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1. Introduction.

1.1 Let p > 1. We deal in the following with the class H,, of all functions f(2)
regular in |2| < 1 for which the mean values

W27 ]1/11

1 .
(1.1.1) M (f,r)= {—\ If(rezo)lpdef

27500

are bounded for 0 < r < 1. If p = oo, the class H_, is the class of all f(z) regular and
bounded in |z| < 1. Also
(1.1.2) M(f, 7) = Max |f(2)] -

lel=r
By $, we denote the wider class of all functions f(z), regular in |2| < 1 except perhaps
for a finite number of poles, and such that M (f, r) remains bounded ‘eventually’,
i.e. for ry<r <1 and some ry < 1.
It is well known! that any function f(z) of H,, (or ,) possesses boundary values
(1.1.3) fe?) = lim f(re®)
r—>1—o0

for almost all 6, and that, if p < oc,
W27 ) .

(1.1.4) S f(rei®)—f (e?)[PdB > 0
0

as r — 1—o, so that f(¢") is integrable L?. If p = oo, f (re’®) - f(e’?) boundedly for
almost all 0.

1 Zygmund, 162-164. Compare the list of references at the end of this paper.
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It follows that, if p < oo,
jl 27T . 1'p
(L.1.5) M (f,r) ~ 12 SO 1f(e' )I”de} = M,(f, 1) = M(f)
as r - 1—o. Similarly, in the case p = oo, M_(f,7) - M_(f, 1), the essential upper
bound of the boundary moduli [f(e?)].
We define ¢ by p~'-+¢~1 = 1, so that to p = 1 corresponds ¢ = oo and vice
versa. The classes H, and H,, or §, and ,, will be called conjugate classes. The

class H,, or §,, is self-conjugate.

1.2. Consider the integral

1
(1.2.1) =1 ==\ for,

271 o [Zi=1

where f(2) is a function of H, while the ‘kernel’ k(z) belongs to the conjugate class
9, By Holder’s inequality I exists and
(1.2.2) | < M (f)M (k) .
The problem we discuss in this paper is that of finding the mazimum of |I| for all
Junctions f(z) of H,,, when M (f) and the kernel k(z) are given. That the maximum is
attained follows from the obvious fact that the functions are uniformly bounded in
every circle |z| <p, 0 < ¢ < 1, and therefore form a normal family.

The integral I(f) is the sum of the residues of f(z)k(z) in |z| < 1. For, by Hélder’s
inequality, f(z)k(z) belongs to , and hence, by (1.1.4), I is the limit as r -~ 1—o0

of the corresponding integral over the circle |2| = r.

If, for instance, k(z) has simple poles g, f,,... f, with residues ¢,, c,,... ¢,
in |z] < 1, then
(1.2.3) I = c¢,f(By)+cof(Bo)+ - e, f(B,) -
If k(z) = r!(z—B)"", |B] < 1, then
(1.2.4) I=f94).
If
(1.2.5) f@) = z*akzk , k(z) =Y ek
0 0
then
(1.2.6) I = cpagtcay+---+c,a, .

In all these cases the extremum problem in H, is of special interest.
1.3. We observe that I(f) does not change its value if the kernel k(z) is replaced
by any other kernel x(z) of §, which has the same poles and principal parts in



Extremum Problems in the Theory of Analytic Functions. 277

|z] <1 as k(z). The inequality (1.2.2) will hold when k is replaced by x. Hence,
if &, is the class of all such kernels %, we shall have
(1.3.1) H| < M,(f) - Min M (x) .

XE Ky
Again, it is easy to see that the minimum on the right hand side is attained in ®,.
We wish to prove that (1.3.1) is the best possible estimate, i. e. that, for given
M (f) and k(z), '

(1.3.2) Max [I(f)| = M,,(f)- Min M ().

This will be true if, and only if, there exists an ‘extremal function’ F(z) of H, and
an ‘extremal kernel’ K(z) of &, such that

(1.3.3) \[(F)| = M,(F)- M/K).
Formula (1.3.1) then becomes
(1.3.4) 11| < M (f)M(K).

Now suppose that the given kernel k(z) has the poles! §,, B.,... f, in |2| < 1,
each pole repeated according to its multiplicity. The discussion of the case of equality
in Hélder’s inequality (1. 2. 2) will lead to the conclusion that (1.3.3) is true if,
and only if, K(z) and F(z) are of the form?

2—x, "1 n l-—ﬂz _
1.3.5 K(z) = AT — " 1—a.2)29 2T (| B s
( ) (=) 1_&#11]( &;2) III "y (1—pB;z)
and

— . n—1 n
(1.3.6) Fe) = BII' "¢ [T A—&a° [ 1—F2) "7 .

_(xiz 1 1

Here the n—1 parameters «; satisfy |«;| < 1, IT' extends over all, some, or none of
the «; with |o;| < 1, II'" is the complementary product with respect to all «;, and
A and B are constants.

If we take B = 1 and then write F, for F, we obtain

MUF,) = [A|"MYK), M,(F,) = |A[""M{(K),

so that, by (1.3.3),
H(F,) =M

4

(K)M,(F,) = |A["PMYK) ,

q P

and so
(1.3.7) M (K) = |A['P|I(Fy)|Me .

1 If k(z) has no poles, I = 0; we always exclude this trivial case.
2 The powers involved mean the principal determinations equal to unity for z = 0 and regular
for |z| < 1.
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This formula is sometimes useful for determining the constant M (K).

We shall find it convenient to consider the function

(1.3.8) Q) = K(z)]]f—;%

which is regular in |z| < 1 and belongs to H,.
Now K(z) must have the same given principal parts as k(z) at its poles g,.
Hence the values of Gz} and certain of its derivatives will be prescribed at the

points §;; i. e. if §, is a pole of order r,, then the values
(1.3.9) (B, G'(By), . .. GTV(By)

are given.
Evidently M (G) = M (K). If, therefore, K(z) is an extremal kernel, then G(z)

will make M (g) a minimum for all functions g(z) of H, which behave in the prescribed
manner! for all the z = g,.
Finally, let

(1.3.10) H(z) = G2) [T (1—Bz2)e.

Then H(z) belongs to H, and takes given ‘values’ at the points §,. By (1.3.5) and
(1.3.8), it must be of the form

n—1

(1.3.11) Hz) = Al =% [T (1—&;2)% .
1*0%2 1

This formula involves a problem of interpolation, and the desired result (1.3.2)
will be true if, and only if, this interpolation function H(z) exists. In fact, the solution
of any of the following three problems entails that of the other two:

Problem I. T find the maximum of |I(f)| in H, for given M »(f) and given kernel
k(z) of 9,
Problem II. To find the minimum of M(g) in the conjugate class H, for given

‘values’ of g at n poinis B,.

Problem HI. To find, in H,, a solution H(z) of the interpolation formula (1.3.11)
when the ‘values’ of H are given at n points f;.

1.4. The interpolation problem III is, logically, the simplest of the three equiva-
lent problems. We shall see that it always possesses a solution and that this solution is

1 We shall say that g(z) takes ‘given values’ at the points §;.
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unique. It follows that the minimum problem II also possesses exactly one extremal
SJunction G(z) and that the extremal kernel K(z) for the maximum problem I exists
uniquely. '

Note first that, in the interpolation formula (1.3.11), we have the correct
number n of parameters at our disposal, namely the n—1 parameters o, and the
constant 4.

Consider, next, the case ¢ = 2, when (1.3.11) becomes

(1.4.1) H(z) = AIl'(z— o)l (1—52) ,

so that H(z) is an arbitrary polynomial of degree at most n—1. Hence we have the
classical interpolation problem, the unique solution of which is given by the familiar
interpolation formula of Lagrange.

If ¢ = oo, we have

(1.4.2) H(z) = AIT Iz:—?i-.

(Xiz

The construction of this rational interpolation function, which again is uniquely
determined, can be achieved on following a method employed by 1. Schur? in the
theory of bounded power series [class H_].

Next, if ¢ = 1, (1.3.11) takes the form

(1.4.3) H(z) = AIT'(z—o)(1 — &) (1 —5.2)?

and we obtain a curious interpolation problem. The degree of the polynomial on the
right hand side is at most 2(n—1). Besides the pairs of inverse roots «,, & in IT it
possesses only roots of even order not inside the unit circle. The existence and
uniqueness of this interpolation polynomial has been established by S. Kakeya?®.
But his proofs does not provide a ‘“‘constructive” method for actually determining
the polynomial, in the manner of Lagrange’s formula or Schur’s algorithm. This
interesting and apparently difficult problem remains open.

Finally, in the case of a general ¢, the unique existence of the interpolatioh
function H(z) can be established by extending the argument which Kakeya uses in
the case ¢ = 1. Again, no actual construction of H(z) can be obtained in this way.

1.5. As we have said already, the extremal kernel K(z) in the maximum problem I
is uniquely determined by the formula (1.3.5) since this is the case for H(z) in (1.3.11).

1 Schur, part I.
2 Kakeya, (b).
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If p > 1, the extremal function F(z) in (1.3.6) is also unique apart from a trivial
Sactor & of modulus 1. For the «; in (1.3.11), and hence in (1.3.6), are uniquely deter-
mined, and |B| is determined by the given value of M ,(F).

Note that, when p = 2,

(1.5.1) F(z) = BIT"(z—oa)IT' (1 —&2) [ [ (1 B2,
1
and that, when p = oo,
Z*ai
(1.5.2) F(z) = BIl" ———.
l1—a;z

If p =1, then q¢ = oo, and the product II' in (1.4.2) may determine fewer than
n—1 parameters «,, say s only. In this case n—1—s of the parameters «; in the
formula

(1.5.3) F(z) = BIT"(z—a;)(1 —&2)T'(1 —&,2)1T(1 —f2)~*

are arbitrary. Hence, if p = 1, there may be an infinity of (genuinely different) extremal
Sfunctions F(z).

It should further be noted that, whenever H(z) has been determined, then K(z)
and thus, by (1.3.2) and (1.3.3), Max [/ is known. For this it is not required to know
the actual values of the ;. This remark is of importance in some applications.

1.6. The general theory of the extremum problems, as set out in the preceding
paragraphs, is, in its essential features, not new. However, what is known concerns
mainly the classes H,, H,, and H_,, and even this not in full generality. Also our
present argument is, in many respects, simpler and more complete than that used
by previous writers. Finally, there exists, as far as we know, no connected account
of this theory in the otherwise very extensive literature on extremum problems of
our type. All this seems to us sufficient justification for presenting the theoretical part
of this paper.

The first non-trivial maximum problem in H,, was solved by E. Landau!® who
determined the maximum of ja,+a,4-- - - +a,| for the class of power series (1.2.5),
for which |f(z)] <1 in |z| < 1. He was the first to use the idea of “minimizing’ the
given kernel, and he succeeded in determining the extremal kernel K(z) in a way
which we shall explain, in the light of the general theory, in § 3.3 of this paper. 1t
should be understood that Landau did not propound any general theory for extremum
problems in H_,, and that he arrived at his extremal function by a sort of ““inspired

1 Landau, (a), (c).
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guess”. His method, however, is applicable in many similar cases and has been
followed and generalized by several subsequent writers.

