~l)(Z--fl2)]  -1 , F(z)  = Bz[(1-- f i iz ) (1-- f i2z)]  -~ 

are  ( n a t u r a l  e x t r e m a l  ke rne l  a n d  a s s o c i a t e d  e x t r e m a l  f u n c t i o n s  fo r  t h e  i n e q u a l i t y  

f ( f l2)-- f  (fll) 
(6.2.2) ~ <__ M2{[(z - - f l l ) ( z - - f l2 ) ] -a)M2( f )  . 

1 Suffixes p, such as in (6.1.4)2, indicate the class Hp (here p = 2) for which the formula holds. 
This will help the reader to find the main results for each class. 
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1 ! IdOl s 1 f ~d~ 

81 f12 
(6.2.3) = ( I --Iflll ')(1~1--82)(I --/~/~s) ~ ( 1 --l~sl s)(~_/h)(l --~s/~) 

and we obtain  

(6.2.4)s 

1 --[/~1/~2 I' 
11 --/~,/~., Is( 1 --[~1 Is)( 1 --Ifls] s )  

f(/~2)--f(/~1) < [ 1--1fll/~Sl s ]l/s 
M s ( f ) .  

~-S-~l [ lflsls)J - - [  1 _/~,/~gj s ~ ; (  1 _ 

6.3. There is an interest ing applicat ion of (6.2.4). Let  0 < a < b < 1. I f f (z )  = 
OO OO 

.~.~Tanz" belongs to Hs, then its 'majorant '  f*(z) = 2.," ]a,~I zn also belongs to H2, and 
0 0 

M2(f*) = M~(f).  Clearly ]f'(x)l < f * ' ( x )  when a < x < b, so tha t  

.b b 

Ia If'(x)[dx ~ .alf*'(x)dx = f * ( b ) - - f ' ( a ) .  

Hence,  by  (6.2.4), 

.b 1 +ab lj,~ 
(6.3.1)2 fa,f'(x)Idx ~ (b--a) [ ( l _ a b ) ( i  ~a2a2)(l_bS)} M s ( f ) ,  

when 0 < a < b < 1. In  particular,  

.b b 
(6.3.2)2 I If'(x)ldx ~ Ms( f )  (0 ~ b < 1) 

(1 __b2)  l s 
O 

The extremal  functions are F ( z ) ~  Bz[(1--az)(1--bz)] -1. 
The integral in (6.3.1) is the  length of the map  of the interval  a < x < b b y  

the t ransformat ion  w = f(x) .  

6.4. We have  seen, in w 3.2, t ha t  Cauchy's  inequal i ty  provides  another  simple 

w a y  of dealing with ex t r emum problems in H2. Thus  we have,  for all r > 0, 

(6.4.1)s lao] + ]alIr + . . . + lan[r n <_ ( l + r S +  . . .  + rSn)1;SMs(f) 

with the ext remal  funct ions F(z) -~ B ( l + r z + r S z S +  . . .  +rnzn). 
The right hand side is of the  order ( l - - r )  -12 as n -~ ~ ,  uni formly for all f with 

given M2(f).  For  fixed f this order can be reduced to 1 

1 Hardy. 
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co 

(6.4.2)2 f*(r)  : ~.7 [an[ rn ~- ~  1/~ 
0 

as r -+  1--o. For, when m > 0 is given, then  

n -1,,'2 f* ( r )  < -'la,~lr ~ - ( 1 - r  2) a,~l 2 
0 " m + l  " 

and so 
[ co \1 /2  

lim (1--r2)l/~f*(r) <_ (_,~ [a,~ 12) . 
r-~-l--0 - m §  - -  

On lett ing m-+  0% we obtain (6.4.2). 

Cauehy 's  inequal i ty  is also available for ex t remum problems involving certain 

t ranscendental  kernels not  covered by our general theory.  Thus 

(6.4.3) ~/~iI f ( z )dz  = 2 ~  )l;l_lf(~) log ~_fl~ d~ 

has the logarithmic kernel k(z) = log {(z--f l ,) /(z--f l2)}.  Here 

./~2 r /~n+l Rr~+l / ~  ~ n + l  Rr,+11211/2 

(6"4"4)2 f f ( z )dz  /_.,a~'-" ~.~__~.,_ < ~.,2 --~'1 I ~ M ~e~ 
/~1 0 n q -  1 - -  ~ 0 n q -  1 ] j 2 ~ J ,  �9 

~ + 1 _  a~+l 
Equa l i ty  holds when a n = B ~ m , so t ha t  

n - k l  

K(z)  = k(z) = log _z~fll_ F(z) = B_ log 1--fllz 
z - -  fi2 ' z 1 - - ~ z  

m a y  be regarded as extremal  kernel and associated extremal  functions. We note  

t h a t  (6.4.4) implies 

,,/~= I oo 2n 

! 0  ( n §  M 2 ( I ) =  ~/~_V i 2 ( f )  

for all lfi~] < 1, ]rid < 1. 

If  B----1, then,  clearly, M = ( F ) =  M=(K) and hence II(F)I = M~(K).  The 

'constant '  in (6.4.4) is therefore 

lS:~ ?/ (6.4.6) M , ( K )  = log 1_~2 z z = ( I 2 ~ i ~ ~ 2 ~  

If  fll = a, f12 = b and 0 < a < b < 1, then,  integrat ing over the interval  a < x < b, 

we can replace f ( x )  in (6.4.4) by  If(x)[. For, (6.4.4)holds also for the majoran t  f * (x ) .  
In  particular,  
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(6.4.7)2 ] f (x) ldx<_ l O g l _ - ~  x M2(f )  (0 < b < 1),  
t 0 

and, on let t ing b ~ 1, 

i ~ ( f )  = i ~ ( / ) .  (6.4.8')2 If(x)[dx <_ 
0 V, 

(7.1.1) 

and we obtain 1 

7. Other Inequal i t ies  for which  the 'Natural'  Kernel  is Extremal .  

7.1. While the na tura l  kernel is always the extremal  kernel in H2, it  is, so to 

speak, accidental ly the extremal  kernel in certain special cases for other classes Hp. 

For  example, if p = cx~, q : 1, the kernel (z--fl) -(n+l) is extremal  provided 

tha t  n + l  is even. For, if n + l  = 2 ( r e + l )  say, we m a y  take, in (1.3.5), A = 1, /1 '  

to be empty ,  m +  1 of the ~i equal to fl and the remaining m of the ~i to be zero. 

The extremal  funct ion (1.3.6) then  becomes 

( z  f l ~ + i  
F(z) = Bz  ~ \ :~:-~ 

If('Zm+'(fl)] < ( 2 m +  1)!Ml{(Z--fl) -~(m+l)} Max [fl 
(7.1.2) 

= ( 2 m +  1)!M~{(z--fl) -(m+')} Max Ifl �9 

Hence, by  (6.1.3), 2 
~n 2 m 2 

,f(em+l)(fl)[< '2m+_l)! 1 1 1 2 + ( 1 )  ] f l ]2+(2)] f l [a_f_ . . .  
--  (1--1312) ~'~ / 

(7.1.3)oo 
m 2 

7.2. The extremal  kernel (1.3.5) will take  the form / / ( Z - - / 6 i )  - 1 ,  if H '  is e m p t y  

and I I (1 - -~ i z )  2/q = l l (1-- f l i z )  :'q-1. This will occur whenever I I (1--~iz)  1-q/2 is a 

polynomial.  

In  particular,  if q 4= 2 and  if all the  fli equal fl and are n +  1 in number ,  then  

the  degree ( n + l )  (1--q/2) of the polynomial  must  be a positive integer, so t ha t  q 

must  be rat ional  and less t han  2. If  q/2 : -  h/k in its lowest terms, then  n +  1 mus t  

be a multiple of k. Since q = p / ( p - -  1), this case will arise, in particular,  when p is an 

integer greater than  2. I f  then  p is even, n +  1 must  be a multiple of p - -  1 ; if p is odd, 

1 W e  wr i te  M ax  Ifl for t he  leas t  uppe r  b o u n d  of Jf(z)J in Izl < 1. 

(7.1.3) was  f i rs t  p roved ,  in a d i f ferent  way ,  b y  Szhsz (b). 
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t hen  n + l  mus t  be a mult iple of 2 (p - - l ) .  I f  79 =- ~ ,  q = 1, t hen  n + l  mus t  be even 

[w 7.1]; if p ---- 2, q = 2, t hen  n m a y  be a rb i t r a ry  [w 6.1]. 

The  'constant '  of the  corresponding inequal i ty  is 

Mq[(Z--/3)-=(n+l)] _~ M~ q[(z__fl)-(n+l)q.2] �9 

Hence,  by  (6.1.3), we obta in  

If('~)(fl)[ < (l_lflli)n+~/p 1+ I~1~+ I/~[%'-" 
(7.2.1)p -~-(#)  ,fl]2# ]l/q 

J M p ( f ) ,  

where #---- (n + l )q/2--1.  Th i s  inequal i ty  holds for  all integral ?9 >_ 2: i f  ?9 is even, 

then n +  1 mus t  be a mul t iple  of  p - -  1 ; i f  79 is odd, then n must  be a mul t iple  of  2(p--  1). 

Since 
17(1 --fliz) 1-q/2 = (1 --~Z) (n+l)(1-q/2) ~-- (1 --~Z) n-'a, 

we see t h a t  n--/~ of the  n roots  er i of the ex t remal  funct ions (1.3.6) mus t  equal /3,  

while the  remaining /~ roots vanish. Hence  these ex t remal  funct ions are 

(7.2.2) F(z)  = Bztt(z--fl)n-t~(1--flz)(n-tt)~ ---- BztL(z--/3)"-t*(1--flz)-q'+n. 

8. E x t r e m a l  K e r n e l s  w i t h o u t  Z e r o s  in  ] z l <  1. 

8.1. I t  is sometimes possible, if H '  in (1.3.5) is empty ,  to de termine  the  ex t remal  

kernel,  even when it  is not  the  na tura l  kernel.  This can be done by  Landau ' s  m e th o d  

which we discussed in w 3.3. 

Le t  o~ > --1.  I f  a~c~)(z) = s~)(z , where 

(8.1.1) s(na)(z) --__ { or n ~a _}_ [ a + n - - 1 )  n ] o \ n - - 1  a l z + " ' + a n z n '  

t hen  the  a(~a)(z) are the  (C, a ) - t ransformat ions  of the par t ia l  sums sn(z ) ---- d,~ of 

f(z) .  We write a(~) = O.(00(1), 8(00 ~-- 8ntOr 

Let  p > 1. The  funct ion G(z) of (3.3.7) corresponding to I ( f )  ---- s~ ~) is, for small [z], 

G(z) ----1-F ( cg ~ l lz-}- . . . -~- ( ~ + n  lz'~- }- . . . .  ( 1 - - Z ) - ( a + i ] - [ - - O ( , z l n + l )  , 
\ l / \ n / 

(8.1.2) 

so t ha t  

(8.1.3) 
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where 2---- ( a + l ) q / 2 - - 1 .  Hence,  by (3.3.13), we shall have 

provided that the polynomial 

2 2 + n  2 l/q 

(8.1.5) Pn(z) ---- l +  (2+l l ) z + ( 2 + 2 2 ) z 2 + . . . + ( 2 + n n ) z  n 

has no roots in [z] < 1. By Kakeya ' s  L e m m a  (3.3.14), this will cer tainly be the  case 

when 2 < 0, tha t  is when q < 2 / ( a + l ) .  In  particular,  when a ---- 0, we obtain for all 

q < 2, tha t  is for all p > 2, 

Is, l =  i a o N a l + . . . N a n ] <  1 +  + ( 2 ~ 4  / + " "  
(8.1.6)p>~ 

+ ( q(q + 2). . . (q + 2n- -  2 ) ~ ~ ] 1/q 
- 4 . -  ~2n / J Mp(f) . 

For  q = 1, p ~-~ oo this is Landau ' s  inequali ty.  

If  ~ = 0, q = 2/(a~-l) ,  then  we have, for all --1 < ~ <  l, 

0~+I 

(8.1.7) _(a) ( n +  1)-~- a IOn ~ i ~ ( f ) , ~  n T i  ~ ( f ) .  

If  ~ = 1, this is the  familiar inequal i ty  ]a~)] < Max (f). In  all these cases the  ext remal  

functions are, by  (3.3.11), of the form F ( z ) =  BznPn(1/~)/Pn(z) i-2/p. 
More generally, 

r n [ 1 ,  / 2 ~ - 1 \ 2 - 2 .  2+n 2r_2n 1/~ 
(8.1.8)p I ~  [ t ~  1 ) r t (~'~-22)2r-4-t-' ' '-L - ( n ) ] p(f)' 

where ]z[---- r, provided that the polynomial 

has no roots in [~[ < 1. By  Kakeya ' s  Lemma,  this will cer tainly be the  case when 

ei ther  2_< 0 and r > 1 - - - -  , or when ),_> 0 and r > 1+2.  
n 
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8.2. Le t  p > 1. I t  is often convenient  to shift a pole fl of a kernel k(z) to w = 0 

by the linear t ransformat ion 

w+/ff 1--1312 
(8.2.1) z - -  dz - -  dw  

1-}-/~w ' (1 q-/~w)" 

[see w 6.1]. Conversely, we then  have 

(8.2.2) z - ~  l + f i w  = 1-1,81 ~ 
w = 1 - Z ~ '  1 - Z ~  ' 

_ z- -y  
w--c~ = ( l+~f l )1 - - f i z  ' 

where Y = (~+fl) / ( l+~/5) .  

On t ransformat ion  I ( f )  becomes 

(8.2.3) 

where 

(8.2.4) 

Also 

(8.2.5) 

1 --~,z 
1 - -  5 w  ---- (1 q- 5fl) 1 - - f i z '  

l (w+ /~(w+/ i  ~-r~l~ ~w 
I(f) = ~ tw, f \ i + ~ w  / \l+t~w/(i+~w)2 

- 1 I ~(w),~(w)dw 
2Jri Iwl= 

j(w+/~ I ~-~ l  ~ 1 ~,~ w + / / [  1-1el~ ]'~ 
v(w) = ~ l + ~ w / t ( i . + a ~  , . (w) = k ( l + ~ w / L ( i T ~ w ~ J  " 

{1 i k ( W + f l ' ~  q l - [ f l ] 2  I ~/v 
Mq(k)  = ~ , , , < = ~  \ l + f i w /  [1-4-fiwl' Idwl} = M q ( u ) .  

8.3. Consider, as an example, the kernel k(z) = (z--fl) -(n+l), when 

(8.3.1) ~(W) = ( 1 - -  [/~1 2)--(n+l'P)W~(n+l)( 1 -q-aW) n+i-2/q. 

We can now employ the  same method  as in w 3.3 and  w 8.1. For  any  equivalent  

kernel K ( w )  the funct ion G(w) of (3.3.7) satisfies, for small [wl, 

(1 --I~12)n+I/pG(w) = ( 1 --]~12)n+l/pwn+lK(w) = ( 1 J[-~w) n+i 2/q-J t- O( lwln~l) ,  

(8.3.2)  [(1 --I/~l 2)n+i/PG(w)]q/2 ~-- (1 -~-~W) (n+l)q/2 l--~O(Iw I n+l) 

�9 " # - n w n q - o  w'~+l , = 1+ ( ; > +  ( ; )  " '  ) 

where # = ( n q - 1 ) q / 2 - - 1 .  Suppose now t h a t  the polynomial  

= § 
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n 

has  no  roo t s  in Iw[ < 1 and  hence  is of t he  fo rm  cH(1-~w). Also 
1 

(8.3.4) K(w) ~- (1--]fl] 2)-(n+l p)w-(n+i)p2q(w) 

is t h e n  of t h e  fo rm (I .3.5) [ w i t h / / '  ~ 0, fli ---- 0 fo r  0 < i < n-t- 1], and  hence  is t he  

e x t r e m a l  ke rne l  which  m a k e s  Mq(~)----Mq(lc) a m i n i m u m .  We  thus  ob t a in  

(8.3.5)p [f'")(/~)l • ( l_ l i l2 ) .+ lp  1+ l i l2+ l i [ 4 + " "  q- n lilt My( f ) ,  

provided that P,~(w) # 0 in lw[ < 1. B y  (3.3.1) and  (8.2.4) t he  co r r e spond ing  e x t r e m a l  

func t ions  are  of t he  fo rm  

(8.3.6) F(z) = Bw~Pn(1/ib)/P,(w) t-2:p. ( l+/~w) ~'~ ( w -  
Z - -  l 

T h e  cond i t ion  t h a t  Pn(w) # 0 in [w] < 1 is c e r t a i n ly  sat isf ied when  ~ < n and  is 

an  in teger .  T h e n  P~(w) = (1-t-fiw)~ and  we o b t a i n  aga in  (7 .2 .  1). 