The general theory takes shape when C. Carathéodory and L. Fejér! solve the
minimum problem II in A for the case where the first coefficients

(1.6.1) Og, Qyy. .. G

n

of the power series of g(z) are given. They determine, by algebraic methods, the
extremal function (1.4.2)2 Gronwall® gives another and particularly simple solution
based on the classical lemma of Schwarz. G. Pick* extends these results to the case
where the values of g(z) at n different points §; are given. Finally, 1. Schur’ in his
well known theory of the class H_, develops an algebraic algorithm, equivalent to
a repeated use of Schwarz’s lemma, which can be conveniently used for determining
the extremal functions of minimum problems in H,.

The minimum problem II for the class H,, again in the special case (1.6.1),
was first discussed by F. Riesz® who proved, by a variational argument, the unique
existence and the characteristic form of the extremal function G(z). No method for
constructing the solution of the interpolation problem involved is given. G. Pick?
extends this result to the case where the values of ¢(z) at » different points f; are
given. F. Riesz®, in passing, also points out the relation between his minimum
problem and the corresponding maximum problem in H_.

S. Kakeya® starts from the maximum problem I in H_, when the kernel k(z)

has n simple poles. It is his argument which we follow and generalize in the present

o0?

account of the general theory. Kakeya reduces his maximum problem to the corre-
sponding minimum problem in H, and this, in turn, to the interpolation problem
(1.4.3). He then gives a proof of a topological character for the existence of the
unique solution of the latter. Geronimus!® gives an independent proof in the general
case.

1 Carathéodory and Fejér.

2 If all §; = 0, then G(z) = H(z), by (1.3.10).

3 Gronwall.

4 Pick, (b).

5 Schur.

¢ Riesz. The earlier writers assume that g(z) is continuous, in |z| < 1.
7 Pick, (b)

8 Riesz, § 7.

® Kakeya, (b).

10 Geronimus, (a), (b).
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L. Fejér!, E. Egervary?, and others treat special maximum problems in H, by
reducing them to the corresponding minimum problems in H,,. G. Pick?® discusses

minimum problems in H,.

1.7. This paper is divided in two main parts. In the first the general theory of
the extremum problems for the classes H,, is developed. In cases where we follow
the usual methods we content ourselves with a mere sketching of these. The second
part of the paper gives systematic applications of the general theory to special
problems of various types. Some of our results have been obtained previously but
appear only now, that is in the light of the general theory, in their proper aspect.

Part I: The General Theory.

2. Reduction to a Problem of Interpolation.

2.1. We use the notation of the introduction. Let f(z) be a function of H,,
1 < p < oo, and let k(z) be a kernel of §, with poles 8, f,,... f,, these repeated'
according to multiplicity. We consider the integral
1 2n

(2.1.1) I=1I(f)= 1 Sm . f(c)k(c)dc=~§ ef () (e™)dl .

—% 27Zto

Here x(z) is any kernel of the class ®, determined by k(z).
By (1.1.3), the integrand exists and is finite for almost all #; and, by Hdolder’s
inequality, it is integrable.

2.2. Our first estimate is

(2.2.1) 1 < lS L () .
2n J,

Equality will hold if, and only if,
(2.2.2) arg {f(O)(0)} = @

(a constant) for almost all ¢ = &%,
The function A(z) = zf(z)x(z) belongs to ©,, by Holder’s inequality, since f
belongs to H,, and » to §,. It follows from (1.1.4), applied to A(z) with p = 1, that

1 Fejér.
2 Egervéry.
3 Pick, (a), (b).
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02 -02

Mre®)do — S A(e?)do
o

(2.2.3) S

01
as r > 1—0, for every arc < 0,0, >. Hence we may apply the usual argument
for the “principle of inversion’ and infer from (2.2.2) that A(z) is a rational function.
The zeros and poles of A(z), if not on |z| = 1, appear in pairs of points inverse to
each other with respect to the unit circle. Furthermore, (2.2.2) implies that any
zero of A(z) on |z] = 1 must be of even order. No pole of A(z) can lie on [2] = 1 since
Az) belongs to 9,, and the only possible poles are amongst the pairs 8,,5,71. It
follows that A(z) is of the form

(2.2.4) Me) = af (e = C2

where the |«;| < 1. For, A(z) must have a zero at the origin and hence at infinity if
none of the #; vanishes; it must be regular there if exactly one of the §; vanishes;
and it must have there a pole of order at most k—1 if k of the 8, vanish. It is easy to
verify that this A(z) satisfies (2.2.2) for all { = €.

2.3. Next we apply Holder’s inequality and obtain
27T

1 . .
(2:3.1) 2o\ F(E (N < M ()M (o)

2nd,
Equality will hold if, and only if,
(2.3.2) IFOI" = Dla(0)["?

for almost all ¢ = ¥,
Combining (2.2.2) and (2.3.1) we see that equality will hold in

(2.3.3) | < M (f)M ()

if, and only if, f(2) = F(z) and x(z) = K(z), where
ﬁ(z_“i)(l_'&iz)
(2.3.4) F(2)K(z) = C L

1T —8)(1—p2)

and where, for almost all { = ¥ |
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n—1 1'q

T (C—a)(1—30)
(2.3.5) K@) = 4] | 57—

11 C—B)1—BL)
and '
n—1 tl/p

T (¢—a)(1—&2)
(2.3.6) |F() = |Bl |~

n

11 C—B)(1—B2)

1

1t follows from (2.3.3) that, for any function K(z) of R, which together with an F(z)
of H, satisfies the conditions (2.3.4), (2.3.5), (2.3.6), we shall have
(2.3.7) M (K) = Min M (x) .
%€ ﬁ’q
2.4. Let us assume, for the present, that there exists such an extremal kernel K(z)
and that K(z) is coniinuous on |z| = 1.
The zeros of K(z) in |2] < 1 must be amongst the «; in (2.3.4). The function
1—&,,:2 I Z—ﬁi

(2.4.1) K*(z) = K(2)II' —

S l_‘ﬁ?’

where /1’ is extended over the zeros of K(z) in |z < 1, is regular and different from
zero in |z| < 1, continuous on |z] = 1, and satisfies (2.3.5) for all ¢{ = . It follows
that

n—1 n
(2.4.2) K*@) = A [T =52 [T 1—Bz)".
1 1

This is equivalent to the formula (1.3.5) for K(z) itself. The formula (1.3.6) for the
associated extremal function F(z) follows from (2.3.4) at once.

It should be noted that any such K(z) determines all the «; in (1.3.5) and hence
those in (1.3.6), provided that ¢ # oo, that is p > 1. The associated extremal function
F(z) is then uniquely determined, apart from a factor ¢, where |¢| = 1. If p =1,
however, some only of the «; in (1.3.5) may be determined by K(z), the remainder
being quite arbitrary. There may then be genuinely different extremal functions F(z).

Conversely, if p == oo, a function F(z) of the form (1.3.6) can be an associated
extremal function with one extremal kernel K(z) only (apart from an arbitrary
constant factor), and this kernel must be of the form (1.3.5). For, F(z) is continuous
on |z| = 1, and so is F(z)K(z), by (2.3.4). It follows that K(z) is continuous at every
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point ¢, |£] = 1, where F({) =+ 0. This is also true when F({) = 0. For, K({) cannot
be infinite because of (2.3.5). Since K(z) is continuous on |z] = 1, it is of the form
(1.8.5), and it now follows from the prescribed principal parts at the poles §, that
its factor 4 in (1.3.5) is also uniquely determined.

We can now prove:

If an extremal kernel K(z) exists which is continuous on |z| = 1 (and hence is of
the form (1.3.5)) then it ts the only possible extremal kernel.

For suppose that K,(z) be a different kernel, not necessarily continuous on
lz] = 1, and F,(z) an extremal function associated with K ,(z). Let F(z) be an extremal
function associated with K(z) and hence of the form (1.3.6).

If F,(z) = ¢*F(z), it would follow that F,(z) is of the form (1.3.6) and that
K \(z) is of the form (1.3.5). This possibility has already been disposed of, so that
we may assume that F,(z) = ¢*F(z). It follows that

(2.4.3) H(F)| = M (FOM(K,); [I(F,)] < M (F))M(K),
so that M (K,) < M (K) in contradiction to (2.3.7).
2.5. It remains to prove that there always exists an extremal kernel K{z) in

&, which is continuous-on |z[ = 1. K(z) is then necessarily unique. This problem is,

as we know, equivalent to that of a solution for the interpolation formula

(2.5.1) H(z) = An'f:;“i_ﬁ(l_&iz)mq’

1—o,2 1

where the prescribed ‘““values” of H(z) at the points §, are those of

(2.5.2) hz) = k() 1 11_?5; (1—B2)"e;

and these, in turn, are determined by the principal parts of k(z) at its poles §;.
Note that this interpolation problem can have at most one solution. For, different
solutions would lead to different extremal kernels of the form (1.3.5).

3. Extremum Problems in H,.

3.1, If p = 2 then ¢ = 2. The formula (2.5.1) becomes
(3.1.1) H(z) = AIT (z—a)IT"(1—3g)

and we arrive at the classical-interpolation problem the (unique) solution of which

1 This happens only if { = &; and |x;| = 1.
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is given by the familiar formula of Lagrange. Hence for the class H, our theory is
now complete. Lagrange’s interpolation formula determines explicitly H(z) and thus
the extremal kernel K(z) which, by (1.3.8) and (1.3.10), is given by

(3.1.2) K(z) = H(z)]n] (z—

This only, and not the knowledge of the roots «,, is required for the solution of the
extremum problems proper. To establish the extremal functions, note that, in view
of (3.1.1), (1.5.1), and (3.1.2), we have

(3.1.3) F(z) = BA72"'H1z) [] 1—Bz)' = C2-'K(17),

1
so that again the knowledge of the roots «; of H(z) is not required. Alternatively, we
may say that the extremal kernel is the “natural kernel” consisting of the sum of the

principal parts of the given poles. This follows from (3.1.2).

3.2. There exists another simple way of dealing with extremum problems in H,.

A power series f(z) = 3 a,2* belongs to H, if, and only if,
0

(3.2.1) Mf) = Ylaylt < oo

Now, expressing the values and derivatives of f(z) at the points §; in terms of the

ay, we obtain
o

(3.2.2) I(f) = ‘)_jckak s

0
where the ¢, are “given”, the series J'|c,|> being convergent. More generally,
consider any such sum /7, not necessarily obtained in the above way. Then, by
Cauchy’s inequality,

/
2

S| S S| i

0

oo
ey
O

(3.2.3)

Equality holds if, and only if, a, = B¢,. It follows that, in the case (3.2.2), the

extremal function is

(3.2.4) F) = szkz’f ,

while, for the extremal kernel, by (3.1.3),
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o0

(3.2.5) K@) = Yo (1 > 1); My(K) = {Zlcklz}q-

0

It should be noted that we can replace (3.2.3) by the stricter inequality
[+<] o /g

(3.2.6) 2 el < { 2> ICkIQ} My(f) .
0 0

3.3. In certain cases the solution of an extremum problem in H, can be reduced
to one in H,.

Let p > 1 and k(z) be the function (2.5.2); and let there be = different points f,.
Suppose, in the first place, that, for suitable determinations, the “values” h(B,)%? lead
to a Lagrange polynomial H*(z) which has mo roots in |z| < 1.