W h e n  n = 0 t h e n  P~ ~ 1, so t h a t  for  all p >  1 

1 
(8.3.7)p If(t)[ < Mp(f) .  

- -  ( 1 _  lll2)l/p 

T h e  e x t r e m a l  func t ions  are  F ( z ) =  B(1--flz) -~p. 
I t  is ea sy  to  ve r i fy  (8.3.7) d i rec t ly .  B y  (1.3.5), t he  e x t r e m a l  kernel ,  e q u i v a l e n t  

to  ( z - - l )  -1, is c lea r ly  

[ 1 - - f l Z  \ 1--2(q 1 

Hence ,  using (6.1.3), we h a v e  

Mq(K) ---- ( 1 - - l t l  2)2:q-~Mq{( 1 --/~z) -~,q} = ( 1 - -  ttl 2)~;q-~i~/q{( 1 --fiz)- x} 

= (1 - -  [fll2)~"q-l(1--1fl] 2) -1/q = (1--1i l2)  -l/p, 

which  p roves  (8.3.7) anew.  

I f  n = 1, t h e n / t  = q - - 1  = ( p - - l )  -1, P~(w) = lq-(q--1) /~w,  and  we o b t a i n  

1 ( lil ~ ~aq . . . .  
(8.3.8)p If'(l)l < ( l_l~l~)a~p I +  _ ( P - - l ) 2  / lvlp(j), 

valid for p > 1 and all Jill --< P - -  1. I n  pa r t i cu l a r ,  w h e n  p > 2, (8.3.8) holds  fo r  all 

]fl] < 1. 

I f  n =- 2, t h e n  #---- ~q--1 .  Also 



has the roots 

E x t r e m u m  P r o b l e m s  in  t h e  T h e o r y  of A n a l y t i c  F u n c t i o n s .  

P~(w) = l + ~ w +  ~ ( ~ -  1)~w2 
2 

305 

I f  the modulus  of the right hand  side does not  exceed one, then  P2(w) will have no 

roots in Lwl < 1 for any  1/71 < 1. An e lementary  a rgument  shows t h a t  this is the ease 

when either # = 2 or when # < 1. Hence we find t h a t  1 

2 ' 1)~181,) ~:~ _ z2,~,p{X q-#21fll2-~ ~z(/z-- M,,( f )  (8.3.9)p If ' (#) t  < (1-- p ) x 4 

holds for all 18I < 1, when either p = 2 or p > 4. 

I t  should be noted  tha t ,  quite generally, (8.3.5) holds, for fixed p, when [fi[ 

is small enough. For, Pn(W) will then  have no roots in ]w L < 1. 

9. T h e  I n e q u a l i t y  f o r  [ ' (#) .  

9.1. In  general we are unable to complete the analysis of an inequal i ty  whose 

ext remal  kernel has zeros in tz] < 1. Bu t  the case of f ' (8) is sufficiently simple for 

us to do so. 

We have proved (8.3.8) for all 181 < P--  1 ; i t  holds, in particular,  for all I#[ < 1 

when p >  2. Le t  now p < 2 and 18[ > 79-1. The kernel (8.3.1) is here 

(9.1.1) ~(w) = ( 1 --]812)-('+1/V)w-~( 1 -{-~w) ~/p. 

The equivalent  extremal  kernel K(w) must  have a root ? in Iw[ < 1, so tha t ,  by  

(1.3.5), i t  is of the form 

(9.1.2) K(w) = A(w--7) ( ! - -~w)~ 'q- lw -~ . 

The constants  A and 7 must  satisfy 

- - y A  = (1--I#l 2)-(1+1/p), 

(9.1.3) A 1 + \  2 ~ - ~  I~,l ~ = (1 -181 /  ~# = - ~  

Hence 7~ is negative, t h a t  is 7~ = --t7] 181, so t ha t  

(,;) 1- -1711#1+  1 17I -~ = 0 
P 

1 S z s  (b ) ,  in the  case p = ~ .  

20. Acta mathematica, 82. Imprim6 le 13 mars 1950. 
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or  

[[flt2 §  2--p)]'"~--'lflt p 
(9.1.4) 17] = 

2 - - p  [(fl{ 2 § P(2--P)]~"'~ § [HI" 

Clearly, [7[ < 1 when p < 2 and [fl[ > p - -1 .  Also 

Mq(K) H [A [Mq{(1 --;w) 2;q} .~- [A IMp'q(1 --~w) ~- [A I(1 + [712) 1/q. 
H e n c e  

(9.1.5)p tf'(fl)[ ~ (1 + ]Tlu)l/q' 
{71 (1 -Ifli")'+~/P Mp( f )  

is valid for p < 2 and ]fl] > p - - l ;  ]rI is given by  (9.1,4). In  particular,  when p = l :  

q = c~, we have 1 

(9.1.6)~ Ifr < []fl]+(l§ 
_ il_lfl[~).,  -M~(f) . . . .  

B y  (1.3.6) and (8.2.4), the  extremal  functions for (9.1.5), are of the form 

/ 
F(z) = B[(1-- ;w)( l§  ~ w = 

(9.1.~/) 

l + 7fl/ 

The inequal i ty  (9.1.6) holds also for fi = 0. Bu t  then @] = 1, and there are an infinity 

of extremal  functions of the  form 

(9.1.8) F(z) = B(z a)(1--Sz), 

where a is an a rb i t ra ry  paramete r  with [~l < 1. 

10. Inequalities in H~. 

10.1. Inequali t ies  in H 1 have  special features as we explained in w 4. In  parti-  

cular, there will be genuinely different extremal  functions if the extremal  kernel has 

fewer than  the max imu m number  Of :zeros. This case, however,  must  be considered 

as exceptional,  since the  number  of parameters  appearing in the  kernel is then less 

than the order of the p rob l em: '  

Consider, for instance, the  kernel [(1--flz)/(z--fl)] n+l which is of extremal  form. 

I t  yields the inequal i ty  

1 Macintyre and Rogosinski. 
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/ \ d  n 
(10"1"1)1 (dz )  {f(z)(1--flz)'~+!}~=~ <~ n ! M , ( f )  

with extremal functions 
n 

(10.1.2) F(z) = B I I  (z.x~)(1 ~iz) (1--fiz) ~2(u+D, 
1 

the 'parameters  ~xi, I~i] < 1, being arbitrary. In  particular, when fl'--= O, t he  ele- 

mentary  inequality 

(10.1.3) If(n)(o)] < n ! i i ( f )  , ]an[ < M~(f)  

has this variety of extremal functions. 

I t  is also interesting to note that,  in the inequality (9.1.6) forf'(fl), the extremal 

function is of unique Sype when fl =~ 0. In the next paragraph we shall find the same 

with regard to f"(fl). We also note that  (9.1.6) may easily be obtained once more 

from (10.1.1) when n = 1.1 

10.2. Consider the kernel 

A B 

k ( Z )  - -  Z ' - - ' ~ I  ~ Z ~2  

where fll 4: f12. The corresponding extremal kernel must be, apart from a constant 

factor, one of the two kernels 

1-Lz 1-Lz 1-Z,: 1-L: 
(10.2.1) ~--/~1 z--fl2 ' 1--~z Z--ill z--t3 2 (l~l < 1). 

To the first case corresponds the inequality 

(10.2.2), l(1--[flll2)(1--~2/ffl)f(fll)--(1--]/ffzl2)(1--/~l/ffu)f(,Bu)l ~ 1fi2--flllM,(f), 

and the extremal functions depend on an arbitrary parameter a with Is] < 1. We 

find also, o n considering the residues at fil and fl~, that  

A 1--1fl~[i 1 /~1/~1 
(10.2,3) -':- 

B 1- l f l2 l  2 1 -/~,fl~ 

so that  this case is an exceptional one. 

In  the general case, we have, for every given a with [a] < 1, 

1 Macintyre and Rogosinski. 
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_ ~2--0r 
(10.2.4), I ( 1 -  [fll] 2)(1--f12fl,)lfl~ a_~ f ( f l l ) - - (1 -  [fl2l ~) (1-fllfl~)~_-~f(fi,)l 

<_ I f l z - - f l l l M , ( f )  , 

and the extremal functions are essentially unique. 

10.3. If we take, in (10.2.4), fl, = 0 and fl~ = r(0 < r < 1) and if we determine 

a, with [a] < 1, from 

~ - - r  
= ( 1 - r  ~-) i-  ~r' 

then an elementary calculation gives 

(10.3.1) ~ --~ ~(r-- V4~3r2) , 

Hence, by (10.2.4), 

I I i f '  (x)dx 

I~X] -1 
r +  V4--3r  2 

2(1 - - r  2) 

r 
= If(r)--f(O)l < ]~lM~(f). 

Here, by what we have proved in w 4.5, we may replace f '  by Jf'l, and obtain 

+ ~ / ~ - ~ r 2 )  
( 1 0 . 3 . 2 ) 1 ,  Ii]f/(x)[dx <_ r(r 

2(1 --r  2) M~(f).  

The extremal functions are, by (1.3.6), 

(1--az~ 2 
(10.3.3) F(z) ~ B \ l ~ z /  

with the above a. 

11. The Inequality for ["(fl) in Hp 

l l.1. The inequalities for f(*)(fl) in H. can be found by means of the algebraic 

equation (4.4.2), after having shifted the pole fl to 0 by a linear transformation. 

In the case of f"(fl) this method would lead to a cubic equation. We prefer here a 

direct argument which yields a parametric expression for the desired upper bound. 

To the kernel k(z) = (z--fl) -3 corresponds, by (8.2.4), the kernel 

(11.1.1) x ( w ) = i  l + ~ w  }3 
[w(1-- ]fl] 2 ) 

If K(w) is the equivalent extremal kernel, then 



(11.1.2) 

where 

(11.1.3) 

Extremum Problems in the Theory of Analytic Functions. 

K(w) = {w(1--1~12)}-aZ(w) 

Z(w) = 1-4- 3/~w A- 3(/~w) 2-4- O(Iwl 8) 
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is t ha t  funct ion,  regular  in [w I < 1, for  which M =- Max Ixl is a minimum. Clearly 

M > I .  

I f  M =- 1, t hen  fl =- 0, Z ~- 1,. and the  ex t remal  kernel  K(w) has no root  in 

Iwl < 1. 

I f  fl # 0, t hen  M > 1 and  

M(Z- -1  ) 3fiM i M2-4- 2 _ | 
- 

( l l . l . 4 )  W(w) -- w(M2--Z) M 2 1 

will be regular,  and  I~1 < 1, in Iw I < 1. Hence  1 

(11.1.5) 31fil~M(M~q-2) ( 31filM )~ 
< I - -  

(M2--1)  2 - -  M 2 1 

The  min imum condit ion on M requires equa l i ty  here,  t h a t  is 

(11.1.6) l f l [2= ( M - - 1 ) 2 ( M + I )  �9 
3 M ( M + 2 )  ' 

and  we must  also have  
w - - ~  3/~M 

(11.1.7) ~o(w) --  c~ --  
1 - -Sw ' M2 - -1  

The  r ight  hand  side of (11.1.6) increases f rom 0 to 1 when M increases f rom 1 to  Mo, 

where M 0 is the  root ,  greater  t h an  1, of 

(11.1.8) (M--1)~(Mq-1)--3M(M+2) .~ M a - - 4 i 2 - - 7 i + l  -- O. 

This root  is sl ightly greater  t h a n  5. Hence  

2M 
(11-1.9)1 ]f"(fl)l <- M~(f), 

where [fll is given in the  paramet r ic  form (11.1.6), the  pa rame te r  M running  f rom 

1 to  M 0. 

I f  fl 4= 0, M > 1, t hen  it  follows f rom (11.1.4) and (11.1.7) t h a t  X is a ra t ional  

funct ion  of degree 2, with ]X[ = M on [w I = 1. Hence  it has two zeros in 

Iw[ < 1, and therefore  K(w) has als0 two zeros in lwl < 1, and K(z) has two zeros 

in [zl < 1. I t  follows t h a t  the  ex t remal  funct ions F(z) are essentially unique.  On 

the  o ther  hand,  if fl = 0, t hen  the  ex t r ema l  funct ions depend on two a rb i t r a ry  

pa ramete r s  a I and as, wi th  [a~l < 1. 

1 For, l~v'(0)l < 1--Iqv(0),~, by (4.2.4) with ill=0. 
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12. Egervfiry's Inequalities in//1. 
CO 

12.1. Le t f ( z )  = ~ a n z  n be of class H 1, and let  r > 0. We wish to find inequali t ies 
0 

for  the  expressions 

(12.1 .1)  Sn_l(r ) = [aolq-]aI[r+la2[r2-k. . . -}-[an_l[r n-1 . 

As we have seen in w 4.5, we m a y  here  replace the lakl by  the  ak, so t h a t  the  corre- 

sponding kernel is 

(12.1 .2)  k(z}  : z-n[rn-1--~-rn-2zq t - . . .  -~-zn-1]. 

B y  (1.3.6), the  equivalent  e x t r e m a l  kernel  is of the form 

(12.1.3) K(z)  = A z - ~ I I  ' z - - ~ i  - - A z - ~ [ r ' ~ - ] - 4 - r n - 2 z + . . . + z " + O ( I z [ ' ~ ) ]  . 
1 - - S i z  

The problem of de te rmining  this kernel  has been solved, for  n / ( n +  1) < r < 1, by  

Ege rvs  1. We ver i fy  his results  and  ex tend  them for all r > 0. First ,  consider the  

polynomial  

sin 0--z~ sin (ng- 1)0-{-z "+] sin nO 
(12.1.4) P(z)  = sin O-+-z sin 2 0 + .  �9 �9 q-z ~-1 sin nO = 

1--2z cos O+z 2 

Le t  0 be a root  of sin nO = r sin ( n + l ) 0 .  Then,  for small Izl, 

P(z)  sin O--z  n sin ( n +  1)O+z n+l sin nO 

z n - l p ( 1 / z i  = sfn n O - - z s i n  ( n +  1)O+z "+1 sin 0 

(12.1.5) sin 0 l+O([z l  n) 

sin nO 1 - - z / r+O([z l  n+l) 

sin 0 

sin nO 

l + Z q _  / z \  n-1 ] 
+ O ( r z l n ) ]  " 

I f  now P ( z ) h a s  all its roots, in [z[ < I, t hen  

sin nO r n-1 P(z)  
(12.1.6) K(z)  - -  

sin 0 z 2n-1P(1/z) 

will be of the  form (12.1.3), and  hence will be the  ex t remal  kernel.  We shall p rove  

t ha t  P(z)  has all its roots  in [Z[ < 1, when 0 < 0 < ~t/(n-f-1), t h a t  is for 

r ----- sin n0/sin ( n + l ) 0  > n / ( n - - k l ) .  

Now this is t rue  when 0 < 0 < ~r/2n, b y  K a k e y a ' s  L e m m a  (3.3.14) applied to  P(1/z) .  