Suppose, in addition, that there is a determination
(3.3.1) H(z) = H*(z)*9
which takes at the g, the given values A(8;). This, for instance, will certainly be the
case when p = co, ¢ = 1.

Under these assumptions H(z) will be a solution of (2.5.1), the product I’
being empty. On using (1.3.8) and (1.3.10), it follows that

B . 2 n 1‘3% 1-2/gq
(3.3.2) | K(z) = K*(z) qg(;lﬁ;> ,
(3.3.3) M(K) = M, (K*)*1
and
n—1 \ 2/p—1
H(1~&i2)
(3.3.4) F(z) = CF*() | —— ,

H (I_Biz)

where K*(z) and F*(z) are the extremal kernel and extremal function in H,, corre-
sponding to the Lagrange polynomial H*(z).
A similar method is available in the case

(3.3.5) I(f) =

x>

where f(z) = Y'a,2* and the ¢, are given. Here the given kernel is
0

ey, (¢, +0),

ol\/s

n

(3.3.6) k(z) = Yo ™!

0
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and all 8, =0 (: = 1, 2,...n+1). According to (1.3.8) and (1.3.10), we must have
(3.3.7) G(z) = H(z) = 2K (2) = ¢ 4+Co 12+ F+Ce2"+- -+ .

Now let p > 1. We have, for small |z| and some determination,

(3.3.8) G(2)7° = dytAzt A2

The first coefficients Ay, 4;,... 4, depend on the given ¢, ¢,,. .., ¢, only. Hence,

again for small [z| and a certain determination,
(3.3.9)  Pue)?= (hgt Azt - -+ = b, 2t e+ - .

Suppose now that the polynomial P,(z) has no roots in |z| < 1. Then P,(z)*?is of the
form (2.5.1), the product II' being empty. It follows that G(z) = H(z) = P,(2)"*
and that

(3.3.10) P,(2) = 0]n7 (1—&z).
1
The extremal function is, by (1.3.6),
(3.3.11) _ Di}ii/
P,(z)*
and the extremal kernel is K(z) = 27" 'P,(2)*?, so that
(3.3.12) M(K) = MIP,) .

It follows that, under our assumptions regarding P,(z),
(3.3.13) leo@otcaay -+ - - e, @, < M(F)(1R0] 2+ 1Ay [2 4 - - - 42,9
This inequality was first proved, in the case p = oo, ¢ = 1, by O. Szész!. It contains
as a special case E. Landau’s determination? of the maximum of |¢y+a,+---+a,|
in H.

It is well known that P, (z) + 0 in |z[ < 1 when, for instance3,

(3.3.14) A= M> ... >0 >0, 1,>0,

a condition which is satisfied in Landau’s case.

4. Extremum Problems in H,.

4.1. If p = 1, then ¢ = oo and the interpolation function (2.5.1) takes the form

1 Szész, (b).
2 Landau, (a), (c).
3 Kakeya, (a).
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, Z—‘Oéi
(4.1.1) H(z) = AIl"' — .
. I— o, k4

To establish its unique existence we employ an algorithm introduced into the theory
of the class H_ by I. Schurl.

4.2. Consider the class B of functions w = ¢(z) regular and satisfying |w| < 1
in |z| < 1.

Let = points §; in |z| < 1 be given, taken multiply if desired and arranged in.
some order. We wish to discuss the possible “values” w; of g(z) at these points. Put

(4.2.1) ¢1(2) = 9(2),  y1= @lfy) = wy .
Then |y,] < 1; and |y,| = 1 if, and only if, ¢,(z) = y,. If |y,| < 1, put?

(4.2.2) C l2) = Py i CRE P2(Bs) »

so that
o 1‘“31/32 Wy — Wy .
(4.2.3) e wy = @(B)
if B, B, and
(4.2.4) Sl T w, = @y(;) = ¢'(B,)
-z Ve 1— [, ? 2 2 = 1Py @ P1),

if B, = B,. @a(2) belongs to the class B, so that |y,| < 1.
Similarly, if |y,| <1 (k < n) we put

1-Bi2 ¢,(2)~7s

2B 1—pi(2)

The numbers y, are certain rational functions of the g, 8; and w;, w, with 1 < ¢ <k,

'(4-2‘5) (pk-;-l(z) = Y1 = <pk+1(ﬁk+l) .

and [y;,,| < 1. A necessary restriction for possible values w; is, therefore, that either
() lyd < 1forall i (1 <4 <n)or (iz) that there exists an s (1 <s < n) such that
lyl = 1, while |p,] <1 for 1 <34 <,

In the second case, ¢,(2) = y,, and all the values w; with i > s are determined by
the preceding ones.

These restrictions on possible values w; are also sufficient in order that there
should exist some function ¢(z) in B which takes these values at the points g.

In case (¢) there exists an infinity of such functions. We may start with any

1 Schur.

2 Compare Schur: Schur considers the case ;== 0 only.

19. Adcta mathematica, 82. Imprimé le 13 mars 1950,
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function ¢,(z) of B such that ¢,(8,) = 7,. Resolving (4.2.5) backwards step by step
we arrive at a function ¢(z) of the desired kind.

In case (i7) there exists exactly one such function. For necessarily ¢ (z) = y,.
Hence, resolving (4.2.5) backwards as before, we arrive after s—1 steps at a uniquely
determined rational function ¢(z) in B, of degree at most s—1,1 which takes the
values w; at the points §,.

It is easy to see? that this function is of the form

s—1

(4.2.6) o) = e ]I {{g; (ol < 1, Je] = 1)

For, since |g,(2)] = |y,| = 1, we conclude from (4.2.5) that |¢, ;(z)] = 1 when
|z| = 1, and, finally, that |@(z)| = 1 when |z| = 1. Since ¢(z) is a rational function
of degree at most s—1 in B, it must be of the form (4.2.6), with s possibly replaced
by some p < s. But p < s is impossible, since then [y | = 1, as is éasily verified.

4.3. Consider now our interpolation problem where n arbitrary ‘“values” w;
are prescribed at the points g,.

Let o > 0. If p is large, the values p~'w; will determine numbers y,(o) which
satisfy the conditions (i) of 4.2. For it follows, by induction, from the definition
(4.2.5) that y;(¢) — 0 (of order p-1) as p — co. Hence, for large ¢, there will exist a
function @,(z) in B which takes the values w,~! at the points f;.

On the other hand, if p — 0, some of the w;o~! will tend to infinity3, so that no
such function ¢,(z) can exist when g is small enough.

Now let P> 0 be the greatest lower bound of all values ¢ > 0 for which such
a @,(2) in B exists. Since the functions of B form a normal family, there exists also
a function ¢p(z) in B. Not all the corresponding |y,(P)| can be less than 1. For then,
by reason of continuity, the same would hold for some ¢ < P, and a ¢,(z) would
exist contrary to the definition of P. Hence the case (i¢) of (4.2) must hold when
o = P, and @p(2) is of the form (4.2.6) with some s < n. It follows that the function

8—1

(4.3.1) H(z) = Ppp(z) = ¢P [T li:%z el =1,

?

is a solution of our interpolation problem.

1 A quotient of two polynomials each of degree at most s—1.
? Schur, in the case B; =0, uses an algebraic argument to prove (4.2.6).
3 We exclude the trivial case that all w; = 0 when H(z) = 0 is of the form (4.1.1).
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We know already that this solution is unique. It follows, by the above arguments,
that ¢, (2) exists for all ¢ > P and that all |y,(0)| < 1 for these o. The latter property

ceases first, as p decreases, for p = P.

4.4. The value of P is of main interest in the applications. Since the y;(¢) can
be calculated for large o and are rational functions of g, the actual determination
of P becomes an algebraic problem. In the “classical” case where all 5, = 0, i. e.

where the first n+1 coefficients ¢, ¢,,. .. ¢, of
z—(X,L'
(4.4.1) H(z) = AIT T——:— = CyC2+ -+ +cnz”+ Ce

are prescribed, it has been proved by C. Carathéodory and L. Fejér! that |4| = P,
where P is the greatest root of the equation

0% —hyo —hoy - . . —hy,
—~hyy 0*—hy . . . —hy,,
(4.4.2) ’ ) o ) =0
_'hno _hnl .. Qz_hnn
and
H -
(4.4:3) h%l == zwan_vcl_v (Oﬁxﬁlﬁn) y hl% = h%l .
=0

The case f; = =0 is easily reduced to the above by a linear transformation.
4.5. Let f(2) = Y a;2*, when I(f) is of the form
0

(4.5.1) I(f)y = D'y -
0
Now any function f(z) of H, can be represented in the form?

(4.5.2) [(z) = BR)F(R) ,

where 8(z) is a ‘“Blaschke product”, satisfying |8(z)] < lin [z| < 1 and |B({)| =1
for almost all { = e®; where $(z) & 0 in |z| < 1; and where F(z) belongs to H,.
Also M\(F) = M (f). We write, with some determination of the root,

1 Carathéodory and Fejér.
? See Zygmund, p. 161: A corresponding representation holds for f(z) of H. p» When §(z) will belong

to Hp.
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(4.5.3) f(2) = B(2)F()"*F@)"? = Fa(2)Fal2) -
Both ,(z) and &,(z) belong to H,, and
(4.5.4) M3(F) = My(F2) = M(F) = My(f) .

Let §,(2) = ' 4;2%, Fa(z) = D'Bi2* so that
0 0

k
(4.55) ak == ZAIBIC—I .
1=0
Next consider
(4.5.6) @) = FHETFH () = Yagt,
(4]

where F*(2) = N4, FF(z) = Y |B,l2F. Both §¥(z) and §(z) belong to H,.

0 0
Hence, by Schwarz’s inequality, f*(z) belongs to H,, and

(4.5.7) M(f*) < Mo(FHMAFS) = Mo(F)Mo(Fo) = MA(f) -
Also
k
(4.5.8) lay] < EfAzHBk_zl = a,’: .
1=0

It follows that, if ¢, > 0,
(4.5.9) Delay] < Y eaal < M(fY)M(K) < M (f)M(K).
0 0

This is an interesting improvement on [I(f)] < M,(f)M (K) and shows that the
coefficients of an extremal function F(z) must have constant signs if the ¢, have

this property!.

5. Extremum Problems in H_.

5.1. If p = oo then ¢ = 1, and the interpolation function (2.5.1) becomes
(5.1.1) H(z) = AIl'(z—o (1 —a,2) 1" (1 —&,;2)2 .

As we have pointed out in the introduction to this paper, the existence of a (unique)
solution of the interpolation problem involved has been indirectly established by
F. Riesz? and G. Pick® who show that the corresponding minimum function G{(z)

of H, exists uniquely and is of the appropriate form. A direct proof, based on a

1 Compare Egervary; Landau (b).
¥ Riesz.
3 Pick, (a), (b).



Extremum Problems in the Theory of Analytic Functions. 293

topological argument, has been given by S. Kakeya!. None of these proofs is con-
structive. It would be of considerable interest to find a method for actually deter-
mining the interpolation function.

It should be noted that the above proofs, as published, deal only with the two
cases where either all 8, = 0, or where all g, are different from one another. It is,
however, evident that the most general case can be obtained from the latter one by

a limiting process, the uniqueness of the result following from our general theory?.

5.2. The topological proof of Kakeya extends to the general interpolation
problem (2.5.1)%; if p > 1, g < co. We refrain therefore from giving any further
account of it.