1 Egerv~ry; see also Landau (b). 
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I t  suffices, therefore,  to show tha t ,  for  0 < 0 < zt/(n-4- l) no root  of P(z) can be on the  

uni t  circle. Now P (e i~ )=  0 implies  

cos (nA-1)~ sin n0 - - cos  n q sin (nA-1)0 = - -  sin q ,  
(12.1.7) 

sin ( n +  1)~v sin n0 - - s i n  n~  sin (nA-I)0 = 0 
and  thus  

(12.1.8) sin s n 0 + s i n  2 (n-{- 1)0--2 sin nO sin ( n +  1)0 cos qv = sin 2 0 .  

This  equa t ion  de te rmines  cos ~v when  0 < 0 < n/(nA-1)i  and  (12.1.7) then  gives 

~ •  But ,  clearly,  e • is no t  a root  of P(z). W e t i n d ,  therefore ,  b y  (12.1.6), 

t ha t ,  for r > n/(n-4-1), 

(12-I-9)t laoI~-Ia l l r+""  A- tan lit  '~-~ < r '~-1 sin nOMl( f  ) 
- - -  sin 0 ' 

where 0(0 < 0 < ~ / ( n + l ) )  i s t h e  root of  sin nO = r sin (n~-l )0 .  

Since 

1 sin nO cos nO 
r sinO 1 - - r c o s O '  ~2(1--r  cos O) 2 =  1 - - s in  z n O - -  l --r2~ ~sin 20, 

~ ( 1  - - 2 r  cos 0 + r  z) = 1 

we can  r e s t a t e  this  resul t  as 

r n 

(12"l '10h [a~ " +[a"-'[r"7~ < ( l - - 2 r  cos 0-4-r2) l n M ' ( f )  

I n  par t icular ,  when  r = 1, then  0 = n / ( 2 n + l ) ,  and  we ob ta in  

I 

(12.1.11)1 ] a 0 ] W ] a l l + - . .  +Jan_l[ < 
- -  2 s i n ) / ( 4 n - t - 2 j  M~(f)  " 

(r > n/(n+l~).  

The  ex t r em a l  funct ions  for (12.1.10) are,  b y  (1.3.6),  

(12.1.12) F(z) ~- Bz2(~-l)P2(1/z). 

Nex t ,  if r = n / ( n + l ) ,  0 -= 0, we can t a k e  

(12.1.13) Q(z) = lira P(z).~_ l + 2 z - ~ - 3 z ~ +  ..... .4_nz,~_ 1 
o--~o sin o 

which has all its roots  i n  Izf < 1. W e  thus  have  

(12.1.14)1 [aoI~Llall~-~+...-I-]a,~_,lt-~-~) < n \ ~ /  M,(f) 
with  
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(12.1.15) K(z)  --  
n \n-45/  Q(z) 

z ~"-1 Q(1/z ) '  
F(z)  = Bz~("-l)Q~(1/z) 

as ex t r em a l  kernel  and  ex t r ema l  funct ion.  

Final ly ,  when 0 < r < n / ( n + l ) ,  we consider 

(12.1.16) R(z)  = sinh O+z sinh 2 0 + .  �9 �9 + z  n-~ sinh nO. 

Defining 0 b y  s inhn0  : r s i n h ( n + l ) O ,  we obta in ,  s imilar ly  to (12.1.5), 

R(z)  s inh0  1 +  + - - - +  +O(Izl '~) 
(12.1.17) zn-lR(1/z)  = sinh nO 

Again,  b y  K a k e y a ' s  L e m m a ,  R(z)  has  all its roots  in ]z )<  1. Hence  

(12.1.18)1 

lao] + [al[ r + . . . +[an_air n-1 < rn-1 _ _ _  
sinh nO 

sinh 0 

r ?~ 

: ( 1 - -2 r  cosh 0 +r2) l'z M~( f )  
with 

sinh nO r ~-1 R(z)  
(12:1.19) K(z)  --  

sinh 0 z ''"-I R(1/z)  ' 

M l ( f )  

(0 < r < n / ( n + l ) )  

F(z)  = Bz~("-l)R2(1/z) 

as ex t r em a l  kernel  and  e x t r e m a l  funct ion.  

We  no te  tha t ,  if r < 1, t h e n  r < n / ( n + l )  for large n. The  posi t ive  roo t  0 of 

sinh nO = r sinh ( n + l ) 0  tends  to log 1/r when n ~ oo, and  it  easy  to  see t h a t  the  

cons tan t  r ~-1 sinh nO/sinh O, in (12.1.18), tends  to ( l - - r 2 )  -~, in ag reemen t  wi th  

(8.3.7). 

13. R a d i a l  M e a n  V a l u e s  in  H t  ( a  L o g a r i t h m i c  K e r n e l ) .  

r 

13.1. r ~f f is of class HI, and  0 < r < 1, then  a n y  inequa l i ty  fOrlof(X)dxwil l  also 

ho ld  for fol f(x)ldx , as we saw in w 4.5. Also lf(0)t < M~(f) .  Hence  we shall  h a v e  an 

inequa l i ty  of the  t y p e  

(13.1.1) ! ] f(x)ldx <~ 2(r)M~(f)  . 
0 
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I f  4(r) is the  best  possible cons tan t ' ,  t hen  4(r)/r -~ 1 as r ~+ 0. Also 4(r)/r increases 

wi th  r, as is readi ly  seen on considering f(~z), where 0 < ~ < 1. I t  is well k n o w n  1 

t h a t  4(r)/r increases to u as r increases to  1. W e  wish to  de te rmine  this  4(r). 

B y  (6.4.3), the  kernel  of the  p rob lem is k(z) = log (z/(z--r)), where the  log has  

i ts  pr incipal  va lue  and  is regular  and  one-va lued  outs ide the  segment  0 < z < r. 

Any  equiva len t  kernel  is of the  f o r m  

z 
(13.1.2) ~(z) ~-- l o g - - ~ - u * ( z )  

z - - r  

where x*(z) is r egu la r  in [zl < 1. 

We can repea t  our a r g u m e n t  of w 2 wi th  obvious  modif icat ions .  I f  an  e x t r e m a l  

kernel  K(z) exists,  and  if F(z) is an  associa ted ex t r ema l  funct ion,  t hen  it  follows, 

as in (2.2.2), t h a t  the  funct ion  zF(z)K(z) has  cons tan t  a r g u m e n t  for a lmos t  all z on 

]z L ---- 1. B y  the  principle of invers ion w e  then  conclude t h a t  

z 
= C log (z r)(i 

Also, as in (2.3.2) (q -~ co), IK(z)l mus t  be cons tan t  for a lmos t  all z on Iz[ ~- I.  

As for  the  unique existence of K(z), it is again  sufficient to  show t h a t  a kernel  K(z), 
of the  f o r m  (13.1.2), exists  which is cont inuous  on Iz] -~ I and  for which IK(z)l ~- 9. 
on Izl ----- 1. This  4 : )L(r) is t h e n  the  desired cons tan t .  

Consider the  funct ion.  

r 8  s T 

( 1 3 . 1 . 4 )  ~ - -  e s - -  

e * - - I  ' T - - r  

which,  a p a r t  f rom a pole a t  s = 0, is regular  and  schl icht  for [~(s)[ < ~, and  which 

omi ts  the  values  O and  r. To the  circle tsl : 4, where  )[ < ~, corresponds  a cer ta in  

' dumbe l l '  like curve  F~ enclosing the  points  0 and  r. F o r  smal l  4 this  curve  is 

a p p r o x i m a t e l y  a circle of centre  0 and  radius  r/4. F~ shrinks as 4 increases,  and,  

when  2 ~ ~, i t  touches  the  segment  0 < T < r a t  ~ ---- �89 f rom b o t h  sides. 

Nex t ,  let  z -~ z(v) be  the  func t ion  which m a p s  the  inter ior  of / '~ on a circle 

]z} < ~o in such a w a y  t h a t  z(0) ---- 0 and  z(r) -~ r. This funct ion,  and  the  corresponding 

Q ~ Q(4), is uniquely  de te rmined .  As 2 decreases f rom ~ to  0, ~ will increase f r o m  r 

to inf in i ty ;  and  there  will be exac t ly  one value  4 = 4(r) for  which ~ ~- I. Fo r  th is  

va lue  of 4, the  inverse  funct ion  ~ ----- ~(z) will be regular  in [z[ < 1 and  cont inuous  

on [z I -~ 1. Solving (13.1.4), we f ind t h a t  the  func t ion  

1 Fej6r and Riesz. 
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(13.1.5) 
, r ( z )  

s = K ( z )  = t o g  r ( z - ) ~ r  

is of the form (13.1.2), t h a t  K(z) is cont inuous and IK(z) I = 2(r) on [zl = 1. Hence  

K(z) is the  ex t remal  kernel  of our  problem, and 2(r) is the  desired best  possible 

cons tant  in (13.t.1). The  ex t remal  funct ions  F(z) are de te rmined  b y  (13.1.3). 