5.3. We proceed to construct the interpolation polynomial (5.1.1) in the simple
case of two different points 8, and 8,. This is of importance for applications in H_.

Given w, and w, we have to show that there exists a function H(z) either of the

form

(5.3.1) H(z) = A(z—o)(1—&2) (Jo| < 1)
or

(5.3.2) H(z) = A(1—&z)? (o] < 1),

such that H(f,) = w, and H(,) = w,.

We shall assume that w, and w, do not vanish simultaneously, in which case
H(z) = 0. To avoid minor complications we shall also assume that both 8, and §,
are different from zero. The excluded case can easily be treated by a limiting process.

A function H(z) of the form (5.3.1) satisfies the equation

(5.3.3) 22H(1jz) = eH(z) (e = AJA, ) =1).
In particular, S7H(1/8;) = &w, or ,
(5.3.4) w} = HQ1B;) = %m0, (1 =1,2).

It follows that, in the case (5.3.1), H(z) must be the Lagrange polynomial that takes the
given values w; at the points B; and the values w} at the points 1/8,.

Given an arbitrary e with |¢] = 1, let us start, therefore, with the Lagrange
polynomial L(z) that takes the values w; and w} at the points §; and 1/B;, respectively.

1 Kakeya, (b).

2 See also Geronimus.

3 Following the notation of Kakeya (b) one has to put E(z, t) = (1—iz /7 where ¢ is a point on the
first sheet of his double unit circle S, and E(z, t) = (z—2)(1—2)27~! when ¢ is on the second sheet.
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L(z) is of degree at most three. An elementary calculation shows that the coefficient
of 23 is B,fy(v—ev), where

. W, + Wy
T (Bi—B)(1—BB)1—1B[?)  (Be—B)(1—BoB)(1—IBel?)

Hence L(z) will be of degree at most two, if either v = 0 and ¢ is arbitrary, or if

(5.3.5) v

v== 0 and ¢ = v/v. In both cases, by definition,

(5.3.6) 22L(1]z) = £L(z)

is true for the four points §;, 1/8;. Since (5.3.6) is a quadratic equation in z, it must
hold identically. It follows that, if a root «, with |x| = 1 of L(z) exists, then 1/x is
also a root. L(z) is of the form (5.3.1), and L(z) is H(z).

5.4. There remains the case when
(5.4.1) L(z) = Alz—m)z—n2) (Il = [na) = 1) .
We then have
% _ (.31_‘771)(.51—7]2)-
Wy (ﬁz"h)(ﬂz"’?z)

maps the circle |z] < 1 on the exterior of a certain circle C. Since

(5.4.2)

B1—2

Now t =
By—2

= 0if z = f,, and ¢ = co if z = B,, C does not contain the origin ¢ = 0. To |z| > 1
corresponds the interior of C, and to |z] = 1 the circumference of C. It remains to
show that (5.4.2) implies that w,/w, 18 inside or on the boundary of the curve C2. For then

(5.4.3) :%‘ - (/‘:—‘Eg)
with (| > 1, and writing ¢ = 1/,
(5.4.4) g—‘ - (E%%) (Ja] < 1).

In this case an H(z) = A(1—&z)? with |x| <1 clearly exists.

Conversely, if such an H(z) exists, then (5.4.4) holds, and w,/w, is inside or on
the boundary of C2. It follows that the case (5.3.1) corresponds to w,jw, being outside O%;
for we know that only one interpolation function can exist, and the two cases are
exclusive. In particular, in the very special case mentioned in § 5.3, namely v = 0, ¢
arbitrary, we have

1 ¢ is the image of C by the transform u = 2.
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(5.4.5) w; _ (1—B:8:)(1—15:/?)

Wy N (1_,3231)(1_“32I2) ’

and it is easy to verify that this value is inside C2 (see also § 5.6.). Hence L(z) is in
this case of the form (5.4.1).

5.5. To prove that w,/w, is inside or on the boundary of C'? when (5.4.2) holds,
we consider the two points

(5.5.1) i P

b Ba—m’ B Ba—ma’
which are both on the circumference of C. Let 7, = g;e®. By (5.4.2)

(5.5.2) e =TTy = Qleei(olJroZ) = Qeio >
Wy
say. The line joining ¢ = 0 to the point ge'®? bisects the angle (z,, 0, 7,), and this
point is contained in the angle bounded by the two tangents from 0 to the circle C.
Hence w,/w, is contained in the corresponding angle with respect to CZ.
Next consider the points

(5.5.3) n= 0% Ti=pe% (<8 i=12)
and ] ‘
(554) Z — geiﬁ,/z’ TL’, — éew/? (Q S é)

which are the (possibly coinciding) points on the
circumference of C? corresponding to these argu-
ments (Compare figure). The points 7; are amongst
the points (5.5.3). The point w,/w, will clearly be
inside or on the boundary of C? if

(5.5.5) g2§€1€2sélé2—<—§2 .

To prove this we may assume that 6, < 6, say, the case 8, = 0,(= }6) being
triviall. Draw the circle K through 0, 7, and 7,. Since 0 is outside C, that arc (7, 7,)
of K which does not contain 0 will be inside C.

1 We owe the following simple geometrical argument to Mr. O. F. T. Roberts.
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Consider the point 7* = g*¢¥? on this arc. If d is the diameter of K and 2¢
is the angle that the chord (0, v*) subtends at the centre of K, then g* = d sin ¢.
Since the line joining 0 to t* bisects the angle (7, 0,7,), we have, similarly,
0; = d sin ¢; where ¢, = p+o, say.

Hence

0,02 = d?sin (p+«) sin (p—a) = $d?(cos 26 —cos 2¢)
(5.5.6) < 3d*(1—cos 2¢p) = d2sin? p = g*? < 2.

On the other hand, p,0, = .05 = po. Hence, by (5.5.6),

(5.5.7) (00)2 = (ngz)(élz)z) =< g1g252 s

or p* < g,0,. This completes our proof.

5.6. To sum up, the interpolation function H(z) can be found in the case of
two different points §, and f, in the following simple way. If w,/w, is outside C?,
then H(z) is the Lagrange polynomial L(z), uniquely! defined in § 5.3., and H(z)
is of the form (5.3.1). If w,/w, is inside or on the boundary of (2, then H(z) = A%(2)
where /(z) is the (linear) Lagrange polynomial for which A(8;) = w;"2, the square
roots being chosen so that /A(z) # 0 in |2| < 1. This is possible according to our
discussion. H{(z) is then of the form (5.3.2).

The uniqueness of H(z) could be proved directly. This proof which we omit
here leads also to the following result which in itself is of some interest:

We have seen that, whenever t, and 7, are two points on the circumference of C,
then the point v = 7,7, is not outside C'2. Conversely, it can be shown that any point
u, not, outside C?, can be represented in the form « = 7,7, and that the two factors
7, and 1, are in general, apart from their order, uniquely determined. The only
exception is that point? U on the line joining 0 to the “‘centre’?® u, of €2, whose
distance from 0 equals the length of the tangents from 0 to C2. In fact, it is geo-
metrically clear that 7,7, == U whenever, with our above notations, 7, = 7, say,

and 7, = 7,.

1 The case v = 0, ¢ arbitrary, does not arise here as appears below.
2 U is the point (5.4.5) corresponding to the case » = 0, ¢ arbitrary, disclosed in § 5.3.
8y, = zﬁ where z; is the centre of C.
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Part 1I. Applications.

6. Inequalities in H,.

6.1. Extremum problems in H, are simple: the ‘natural’ kernel is the extremal
kernel, and the associated extremal functions are then determined by (3.1.3).
Thus the pair
(6.1.1) K(z) = (z—B) ™, F(2) = Bz"(1—pz)="D

are extremal kernel and associated extremal function for the inequality
(6.1.2) If™B)] < n!Mo{(z—F)" " OLM(f) .
To calculate M,(K), we put { = (+w)/(1+pBw) and obtain

. 1 || 1 [ 1+Bw LGN WY L
gy — (M Lp | lpe R IBE
e Wy o i WO P B e o
(6.1.3)
1 g -
_—— 14 By duo] .
S )P i
Hencel

!

@1, 1700 = o (3 e () e+ (2) o ot

Alternatively, by (1.3.7),
(6.1.5) My(K) = |[I(F,)|'"* = |[F{(B)m!",
so that (6.1.4) can also be written as
(6.1.6), IFB) < [n!FP(B) M o(f)
where F,(z) = 2"(1—pfz) "V,
6.2. Let §, &= f,. By (3.1.3), the pair
(6.2.1) K(z) = [(z—p1)(z—B2)]"", F(z) = Bz[(1—Br2)(1—pa2)]
are (natural) extremal kernel and associated extremal functions for the inequality

\f(ﬂ2)‘—f(/31)

6.2.2
( ) I ﬂZ"ﬁl

< Mo{[(z—B1)(z—P2)] 1 Mo(f) -

1 Suffixes p, such as in (6.1.4),, indicate the class Hp (here p = 2) for which the formula holds.
This will help the reader to find the main results for each class.
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Here
T S e e o TR
27 5 =Bl —Bal? 2 b (E— B —Be)(1—p18) (1—Bxl)
(6.2.3) - P _ s
, (l—lﬂllz)(ﬂl-ﬂz)(l—ﬂlﬁz) (1—1B2|2)(Ba—B)(1—B:B1)
1—[8,8,/

Il_ﬂlﬁz 1_“31! (1_|ﬂ212)?
and we obtain
l—lﬂllgzlz Ve

FB—1(B)
= [il—ﬁlﬂz A= 1B (115

p2—B,

(6.2.4),

M(f)-

6.3. There is an interesting application of (6.2. 4) Let 0<a <b< 1. If f(z)
2 a,z" belongs to H,, then its ‘majorant’ f*(z) = )’ la,|z" also belongs to H,, and
My(f*) = My(f). Clearly |f'(x)| <f*(x) when a < x < b, so that

(1o < §f*'< )z = f+(b)~f*(@)
Hence, by (6.2.4), ’

S 14+ab 1z
(6.3.1), |17 @de < 6—a)| = o g M)
when 0 <a < b < 1. In particular,
b
(6.3.2), \ f@lde < Gomm M) 0Sb< ).

The extremal functions are F(z) = Bz[(1—az)(1—bz)]L.
The integral in (6.3.1) is the length of the map of the interval @ < x <b by

the transformation w = f(x).

6.4. We have seen, in § 3.2, that Cauchy’s inequality provides another simple

way of dealing with extremum problems in H,. Thus we have, for all » > 0,
(6.4.1), o]+ lay|r+ - - - +la,|r" < (L4124 )M (f)
with the extremal functions F(z) = B(l+rz+r2%*+ ... 41 2").

The right hand side is of the order (1—7)7"* as n - oo, uniformly for all f with
given M,(f). For fixed f this order can be reduced to!

1 Hardy.
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(6.4.2), fH(r) = El%lr’” = o(1—r)""*
g

as r - 1—o. For, when m > 0 is given, then

m o0 12
710 = Dia (- T, l2)
0 m+1
and so

’ [>] 1/2
fim (1—r70) < ( Slal2)
r—>1~0 m+1
On letting m — oo, we obtain (6.4.2).
Cauchy’s inequality is also available for extremum problems involving certain

transcendental kernels not covered by our general theory. Thus

B2 1 I—B,
6.4.3 dz = —— log 2— "1 d
has the logarithmic kernel k(z) = log {(z—8,)/(z—f,)}. Here

D2 oo ﬁn+1 IBn+1 S ﬂ;‘“—ﬂ?“ 2}1/2
6.4.4 S [ M .
(644 )Sﬂ Sl _{2 | f )
on+l_ pgntl
Equality holds when a, = B~> "1 5o that
n+1
k) = log ZPt | piay = Blog 1P

may be regarded as extremal kernel and associated extremal functions. We note
that (6.4.4) implies

WBe. | 12
Sﬁ dz;<2{2 ——} M) = 2 H )

6.4.5
( ) 0 ”+ 1)2 l/6

for all |5,] <1, |8, < 1.
If B =1, then, clearly, M,(F)= M,K) and hence |I(F)] = M}K). The

‘constant’ in (6.4.4) is therefore

¢ 1—Brdz? [ (1—/3132@(1—/323@)dx}“
(040 MZ(K)"’SmlOinEQé?; _{3010 (= [fuf2) (1 —[Bol20) = |

If B, =a,B,=">band 0 <a < b < 1, then, integrating over the interval a < x < b,
we can replace f(x) in (6.4.4) by |f(x)|. For, (6.4.4) holds also for the majorant f*(x)
In particular,
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b 1 1 d 1’2

647, | If(x)ldxi{ \log =, -~ } Myf)  (0<b<l),
o M) -

and, on letting b — 1,

1 o0

(6.4.8), S 2)lde < {2

0

7. Other Inequalities for which the ‘Natural’ Kernel is Extremal.

7.1. While the natural kernel is always the extremal kernel in H,, it is, so to
speak, accidentally the extremal kernel in certain special cases for other classes H J
For example, if p = oo, g = 1, the kernel (z—pg)""*" is extremal provided
that n--1 is even. For, if n+1 = 2(m-+1) say, we may take, in (1.3.5), A=1,1II
to be empty, m+1 of the &, equal to § and the remaining m of the «, to be zero.
The extremal function (1.3.6) then becomes
(7.1.1) F(z) = Bz2" <i—7ﬁ)m+l,
1—42
and we obtain!

(7.1.2) FEm0(B)] < (2mA 1) 1M {(z— )} Max ||
o — (2m- 1)1 ME{(z—B) V) Max |f] .

Hence, by (6.1.3),2

2m+1 (2m+1)' 2 m ’ 2 m ’ 4 . .
ey < e () e () 61+

(7.1.3),, 2
(™) e} rax 151

7.2. The extremal kernel (1.3.5) will take the form II(z—g;)~1, if II' is empty
and IT(1—&z2)¥? = I[I(1—B2)*?". This will occur whenever II(1—B;zz)" %" is a
polynomial.

In particular, if ¢ <= 2 and if all the 8, equal § and are n—+1 in number, then
the degree (n+1) (1—gq/2) of the polynomial must be a positive integer, so that ¢
must be rational and less than 2. If q/ 2 = h/k in its lowest terms, then n{1 must
be a multiple of k. Since ¢ = p/(p— 1), this case will arise, in particular, when p is an

integer greater than 2. If then p is even, n+1 must be a multiple of p—1; if p is odd,

1 We write Max |f] for the least upper bound of |f(z)] in |z| < L.
2 (7.1.3) was first proved, in a different way, by Szdsz (b).
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then »41 must be a multiple of 2(p—1). If p = oo, ¢ = 1, then n+41 must be even
[§ 7.17; if p = 2, ¢ = 2, then n may be arbitrary [§ 6.1].
The ‘constant’ of the corresponding inequality is

M [(z—B)y "V = M3(z—p) "7 .
Hence, by (6.1.3), we obtain

200 < 1+ ) re+() 610+

(7.2.1),

+(1) | a0,

where p = (n+1)q/2—1. This inequality holds for all integral p > 2: if p is even,
then n-+1 must be a multiple of p—1; if p is odd, then n must be a multiple of 2(p—1).

Since
I(1—B2) 9% = (1—f2)" V9D = (1—B2)"H,

we see that n—u of the n roots «; of the extremal functions (1.3.6) must equal g,
while the remaining u roots vanish. Hence these extremal functions are

(1.2.2) F(2) = Bet(z— )" H(L—Pa) P D=2y — Bop(y_ By(1 —Fz) #+0,

8. Extremal Kernels without Zeros in |z|< 1.

8.1. 1t is sometimes possible, if I7’ in (1.3.5) is empty, to determine the extremal
kernel, even when it is not the natural kernel. This can be done by Landau’s method
which we discussed in § 3.3.

Let o > —1. If ¢'¥(z) = sﬁ’%z)/(“l—n), where

(8.1.1) 69 = (T ag+ (*T" T Najet+ - +an,
n

n—1
then the ¢®(z) are the (C, a)-transformations of the partial sums s,(z) = s(z) of
f(z). We write o = ¢/®(1), s® = s¥(1).

Let p > 1. The function G(z) of (3.3.7) corresponding to I(f) = s is, for small |z|,

1 n

(8.1.2) G(2) = 1+<“+1)z+. . .+(“+n>zn+, co= (L—2) L O™,

80 that
(8.1.3) G(z)q/2 — (1—2)7(0‘+1)Q/2+0(!z]"+1) — 1_}_(2‘*‘1)2_’_ . +(A+n)zn_}_0(|z[n+])’

1 n
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where 4 = (x4 1)g/2—1. Hence, by (3.3.13), we shall have

N 1 A1\ 1242\ A+n\*|'e
(8.1.4),-, ]a;>;§m{l+< ] )+< 9 )+~-+( n )] M (f),
")
provided that the polynomial
(8.1.5) P(2) = 1+ (lfl)z+(l§2)z2+- : -+(“7;”)z"

has no roots in |z| < 1. By Kakeya’s Lemma (3.3.14), this will certainly be the case
when 1 < 0, that is when ¢ < 2/(x~1). In particular, when « = 0, we obtain for all
g < 2, that is for all p > 2,

$,] = lag+a;+- - +a,| < [1—}-(%)24-(%)24_. ..
(8.1.6)

P>2

+(q(q+22) .- .;.(‘q.—;jn—%)? ]llqM,,(f) |

For ¢ = 1, p = oo this is Landau’s inequality.
If 1 =0,q9=2/(x+1), then we have, for all —1 < &« < 1,

o+l

1)z Lo

(8.1.7) 0@ < P 4y (ymn e M ().
(cx+n) - =

n
If x = 1, this is the familiar inequality |¢’| < Max (f). In all these cases the extremal
functions are, by (3.3.11), of the form F(z) = Bz"P,(1/z)/P,(z)" *".

More generally,

(8.1.8), [0W(z)] < (a_r:n> {1+(“{1>2r-2+ (1"*2_2)27"‘% et (lin)zr“’”llﬁlp(f),
n

where |z| = r, provided that the polynomial

A+1

' 1—}—n>gn

n

(8.1.9) ey =+ ("t

has mo roots in || < 1. By Kakeya’s Lemma, this will certainly be the case when

A
either 1 < 0 and » > 1_|_|,
n

,or when >0 and r > 1+4A.
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8.2. Let p > 1. It is often convenient to shift a pole § of a kernel k(z) to w = 0
by the linear transformation

(8.2.1) AL A Wl | AP
1+Bw (1+4pw)?
[see § 6.1]. Conversely, we then have
2 o 1—pp
(8.2.2) v=1 g 14fw = -
B . o 1— ;_zz
w—a = (14-uap) i—jﬁz , l—aw = (l—}-ocﬂ e

where y = (x+8)/(14af).

On transformation /(f) becomes

1) = i.Slwl A WIBY g (tP) 1l

2m 14-Bw 1+4+Bw/ (14-fw)?

(8.2.3)
==\ plomdn

27Z’£'|w[=1

where
_ [ wtB [ 1—[B[* ]W’ [ wtB [ 1B }”g

(8.2.4) (p(w)_f<1+,§w> (14-Bw)zl ”(w)_k<1+,§w> (1+Bw)2l
Also

1 whB\[F 11 o 1Y
(8.2.5) M (k) = {%SM 1 k<1+ﬁw) T ]dw[} = M%) .

8.3. Consider, as an example, the kernel k(z) = (z—f)"™*?, when

(8.3.1) (W) = (1—B|2) Py (14 Bapy+1=2a,

We can now employ the same method as in § 3.3 and § 8.1. For any equivalent
kernel K(w) the function G(w) of (3.3.7) satisfies, for small |w],

(1~|ﬂ|2)"+”PG<w> = (=B P K (w) = (1+fw)" 20 0wl
(8.3.2) —1B1%) +1/pG ](][2 _ (1+l§w)(n+1)q/271+0(,wln+l)

= 1—!—( >?w—{—( )52w2+ —l—( )ﬂ w"+O(lw|™™),
where u = (n-+1)g/2—1. Suppose now that the polynomial

(8.3.3) (w)—1+( )ﬂw"‘( )ﬁ‘w T +( )ﬂ
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n

has no roots in |w| < 1 and hence is of the form C J[(1—&w). Also
1

(8.3.4) K(w) = (1—|B|2y 1 Py~ nth p2ig(yyy)
is then of the form (1.3.5) [with IT' = 0, 8, = 0 for 0 <{ < n+41], and hence is the
extremal kernel which makes M (x) = M (k) a minimum. We thus obtain ‘

©35), 10N < s |14 (5) e () e () ] 0

provided that P, (w) + 0 in |w| < 1. By (3.3.1) and (8.2.4) the corresponding extremal
functions are of the form

(8.3.8) F(z) = Bw"P,,(1)w)[P (w) 7. (14+pw)*? (w = f—_ﬁ) .

The condition that P,(w)= 0 in |w| < 1 is certainly satisfied when u <# and is
an integer. Then P,(w) = (14fw)* and we obtain again (7. 2. 1).
When n = 0 then P, =1, so that for all p > 1

1
(8.3.7), O = gy M(f)-

The extremal functions are F(z) = B(1—pz)~P.

It is easy to verify (8.3.7) directly. By (1.3.5), the extremal kernel, equivalent

Kur=(i]§§kmu—m*.

to (z—p)-1, is clearly

Hence, using (6.1.3), we have
MK) = (1— B2 M {(1—B2) ™9} = (1|82 M39{(1—B2)~1}
= (1= (A~ B2 = (1—|BI2) 77,

which proves (8.3.7) anew.
If n =1, then p = q—1 = (p—1)-1, Py(w) = 14+(¢—1)fw, and we obtain

) 1 1812 \"?
(8'3'8)p If (ﬂ)l S (1—],3]2)“'1‘1) (1+(p_1)2) Mp(f) ’

valid for p > 1 and all |8] < p—1. In particular, when p > 2, (8.3.8) holds for all

1fl < 1.
If » = 2, then p = 3¢g—1. Also



Extremum Problems in the Theory of Analytic Functions. 305

_ —1)_
Py(w) = 1-+ppw-- 8(4‘1{2_,‘)}32102

has the roots
(Bt = H—p LV 2u—u.
If the modulus of the right hand side does not exceed one, then P,(w) will have no

roots in |w| < 1 for any || < 1. An elementary argument shows that this is the case
when either 4 = 2 or when u < 1. Hence we find that!