There  is an a l te rna t ive  way  to  define K(z). I t  follows f rom our  discussion t h a t  

the  funct ion s = K(z) maps the  circle Izl < 1, cut  along the  segment  0 < z  < r, 

on the  inter ior  of the str ip I~(s)l < g less the  circle Isl < 2. I t  is clear t h a t  this 

mapping  p rope r ty  defines K(z) and 2(r) uniquely,  since the 'moduli '  of the  two twice- 

connected d o m a i n s  must  be the  same. 

We can use this p rope r ty  to  obta in  est imates  for  2(r). Fo r  instance,  the  

t r ans fo rmat ion  ~ ~- (zq-~)/(1 q-az) will map  the  uni t  circle on itself and the  segment  

0 < z < r onto  the  segment  --c~ < ~ < c~, p r o v i d e d  t h a t  

rq-c~ - r  
(13.1.6) - -  ~ ,  a 

l+~r  1+1/i-~ '~' 

The  t rans format ion  s ~ i2/~ will m ap  the  circle ]zl < l,  slit along the  segment  

0 < z < r, on to  the  exter ior  of the  circle Is] : 2 slit along the  two par t s  I~(s)l ~> 2/~ 

of the  imaginary  axis. Since this domain  must  h a v e  the  same modulus  as the  str ip 

t~(s)l < ~ less the  circle IsJ ~< 2, we conclude t h a t  these two slits mus t  en te r  the  

strip. Hence  2/~ < ~, or 

r~  

(13.1.7) 2(r) < l_~_~/~_r2. 

This es t imate  for 2(r)/r ranges f rom ~ to z as r increases f rom 0 to 1, while the  t rue  

range is f rom 1 to 7~. However ,  for  r near  to  1, it  is a useful es t imate .  For  small r, 

t h e  crude es t imate  

l q - r  
(I3.1.8) 2(r) < �89 log 1--~--r' 

ob ta ined  on in tegra t ing  (8.3.7), is bet ter .  

According to  the  foo tno te  to (4.5.2), the  inequa l i ty  (13.1.1) can be appl ied to 

Ifl p, when f belongs to H v. We then  obta in  

(13.1.9) I lf(x)[Pdx < 2(r)M~(f). 
0 
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Equality, however, for the 2(r) defined above, is only possible when p = 1. If p ~ 2 
oo  

and f ( z ) =  ~ anY, n, we find 
0 

~o 7/: oo  

o~ ~ lamlla~l rm+~ <),(r).,~,[a~l ~ < ~o lan[ 2 
(13.1.10) ~ ~X"Tmq-nq-1 - -  r 1-}-(I--r) '/e " 

m ~ 0  n = 0  0 

This is a generalisation of Hilbert's well known inequality 1, which itself is obtained, 

with best possible constant ~, on letting r -+ 1. 

14. Linear Res tr i c t ions .  

14.1. We have been concerned so far with two conjugate extremum problems, 

I and I I  of w 1.3. I t  is possible to combine the two and propose the question, what 

are the possible values of I ( f )  when M~,(f) and the values of f at a finite number of 

points in Iz[ < 1 are prescribed. 

This problem has at tracted considerable interest in the case p ~ oo. When 

I ( f )  --  f(fl), then the problem .is effectively solved by Schur's algorithm : unless the 

class of functions is empty, the region of possible values of f(fl) is a certain circle 2, 

For other forms of I ( f )  the discussion is much more complicated, but a number of 

special cases have been investigated by Dieudonn5 a and Rogosinski 4. 

For other values of p the problem is usually difficult, but we are able to treat  a 

few special cases. 

14.2. Let us consider the subclass Hp of functions f of Hr,, for which f(0) = 0. 

We then have f (z)  --- zg(z) where g also belongs to Hp. In fact, Mp( f )  =- Mp(g). If 

I ( f )  in volves the kernel k(z), then, clearly, I ( f )  = I*(g) where I*(g) involves the kernel 

k*(z) ----- zk(z). Extremum problems for the  class ~/p are, therefore, amenable to our 

general theory, We obtain, for instance, from (8,3.7) at once the inequality 5 

(14.2.1)p If(fl)[ --< (1 --Ifll 2~)1/p My(f) 

with extremal functions F(z) ~- Bz(1--flz) -~/p. 

1 Hardy,  Littlewood and P61ya, Chapter IX .  
z Pick (a), (b). 
s Dieudonn& 
4 Rogosinski. 

A suffix _p relates to the class Hp. 
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14.3. To find inequalities for f ' ( f l )  in /-/p, we have to consider the kernel 

k*(z) ~ z / (z - - f l )  2. On using the transformation (8.2.1) we are led, b y  (8.2.4), to 
the kernel 

(14.3.1) ~*(w) = (1 --Ifll 2)~(I+X'P)W-2(WJu~)( 1 -~W) 1-2~q" 

The corresponding extremal kernel is, by (1.3.5), of one of the two forms 

(14.3.2) (i) A(1--Sw)'~:qw -2, (ii) A (w- -cQ(1- -~w)~ 'q - lw  -~ , 

where A ~/3(1-1/312) ~1+1,p) or --~A ~-/3(1-1/312)-~l+vp), respectively. In both cases 

(14.3.3) M q ( K * )  : - I A } M ~ q { ( 1 - - ~ w )  2} ~- IA[(I +[~I~) ~/q. 

The corresponding extremal functions are, by (1.3.6), 

(14.3.4) (i) r = B ( w ~ o ~ ) ( 1 - - S w )  'el'-', (ii) q~(w) = B(1--Sw)2;P; 

or, by (8.2.4), F(z )  = zG(z) -= Cz(l+flw)2:vq~(w), that  is 

( 1 - ? z )  ~'p Cz (z - -v ) ( l=  ~z)'~'p-1 , - -  (ii) F ( z )  = ~z-  - -=-- -= 04.3.5) (i) .F(z)  ~-- (1 -- f lz) '  J' (1--/~z) j'p' 

where r == (~q-fl)/(lq-~/~). 

First, consider the case (i). Equating the coefficients of w in ~*(w) and K * ( w )  

we find for c~ the equation 

2/3_ (14.3.6) - - - -o~ = l+(1 - -2 /q ) ] f l l  2 . 
q 

Hence 85 must be negative. We also require I~l < 1. This implies 

o r  

(14.3.7) 

~ +  - 1  ifl[ ~ < l f l { ,  

21Z1(1+1/31) q 
l < q <  , < I/~l < 1.  

1+1/3t ~ l+Vl+2q-q~ 
This case is only possible when q < 2, p > 2 [as is also seen from (14.3.6)]. By 

(14.3.2), (i), we obtain for these Iflf 

(14"3"8)e }f'(/3)] ~< (1 --}fll~) l+x,p (1 + ]~] 2) lqMp( f ) .  

The extremal functions are those of (14.3.5), (i). 

The case (ii) must cover the remaining range of I/3[; in particular, all [/31 when 

q > 2. We find, similarly, tha t  

/3 
(14.3.9) 

0r 
- -  [ 1 + ( 2 / q - 1 ) 1 ~ 1 2 ]  = 1 + ( 1 - 2 / q ) 1 / 3 1 2  . 
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Again /5~ is negat ive,  and  we mus t  have  [al < 1. Solving (14.3.9) we find 

( 2 ) 
(14.3.10) a : (l_o]fl]2)_f_[/Q~/514_6~]/si2+ l ~ = q - -1  . 

We then  obtain,  in this case, 

1/51 (1+1~]~) ~''q 
(14.3.11)p I,f'(/5)l <~ (1_1/512)~/p [~1 Mp(f)  

with the  ex t remal  funct ions (14.3.5), (ii). 
When  [~l-"  1, t hen  (14.3.9) becomes (14.3.6): we are in the  ex t r eme  case 

q = 21/51(1+1/51)(1+1/512)-1 , and the  two est imates  (14.3.8) and (14.3.11) become 

the  same. 

We remark  t h a t  a single formula  holds for  all /5 when p < 2, while two are 

required when p > 2. Wi tho u t  the  condit ion f(O) = 0 this s i tuat ion is reversed.  

I f  p = l, t hen  0 = --1,  and {14.3.11) becomes 

(14.3.12), IJ"(/5)l < M , ( f ) .  
- 2 ( 1 _ 1 ~ i , 2 ) 2  

I f  p =  2, t hen  e : O ,  ~ = - - t 5 ,  and so 

( 1 4 - 3 - 1 3 ) z  [ f ' ( f l ) [  < ( 1 +  [/512)"2 M2(f) 
- - -  (1_1/51~) . ' /"  - 

I f  p = co, then,  by  (14.3.8), the  case (i) occurs when [/51 >~ W ~ - 1 .  We then  find, 

by  (14.3.6), t h a t  

1 - 1 / 5 1  ~ ( 1 +  1/512) ~ 
- - 5 - -  , 1 +  levi 2 -  

2/5 41/51 ~ 
Hence,  by  (14.3.8), 

(1-W-I/512)2 
(i4.3.14)oo [f '@l < Max Ifl 

- 41/5{(1--f/5[~) 
( V ~ - I  ~ 1/51 < 1). 

In  the  second case, we have,  b y  (14.3.9), 

l + l ~ l  ~ 
0r 

so t h a t  (14.3.11) gives 

(14.3.15)oo If'(,6)l < Max Ifl 

l -  1/512 
]/SL ' 

(I/51 < V 2 - 1 )  �9 

B y  (14.3.5), the  ex t remal  funct ions are 
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(14.3.16) (i) F(z) -~ Cz z - -~  (ii) F(z) -= Cz ,  
1 - - ~ Z  ' 

respectively. The formulae (14,3.14) and  (14.3.15) were first proved by  DieudonndL 

14.4. In  the case of the second der ivat ivef"(f l )  in H~,, the kernel k*(z)=2z(z-- f l )  -3 

is t ransformed into 

(14.4.1) K*(w) = 2(1 --It~12)~ ~+':P)w-3(w+fl)(1 +fiw)~:'p 

The equivalent  extremal  kernel K*(w) is of one of the  three forms 

(i) A[(1--~iw)(1--~2w)]~"qw -a , (ii) A(w--0(1)(1--51w)2/q-~(1--~2w)2/qw -a , 
(14.4.2) 

(iii) A (w--  ~1')( w -  0(2)[( 1 -- ~W)(1 --52W)]~"q--~W -3 , 

where  A, o r  - - ~ A ,  or 0(z0(z A equals 2fl(1 --I/~l ~)~"~+~/P>, respectively. F o r  a general p 

the actual  de terminat ion  of this ext remal  kernel is bound to be very  involved. We 

shall, therefore, have to confine Ourselves to a few remarks.  

Consider the case when K*(w) is of form (i). We m a y  assume tha t  0 < fl < 1 

and must  then  have = 

fi[(1 -- ~aw)(1 -- ~2w)] 2'q = (w4/~)(14flw) ~'p 4 0 ( I w l  ~) �9 

Clearly, p = 1, q ~ cx~ is impossible. I f  p > 1, we mus t  have 

(1 - -~ lW)(1- -~zW) 
(14.4.3) 

(~fl ] [q(q--2) q(q--1)[  ( q . 1 ) ( q - - 2 ) ~ 2 ] w 2 "  = I 4  + ( q - 1 ) ~  w + [ - ~ - ~  2 2 ' 

t ha t  is, this polynomial  P(w) -~ 1 4  U w 4  Vw 2, say, mus t  have no roots in Iwl < 1. 

I t  follows, first, t ha t  U = ]~14~21 < 2, and it is readily seen tha t  this implies q < 2. 

Hence the case (i) is certainly impossible when p < 2. I f  q < 2, then  an e lementary  

discussion shows tha t  P(w) has two real roots, and  our condit ion on these becomes 

U 4 ~ U 2 ~ I V  < 2, or U - - V <  1. For  such q and fl we shall then  have 

(14.4.4)z~ 

2I~1 1+ +(q-1)lfll  
[f"(fl){ < (1 - :  Ifll~) 2+1/p 

2 4 2 M p ( f ) .  

1Dieudonn6. 
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When  p --- 2, then the na tura l  kernel (14.4.1) is the  extremal  kernel:  it has the root  

w ---- - -8  in [wl < 1 and is of the form (ii). We obta in  for all Ifl[ < 1 

2 
(14.4.5}~ If"(fl}]--< (1_1fll2)5/2 [l+4lfl}2§ �9 

In  the  ease p = 1 the  ext remal  kernel is of the  form (iii) when fl # 0. For,  we know 

tha t  (i) is impossible, and ( i i )would  imply 

( 1 - w / o , O ( 1 - x ,  lw)~-' = ( l + ~ / ~ ) ( l + ~ w ) ~ + O ( l w l  ~) (o < ~ < 1).  

Equa t ing  the coefficients of w 2, we would have -2 - c~!-- ~1/~1 ~ fl 2 + 2 which is impossible 

when fl > 0. B y  (4.4.2) the  resulting inequal i ty  is 

2C 
(14.4.6)~ ]f"(fl)l ~< M l ( f ) ,  

- (1_1#1~)3 

where C is the  greatest  root  of the  cubic equat ion  

(14.4.7) -( l~l-t-2,1~l  3) e~--(1-4-51~12-4-4]~14) --(3[~1+7[fl13+21~1~) I 
ee--(lq-9lfltzq-8lfllaq - 

+ ~l ~) 

~ 0 .  

14.5. Inequali t ies  for f"(fl) in _H~ can be obta ined  in e lementary  form. We m a y  

assume again tha t  0 < fl < 1. The form (14.4.2), (i), of the  ext remal  kernel will be 

required whenever  
w w 2 

,p(w) = 1-+ 28 s ~  (8 > o) 

has no roots  in [wl < 1. Since these roots are 2(1• we obtain,  b y  (14.4.4), 

(14.5.1)oo 

for [ill--> 

21/31 [ 1 1 ] 
[f"(flil --< (l _lfl},)~= l 1 +  4 - ~ + 6 4 ~ J  Maxlfl  

2(V3--1 ) 

(1+81fl l2)  ~ 

32 ~ ~ (1 -1~t2)  ~ 

l + V 3  1 
4 

Max Ill 

1 Rogosinski. Par t  of the inequality (26) there is wrong, owing to an arithmetical slip on p. 104, 
and should be replaced by the present formula (14.5.3). 
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For  smaller ]ill the  form (1~i.4.2), (ii), of the  extremal  kernel becomes available;  

t ha t  is 
K * ( w )  : A ( w - - a i ) ( 1 - - ~ l w ) ( 1 - - ~ w ) 2 w  -a 

where - - A ~  : 23(1--1312) -2. We require 

(w) 
1 - ~  ( 1 - ~ w ) ( 1 - ~ w ) 2  = l+~+O(iwi~). 

If 0 < 3 < 1, the  a will be real, because of the uniqueness of the  ext remal  kernel. 

Comparing coefficients we find 

~ x 1 - ~ 1 / o r  2 : - - l / f l ,  l~ t -2~x2(OCl-~- l /~ l ) -~-cx~  : O .  

Writing y = 0~1~-1/~ 1 we obtain  y = - - [2~2+1/f l  ] and, finally, 

3 1+2Vi+~3~ 
(14.5.2) ~2 --  ~ : --  

I + 1 / 1 + 3 3 2 ,  3fl 

Clearly, 0 < a2 < 1. Also y increases from --c~ to - -2  when 3 increases from 0 

to ~ ( l + V 3  ). Hence  a 1 is negat ive and lall < 1 for 0 < fl < ~(1+1/3).  