( p{p—1)°

lg
(8.39),  If(BN< 1+/A2Iﬂ12+~—4——1ﬁl4) .0

2
(LB

holds for all |B] < 1, when either p = 2 or p > 4.
It should be noted that, guite generally, (8.3.5) holds, for fixed p, when ||

is small enough. For, P, (w) will then have no roots in |w| < 1.

9. The Inequality for f'(f).

9.1. In general we are unable to complete the analysis of an inequality whose
extremal kernel has zeros in |2| < 1. But the case of f'(#) is sufficiently simple for
us to do so.

We have proved (8.3.8) for all || < p—1; it holds, in particular, for all |8] < 1
when p > 2. Let now p < 2 and || > p—1. The kernel (8.3.1) is here

(9.1.1) n(w) = (1_|/3|2)41+1/p)w—2(1_ng)z'p_

The equivalent extremal kernel K{(w) must have a root y in |w| < 1, so that, by
(1.3.5), it is of the form

(9.1.2) Kw) = A(w—y)(1—ypw)*T w2 .
The constants 4 and y must satisfy

—pd = (1—|p2) P,
(/2 2. 2 _
(9.1.3 A‘1+(——1> 2} = (1— B2y P Zf = —Z B4 .
) AV 7l ( ,lﬂl pﬁ | pVﬂ
Hence yf is negative, that is y§ = —|y||p|, so that

1=yl Bl (1) i = 0

1 8zész (b), in the case p = oc.

20. Acte mathematica, 82. Imprimé le 13 mars 1950,
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or
_ [P +p2—p)—1p P _
2—p (1B12+p2—p)]""+ 18]

Clearly, |y| < 1 when p < 2 and |8| > p—1. Also

(9.1.4) ¥l

M(K) = |AIM f(1—jwy %} = [A|MFI(1—pw) ="|A|(1+|y|?)".
Hence =

1 2)\1/q
(9.1.5), sy <t

| < 7
Iyl (L—|B2)+1P

s valid for p < 2 and |8l > p—1; |y| is given by (9.1.4). In particular, when p = 1,

M(f)

q = oo, we havet

(9.1.6) @)l < [IBI4+(1+1819)""]

(1—1BI%)*
By (1.3.6) and (8.2.4), the extremal functions for (9.1.5), are of the form

Mitf) -

| F(2) = B{(1—5w)(1+ Buw)]"? _=F )
F(2) = Bl(1—50)(1+Fw)) (v=%
(9.1.7) - ' '
= C(1—&2)*?(1—Bz) ™" ((x = %%)
The inequality (9.1.6) holds also for § = 0. But then ly] = 1, and there are an infinity

of extremal functions of the form
(9.1.8) : F(z) = B(z—a)(1—&z2) ,

where « is an arbitrary parameter with |x| < 1.

10. Inequalities in H,.

10.1. Inequalities in H; have special features as we explained in § 4. In parti-
cular, there will be genuinely different extremal functions if the extremal kernel has
fewer than the maximum number of zeros. This case, however; must be considered
as exceptional, since the number of parameters appearing in the kernel is then less
than the order of the problem.

Consider, for instance, the kernel [(1—pjz)/(z—p)]*"* which is of extremal form.

It yields the inequality

! Macintyre and Rogosinski.
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d\" _
(10.1.1), ‘ <Zz) {f(z)(l_ﬁz)n+l}z=ﬁ < n'Ml(f)
with extremal functions
(10.1.2) F(z) = B]](z_(xi)(l_&z_z}(l_Bz)v2(n+l),

the parameters «;, |«;] < 1, being arbitrary. In particular, when g'= 0, the ele-
mentary inequality
(10.1.3) FOO <L), ] < My(f)
has this variety of extremal functions.

It is also interesting to note that, in the inequality (9.1.6) for f'(8), the extremal
function is of unique type when f 4 0. In the next paragraph we shall find the same

with regard to f’(8). We dlso note that (9.1.6) may easily be obtained once more
from (10.1.1) when » = 1.1

10.2. Consider the kernel
A B

k(z) = ;—E-*_Z_—_ﬂ;

where f#, = f,. The corresponding extremal kernel must be, apart from s constant
factor, one of the two kernels

1 ﬂlz 1—,322 z—a 1—Bz1—fy

(10.2.1) 2—By 2—P;  l—azz2—B, z—P,

(o] < 1).

To the first case corresponds the inequality

(10-2-2)1 I(l_[ﬂl 1 ﬂ2131 fﬂl 1—|/32 2) —Blﬂzfﬂzﬂ < |I32 ﬂllM
and the extremal functions depend on an arbitrary parameter « with |x| < 1. We
find also, on considering the residues at 8, and f,, that

(10.2.3) 4 1—1B,[21-Byf,

B 1_]ﬁ2|21_1§1i32,

so that this case is an exceptional one.

In the general case, we have, for every given & with |x]| < 1,

1 Macintyre and Rogosinski.
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Ba—

(0240 (0= B0 ~Bub) L fB) = (1= 102 (=) [ 2 F(B)

< 1Be—BIM ()

and the extremal functions are essentially unique.

10.3. If we take, in (10.2.4), f, = O and 8, = r(0 < r < 1) and if we determine

«, with |a] < 1, from

a1
x = (1—7‘2 P
1—&r
then an elementary calculation gives
e e
(10.3.1) X = %(r— l/ 4—37'2) 5 I(Xl 1= ?QH:;T

Hence, by (10.2.4),
l r

|/ @)z ! = 1f )~ O < M, ().

Yo _ I(XI

Here, by what we have proved in § 4.5, we may replace f' by |f’|, and obtain

ﬁl/4—3r2)

10.3.2 ’ < — M(f).
(10.3.2), \ I @ide <00 = S M)
The extremal functions are, by (1.3.6),

1— 2
(10.3.3) F(z) = B (*iz>

1—rz

with the above «.

11. The Inequality for f”(8) in H,.

11.1. The inequalities for f®™(8) in H, can be found by means of the algebraic
equation (4.4.2), after having shifted the pole § to 0 by a linear transformation.
In the case of f(8) this method would lead to a cubic equation. We prefer here a
direct argument which yields a parametric expression for the desired upper bound.

To the kernel k(z) = (z—f)~3 corresponds, by (8.2.4), the kernel

(1L.1.1) | #() =iﬁﬁ]§—> }

If K(w) is the equivalent extremal kernel, then
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(11.1.2) K(w) = {w(1—|8]*)} 2y (w)
where
(11.1.3) #(10) = 14-3Fw+3(Few)?+ O(w]?)

is that function, regular in |w| < 1, for which M = Max || is a minimum. Clearly
M=>1.

If M =1, then § =0,y =1, and the extremal kernel K(w) has no root in
lw) < 1.

If 40, then M > 1 and

M(z—1)  3BM { M2 }

(11.1.4) W) = e s = gy (g P Ol

will be regular, and |p| < 1, in |w] < 1. Hence?!
BBIM(M+2) _ € 3IB1M )
(M2—1)2 M—1/ "
The minimum condition on M requires equality here, that is

(M—1)*(M+1)

(11.1.5)

11.1.6 . 2 = —
(11.1.6) B ="t
and we must also have

wW—x 3EM
11.1.7 = S
(L1.D) vl =15, T Tapod

The right hand side of (11.1.6) increases from 0 to 1 when M increases from 1 to M,
where M, is the root, greater than 1, of

(11.1.8) (M—1)2(M+1)—3M(M+2) = M3—4M2—TM+1 = 0.
This root is slightly greater than 5. Hence

oM
11.1.9), (BN = = ML)
( ); Lf (B! TERTIEY ),

where |f} is given in the parametric form (11.1.8), the parameter M running from
1 to M,.

If p 0, M > 1, then it follows from (11.1.4) and (11.1.7) that y is a rational
function of degree 2, with |y = M on |w| = 1. Hence it has two zeros in
|w| < 1, and therefore K(w) has also two zeros in |w| < 1, and K(z) has two zeros
in |z| < 1. It follows that the extremal functions F(z) are essentially unique. On
the other hand, if 8 = 0, then the extremal functions depend on two arbitrary
parameters «;, and «,, with |, < 1.

! For, |¢(0)] <1 —|@(0)2, by (4.2.4) with B, =0.
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12. Egervary’s Inequalities in H,.

12.1. Let f(z) = J'a,2" be of class H,, and let r > 0. We wish to find inequalities
0
for the expressions
(12.1.1) 8,a(r) = |a@o|+layr+aslrei4- - - 4-|a, |77 .

As we have seen in § 4.5, we may here replace the |a,| by the a,, so that the corre-
sponding kernel is
(12.1.2) k(z) = 2" [r" 4 2

By (1.3.6), the equivalent extremal kernel is of the form

(12.1.3) K(z) = Az 2%

1—“,,:2

= .Az—n[rn—l+rn—2z+ .. +zn—l+‘0('z|n)] .

The problem of determining this kernel has been solved, for n/(n+1) <7 <1, by
Egervary!. We verify his results and extend them for all » > 0. First, consider the
polynomial

sinf—z"sin (n+1)6-+2""" sin nf

1—2z cos 622

(12.1.4) P(2) = sin 0+z sin 26+ - - - +2""" sin nf =

Let 6 be a root of sin nf = r sin (n+1)6. Then, for small |z|,

P(z)  sin0—2"sin (n+1)0+2"" sin nd
2" 'P(1/z) " sin nf—z sin (n-1)d+2""" sin 0

__sinf 140(|2]™)
" sin nf 1—z/r+O0(j2|*)

(12.1.5)

. 0 n—-1
o [1+5+---+(3) +0<fz,|")J.
r r

sin nf

If now P(z) has all its roots, in |z| < I, then

sin nf "' P(z)
gin @ 2’*' P(1/z)

(12.1.6) K(z) =
will be of the form (12.1.3), and hence will be the extremal kernel. We shall prdve
that P(z) has all its roots in [2| < 1, when 0 < 6 < /(n+1), that is for

r = sin #f/sin (n+1)§ > n/(n+1) .
Now this is true when 0 < 0 < z/2n, by Kakeya’s Lemma (3.3.14) applied to P(1/z).

1 Egervéry; see also Landau (b).
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It suffices, therefore, to show that, for 0 < 6 < n/(n+1) no root of P(z) can be on the
unit circle. Now P(e'¥) = 0 implies
cos (n-+1)g sin nf—cos ng sin (n++1)0 = — sin ¢,
(12.1.7) :
sin (n+41)g sin nf —sin ngp sin (n4+1)0 = 0
and thus

(12.1.8) sin? nf+sin? (n-+1)0—2 sin #0 sin (n41)8 cos ¢ = sinz § ,

This equation determines cos ¢ when 0 < ¢ < n/(n—f—l)ﬁ and (12.1.7) then gives
@ = 6. But, clearly, ¢ is not a root of P(z). We tind, therefore, by (12.1.6),
that, for r > n/(n+1),

sin nf

(12.1.9), [aof‘{‘»[alfr‘f" e, < Ml(f) )

sin 6
where §(0 < 0 < 7/(n+1)) is the root of sin nf = r sin (n-4-1)8.
Since
P 1 sin nd cos nf

=—— = ————, AYl—7rcos0)2 = 1—sinznd = 1—r2)2sin? g,
r sin 0 1—rcos 6

A1 —2r cos 412 =1

we can restate this result as

N{3

(12.1.10), [ag|+layfr-+- - +la, 41 < MAf) (r>n/in+1)).

r
{1—2r cos 6—}—r2)”—2

In particular, when r = 1, then 0 :In/(2n+1), and we obtain

(12.1.11), | lag|+lay| 4+ - - Fla, 4| < WMl(f)-
The extremal functions for (12.1.10) &fe, by (1.3.6),

(12.1.12) F(z) = B2™YP2(1/2) .