Next ,  

i t ( K * )  = [A[ f 

_ IAI I 
27t tu, i = a 

23 23 
( 1 - 3 ~ )  "- [ r + 2 ~ + ~ y ]  - ( 1 - 3 ~ )  " 

[(W--O(1)(I --0(lW)(1 --0(,2W)21 [dw[ 

eft 
I(1--~w)(1-~xzw)12ldwl = [~[(1 fi~)2 [l+(~a+~x2)2+(~x~,x2) 23 

[1/3-~@] 

2 [ f12(1+21/i+3fl ~) + . . . .  ===-  _=_ }, 
(1-f l ' )~[  3(1+1/1+3fl~)~ 

or, af ter  an e lementary  calculation, 

M I ( K *  ) - -  

We obtain,  therefore,  

4 1 
3(1 ~-f12) 2 [ 

1 + 3 3 2 + 3 3 4  ] 
-~ l _{_ ( l _{_ 3f12):~j~ " 

4 [ 
(14.5.3)oo If"(fl)l < |1-~ 

_ - 3(1_1fl1~)~ t 

for o < [ill < k ( l + V 3 ) .  

l +  31zl +3 ! 1:1 JIJ 
1-t-(l§ a~] 
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If  t131 ~ �88 3), bo th  (14.5.1) and (14.5.3) become identical,  the  common 

'constant '  being 128(2+~/3) / (29+ 19} 3). The ext remal  functions can be ob ta ined  

in each case in the  usual  way.  

14.6. In  the  preceding paxagraphs it was assumed tha t  f(0) = 0. We discuss 

now the case where a value f(0)  different from zero and T = M p ( f )  are given. 
OG 

If  f (z )  = ~ 'a  z" belongs to H~, then,  for Ifll ~ 1, 
0 

co 12 oo co 

~ ,  ~ < )~5~.1 ~- ~l~l~-,~= (T~-if(o)l~)lfll~-(1-1~l,)-~ ] f ( f l ) ' f ( 0 ) 1 2 =  "7" '~' I 1 

tha t  is 

]t31 o)~ : (T  M~( f ) )  (14.6.1)~ If(13)--f(O)l <(1_11312)~2 (T~---If(O)I - = . 

Equa l i t y  will be a t ta ined  if, and only if, a n = )~'~ for n > 1; tha t  is when f ( z )  is 

of the  form 

(14.6.2) F(z) = f ( 0 ) + 2  l ~ z '  

where I),l is determined by  T ~--M2(F ). Any point  on the circumference of the  

circle {14.6.1) is a t ta ined  for suitable 2. For  smaller ]2] interior points of the  circle 

are obtained,  but ,  in order to retain T, we have to a d d  to F(z) a suitable term 

cz(z--fl),  say. The closed circle {14.6.1) is thus  the  exact  region for possible values 

of f(fl). 

14.7. The corresponding result  for H ~  is well known.  A~,simple use of Schwarz 's  

L e m m a  shows tha t  the exact  region of var iabi l i ty  for  f ( f l ) i s  the  closed circle C 

tha t  corresponds to the  circle Itl < Ifll by  the  t r ans fo rma t ion  

T t T §  
w = (T = Max If I). 

T + f ( O ) t  

14.8. For  the  class H 1 the problem is a little more difficult. We m a y  assume 

tha t  0 < 13 < 1 and tha t  0 <.f(0) < T Mr( f ) .  
The two inequalities (10.2.2) and (10.2.4) are at  our disposal.  We use first the  

latter,  t ha t  is 

2 13---  0~ 
(14.8.1)1 1(1--/3 )~-5-flf(13)+~f(0)l  < / 3 T  (l~l < 1).  

Equa l i ty  is a t ta ined  for 

2 i .  Acfa ~mill(,m~r 82. h u p r i m b  ie 13 m a r s  1950. 



322 

(14.8.2) 

where 

(14.8.3) 

Hence  ~ is restr ic ted to the circle 

(14.8.4) 

Here  the  points 

(14.8.5) 

A. J. Macintyre and W. W. Rogosinski. 

F , (z )  = f(0)(1 -- ~z)2( 1 -- f lz)-" ,  

T = M, (F0  = f(0) I1 + - i ~ - ~ (  ] 

) 1)] 

~ = f l j -  ( l - - f t" )  f ~ ) - - I  

a r e  endpoints  of a diameter .  We must  also have  [~x I < 1 if (14.8.1) is to be available.  

F i rs t  suppose tha t  f (0)  > ~(1 +fl)T.  Then  c% < 1 and the circle (14.8.4) belong~ 

to ]al < 1. When c~ describes (14.8.4) then  the  value of F~'~(fl) describes the circle 

(K) s = f l  ~(,)) 1--~fl 
1 - t ~  ~ 

in the half plane 9{s > 0. For  suitable ~i, a2 on (14.8.4), and a suitable t with 0 < t < 1, 

the  funct ion  
! 2 l i2  G(z) = tF~, (z)-}- ( 1 --t)F~.,_ (z) 

takes any  prescribed value G(fl) inside or on K.  Also G ( 0 ) =  f l " (0) .  

Hence  w = - H ( z ) =  G'-'(z) takes any  prescribed value inside or on the  curve  

F = K 2, the  t ransform of K by  w = s:. Also H(0) -~ f (0)  and M,(H)  = M~(G) < T. 

Hence,  adding to  H(z) a suitable te rm cz(z--fl), we see that, for given T and given 

f (0 ) (>  �89 any prescribed value of f(fl) inside or on F can be attained. 

Next ,  let f ( 0 ) <  �89 in which case oc < - - I  and the  circle (14.8.4)belongs 

to loc I > 1. Here  formula  (10.2.2), t h a t  is 

(1.4.8.6)1 I ( 1 - f l " ) f ( f l ) - f ( 0 ) l  <~ f i t  

becomes available.  Equa l i ty  is a t t a ined  for 

(~4.8 .7)  F * ( z )  = - -  f ! 0 )  ( z - - ~ ) ( ~ - - ~ ) ( 1 - - ~ z ) - ~ ,  

where oc i s  restr ic ted to the curve 

f (0 )  [ Ifl--ocl s] 
(14.8.8) T = M ~ ( F * ) =  %1 [1+ i:Z,j. 

Now the circle (14.8.4) encloses [~l ~< l. For  fixed arg ~ and l~I --- 1 the r ight  h an d  
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side of (14.8.8) equals t ha t  of (14.8.3), and  hence is not  greater  than  T. I t  follows, 

t ha t ,  for  eve ry  given arg a, there  exists an a wi th  0 < [~1 ~< I sat isfying (14.8.8): 

the  curve  of these a encloses a ~ 0. On the  o ther  hand,  if ~ satisfies (14.8.8), t h en  

an e l ementa ry  calculat ion shows t h a t  

(14.8.9) ( 1 - - ~ ) F * ( ~ )  - f ( 0 )  = - -8  E~ET, 

so t h a t  the  values F*(~)  describe the  whole ci rcumference of tile circle (14.8.6). 

An argument ,  similar to  t h a t  used above,  shows that every point of the closed circle 

(14.8.6) is a possible value for f(fl); provided that f(O) ~ �89 

Las t ly ,  if �89 < f ( 0 ) <  �89 t hen  the  circle (14.8.4:) meets  the  circle 

1~1 --  I a t  two points  (or, when f(0)  = �89 touches  it  at  a+ -~ l ) .  Apar t  f rom 

these points  the  values of arg a are divided into two categories. E i the r  ~he equat ion 

(14.8.4), or tile equa t ion  (14.8.8) has a root  a wi th  Ja] < 1. All these possible vahms 

of a form a simple closed curve consisting of t ha t  pa r t  of the  circle (14.8.4) for  which 

Is] < 1, and, for  the  rest,  of  an arc of the  curve  (14.8.8). The  corresponding values 

F(fl) of the  ex t remal  funct ions  lie on a simple closed curve 1"* consisting of an 

arc of 1" and an arc of the  circle (14.8.6). This curve F* and its interior constitute the 

exact region of possible values f(fi), when �89 < f(0)  ~ �89 

21" 
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