Next, if r = nf(n+41), 6 = 0, we can take

(12'1’13) : Q) = },‘fﬁ,%: 142243224 - Fn2™

which has all its roots in fz] < 1. We thus have

n

n n—1 n n—1
(12.1.14), |aol+!alln+1+‘"’+lan—1’(;f+_i> gn(m) M(f)

with
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n \**
n _—
(12.1.15) K(z) = _(z;t__llﬂ Q%% , F(z) = BZ"Q2(1/z)

as extremal kernel and extremal function.

Finally, when 0 < 7 < n/(n+1), we consider
(12.1.16) " R(z) = sinh 04z sinh 204 - - - 42" sinh %6 .
Defining 0 by sinh 6 = r sinh (n+1)0, we obtain, similarly to (12.1.5),

R(z)  sinho | z E"“l n}
WL R sinhms | Tr T +(3) oumy.

Again, by Kakeya’s Lemma, R(z) has all its roots in |z] < 1. Hence

inh nf
aalHlal 74l < T ()
(12.1.18), (0<r<mn/(ntl))
r"
- (1—2r cosh 0 —{—i'z)r2 1,00
with
3 L1 )
(12:1.19) K(py = Smmb 7 R@) gy paeenpa)

sinh 6 2" B(1/z)’

as extremal kernel and extremal function.

We note that, if r < 1, then » < n/(n{1) for large n. The positive root 0 of
sinh n6 = r sinh (n+41)8 tends to log 1/r when n - oo, and it easy to see that the
constant 7' sinh #6/sinh 6, in (12.1.18), tends to (1—r2)-1, in agreement with
(8.3.7).

13. Radial Mean Values in H, (a Logarithmic Kernel).

r

13.1. If f is of class H,, and 0 < r < 1, then any inequality forS Sflz)dx will also
0

hold for S |f(z)|dz, as we saw in § 4.5. Also |f(0)} < M,(f). Hence we shall have an
0
inequality of the type

7

(13.1.1) | f@Ndz < 20317 .

0
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If A(r) is the best possible constant’, then A(r)/r - 1 as r — 0. Also A(r)/r increases
with 7, as is readily seen on considering f(gz), where 0 < ¢ < 1. It is well known!
that A{r)/r increases to 7 as 7 increases to 1. We wish to determine this A(r).

By (6.4.3), the kernel of the problem is k(z) = log (z/(z—r)), where the log has
its principal value and is regular and one-valued outside the segment 0 <z <r.
Any equivalent kernel is of the form

(13.1.2) x(z) = log ;é-r—}—x*(z)

where x*(z) is regular in [z] < 1.

We can repeat our argument of § 2 with obvious modifications. If an extremal
kernel K(z) exists, and if F(z) is an associated extremal function, then it follows,
as in (2.2.2), that the function zF(z)K(z) has constant argument for almost all z on
|z| = 1. By the principle of inversion we then conclude that

2
(13.1.3) 2F(2)K(z) = C log (z‘:ﬁ(il‘:r;)

Also, as in (2.3.2) (¢ = o), {K(z)| must be constant for almost all z on [z] = 1.
As for the unique existence of K(z), it is again sufficient to show that a kernel K(z),
of the form (13.1.2), exists which is continuous on |z| = 1 and for which |K(z)| = 2
on |z| = 1. This A = A(r) is then the desired constant.

Consider the function.

re’ T

(13.1.4) R =T
which, apart from a pole at s = 0, is regular and schlicht for |J(s)| < =, and which
omits the values © and r. To the circle |s| = A, where A < 7, corresponds a certain
‘dumbell’ like curve I', enclosing the points 0 and r. For small 1 this curve is
approximately a circle of centre 0 and radius r/i. I'; shrinks as 1 increases, and,
when 1 = 7, it touches the segment 0 <t <r at 7 = }r from both sides.

Next, let z = 2(r) be the function which maps the interior of I'; on a circle
|z| < g in such a way that z(0) = 0 and 2(r) = r. This function, and the corresponding
o = o(4), is uniquely determined. As A decreases from z to 0, ¢ will increase from r
to infinity; and there will be exactly one value 1 = A(r) for which ¢ = 1. For this
value of 4, the inverse function 7 = 7(z) will be regular in |z[ < 1 and continuous
on [zf = 1. Solving (13.1.4), we find that the function '

1 Fejér and Riesz.
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7(2)
(13.1.5) s = K(z) = log———
: t(z)—r

is of the form (13.1.2), that K(z) is continuous and |K(z)| = A(r) on [z| = 1. Hence
K(z) is the extremal kernel of our problem, and A(r) is the desired best possible
constant in (13.1.1). The extremal functions F(z) are determined by (13.1.3).

There is an alternative way to define K(z). It follows from our discussion that
the function s = K(z) maps the circle |z| < 1, cut along the segment 0 <=z =<7,
on the interior of the strip [J(s)| < = less the circle |s| < 4. It is clear that this
mapping property defines K(z) and A(r) uniquely, since the ‘moduli’ of the two twice-
connected domains must be the same.

We can use this property to obtain estimates for A(r). For instance, the
transformation ¢ = (z+x)/(1+ az) will map the unit circle on itself and the segment
0 <z <7 onto the segment —u« <{ < «, provided that

r+o —r

13.1.6 S
(13.1.6) Trar T 1)1

The transformation s = 44/¢ will map the cirele |z| < 1, slit along the segment
0 < z < r, onto the exterior of the circle |s| = 4 slit along the two parts |J(s)] = 4/«
of the imaginary axis. Since this domain must have the same modulus as the strip
I(s)] < 7 less the circle |s| < A, we conclude that these two slits must enter the
strip. Hence A/x < =, or

7

13.1.7 Ar) < ———F—==.

(13.1.7) Alr) I—H/l—r2
This estimate for A(r)/r ranges from 4z to 7 as r increases from 0 to 1, while the true
range is from 1 to #. However, for r near to 1, it is a useful estimate. For small 7,
the crude estimate

147
(13.1.8) Ar) < % log 1=

obtained on integrating (8.3.7), is better. ’
According to the footnote to (4.5.2), the inequality (13.1.1) can be applied to

|f[P, when f belongs to H,. We then obtain

(13.1.9) g [f @)|Pde < A(r)ME(S) .
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Equality, however, for the A(r) defined above, is only possible when p = 1. If p = 2
and f(z) = 2%2‘": we find

2] 3(
(13.1.10) P <~ )‘ a,l? < e, |® .
go%om+n+1 o < T ”22
This is a generalisation of Hilbert’s well known inequality?, which itself is obtained,

with best possible constant z, on letting » — 1.

14. Linear Restrictions.

14.1. We have been concerned so far with two con]ugate extremum problems,
I and IT of § 1.3. It is possible to combine the two and propose the question, what
are the possible values of I(f) when M ( f) and the values of f at a fmlte number of
points in {z] < 1 are prescribed.

This problem has attracted considerable interest in the case p = co. When
I(f) = f(B), then the problem is effectively solved by Schur’s algorithm: unless the
class of functions is empty, the region of possible values of f(f) is a certain cirele?.
For other forms of I{f) the discussion is much more complicated, but a number of
special cases have been investigated by Dieudonné® and Rogosinski‘.

For other values of p the problem is usually difficult, but we are able to treat a
few special cases.

14.2. Let us consider the subclass H., of functions f of H,, for which f(0) =
We then have f(z) g(z) where g also belongs to H,. In fact, M (f) = M,(g9). If
I{f)in volves the kernel k(z), then, clearly, I(f)= I *(g) where I*(g) involves the kernel
k*(z) = zk(z). Extremum problems for the class E » are, therefore, amenable to our
general theory. We obtain, for instance, from (8.3.7) at- once the inequality®

(142.1), O s Mol

with extremal functions F(z) = Bz(1—pz)*".

1 Hardy, Littlewood and Pdlya, Chapter I1X.
2 Pick (a), (b).

3 Dieudonné.

¢ Rogosinski.

8 A suffix p relates to the class H,.
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14.3. To find inequalities for f'(8) in H, we have to consider the kernel
k*(z) = z/(z—p)% On using the transformation (8.2.1) we are led, by (8.2.4), to
the kernel

(14.3.1) w*(w) = (1—[B[2) Pw2(w4B)(14Fuw)' 2.

The corresponding extremal kernel is, by (1.3.5), of one of the two forms
(14.3.2) (1) AQ—awy w2, (1) A(w—a)(l—cw) T w2,

where A = f(1—|8[2) "™'7 or —ad = B(1—|Bi2)""*'P), respectively. In both cases
(14.3.3) M (K*) = |AI M2 —Fw)?} = |A}(14|x[2)".

The corresponding extremal functions are, by (1.3.6),
(14.3.4) (#) D(w) = Bw—a)(1—aw)* "™, (ir) ®(w) = B(l—aw)*?;
or, by (8.2.4), F(z) = 2G(z) = Cz(1+pw)*?®(w), that is
(14.3.5) () ) = ¢z BTV by = 0, 0T
(1—fz)'? (1—pz)'"
where y = (x+B)/(1+xf).
First, consider the case (¢). Equating the coefficients of w in »*(w) and K*(w)
we find for x the equation

2
(14.3.6) _'5& = 1+(1—2/g)|B1* .
Hence x must be negative. We also require || < 1. This implies

q, (4 ) )
I . | < |8,
T+ (E-1) s <um
or :
(14.3.7) 1< 5—2@Ei@, B — 1Bl < 1.
141812 1+)14+2¢—q% -
This case is only possible when ¢ < 2, p > 2 [as is also seen from (14.3.6)]. By
(14.3.2), (i), we obtain for these |f|

(14.3.9), ifwnsiiqggﬁ;u+wvﬂ%hu»

The extremal functions are those of (14.3.5), (¢).
The case (i¢) must cover the remaining range of |8|; in particular, all |8| when
g > 2. We find, similarly, that

(14.3.9) —g [14+(2/g—1)|x[2] = 14+(1—2/q)|B|%.
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Again fx is negative, and we must have |x| < 1. Solving (14.3.9) we find

(14.3.10) o= s A (@ _ 34).
(L1—olB1)+V 0?IBI* —60lB|*+1 g

We then obtain, in this case,

Bl (Ll

A=)

(14.3.11), £ <

M (f)

with the extremal functions (14.3.5), (4%).

When |x| -~ 1, then (14.3.9) becomes (14.3.6): we are in the extreme case
g = 2|p|(1+1(1+18(%)~", and the two estimates (14.3.8) and (14.3.11) become
the same.

We remark that a single formula holds for all § when p < 2, while two are
required when p > 2. Without the condition f(0) = 0 this situation is reversed.

If p=1, then p = —1, and (14.3.11) becomes
141812+ V|84 -+ 6181241
(143.12) gy <UEEDAVIB Ly
: | 2(1—|B?)
If p=2, then p =0, « = —§8, and so
(14.3.13), Lf(8)] <(+:§:2)WM () -

If p = oo, then, by (14.3.8), the case (¢) occurs when |3} > Vg—l. We then find,
by (14.3.6), that

_&=i:,lﬂl2 e (LHIB
2 T g
Hence, by (14.3.8),
(143.14),  [fBI = 4((ﬁf+|ﬁllﬂl Max |f| (V2—1< 1B <1).

In the second case, we have, by (14.3.9),

Thjaf® 1187

2 Bl
so that (14.3.11) gives
(14.3.15)o B <Max|ff (8 <V2-1).

By (14.3.5), the extremal functions are
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(14.3.16) G) F(z) = C2——Y | (ii) F(z) = Cz,

1—yz

respectively. The formulae (14.3.14) and (14.3.15) were first proved by Dieudonné!.

14.4. In the case of the second derivative f''(8) in H , the kernel k*(2)=2z(z—f)~°

is transformed into
(14.4.1) K*w) = 21— B P+ B)(1 +fw)*
The equivalent extremal kernel K*(w) is of one of the three forms

(6) AL —&w)(1 —&w))* w3, (51) A(w—o)(1—&w) 7 (1 —&w) w2,
(14.4.2)
(§i) A(w—o;)(w—op)[(1 —5w)(1 —F,w) " w2,

where 4, or —u, A4, or a;x,4 equals 28(1—|B]2) %P, respectively. For a general p
the actual determination of this extremal kernel is bound to be very involved. We
shall, therefore, have to confine ourselves to a few remarks.

Consider the case when K*(w) is of form (i). We may assume that 0 < <1

and must then have

ﬂ[(1~&1'w)(1-072“{)]2'/9 = (w+p)(14pw)*?+O0(|w]?) .
Clearly, p=1, ¢ = oo is imI')ossible. If p> 1, we must have
(i—&lw)(l—&zw)

q | 9(¢—2)  qlg—1)  (¢—1)g—2) ]
o= I —_ _-1 2 2 ;
+{2ﬂ+(q : )ﬂwa{“{ TR , B
that is, this polynomial P(w) = 14+ Uw+ Vw2, say, must have no roots in |w] < 1.
It follows, first, that U = |¥,+&,| < 2, and it is readily seen that this implies ¢ < 2.
Hence the case (¢) is certajnly impossible when p < 2. If ¢ < 2, then an elementary
discussion shows that P(w) has two real roots, and our condition on these becomes

U—}—]/_(72_:V4VI7§ 2, or U—V < 1. For such ¢ and § we shall then have

(14.4.3)

o 2lp| q ' :
" —_— (1 — —1
IR .’ﬂlz)m,p[ +<2lﬁl+(q 8))

(14.4.4),

Q(q-—2)' q(q—i) (q—1)g—2) ) 2 11iq
+( s+ 2 T 2 !ﬂlH M(f).

I Dieudonné.
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When p = 2, then the natural kernel (14.4.1) is the extremal kernel: it has the root

w= —f in |w| <1 and is of the form (i7). We obtain for all {f] < 1

(14.4.5), B = < lﬂlz)m [14-41812+ 18141 Mo(f) -

In the case p = 1 the extremal kernel is of the form (i) when f + 0. For, we know
that (¢) is impossible, and (if) would imply

(I—w/a,)(1 —ayw)~t = (14-w/B)(1+pw)*+O(|w|?) (0<p<1).

Equating the coefficients of w2, we would have &} —&,/x, = f2-+2 which is impossible
when 8 > 0. By (4.4.2) the resulting inequality is

(14.46) LIS e M)
S T
where C is the greatest root of the cubic equation
| —or—|pI? o —Usl+281%) —(21B1*+181*)
aaan | OB o—(LESRRa)  —(GIBETIA 2B |
| — (21812181 —@IBIHTIBIP+-218P) o> — (19617 +-8|61*+ f
i +181°),

14.5. Inequalities for f'(8) in H_, can be obtained in elementary form. We may
assume again that 0 < § < 1. The form (14.4.2), (z), of the extremal kernel will be

required whenever
2

Pw) =1 ad 0
(w) = v +*2?3—‘§5§ (8> 0)
has no roots in |w| < 1. Since these roots are 2(1i]/§)ﬂ, we obtain, by (14.4.4),
. 28| 11
<20 4 4+ M
= G e | ) M
(14.5.1)
B . (1+8 pl?)?
~ szpp—ipe
for |B] > j = 1+V3f.1
2()/3—1) 4

1 Rogosinski. Part of the inequality (26) there is wrong, owing to an arithmetical slip on p. 104,
and should be replaced by the present formula (14.5.3).
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For smaller |§] the form (14.4.2), (¢2), of the extremal kernel becomes available;

that is
K*w) = A(w—o)(1—x,w)(1 —&w) w3

where —Ax, = 26(1—|B(?)-2. We require

(1—E)(l—o'qw)(l—oczw)2 = 1+%+0(lwi3) .

X1

If 0 < f < 1, the « will be real, because of the uniqueness of the extremal kernel.

Comparing coefficients we find

o+ 1o+ 20, = —1/8, 14205 (00, +1/o))Fox2 = 0.

Writing y = «;+41/x, we obtain y = —[2x,+1/8] and, finally,
1+2)/ 14382
(14.5.2) Y A & Vit3p
1+ 14382 36

Clearly, 0 < oy < 1. Also yp increases from —oo to —2 when f increases from 0
to %(I—H/S). Hence «, is negative and |x,/ < 1 for 0 < g8 < 5(1—1—1/3).

Next,
A d
M(K*) = 12—!\ [(2w— 0y J(1 — o yw)(1 —oxyw)?| [duw|

7T e =1
!A[ 2 j— - 2,ﬂ R 2 2

- ESW (1)1 =)ol =7 O ) ()]

2p 28
—_ 2“2 g = ——01 *(Xg
(1_/32)2[”+ +agy] (1—/32)2[ [B—as5y]

B (1:ﬂ2)2[ 3(1+ 11+ 382)2

B2(1+2)/1+38%) ]

or, after an elementary calculation,

i 4 14382+ 344 ]
M(K*) = — |
(A7) 3(1~/32)2{lJr 14 (14362
We obtain, therefore,
4 14 3]6(2+3|BI*
14.5.3)e 0 I e— LI N
0480 = g | T | e

for 0 < |l < }(1+V/3).
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If Bl = 114} VS;Y), both (14.5.1) and (14.5.3) become identical, the common
‘constant’ being 128(2~H/3)/(29+ 19} 3) The extremal functions can be obtained

in each case in the usual way.

14.6. In the preceding paragraphs it was assumed that f(0) = 0. We discuss
now the case where a value f(0) different from zero and T = M (f) are given.

If f(z) = Z’anz” belongs to H,, then, for |8 < 1

If(B)—f(0 } 2o ﬁ”! < DMl 2 2B = (T2 fO)DIBP 811,
that 1s

(460, OO < s o

[ﬂ( 1/2

Equality will be attained if, and only if, @, = Af" for n > 1; that is when f(z) is
of the form

(T2—1f N (T = Myf).

Bz
(14.6.2) F(z)=f(0)+2 -_ﬂ,ﬁ
1— /’g’z
where |1 is determined by T = M,(F). Any point on the circamference of the
circle (14.6.1) is attained for suitable A. For smaller |1 interior points of the circle
are obtained, but, in order to retain 7', we have to add to F(z) a suitable term

cz(z—p), say. The closed circle (14.6.1) is thus the exact region for possible values

of f(B).

14.7. The corresponding result for A is well known. A simple use of Schwarz’s
Lemma shows that the exact region of variability for f(f) is the closed circle C
that corresponds to the circle |t| < |g] by the transformation:

~ Tg—t[ﬁ? (T = Max |f]) .

T+f(0

14.8. For the class H, the problem is a little more difficult. We may assume
that0<,8<1andtha‘o0<f0)<’l’ M, (f).
The two inequalities (10.2.2) and (10.2.4) are at our disposal. We use first the

latter, that is

/3

(14.8.1), (1—p2) <BT (sl <1).

Equality is attained for

21, Acta mathematica, 82, Tmprimé e 13 mars 1950,
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(1452 F(2) = fO)(A—&z)2(1—Bz)
where -
(14.8.3) T = M\(F.,) :f(()){ _lh,“?f_ﬂ,” .
Hence « is restricted to the circle

T 12
A
Here the points

T T2
s oo (20

‘are endpoints of a diameter. We must also have |x| < 1if (14.8.1) is to be available.
First suppose that f(0) > 3(1+8)7. Then «, < 1 and the circle (14.8.4) belongs
to |x] < 1. When « describes (14.8.4) then the value of F,*8) describes the circle

—a&f

—p

in the half plane Ris > 0. For suitable «;, x, on (14.8.4), and a suitable t with 0 <¢ <1,
the function

(K) 5= 10)

G{z) = tFif(z)—%—(l —-~£)F;"':(z)
takes any prescribed value G(B) inside or on K. Also G(0) = f1*0)

Hence w = H(2) = (*(z) takes any prescribed value ms1de or on the curve
I' = K2, the transform of K by w = s*. Also H(0) = f(0) and M, (H) = Mi{G) < T.
Hence, adding to H(z) a suitable term cz(z—8), we see that, for given T and given
JO) (> %(1—}-/3)T), any prescribed value of f(B) inside or on I' can be attained.

Next, let f(0) < 3(1 —B)T, in which case x_ < —1 and the circle (14.8.4) belongs
to |«] > 1. Here formula (10.2.2), that is

(14.8.6), (1—B2)f(B)—f(0)] < BT

becomes available. Equality is attained for

(14.8.7) F¥iz) = _JO (z—a){1—x2)(1—pz)2,
x . :

where « is restricted to the curve

_ o _JOf 1B
(14.8.8) T = M(F¥) N [ + 1—/32}'

Now the circle (14.8.4) encloses [« < 1. For fixed arg o and |x| = 1 the right hand
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side of (14.8.8) equals that of (14.8.3), and hence is not greater than 7'. It follows,
that, for every given arg o, there exists an « with 0 < |a| < 1 satisfying (14.8.8):
the curve of these « encloses « = 0. On the other band, if x satisfies (14.8.8), then
an elementary calculation shows that

(11.89) (A—pIF2 )0 = 41,

so that the values F}(8) describe the whole circumference of the circle (14.8.6).
An argument, similar to that used above, shows that every point of the closed circle
(14.8.6) is-a possible value for f(§), provided that f(0) < 1(1—pB)T.

Lastly, if 3(1—8)7 < f(0) < }{14-8)T, then the circle (14.8.4) meets the circle
la) = 1 at two points (or, when f(0) = 3(14-8)7', touches it at «, = 1). Apart from
these points the values of arg « are divided into two categories. Either the-equation
(14.8.4), or the equation (14.8.8) has a root « with Ja] < 1. All these possible values
of « form a simple closed curve consisting of that part of the circle (14.8.4) for which
lof < 1, and, for the rest, of an arc of the curve (14.8.8). The correspohding values
F(B) of the extremal functions lie on a simple closed curve I'* consisting of an
arc of I’ and an arc of the circle (14.8.8). This curve I'* and its interior constitute the
exact region of possible values f(B), when 3(1—pB)T < f(0) < H14-)7.

21%
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